xref: /freebsd/sys/net80211/ieee80211_output.c (revision a678f77962278b50da97a88aac8abe77c192a4f1)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_wlan.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/malloc.h>
38 #include <sys/mbuf.h>
39 #include <sys/endian.h>
40 
41 #include <sys/socket.h>
42 
43 #include <net/bpf.h>
44 #include <net/ethernet.h>
45 #include <net/if.h>
46 #include <net/if_var.h>
47 #include <net/if_llc.h>
48 #include <net/if_media.h>
49 #include <net/if_vlan_var.h>
50 
51 #include <net80211/ieee80211_var.h>
52 #include <net80211/ieee80211_regdomain.h>
53 #ifdef IEEE80211_SUPPORT_SUPERG
54 #include <net80211/ieee80211_superg.h>
55 #endif
56 #ifdef IEEE80211_SUPPORT_TDMA
57 #include <net80211/ieee80211_tdma.h>
58 #endif
59 #include <net80211/ieee80211_wds.h>
60 #include <net80211/ieee80211_mesh.h>
61 #include <net80211/ieee80211_vht.h>
62 
63 #if defined(INET) || defined(INET6)
64 #include <netinet/in.h>
65 #endif
66 
67 #ifdef INET
68 #include <netinet/if_ether.h>
69 #include <netinet/in_systm.h>
70 #include <netinet/ip.h>
71 #endif
72 #ifdef INET6
73 #include <netinet/ip6.h>
74 #endif
75 
76 #include <security/mac/mac_framework.h>
77 
78 #define	ETHER_HEADER_COPY(dst, src) \
79 	memcpy(dst, src, sizeof(struct ether_header))
80 
81 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
82 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
83 static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
84 
85 #ifdef IEEE80211_DEBUG
86 /*
87  * Decide if an outbound management frame should be
88  * printed when debugging is enabled.  This filters some
89  * of the less interesting frames that come frequently
90  * (e.g. beacons).
91  */
92 static __inline int
93 doprint(struct ieee80211vap *vap, int subtype)
94 {
95 	switch (subtype) {
96 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
97 		return (vap->iv_opmode == IEEE80211_M_IBSS);
98 	}
99 	return 1;
100 }
101 #endif
102 
103 /*
104  * Transmit a frame to the given destination on the given VAP.
105  *
106  * It's up to the caller to figure out the details of who this
107  * is going to and resolving the node.
108  *
109  * This routine takes care of queuing it for power save,
110  * A-MPDU state stuff, fast-frames state stuff, encapsulation
111  * if required, then passing it up to the driver layer.
112  *
113  * This routine (for now) consumes the mbuf and frees the node
114  * reference; it ideally will return a TX status which reflects
115  * whether the mbuf was consumed or not, so the caller can
116  * free the mbuf (if appropriate) and the node reference (again,
117  * if appropriate.)
118  */
119 int
120 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
121     struct ieee80211_node *ni)
122 {
123 	struct ieee80211com *ic = vap->iv_ic;
124 	struct ifnet *ifp = vap->iv_ifp;
125 	int mcast;
126 
127 	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
128 	    (m->m_flags & M_PWR_SAV) == 0) {
129 		/*
130 		 * Station in power save mode; pass the frame
131 		 * to the 802.11 layer and continue.  We'll get
132 		 * the frame back when the time is right.
133 		 * XXX lose WDS vap linkage?
134 		 */
135 		if (ieee80211_pwrsave(ni, m) != 0)
136 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
137 		ieee80211_free_node(ni);
138 
139 		/*
140 		 * We queued it fine, so tell the upper layer
141 		 * that we consumed it.
142 		 */
143 		return (0);
144 	}
145 	/* calculate priority so drivers can find the tx queue */
146 	if (ieee80211_classify(ni, m)) {
147 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
148 		    ni->ni_macaddr, NULL,
149 		    "%s", "classification failure");
150 		vap->iv_stats.is_tx_classify++;
151 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
152 		m_freem(m);
153 		ieee80211_free_node(ni);
154 
155 		/* XXX better status? */
156 		return (0);
157 	}
158 	/*
159 	 * Stash the node pointer.  Note that we do this after
160 	 * any call to ieee80211_dwds_mcast because that code
161 	 * uses any existing value for rcvif to identify the
162 	 * interface it (might have been) received on.
163 	 */
164 	m->m_pkthdr.rcvif = (void *)ni;
165 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
166 
167 	BPF_MTAP(ifp, m);		/* 802.3 tx */
168 
169 	/*
170 	 * Check if A-MPDU tx aggregation is setup or if we
171 	 * should try to enable it.  The sta must be associated
172 	 * with HT and A-MPDU enabled for use.  When the policy
173 	 * routine decides we should enable A-MPDU we issue an
174 	 * ADDBA request and wait for a reply.  The frame being
175 	 * encapsulated will go out w/o using A-MPDU, or possibly
176 	 * it might be collected by the driver and held/retransmit.
177 	 * The default ic_ampdu_enable routine handles staggering
178 	 * ADDBA requests in case the receiver NAK's us or we are
179 	 * otherwise unable to establish a BA stream.
180 	 *
181 	 * Don't treat group-addressed frames as candidates for aggregation;
182 	 * net80211 doesn't support 802.11aa-2012 and so group addressed
183 	 * frames will always have sequence numbers allocated from the NON_QOS
184 	 * TID.
185 	 */
186 	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
187 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)) {
188 		if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) {
189 			int tid = WME_AC_TO_TID(M_WME_GETAC(m));
190 			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
191 
192 			ieee80211_txampdu_count_packet(tap);
193 			if (IEEE80211_AMPDU_RUNNING(tap)) {
194 				/*
195 				 * Operational, mark frame for aggregation.
196 				 *
197 				 * XXX do tx aggregation here
198 				 */
199 				m->m_flags |= M_AMPDU_MPDU;
200 			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
201 			    ic->ic_ampdu_enable(ni, tap)) {
202 				/*
203 				 * Not negotiated yet, request service.
204 				 */
205 				ieee80211_ampdu_request(ni, tap);
206 				/* XXX hold frame for reply? */
207 			}
208 		}
209 	}
210 
211 #ifdef IEEE80211_SUPPORT_SUPERG
212 	/*
213 	 * Check for AMSDU/FF; queue for aggregation
214 	 *
215 	 * Note: we don't bother trying to do fast frames or
216 	 * A-MSDU encapsulation for 802.3 drivers.  Now, we
217 	 * likely could do it for FF (because it's a magic
218 	 * atheros tunnel LLC type) but I don't think we're going
219 	 * to really need to.  For A-MSDU we'd have to set the
220 	 * A-MSDU QoS bit in the wifi header, so we just plain
221 	 * can't do it.
222 	 *
223 	 * Strictly speaking, we could actually /do/ A-MSDU / FF
224 	 * with A-MPDU together which for certain circumstances
225 	 * is beneficial (eg A-MSDU of TCK ACKs.)  However,
226 	 * I'll ignore that for now so existing behaviour is maintained.
227 	 * Later on it would be good to make "amsdu + ampdu" configurable.
228 	 */
229 	else if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
230 		if ((! mcast) && ieee80211_amsdu_tx_ok(ni)) {
231 			m = ieee80211_amsdu_check(ni, m);
232 			if (m == NULL) {
233 				/* NB: any ni ref held on stageq */
234 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
235 				    "%s: amsdu_check queued frame\n",
236 				    __func__);
237 				return (0);
238 			}
239 		} else if ((! mcast) && IEEE80211_ATH_CAP(vap, ni,
240 		    IEEE80211_NODE_FF)) {
241 			m = ieee80211_ff_check(ni, m);
242 			if (m == NULL) {
243 				/* NB: any ni ref held on stageq */
244 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
245 				    "%s: ff_check queued frame\n",
246 				    __func__);
247 				return (0);
248 			}
249 		}
250 	}
251 #endif /* IEEE80211_SUPPORT_SUPERG */
252 
253 	/*
254 	 * Grab the TX lock - serialise the TX process from this
255 	 * point (where TX state is being checked/modified)
256 	 * through to driver queue.
257 	 */
258 	IEEE80211_TX_LOCK(ic);
259 
260 	/*
261 	 * XXX make the encap and transmit code a separate function
262 	 * so things like the FF (and later A-MSDU) path can just call
263 	 * it for flushed frames.
264 	 */
265 	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
266 		/*
267 		 * Encapsulate the packet in prep for transmission.
268 		 */
269 		m = ieee80211_encap(vap, ni, m);
270 		if (m == NULL) {
271 			/* NB: stat+msg handled in ieee80211_encap */
272 			IEEE80211_TX_UNLOCK(ic);
273 			ieee80211_free_node(ni);
274 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
275 			return (ENOBUFS);
276 		}
277 	}
278 	(void) ieee80211_parent_xmitpkt(ic, m);
279 
280 	/*
281 	 * Unlock at this point - no need to hold it across
282 	 * ieee80211_free_node() (ie, the comlock)
283 	 */
284 	IEEE80211_TX_UNLOCK(ic);
285 	ic->ic_lastdata = ticks;
286 
287 	return (0);
288 }
289 
290 
291 
292 /*
293  * Send the given mbuf through the given vap.
294  *
295  * This consumes the mbuf regardless of whether the transmit
296  * was successful or not.
297  *
298  * This does none of the initial checks that ieee80211_start()
299  * does (eg CAC timeout, interface wakeup) - the caller must
300  * do this first.
301  */
302 static int
303 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
304 {
305 #define	IS_DWDS(vap) \
306 	(vap->iv_opmode == IEEE80211_M_WDS && \
307 	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
308 	struct ieee80211com *ic = vap->iv_ic;
309 	struct ifnet *ifp = vap->iv_ifp;
310 	struct ieee80211_node *ni;
311 	struct ether_header *eh;
312 
313 	/*
314 	 * Cancel any background scan.
315 	 */
316 	if (ic->ic_flags & IEEE80211_F_SCAN)
317 		ieee80211_cancel_anyscan(vap);
318 	/*
319 	 * Find the node for the destination so we can do
320 	 * things like power save and fast frames aggregation.
321 	 *
322 	 * NB: past this point various code assumes the first
323 	 *     mbuf has the 802.3 header present (and contiguous).
324 	 */
325 	ni = NULL;
326 	if (m->m_len < sizeof(struct ether_header) &&
327 	   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
328 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
329 		    "discard frame, %s\n", "m_pullup failed");
330 		vap->iv_stats.is_tx_nobuf++;	/* XXX */
331 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
332 		return (ENOBUFS);
333 	}
334 	eh = mtod(m, struct ether_header *);
335 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
336 		if (IS_DWDS(vap)) {
337 			/*
338 			 * Only unicast frames from the above go out
339 			 * DWDS vaps; multicast frames are handled by
340 			 * dispatching the frame as it comes through
341 			 * the AP vap (see below).
342 			 */
343 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
344 			    eh->ether_dhost, "mcast", "%s", "on DWDS");
345 			vap->iv_stats.is_dwds_mcast++;
346 			m_freem(m);
347 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
348 			/* XXX better status? */
349 			return (ENOBUFS);
350 		}
351 		if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
352 			/*
353 			 * Spam DWDS vap's w/ multicast traffic.
354 			 */
355 			/* XXX only if dwds in use? */
356 			ieee80211_dwds_mcast(vap, m);
357 		}
358 	}
359 #ifdef IEEE80211_SUPPORT_MESH
360 	if (vap->iv_opmode != IEEE80211_M_MBSS) {
361 #endif
362 		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
363 		if (ni == NULL) {
364 			/* NB: ieee80211_find_txnode does stat+msg */
365 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
366 			m_freem(m);
367 			/* XXX better status? */
368 			return (ENOBUFS);
369 		}
370 		if (ni->ni_associd == 0 &&
371 		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
372 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
373 			    eh->ether_dhost, NULL,
374 			    "sta not associated (type 0x%04x)",
375 			    htons(eh->ether_type));
376 			vap->iv_stats.is_tx_notassoc++;
377 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
378 			m_freem(m);
379 			ieee80211_free_node(ni);
380 			/* XXX better status? */
381 			return (ENOBUFS);
382 		}
383 #ifdef IEEE80211_SUPPORT_MESH
384 	} else {
385 		if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
386 			/*
387 			 * Proxy station only if configured.
388 			 */
389 			if (!ieee80211_mesh_isproxyena(vap)) {
390 				IEEE80211_DISCARD_MAC(vap,
391 				    IEEE80211_MSG_OUTPUT |
392 				    IEEE80211_MSG_MESH,
393 				    eh->ether_dhost, NULL,
394 				    "%s", "proxy not enabled");
395 				vap->iv_stats.is_mesh_notproxy++;
396 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
397 				m_freem(m);
398 				/* XXX better status? */
399 				return (ENOBUFS);
400 			}
401 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
402 			    "forward frame from DS SA(%6D), DA(%6D)\n",
403 			    eh->ether_shost, ":",
404 			    eh->ether_dhost, ":");
405 			ieee80211_mesh_proxy_check(vap, eh->ether_shost);
406 		}
407 		ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
408 		if (ni == NULL) {
409 			/*
410 			 * NB: ieee80211_mesh_discover holds/disposes
411 			 * frame (e.g. queueing on path discovery).
412 			 */
413 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
414 			/* XXX better status? */
415 			return (ENOBUFS);
416 		}
417 	}
418 #endif
419 
420 	/*
421 	 * We've resolved the sender, so attempt to transmit it.
422 	 */
423 
424 	if (vap->iv_state == IEEE80211_S_SLEEP) {
425 		/*
426 		 * In power save; queue frame and then  wakeup device
427 		 * for transmit.
428 		 */
429 		ic->ic_lastdata = ticks;
430 		if (ieee80211_pwrsave(ni, m) != 0)
431 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
432 		ieee80211_free_node(ni);
433 		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
434 		return (0);
435 	}
436 
437 	if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
438 		return (ENOBUFS);
439 	return (0);
440 #undef	IS_DWDS
441 }
442 
443 /*
444  * Start method for vap's.  All packets from the stack come
445  * through here.  We handle common processing of the packets
446  * before dispatching them to the underlying device.
447  *
448  * if_transmit() requires that the mbuf be consumed by this call
449  * regardless of the return condition.
450  */
451 int
452 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
453 {
454 	struct ieee80211vap *vap = ifp->if_softc;
455 	struct ieee80211com *ic = vap->iv_ic;
456 
457 	/*
458 	 * No data frames go out unless we're running.
459 	 * Note in particular this covers CAC and CSA
460 	 * states (though maybe we should check muting
461 	 * for CSA).
462 	 */
463 	if (vap->iv_state != IEEE80211_S_RUN &&
464 	    vap->iv_state != IEEE80211_S_SLEEP) {
465 		IEEE80211_LOCK(ic);
466 		/* re-check under the com lock to avoid races */
467 		if (vap->iv_state != IEEE80211_S_RUN &&
468 		    vap->iv_state != IEEE80211_S_SLEEP) {
469 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
470 			    "%s: ignore queue, in %s state\n",
471 			    __func__, ieee80211_state_name[vap->iv_state]);
472 			vap->iv_stats.is_tx_badstate++;
473 			IEEE80211_UNLOCK(ic);
474 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
475 			m_freem(m);
476 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
477 			return (ENETDOWN);
478 		}
479 		IEEE80211_UNLOCK(ic);
480 	}
481 
482 	/*
483 	 * Sanitize mbuf flags for net80211 use.  We cannot
484 	 * clear M_PWR_SAV or M_MORE_DATA because these may
485 	 * be set for frames that are re-submitted from the
486 	 * power save queue.
487 	 *
488 	 * NB: This must be done before ieee80211_classify as
489 	 *     it marks EAPOL in frames with M_EAPOL.
490 	 */
491 	m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
492 
493 	/*
494 	 * Bump to the packet transmission path.
495 	 * The mbuf will be consumed here.
496 	 */
497 	return (ieee80211_start_pkt(vap, m));
498 }
499 
500 void
501 ieee80211_vap_qflush(struct ifnet *ifp)
502 {
503 
504 	/* Empty for now */
505 }
506 
507 /*
508  * 802.11 raw output routine.
