1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2007 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_inet.h" 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/mbuf.h> 35 #include <sys/kernel.h> 36 #include <sys/endian.h> 37 38 #include <sys/socket.h> 39 40 #include <net/bpf.h> 41 #include <net/ethernet.h> 42 #include <net/if.h> 43 #include <net/if_llc.h> 44 #include <net/if_media.h> 45 #include <net/if_vlan_var.h> 46 47 #include <net80211/ieee80211_var.h> 48 #include <net80211/ieee80211_regdomain.h> 49 50 #ifdef INET 51 #include <netinet/in.h> 52 #include <netinet/if_ether.h> 53 #include <netinet/in_systm.h> 54 #include <netinet/ip.h> 55 #endif 56 57 #define ETHER_HEADER_COPY(dst, src) \ 58 memcpy(dst, src, sizeof(struct ether_header)) 59 60 static struct mbuf *ieee80211_encap_fastframe(struct ieee80211com *ic, 61 struct mbuf *m1, const struct ether_header *eh1, 62 struct mbuf *m2, const struct ether_header *eh2); 63 static int ieee80211_fragment(struct ieee80211com *, struct mbuf *, 64 u_int hdrsize, u_int ciphdrsize, u_int mtu); 65 static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int); 66 67 #ifdef IEEE80211_DEBUG 68 /* 69 * Decide if an outbound management frame should be 70 * printed when debugging is enabled. This filters some 71 * of the less interesting frames that come frequently 72 * (e.g. beacons). 73 */ 74 static __inline int 75 doprint(struct ieee80211com *ic, int subtype) 76 { 77 switch (subtype) { 78 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 79 return (ic->ic_opmode == IEEE80211_M_IBSS); 80 } 81 return 1; 82 } 83 #endif 84 85 /* 86 * Set the direction field and address fields of an outgoing 87 * non-QoS frame. Note this should be called early on in 88 * constructing a frame as it sets i_fc[1]; other bits can 89 * then be or'd in. 90 */ 91 static void 92 ieee80211_send_setup(struct ieee80211com *ic, 93 struct ieee80211_node *ni, 94 struct ieee80211_frame *wh, 95 int type, 96 const uint8_t sa[IEEE80211_ADDR_LEN], 97 const uint8_t da[IEEE80211_ADDR_LEN], 98 const uint8_t bssid[IEEE80211_ADDR_LEN]) 99 { 100 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 101 102 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 103 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 104 switch (ic->ic_opmode) { 105 case IEEE80211_M_STA: 106 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 107 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 108 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 109 IEEE80211_ADDR_COPY(wh->i_addr3, da); 110 break; 111 case IEEE80211_M_IBSS: 112 case IEEE80211_M_AHDEMO: 113 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 114 IEEE80211_ADDR_COPY(wh->i_addr1, da); 115 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 116 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 117 break; 118 case IEEE80211_M_HOSTAP: 119 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 120 IEEE80211_ADDR_COPY(wh->i_addr1, da); 121 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 122 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 123 break; 124 case IEEE80211_M_WDS: 125 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 126 /* XXX cheat, bssid holds RA */ 127 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 128 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); 129 IEEE80211_ADDR_COPY(wh->i_addr3, da); 130 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 131 break; 132 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 133 break; 134 } 135 } else { 136 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 137 IEEE80211_ADDR_COPY(wh->i_addr1, da); 138 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 139 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 140 } 141 *(uint16_t *)&wh->i_dur[0] = 0; 142 /* NB: use non-QoS tid */ 143 *(uint16_t *)&wh->i_seq[0] = 144 htole16(ni->ni_txseqs[IEEE80211_NONQOS_TID] << IEEE80211_SEQ_SEQ_SHIFT); 145 ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 146 #undef WH4 147 } 148 149 /* 150 * Send a management frame to the specified node. The node pointer 151 * must have a reference as the pointer will be passed to the driver 152 * and potentially held for a long time. If the frame is successfully 153 * dispatched to the driver, then it is responsible for freeing the 154 * reference (and potentially free'ing up any associated storage). 155 */ 156 int 157 ieee80211_mgmt_output(struct ieee80211com *ic, struct ieee80211_node *ni, 158 struct mbuf *m, int type) 159 { 160 struct ifnet *ifp = ic->ic_ifp; 161 struct ieee80211_frame *wh; 162 163 KASSERT(ni != NULL, ("null node")); 164 165 /* 166 * Yech, hack alert! We want to pass the node down to the 167 * driver's start routine. If we don't do so then the start 168 * routine must immediately look it up again and that can 169 * cause a lock order reversal if, for example, this frame 170 * is being sent because the station is being timedout and 171 * the frame being sent is a DEAUTH message. We could stick 172 * this in an m_tag and tack that on to the mbuf. However 173 * that's rather expensive to do for every frame so instead 174 * we stuff it in the rcvif field since outbound frames do 175 * not (presently) use this. 176 */ 177 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT); 178 if (m == NULL) 179 return ENOMEM; 180 KASSERT(m->m_pkthdr.rcvif == NULL, ("rcvif not null")); 181 m->m_pkthdr.rcvif = (void *)ni; 182 183 wh = mtod(m, struct ieee80211_frame *); 184 ieee80211_send_setup(ic, ni, wh, 185 IEEE80211_FC0_TYPE_MGT | type, 186 ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid); 187 if ((m->m_flags & M_LINK0) != 0 && ni->ni_challenge != NULL) { 188 m->m_flags &= ~M_LINK0; 189 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH, 190 "[%s] encrypting frame (%s)\n", 191 ether_sprintf(wh->i_addr1), __func__); 192 wh->i_fc[1] |= IEEE80211_FC1_WEP; 193 } 194 #ifdef IEEE80211_DEBUG 195 /* avoid printing too many frames */ 196 if ((ieee80211_msg_debug(ic) && doprint(ic, type)) || 197 ieee80211_msg_dumppkts(ic)) { 198 printf("[%s] send %s on channel %u\n", 199 ether_sprintf(wh->i_addr1), 200 ieee80211_mgt_subtype_name[ 201 (type & IEEE80211_FC0_SUBTYPE_MASK) >> 202 IEEE80211_FC0_SUBTYPE_SHIFT], 203 ieee80211_chan2ieee(ic, ic->ic_curchan)); 204 } 205 #endif 206 IEEE80211_NODE_STAT(ni, tx_mgmt); 207 IF_ENQUEUE(&ic->ic_mgtq, m); 208 if_start(ifp); 209 ifp->if_opackets++; 210 211 return 0; 212 } 213 214 /* 215 * Raw packet transmit stub for legacy drivers. 216 * Send the packet through the mgt q so we bypass 217 * the normal encapsulation work. 218 */ 219 int 220 ieee80211_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 221 const struct ieee80211_bpf_params *params) 222 { 223 struct ieee80211com *ic = ni->ni_ic; 224 struct ifnet *ifp = ic->ic_ifp; 225 226 m->m_pkthdr.rcvif = (void *) ni; 227 IF_ENQUEUE(&ic->ic_mgtq, m); 228 if_start(ifp); 229 ifp->if_opackets++; 230 231 return 0; 232 } 233 234 /* 235 * 802.11 output routine. This is (currently) used only to 236 * connect bpf write calls to the 802.11 layer for injecting 237 * raw 802.11 frames. Note we locate the ieee80211com from 238 * the ifnet using a spare field setup at attach time. This 239 * will go away when the virtual ap support comes in. 240 */ 241 int 242 ieee80211_output(struct ifnet *ifp, struct mbuf *m, 243 struct sockaddr *dst, struct rtentry *rt0) 244 { 245 #define senderr(e) do { error = (e); goto bad;} while (0) 246 struct ieee80211com *ic = ifp->if_spare2; /* XXX */ 247 struct ieee80211_node *ni = NULL; 248 struct ieee80211_frame *wh; 249 int error; 250 251 /* 252 * Hand to the 802.3 code if not tagged as 253 * a raw 802.11 frame. 254 */ 255 if (dst->sa_family != AF_IEEE80211) 256 return ether_output(ifp, m, dst, rt0); 257 #ifdef MAC 258 error = mac_check_ifnet_transmit(ifp, m); 259 if (error) 260 senderr(error); 261 #endif 262 if (ifp->if_flags & IFF_MONITOR) 263 senderr(ENETDOWN); 264 if ((ifp->if_flags & IFF_UP) == 0) 265 senderr(ENETDOWN); 266 267 /* XXX bypass bridge, pfil, carp, etc. */ 268 269 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack)) 270 senderr(EIO); /* XXX */ 271 wh = mtod(m, struct ieee80211_frame *); 272 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) != 273 IEEE80211_FC0_VERSION_0) 274 senderr(EIO); /* XXX */ 275 276 /* locate destination node */ 277 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 278 case IEEE80211_FC1_DIR_NODS: 279 case IEEE80211_FC1_DIR_FROMDS: 280 ni = ieee80211_find_txnode(ic, wh->i_addr1); 281 break; 282 case IEEE80211_FC1_DIR_TODS: 283 case IEEE80211_FC1_DIR_DSTODS: 284 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame)) 285 senderr(EIO); /* XXX */ 286 ni = ieee80211_find_txnode(ic, wh->i_addr3); 287 break; 288 default: 289 senderr(EIO); /* XXX */ 290 } 291 if (ni == NULL) { 292 /* 293 * Permit packets w/ bpf params through regardless 294 * (see below about sa_len). 295 */ 296 if (dst->sa_len == 0) 297 senderr(EHOSTUNREACH); 298 ni = ieee80211_ref_node(ic->ic_bss); 299 } 300 301 /* XXX ctrl frames should go through */ 302 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 303 (m->m_flags & M_PWR_SAV) == 0) { 304 /* 305 * Station in power save mode; pass the frame 306 * to the 802.11 layer and continue. We'll get 307 * the frame back when the time is right. 