xref: /freebsd/sys/net80211/ieee80211_output.c (revision a321cc5dc908a14d42e57e2468923937f18c21fc)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_wlan.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/malloc.h>
38 #include <sys/mbuf.h>
39 #include <sys/endian.h>
40 
41 #include <sys/socket.h>
42 
43 #include <net/bpf.h>
44 #include <net/ethernet.h>
45 #include <net/if.h>
46 #include <net/if_var.h>
47 #include <net/if_llc.h>
48 #include <net/if_media.h>
49 #include <net/if_vlan_var.h>
50 
51 #include <net80211/ieee80211_var.h>
52 #include <net80211/ieee80211_regdomain.h>
53 #ifdef IEEE80211_SUPPORT_SUPERG
54 #include <net80211/ieee80211_superg.h>
55 #endif
56 #ifdef IEEE80211_SUPPORT_TDMA
57 #include <net80211/ieee80211_tdma.h>
58 #endif
59 #include <net80211/ieee80211_wds.h>
60 #include <net80211/ieee80211_mesh.h>
61 
62 #if defined(INET) || defined(INET6)
63 #include <netinet/in.h>
64 #endif
65 
66 #ifdef INET
67 #include <netinet/if_ether.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/ip.h>
70 #endif
71 #ifdef INET6
72 #include <netinet/ip6.h>
73 #endif
74 
75 #include <security/mac/mac_framework.h>
76 
77 #define	ETHER_HEADER_COPY(dst, src) \
78 	memcpy(dst, src, sizeof(struct ether_header))
79 
80 /* unalligned little endian access */
81 #define LE_WRITE_2(p, v) do {				\
82 	((uint8_t *)(p))[0] = (v) & 0xff;		\
83 	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
84 } while (0)
85 #define LE_WRITE_4(p, v) do {				\
86 	((uint8_t *)(p))[0] = (v) & 0xff;		\
87 	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
88 	((uint8_t *)(p))[2] = ((v) >> 16) & 0xff;	\
89 	((uint8_t *)(p))[3] = ((v) >> 24) & 0xff;	\
90 } while (0)
91 
92 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
93 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
94 static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
95 
96 #ifdef IEEE80211_DEBUG
97 /*
98  * Decide if an outbound management frame should be
99  * printed when debugging is enabled.  This filters some
100  * of the less interesting frames that come frequently
101  * (e.g. beacons).
102  */
103 static __inline int
104 doprint(struct ieee80211vap *vap, int subtype)
105 {
106 	switch (subtype) {
107 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
108 		return (vap->iv_opmode == IEEE80211_M_IBSS);
109 	}
110 	return 1;
111 }
112 #endif
113 
114 /*
115  * Transmit a frame to the given destination on the given VAP.
116  *
117  * It's up to the caller to figure out the details of who this
118  * is going to and resolving the node.
119  *
120  * This routine takes care of queuing it for power save,
121  * A-MPDU state stuff, fast-frames state stuff, encapsulation
122  * if required, then passing it up to the driver layer.
123  *
124  * This routine (for now) consumes the mbuf and frees the node
125  * reference; it ideally will return a TX status which reflects
126  * whether the mbuf was consumed or not, so the caller can
127  * free the mbuf (if appropriate) and the node reference (again,
128  * if appropriate.)
129  */
130 int
131 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
132     struct ieee80211_node *ni)
133 {
134 	struct ieee80211com *ic = vap->iv_ic;
135 	struct ifnet *ifp = vap->iv_ifp;
136 	int len, mcast;
137 
138 	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
139 	    (m->m_flags & M_PWR_SAV) == 0) {
140 		/*
141 		 * Station in power save mode; pass the frame
142 		 * to the 802.11 layer and continue.  We'll get
143 		 * the frame back when the time is right.
144 		 * XXX lose WDS vap linkage?
145 		 */
146 		if (ieee80211_pwrsave(ni, m) != 0)
147 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
148 		ieee80211_free_node(ni);
149 
150 		/*
151 		 * We queued it fine, so tell the upper layer
152 		 * that we consumed it.