509  *
510  * XXX TODO: this (and other send routines) should correctly
511  * XXX keep the pwr mgmt bit set if it decides to call into the
512  * XXX driver to send a frame whilst the state is SLEEP.
513  *
514  * Otherwise the peer may decide that we're awake and flood us
515  * with traffic we are still too asleep to receive!
516  */
517 int
518 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
519     struct mbuf *m, const struct ieee80211_bpf_params *params)
520 {
521 	struct ieee80211com *ic = vap->iv_ic;
522 	int error;
523 
524 	/*
525 	 * Set node - the caller has taken a reference, so ensure
526 	 * that the mbuf has the same node value that
527 	 * it would if it were going via the normal path.
528 	 */
529 	m->m_pkthdr.rcvif = (void *)ni;
530 
531 	/*
532 	 * Attempt to add bpf transmit parameters.
533 	 *
534 	 * For now it's ok to fail; the raw_xmit api still takes
535 	 * them as an option.
536 	 *
537 	 * Later on when ic_raw_xmit() has params removed,
538 	 * they'll have to be added - so fail the transmit if
539 	 * they can't be.
540 	 */
541 	if (params)
542 		(void) ieee80211_add_xmit_params(m, params);
543 
544 	error = ic->ic_raw_xmit(ni, m, params);
545 	if (error) {
546 		if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
547 		ieee80211_free_node(ni);
548 	}
549 	return (error);
550 }
551 
552 /*
553  * 802.11 output routine. This is (currently) used only to
554  * connect bpf write calls to the 802.11 layer for injecting
555  * raw 802.11 frames.
556  */
557 int
558 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
559 	const struct sockaddr *dst, struct route *ro)
560 {
561 #define senderr(e) do { error = (e); goto bad;} while (0)
562 	struct ieee80211_node *ni = NULL;
563 	struct ieee80211vap *vap;
564 	struct ieee80211_frame *wh;
565 	struct ieee80211com *ic = NULL;
566 	int error;
567 	int ret;
568 
569 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
570 		/*
571 		 * Short-circuit requests if the vap is marked OACTIVE
572 		 * as this can happen because a packet came down through
573 		 * ieee80211_start before the vap entered RUN state in
574 		 * which case it's ok to just drop the frame.  This
575 		 * should not be necessary but callers of if_output don't
576 		 * check OACTIVE.
577 		 */
578 		senderr(ENETDOWN);
579 	}
580 	vap = ifp->if_softc;
581 	ic = vap->iv_ic;
582 	/*
583 	 * Hand to the 802.3 code if not tagged as
584 	 * a raw 802.11 frame.
585 	 */
586 	if (dst->sa_family != AF_IEEE80211)
587 		return vap->iv_output(ifp, m, dst, ro);
588 #ifdef MAC
589 	error = mac_ifnet_check_transmit(ifp, m);
590 	if (error)
591 		senderr(error);
592 #endif
593 	if (ifp->if_flags & IFF_MONITOR)
594 		senderr(ENETDOWN);
595 	if (!IFNET_IS_UP_RUNNING(ifp))
596 		senderr(ENETDOWN);
597 	if (vap->iv_state == IEEE80211_S_CAC) {
598 		IEEE80211_DPRINTF(vap,
599 		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
600 		    "block %s frame in CAC state\n", "raw data");
601 		vap->iv_stats.is_tx_badstate++;
602 		senderr(EIO);		/* XXX */
603 	} else if (vap->iv_state == IEEE80211_S_SCAN)
604 		senderr(EIO);
605 	/* XXX bypass bridge, pfil, carp, etc. */
606 
607 	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
608 		senderr(EIO);	/* XXX */
609 	wh = mtod(m, struct ieee80211_frame *);
610 	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
611 	    IEEE80211_FC0_VERSION_0)
612 		senderr(EIO);	/* XXX */
613 	if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh))
614 		senderr(EIO);	/* XXX */
615 
616 	/* locate destination node */
617 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
618 	case IEEE80211_FC1_DIR_NODS:
619 	case IEEE80211_FC1_DIR_FROMDS:
620 		ni = ieee80211_find_txnode(vap, wh->i_addr1);
621 		break;
622 	case IEEE80211_FC1_DIR_TODS:
623 	case IEEE80211_FC1_DIR_DSTODS:
624 		ni = ieee80211_find_txnode(vap, wh->i_addr3);
625 		break;
626 	default:
627 		senderr(EIO);	/* XXX */
628 	}
629 	if (ni == NULL) {
630 		/*
631 		 * Permit packets w/ bpf params through regardless
632 		 * (see below about sa_len).
633 		 */
634 		if (dst->sa_len == 0)
635 			senderr(EHOSTUNREACH);
636 		ni = ieee80211_ref_node(vap->iv_bss);
637 	}
638 
639 	/*
640 	 * Sanitize mbuf for net80211 flags leaked from above.
641 	 *
642 	 * NB: This must be done before ieee80211_classify as
643 	 *     it marks EAPOL in frames with M_EAPOL.
644 	 */
645 	m->m_flags &= ~M_80211_TX;
646 
647 	/* calculate priority so drivers can find the tx queue */
648 	/* XXX assumes an 802.3 frame */
649 	if (ieee80211_classify(ni, m))
650 		senderr(EIO);		/* XXX */
651 
652 	IEEE80211_NODE_STAT(ni, tx_data);
653 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
654 		IEEE80211_NODE_STAT(ni, tx_mcast);
655 		m->m_flags |= M_MCAST;
656 	} else
657 		IEEE80211_NODE_STAT(ni, tx_ucast);
658 	/* NB: ieee80211_encap does not include 802.11 header */
659 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len);
660 
661 	IEEE80211_TX_LOCK(ic);
662 
663 	/*
664 	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
665 	 * present by setting the sa_len field of the sockaddr (yes,
666 	 * this is a hack).
667 	 * NB: we assume sa_data is suitably aligned to cast.
668 	 */
669 	ret = ieee80211_raw_output(vap, ni, m,
670 	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
671 		dst->sa_data : NULL));
672 	IEEE80211_TX_UNLOCK(ic);
673 	return (ret);
674 bad:
675 	if (m != NULL)
676 		m_freem(m);
677 	if (ni != NULL)
678 		ieee80211_free_node(ni);
679 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
680 	return error;
681 #undef senderr
682 }
683 
684 /*
685  * Set the direction field and address fields of an outgoing
686  * frame.  Note this should be called early on in constructing
687  * a frame as it sets i_fc[1]; other bits can then be or'd in.
688  */
689 void
690 ieee80211_send_setup(
691 	struct ieee80211_node *ni,
692 	struct mbuf *m,
693 	int type, int tid,
694 	const uint8_t sa[IEEE80211_ADDR_LEN],
695 	const uint8_t da[IEEE80211_ADDR_LEN],
696 	const uint8_t bssid[IEEE80211_ADDR_LEN])
697 {
698 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
699 	struct ieee80211vap *vap = ni->ni_vap;
700 	struct ieee80211_tx_ampdu *tap;
701 	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
702 	ieee80211_seq seqno;
703 
704 	IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
705 
706 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
707 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
708 		switch (vap->iv_opmode) {
709 		case IEEE80211_M_STA:
710 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
711 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
712 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
713 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
714 			break;
715 		case IEEE80211_M_IBSS:
716 		case IEEE80211_M_AHDEMO:
717 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
718 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
719 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
720 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
721 			break;
722 		case IEEE80211_M_HOSTAP:
723 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
724 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
725 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
726 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
727 			break;
728 		case IEEE80211_M_WDS:
729 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
730 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
731 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
732 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
733 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
734 			break;
735 		case IEEE80211_M_MBSS:
736 #ifdef IEEE80211_SUPPORT_MESH
737 			if (IEEE80211_IS_MULTICAST(da)) {
738 				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
739 				/* XXX next hop */
740 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
741 				IEEE80211_ADDR_COPY(wh->i_addr2,
742 				    vap->iv_myaddr);
743 			} else {
744 				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
745 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
746 				IEEE80211_ADDR_COPY(wh->i_addr2,
747 				    vap->iv_myaddr);
748 				IEEE80211_ADDR_COPY(wh->i_addr3, da);
749 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
750 			}
751 #endif
752 			break;
753 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
754 			break;
755 		}
756 	} else {
757 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
758 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
759 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
760 #ifdef IEEE80211_SUPPORT_MESH
761 		if (vap->iv_opmode == IEEE80211_M_MBSS)
762 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
763 		else
764 #endif
765 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
766 	}
767 	*(uint16_t *)&wh->i_dur[0] = 0;
768 
769 	/*
770 	 * XXX TODO: this is what the TX lock is for.
771 	 * Here we're incrementing sequence numbers, and they
772 	 * need to be in lock-step with what the driver is doing
773 	 * both in TX ordering and crypto encap (IV increment.)
774 	 *
775 	 * If the driver does seqno itself, then we can skip
776 	 * assigning sequence numbers here, and we can avoid
777 	 * requiring the TX lock.
778 	 */
779 	tap = &ni->ni_tx_ampdu[tid];
780 	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) {
781 		m->m_flags |= M_AMPDU_MPDU;
782 	} else {
783 		if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
784 				      type & IEEE80211_FC0_SUBTYPE_MASK))
785 			/*
786 			 * 802.11-2012 9.3.2.10 - QoS multicast frames
787 			 * come out of a different seqno space.
788 			 */
789 			if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
790 				seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
791 			} else {
792 				seqno = ni->ni_txseqs[tid]++;
793 			}
794 		else
795 			seqno = 0;
796 
797 		*(uint16_t *)&wh->i_seq[0] =
798 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
799 		M_SEQNO_SET(m, seqno);
800 	}
801 
802 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
803 		m->m_flags |= M_MCAST;
804 #undef WH4
805 }
806 
807 /*
808  * Send a management frame to the specified node.  The node pointer
809  * must have a reference as the pointer will be passed to the driver
810  * and potentially held for a long time.  If the frame is successfully
811  * dispatched to the driver, then it is responsible for freeing the
812  * reference (and potentially free'ing up any associated storage);
813  * otherwise deal with reclaiming any reference (on error).
814  */
815 int
816 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
817 	struct ieee80211_bpf_params *params)
818 {
819 	struct ieee80211vap *vap = ni->ni_vap;
820 	struct ieee80211com *ic = ni->ni_ic;
821 	struct ieee80211_frame *wh;
822 	int ret;
823 
824 	KASSERT(ni != NULL, ("null node"));
825 
826 	if (vap->iv_state == IEEE80211_S_CAC) {
827 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
828 		    ni, "block %s frame in CAC state",
829 			ieee80211_mgt_subtype_name(type));
830 		vap->iv_stats.is_tx_badstate++;
831 		ieee80211_free_node(ni);
832 		m_freem(m);
833 		return EIO;		/* XXX */
834 	}
835 
836 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
837 	if (m == NULL) {
838 		ieee80211_free_node(ni);
839 		return ENOMEM;
840 	}
841 
842 	IEEE80211_TX_LOCK(ic);
843 
844 	wh = mtod(m, struct ieee80211_frame *);
845 	ieee80211_send_setup(ni, m,
846 	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
847 	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
848 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
849 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
850 		    "encrypting frame (%s)", __func__);
851 		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
852 	}
853 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
854 
855 	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
856 	M_WME_SETAC(m, params->ibp_pri);
857 
858 #ifdef IEEE80211_DEBUG
859 	/* avoid printing too many frames */
860 	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
861 	    ieee80211_msg_dumppkts(vap)) {
862 		printf("[%s] send %s on channel %u\n",
863 		    ether_sprintf(wh->i_addr1),
864 		    ieee80211_mgt_subtype_name(type),
865 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
866 	}
867 #endif
868 	IEEE80211_NODE_STAT(ni, tx_mgmt);
869 
870 	ret = ieee80211_raw_output(vap, ni, m, params);
871 	IEEE80211_TX_UNLOCK(ic);
872 	return (ret);
873 }
874 
875 static void
876 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg,
877     int status)
878 {
879 	struct ieee80211vap *vap = ni->ni_vap;
880 
881 	wakeup(vap);
882 }
883 
884 /*
885  * Send a null data frame to the specified node.  If the station
886  * is setup for QoS then a QoS Null Data frame is constructed.
887  * If this is a WDS station then a 4-address frame is constructed.
888  *
889  * NB: the caller is assumed to have setup a node reference
890  *     for use; this is necessary to deal with a race condition
891  *     when probing for inactive stations.  Like ieee80211_mgmt_output
892  *     we must cleanup any node reference on error;  however we
893  *     can safely just unref it as we know it will never be the
894  *     last reference to the node.
895  */
896 int
897 ieee80211_send_nulldata(struct ieee80211_node *ni)
898 {
899 	struct ieee80211vap *vap = ni->ni_vap;
900 	struct ieee80211com *ic = ni->ni_ic;
901 	struct mbuf *m;
902 	struct ieee80211_frame *wh;
903 	int hdrlen;
904 	uint8_t *frm;
905 	int ret;
906 
907 	if (vap->iv_state == IEEE80211_S_CAC) {
908 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
909 		    ni, "block %s frame in CAC state", "null data");
910 		ieee80211_unref_node(&ni);
911 		vap->iv_stats.is_tx_badstate++;
912 		return EIO;		/* XXX */
913 	}
914 
915 	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
916 		hdrlen = sizeof(struct ieee80211_qosframe);
917 	else
918 		hdrlen = sizeof(struct ieee80211_frame);
919 	/* NB: only WDS vap's get 4-address frames */
920 	if (vap->iv_opmode == IEEE80211_M_WDS)
921 		hdrlen += IEEE80211_ADDR_LEN;
922 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
923 		hdrlen = roundup(hdrlen, sizeof(uint32_t));
924 
925 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
926 	if (m == NULL) {
927 		/* XXX debug msg */
928 		ieee80211_unref_node(&ni);
929 		vap->iv_stats.is_tx_nobuf++;
930 		return ENOMEM;
931 	}
932 	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
933 	    ("leading space %zd", M_LEADINGSPACE(m)));
934 	M_PREPEND(m, hdrlen, M_NOWAIT);
935 	if (m == NULL) {
936 		/* NB: cannot happen */
937 		ieee80211_free_node(ni);
938 		return ENOMEM;
939 	}
940 
941 	IEEE80211_TX_LOCK(ic);
942 
943 	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
944 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
945 		const int tid = WME_AC_TO_TID(WME_AC_BE);
946 		uint8_t *qos;
947 
948 		ieee80211_send_setup(ni, m,
949 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
950 		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
951 
952 		if (vap->iv_opmode == IEEE80211_M_WDS)
953 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
954 		else
955 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
956 		qos[0] = tid & IEEE80211_QOS_TID;
957 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
958 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
959 		qos[1] = 0;
960 	} else {
961 		ieee80211_send_setup(ni, m,
962 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
963 		    IEEE80211_NONQOS_TID,
964 		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
965 	}
966 	if (vap->iv_opmode != IEEE80211_M_WDS) {
967 		/* NB: power management bit is never sent by an AP */
968 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
969 		    vap->iv_opmode != IEEE80211_M_HOSTAP)
970 			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
971 	}
972 	if ((ic->ic_flags & IEEE80211_F_SCAN) &&
973 	    (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) {
974 		ieee80211_add_callback(m, ieee80211_nulldata_transmitted,
975 		    NULL);
976 	}
977 	m->m_len = m->m_pkthdr.len = hdrlen;
978 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
979 
980 	M_WME_SETAC(m, WME_AC_BE);
981 
982 	IEEE80211_NODE_STAT(ni, tx_data);
983 
984 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
985 	    "send %snull data frame on channel %u, pwr mgt %s",
986 	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
987 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
988 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
989 
990 	ret = ieee80211_raw_output(vap, ni, m, NULL);
991 	IEEE80211_TX_UNLOCK(ic);
992 	return (ret);
993 }
994 
995 /*
996  * Assign priority to a frame based on any vlan tag assigned
997  * to the station and/or any Diffserv setting in an IP header.
998  * Finally, if an ACM policy is setup (in station mode) it's
999  * applied.