308 */ 309 ieee80211_pwrsave(ni, m); 310 error = 0; 311 goto reclaim; 312 } 313 314 /* calculate priority so drivers can find the tx queue */ 315 /* XXX assumes an 802.3 frame */ 316 if (ieee80211_classify(ic, m, ni)) 317 senderr(EIO); /* XXX */ 318 319 BPF_MTAP(ifp, m); 320 /* 321 * NB: DLT_IEEE802_11_RADIO identifies the parameters are 322 * present by setting the sa_len field of the sockaddr (yes, 323 * this is a hack). 324 * NB: we assume sa_data is suitably aligned to cast. 325 */ 326 return ic->ic_raw_xmit(ni, m, (const struct ieee80211_bpf_params *) 327 (dst->sa_len ? dst->sa_data : NULL)); 328 bad: 329 if (m != NULL) 330 m_freem(m); 331 reclaim: 332 if (ni != NULL) 333 ieee80211_free_node(ni); 334 return error; 335 #undef senderr 336 } 337 338 /* 339 * Send a null data frame to the specified node. 340 * 341 * NB: the caller is assumed to have setup a node reference 342 * for use; this is necessary to deal with a race condition 343 * when probing for inactive stations. 344 */ 345 int 346 ieee80211_send_nulldata(struct ieee80211_node *ni) 347 { 348 struct ieee80211com *ic = ni->ni_ic; 349 struct ifnet *ifp = ic->ic_ifp; 350 struct mbuf *m; 351 struct ieee80211_frame *wh; 352 353 MGETHDR(m, M_NOWAIT, MT_DATA); 354 if (m == NULL) { 355 /* XXX debug msg */ 356 ieee80211_unref_node(&ni); 357 ic->ic_stats.is_tx_nobuf++; 358 return ENOMEM; 359 } 360 MH_ALIGN(m, sizeof(struct ieee80211_frame)); 361 m->m_pkthdr.rcvif = (void *) ni; 362 363 wh = mtod(m, struct ieee80211_frame *); 364 ieee80211_send_setup(ic, ni, wh, 365 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 366 ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid); 367 /* NB: power management bit is never sent by an AP */ 368 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 369 ic->ic_opmode != IEEE80211_M_HOSTAP && 370 ic->ic_opmode != IEEE80211_M_WDS) 371 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 372 m->m_len = m->m_pkthdr.len = sizeof(struct ieee80211_frame); 373 374 IEEE80211_NODE_STAT(ni, tx_data); 375 376 IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 377 "[%s] send null data frame on channel %u, pwr mgt %s\n", 378 ether_sprintf(ni->ni_macaddr), 379 ieee80211_chan2ieee(ic, ic->ic_curchan), 380 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 381 382 IF_ENQUEUE(&ic->ic_mgtq, m); /* cheat */ 383 if_start(ifp); 384 385 return 0; 386 } 387 388 /* 389 * Assign priority to a frame based on any vlan tag assigned 390 * to the station and/or any Diffserv setting in an IP header. 391 * Finally, if an ACM policy is setup (in station mode) it's 392 * applied. 393 */ 394 int 395 ieee80211_classify(struct ieee80211com *ic, struct mbuf *m, struct ieee80211_node *ni) 396 { 397 int v_wme_ac, d_wme_ac, ac; 398 #ifdef INET 399 struct ether_header *eh; 400 #endif 401 402 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 403 ac = WME_AC_BE; 404 goto done; 405 } 406 407 /* 408 * If node has a vlan tag then all traffic 409 * to it must have a matching tag. 410 */ 411 v_wme_ac = 0; 412 if (ni->ni_vlan != 0) { 413 if ((m->m_flags & M_VLANTAG) == 0) { 414 IEEE80211_NODE_STAT(ni, tx_novlantag); 415 return 1; 416 } 417 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 418 EVL_VLANOFTAG(ni->ni_vlan)) { 419 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 420 return 1; 421 } 422 /* map vlan priority to AC */ 423 switch (EVL_PRIOFTAG(ni->ni_vlan)) { 424 case 1: 425 case 2: 426 v_wme_ac = WME_AC_BK; 427 break; 428 case 0: 429 case 3: 430 v_wme_ac = WME_AC_BE; 431 break; 432 case 4: 433 case 5: 434 v_wme_ac = WME_AC_VI; 435 break; 436 case 6: 437 case 7: 438 v_wme_ac = WME_AC_VO; 439 break; 440 } 441 } 442 443 #ifdef INET 444 eh = mtod(m, struct ether_header *); 445 if (eh->ether_type == htons(ETHERTYPE_IP)) { 446 const struct ip *ip = (struct ip *) 447 (mtod(m, uint8_t *) + sizeof (*eh)); 448 /* 449 * IP frame, map the TOS field. 450 */ 451 switch (ip->ip_tos) { 452 case 0x08: 453 case 0x20: 454 d_wme_ac = WME_AC_BK; /* background */ 455 break; 456 case 0x28: 457 case 0xa0: 458 d_wme_ac = WME_AC_VI; /* video */ 459 break; 460 case 0x30: /* voice */ 461 case 0xe0: 462 case 0x88: /* XXX UPSD */ 463 case 0xb8: 464 d_wme_ac = WME_AC_VO; 465 break; 466 default: 467 d_wme_ac = WME_AC_BE; 468 break; 469 } 470 } else { 471 #endif /* INET */ 472 d_wme_ac = WME_AC_BE; 473 #ifdef INET 474 } 475 #endif 476 /* 477 * Use highest priority AC. 478 */ 479 if (v_wme_ac > d_wme_ac) 480 ac = v_wme_ac; 481 else 482 ac = d_wme_ac; 483 484 /* 485 * Apply ACM policy. 486 */ 487 if (ic->ic_opmode == IEEE80211_M_STA) { 488 static const int acmap[4] = { 489 WME_AC_BK, /* WME_AC_BE */ 490 WME_AC_BK, /* WME_AC_BK */ 491 WME_AC_BE, /* WME_AC_VI */ 492 WME_AC_VI, /* WME_AC_VO */ 493 }; 494 while (ac != WME_AC_BK && 495 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 496 ac = acmap[ac]; 497 } 498 done: 499 M_WME_SETAC(m, ac); 500 return 0; 501 } 502 503 /* 504 * Insure there is sufficient contiguous space to encapsulate the 505 * 802.11 data frame. If room isn't already there, arrange for it. 506 * Drivers and cipher modules assume we have done the necessary work 507 * and fail rudely if they don't find the space they need. 508 */ 509 static struct mbuf * 510 ieee80211_mbuf_adjust(struct ieee80211com *ic, int hdrsize, 511 struct ieee80211_key *key, struct mbuf *m) 512 { 513 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 514 int needed_space = ic->ic_headroom + hdrsize; 515 516 if (key != NULL) { 517 /* XXX belongs in crypto code? */ 518 needed_space += key->wk_cipher->ic_header; 519 /* XXX frags */ 520 /* 521 * When crypto is being done in the host we must insure 522 * the data are writable for the cipher routines; clone 523 * a writable mbuf chain. 524 * XXX handle SWMIC specially 525 */ 526 if (key->wk_flags & (IEEE80211_KEY_SWCRYPT|IEEE80211_KEY_SWMIC)) { 527 m = m_unshare(m, M_NOWAIT); 528 if (m == NULL) { 529 IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT, 530 "%s: cannot get writable mbuf\n", __func__); 531 ic->ic_stats.is_tx_nobuf++; /* XXX new stat */ 532 return NULL; 533 } 534 } 535 } 536 /* 537 * We know we are called just before stripping an Ethernet 538 * header and prepending an LLC header. This means we know 539 * there will be 540 * sizeof(struct ether_header) - sizeof(struct llc) 541 * bytes recovered to which we need additional space for the 542 * 802.11 header and any crypto header. 543 */ 544 /* XXX check trailing space and copy instead? */ 545 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 546 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); 547 if (n == NULL) { 548 IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT, 549 "%s: cannot expand storage\n", __func__); 550 ic->ic_stats.is_tx_nobuf++; 551 m_freem(m); 552 return NULL; 553 } 554 KASSERT(needed_space <= MHLEN, 555 ("not enough room, need %u got %zu\n", needed_space, MHLEN)); 556 /* 557 * Setup new mbuf to have leading space to prepend the 558 * 802.11 header and any crypto header bits that are 559 * required (the latter are added when the driver calls 560 * back to ieee80211_crypto_encap to do crypto encapsulation). 561 */ 562 /* NB: must be first 'cuz it clobbers m_data */ 563 m_move_pkthdr(n, m); 564 n->m_len = 0; /* NB: m_gethdr does not set */ 565 n->m_data += needed_space; 566 /* 567 * Pull up Ethernet header to create the expected layout. 568 * We could use m_pullup but that's overkill (i.e. we don't 569 * need the actual data) and it cannot fail so do it inline 570 * for speed. 571 */ 572 /* NB: struct ether_header is known to be contiguous */ 573 n->m_len += sizeof(struct ether_header); 574 m->m_len -= sizeof(struct ether_header); 575 m->m_data += sizeof(struct ether_header); 576 /* 577 * Replace the head of the chain. 578 */ 579 n->m_next = m; 580 m = n; 581 } 582 return m; 583 #undef TO_BE_RECLAIMED 584 } 585 586 /* 587 * Return the transmit key to use in sending a unicast frame. 588 * If a unicast key is set we use that. When no unicast key is set 589 * we fall back to the default transmit key. 590 */ 591 static __inline struct ieee80211_key * 592 ieee80211_crypto_getucastkey(struct ieee80211com *ic, struct ieee80211_node *ni) 593 { 594 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) { 595 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE || 596 IEEE80211_KEY_UNDEFINED(&ic->ic_nw_keys[ic->ic_def_txkey])) 597 return NULL; 598 return &ic->ic_nw_keys[ic->ic_def_txkey]; 599 } else { 600 return &ni->ni_ucastkey; 601 } 602 } 603 604 /* 605 * Return the transmit key to use in sending a multicast frame. 606 * Multicast traffic always uses the group key which is installed as 607 * the default tx key. 608 */ 609 static __inline struct ieee80211_key * 610 ieee80211_crypto_getmcastkey(struct ieee80211com *ic, struct ieee80211_node *ni) 611 { 612 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE || 613 IEEE80211_KEY_UNDEFINED(&ic->ic_nw_keys[ic->ic_def_txkey])) 614 return NULL; 615 return &ic->ic_nw_keys[ic->ic_def_txkey]; 616 } 617 618 /* 619 * Encapsulate an outbound data frame. The mbuf chain is updated. 620 * If an error is encountered NULL is returned. The caller is required 621 * to provide a node reference and pullup the ethernet header in the 622 * first mbuf. 623 */ 624 struct mbuf * 625 ieee80211_encap(struct ieee80211com *ic, struct mbuf *m, 626 struct ieee80211_node *ni) 627 { 628 struct ether_header eh; 629 struct ieee80211_frame *wh; 630 struct ieee80211_key *key; 631 struct llc *llc; 632 int hdrsize, datalen, addqos, txfrag, isff; 633 634 /* 635 * Copy existing Ethernet header to a safe place. The 636 * rest of the code assumes it's ok to strip it when 637 * reorganizing state for the final encapsulation. 