153 		 */
154 		return (0);
155 	}
156 	/* calculate priority so drivers can find the tx queue */
157 	if (ieee80211_classify(ni, m)) {
158 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
159 		    ni->ni_macaddr, NULL,
160 		    "%s", "classification failure");
161 		vap->iv_stats.is_tx_classify++;
162 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
163 		m_freem(m);
164 		ieee80211_free_node(ni);
165 
166 		/* XXX better status? */
167 		return (0);
168 	}
169 	/*
170 	 * Stash the node pointer.  Note that we do this after
171 	 * any call to ieee80211_dwds_mcast because that code
172 	 * uses any existing value for rcvif to identify the
173 	 * interface it (might have been) received on.
174 	 */
175 	m->m_pkthdr.rcvif = (void *)ni;
176 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
177 	len = m->m_pkthdr.len;
178 
179 	BPF_MTAP(ifp, m);		/* 802.3 tx */
180 
181 	/*
182 	 * Check if A-MPDU tx aggregation is setup or if we
183 	 * should try to enable it.  The sta must be associated
184 	 * with HT and A-MPDU enabled for use.  When the policy
185 	 * routine decides we should enable A-MPDU we issue an
186 	 * ADDBA request and wait for a reply.  The frame being
187 	 * encapsulated will go out w/o using A-MPDU, or possibly
188 	 * it might be collected by the driver and held/retransmit.
189 	 * The default ic_ampdu_enable routine handles staggering
190 	 * ADDBA requests in case the receiver NAK's us or we are
191 	 * otherwise unable to establish a BA stream.
192 	 */
193 	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
194 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)) {
195 		if ((m->m_flags & M_EAPOL) == 0) {
196 			int tid = WME_AC_TO_TID(M_WME_GETAC(m));
197 			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
198 
199 			ieee80211_txampdu_count_packet(tap);
200 			if (IEEE80211_AMPDU_RUNNING(tap)) {
201 				/*
202 				 * Operational, mark frame for aggregation.
203 				 *
204 				 * XXX do tx aggregation here
205 				 */
206 				m->m_flags |= M_AMPDU_MPDU;
207 			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
208 			    ic->ic_ampdu_enable(ni, tap)) {
209 				/*
210 				 * Not negotiated yet, request service.
211 				 */
212 				ieee80211_ampdu_request(ni, tap);
213 				/* XXX hold frame for reply? */
214 			}
215 		}
216 	}
217 
218 #ifdef IEEE80211_SUPPORT_SUPERG
219 	/*
220 	 * Check for AMSDU/FF; queue for aggregation
221 	 *
222 	 * Note: we don't bother trying to do fast frames or
223 	 * A-MSDU encapsulation for 802.3 drivers.  Now, we
224 	 * likely could do it for FF (because it's a magic
225 	 * atheros tunnel LLC type) but I don't think we're going
226 	 * to really need to.  For A-MSDU we'd have to set the
227 	 * A-MSDU QoS bit in the wifi header, so we just plain
228 	 * can't do it.
229 	 *
230 	 * Strictly speaking, we could actually /do/ A-MSDU / FF
231 	 * with A-MPDU together which for certain circumstances
232 	 * is beneficial (eg A-MSDU of TCK ACKs.)  However,
233 	 * I'll ignore that for now so existing behaviour is maintained.
234 	 * Later on it would be good to make "amsdu + ampdu" configurable.