1000  */
1001 int
1002 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
1003 {
1004 	const struct ether_header *eh = mtod(m, struct ether_header *);
1005 	int v_wme_ac, d_wme_ac, ac;
1006 
1007 	/*
1008 	 * Always promote PAE/EAPOL frames to high priority.
1009 	 */
1010 	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
1011 		/* NB: mark so others don't need to check header */
1012 		m->m_flags |= M_EAPOL;
1013 		ac = WME_AC_VO;
1014 		goto done;
1015 	}
1016 	/*
1017 	 * Non-qos traffic goes to BE.
1018 	 */
1019 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
1020 		ac = WME_AC_BE;
1021 		goto done;
1022 	}
1023 
1024 	/*
1025 	 * If node has a vlan tag then all traffic
1026 	 * to it must have a matching tag.
1027 	 */
1028 	v_wme_ac = 0;
1029 	if (ni->ni_vlan != 0) {
1030 		 if ((m->m_flags & M_VLANTAG) == 0) {
1031 			IEEE80211_NODE_STAT(ni, tx_novlantag);
1032 			return 1;
1033 		}
1034 		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
1035 		    EVL_VLANOFTAG(ni->ni_vlan)) {
1036 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
1037 			return 1;
1038 		}
1039 		/* map vlan priority to AC */
1040 		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
1041 	}
1042 
1043 	/* XXX m_copydata may be too slow for fast path */
1044 #ifdef INET
1045 	if (eh->ether_type == htons(ETHERTYPE_IP)) {
1046 		uint8_t tos;
1047 		/*
1048 		 * IP frame, map the DSCP bits from the TOS field.
1049 		 */
1050 		/* NB: ip header may not be in first mbuf */
1051 		m_copydata(m, sizeof(struct ether_header) +
1052 		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
1053 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1054 		d_wme_ac = TID_TO_WME_AC(tos);
1055 	} else {
1056 #endif /* INET */
1057 #ifdef INET6
1058 	if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
1059 		uint32_t flow;
1060 		uint8_t tos;
1061 		/*
1062 		 * IPv6 frame, map the DSCP bits from the traffic class field.
1063 		 */
1064 		m_copydata(m, sizeof(struct ether_header) +
1065 		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
1066 		    (caddr_t) &flow);
1067 		tos = (uint8_t)(ntohl(flow) >> 20);
1068 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1069 		d_wme_ac = TID_TO_WME_AC(tos);
1070 	} else {
1071 #endif /* INET6 */
1072 		d_wme_ac = WME_AC_BE;
1073 #ifdef INET6
1074 	}
1075 #endif
1076 #ifdef INET
1077 	}
1078 #endif
1079 	/*
1080 	 * Use highest priority AC.
1081 	 */
1082 	if (v_wme_ac > d_wme_ac)
1083 		ac = v_wme_ac;
1084 	else
1085 		ac = d_wme_ac;
1086 
1087 	/*
1088 	 * Apply ACM policy.
1089 	 */
1090 	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1091 		static const int acmap[4] = {
1092 			WME_AC_BK,	/* WME_AC_BE */
1093 			WME_AC_BK,	/* WME_AC_BK */
1094 			WME_AC_BE,	/* WME_AC_VI */
1095 			WME_AC_VI,	/* WME_AC_VO */
1096 		};
1097 		struct ieee80211com *ic = ni->ni_ic;
1098 
1099 		while (ac != WME_AC_BK &&
1100 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1101 			ac = acmap[ac];
1102 	}
1103 done:
1104 	M_WME_SETAC(m, ac);
1105 	return 0;
1106 }
1107 
1108 /*
1109  * Insure there is sufficient contiguous space to encapsulate the
1110  * 802.11 data frame.  If room isn't already there, arrange for it.
1111  * Drivers and cipher modules assume we have done the necessary work
1112  * and fail rudely if they don't find the space they need.
1113  */
1114 struct mbuf *
1115 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1116 	struct ieee80211_key *key, struct mbuf *m)
1117 {
1118 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
1119 	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1120 
1121 	if (key != NULL) {
1122 		/* XXX belongs in crypto code? */
1123 		needed_space += key->wk_cipher->ic_header;
1124 		/* XXX frags */
1125 		/*
1126 		 * When crypto is being done in the host we must insure
1127 		 * the data are writable for the cipher routines; clone
1128 		 * a writable mbuf chain.
1129 		 * XXX handle SWMIC specially
1130 		 */
1131 		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1132 			m = m_unshare(m, M_NOWAIT);
1133 			if (m == NULL) {
1134 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1135 				    "%s: cannot get writable mbuf\n", __func__);
1136 				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1137 				return NULL;
1138 			}
1139 		}
1140 	}
1141 	/*
1142 	 * We know we are called just before stripping an Ethernet
1143 	 * header and prepending an LLC header.  This means we know
1144 	 * there will be
1145 	 *	sizeof(struct ether_header) - sizeof(struct llc)
1146 	 * bytes recovered to which we need additional space for the
1147 	 * 802.11 header and any crypto header.
1148 	 */
1149 	/* XXX check trailing space and copy instead? */
1150 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1151 		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
1152 		if (n == NULL) {
1153 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1154 			    "%s: cannot expand storage\n", __func__);
1155 			vap->iv_stats.is_tx_nobuf++;
1156 			m_freem(m);
1157 			return NULL;
1158 		}
1159 		KASSERT(needed_space <= MHLEN,
1160 		    ("not enough room, need %u got %d\n", needed_space, MHLEN));
1161 		/*
1162 		 * Setup new mbuf to have leading space to prepend the
1163 		 * 802.11 header and any crypto header bits that are
1164 		 * required (the latter are added when the driver calls
1165 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
1166 		 */
1167 		/* NB: must be first 'cuz it clobbers m_data */
1168 		m_move_pkthdr(n, m);
1169 		n->m_len = 0;			/* NB: m_gethdr does not set */
1170 		n->m_data += needed_space;
1171 		/*
1172 		 * Pull up Ethernet header to create the expected layout.
1173 		 * We could use m_pullup but that's overkill (i.e. we don't
1174 		 * need the actual data) and it cannot fail so do it inline
1175 		 * for speed.
1176 		 */
1177 		/* NB: struct ether_header is known to be contiguous */
1178 		n->m_len += sizeof(struct ether_header);
1179 		m->m_len -= sizeof(struct ether_header);
1180 		m->m_data += sizeof(struct ether_header);
1181 		/*
1182 		 * Replace the head of the chain.
1183 		 */
1184 		n->m_next = m;
1185 		m = n;
1186 	}
1187 	return m;
1188 #undef TO_BE_RECLAIMED
1189 }
1190 
1191 /*
1192  * Return the transmit key to use in sending a unicast frame.
1193  * If a unicast key is set we use that.  When no unicast key is set
1194  * we fall back to the default transmit key.
1195  */
1196 static __inline struct ieee80211_key *
1197 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1198 	struct ieee80211_node *ni)
1199 {
1200 	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1201 		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1202 		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1203 			return NULL;
1204 		return &vap->iv_nw_keys[vap->iv_def_txkey];
1205 	} else {
1206 		return &ni->ni_ucastkey;
1207 	}
1208 }
1209 
1210 /*
1211  * Return the transmit key to use in sending a multicast frame.
1212  * Multicast traffic always uses the group key which is installed as
1213  * the default tx key.
1214  */
1215 static __inline struct ieee80211_key *
1216 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1217 	struct ieee80211_node *ni)
1218 {
1219 	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1220 	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1221 		return NULL;
1222 	return &vap->iv_nw_keys[vap->iv_def_txkey];
1223 }
1224 
1225 /*
1226  * Encapsulate an outbound data frame.  The mbuf chain is updated.
1227  * If an error is encountered NULL is returned.  The caller is required
1228  * to provide a node reference and pullup the ethernet header in the
1229  * first mbuf.
1230  *
1231  * NB: Packet is assumed to be processed by ieee80211_classify which
1232  *     marked EAPOL frames w/ M_EAPOL.
1233  */
1234 struct mbuf *
1235 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1236     struct mbuf *m)
1237 {
1238 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1239 #define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
1240 	struct ieee80211com *ic = ni->ni_ic;
1241 #ifdef IEEE80211_SUPPORT_MESH
1242 	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1243 	struct ieee80211_meshcntl_ae10 *mc;
1244 	struct ieee80211_mesh_route *rt = NULL;
1245 	int dir = -1;
1246 #endif
1247 	struct ether_header eh;
1248 	struct ieee80211_frame *wh;
1249 	struct ieee80211_key *key;
1250 	struct llc *llc;
1251 	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast;
1252 	ieee80211_seq seqno;
1253 	int meshhdrsize, meshae;
1254 	uint8_t *qos;
1255 	int is_amsdu = 0;
1256 
1257 	IEEE80211_TX_LOCK_ASSERT(ic);
1258 
1259 	is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST));
1260 
1261 	/*
1262 	 * Copy existing Ethernet header to a safe place.  The
1263 	 * rest of the code assumes it's ok to strip it when
1264 	 * reorganizing state for the final encapsulation.
1265 	 */
1266 	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1267 	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1268 
1269 	/*
1270 	 * Insure space for additional headers.  First identify
1271 	 * transmit key to use in calculating any buffer adjustments
1272 	 * required.  This is also used below to do privacy
1273 	 * encapsulation work.  Then calculate the 802.11 header
1274 	 * size and any padding required by the driver.
1275 	 *
1276 	 * Note key may be NULL if we fall back to the default
1277 	 * transmit key and that is not set.  In that case the
1278 	 * buffer may not be expanded as needed by the cipher
1279 	 * routines, but they will/should discard it.
1280 	 */
1281 	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1282 		if (vap->iv_opmode == IEEE80211_M_STA ||
1283 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1284 		    (vap->iv_opmode == IEEE80211_M_WDS &&
1285 		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1286 			key = ieee80211_crypto_getucastkey(vap, ni);
1287 		else
1288 			key = ieee80211_crypto_getmcastkey(vap, ni);
1289 		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1290 			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1291 			    eh.ether_dhost,
1292 			    "no default transmit key (%s) deftxkey %u",
1293 			    __func__, vap->iv_def_txkey);
1294 			vap->iv_stats.is_tx_nodefkey++;
1295 			goto bad;
1296 		}
1297 	} else
1298 		key = NULL;
1299 	/*
1300 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1301 	 * frames so suppress use.  This may be an issue if other
1302 	 * ap's require all data frames to be QoS-encapsulated
1303 	 * once negotiated in which case we'll need to make this
1304 	 * configurable.
1305 	 *
1306 	 * Don't send multicast QoS frames.
1307 	 * Technically multicast frames can be QoS if all stations in the
1308 	 * BSS are also QoS.
1309 	 *
1310 	 * NB: mesh data frames are QoS, including multicast frames.
1311 	 */
1312 	addqos =
1313 	    (((is_mcast == 0) && (ni->ni_flags &
1314 	     (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) ||
1315 	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1316 	    (m->m_flags & M_EAPOL) == 0;
1317 
1318 	if (addqos)
1319 		hdrsize = sizeof(struct ieee80211_qosframe);
1320 	else
1321 		hdrsize = sizeof(struct ieee80211_frame);
1322 #ifdef IEEE80211_SUPPORT_MESH
1323 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1324 		/*
1325 		 * Mesh data frames are encapsulated according to the
1326 		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1327 		 * o Group Addressed data (aka multicast) originating
1328 		 *   at the local sta are sent w/ 3-address format and
1329 		 *   address extension mode 00
1330 		 * o Individually Addressed data (aka unicast) originating
1331 		 *   at the local sta are sent w/ 4-address format and
1332 		 *   address extension mode 00
1333 		 * o Group Addressed data forwarded from a non-mesh sta are
1334 		 *   sent w/ 3-address format and address extension mode 01
1335 		 * o Individually Address data from another sta are sent
1336 		 *   w/ 4-address format and address extension mode 10
1337 		 */
1338 		is4addr = 0;		/* NB: don't use, disable */
1339 		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1340 			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1341 			KASSERT(rt != NULL, ("route is NULL"));
1342 			dir = IEEE80211_FC1_DIR_DSTODS;
1343 			hdrsize += IEEE80211_ADDR_LEN;
1344 			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1345 				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1346 				    vap->iv_myaddr)) {
1347 					IEEE80211_NOTE_MAC(vap,
1348 					    IEEE80211_MSG_MESH,
1349 					    eh.ether_dhost,
1350 					    "%s", "trying to send to ourself");
1351 					goto bad;
1352 				}
1353 				meshae = IEEE80211_MESH_AE_10;
1354 				meshhdrsize =
1355 				    sizeof(struct ieee80211_meshcntl_ae10);
1356 			} else {
1357 				meshae = IEEE80211_MESH_AE_00;
1358 				meshhdrsize =
1359 				    sizeof(struct ieee80211_meshcntl);
1360 			}
1361 		} else {
1362 			dir = IEEE80211_FC1_DIR_FROMDS;
1363 			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1364 				/* proxy group */
1365 				meshae = IEEE80211_MESH_AE_01;
1366 				meshhdrsize =
1367 				    sizeof(struct ieee80211_meshcntl_ae01);
1368 			} else {
1369 				/* group */
1370 				meshae = IEEE80211_MESH_AE_00;
1371 				meshhdrsize = sizeof(struct ieee80211_meshcntl);
1372 			}
1373 		}
1374 	} else {
1375 #endif
1376 		/*
1377 		 * 4-address frames need to be generated for:
1378 		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1379 		 * o packets sent through a vap marked for relaying
1380 		 *   (e.g. a station operating with dynamic WDS)
1381 		 */
1382 		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1383 		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1384 		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1385 		if (is4addr)
1386 			hdrsize += IEEE80211_ADDR_LEN;
1387 		meshhdrsize = meshae = 0;
1388 #ifdef IEEE80211_SUPPORT_MESH
1389 	}
1390 #endif
1391 	/*
1392 	 * Honor driver DATAPAD requirement.
1393 	 */
1394 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1395 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1396 	else
1397 		hdrspace = hdrsize;
1398 
1399 	if (__predict_true((m->m_flags & M_FF) == 0)) {
1400 		/*
1401 		 * Normal frame.
1402 		 */
1403 		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1404 		if (m == NULL) {
1405 			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1406 			goto bad;
1407 		}
1408 		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1409 		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1410 		llc = mtod(m, struct llc *);
1411 		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1412 		llc->llc_control = LLC_UI;
1413 		llc->llc_snap.org_code[0] = 0;
1414 		llc->llc_snap.org_code[1] = 0;
1415 		llc->llc_snap.org_code[2] = 0;
1416 		llc->llc_snap.ether_type = eh.ether_type;
1417 	} else {
1418 #ifdef IEEE80211_SUPPORT_SUPERG
1419 		/*
1420 		 * Aggregated frame.  Check if it's for AMSDU or FF.
1421 		 *
1422 		 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented
1423 		 * anywhere for some reason.  But, since 11n requires
1424 		 * AMSDU RX, we can just assume "11n" == "AMSDU".