638 */ 639 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 640 memcpy(&eh, mtod(m, caddr_t), sizeof(struct ether_header)); 641 642 /* 643 * Insure space for additional headers. First identify 644 * transmit key to use in calculating any buffer adjustments 645 * required. This is also used below to do privacy 646 * encapsulation work. Then calculate the 802.11 header 647 * size and any padding required by the driver. 648 * 649 * Note key may be NULL if we fall back to the default 650 * transmit key and that is not set. In that case the 651 * buffer may not be expanded as needed by the cipher 652 * routines, but they will/should discard it. 653 */ 654 if (ic->ic_flags & IEEE80211_F_PRIVACY) { 655 if (ic->ic_opmode == IEEE80211_M_STA || 656 !IEEE80211_IS_MULTICAST(eh.ether_dhost)) 657 key = ieee80211_crypto_getucastkey(ic, ni); 658 else 659 key = ieee80211_crypto_getmcastkey(ic, ni); 660 if (key == NULL && eh.ether_type != htons(ETHERTYPE_PAE)) { 661 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO, 662 "[%s] no default transmit key (%s) deftxkey %u\n", 663 ether_sprintf(eh.ether_dhost), __func__, 664 ic->ic_def_txkey); 665 ic->ic_stats.is_tx_nodefkey++; 666 goto bad; 667 } 668 } else 669 key = NULL; 670 /* XXX 4-address format */ 671 /* 672 * XXX Some ap's don't handle QoS-encapsulated EAPOL 673 * frames so suppress use. This may be an issue if other 674 * ap's require all data frames to be QoS-encapsulated 675 * once negotiated in which case we'll need to make this 676 * configurable. 677 */ 678 addqos = (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) && 679 eh.ether_type != htons(ETHERTYPE_PAE); 680 if (addqos) 681 hdrsize = sizeof(struct ieee80211_qosframe); 682 else 683 hdrsize = sizeof(struct ieee80211_frame); 684 if (ic->ic_flags & IEEE80211_F_DATAPAD) 685 hdrsize = roundup(hdrsize, sizeof(uint32_t)); 686 687 if ((isff = m->m_flags & M_FF) != 0) { 688 struct mbuf *m2; 689 struct ether_header eh2; 690 691 /* 692 * Fast frame encapsulation. There must be two packets 693 * chained with m_nextpkt. We do header adjustment for 694 * each, add the tunnel encapsulation, and then concatenate 695 * the mbuf chains to form a single frame for transmission. 696 */ 697 m2 = m->m_nextpkt; 698 if (m2 == NULL) { 699 IEEE80211_DPRINTF(ic, IEEE80211_MSG_SUPERG, 700 "%s: only one frame\n", __func__); 701 goto bad; 702 } 703 m->m_nextpkt = NULL; 704 /* 705 * Include fast frame headers in adjusting header 706 * layout; this allocates space according to what 707 * ieee80211_encap_fastframe will do. 708 */ 709 m = ieee80211_mbuf_adjust(ic, 710 hdrsize + sizeof(struct llc) + sizeof(uint32_t) + 2 + 711 sizeof(struct ether_header), 712 key, m); 713 if (m == NULL) { 714 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 715 m_freem(m2); 716 goto bad; 717 } 718 /* 719 * Copy second frame's Ethernet header out of line 720 * and adjust for encapsulation headers. Note that 721 * we make room for padding in case there isn't room 722 * at the end of first frame. 723 */ 724 KASSERT(m2->m_len >= sizeof(eh2), ("no ethernet header!")); 725 memcpy(&eh2, mtod(m2, caddr_t), sizeof(struct ether_header)); 726 m2 = ieee80211_mbuf_adjust(ic, 727 ATH_FF_MAX_HDR_PAD + sizeof(struct ether_header), 728 NULL, m2); 729 if (m2 == NULL) { 730 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 731 goto bad; 732 } 733 m = ieee80211_encap_fastframe(ic, m, &eh, m2, &eh2); 734 if (m == NULL) 735 goto bad; 736 } else { 737 /* 738 * Normal frame. 739 */ 740 m = ieee80211_mbuf_adjust(ic, hdrsize, key, m); 741 if (m == NULL) { 742 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 743 goto bad; 744 } 745 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */ 746 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 747 llc = mtod(m, struct llc *); 748 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 749 llc->llc_control = LLC_UI; 750 llc->llc_snap.org_code[0] = 0; 751 llc->llc_snap.org_code[1] = 0; 752 llc->llc_snap.org_code[2] = 0; 753 llc->llc_snap.ether_type = eh.ether_type; 754 } 755 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 756 757 M_PREPEND(m, hdrsize, M_DONTWAIT); 758 if (m == NULL) { 759 ic->ic_stats.is_tx_nobuf++; 760 goto bad; 761 } 762 wh = mtod(m, struct ieee80211_frame *); 763 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 764 *(uint16_t *)wh->i_dur = 0; 765 switch (ic->ic_opmode) { 766 case IEEE80211_M_STA: 767 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 768 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 769 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 770 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 771 break; 772 case IEEE80211_M_IBSS: 773 case IEEE80211_M_AHDEMO: 774 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 775 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 776 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 777 /* 778 * NB: always use the bssid from ic_bss as the 779 * neighbor's may be stale after an ibss merge 780 */ 781 IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_bss->ni_bssid); 782 break; 783 case IEEE80211_M_HOSTAP: 784 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 785 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 786 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 787 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 788 break; 789 case IEEE80211_M_MONITOR: 790 case IEEE80211_M_WDS: 791 goto bad; 792 } 793 if (m->m_flags & M_MORE_DATA) 794 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 795 if (addqos) { 796 struct ieee80211_qosframe *qwh = 797 (struct ieee80211_qosframe *) wh; 798 int ac, tid; 799 800 ac = M_WME_GETAC(m); 801 /* map from access class/queue to 11e header priorty value */ 802 tid = WME_AC_TO_TID(ac); 803 qwh->i_qos[0] = tid & IEEE80211_QOS_TID; 804 /* 805 * Check if A-MPDU tx aggregation is setup or if we 806 * should try to enable it. The sta must be associated 807 * with HT and A-MPDU enabled for use. On the first 808 * frame that goes out We issue an ADDBA request and 809 * wait for a reply. The frame being encapsulated 810 * will go out w/o using A-MPDU, or possibly it might 811 * be collected by the driver and held/retransmit. 812 * ieee80211_ampdu_request handles staggering requests 813 * in case the receiver NAK's us or we are otherwise 814 * unable to establish a BA stream. 815 */ 816 if ((ni->ni_flags & IEEE80211_NODE_HT) && 817 (ic->ic_flags_ext & IEEE80211_FEXT_AMPDU_TX)) { 818 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac]; 819 820 if (IEEE80211_AMPDU_RUNNING(tap)) { 821 /* 822 * Operational, mark frame for aggregation. 823 */ 824 qwh->i_qos[0] |= IEEE80211_QOS_ACKPOLICY_BA; 825 } else if (!IEEE80211_AMPDU_REQUESTED(tap)) { 826 /* 827 * Not negotiated yet, request service. 828 */ 829 ieee80211_ampdu_request(ni, tap); 830 } 831 } 832 /* XXX works even when BA marked above */ 833 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 834 qwh->i_qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 835 qwh->i_qos[1] = 0; 836 qwh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 837 838 *(uint16_t *)wh->i_seq = 839 htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT); 840 ni->ni_txseqs[tid]++; 841 } else { 842 *(uint16_t *)wh->i_seq = 843 htole16(ni->ni_txseqs[IEEE80211_NONQOS_TID] << IEEE80211_SEQ_SEQ_SHIFT); 844 ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 845 } 846 /* check if xmit fragmentation is required */ 847 txfrag = (m->m_pkthdr.len > ic->ic_fragthreshold && 848 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 849 !isff); /* NB: don't fragment ff's */ 850 if (key != NULL) { 851 /* 852 * IEEE 802.1X: send EAPOL frames always in the clear. 853 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 854 */ 855 if (eh.ether_type != htons(ETHERTYPE_PAE) || 856 ((ic->ic_flags & IEEE80211_F_WPA) && 857 (ic->ic_opmode == IEEE80211_M_STA ? 858 !IEEE80211_KEY_UNDEFINED(key) : 859 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) { 860 wh->i_fc[1] |= IEEE80211_FC1_WEP; 861 if (!ieee80211_crypto_enmic(ic, key, m, txfrag)) { 862 IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT, 863 "[%s] enmic failed, discard frame\n", 864 ether_sprintf(eh.ether_dhost)); 865 ic->ic_stats.is_crypto_enmicfail++; 866 goto bad; 867 } 868 } 869 } 870 /* 871 * NB: frag flags may leak from above; they should only 872 * be set on return to the caller if we fragment at 873 * the 802.11 layer. 874 */ 875 m->m_flags &= ~(M_FRAG | M_FIRSTFRAG); 876 if (txfrag && !ieee80211_fragment(ic, m, hdrsize, 877 key != NULL ? key->wk_cipher->ic_header : 0, ic->ic_fragthreshold)) 878 goto bad; 879 880 IEEE80211_NODE_STAT(ni, tx_data); 881 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 882 IEEE80211_NODE_STAT(ni, tx_mcast); 883 else 884 IEEE80211_NODE_STAT(ni, tx_ucast); 885 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 886 887 return m; 888 bad: 889 if (m != NULL) 890 m_freem(m); 891 return NULL; 892 } 893 894 /* 895 * Do Ethernet-LLC encapsulation for each payload in a fast frame 896 * tunnel encapsulation. The frame is assumed to have an Ethernet 897 * header at the front that must be stripped before prepending the 898 * LLC followed by the Ethernet header passed in (with an Ethernet 899 * type that specifies the payload size). 