235 	 */
236 	else if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
237 		if ((! mcast) && ieee80211_amsdu_tx_ok(ni)) {
238 			m = ieee80211_amsdu_check(ni, m);
239 			if (m == NULL) {
240 				/* NB: any ni ref held on stageq */
241 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
242 				    "%s: amsdu_check queued frame\n",
243 				    __func__);
244 				return (0);
245 			}
246 		} else if ((! mcast) && IEEE80211_ATH_CAP(vap, ni,
247 		    IEEE80211_NODE_FF)) {
248 			m = ieee80211_ff_check(ni, m);
249 			if (m == NULL) {
250 				/* NB: any ni ref held on stageq */
251 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
252 				    "%s: ff_check queued frame\n",
253 				    __func__);
254 				return (0);
255 			}
256 		}
257 	}
258 #endif /* IEEE80211_SUPPORT_SUPERG */
259 
260 	/*
261 	 * Grab the TX lock - serialise the TX process from this
262 	 * point (where TX state is being checked/modified)
263 	 * through to driver queue.
264 	 */
265 	IEEE80211_TX_LOCK(ic);
266 
267 	/*
268 	 * XXX make the encap and transmit code a separate function
269 	 * so things like the FF (and later A-MSDU) path can just call
270 	 * it for flushed frames.
271 	 */
272 	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
273 		/*
274 		 * Encapsulate the packet in prep for transmission.
275 		 */
276 		m = ieee80211_encap(vap, ni, m);
277 		if (m == NULL) {
278 			/* NB: stat+msg handled in ieee80211_encap */
279 			IEEE80211_TX_UNLOCK(ic);
280 			ieee80211_free_node(ni);
281 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
282 			return (ENOBUFS);
283 		}
284 	}
285 	(void) ieee80211_parent_xmitpkt(ic, m);
286 
287 	/*
288 	 * Unlock at this point - no need to hold it across
289 	 * ieee80211_free_node() (ie, the comlock)
290 	 */
291 	IEEE80211_TX_UNLOCK(ic);
292 	ic->ic_lastdata = ticks;
293 
294 	return (0);
295 }
296 
297 
298 
299 /*
300  * Send the given mbuf through the given vap.
301  *
302  * This consumes the mbuf regardless of whether the transmit
303  * was successful or not.
304  *
305  * This does none of the initial checks that ieee80211_start()
306  * does (eg CAC timeout, interface wakeup) - the caller must
307  * do this first.
308  */
309 static int
310 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
311 {
312 #define	IS_DWDS(vap) \
313 	(vap->iv_opmode == IEEE80211_M_WDS && \
314 	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
315 	struct ieee80211com *ic = vap->iv_ic;
316 	struct ifnet *ifp = vap->iv_ifp;
317 	struct ieee80211_node *ni;
318 	struct ether_header *eh;
319 
320 	/*
321 	 * Cancel any background scan.
322 	 */
323 	if (ic->ic_flags & IEEE80211_F_SCAN)
324 		ieee80211_cancel_anyscan(vap);
325 	/*
326 	 * Find the node for the destination so we can do
327 	 * things like power save and fast frames aggregation.
328 	 *
329 	 * NB: past this point various code assumes the first
330 	 *     mbuf has the 802.3 header present (and contiguous).
331 	 */
332 	ni = NULL;
333 	if (m->m_len < sizeof(struct ether_header) &&
334 	   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
335 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
336 		    "discard frame, %s\n", "m_pullup failed");
337 		vap->iv_stats.is_tx_nobuf++;	/* XXX */
338 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
339 		return (ENOBUFS);
340 	}
341 	eh = mtod(m, struct ether_header *);
342 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
343 		if (IS_DWDS(vap)) {
344 			/*
345 			 * Only unicast frames from the above go out
346 			 * DWDS vaps; multicast frames are handled by
347 			 * dispatching the frame as it comes through
348 			 * the AP vap (see below).
349 			 */
350 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
351 			    eh->ether_dhost, "mcast", "%s", "on DWDS");
352 			vap->iv_stats.is_dwds_mcast++;
353 			m_freem(m);
354 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
355 			/* XXX better status? */
356 			return (ENOBUFS);
357 		}
358 		if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
359 			/*
360 			 * Spam DWDS vap's w/ multicast traffic.