1425 		 */
1426 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__);
1427 		if (ieee80211_amsdu_tx_ok(ni)) {
1428 			m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key);
1429 			is_amsdu = 1;
1430 		} else {
1431 			m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1432 		}
1433 		if (m == NULL)
1434 #endif
1435 			goto bad;
1436 	}
1437 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1438 
1439 	M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT);
1440 	if (m == NULL) {
1441 		vap->iv_stats.is_tx_nobuf++;
1442 		goto bad;
1443 	}
1444 	wh = mtod(m, struct ieee80211_frame *);
1445 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1446 	*(uint16_t *)wh->i_dur = 0;
1447 	qos = NULL;	/* NB: quiet compiler */
1448 	if (is4addr) {
1449 		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1450 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1451 		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1452 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1453 		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1454 	} else switch (vap->iv_opmode) {
1455 	case IEEE80211_M_STA:
1456 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1457 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1458 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1459 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1460 		break;
1461 	case IEEE80211_M_IBSS:
1462 	case IEEE80211_M_AHDEMO:
1463 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1464 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1465 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1466 		/*
1467 		 * NB: always use the bssid from iv_bss as the
1468 		 *     neighbor's may be stale after an ibss merge
1469 		 */
1470 		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1471 		break;
1472 	case IEEE80211_M_HOSTAP:
1473 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1474 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1475 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1476 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1477 		break;
1478 #ifdef IEEE80211_SUPPORT_MESH
1479 	case IEEE80211_M_MBSS:
1480 		/* NB: offset by hdrspace to deal with DATAPAD */
1481 		mc = (struct ieee80211_meshcntl_ae10 *)
1482 		     (mtod(m, uint8_t *) + hdrspace);
1483 		wh->i_fc[1] = dir;
1484 		switch (meshae) {
1485 		case IEEE80211_MESH_AE_00:	/* no proxy */
1486 			mc->mc_flags = 0;
1487 			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1488 				IEEE80211_ADDR_COPY(wh->i_addr1,
1489 				    ni->ni_macaddr);
1490 				IEEE80211_ADDR_COPY(wh->i_addr2,
1491 				    vap->iv_myaddr);
1492 				IEEE80211_ADDR_COPY(wh->i_addr3,
1493 				    eh.ether_dhost);
1494 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1495 				    eh.ether_shost);
1496 				qos =((struct ieee80211_qosframe_addr4 *)
1497 				    wh)->i_qos;
1498 			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1499 				 /* mcast */
1500 				IEEE80211_ADDR_COPY(wh->i_addr1,
1501 				    eh.ether_dhost);
1502 				IEEE80211_ADDR_COPY(wh->i_addr2,
1503 				    vap->iv_myaddr);
1504 				IEEE80211_ADDR_COPY(wh->i_addr3,
1505 				    eh.ether_shost);
1506 				qos = ((struct ieee80211_qosframe *)
1507 				    wh)->i_qos;
1508 			}
1509 			break;
1510 		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
1511 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1512 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1513 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1514 			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1515 			mc->mc_flags = 1;
1516 			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1517 			    eh.ether_shost);
1518 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1519 			break;
1520 		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
1521 			KASSERT(rt != NULL, ("route is NULL"));
1522 			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1523 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1524 			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1525 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1526 			mc->mc_flags = IEEE80211_MESH_AE_10;
1527 			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1528 			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1529 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1530 			break;
1531 		default:
1532 			KASSERT(0, ("meshae %d", meshae));
1533 			break;
1534 		}
1535 		mc->mc_ttl = ms->ms_ttl;
1536 		ms->ms_seq++;
1537 		le32enc(mc->mc_seq, ms->ms_seq);
1538 		break;
1539 #endif
1540 	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1541 	default:
1542 		goto bad;
1543 	}
1544 	if (m->m_flags & M_MORE_DATA)
1545 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1546 	if (addqos) {
1547 		int ac, tid;
1548 
1549 		if (is4addr) {
1550 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1551 		/* NB: mesh case handled earlier */
1552 		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1553 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1554 		ac = M_WME_GETAC(m);
1555 		/* map from access class/queue to 11e header priorty value */
1556 		tid = WME_AC_TO_TID(ac);
1557 		qos[0] = tid & IEEE80211_QOS_TID;
1558 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1559 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1560 #ifdef IEEE80211_SUPPORT_MESH
1561 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1562 			qos[1] = IEEE80211_QOS_MC;
1563 		else
1564 #endif
1565 			qos[1] = 0;
1566 		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1567 
1568 		/*
1569 		 * If this is an A-MSDU then ensure we set the
1570 		 * relevant field.
1571 		 */
1572 		if (is_amsdu)
1573 			qos[0] |= IEEE80211_QOS_AMSDU;
1574 
1575 		/*
1576 		 * XXX TODO TX lock is needed for atomic updates of sequence
1577 		 * numbers.  If the driver does it, then don't do it here;
1578 		 * and we don't need the TX lock held.
1579 		 */
1580 		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1581 			/*
1582 			 * 802.11-2012 9.3.2.10 -
1583 			 *
1584 			 * If this is a multicast frame then we need
1585 			 * to ensure that the sequence number comes from
1586 			 * a separate seqno space and not the TID space.
1587 			 *
1588 			 * Otherwise multicast frames may actually cause
1589 			 * holes in the TX blockack window space and
1590 			 * upset various things.
1591 			 */
1592 			if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1593 				seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1594 			else
1595 				seqno = ni->ni_txseqs[tid]++;
1596 
1597 			/*
1598 			 * NB: don't assign a sequence # to potential
1599 			 * aggregates; we expect this happens at the
1600 			 * point the frame comes off any aggregation q
1601 			 * as otherwise we may introduce holes in the
1602 			 * BA sequence space and/or make window accouting
1603 			 * more difficult.
1604 			 *
1605 			 * XXX may want to control this with a driver
1606 			 * capability; this may also change when we pull
1607 			 * aggregation up into net80211
1608 			 */
1609 			seqno = ni->ni_txseqs[tid]++;
1610 			*(uint16_t *)wh->i_seq =
1611 			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1612 			M_SEQNO_SET(m, seqno);
1613 		}
1614 	} else {
1615 		/*
1616 		 * XXX TODO TX lock is needed for atomic updates of sequence
1617 		 * numbers.  If the driver does it, then don't do it here;
1618 		 * and we don't need the TX lock held.
1619 		 */
1620 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1621 		*(uint16_t *)wh->i_seq =
1622 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1623 		M_SEQNO_SET(m, seqno);
1624 
1625 		/*
1626 		 * XXX TODO: we shouldn't allow EAPOL, etc that would
1627 		 * be forced to be non-QoS traffic to be A-MSDU encapsulated.
1628 		 */
1629 		if (is_amsdu)
1630 			printf("%s: XXX ERROR: is_amsdu set; not QoS!\n",
1631 			    __func__);
1632 	}
1633 
1634 
1635 	/* check if xmit fragmentation is required */
1636 	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1637 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1638 	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1639 	    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1640 	if (key != NULL) {
1641 		/*
1642 		 * IEEE 802.1X: send EAPOL frames always in the clear.
1643 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1644 		 */
1645 		if ((m->m_flags & M_EAPOL) == 0 ||
1646 		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1647 		     (vap->iv_opmode == IEEE80211_M_STA ?
1648 		      !IEEE80211_KEY_UNDEFINED(key) :
1649 		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1650 			wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1651 			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1652 				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1653 				    eh.ether_dhost,
1654 				    "%s", "enmic failed, discard frame");
1655 				vap->iv_stats.is_crypto_enmicfail++;
1656 				goto bad;
1657 			}
1658 		}
1659 	}
1660 	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1661 	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1662 		goto bad;
1663 
1664 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1665 
1666 	IEEE80211_NODE_STAT(ni, tx_data);
1667 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1668 		IEEE80211_NODE_STAT(ni, tx_mcast);
1669 		m->m_flags |= M_MCAST;
1670 	} else
1671 		IEEE80211_NODE_STAT(ni, tx_ucast);
1672 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1673 
1674 	return m;
1675 bad:
1676 	if (m != NULL)
1677 		m_freem(m);
1678 	return NULL;
1679 #undef WH4
1680 #undef MC01
1681 }
1682 
1683 void
1684 ieee80211_free_mbuf(struct mbuf *m)
1685 {
1686 	struct mbuf *next;
1687 
1688 	if (m == NULL)
1689 		return;
1690 
1691 	do {
1692 		next = m->m_nextpkt;
1693 		m->m_nextpkt = NULL;
1694 		m_freem(m);
1695 	} while ((m = next) != NULL);
1696 }
1697 
1698 /*
1699  * Fragment the frame according to the specified mtu.
1700  * The size of the 802.11 header (w/o padding) is provided
1701  * so we don't need to recalculate it.  We create a new
1702  * mbuf for each fragment and chain it through m_nextpkt;
1703  * we might be able to optimize this by reusing the original
1704  * packet's mbufs but that is significantly more complicated.
1705  */
1706 static int
1707 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1708 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1709 {
1710 	struct ieee80211com *ic = vap->iv_ic;
1711 	struct ieee80211_frame *wh, *whf;
1712 	struct mbuf *m, *prev;
1713 	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1714 	u_int hdrspace;
1715 
1716 	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1717 	KASSERT(m0->m_pkthdr.len > mtu,
1718 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1719 
1720 	/*
1721 	 * Honor driver DATAPAD requirement.
1722 	 */
1723 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1724 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1725 	else
1726 		hdrspace = hdrsize;
1727 
1728 	wh = mtod(m0, struct ieee80211_frame *);
1729 	/* NB: mark the first frag; it will be propagated below */
1730 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1731 	totalhdrsize = hdrspace + ciphdrsize;
1732 	fragno = 1;
1733 	off = mtu - ciphdrsize;
1734 	remainder = m0->m_pkthdr.len - off;
1735 	prev = m0;
1736 	do {
1737 		fragsize = MIN(totalhdrsize + remainder, mtu);
1738 		m = m_get2(fragsize, M_NOWAIT, MT_DATA, M_PKTHDR);
1739 		if (m == NULL)
1740 			goto bad;
1741 		/* leave room to prepend any cipher header */
1742 		m_align(m, fragsize - ciphdrsize);
1743 
1744 		/*
1745 		 * Form the header in the fragment.  Note that since
1746 		 * we mark the first fragment with the MORE_FRAG bit
1747 		 * it automatically is propagated to each fragment; we
1748 		 * need only clear it on the last fragment (done below).
1749 		 * NB: frag 1+ dont have Mesh Control field present.
1750 		 */
1751 		whf = mtod(m, struct ieee80211_frame *);
1752 		memcpy(whf, wh, hdrsize);
1753 #ifdef IEEE80211_SUPPORT_MESH
1754 		if (vap->iv_opmode == IEEE80211_M_MBSS) {
1755 			if (IEEE80211_IS_DSTODS(wh))
1756 				((struct ieee80211_qosframe_addr4 *)
1757 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1758 			else
1759 				((struct ieee80211_qosframe *)
1760 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1761 		}
1762 #endif
1763 		*(uint16_t *)&whf->i_seq[0] |= htole16(
1764 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1765 				IEEE80211_SEQ_FRAG_SHIFT);
1766 		fragno++;
1767 
1768 		payload = fragsize - totalhdrsize;
1769 		/* NB: destination is known to be contiguous */
1770 
1771 		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
1772 		m->m_len = hdrspace + payload;
1773 		m->m_pkthdr.len = hdrspace + payload;
1774 		m->m_flags |= M_FRAG;
1775 
1776 		/* chain up the fragment */
1777 		prev->m_nextpkt = m;
1778 		prev = m;
1779 
1780 		/* deduct fragment just formed */
1781 		remainder -= payload;
1782 		off += payload;
1783 	} while (remainder != 0);
1784 
1785 	/* set the last fragment */
1786 	m->m_flags |= M_LASTFRAG;
1787 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1788 
1789 	/* strip first mbuf now that everything has been copied */
1790 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1791 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1792 
1793 	vap->iv_stats.is_tx_fragframes++;
1794 	vap->iv_stats.is_tx_frags += fragno-1;
1795 
1796 	return 1;
1797 bad:
1798 	/* reclaim fragments but leave original frame for caller to free */
1799 	ieee80211_free_mbuf(m0->m_nextpkt);
1800 	m0->m_nextpkt = NULL;
1801 	return 0;
1802 }
1803 
1804 /*
1805  * Add a supported rates element id to a frame.
1806  */
1807 uint8_t *
1808 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1809 {
1810 	int nrates;
1811 
1812 	*frm++ = IEEE80211_ELEMID_RATES;
1813 	nrates = rs->rs_nrates;
1814 	if (nrates > IEEE80211_RATE_SIZE)
1815 		nrates = IEEE80211_RATE_SIZE;
1816 	*frm++ = nrates;
1817 	memcpy(frm, rs->rs_rates, nrates);
1818 	return frm + nrates;
1819 }
1820 
1821 /*
1822  * Add an extended supported rates element id to a frame.
1823  */
1824 uint8_t *
1825 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1826 {
1827 	/*
1828 	 * Add an extended supported rates element if operating in 11g mode.
1829 	 */
1830 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1831 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1832 		*frm++ = IEEE80211_ELEMID_XRATES;
1833 		*frm++ = nrates;
1834 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1835 		frm += nrates;
1836 	}
1837 	return frm;
1838 }
1839 
1840 /*
1841  * Add an ssid element to a frame.
1842  */
1843 uint8_t *
1844 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1845 {
1846 	*frm++ = IEEE80211_ELEMID_SSID;
1847 	*frm++ = len;
1848 	memcpy(frm, ssid, len);
1849 	return frm + len;
1850 }
1851 
1852 /*
1853  * Add an erp element to a frame.
1854  */
1855 static uint8_t *
1856 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1857 {
1858 	uint8_t erp;
1859 
1860 	*frm++ = IEEE80211_ELEMID_ERP;
1861 	*frm++ = 1;
1862 	erp = 0;
1863 	if (ic->ic_nonerpsta != 0)
1864 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1865 	if (ic->ic_flags & IEEE80211_F_USEPROT)
1866 		erp |= IEEE80211_ERP_USE_PROTECTION;
1867 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1868 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1869 	*frm++ = erp;
1870 	return frm;
1871 }
1872 
1873 /*
1874  * Add a CFParams element to a frame.
1875  */
1876 static uint8_t *
1877 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1878 {
1879 #define	ADDSHORT(frm, v) do {	\
1880 	le16enc(frm, v);	\
1881 	frm += 2;		\
1882 } while (0)
1883 	*frm++ = IEEE80211_ELEMID_CFPARMS;
1884 	*frm++ = 6;
1885 	*frm++ = 0;		/* CFP count */
1886 	*frm++ = 2;		/* CFP period */
1887 	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1888 	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1889 	return frm;
1890 #undef ADDSHORT
1891 }
1892 
1893 static __inline uint8_t *
1894 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1895 {
1896 	memcpy(frm, ie->ie_data, ie->ie_len);
1897 	return frm + ie->ie_len;
1898 }
1899 
1900 static __inline uint8_t *
1901 add_ie(uint8_t *frm, const uint8_t *ie)
1902 {
1903 	memcpy(frm, ie, 2 + ie[1]);
1904 	return frm + 2 + ie[1];
1905 }
1906 
1907 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1908 /*
1909  * Add a WME information element to a frame.
1910  */
1911 uint8_t *
1912 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1913 {
1914 	static const struct ieee80211_wme_info info = {
1915 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1916 		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1917 		.wme_oui	= { WME_OUI_BYTES },
1918 		.wme_type	= WME_OUI_TYPE,
1919 		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1920 		.wme_version	= WME_VERSION,
1921 		.wme_info	= 0,
1922 	};
1923 	memcpy(frm, &info, sizeof(info));
1924 	return frm + sizeof(info);
1925 }
1926 
1927 /*
1928  * Add a WME parameters element to a frame.
1929  */
1930 static uint8_t *
1931 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1932 {
1933 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1934 #define	ADDSHORT(frm, v) do {	\
1935 	le16enc(frm, v);	\
1936 	frm += 2;		\
1937 } while (0)
1938 	/* NB: this works 'cuz a param has an info at the front */
1939 	static const struct ieee80211_wme_info param = {
1940 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1941 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1942 		.wme_oui	= { WME_OUI_BYTES },
1943 		.wme_type	= WME_OUI_TYPE,
1944 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1945 		.wme_version	= WME_VERSION,
1946 	};
1947 	int i;
1948 
1949 	memcpy(frm, &param, sizeof(param));
1950 	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1951 	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1952 	*frm++ = 0;					/* reserved field */
1953 	for (i = 0; i < WME_NUM_AC; i++) {
1954 		const struct wmeParams *ac =
1955 		       &wme->wme_bssChanParams.cap_wmeParams[i];
1956 		*frm++ = SM(i, WME_PARAM_ACI)
1957 		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1958 		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1959 		       ;
1960 		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1961 		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1962 		       ;
1963 		ADDSHORT(frm, ac->wmep_txopLimit);
1964 	}
1965 	return frm;
1966 #undef SM
1967 #undef ADDSHORT
1968 }
1969 #undef WME_OUI_BYTES
1970 
1971 /*
1972  * Add an 11h Power Constraint element to a frame.