900 */ 901 static struct mbuf * 902 ieee80211_encap1(struct ieee80211com *ic, struct mbuf *m, 903 const struct ether_header *eh) 904 { 905 struct llc *llc; 906 uint16_t payload; 907 908 /* XXX optimize by combining m_adj+M_PREPEND */ 909 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 910 llc = mtod(m, struct llc *); 911 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 912 llc->llc_control = LLC_UI; 913 llc->llc_snap.org_code[0] = 0; 914 llc->llc_snap.org_code[1] = 0; 915 llc->llc_snap.org_code[2] = 0; 916 llc->llc_snap.ether_type = eh->ether_type; 917 payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */ 918 919 M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT); 920 if (m == NULL) { /* XXX cannot happen */ 921 IEEE80211_DPRINTF(ic, IEEE80211_MSG_SUPERG, 922 "%s: no space for ether_header\n", __func__); 923 ic->ic_stats.is_tx_nobuf++; 924 return NULL; 925 } 926 ETHER_HEADER_COPY(mtod(m, void *), eh); 927 mtod(m, struct ether_header *)->ether_type = htons(payload); 928 return m; 929 } 930 931 /* 932 * Do fast frame tunnel encapsulation. The two frames and 933 * Ethernet headers are supplied. The caller is assumed to 934 * have arrange for space in the mbuf chains for encapsulating 935 * headers (to avoid major mbuf fragmentation). 936 * 937 * The encapsulated frame is returned or NULL if there is a 938 * problem (should not happen). 939 */ 940 static struct mbuf * 941 ieee80211_encap_fastframe(struct ieee80211com *ic, 942 struct mbuf *m1, const struct ether_header *eh1, 943 struct mbuf *m2, const struct ether_header *eh2) 944 { 945 struct llc *llc; 946 struct mbuf *m; 947 int pad; 948 949 /* 950 * First, each frame gets a standard encapsulation. 951 */ 952 m1 = ieee80211_encap1(ic, m1, eh1); 953 if (m1 == NULL) { 954 m_freem(m2); 955 return NULL; 956 } 957 m2 = ieee80211_encap1(ic, m2, eh2); 958 if (m2 == NULL) { 959 m_freem(m1); 960 return NULL; 961 } 962 963 /* 964 * Pad leading frame to a 4-byte boundary. If there 965 * is space at the end of the first frame, put it 966 * there; otherwise prepend to the front of the second 967 * frame. We know doing the second will always work 968 * because we reserve space above. We prefer appending 969 * as this typically has better DMA alignment properties. 970 */ 971 for (m = m1; m->m_next != NULL; m = m->m_next) 972 ; 973 pad = roundup2(m1->m_pkthdr.len, 4) - m1->m_pkthdr.len; 974 if (pad) { 975 if (M_TRAILINGSPACE(m) < pad) { /* prepend to second */ 976 m2->m_data -= pad; 977 m2->m_len += pad; 978 m2->m_pkthdr.len += pad; 979 } else { /* append to first */ 980 m->m_len += pad; 981 m1->m_pkthdr.len += pad; 982 } 983 } 984 985 /* 986 * Now, stick 'em together and prepend the tunnel headers; 987 * first the Atheros tunnel header (all zero for now) and 988 * then a special fast frame LLC. 989 * 990 * XXX optimize by prepending together 991 */ 992 m->m_next = m2; /* NB: last mbuf from above */ 993 m1->m_pkthdr.len += m2->m_pkthdr.len; 994 M_PREPEND(m1, sizeof(uint32_t)+2, M_DONTWAIT); 995 if (m1 == NULL) { /* XXX cannot happen */ 996 IEEE80211_DPRINTF(ic, IEEE80211_MSG_SUPERG, 997 "%s: no space for tunnel header\n", __func__); 998 ic->ic_stats.is_tx_nobuf++; 999 return NULL; 1000 } 1001 memset(mtod(m1, void *), 0, sizeof(uint32_t)+2); 1002 1003 M_PREPEND(m1, sizeof(struct llc), M_DONTWAIT); 1004 if (m1 == NULL) { /* XXX cannot happen */ 1005 IEEE80211_DPRINTF(ic, IEEE80211_MSG_SUPERG, 1006 "%s: no space for llc header\n", __func__); 1007 ic->ic_stats.is_tx_nobuf++; 1008 return NULL; 1009 } 1010 llc = mtod(m1, struct llc *); 1011 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 1012 llc->llc_control = LLC_UI; 1013 llc->llc_snap.org_code[0] = ATH_FF_SNAP_ORGCODE_0; 1014 llc->llc_snap.org_code[1] = ATH_FF_SNAP_ORGCODE_1; 1015 llc->llc_snap.org_code[2] = ATH_FF_SNAP_ORGCODE_2; 1016 llc->llc_snap.ether_type = htons(ATH_FF_ETH_TYPE); 1017 1018 ic->ic_stats.is_ff_encap++; 1019 1020 return m1; 1021 } 1022 1023 /* 1024 * Fragment the frame according to the specified mtu. 1025 * The size of the 802.11 header (w/o padding) is provided 1026 * so we don't need to recalculate it. We create a new 1027 * mbuf for each fragment and chain it through m_nextpkt; 1028 * we might be able to optimize this by reusing the original 1029 * packet's mbufs but that is significantly more complicated. 1030 */ 1031 static int 1032 ieee80211_fragment(struct ieee80211com *ic, struct mbuf *m0, 1033 u_int hdrsize, u_int ciphdrsize, u_int mtu) 1034 { 1035 struct ieee80211_frame *wh, *whf; 1036 struct mbuf *m, *prev, *next; 1037 u_int totalhdrsize, fragno, fragsize, off, remainder, payload; 1038 1039 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); 1040 KASSERT(m0->m_pkthdr.len > mtu, 1041 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); 1042 1043 wh = mtod(m0, struct ieee80211_frame *); 1044 /* NB: mark the first frag; it will be propagated below */ 1045 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; 1046 totalhdrsize = hdrsize + ciphdrsize; 1047 fragno = 1; 1048 off = mtu - ciphdrsize; 1049 remainder = m0->m_pkthdr.len - off; 1050 prev = m0; 1051 do { 1052 fragsize = totalhdrsize + remainder; 1053 if (fragsize > mtu) 1054 fragsize = mtu; 1055 KASSERT(fragsize < MCLBYTES, 1056 ("fragment size %u too big!", fragsize)); 1057 if (fragsize > MHLEN) 1058 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 1059 else 1060 m = m_gethdr(M_DONTWAIT, MT_DATA); 1061 if (m == NULL) 1062 goto bad; 1063 /* leave room to prepend any cipher header */ 1064 m_align(m, fragsize - ciphdrsize); 1065 1066 /* 1067 * Form the header in the fragment. Note that since 1068 * we mark the first fragment with the MORE_FRAG bit 1069 * it automatically is propagated to each fragment; we 1070 * need only clear it on the last fragment (done below). 1071 */ 1072 whf = mtod(m, struct ieee80211_frame *); 1073 memcpy(whf, wh, hdrsize); 1074 *(uint16_t *)&whf->i_seq[0] |= htole16( 1075 (fragno & IEEE80211_SEQ_FRAG_MASK) << 1076 IEEE80211_SEQ_FRAG_SHIFT); 1077 fragno++; 1078 1079 payload = fragsize - totalhdrsize; 1080 /* NB: destination is known to be contiguous */ 1081 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrsize); 1082 m->m_len = hdrsize + payload; 1083 m->m_pkthdr.len = hdrsize + payload; 1084 m->m_flags |= M_FRAG; 1085 1086 /* chain up the fragment */ 1087 prev->m_nextpkt = m; 1088 prev = m; 1089 1090 /* deduct fragment just formed */ 1091 remainder -= payload; 1092 off += payload; 1093 } while (remainder != 0); 1094 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; 1095 1096 /* strip first mbuf now that everything has been copied */ 1097 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); 1098 m0->m_flags |= M_FIRSTFRAG | M_FRAG; 1099 1100 ic->ic_stats.is_tx_fragframes++; 1101 ic->ic_stats.is_tx_frags += fragno-1; 1102 1103 return 1; 1104 bad: 1105 /* reclaim fragments but leave original frame for caller to free */ 1106 for (m = m0->m_nextpkt; m != NULL; m = next) { 1107 next = m->m_nextpkt; 1108 m->m_nextpkt = NULL; /* XXX paranoid */ 1109 m_freem(m); 1110 } 1111 m0->m_nextpkt = NULL; 1112 return 0; 1113 } 1114 1115 /* 1116 * Add a supported rates element id to a frame. 1117 */ 1118 static uint8_t * 1119 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs) 1120 { 1121 int nrates; 1122 1123 *frm++ = IEEE80211_ELEMID_RATES; 1124 nrates = rs->rs_nrates; 1125 if (nrates > IEEE80211_RATE_SIZE) 1126 nrates = IEEE80211_RATE_SIZE; 1127 *frm++ = nrates; 1128 memcpy(frm, rs->rs_rates, nrates); 1129 return frm + nrates; 1130 } 1131 1132 /* 1133 * Add an extended supported rates element id to a frame. 1134 */ 1135 static uint8_t * 1136 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs) 1137 { 1138 /* 1139 * Add an extended supported rates element if operating in 11g mode. 1140 */ 1141 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 1142 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 1143 *frm++ = IEEE80211_ELEMID_XRATES; 1144 *frm++ = nrates; 1145 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 1146 frm += nrates; 1147 } 1148 return frm; 1149 } 1150 1151 /* 1152 * Add an ssid elemet to a frame. 1153 */ 1154 static uint8_t * 1155 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) 1156 { 1157 *frm++ = IEEE80211_ELEMID_SSID; 1158 *frm++ = len; 1159 memcpy(frm, ssid, len); 1160 return frm + len; 1161 } 1162 1163 /* 1164 * Add an erp element to a frame. 