361 			 */
362 			/* XXX only if dwds in use? */
363 			ieee80211_dwds_mcast(vap, m);
364 		}
365 	}
366 #ifdef IEEE80211_SUPPORT_MESH
367 	if (vap->iv_opmode != IEEE80211_M_MBSS) {
368 #endif
369 		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
370 		if (ni == NULL) {
371 			/* NB: ieee80211_find_txnode does stat+msg */
372 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
373 			m_freem(m);
374 			/* XXX better status? */
375 			return (ENOBUFS);
376 		}
377 		if (ni->ni_associd == 0 &&
378 		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
379 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
380 			    eh->ether_dhost, NULL,
381 			    "sta not associated (type 0x%04x)",
382 			    htons(eh->ether_type));
383 			vap->iv_stats.is_tx_notassoc++;
384 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
385 			m_freem(m);
386 			ieee80211_free_node(ni);
387 			/* XXX better status? */
388 			return (ENOBUFS);
389 		}
390 #ifdef IEEE80211_SUPPORT_MESH
391 	} else {
392 		if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
393 			/*
394 			 * Proxy station only if configured.
395 			 */
396 			if (!ieee80211_mesh_isproxyena(vap)) {
397 				IEEE80211_DISCARD_MAC(vap,
398 				    IEEE80211_MSG_OUTPUT |
399 				    IEEE80211_MSG_MESH,
400 				    eh->ether_dhost, NULL,
401 				    "%s", "proxy not enabled");
402 				vap->iv_stats.is_mesh_notproxy++;
403 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
404 				m_freem(m);
405 				/* XXX better status? */
406 				return (ENOBUFS);
407 			}
408 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
409 			    "forward frame from DS SA(%6D), DA(%6D)\n",
410 			    eh->ether_shost, ":",
411 			    eh->ether_dhost, ":");
412 			ieee80211_mesh_proxy_check(vap, eh->ether_shost);
413 		}
414 		ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
415 		if (ni == NULL) {
416 			/*
417 			 * NB: ieee80211_mesh_discover holds/disposes
418 			 * frame (e.g. queueing on path discovery).
419 			 */
420 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
421 			/* XXX better status? */
422 			return (ENOBUFS);
423 		}
424 	}
425 #endif
426 
427 	/*
428 	 * We've resolved the sender, so attempt to transmit it.
429 	 */
430 
431 	if (vap->iv_state == IEEE80211_S_SLEEP) {
432 		/*
433 		 * In power save; queue frame and then  wakeup device
434 		 * for transmit.
435 		 */
436 		ic->ic_lastdata = ticks;
437 		if (ieee80211_pwrsave(ni, m) != 0)
438 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
439 		ieee80211_free_node(ni);
440 		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
441 		return (0);
442 	}
443 
444 	if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
445 		return (ENOBUFS);
446 	return (0);
447 #undef	IS_DWDS
448 }
449 
450 /*
451  * Start method for vap's.  All packets from the stack come
452  * through here.  We handle common processing of the packets
453  * before dispatching them to the underlying device.
454  *
455  * if_transmit() requires that the mbuf be consumed by this call
456  * regardless of the return condition.
457  */
458 int
459 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
460 {
461 	struct ieee80211vap *vap = ifp->if_softc;
462 	struct ieee80211com *ic = vap->iv_ic;
463 
464 	/*
465 	 * No data frames go out unless we're running.
466 	 * Note in particular this covers CAC and CSA
467 	 * states (though maybe we should check muting
468 	 * for CSA).
469 	 */
470 	if (vap->iv_state != IEEE80211_S_RUN &&
471 	    vap->iv_state != IEEE80211_S_SLEEP) {
472 		IEEE80211_LOCK(ic);
473 		/* re-check under the com lock to avoid races */
474 		if (vap->iv_state != IEEE80211_S_RUN &&
475 		    vap->iv_state != IEEE80211_S_SLEEP) {
476 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
477 			    "%s: ignore queue, in %s state\n",
478 			    __func__, ieee80211_state_name[vap->iv_state]);
479 			vap->iv_stats.is_tx_badstate++;
480 			IEEE80211_UNLOCK(ic);
481 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
482 			m_freem(m);
483 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
484 			return (ENETDOWN);
485 		}
486 		IEEE80211_UNLOCK(ic);
487 	}
488 
489 	/*
490 	 * Sanitize mbuf flags for net80211 use.  We cannot
491 	 * clear M_PWR_SAV or M_MORE_DATA because these may
492 	 * be set for frames that are re-submitted from the
493 	 * power save queue.