1973  */
1974 static uint8_t *
1975 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1976 {
1977 	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1978 	/* XXX per-vap tx power limit? */
1979 	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1980 
1981 	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1982 	frm[1] = 1;
1983 	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1984 	return frm + 3;
1985 }
1986 
1987 /*
1988  * Add an 11h Power Capability element to a frame.
1989  */
1990 static uint8_t *
1991 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1992 {
1993 	frm[0] = IEEE80211_ELEMID_PWRCAP;
1994 	frm[1] = 2;
1995 	frm[2] = c->ic_minpower;
1996 	frm[3] = c->ic_maxpower;
1997 	return frm + 4;
1998 }
1999 
2000 /*
2001  * Add an 11h Supported Channels element to a frame.
2002  */
2003 static uint8_t *
2004 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
2005 {
2006 	static const int ielen = 26;
2007 
2008 	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
2009 	frm[1] = ielen;
2010 	/* XXX not correct */
2011 	memcpy(frm+2, ic->ic_chan_avail, ielen);
2012 	return frm + 2 + ielen;
2013 }
2014 
2015 /*
2016  * Add an 11h Quiet time element to a frame.
2017  */
2018 static uint8_t *
2019 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap, int update)
2020 {
2021 	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
2022 
2023 	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
2024 	quiet->len = 6;
2025 
2026 	/*
2027 	 * Only update every beacon interval - otherwise probe responses
2028 	 * would update the quiet count value.
2029 	 */
2030 	if (update) {
2031 		if (vap->iv_quiet_count_value == 1)
2032 			vap->iv_quiet_count_value = vap->iv_quiet_count;
2033 		else if (vap->iv_quiet_count_value > 1)
2034 			vap->iv_quiet_count_value--;
2035 	}
2036 
2037 	if (vap->iv_quiet_count_value == 0) {
2038 		/* value 0 is reserved as per 802.11h standerd */
2039 		vap->iv_quiet_count_value = 1;
2040 	}
2041 
2042 	quiet->tbttcount = vap->iv_quiet_count_value;
2043 	quiet->period = vap->iv_quiet_period;
2044 	quiet->duration = htole16(vap->iv_quiet_duration);
2045 	quiet->offset = htole16(vap->iv_quiet_offset);
2046 	return frm + sizeof(*quiet);
2047 }
2048 
2049 /*
2050  * Add an 11h Channel Switch Announcement element to a frame.
2051  * Note that we use the per-vap CSA count to adjust the global
2052  * counter so we can use this routine to form probe response
2053  * frames and get the current count.
2054  */
2055 static uint8_t *
2056 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
2057 {
2058 	struct ieee80211com *ic = vap->iv_ic;
2059 	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
2060 
2061 	csa->csa_ie = IEEE80211_ELEMID_CSA;
2062 	csa->csa_len = 3;
2063 	csa->csa_mode = 1;		/* XXX force quiet on channel */
2064 	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
2065 	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
2066 	return frm + sizeof(*csa);
2067 }
2068 
2069 /*
2070  * Add an 11h country information element to a frame.
2071  */
2072 static uint8_t *
2073 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
2074 {
2075 
2076 	if (ic->ic_countryie == NULL ||
2077 	    ic->ic_countryie_chan != ic->ic_bsschan) {
2078 		/*
2079 		 * Handle lazy construction of ie.  This is done on
2080 		 * first use and after a channel change that requires
2081 		 * re-calculation.
2082 		 */
2083 		if (ic->ic_countryie != NULL)
2084 			IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
2085 		ic->ic_countryie = ieee80211_alloc_countryie(ic);
2086 		if (ic->ic_countryie == NULL)
2087 			return frm;
2088 		ic->ic_countryie_chan = ic->ic_bsschan;
2089 	}
2090 	return add_appie(frm, ic->ic_countryie);
2091 }
2092 
2093 uint8_t *
2094 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
2095 {
2096 	if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
2097 		return (add_ie(frm, vap->iv_wpa_ie));
2098 	else {
2099 		/* XXX else complain? */
2100 		return (frm);
2101 	}
2102 }
2103 
2104 uint8_t *
2105 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
2106 {
2107 	if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
2108 		return (add_ie(frm, vap->iv_rsn_ie));
2109 	else {
2110 		/* XXX else complain? */
2111 		return (frm);
2112 	}
2113 }
2114 
2115 uint8_t *
2116 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
2117 {
2118 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
2119 		*frm++ = IEEE80211_ELEMID_QOS;
2120 		*frm++ = 1;
2121 		*frm++ = 0;
2122 	}
2123 
2124 	return (frm);
2125 }
2126 
2127 /*
2128  * Send a probe request frame with the specified ssid
2129  * and any optional information element data.
2130  */
2131 /* XXX VHT? */
2132 int
2133 ieee80211_send_probereq(struct ieee80211_node *ni,
2134 	const uint8_t sa[IEEE80211_ADDR_LEN],
2135 	const uint8_t da[IEEE80211_ADDR_LEN],
2136 	const uint8_t bssid[IEEE80211_ADDR_LEN],
2137 	const uint8_t *ssid, size_t ssidlen)
2138 {
2139 	struct ieee80211vap *vap = ni->ni_vap;
2140 	struct ieee80211com *ic = ni->ni_ic;
2141 	struct ieee80211_node *bss;
2142 	const struct ieee80211_txparam *tp;
2143 	struct ieee80211_bpf_params params;
2144 	const struct ieee80211_rateset *rs;
2145 	struct mbuf *m;
2146 	uint8_t *frm;
2147 	int ret;
2148 
2149 	bss = ieee80211_ref_node(vap->iv_bss);
2150 
2151 	if (vap->iv_state == IEEE80211_S_CAC) {
2152 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
2153 		    "block %s frame in CAC state", "probe request");
2154 		vap->iv_stats.is_tx_badstate++;
2155 		ieee80211_free_node(bss);
2156 		return EIO;		/* XXX */
2157 	}
2158 
2159 	/*
2160 	 * Hold a reference on the node so it doesn't go away until after
2161 	 * the xmit is complete all the way in the driver.  On error we
2162 	 * will remove our reference.
2163 	 */
2164 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2165 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2166 		__func__, __LINE__,
2167 		ni, ether_sprintf(ni->ni_macaddr),
2168 		ieee80211_node_refcnt(ni)+1);
2169 	ieee80211_ref_node(ni);
2170 
2171 	/*
2172 	 * prreq frame format
2173 	 *	[tlv] ssid
2174 	 *	[tlv] supported rates
2175 	 *	[tlv] RSN (optional)
2176 	 *	[tlv] extended supported rates
2177 	 *	[tlv] HT cap (optional)
2178 	 *	[tlv] VHT cap (optional)
2179 	 *	[tlv] WPA (optional)
2180 	 *	[tlv] user-specified ie's
2181 	 */
2182 	m = ieee80211_getmgtframe(&frm,
2183 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2184 	       	 2 + IEEE80211_NWID_LEN
2185 	       + 2 + IEEE80211_RATE_SIZE
2186 	       + sizeof(struct ieee80211_ie_htcap)
2187 	       + sizeof(struct ieee80211_ie_vhtcap)
2188 	       + sizeof(struct ieee80211_ie_htinfo)	/* XXX not needed? */
2189 	       + sizeof(struct ieee80211_ie_wpa)
2190 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2191 	       + sizeof(struct ieee80211_ie_wpa)
2192 	       + (vap->iv_appie_probereq != NULL ?
2193 		   vap->iv_appie_probereq->ie_len : 0)
2194 	);
2195 	if (m == NULL) {
2196 		vap->iv_stats.is_tx_nobuf++;
2197 		ieee80211_free_node(ni);
2198 		ieee80211_free_node(bss);
2199 		return ENOMEM;
2200 	}
2201 
2202 	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2203 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2204 	frm = ieee80211_add_rates(frm, rs);
2205 	frm = ieee80211_add_rsn(frm, vap);
2206 	frm = ieee80211_add_xrates(frm, rs);
2207 
2208 	/*
2209 	 * Note: we can't use bss; we don't have one yet.
2210 	 *
2211 	 * So, we should announce our capabilities
2212 	 * in this channel mode (2g/5g), not the
2213 	 * channel details itself.
2214 	 */
2215 	if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
2216 	    (vap->iv_flags_ht & IEEE80211_FHT_HT)) {
2217 		struct ieee80211_channel *c;
2218 
2219 		/*
2220 		 * Get the HT channel that we should try upgrading to.
2221 		 * If we can do 40MHz then this'll upgrade it appropriately.
2222 		 */
2223 		c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2224 		    vap->iv_flags_ht);
2225 		frm = ieee80211_add_htcap_ch(frm, vap, c);
2226 	}
2227 
2228 	/*
2229 	 * XXX TODO: need to figure out what/how to update the
2230 	 * VHT channel.
2231 	 */
2232 #if 0
2233 	(vap->iv_flags_vht & IEEE80211_FVHT_VHT) {
2234 		struct ieee80211_channel *c;
2235 
2236 		c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2237 		    vap->iv_flags_ht);
2238 		c = ieee80211_vht_adjust_channel(ic, c, vap->iv_flags_vht);
2239 		frm = ieee80211_add_vhtcap_ch(frm, vap, c);
2240 	}
2241 #endif
2242 
2243 	frm = ieee80211_add_wpa(frm, vap);
2244 	if (vap->iv_appie_probereq != NULL)
2245 		frm = add_appie(frm, vap->iv_appie_probereq);
2246 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2247 
2248 	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2249 	    ("leading space %zd", M_LEADINGSPACE(m)));
2250 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2251 	if (m == NULL) {
2252 		/* NB: cannot happen */
2253 		ieee80211_free_node(ni);
2254 		ieee80211_free_node(bss);
2255 		return ENOMEM;
2256 	}
2257 
2258 	IEEE80211_TX_LOCK(ic);
2259 	ieee80211_send_setup(ni, m,
2260 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2261 	     IEEE80211_NONQOS_TID, sa, da, bssid);
2262 	/* XXX power management? */
2263 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2264 
2265 	M_WME_SETAC(m, WME_AC_BE);
2266 
2267 	IEEE80211_NODE_STAT(ni, tx_probereq);
2268 	IEEE80211_NODE_STAT(ni, tx_mgmt);
2269 
2270 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2271 	    "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n",
2272 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
2273 	    ether_sprintf(bssid),
2274 	    sa, ":",
2275 	    da, ":",
2276 	    ssidlen, ssid);
2277 
2278 	memset(&params, 0, sizeof(params));
2279 	params.ibp_pri = M_WME_GETAC(m);
2280 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2281 	params.ibp_rate0 = tp->mgmtrate;
2282 	if (IEEE80211_IS_MULTICAST(da)) {
2283 		params.ibp_flags |= IEEE80211_BPF_NOACK;
2284 		params.ibp_try0 = 1;
2285 	} else
2286 		params.ibp_try0 = tp->maxretry;
2287 	params.ibp_power = ni->ni_txpower;
2288 	ret = ieee80211_raw_output(vap, ni, m, &params);
2289 	IEEE80211_TX_UNLOCK(ic);
2290 	ieee80211_free_node(bss);
2291 	return (ret);
2292 }
2293 
2294 /*
2295  * Calculate capability information for mgt frames.
2296  */
2297 uint16_t
2298 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2299 {
2300 	struct ieee80211com *ic = vap->iv_ic;
2301 	uint16_t capinfo;
2302 
2303 	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2304 
2305 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2306 		capinfo = IEEE80211_CAPINFO_ESS;
2307 	else if (vap->iv_opmode == IEEE80211_M_IBSS)
2308 		capinfo = IEEE80211_CAPINFO_IBSS;
2309 	else
2310 		capinfo = 0;
2311 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2312 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2313 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2314 	    IEEE80211_IS_CHAN_2GHZ(chan))
2315 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2316 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2317 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2318 	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2319 		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2320 	return capinfo;
2321 }
2322 
2323 /*
2324  * Send a management frame.  The node is for the destination (or ic_bss
2325  * when in station mode).  Nodes other than ic_bss have their reference
2326  * count bumped to reflect our use for an indeterminant time.
2327  */
2328 int
2329 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2330 {
2331 #define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2332 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2333 	struct ieee80211vap *vap = ni->ni_vap;
2334 	struct ieee80211com *ic = ni->ni_ic;
2335 	struct ieee80211_node *bss = vap->iv_bss;
2336 	struct ieee80211_bpf_params params;
2337 	struct mbuf *m;
2338 	uint8_t *frm;
2339 	uint16_t capinfo;
2340 	int has_challenge, is_shared_key, ret, status;
2341 
2342 	KASSERT(ni != NULL, ("null node"));
2343 
2344 	/*
2345 	 * Hold a reference on the node so it doesn't go away until after
2346 	 * the xmit is complete all the way in the driver.  On error we
2347 	 * will remove our reference.
2348 	 */
2349 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2350 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2351 		__func__, __LINE__,
2352 		ni, ether_sprintf(ni->ni_macaddr),
2353 		ieee80211_node_refcnt(ni)+1);
2354 	ieee80211_ref_node(ni);
2355 
2356 	memset(&params, 0, sizeof(params));
2357 	switch (type) {
2358 
2359 	case IEEE80211_FC0_SUBTYPE_AUTH:
2360 		status = arg >> 16;
2361 		arg &= 0xffff;
2362 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2363 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2364 		    ni->ni_challenge != NULL);
2365 
2366 		/*
2367 		 * Deduce whether we're doing open authentication or
2368 		 * shared key authentication.  We do the latter if
2369 		 * we're in the middle of a shared key authentication
2370 		 * handshake or if we're initiating an authentication
2371 		 * request and configured to use shared key.
2372 		 */
2373 		is_shared_key = has_challenge ||
2374 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2375 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2376 		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
2377 
2378 		m = ieee80211_getmgtframe(&frm,
2379 			  ic->ic_headroom + sizeof(struct ieee80211_frame),
2380 			  3 * sizeof(uint16_t)
2381 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2382 				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
2383 		);
2384 		if (m == NULL)
2385 			senderr(ENOMEM, is_tx_nobuf);
2386 
2387 		((uint16_t *)frm)[0] =
2388 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2389 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
2390 		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
2391 		((uint16_t *)frm)[2] = htole16(status);/* status */
2392 
2393 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2394 			((uint16_t *)frm)[3] =
2395 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
2396 			    IEEE80211_ELEMID_CHALLENGE);
2397 			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2398 			    IEEE80211_CHALLENGE_LEN);
2399 			m->m_pkthdr.len = m->m_len =
2400 				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2401 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2402 				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2403 				    "request encrypt frame (%s)", __func__);
2404 				/* mark frame for encryption */
2405 				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2406 			}
2407 		} else
2408 			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2409 
2410 		/* XXX not right for shared key */
2411 		if (status == IEEE80211_STATUS_SUCCESS)
2412 			IEEE80211_NODE_STAT(ni, tx_auth);
2413 		else
2414 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
2415 
2416 		if (vap->iv_opmode == IEEE80211_M_STA)
2417 			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2418 				(void *) vap->iv_state);
2419 		break;
2420 
2421 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2422 		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2423 		    "send station deauthenticate (reason: %d (%s))", arg,
2424 		    ieee80211_reason_to_string(arg));
2425 		m = ieee80211_getmgtframe(&frm,
2426 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2427 			sizeof(uint16_t));
2428 		if (m == NULL)
2429 			senderr(ENOMEM, is_tx_nobuf);
2430 		*(uint16_t *)frm = htole16(arg);	/* reason */
2431 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2432 
2433 		IEEE80211_NODE_STAT(ni, tx_deauth);
2434 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2435 
2436 		ieee80211_node_unauthorize(ni);		/* port closed */
2437 		break;
2438 
2439 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2440 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2441 		/* XXX VHT? */
2442 		/*
2443 		 * asreq frame format
2444 		 *	[2] capability information
2445 		 *	[2] listen interval
2446 		 *	[6*] current AP address (reassoc only)
2447 		 *	[tlv] ssid
2448 		 *	[tlv] supported rates
2449 		 *	[tlv] extended supported rates
2450 		 *	[4] power capability (optional)
2451 		 *	[28] supported channels (optional)
2452 		 *	[tlv] HT capabilities
2453 		 *	[tlv] VHT capabilities
2454 		 *	[tlv] WME (optional)
2455 		 *	[tlv] Vendor OUI HT capabilities (optional)
2456 		 *	[tlv] Atheros capabilities (if negotiated)
2457 		 *	[tlv] AppIE's (optional)
2458 		 */
2459 		m = ieee80211_getmgtframe(&frm,
2460 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2461 			 sizeof(uint16_t)
2462 		       + sizeof(uint16_t)
2463 		       + IEEE80211_ADDR_LEN
2464 		       + 2 + IEEE80211_NWID_LEN
2465 		       + 2 + IEEE80211_RATE_SIZE
2466 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2467 		       + 4
2468 		       + 2 + 26
2469 		       + sizeof(struct ieee80211_wme_info)
2470 		       + sizeof(struct ieee80211_ie_htcap)
2471 		       + sizeof(struct ieee80211_ie_vhtcap)
2472 		       + 4 + sizeof(struct ieee80211_ie_htcap)
2473 #ifdef IEEE80211_SUPPORT_SUPERG
2474 		       + sizeof(struct ieee80211_ath_ie)
2475 #endif
2476 		       + (vap->iv_appie_wpa != NULL ?