1165 */ 1166 static uint8_t * 1167 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic) 1168 { 1169 uint8_t erp; 1170 1171 *frm++ = IEEE80211_ELEMID_ERP; 1172 *frm++ = 1; 1173 erp = 0; 1174 if (ic->ic_nonerpsta != 0) 1175 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 1176 if (ic->ic_flags & IEEE80211_F_USEPROT) 1177 erp |= IEEE80211_ERP_USE_PROTECTION; 1178 if (ic->ic_flags & IEEE80211_F_USEBARKER) 1179 erp |= IEEE80211_ERP_LONG_PREAMBLE; 1180 *frm++ = erp; 1181 return frm; 1182 } 1183 1184 static uint8_t * 1185 ieee80211_setup_wpa_ie(struct ieee80211com *ic, uint8_t *ie) 1186 { 1187 #define WPA_OUI_BYTES 0x00, 0x50, 0xf2 1188 #define ADDSHORT(frm, v) do { \ 1189 frm[0] = (v) & 0xff; \ 1190 frm[1] = (v) >> 8; \ 1191 frm += 2; \ 1192 } while (0) 1193 #define ADDSELECTOR(frm, sel) do { \ 1194 memcpy(frm, sel, 4); \ 1195 frm += 4; \ 1196 } while (0) 1197 static const uint8_t oui[4] = { WPA_OUI_BYTES, WPA_OUI_TYPE }; 1198 static const uint8_t cipher_suite[][4] = { 1199 { WPA_OUI_BYTES, WPA_CSE_WEP40 }, /* NB: 40-bit */ 1200 { WPA_OUI_BYTES, WPA_CSE_TKIP }, 1201 { 0x00, 0x00, 0x00, 0x00 }, /* XXX WRAP */ 1202 { WPA_OUI_BYTES, WPA_CSE_CCMP }, 1203 { 0x00, 0x00, 0x00, 0x00 }, /* XXX CKIP */ 1204 { WPA_OUI_BYTES, WPA_CSE_NULL }, 1205 }; 1206 static const uint8_t wep104_suite[4] = 1207 { WPA_OUI_BYTES, WPA_CSE_WEP104 }; 1208 static const uint8_t key_mgt_unspec[4] = 1209 { WPA_OUI_BYTES, WPA_ASE_8021X_UNSPEC }; 1210 static const uint8_t key_mgt_psk[4] = 1211 { WPA_OUI_BYTES, WPA_ASE_8021X_PSK }; 1212 const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn; 1213 uint8_t *frm = ie; 1214 uint8_t *selcnt; 1215 1216 *frm++ = IEEE80211_ELEMID_VENDOR; 1217 *frm++ = 0; /* length filled in below */ 1218 memcpy(frm, oui, sizeof(oui)); /* WPA OUI */ 1219 frm += sizeof(oui); 1220 ADDSHORT(frm, WPA_VERSION); 1221 1222 /* XXX filter out CKIP */ 1223 1224 /* multicast cipher */ 1225 if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP && 1226 rsn->rsn_mcastkeylen >= 13) 1227 ADDSELECTOR(frm, wep104_suite); 1228 else 1229 ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]); 1230 1231 /* unicast cipher list */ 1232 selcnt = frm; 1233 ADDSHORT(frm, 0); /* selector count */ 1234 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) { 1235 selcnt[0]++; 1236 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]); 1237 } 1238 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) { 1239 selcnt[0]++; 1240 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]); 1241 } 1242 1243 /* authenticator selector list */ 1244 selcnt = frm; 1245 ADDSHORT(frm, 0); /* selector count */ 1246 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) { 1247 selcnt[0]++; 1248 ADDSELECTOR(frm, key_mgt_unspec); 1249 } 1250 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) { 1251 selcnt[0]++; 1252 ADDSELECTOR(frm, key_mgt_psk); 1253 } 1254 1255 /* optional capabilities */ 1256 if (rsn->rsn_caps != 0 && rsn->rsn_caps != RSN_CAP_PREAUTH) 1257 ADDSHORT(frm, rsn->rsn_caps); 1258 1259 /* calculate element length */ 1260 ie[1] = frm - ie - 2; 1261 KASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa), 1262 ("WPA IE too big, %u > %zu", 1263 ie[1]+2, sizeof(struct ieee80211_ie_wpa))); 1264 return frm; 1265 #undef ADDSHORT 1266 #undef ADDSELECTOR 1267 #undef WPA_OUI_BYTES 1268 } 1269 1270 static uint8_t * 1271 ieee80211_setup_rsn_ie(struct ieee80211com *ic, uint8_t *ie) 1272 { 1273 #define RSN_OUI_BYTES 0x00, 0x0f, 0xac 1274 #define ADDSHORT(frm, v) do { \ 1275 frm[0] = (v) & 0xff; \ 1276 frm[1] = (v) >> 8; \ 1277 frm += 2; \ 1278 } while (0) 1279 #define ADDSELECTOR(frm, sel) do { \ 1280 memcpy(frm, sel, 4); \ 1281 frm += 4; \ 1282 } while (0) 1283 static const uint8_t cipher_suite[][4] = { 1284 { RSN_OUI_BYTES, RSN_CSE_WEP40 }, /* NB: 40-bit */ 1285 { RSN_OUI_BYTES, RSN_CSE_TKIP }, 1286 { RSN_OUI_BYTES, RSN_CSE_WRAP }, 1287 { RSN_OUI_BYTES, RSN_CSE_CCMP }, 1288 { 0x00, 0x00, 0x00, 0x00 }, /* XXX CKIP */ 1289 { RSN_OUI_BYTES, RSN_CSE_NULL }, 1290 }; 1291 static const uint8_t wep104_suite[4] = 1292 { RSN_OUI_BYTES, RSN_CSE_WEP104 }; 1293 static const uint8_t key_mgt_unspec[4] = 1294 { RSN_OUI_BYTES, RSN_ASE_8021X_UNSPEC }; 1295 static const uint8_t key_mgt_psk[4] = 1296 { RSN_OUI_BYTES, RSN_ASE_8021X_PSK }; 1297 const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn; 1298 uint8_t *frm = ie; 1299 uint8_t *selcnt; 1300 1301 *frm++ = IEEE80211_ELEMID_RSN; 1302 *frm++ = 0; /* length filled in below */ 1303 ADDSHORT(frm, RSN_VERSION); 1304 1305 /* XXX filter out CKIP */ 1306 1307 /* multicast cipher */ 1308 if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP && 1309 rsn->rsn_mcastkeylen >= 13) 1310 ADDSELECTOR(frm, wep104_suite); 1311 else 1312 ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]); 1313 1314 /* unicast cipher list */ 1315 selcnt = frm; 1316 ADDSHORT(frm, 0); /* selector count */ 1317 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) { 1318 selcnt[0]++; 1319 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]); 1320 } 1321 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) { 1322 selcnt[0]++; 1323 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]); 1324 } 1325 1326 /* authenticator selector list */ 1327 selcnt = frm; 1328 ADDSHORT(frm, 0); /* selector count */ 1329 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) { 1330 selcnt[0]++; 1331 ADDSELECTOR(frm, key_mgt_unspec); 1332 } 1333 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) { 1334 selcnt[0]++; 1335 ADDSELECTOR(frm, key_mgt_psk); 1336 } 1337 1338 /* optional capabilities */ 1339 ADDSHORT(frm, rsn->rsn_caps); 1340 /* XXX PMKID */ 1341 1342 /* calculate element length */ 1343 ie[1] = frm - ie - 2; 1344 KASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa), 1345 ("RSN IE too big, %u > %zu", 1346 ie[1]+2, sizeof(struct ieee80211_ie_wpa))); 1347 return frm; 1348 #undef ADDSELECTOR 1349 #undef ADDSHORT 1350 #undef RSN_OUI_BYTES 1351 } 1352 1353 /* 1354 * Add a WPA/RSN element to a frame. 1355 */ 1356 static uint8_t * 1357 ieee80211_add_wpa(uint8_t *frm, struct ieee80211com *ic) 1358 { 1359 1360 KASSERT(ic->ic_flags & IEEE80211_F_WPA, ("no WPA/RSN!")); 1361 if (ic->ic_flags & IEEE80211_F_WPA2) 1362 frm = ieee80211_setup_rsn_ie(ic, frm); 1363 if (ic->ic_flags & IEEE80211_F_WPA1) 1364 frm = ieee80211_setup_wpa_ie(ic, frm); 1365 return frm; 1366 } 1367 1368 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 1369 /* 1370 * Add a WME information element to a frame. 1371 */ 1372 static uint8_t * 1373 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme) 1374 { 1375 static const struct ieee80211_wme_info info = { 1376 .wme_id = IEEE80211_ELEMID_VENDOR, 1377 .wme_len = sizeof(struct ieee80211_wme_info) - 2, 1378 .wme_oui = { WME_OUI_BYTES }, 1379 .wme_type = WME_OUI_TYPE, 1380 .wme_subtype = WME_INFO_OUI_SUBTYPE, 1381 .wme_version = WME_VERSION, 1382 .wme_info = 0, 1383 }; 1384 memcpy(frm, &info, sizeof(info)); 1385 return frm + sizeof(info); 1386 } 1387 1388 /* 1389 * Add a WME parameters element to a frame. 1390 */ 1391 static uint8_t * 1392 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme) 1393 { 1394 #define SM(_v, _f) (((_v) << _f##_S) & _f) 1395 #define ADDSHORT(frm, v) do { \ 1396 frm[0] = (v) & 0xff; \ 1397 frm[1] = (v) >> 8; \ 1398 frm += 2; \ 1399 } while (0) 1400 /* NB: this works 'cuz a param has an info at the front */ 1401 static const struct ieee80211_wme_info param = { 1402 .wme_id = IEEE80211_ELEMID_VENDOR, 1403 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 1404 .wme_oui = { WME_OUI_BYTES }, 1405 .wme_type = WME_OUI_TYPE, 1406 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 1407 .wme_version = WME_VERSION, 1408 }; 1409 int i; 1410 1411 memcpy(frm, ¶m, sizeof(param)); 1412 frm += __offsetof(struct ieee80211_wme_info, wme_info); 1413 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ 1414 *frm++ = 0; /* reserved field */ 1415 for (i = 0; i < WME_NUM_AC; i++) { 1416 const struct wmeParams *ac = 1417 &wme->wme_bssChanParams.cap_wmeParams[i]; 1418 *frm++ = SM(i, WME_PARAM_ACI) 1419 | SM(ac->wmep_acm, WME_PARAM_ACM) 1420 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) 1421 ; 1422 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) 1423 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) 1424 ; 1425 ADDSHORT(frm, ac->wmep_txopLimit); 1426 } 1427 return frm; 1428 #undef SM 1429 #undef ADDSHORT 1430 } 1431 #undef WME_OUI_BYTES 1432 1433 #define ATH_OUI_BYTES 0x00, 0x03, 0x7f 1434 /* 1435 * Add a WME information element to a frame. 1436 */ 1437 static uint8_t * 1438 ieee80211_add_ath(uint8_t *frm, uint8_t caps, uint16_t defkeyix) 1439 { 1440 static const struct ieee80211_ath_ie info = { 1441 .ath_id = IEEE80211_ELEMID_VENDOR, 1442 .ath_len = sizeof(struct ieee80211_ath_ie) - 2, 1443 .ath_oui = { ATH_OUI_BYTES }, 1444 .ath_oui_type = ATH_OUI_TYPE, 1445 .ath_oui_subtype= ATH_OUI_SUBTYPE, 1446 .ath_version = ATH_OUI_VERSION, 1447 }; 1448 struct ieee80211_ath_ie *ath = (struct ieee80211_ath_ie *) frm; 1449 1450 memcpy(frm, &info, sizeof(info)); 1451 ath->ath_capability = caps; 1452 ath->ath_defkeyix[0] = (defkeyix & 0xff); 1453 ath->ath_defkeyix[1] = ((defkeyix >> 8) & 0xff); 1454 return frm + sizeof(info); 1455 } 1456 #undef ATH_OUI_BYTES 1457 1458 /* 1459 * Send a probe request frame with the specified ssid 1460 * and any optional information element data. 1461 */ 1462 int 1463 ieee80211_send_probereq(struct ieee80211_node *ni, 1464 const uint8_t sa[IEEE80211_ADDR_LEN], 1465 const uint8_t da[IEEE80211_ADDR_LEN], 1466 const uint8_t bssid[IEEE80211_ADDR_LEN], 1467 const uint8_t *ssid, size_t ssidlen, 1468 const void *optie, size_t optielen) 1469 { 1470 struct ieee80211com *ic = ni->ni_ic; 1471 struct ieee80211_frame *wh; 1472 const struct ieee80211_rateset *rs; 1473 struct mbuf *m; 1474 uint8_t *frm; 1475 1476 /* 1477 * Hold a reference on the node so it doesn't go away until after 1478 * the xmit is complete all the way in the driver. On error we 1479 * will remove our reference. 