2477 				vap->iv_appie_wpa->ie_len : 0)
2478 		       + (vap->iv_appie_assocreq != NULL ?
2479 				vap->iv_appie_assocreq->ie_len : 0)
2480 		);
2481 		if (m == NULL)
2482 			senderr(ENOMEM, is_tx_nobuf);
2483 
2484 		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2485 		    ("wrong mode %u", vap->iv_opmode));
2486 		capinfo = IEEE80211_CAPINFO_ESS;
2487 		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2488 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2489 		/*
2490 		 * NB: Some 11a AP's reject the request when
2491 		 *     short premable is set.
2492 		 */
2493 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2494 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2495 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2496 		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2497 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2498 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2499 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2500 		    (vap->iv_flags & IEEE80211_F_DOTH))
2501 			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2502 		*(uint16_t *)frm = htole16(capinfo);
2503 		frm += 2;
2504 
2505 		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2506 		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2507 						    bss->ni_intval));
2508 		frm += 2;
2509 
2510 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2511 			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2512 			frm += IEEE80211_ADDR_LEN;
2513 		}
2514 
2515 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2516 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2517 		frm = ieee80211_add_rsn(frm, vap);
2518 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2519 		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2520 			frm = ieee80211_add_powercapability(frm,
2521 			    ic->ic_curchan);
2522 			frm = ieee80211_add_supportedchannels(frm, ic);
2523 		}
2524 
2525 		/*
2526 		 * Check the channel - we may be using an 11n NIC with an
2527 		 * 11n capable station, but we're configured to be an 11b
2528 		 * channel.
2529 		 */
2530 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2531 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2532 		    ni->ni_ies.htcap_ie != NULL &&
2533 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
2534 			frm = ieee80211_add_htcap(frm, ni);
2535 		}
2536 
2537 		if ((vap->iv_flags_vht & IEEE80211_FVHT_VHT) &&
2538 		    IEEE80211_IS_CHAN_VHT(ni->ni_chan) &&
2539 		    ni->ni_ies.vhtcap_ie != NULL &&
2540 		    ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) {
2541 			frm = ieee80211_add_vhtcap(frm, ni);
2542 		}
2543 
2544 		frm = ieee80211_add_wpa(frm, vap);
2545 		if ((ic->ic_flags & IEEE80211_F_WME) &&
2546 		    ni->ni_ies.wme_ie != NULL)
2547 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2548 
2549 		/*
2550 		 * Same deal - only send HT info if we're on an 11n
2551 		 * capable channel.
2552 		 */
2553 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2554 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2555 		    ni->ni_ies.htcap_ie != NULL &&
2556 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
2557 			frm = ieee80211_add_htcap_vendor(frm, ni);
2558 		}
2559 #ifdef IEEE80211_SUPPORT_SUPERG
2560 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2561 			frm = ieee80211_add_ath(frm,
2562 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2563 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2564 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2565 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2566 		}
2567 #endif /* IEEE80211_SUPPORT_SUPERG */
2568 		if (vap->iv_appie_assocreq != NULL)
2569 			frm = add_appie(frm, vap->iv_appie_assocreq);
2570 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2571 
2572 		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2573 			(void *) vap->iv_state);
2574 		break;
2575 
2576 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2577 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2578 		/*
2579 		 * asresp frame format
2580 		 *	[2] capability information
2581 		 *	[2] status
2582 		 *	[2] association ID
2583 		 *	[tlv] supported rates
2584 		 *	[tlv] extended supported rates
2585 		 *	[tlv] HT capabilities (standard, if STA enabled)
2586 		 *	[tlv] HT information (standard, if STA enabled)
2587 		 *	[tlv] VHT capabilities (standard, if STA enabled)
2588 		 *	[tlv] VHT information (standard, if STA enabled)
2589 		 *	[tlv] WME (if configured and STA enabled)
2590 		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2591 		 *	[tlv] HT information (vendor OUI, if STA enabled)
2592 		 *	[tlv] Atheros capabilities (if STA enabled)
2593 		 *	[tlv] AppIE's (optional)
2594 		 */
2595 		m = ieee80211_getmgtframe(&frm,
2596 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2597 			 sizeof(uint16_t)
2598 		       + sizeof(uint16_t)
2599 		       + sizeof(uint16_t)
2600 		       + 2 + IEEE80211_RATE_SIZE
2601 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2602 		       + sizeof(struct ieee80211_ie_htcap) + 4
2603 		       + sizeof(struct ieee80211_ie_htinfo) + 4
2604 		       + sizeof(struct ieee80211_ie_vhtcap)
2605 		       + sizeof(struct ieee80211_ie_vht_operation)
2606 		       + sizeof(struct ieee80211_wme_param)
2607 #ifdef IEEE80211_SUPPORT_SUPERG
2608 		       + sizeof(struct ieee80211_ath_ie)
2609 #endif
2610 		       + (vap->iv_appie_assocresp != NULL ?
2611 				vap->iv_appie_assocresp->ie_len : 0)
2612 		);
2613 		if (m == NULL)
2614 			senderr(ENOMEM, is_tx_nobuf);
2615 
2616 		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2617 		*(uint16_t *)frm = htole16(capinfo);
2618 		frm += 2;
2619 
2620 		*(uint16_t *)frm = htole16(arg);	/* status */
2621 		frm += 2;
2622 
2623 		if (arg == IEEE80211_STATUS_SUCCESS) {
2624 			*(uint16_t *)frm = htole16(ni->ni_associd);
2625 			IEEE80211_NODE_STAT(ni, tx_assoc);
2626 		} else
2627 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2628 		frm += 2;
2629 
2630 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2631 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2632 		/* NB: respond according to what we received */
2633 		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2634 			frm = ieee80211_add_htcap(frm, ni);
2635 			frm = ieee80211_add_htinfo(frm, ni);
2636 		}
2637 		if ((vap->iv_flags & IEEE80211_F_WME) &&
2638 		    ni->ni_ies.wme_ie != NULL)
2639 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2640 		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2641 			frm = ieee80211_add_htcap_vendor(frm, ni);
2642 			frm = ieee80211_add_htinfo_vendor(frm, ni);
2643 		}
2644 		if (ni->ni_flags & IEEE80211_NODE_VHT) {
2645 			frm = ieee80211_add_vhtcap(frm, ni);
2646 			frm = ieee80211_add_vhtinfo(frm, ni);
2647 		}
2648 #ifdef IEEE80211_SUPPORT_SUPERG
2649 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2650 			frm = ieee80211_add_ath(frm,
2651 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2652 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2653 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2654 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2655 #endif /* IEEE80211_SUPPORT_SUPERG */
2656 		if (vap->iv_appie_assocresp != NULL)
2657 			frm = add_appie(frm, vap->iv_appie_assocresp);
2658 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2659 		break;
2660 
2661 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2662 		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2663 		    "send station disassociate (reason: %d (%s))", arg,
2664 		    ieee80211_reason_to_string(arg));
2665 		m = ieee80211_getmgtframe(&frm,
2666 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2667 			sizeof(uint16_t));
2668 		if (m == NULL)
2669 			senderr(ENOMEM, is_tx_nobuf);
2670 		*(uint16_t *)frm = htole16(arg);	/* reason */
2671 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2672 
2673 		IEEE80211_NODE_STAT(ni, tx_disassoc);
2674 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2675 		break;
2676 
2677 	default:
2678 		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2679 		    "invalid mgmt frame type %u", type);
2680 		senderr(EINVAL, is_tx_unknownmgt);
2681 		/* NOTREACHED */
2682 	}
2683 
2684 	/* NB: force non-ProbeResp frames to the highest queue */
2685 	params.ibp_pri = WME_AC_VO;
2686 	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2687 	/* NB: we know all frames are unicast */
2688 	params.ibp_try0 = bss->ni_txparms->maxretry;
2689 	params.ibp_power = bss->ni_txpower;
2690 	return ieee80211_mgmt_output(ni, m, type, &params);
2691 bad:
2692 	ieee80211_free_node(ni);
2693 	return ret;
2694 #undef senderr
2695 #undef HTFLAGS
2696 }
2697 
2698 /*
2699  * Return an mbuf with a probe response frame in it.
2700  * Space is left to prepend and 802.11 header at the
2701  * front but it's left to the caller to fill in.
2702  */
2703 /* XXX VHT? */
2704 struct mbuf *
2705 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2706 {
2707 	struct ieee80211vap *vap = bss->ni_vap;
2708 	struct ieee80211com *ic = bss->ni_ic;
2709 	const struct ieee80211_rateset *rs;
2710 	struct mbuf *m;
2711 	uint16_t capinfo;
2712 	uint8_t *frm;
2713 
2714 	/*
2715 	 * probe response frame format
2716 	 *	[8] time stamp
2717 	 *	[2] beacon interval
2718 	 *	[2] cabability information
2719 	 *	[tlv] ssid
2720 	 *	[tlv] supported rates
2721 	 *	[tlv] parameter set (FH/DS)
2722 	 *	[tlv] parameter set (IBSS)
2723 	 *	[tlv] country (optional)
2724 	 *	[3] power control (optional)
2725 	 *	[5] channel switch announcement (CSA) (optional)
2726 	 *	[tlv] extended rate phy (ERP)
2727 	 *	[tlv] extended supported rates
2728 	 *	[tlv] RSN (optional)
2729 	 *	[tlv] HT capabilities
2730 	 *	[tlv] HT information
2731 	 *	[tlv] WPA (optional)
2732 	 *	[tlv] WME (optional)
2733 	 *	[tlv] Vendor OUI HT capabilities (optional)
2734 	 *	[tlv] Vendor OUI HT information (optional)
2735 	 *	[tlv] Atheros capabilities
2736 	 *	[tlv] AppIE's (optional)
2737 	 *	[tlv] Mesh ID (MBSS)
2738 	 *	[tlv] Mesh Conf (MBSS)
2739 	 */
2740 	m = ieee80211_getmgtframe(&frm,
2741 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2742 		 8
2743 	       + sizeof(uint16_t)
2744 	       + sizeof(uint16_t)
2745 	       + 2 + IEEE80211_NWID_LEN
2746 	       + 2 + IEEE80211_RATE_SIZE
2747 	       + 7	/* max(7,3) */
2748 	       + IEEE80211_COUNTRY_MAX_SIZE
2749 	       + 3
2750 	       + sizeof(struct ieee80211_csa_ie)
2751 	       + sizeof(struct ieee80211_quiet_ie)
2752 	       + 3
2753 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2754 	       + sizeof(struct ieee80211_ie_wpa)
2755 	       + sizeof(struct ieee80211_ie_htcap)
2756 	       + sizeof(struct ieee80211_ie_htinfo)
2757 	       + sizeof(struct ieee80211_ie_wpa)
2758 	       + sizeof(struct ieee80211_wme_param)
2759 	       + 4 + sizeof(struct ieee80211_ie_htcap)
2760 	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2761 #ifdef IEEE80211_SUPPORT_SUPERG
2762 	       + sizeof(struct ieee80211_ath_ie)
2763 #endif
2764 #ifdef IEEE80211_SUPPORT_MESH
2765 	       + 2 + IEEE80211_MESHID_LEN
2766 	       + sizeof(struct ieee80211_meshconf_ie)
2767 #endif
2768 	       + (vap->iv_appie_proberesp != NULL ?
2769 			vap->iv_appie_proberesp->ie_len : 0)
2770 	);
2771 	if (m == NULL) {
2772 		vap->iv_stats.is_tx_nobuf++;
2773 		return NULL;
2774 	}
2775 
2776 	memset(frm, 0, 8);	/* timestamp should be filled later */
2777 	frm += 8;
2778 	*(uint16_t *)frm = htole16(bss->ni_intval);
2779 	frm += 2;
2780 	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2781 	*(uint16_t *)frm = htole16(capinfo);
2782 	frm += 2;
2783 
2784 	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2785 	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2786 	frm = ieee80211_add_rates(frm, rs);
2787 
2788 	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2789 		*frm++ = IEEE80211_ELEMID_FHPARMS;
2790 		*frm++ = 5;
2791 		*frm++ = bss->ni_fhdwell & 0x00ff;
2792 		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2793 		*frm++ = IEEE80211_FH_CHANSET(
2794 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2795 		*frm++ = IEEE80211_FH_CHANPAT(
2796 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2797 		*frm++ = bss->ni_fhindex;
2798 	} else {
2799 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2800 		*frm++ = 1;
2801 		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2802 	}
2803 
2804 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2805 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2806 		*frm++ = 2;
2807 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2808 	}
2809 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2810 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2811 		frm = ieee80211_add_countryie(frm, ic);
2812 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2813 		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2814 			frm = ieee80211_add_powerconstraint(frm, vap);
2815 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2816 			frm = ieee80211_add_csa(frm, vap);
2817 	}
2818 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2819 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2820 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2821 			if (vap->iv_quiet)
2822 				frm = ieee80211_add_quiet(frm, vap, 0);
2823 		}
2824 	}
2825 	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2826 		frm = ieee80211_add_erp(frm, ic);
2827 	frm = ieee80211_add_xrates(frm, rs);
2828 	frm = ieee80211_add_rsn(frm, vap);
2829 	/*
2830 	 * NB: legacy 11b clients do not get certain ie's.
2831 	 *     The caller identifies such clients by passing
2832 	 *     a token in legacy to us.  Could expand this to be
2833 	 *     any legacy client for stuff like HT ie's.
2834 	 */
2835 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2836 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2837 		frm = ieee80211_add_htcap(frm, bss);
2838 		frm = ieee80211_add_htinfo(frm, bss);
2839 	}
2840 	frm = ieee80211_add_wpa(frm, vap);
2841 	if (vap->iv_flags & IEEE80211_F_WME)
2842 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2843 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2844 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
2845 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2846 		frm = ieee80211_add_htcap_vendor(frm, bss);
2847 		frm = ieee80211_add_htinfo_vendor(frm, bss);
2848 	}
2849 #ifdef IEEE80211_SUPPORT_SUPERG
2850 	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
2851 	    legacy != IEEE80211_SEND_LEGACY_11B)
2852 		frm = ieee80211_add_athcaps(frm, bss);
2853 #endif
2854 	if (vap->iv_appie_proberesp != NULL)
2855 		frm = add_appie(frm, vap->iv_appie_proberesp);
2856 #ifdef IEEE80211_SUPPORT_MESH
2857 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2858 		frm = ieee80211_add_meshid(frm, vap);
2859 		frm = ieee80211_add_meshconf(frm, vap);
2860 	}
2861 #endif
2862 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2863 
2864 	return m;
2865 }
2866 
2867 /*
2868  * Send a probe response frame to the specified mac address.
2869  * This does not go through the normal mgt frame api so we
2870  * can specify the destination address and re-use the bss node
2871  * for the sta reference.
2872  */
2873 int
2874 ieee80211_send_proberesp(struct ieee80211vap *vap,
2875 	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2876 {
2877 	struct ieee80211_node *bss = vap->iv_bss;
2878 	struct ieee80211com *ic = vap->iv_ic;
2879 	struct mbuf *m;
2880 	int ret;
2881 
2882 	if (vap->iv_state == IEEE80211_S_CAC) {
2883 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2884 		    "block %s frame in CAC state", "probe response");
2885 		vap->iv_stats.is_tx_badstate++;
2886 		return EIO;		/* XXX */
2887 	}
2888 
2889 	/*
2890 	 * Hold a reference on the node so it doesn't go away until after
2891 	 * the xmit is complete all the way in the driver.  On error we
2892 	 * will remove our reference.
2893 	 */
2894 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2895 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2896 	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2897 	    ieee80211_node_refcnt(bss)+1);
2898 	ieee80211_ref_node(bss);
2899 
2900 	m = ieee80211_alloc_proberesp(bss, legacy);
2901 	if (m == NULL) {
2902 		ieee80211_free_node(bss);
2903 		return ENOMEM;
2904 	}
2905 
2906 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2907 	KASSERT(m != NULL, ("no room for header"));
2908 
2909 	IEEE80211_TX_LOCK(ic);
2910 	ieee80211_send_setup(bss, m,
2911 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2912 	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2913 	/* XXX power management? */
2914 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2915 
2916 	M_WME_SETAC(m, WME_AC_BE);
2917 
2918 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2919 	    "send probe resp on channel %u to %s%s\n",
2920 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2921 	    legacy ? " <legacy>" : "");
2922 	IEEE80211_NODE_STAT(bss, tx_mgmt);
2923 
2924 	ret = ieee80211_raw_output(vap, bss, m, NULL);
2925 	IEEE80211_TX_UNLOCK(ic);
2926 	return (ret);
2927 }
2928 
2929 /*
2930  * Allocate and build a RTS (Request To Send) control frame.
2931  */
2932 struct mbuf *
2933 ieee80211_alloc_rts(struct ieee80211com *ic,
2934 	const uint8_t ra[IEEE80211_ADDR_LEN],
2935 	const uint8_t ta[IEEE80211_ADDR_LEN],
2936 	uint16_t dur)
2937 {
2938 	struct ieee80211_frame_rts *rts;
2939 	struct mbuf *m;
2940 
2941 	/* XXX honor ic_headroom */
2942 	m = m_gethdr(M_NOWAIT, MT_DATA);
2943 	if (m != NULL) {
2944 		rts = mtod(m, struct ieee80211_frame_rts *);
2945 		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2946 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2947 		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2948 		*(u_int16_t *)rts->i_dur = htole16(dur);
2949 		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2950 		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2951 
2952 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2953 	}
2954 	return m;
2955 }
2956 
2957 /*
2958  * Allocate and build a CTS (Clear To Send) control frame.
2959  */
2960 struct mbuf *
2961 ieee80211_alloc_cts(struct ieee80211com *ic,
2962 	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2963 {
2964 	struct ieee80211_frame_cts *cts;
2965 	struct mbuf *m;
2966 
2967 	/* XXX honor ic_headroom */
2968 	m = m_gethdr(M_NOWAIT, MT_DATA);
2969 	if (m != NULL) {
2970 		cts = mtod(m, struct ieee80211_frame_cts *);
2971 		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2972 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2973 		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2974 		*(u_int16_t *)cts->i_dur = htole16(dur);
2975 		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2976 
2977 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2978 	}
2979 	return m;
2980 }
2981 
2982 static void
2983 ieee80211_tx_mgt_timeout(void *arg)
2984 {
2985 	struct ieee80211vap *vap = arg;
2986 
2987 	IEEE80211_LOCK(vap->iv_ic);
2988 	if (vap->iv_state != IEEE80211_S_INIT &&
2989 	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2990 		/*
2991 		 * NB: it's safe to specify a timeout as the reason here;
2992 		 *     it'll only be used in the right state.
2993 		 */
2994 		ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
2995 			IEEE80211_SCAN_FAIL_TIMEOUT);
2996 	}
2997 	IEEE80211_UNLOCK(vap->iv_ic);
2998 }
2999 
3000 /*
3001  * This is the callback set on net80211-sourced transmitted
3002  * authentication request frames.
3003  *
3004  * This does a couple of things:
3005  *
3006  * + If the frame transmitted was a success, it schedules a future
3007  *   event which will transition the interface to scan.
3008  *   If a state transition _then_ occurs before that event occurs,
3009  *   said state transition will cancel this callout.
3010  *
3011  * + If the frame transmit was a failure, it immediately schedules
3012  *   the transition back to scan.
3013  */
3014 static void
3015 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
3016 {
3017 	struct ieee80211vap *vap = ni->ni_vap;
3018 	enum ieee80211_state ostate = (enum ieee80211_state) arg;
3019 
3020 	/*
3021 	 * Frame transmit completed; arrange timer callback.  If
3022 	 * transmit was successfully we wait for response.  Otherwise
3023 	 * we arrange an immediate callback instead of doing the
3024 	 * callback directly since we don't know what state the driver
3025 	 * is in (e.g. what locks it is holding).  This work should
3026 	 * not be too time-critical and not happen too often so the
3027 	 * added overhead is acceptable.
3028 	 *
3029 	 * XXX what happens if !acked but response shows up before callback?
3030 	 */
3031 	if (vap->iv_state == ostate) {
3032 		callout_reset(&vap->iv_mgtsend,
3033 			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
3034 			ieee80211_tx_mgt_timeout, vap);
3035 	}
3036 }
3037 
3038 /* XXX VHT? */
3039 static void
3040 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
3041 	struct ieee80211_node *ni)
3042 {
3043 	struct ieee80211vap *vap = ni->ni_vap;
3044 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3045 	struct ieee80211com *ic = ni->ni_ic;
3046 	struct ieee80211_rateset *rs = &ni->ni_rates;
3047 	uint16_t capinfo;
3048 
3049 	/*
3050 	 * beacon frame format
3051 	 *
3052 	 * TODO: update to 802.11-2012; a lot of stuff has changed;
3053 	 * vendor extensions should be at the end, etc.
3054 	 *
3055 	 *	[8] time stamp
3056 	 *	[2] beacon interval
3057 	 *	[2] cabability information
3058 	 *	[tlv] ssid
3059 	 *	[tlv] supported rates
3060 	 *	[3] parameter set (DS)
3061 	 *	[8] CF parameter set (optional)
3062 	 *	[tlv] parameter set (IBSS/TIM)
3063 	 *	[tlv] country (optional)
3064 	 *	[3] power control (optional)
3065 	 *	[5] channel switch announcement (CSA) (optional)
3066 	 * XXX TODO: Quiet
3067 	 * XXX TODO: IBSS DFS
3068 	 * XXX TODO: TPC report
3069 	 *	[tlv] extended rate phy (ERP)
3070 	 *	[tlv] extended supported rates
3071 	 *	[tlv] RSN parameters
3072 	 * XXX TODO: BSSLOAD
3073 	 * (XXX EDCA parameter set, QoS capability?)
3074 	 * XXX TODO: AP channel report
3075 	 *
3076 	 *	[tlv] HT capabilities
3077 	 *	[tlv] HT information
3078 	 *	XXX TODO: 20/40 BSS coexistence
3079 	 * Mesh:
3080 	 * XXX TODO: Meshid
3081 	 * XXX TODO: mesh config
3082 	 * XXX TODO: mesh awake window
3083 	 * XXX TODO: beacon timing (mesh, etc)
3084 	 * XXX TODO: MCCAOP Advertisement Overview
3085 	 * XXX TODO: MCCAOP Advertisement
3086 	 * XXX TODO: Mesh channel switch parameters
3087 	 * VHT:
3088 	 * XXX TODO: VHT capabilities
3089 	 * XXX TODO: VHT operation
3090 	 * XXX TODO: VHT transmit power envelope
3091 	 * XXX TODO: channel switch wrapper element
3092 	 * XXX TODO: extended BSS load element
3093 	 *
3094 	 * XXX Vendor-specific OIDs (e.g. Atheros)
3095 	 *	[tlv] WPA parameters
3096 	 *	[tlv] WME parameters
3097 	 *	[tlv] Vendor OUI HT capabilities (optional)
3098 	 *	[tlv] Vendor OUI HT information (optional)
3099 	 *	[tlv] Atheros capabilities (optional)
3100 	 *	[tlv] TDMA parameters (optional)
3101 	 *	[tlv] Mesh ID (MBSS)
3102 	 *	[tlv] Mesh Conf (MBSS)
3103 	 *	[tlv] application data (optional)
3104 	 */
3105 
3106 	memset(bo, 0, sizeof(*bo));
3107 
3108 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
3109 	frm += 8;
3110 	*(uint16_t *)frm = htole16(ni->ni_intval);
3111 	frm += 2;
3112 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3113 	bo->bo_caps = (uint16_t *)frm;
3114 	*(uint16_t *)frm = htole16(capinfo);
3115 	frm += 2;
3116 	*frm++ = IEEE80211_ELEMID_SSID;
3117 	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
3118 		*frm++ = ni->ni_esslen;
3119 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
3120 		frm += ni->ni_esslen;
3121 	} else
3122 		*frm++ = 0;
3123 	frm = ieee80211_add_rates(frm, rs);
3124 	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
3125 		*frm++ = IEEE80211_ELEMID_DSPARMS;
3126 		*frm++ = 1;
3127 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
3128 	}
3129 	if (ic->ic_flags & IEEE80211_F_PCF) {
3130 		bo->bo_cfp = frm;
3131 		frm = ieee80211_add_cfparms(frm, ic);
3132 	}
3133 	bo->bo_tim = frm;
3134 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
3135 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
3136 		*frm++ = 2;
3137 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
3138 		bo->bo_tim_len = 0;
3139 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3140 	    vap->iv_opmode == IEEE80211_M_MBSS) {
3141 		/* TIM IE is the same for Mesh and Hostap */
3142 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
3143 
3144 		tie->tim_ie = IEEE80211_ELEMID_TIM;
3145 		tie->tim_len = 4;	/* length */
3146 		tie->tim_count = 0;	/* DTIM count */
3147 		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
3148 		tie->tim_bitctl = 0;	/* bitmap control */
3149 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
3150 		frm += sizeof(struct ieee80211_tim_ie);
3151 		bo->bo_tim_len = 1;
3152 	}
3153 	bo->bo_tim_trailer = frm;
3154 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3155 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3156 		frm = ieee80211_add_countryie(frm, ic);
3157 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3158 		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
3159 			frm = ieee80211_add_powerconstraint(frm, vap);
3160 		bo->bo_csa = frm;
3161 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3162 			frm = ieee80211_add_csa(frm, vap);
3163 	} else
3164 		bo->bo_csa = frm;
3165 
3166 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3167 		bo->bo_quiet = frm;
3168 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3169 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
3170 			if (vap->iv_quiet)
3171 				frm = ieee80211_add_quiet(frm,vap, 0);
3172 		}
3173 	} else
3174 		bo->bo_quiet = frm;
3175 
3176 	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
3177 		bo->bo_erp = frm;
3178 		frm = ieee80211_add_erp(frm, ic);
3179 	}
3180 	frm = ieee80211_add_xrates(frm, rs);
3181 	frm = ieee80211_add_rsn(frm, vap);
3182 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
3183 		frm = ieee80211_add_htcap(frm, ni);
3184 		bo->bo_htinfo = frm;
3185 		frm = ieee80211_add_htinfo(frm, ni);
3186 	}
3187 
3188 	if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) {
3189 		frm = ieee80211_add_vhtcap(frm, ni);
3190 		bo->bo_vhtinfo = frm;
3191 		frm = ieee80211_add_vhtinfo(frm, ni);
3192 		/* Transmit power envelope */
3193 		/* Channel switch wrapper element */
3194 		/* Extended bss load element */
3195 	}
3196 
3197 	frm = ieee80211_add_wpa(frm, vap);
3198 	if (vap->iv_flags & IEEE80211_F_WME) {
3199 		bo->bo_wme = frm;
3200 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
3201 	}
3202 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
3203 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
3204 		frm = ieee80211_add_htcap_vendor(frm, ni);
3205 		frm = ieee80211_add_htinfo_vendor(frm, ni);
3206 	}
3207 
3208 #ifdef IEEE80211_SUPPORT_SUPERG
3209 	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
3210 		bo->bo_ath = frm;
3211 		frm = ieee80211_add_athcaps(frm, ni);
3212 	}
3213 #endif
3214 #ifdef IEEE80211_SUPPORT_TDMA
3215 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3216 		bo->bo_tdma = frm;
3217 		frm = ieee80211_add_tdma(frm, vap);
3218 	}
3219 #endif
3220 	if (vap->iv_appie_beacon != NULL) {
3221 		bo->bo_appie = frm;
3222 		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
3223 		frm = add_appie(frm, vap->iv_appie_beacon);
3224 	}
3225 
3226 	/* XXX TODO: move meshid/meshconf up to before vendor extensions? */
3227 #ifdef IEEE80211_SUPPORT_MESH
3228 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3229 		frm = ieee80211_add_meshid(frm, vap);
3230 		bo->bo_meshconf = frm;
3231 		frm = ieee80211_add_meshconf(frm, vap);
3232 	}
3233 #endif
3234 	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
3235 	bo->bo_csa_trailer_len = frm - bo->bo_csa;
3236 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3237 }
3238 
3239 /*
3240  * Allocate a beacon frame and fillin the appropriate bits.
3241  */
3242 /* XXX VHT? */
3243 struct mbuf *
3244 ieee80211_beacon_alloc(struct ieee80211_node *ni)
3245 {
3246 	struct ieee80211vap *vap = ni->ni_vap;
3247 	struct ieee80211com *ic = ni->ni_ic;
3248 	struct ifnet *ifp = vap->iv_ifp;
3249 	struct ieee80211_frame *wh;
3250 	struct mbuf *m;
3251 	int pktlen;
3252 	uint8_t *frm;
3253 
3254 	/*
3255 	 * beacon frame format
3256 	 *
3257 	 * Note: This needs updating for 802.11-2012.
3258 	 *
3259 	 *	[8] time stamp
3260 	 *	[2] beacon interval
3261 	 *	[2] cabability information
3262 	 *	[tlv] ssid
3263 	 *	[tlv] supported rates
3264 	 *	[3] parameter set (DS)
3265 	 *	[8] CF parameter set (optional)
3266 	 *	[tlv] parameter set (IBSS/TIM)
3267 	 *	[tlv] country (optional)
3268 	 *	[3] power control (optional)
3269 	 *	[5] channel switch announcement (CSA) (optional)
3270 	 *	[tlv] extended rate phy (ERP)
3271 	 *	[tlv] extended supported rates
3272 	 *	[tlv] RSN parameters
3273 	 *	[tlv] HT capabilities
3274 	 *	[tlv] HT information
3275 	 *	[tlv] VHT capabilities
3276 	 *	[tlv] VHT operation
3277 	 *	[tlv] Vendor OUI HT capabilities (optional)
3278 	 *	[tlv] Vendor OUI HT information (optional)
3279 	 * XXX Vendor-specific OIDs (e.g. Atheros)
3280 	 *	[tlv] WPA parameters
3281 	 *	[tlv] WME parameters
3282 	 *	[tlv] TDMA parameters (optional)
3283 	 *	[tlv] Mesh ID (MBSS)
3284 	 *	[tlv] Mesh Conf (MBSS)
3285 	 *	[tlv] application data (optional)
3286 	 * NB: we allocate the max space required for the TIM bitmap.
3287 	 * XXX how big is this?