1480 */ 1481 IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE, 1482 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 1483 __func__, __LINE__, 1484 ni, ether_sprintf(ni->ni_macaddr), 1485 ieee80211_node_refcnt(ni)+1); 1486 ieee80211_ref_node(ni); 1487 1488 /* 1489 * prreq frame format 1490 * [tlv] ssid 1491 * [tlv] supported rates 1492 * [tlv] extended supported rates 1493 * [tlv] user-specified ie's 1494 */ 1495 m = ieee80211_getmgtframe(&frm, 1496 ic->ic_headroom + sizeof(struct ieee80211_frame), 1497 2 + IEEE80211_NWID_LEN 1498 + 2 + IEEE80211_RATE_SIZE 1499 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1500 + (optie != NULL ? optielen : 0) 1501 ); 1502 if (m == NULL) { 1503 ic->ic_stats.is_tx_nobuf++; 1504 ieee80211_free_node(ni); 1505 return ENOMEM; 1506 } 1507 1508 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 1509 rs = ieee80211_get_suprates(ic, ic->ic_curchan); 1510 frm = ieee80211_add_rates(frm, rs); 1511 frm = ieee80211_add_xrates(frm, rs); 1512 1513 if (optie != NULL) { 1514 memcpy(frm, optie, optielen); 1515 frm += optielen; 1516 } 1517 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 1518 1519 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT); 1520 if (m == NULL) 1521 return ENOMEM; 1522 KASSERT(m->m_pkthdr.rcvif == NULL, ("rcvif not null")); 1523 m->m_pkthdr.rcvif = (void *)ni; 1524 1525 wh = mtod(m, struct ieee80211_frame *); 1526 ieee80211_send_setup(ic, ni, wh, 1527 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 1528 sa, da, bssid); 1529 /* XXX power management? */ 1530 1531 IEEE80211_NODE_STAT(ni, tx_probereq); 1532 IEEE80211_NODE_STAT(ni, tx_mgmt); 1533 1534 IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 1535 "[%s] send probe req on channel %u\n", 1536 ether_sprintf(wh->i_addr1), 1537 ieee80211_chan2ieee(ic, ic->ic_curchan)); 1538 1539 IF_ENQUEUE(&ic->ic_mgtq, m); 1540 if_start(ic->ic_ifp); 1541 return 0; 1542 } 1543 1544 /* 1545 * Calculate capability information for mgt frames. 1546 */ 1547 static uint16_t 1548 getcapinfo(struct ieee80211com *ic, struct ieee80211_channel *chan) 1549 { 1550 uint16_t capinfo; 1551 1552 KASSERT(ic->ic_opmode != IEEE80211_M_STA, ("station mode")); 1553 1554 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 1555 capinfo = IEEE80211_CAPINFO_ESS; 1556 else if (ic->ic_opmode == IEEE80211_M_IBSS) 1557 capinfo = IEEE80211_CAPINFO_IBSS; 1558 else 1559 capinfo = 0; 1560 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1561 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1562 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1563 IEEE80211_IS_CHAN_2GHZ(chan)) 1564 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1565 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1566 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1567 return capinfo; 1568 } 1569 1570 /* 1571 * Send a management frame. The node is for the destination (or ic_bss 1572 * when in station mode). Nodes other than ic_bss have their reference 1573 * count bumped to reflect our use for an indeterminant time. 1574 */ 1575 int 1576 ieee80211_send_mgmt(struct ieee80211com *ic, struct ieee80211_node *ni, 1577 int type, int arg) 1578 { 1579 #define senderr(_x, _v) do { ic->ic_stats._v++; ret = _x; goto bad; } while (0) 1580 struct mbuf *m; 1581 uint8_t *frm; 1582 uint16_t capinfo; 1583 int has_challenge, is_shared_key, ret, status; 1584 1585 KASSERT(ni != NULL, ("null node")); 1586 1587 /* 1588 * Hold a reference on the node so it doesn't go away until after 1589 * the xmit is complete all the way in the driver. On error we 1590 * will remove our reference. 1591 */ 1592 IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE, 1593 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 1594 __func__, __LINE__, 1595 ni, ether_sprintf(ni->ni_macaddr), 1596 ieee80211_node_refcnt(ni)+1); 1597 ieee80211_ref_node(ni); 1598 1599 switch (type) { 1600 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 1601 /* 1602 * probe response frame format 1603 * [8] time stamp 1604 * [2] beacon interval 1605 * [2] cabability information 1606 * [tlv] ssid 1607 * [tlv] supported rates 1608 * [tlv] parameter set (FH/DS) 1609 * [tlv] parameter set (IBSS) 1610 * [tlv] extended rate phy (ERP) 1611 * [tlv] extended supported rates 1612 * [tlv] WPA 1613 * [tlv] WME (optional) 1614 * [tlv] HT capabilities 1615 * [tlv] HT information 1616 * [tlv] Vendor OUI HT capabilities (optional) 1617 * [tlv] Vendor OUI HT information (optional) 1618 * [tlv] Atheros capabilities 1619 */ 1620 m = ieee80211_getmgtframe(&frm, 1621 ic->ic_headroom + sizeof(struct ieee80211_frame), 1622 8 1623 + sizeof(uint16_t) 1624 + sizeof(uint16_t) 1625 + 2 + IEEE80211_NWID_LEN 1626 + 2 + IEEE80211_RATE_SIZE 1627 + 7 /* max(7,3) */ 1628 + 6 1629 + 3 1630 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1631 /* XXX !WPA1+WPA2 fits w/o a cluster */ 1632 + (ic->ic_flags & IEEE80211_F_WPA ? 1633 2*sizeof(struct ieee80211_ie_wpa) : 0) 1634 + sizeof(struct ieee80211_wme_param) 1635 /* XXX check for cluster requirement */ 1636 + 2*sizeof(struct ieee80211_ie_htcap) + 4 1637 + 2*sizeof(struct ieee80211_ie_htinfo) + 4 1638 + sizeof(struct ieee80211_ath_ie) 1639 ); 1640 if (m == NULL) 1641 senderr(ENOMEM, is_tx_nobuf); 1642 1643 memset(frm, 0, 8); /* timestamp should be filled later */ 1644 frm += 8; 1645 *(uint16_t *)frm = htole16(ic->ic_bss->ni_intval); 1646 frm += 2; 1647 capinfo = getcapinfo(ic, ic->ic_curchan); 1648 *(uint16_t *)frm = htole16(capinfo); 1649 frm += 2; 1650 1651 frm = ieee80211_add_ssid(frm, ic->ic_bss->ni_essid, 1652 ic->ic_bss->ni_esslen); 1653 frm = ieee80211_add_rates(frm, &ni->ni_rates); 1654 1655 if (IEEE80211_IS_CHAN_FHSS(ic->ic_curchan)) { 1656 *frm++ = IEEE80211_ELEMID_FHPARMS; 1657 *frm++ = 5; 1658 *frm++ = ni->ni_fhdwell & 0x00ff; 1659 *frm++ = (ni->ni_fhdwell >> 8) & 0x00ff; 1660 *frm++ = IEEE80211_FH_CHANSET( 1661 ieee80211_chan2ieee(ic, ic->ic_curchan)); 1662 *frm++ = IEEE80211_FH_CHANPAT( 1663 ieee80211_chan2ieee(ic, ic->ic_curchan)); 1664 *frm++ = ni->ni_fhindex; 1665 } else { 1666 *frm++ = IEEE80211_ELEMID_DSPARMS; 1667 *frm++ = 1; 1668 *frm++ = ieee80211_chan2ieee(ic, ic->ic_curchan); 1669 } 1670 1671 if (ic->ic_opmode == IEEE80211_M_IBSS) { 1672 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 1673 *frm++ = 2; 1674 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 1675 } 1676 if (ic->ic_flags & IEEE80211_F_WPA) 1677 frm = ieee80211_add_wpa(frm, ic); 1678 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) 1679 frm = ieee80211_add_erp(frm, ic); 1680 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 1681 if (ic->ic_flags & IEEE80211_F_WME) 1682 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 1683 if (IEEE80211_IS_CHAN_HT(ic->ic_curchan)) { 1684 frm = ieee80211_add_htcap(frm, ni); 1685 frm = ieee80211_add_htinfo(frm, ni); 1686 if (ic->ic_flags_ext & IEEE80211_FEXT_HTCOMPAT) { 1687 frm = ieee80211_add_htcap_vendor(frm, ni); 1688 frm = ieee80211_add_htinfo_vendor(frm, ni); 1689 } 1690 } 1691 if (ni->ni_ath_ie != NULL) 1692 frm = ieee80211_add_ath(frm, ni->ni_ath_flags, 1693 ni->ni_ath_defkeyix); 1694 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 1695 break; 1696 1697 case IEEE80211_FC0_SUBTYPE_AUTH: 1698 status = arg >> 16; 1699 arg &= 0xffff; 1700 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || 1701 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 1702 ni->ni_challenge != NULL); 1703 1704 /* 1705 * Deduce whether we're doing open authentication or 1706 * shared key authentication. We do the latter if 1707 * we're in the middle of a shared key authentication 1708 * handshake or if we're initiating an authentication 1709 * request and configured to use shared key. 1710 */ 1711 is_shared_key = has_challenge || 1712 arg >= IEEE80211_AUTH_SHARED_RESPONSE || 1713 (arg == IEEE80211_AUTH_SHARED_REQUEST && 1714 ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED); 1715 1716 m = ieee80211_getmgtframe(&frm, 1717 ic->ic_headroom + sizeof(struct ieee80211_frame), 1718 3 * sizeof(uint16_t) 1719 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? 1720 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0) 1721 ); 1722 if (m == NULL) 1723 senderr(ENOMEM, is_tx_nobuf); 1724 1725 ((uint16_t *)frm)[0] = 1726 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) 1727 : htole16(IEEE80211_AUTH_ALG_OPEN); 1728 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */ 1729 ((uint16_t *)frm)[2] = htole16(status);/* status */ 1730 1731 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { 1732 ((uint16_t *)frm)[3] = 1733 htole16((IEEE80211_CHALLENGE_LEN << 8) | 1734 IEEE80211_ELEMID_CHALLENGE); 1735 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge, 1736 IEEE80211_CHALLENGE_LEN); 1737 m->m_pkthdr.len = m->m_len = 1738 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN; 1739 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 1740 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH, 1741 "[%s] request encrypt frame (%s)\n", 1742 ether_sprintf(ni->ni_macaddr), __func__); 1743 m->m_flags |= M_LINK0; /* WEP-encrypt, please */ 1744 } 1745 } else 1746 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t); 1747 1748 /* XXX not right for shared key */ 1749 if (status == IEEE80211_STATUS_SUCCESS) 1750 IEEE80211_NODE_STAT(ni, tx_auth); 1751 else 1752 IEEE80211_NODE_STAT(ni, tx_auth_fail); 1753 1754 if (ic->ic_opmode == IEEE80211_M_STA) 1755 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 1756 (void *) ic->ic_state); 1757 break; 1758 1759 case IEEE80211_FC0_SUBTYPE_DEAUTH: 1760 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH, 1761 "[%s] send station deauthenticate (reason %d)\n", 1762 ether_sprintf(ni->ni_macaddr), arg); 