3288 	 */
3289 	/* XXX VHT? */
3290 	pktlen =   8					/* time stamp */
3291 		 + sizeof(uint16_t)			/* beacon interval */
3292 		 + sizeof(uint16_t)			/* capabilities */
3293 		 + 2 + ni->ni_esslen			/* ssid */
3294 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
3295 	         + 2 + 1				/* DS parameters */
3296 		 + 2 + 6				/* CF parameters */
3297 		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
3298 		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
3299 		 + 2 + 1				/* power control */
3300 		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
3301 		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
3302 		 + 2 + 1				/* ERP */
3303 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3304 		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
3305 			2*sizeof(struct ieee80211_ie_wpa) : 0)
3306 		 /* XXX conditional? */
3307 		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3308 		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3309 		 + sizeof(struct ieee80211_ie_vhtcap)/* VHT caps */
3310 		 + sizeof(struct ieee80211_ie_vht_operation)/* VHT info */
3311 		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
3312 			sizeof(struct ieee80211_wme_param) : 0)
3313 #ifdef IEEE80211_SUPPORT_SUPERG
3314 		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
3315 #endif
3316 #ifdef IEEE80211_SUPPORT_TDMA
3317 		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
3318 			sizeof(struct ieee80211_tdma_param) : 0)
3319 #endif
3320 #ifdef IEEE80211_SUPPORT_MESH
3321 		 + 2 + ni->ni_meshidlen
3322 		 + sizeof(struct ieee80211_meshconf_ie)
3323 #endif
3324 		 + IEEE80211_MAX_APPIE
3325 		 ;
3326 	m = ieee80211_getmgtframe(&frm,
3327 		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3328 	if (m == NULL) {
3329 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3330 			"%s: cannot get buf; size %u\n", __func__, pktlen);
3331 		vap->iv_stats.is_tx_nobuf++;
3332 		return NULL;
3333 	}
3334 	ieee80211_beacon_construct(m, frm, ni);
3335 
3336 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
3337 	KASSERT(m != NULL, ("no space for 802.11 header?"));
3338 	wh = mtod(m, struct ieee80211_frame *);
3339 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3340 	    IEEE80211_FC0_SUBTYPE_BEACON;
3341 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3342 	*(uint16_t *)wh->i_dur = 0;
3343 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3344 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3345 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3346 	*(uint16_t *)wh->i_seq = 0;
3347 
3348 	return m;
3349 }
3350 
3351 /*
3352  * Update the dynamic parts of a beacon frame based on the current state.
3353  */
3354 int
3355 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast)
3356 {
3357 	struct ieee80211vap *vap = ni->ni_vap;
3358 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3359 	struct ieee80211com *ic = ni->ni_ic;
3360 	int len_changed = 0;
3361 	uint16_t capinfo;
3362 	struct ieee80211_frame *wh;
3363 	ieee80211_seq seqno;
3364 
3365 	IEEE80211_LOCK(ic);
3366 	/*
3367 	 * Handle 11h channel change when we've reached the count.
3368 	 * We must recalculate the beacon frame contents to account
3369 	 * for the new channel.  Note we do this only for the first
3370 	 * vap that reaches this point; subsequent vaps just update
3371 	 * their beacon state to reflect the recalculated channel.
3372 	 */
3373 	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3374 	    vap->iv_csa_count == ic->ic_csa_count) {
3375 		vap->iv_csa_count = 0;
3376 		/*
3377 		 * Effect channel change before reconstructing the beacon
3378 		 * frame contents as many places reference ni_chan.
3379 		 */
3380 		if (ic->ic_csa_newchan != NULL)
3381 			ieee80211_csa_completeswitch(ic);
3382 		/*
3383 		 * NB: ieee80211_beacon_construct clears all pending
3384 		 * updates in bo_flags so we don't need to explicitly
3385 		 * clear IEEE80211_BEACON_CSA.
3386 		 */
3387 		ieee80211_beacon_construct(m,
3388 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3389 
3390 		/* XXX do WME aggressive mode processing? */
3391 		IEEE80211_UNLOCK(ic);
3392 		return 1;		/* just assume length changed */
3393 	}
3394 
3395 	wh = mtod(m, struct ieee80211_frame *);
3396 
3397 	/*
3398 	 * XXX TODO Strictly speaking this should be incremented with the TX
3399 	 * lock held so as to serialise access to the non-qos TID sequence
3400 	 * number space.
3401 	 *
3402 	 * If the driver identifies it does its own TX seqno management then
3403 	 * we can skip this (and still not do the TX seqno.)
3404 	 */
3405 	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3406 	*(uint16_t *)&wh->i_seq[0] =
3407 		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3408 	M_SEQNO_SET(m, seqno);
3409 
3410 	/* XXX faster to recalculate entirely or just changes? */
3411 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3412 	*bo->bo_caps = htole16(capinfo);
3413 
3414 	if (vap->iv_flags & IEEE80211_F_WME) {
3415 		struct ieee80211_wme_state *wme = &ic->ic_wme;
3416 
3417 		/*
3418 		 * Check for aggressive mode change.  When there is
3419 		 * significant high priority traffic in the BSS
3420 		 * throttle back BE traffic by using conservative
3421 		 * parameters.  Otherwise BE uses aggressive params
3422 		 * to optimize performance of legacy/non-QoS traffic.
3423 		 */
3424 		if (wme->wme_flags & WME_F_AGGRMODE) {
3425 			if (wme->wme_hipri_traffic >
3426 			    wme->wme_hipri_switch_thresh) {
3427 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3428 				    "%s: traffic %u, disable aggressive mode\n",
3429 				    __func__, wme->wme_hipri_traffic);
3430 				wme->wme_flags &= ~WME_F_AGGRMODE;
3431 				ieee80211_wme_updateparams_locked(vap);
3432 				wme->wme_hipri_traffic =
3433 					wme->wme_hipri_switch_hysteresis;
3434 			} else
3435 				wme->wme_hipri_traffic = 0;
3436 		} else {
3437 			if (wme->wme_hipri_traffic <=
3438 			    wme->wme_hipri_switch_thresh) {
3439 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3440 				    "%s: traffic %u, enable aggressive mode\n",
3441 				    __func__, wme->wme_hipri_traffic);
3442 				wme->wme_flags |= WME_F_AGGRMODE;
3443 				ieee80211_wme_updateparams_locked(vap);
3444 				wme->wme_hipri_traffic = 0;
3445 			} else
3446 				wme->wme_hipri_traffic =
3447 					wme->wme_hipri_switch_hysteresis;
3448 		}
3449 		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3450 			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
3451 			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3452 		}
3453 	}
3454 
3455 	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
3456 		ieee80211_ht_update_beacon(vap, bo);
3457 		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3458 	}
3459 #ifdef IEEE80211_SUPPORT_TDMA
3460 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3461 		/*
3462 		 * NB: the beacon is potentially updated every TBTT.
3463 		 */
3464 		ieee80211_tdma_update_beacon(vap, bo);
3465 	}
3466 #endif
3467 #ifdef IEEE80211_SUPPORT_MESH
3468 	if (vap->iv_opmode == IEEE80211_M_MBSS)
3469 		ieee80211_mesh_update_beacon(vap, bo);
3470 #endif
3471 
3472 	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3473 	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
3474 		struct ieee80211_tim_ie *tie =
3475 			(struct ieee80211_tim_ie *) bo->bo_tim;
3476 		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3477 			u_int timlen, timoff, i;
3478 			/*
3479 			 * ATIM/DTIM needs updating.  If it fits in the
3480 			 * current space allocated then just copy in the
3481 			 * new bits.  Otherwise we need to move any trailing
3482 			 * data to make room.  Note that we know there is
3483 			 * contiguous space because ieee80211_beacon_allocate
3484 			 * insures there is space in the mbuf to write a
3485 			 * maximal-size virtual bitmap (based on iv_max_aid).
3486 			 */
3487 			/*
3488 			 * Calculate the bitmap size and offset, copy any
3489 			 * trailer out of the way, and then copy in the
3490 			 * new bitmap and update the information element.
3491 			 * Note that the tim bitmap must contain at least
3492 			 * one byte and any offset must be even.
3493 			 */
3494 			if (vap->iv_ps_pending != 0) {
3495 				timoff = 128;		/* impossibly large */
3496 				for (i = 0; i < vap->iv_tim_len; i++)
3497 					if (vap->iv_tim_bitmap[i]) {
3498 						timoff = i &~ 1;
3499 						break;
3500 					}
3501 				KASSERT(timoff != 128, ("tim bitmap empty!"));
3502 				for (i = vap->iv_tim_len-1; i >= timoff; i--)
3503 					if (vap->iv_tim_bitmap[i])
3504 						break;
3505 				timlen = 1 + (i - timoff);
3506 			} else {
3507 				timoff = 0;
3508 				timlen = 1;
3509 			}
3510 
3511 			/*
3512 			 * TODO: validate this!
3513 			 */
3514 			if (timlen != bo->bo_tim_len) {
3515 				/* copy up/down trailer */
3516 				int adjust = tie->tim_bitmap+timlen
3517 					   - bo->bo_tim_trailer;
3518 				ovbcopy(bo->bo_tim_trailer,
3519 				    bo->bo_tim_trailer+adjust,
3520 				    bo->bo_tim_trailer_len);
3521 				bo->bo_tim_trailer += adjust;
3522 				bo->bo_erp += adjust;
3523 				bo->bo_htinfo += adjust;
3524 				bo->bo_vhtinfo += adjust;
3525 #ifdef IEEE80211_SUPPORT_SUPERG
3526 				bo->bo_ath += adjust;
3527 #endif
3528 #ifdef IEEE80211_SUPPORT_TDMA
3529 				bo->bo_tdma += adjust;
3530 #endif
3531 #ifdef IEEE80211_SUPPORT_MESH
3532 				bo->bo_meshconf += adjust;
3533 #endif
3534 				bo->bo_appie += adjust;
3535 				bo->bo_wme += adjust;
3536 				bo->bo_csa += adjust;
3537 				bo->bo_quiet += adjust;
3538 				bo->bo_tim_len = timlen;
3539 
3540 				/* update information element */
3541 				tie->tim_len = 3 + timlen;
3542 				tie->tim_bitctl = timoff;
3543 				len_changed = 1;
3544 			}
3545 			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
3546 				bo->bo_tim_len);
3547 
3548 			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
3549 
3550 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
3551 				"%s: TIM updated, pending %u, off %u, len %u\n",
3552 				__func__, vap->iv_ps_pending, timoff, timlen);
3553 		}
3554 		/* count down DTIM period */
3555 		if (tie->tim_count == 0)
3556 			tie->tim_count = tie->tim_period - 1;
3557 		else
3558 			tie->tim_count--;
3559 		/* update state for buffered multicast frames on DTIM */
3560 		if (mcast && tie->tim_count == 0)
3561 			tie->tim_bitctl |= 1;
3562 		else
3563 			tie->tim_bitctl &= ~1;
3564 		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
3565 			struct ieee80211_csa_ie *csa =
3566 			    (struct ieee80211_csa_ie *) bo->bo_csa;
3567 
3568 			/*
3569 			 * Insert or update CSA ie.  If we're just starting
3570 			 * to count down to the channel switch then we need
3571 			 * to insert the CSA ie.  Otherwise we just need to
3572 			 * drop the count.  The actual change happens above
3573 			 * when the vap's count reaches the target count.
3574 			 */
3575 			if (vap->iv_csa_count == 0) {
3576 				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
3577 				bo->bo_erp += sizeof(*csa);
3578 				bo->bo_htinfo += sizeof(*csa);
3579 				bo->bo_vhtinfo += sizeof(*csa);
3580 				bo->bo_wme += sizeof(*csa);
3581 #ifdef IEEE80211_SUPPORT_SUPERG
3582 				bo->bo_ath += sizeof(*csa);
3583 #endif
3584 #ifdef IEEE80211_SUPPORT_TDMA
3585 				bo->bo_tdma += sizeof(*csa);
3586 #endif
3587 #ifdef IEEE80211_SUPPORT_MESH
3588 				bo->bo_meshconf += sizeof(*csa);
3589 #endif
3590 				bo->bo_appie += sizeof(*csa);
3591 				bo->bo_csa_trailer_len += sizeof(*csa);
3592 				bo->bo_quiet += sizeof(*csa);
3593 				bo->bo_tim_trailer_len += sizeof(*csa);
3594 				m->m_len += sizeof(*csa);
3595 				m->m_pkthdr.len += sizeof(*csa);
3596 
3597 				ieee80211_add_csa(bo->bo_csa, vap);
3598 			} else
3599 				csa->csa_count--;
3600 			vap->iv_csa_count++;
3601 			/* NB: don't clear IEEE80211_BEACON_CSA */
3602 		}
3603 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3604 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){
3605 			if (vap->iv_quiet)
3606 				ieee80211_add_quiet(bo->bo_quiet, vap, 1);
3607 		}
3608 		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3609 			/*
3610 			 * ERP element needs updating.
3611 			 */
3612 			(void) ieee80211_add_erp(bo->bo_erp, ic);
3613 			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3614 		}
3615 #ifdef IEEE80211_SUPPORT_SUPERG
3616 		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
3617 			ieee80211_add_athcaps(bo->bo_ath, ni);
3618 			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3619 		}
3620 #endif
3621 	}
3622 	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3623 		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3624 		int aielen;
3625 		uint8_t *frm;
3626 
3627 		aielen = 0;
3628 		if (aie != NULL)
3629 			aielen += aie->ie_len;
3630 		if (aielen != bo->bo_appie_len) {
3631 			/* copy up/down trailer */
3632 			int adjust = aielen - bo->bo_appie_len;
3633 			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3634 				bo->bo_tim_trailer_len);
3635 			bo->bo_tim_trailer += adjust;
3636 			bo->bo_appie += adjust;
3637 			bo->bo_appie_len = aielen;
3638 
3639 			len_changed = 1;
3640 		}
3641 		frm = bo->bo_appie;
3642 		if (aie != NULL)
3643 			frm  = add_appie(frm, aie);
3644 		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3645 	}
3646 	IEEE80211_UNLOCK(ic);
3647 
3648 	return len_changed;
3649 }
3650 
3651 /*
3652  * Do Ethernet-LLC encapsulation for each payload in a fast frame
3653  * tunnel encapsulation.  The frame is assumed to have an Ethernet
3654  * header at the front that must be stripped before prepending the
3655  * LLC followed by the Ethernet header passed in (with an Ethernet
3656  * type that specifies the payload size).
3657  */
3658 struct mbuf *
3659 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
3660 	const struct ether_header *eh)
3661 {
3662 	struct llc *llc;
3663 	uint16_t payload;
3664 
3665 	/* XXX optimize by combining m_adj+M_PREPEND */
3666 	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
3667 	llc = mtod(m, struct llc *);
3668 	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
3669 	llc->llc_control = LLC_UI;
3670 	llc->llc_snap.org_code[0] = 0;
3671 	llc->llc_snap.org_code[1] = 0;
3672 	llc->llc_snap.org_code[2] = 0;
3673 	llc->llc_snap.ether_type = eh->ether_type;
3674 	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
3675 
3676 	M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
3677 	if (m == NULL) {		/* XXX cannot happen */
3678 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
3679 			"%s: no space for ether_header\n", __func__);
3680 		vap->iv_stats.is_tx_nobuf++;
3681 		return NULL;
3682 	}
3683 	ETHER_HEADER_COPY(mtod(m, void *), eh);
3684 	mtod(m, struct ether_header *)->ether_type = htons(payload);
3685 	return m;
3686 }
3687 
3688 /*
3689  * Complete an mbuf transmission.
3690  *
3691  * For now, this simply processes a completed frame after the
3692  * driver has completed it's transmission and/or retransmission.
3693  * It assumes the frame is an 802.11 encapsulated frame.
3694  *
3695  * Later on it will grow to become the exit path for a given frame
3696  * from the driver and, depending upon how it's been encapsulated
3697  * and already transmitted, it may end up doing A-MPDU retransmission,
3698  * power save requeuing, etc.
3699  *
3700  * In order for the above to work, the driver entry point to this
3701  * must not hold any driver locks.  Thus, the driver needs to delay
3702  * any actual mbuf completion until it can release said locks.
3703  *
3704  * This frees the mbuf and if the mbuf has a node reference,
3705  * the node reference will be freed.
3706  */
3707 void
3708 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
3709 {
3710 
3711 	if (ni != NULL) {
3712 		struct ifnet *ifp = ni->ni_vap->iv_ifp;
3713 
3714 		if (status == 0) {
3715 			if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
3716 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3717 			if (m->m_flags & M_MCAST)
3718 				if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
3719 		} else
3720 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3721 		if (m->m_flags & M_TXCB)
3722 			ieee80211_process_callback(ni, m, status);
3723 		ieee80211_free_node(ni);
3724 	}
3725 	m_freem(m);
3726 }
3727