1763 m = ieee80211_getmgtframe(&frm, 1764 ic->ic_headroom + sizeof(struct ieee80211_frame), 1765 sizeof(uint16_t)); 1766 if (m == NULL) 1767 senderr(ENOMEM, is_tx_nobuf); 1768 *(uint16_t *)frm = htole16(arg); /* reason */ 1769 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 1770 1771 IEEE80211_NODE_STAT(ni, tx_deauth); 1772 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 1773 1774 ieee80211_node_unauthorize(ni); /* port closed */ 1775 break; 1776 1777 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 1778 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 1779 /* 1780 * asreq frame format 1781 * [2] capability information 1782 * [2] listen interval 1783 * [6*] current AP address (reassoc only) 1784 * [tlv] ssid 1785 * [tlv] supported rates 1786 * [tlv] extended supported rates 1787 * [tlv] WME 1788 * [tlv] HT capabilities 1789 * [tlv] Vendor OUI HT capabilities (optional) 1790 * [tlv] Atheros capabilities (if negotiated) 1791 * [tlv] user-specified ie's 1792 */ 1793 m = ieee80211_getmgtframe(&frm, 1794 ic->ic_headroom + sizeof(struct ieee80211_frame), 1795 sizeof(uint16_t) 1796 + sizeof(uint16_t) 1797 + IEEE80211_ADDR_LEN 1798 + 2 + IEEE80211_NWID_LEN 1799 + 2 + IEEE80211_RATE_SIZE 1800 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1801 + sizeof(struct ieee80211_wme_info) 1802 + 2*sizeof(struct ieee80211_ie_htcap) + 4 1803 + sizeof(struct ieee80211_ath_ie) 1804 + (ic->ic_opt_ie != NULL ? ic->ic_opt_ie_len : 0) 1805 ); 1806 if (m == NULL) 1807 senderr(ENOMEM, is_tx_nobuf); 1808 1809 KASSERT(ic->ic_opmode == IEEE80211_M_STA, 1810 ("wrong mode %u", ic->ic_opmode)); 1811 capinfo = IEEE80211_CAPINFO_ESS; 1812 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1813 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1814 /* 1815 * NB: Some 11a AP's reject the request when 1816 * short premable is set. 1817 */ 1818 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1819 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 1820 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1821 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 1822 (ic->ic_caps & IEEE80211_C_SHSLOT)) 1823 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1824 *(uint16_t *)frm = htole16(capinfo); 1825 frm += 2; 1826 1827 KASSERT(ic->ic_bss->ni_intval != 0, 1828 ("beacon interval is zero!")); 1829 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval, 1830 ic->ic_bss->ni_intval)); 1831 frm += 2; 1832 1833 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 1834 IEEE80211_ADDR_COPY(frm, ic->ic_bss->ni_bssid); 1835 frm += IEEE80211_ADDR_LEN; 1836 } 1837 1838 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 1839 frm = ieee80211_add_rates(frm, &ni->ni_rates); 1840 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 1841 if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL) 1842 frm = ieee80211_add_wme_info(frm, &ic->ic_wme); 1843 if (IEEE80211_IS_CHAN_HT(ic->ic_curchan)) { 1844 frm = ieee80211_add_htcap(frm, ni); 1845 if (ic->ic_flags_ext & IEEE80211_FEXT_HTCOMPAT) 1846 frm = ieee80211_add_htcap_vendor(frm, ni); 1847 } 1848 if (IEEE80211_ATH_CAP(ic, ni, IEEE80211_F_ATHEROS)) 1849 frm = ieee80211_add_ath(frm, 1850 IEEE80211_ATH_CAP(ic, ni, IEEE80211_F_ATHEROS), 1851 (ic->ic_flags & IEEE80211_F_WPA) == 0 && 1852 ni->ni_authmode != IEEE80211_AUTH_8021X && 1853 ic->ic_def_txkey != IEEE80211_KEYIX_NONE ? 1854 ic->ic_def_txkey : 0x7fff); 1855 if (ic->ic_opt_ie != NULL) { 1856 memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len); 1857 frm += ic->ic_opt_ie_len; 1858 } 1859 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 1860 1861 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 1862 (void *) ic->ic_state); 1863 break; 1864 1865 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 1866 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 1867 /* 1868 * asresp frame format 1869 * [2] capability information 1870 * [2] status 1871 * [2] association ID 1872 * [tlv] supported rates 1873 * [tlv] extended supported rates 1874 * [tlv] WME (if enabled and STA enabled) 1875 * [tlv] HT capabilities (standard or vendor OUI) 1876 * [tlv] HT information (standard or vendor OUI) 1877 * [tlv] Atheros capabilities (if enabled and STA enabled) 1878 */ 1879 m = ieee80211_getmgtframe(&frm, 1880 ic->ic_headroom + sizeof(struct ieee80211_frame), 1881 sizeof(uint16_t) 1882 + sizeof(uint16_t) 1883 + sizeof(uint16_t) 1884 + 2 + IEEE80211_RATE_SIZE 1885 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1886 + sizeof(struct ieee80211_wme_param) 1887 + sizeof(struct ieee80211_ie_htcap) + 4 1888 + sizeof(struct ieee80211_ie_htinfo) + 4 1889 + sizeof(struct ieee80211_ath_ie) 1890 ); 1891 if (m == NULL) 1892 senderr(ENOMEM, is_tx_nobuf); 1893 1894 capinfo = getcapinfo(ic, ic->ic_curchan); 1895 *(uint16_t *)frm = htole16(capinfo); 1896 frm += 2; 1897 1898 *(uint16_t *)frm = htole16(arg); /* status */ 1899 frm += 2; 1900 1901 if (arg == IEEE80211_STATUS_SUCCESS) { 1902 *(uint16_t *)frm = htole16(ni->ni_associd); 1903 IEEE80211_NODE_STAT(ni, tx_assoc); 1904 } else 1905 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 1906 frm += 2; 1907 1908 frm = ieee80211_add_rates(frm, &ni->ni_rates); 1909 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 1910 if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL) 1911 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 1912 if (IEEE80211_IS_CHAN_HT(ic->ic_curchan)) { 1913 /* NB: respond according to what we received */ 1914 if (ni->ni_flags & IEEE80211_NODE_HTCOMPAT) { 1915 frm = ieee80211_add_htcap_vendor(frm, ni); 1916 frm = ieee80211_add_htinfo_vendor(frm, ni); 1917 } else { 1918 frm = ieee80211_add_htcap(frm, ni); 1919 frm = ieee80211_add_htinfo(frm, ni); 1920 } 1921 } 1922 if (IEEE80211_ATH_CAP(ic, ni, IEEE80211_F_ATHEROS)) 1923 frm = ieee80211_add_ath(frm, 1924 IEEE80211_ATH_CAP(ic, ni, IEEE80211_F_ATHEROS), 1925 ni->ni_ath_defkeyix); 1926 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 1927 break; 1928 1929 case IEEE80211_FC0_SUBTYPE_DISASSOC: 1930 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ASSOC, 1931 "[%s] send station disassociate (reason %d)\n", 1932 ether_sprintf(ni->ni_macaddr), arg); 1933 m = ieee80211_getmgtframe(&frm, 1934 ic->ic_headroom + sizeof(struct ieee80211_frame), 1935 sizeof(uint16_t)); 1936 if (m == NULL) 1937 senderr(ENOMEM, is_tx_nobuf); 1938 *(uint16_t *)frm = htole16(arg); /* reason */ 1939 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 1940 1941 IEEE80211_NODE_STAT(ni, tx_disassoc); 1942 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 1943 break; 1944 1945 default: 1946 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY, 1947 "[%s] invalid mgmt frame type %u\n", 1948 ether_sprintf(ni->ni_macaddr), type); 1949 senderr(EINVAL, is_tx_unknownmgt); 1950 /* NOTREACHED */ 1951 } 1952 1953 ret = ieee80211_mgmt_output(ic, ni, m, type); 1954 if (ret != 0) 1955 goto bad; 1956 return 0; 1957 bad: 1958 ieee80211_free_node(ni); 1959 return ret; 1960 #undef senderr 1961 } 1962 1963 static void 1964 ieee80211_tx_mgt_timeout(void *arg) 1965 { 1966 struct ieee80211_node *ni = arg; 1967 struct ieee80211com *ic = ni->ni_ic; 1968 1969 if (ic->ic_state != IEEE80211_S_INIT && 1970 (ic->ic_flags & IEEE80211_F_SCAN) == 0) { 1971 /* 1972 * NB: it's safe to specify a timeout as the reason here; 1973 * it'll only be used in the right state. 1974 */ 1975 ieee80211_new_state(ic, IEEE80211_S_SCAN, 1976 IEEE80211_SCAN_FAIL_TIMEOUT); 1977 } 1978 } 1979 1980 static void 1981 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status) 1982 { 1983 struct ieee80211com *ic = ni->ni_ic; 1984 enum ieee80211_state ostate = (enum ieee80211_state) arg; 1985 1986 /* 1987 * Frame transmit completed; arrange timer callback. If 1988 * transmit was successfuly we wait for response. Otherwise 1989 * we arrange an immediate callback instead of doing the 1990 * callback directly since we don't know what state the driver 1991 * is in (e.g. what locks it is holding). This work should 1992 * not be too time-critical and not happen too often so the 1993 * added overhead is acceptable. 1994 * 1995 * XXX what happens if !acked but response shows up before callback? 1996 */ 1997 if (ic->ic_state == ostate) 1998 callout_reset(&ic->ic_mgtsend, 1999 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0, 2000 ieee80211_tx_mgt_timeout, ni); 2001 } 2002 2003 /* 2004 * Allocate a beacon frame and fillin the appropriate bits. 2005 */ 2006 struct mbuf * 2007 ieee80211_beacon_alloc(struct ieee80211com *ic, struct ieee80211_node *ni, 2008 struct ieee80211_beacon_offsets *bo) 2009 { 2010 struct ifnet *ifp = ic->ic_ifp; 2011 struct ieee80211_frame *wh; 2012 struct mbuf *m; 2013 int pktlen; 2014 uint8_t *frm; 2015 uint16_t capinfo; 2016 struct ieee80211_rateset *rs; 2017 2018 /* 2019 * beacon frame format 2020 * [8] time stamp 2021 * [2] beacon interval 2022 * [2] cabability information 2023 * [tlv] ssid 2024 * [tlv] supported rates 2025 * [3] parameter set (DS) 2026 * [tlv] parameter set (IBSS/TIM) 2027 * [tlv] country code 2028 * [tlv] extended rate phy (ERP) 2029 * [tlv] extended supported rates 2030 * [tlv] WME parameters 2031 * [tlv] WPA/RSN parameters 2032 * [tlv] HT capabilities 2033 * [tlv] HT information 2034 * [tlv] Vendor OUI HT capabilities (optional) 2035 * [tlv] Vendor OUI HT information (optional) 2036 * XXX Vendor-specific OIDs (e.g. Atheros) 2037 * NB: we allocate the max space required for the TIM bitmap. 2038 */ 2039 rs = &ni->ni_rates; 2040 pktlen = 8 /* time stamp */ 2041 + sizeof(uint16_t) /* beacon interval */ 2042 + sizeof(uint16_t) /* capabilities */ 2043 + 2 + ni->ni_esslen /* ssid */ 2044 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 2045 + 2 + 1 /* DS parameters */ 2046 + 2 + 4 + ic->ic_tim_len /* DTIM/IBSSPARMS */ 2047 + sizeof(struct ieee80211_country_ie) /* country code */ 2048 + 2 + 1 /* ERP */ 2049 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2050 + (ic->ic_caps & IEEE80211_C_WME ? /* WME */ 2051 sizeof(struct ieee80211_wme_param) : 0) 2052 + (ic->ic_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 2053 2*sizeof(struct ieee80211_ie_wpa) : 0) 2054 /* XXX conditional? */ 2055 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */ 2056 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */ 2057 ; 2058 m = ieee80211_getmgtframe(&frm, 2059 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen); 2060 if (m == NULL) { 2061 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY, 2062 "%s: cannot get buf; size %u\n", __func__, pktlen); 2063 ic->ic_stats.is_tx_nobuf++; 2064 return NULL; 2065 } 2066 2067 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 2068 frm += 8; 2069 *(uint16_t *)frm = htole16(ni->ni_intval); 2070 frm += 2; 2071 capinfo = getcapinfo(ic, ni->ni_chan); 2072 bo->bo_caps = (uint16_t *)frm; 2073 *(uint16_t *)frm = htole16(capinfo); 2074 frm += 2; 2075 *frm++ = IEEE80211_ELEMID_SSID; 2076 if ((ic->ic_flags & IEEE80211_F_HIDESSID) == 0) { 2077 *frm++ = ni->ni_esslen; 2078 memcpy(frm, ni->ni_essid, ni->ni_esslen); 2079 frm += ni->ni_esslen; 2080 } else 2081 *frm++ = 0; 2082 frm = ieee80211_add_rates(frm, rs); 2083 if (!IEEE80211_IS_CHAN_FHSS(ic->ic_bsschan)) { 2084 *frm++ = IEEE80211_ELEMID_DSPARMS; 2085 *frm++ = 1; 2086 *frm++ = ieee80211_chan2ieee(ic, ic->ic_bsschan); 2087 } 2088 bo->bo_tim = frm; 2089 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2090 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2091 *frm++ = 2; 2092 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2093 bo->bo_tim_len = 0; 2094 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 2095 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; 2096 2097 tie->tim_ie = IEEE80211_ELEMID_TIM; 2098 tie->tim_len = 4; /* length */ 2099 tie->tim_count = 0; /* DTIM count */ 2100 tie->tim_period = ic->ic_dtim_period; /* DTIM period */ 2101 tie->tim_bitctl = 0; /* bitmap control */ 2102 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 2103 frm += sizeof(struct ieee80211_tim_ie); 2104 bo->bo_tim_len = 1; 2105 } 2106 bo->bo_trailer = frm; 2107 if (ic->ic_flags & IEEE80211_F_DOTH) 2108 frm = ieee80211_add_countryie(frm, ic, 2109 ic->ic_countrycode, ic->ic_location); 2110 if (ic->ic_flags & IEEE80211_F_WME) { 2111 bo->bo_wme = frm; 2112 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2113 ic->ic_flags &= ~IEEE80211_F_WMEUPDATE; 2114 } else 2115 bo->bo_wme = NULL; 2116 if (ic->ic_flags & IEEE80211_F_WPA) 2117 frm = ieee80211_add_wpa(frm, ic); 2118 if (IEEE80211_IS_CHAN_ANYG(ic->ic_bsschan)) { 2119 bo->bo_erp = frm; 2120 frm = ieee80211_add_erp(frm, ic); 2121 } else 2122 bo->bo_erp = NULL; 2123 frm = ieee80211_add_xrates(frm, rs); 2124 if (IEEE80211_IS_CHAN_HT(ic->ic_bsschan)) { 2125 frm = ieee80211_add_htcap(frm, ni); 2126 bo->bo_htinfo = frm; 2127 frm = ieee80211_add_htinfo(frm, ni); 2128 if (ic->ic_flags_ext & IEEE80211_FEXT_HTCOMPAT) { 2129 frm = ieee80211_add_htcap_vendor(frm, ni); 2130 frm = ieee80211_add_htinfo_vendor(frm, ni); 2131 } 2132 } else 2133 bo->bo_htinfo = NULL; 2134 bo->bo_trailer_len = frm - bo->bo_trailer; 2135 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2136 2137 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT); 2138 KASSERT(m != NULL, ("no space for 802.11 header?")); 2139 wh = mtod(m, struct ieee80211_frame *); 2140 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 2141 IEEE80211_FC0_SUBTYPE_BEACON; 2142 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2143 *(uint16_t *)wh->i_dur = 0; 2144 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 2145 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); 2146 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 2147 *(uint16_t *)wh->i_seq = 0; 2148 2149 return m; 2150 } 2151 2152 /* 2153 * Update the dynamic parts of a beacon frame based on the current state. 2154 */ 2155 int 2156 ieee80211_beacon_update(struct ieee80211com *ic, struct ieee80211_node *ni, 2157 struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast) 2158 { 2159 int len_changed = 0; 2160 uint16_t capinfo; 2161 2162 IEEE80211_BEACON_LOCK(ic); 2163 /* XXX faster to recalculate entirely or just changes? */ 2164 capinfo = getcapinfo(ic, ni->ni_chan); 2165 *bo->bo_caps = htole16(capinfo); 2166 2167 if (ic->ic_flags & IEEE80211_F_WME) { 2168 struct ieee80211_wme_state *wme = &ic->ic_wme; 2169 2170 /* 2171 * Check for agressive mode change. When there is 2172 * significant high priority traffic in the BSS 2173 * throttle back BE traffic by using conservative 2174 * parameters. Otherwise BE uses agressive params 2175 * to optimize performance of legacy/non-QoS traffic. 2176 */ 2177 if (wme->wme_flags & WME_F_AGGRMODE) { 2178 if (wme->wme_hipri_traffic > 2179 wme->wme_hipri_switch_thresh) { 2180 IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME, 2181 "%s: traffic %u, disable aggressive mode\n", 2182 __func__, wme->wme_hipri_traffic); 2183 wme->wme_flags &= ~WME_F_AGGRMODE; 2184 ieee80211_wme_updateparams_locked(ic); 2185 wme->wme_hipri_traffic = 2186 wme->wme_hipri_switch_hysteresis; 2187 } else 2188 wme->wme_hipri_traffic = 0; 2189 } else { 2190 if (wme->wme_hipri_traffic <= 2191 wme->wme_hipri_switch_thresh) { 2192 IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME, 2193 "%s: traffic %u, enable aggressive mode\n", 2194 __func__, wme->wme_hipri_traffic); 2195 wme->wme_flags |= WME_F_AGGRMODE; 2196 ieee80211_wme_updateparams_locked(ic); 2197 wme->wme_hipri_traffic = 0; 2198 } else 2199 wme->wme_hipri_traffic = 2200 wme->wme_hipri_switch_hysteresis; 2201 } 2202 if (ic->ic_flags & IEEE80211_F_WMEUPDATE) { 2203 (void) ieee80211_add_wme_param(bo->bo_wme, wme); 2204 ic->ic_flags &= ~IEEE80211_F_WMEUPDATE; 2205 } 2206 } 2207 2208 if (IEEE80211_IS_CHAN_HT(ic->ic_bsschan)) { 2209 struct ieee80211_ie_htinfo *ht = 2210 (struct ieee80211_ie_htinfo *) bo->bo_htinfo; 2211 if (IEEE80211_IS_CHAN_HT40(ic->ic_bsschan)) 2212 ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040; 2213 else 2214 ht->hi_byte1 &= ~IEEE80211_HTINFO_TXWIDTH_2040; 2215 } 2216 2217 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { /* NB: no IBSS support*/ 2218 struct ieee80211_tim_ie *tie = 2219 (struct ieee80211_tim_ie *) bo->bo_tim; 2220 if (ic->ic_flags & IEEE80211_F_TIMUPDATE) { 2221 u_int timlen, timoff, i; 2222 /* 2223 * ATIM/DTIM needs updating. If it fits in the 2224 * current space allocated then just copy in the 2225 * new bits. Otherwise we need to move any trailing 2226 * data to make room. Note that we know there is 2227 * contiguous space because ieee80211_beacon_allocate 2228 * insures there is space in the mbuf to write a 2229 * maximal-size virtual bitmap (based on ic_max_aid). 2230 */ 2231 /* 2232 * Calculate the bitmap size and offset, copy any 2233 * trailer out of the way, and then copy in the 2234 * new bitmap and update the information element. 2235 * Note that the tim bitmap must contain at least 2236 * one byte and any offset must be even. 2237 */ 2238 if (ic->ic_ps_pending != 0) { 2239 timoff = 128; /* impossibly large */ 2240 for (i = 0; i < ic->ic_tim_len; i++) 2241 if (ic->ic_tim_bitmap[i]) { 2242 timoff = i &~ 1; 2243 break; 2244 } 2245 KASSERT(timoff != 128, ("tim bitmap empty!")); 2246 for (i = ic->ic_tim_len-1; i >= timoff; i--) 2247 if (ic->ic_tim_bitmap[i]) 2248 break; 2249 timlen = 1 + (i - timoff); 2250 } else { 2251 timoff = 0; 2252 timlen = 1; 2253 } 2254 if (timlen != bo->bo_tim_len) { 2255 /* copy up/down trailer */ 2256 int adjust = tie->tim_bitmap+timlen 2257 - bo->bo_trailer; 2258 ovbcopy(bo->bo_trailer, bo->bo_trailer+adjust, 2259 bo->bo_trailer_len); 2260 bo->bo_trailer += adjust; 2261 bo->bo_wme += adjust; 2262 bo->bo_erp += adjust; 2263 bo->bo_htinfo += adjust; 2264 bo->bo_tim_len = timlen; 2265 2266 /* update information element */ 2267 tie->tim_len = 3 + timlen; 2268 tie->tim_bitctl = timoff; 2269 len_changed = 1; 2270 } 2271 memcpy(tie->tim_bitmap, ic->ic_tim_bitmap + timoff, 2272 bo->bo_tim_len); 2273 2274 ic->ic_flags &= ~IEEE80211_F_TIMUPDATE; 2275 2276 IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER, 2277 "%s: TIM updated, pending %u, off %u, len %u\n", 2278 __func__, ic->ic_ps_pending, timoff, timlen); 2279 } 2280 /* count down DTIM period */ 2281 if (tie->tim_count == 0) 2282 tie->tim_count = tie->tim_period - 1; 2283 else 2284 tie->tim_count--; 2285 /* update state for buffered multicast frames on DTIM */ 2286 if (mcast && tie->tim_count == 0) 2287 tie->tim_bitctl |= 1; 2288 else 2289 tie->tim_bitctl &= ~1; 2290 if (ic->ic_flags_ext & IEEE80211_FEXT_ERPUPDATE) { 2291 /* 2292 * ERP element needs updating. 2293 */ 2294 (void) ieee80211_add_erp(bo->bo_erp, ic); 2295 ic->ic_flags_ext &= ~IEEE80211_FEXT_ERPUPDATE; 2296 } 2297 } 2298 IEEE80211_BEACON_UNLOCK(ic); 2299 2300 return len_changed; 2301 } 2302