494 	 *
495 	 * NB: This must be done before ieee80211_classify as
496 	 *     it marks EAPOL in frames with M_EAPOL.
497 	 */
498 	m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
499 
500 	/*
501 	 * Bump to the packet transmission path.
502 	 * The mbuf will be consumed here.
503 	 */
504 	return (ieee80211_start_pkt(vap, m));
505 }
506 
507 void
508 ieee80211_vap_qflush(struct ifnet *ifp)
509 {
510 
511 	/* Empty for now */
512 }
513 
514 /*
515  * 802.11 raw output routine.
516  *
517  * XXX TODO: this (and other send routines) should correctly
518  * XXX keep the pwr mgmt bit set if it decides to call into the
519  * XXX driver to send a frame whilst the state is SLEEP.
520  *
521  * Otherwise the peer may decide that we're awake and flood us
522  * with traffic we are still too asleep to receive!
523  */
524 int
525 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
526     struct mbuf *m, const struct ieee80211_bpf_params *params)
527 {
528 	struct ieee80211com *ic = vap->iv_ic;
529 	int error;
530 
531 	/*
532 	 * Set node - the caller has taken a reference, so ensure
533 	 * that the mbuf has the same node value that
534 	 * it would if it were going via the normal path.
535 	 */
536 	m->m_pkthdr.rcvif = (void *)ni;
537 
538 	/*
539 	 * Attempt to add bpf transmit parameters.
540 	 *
541 	 * For now it's ok to fail; the raw_xmit api still takes
542 	 * them as an option.
543 	 *
544 	 * Later on when ic_raw_xmit() has params removed,
545 	 * they'll have to be added - so fail the transmit if
546 	 * they can't be.
547 	 */
548 	if (params)
549 		(void) ieee80211_add_xmit_params(m, params);
550 
551 	error = ic->ic_raw_xmit(ni, m, params);
552 	if (error) {
553 		if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
554 		ieee80211_free_node(ni);
555 	}
556 	return (error);
557 }
558 
559 /*
560  * 802.11 output routine. This is (currently) used only to
561  * connect bpf write calls to the 802.11 layer for injecting
562  * raw 802.11 frames.
563  */
564 int
565 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
566 	const struct sockaddr *dst, struct route *ro)
567 {
568 #define senderr(e) do { error = (e); goto bad;} while (0)
569 	struct ieee80211_node *ni = NULL;
570 	struct ieee80211vap *vap;
571 	struct ieee80211_frame *wh;
572 	struct ieee80211com *ic = NULL;
573 	int error;
574 	int ret;
575 
576 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
577 		/*
578 		 * Short-circuit requests if the vap is marked OACTIVE
579 		 * as this can happen because a packet came down through
580 		 * ieee80211_start before the vap entered RUN state in
581 		 * which case it's ok to just drop the frame.  This
582 		 * should not be necessary but callers of if_output don't
583 		 * check OACTIVE.
584 		 */
585 		senderr(ENETDOWN);
586 	}
587 	vap = ifp->if_softc;
588 	ic = vap->iv_ic;
589 	/*
590 	 * Hand to the 802.3 code if not tagged as
591 	 * a raw 802.11 frame.
592 	 */
593 	if (dst->sa_family != AF_IEEE80211)
594 		return vap->iv_output(ifp, m, dst, ro);
595 #ifdef MAC
596 	error = mac_ifnet_check_transmit(ifp, m);
597 	if (error)
598 		senderr(error);
599 #endif
600 	if (ifp->if_flags & IFF_MONITOR)
601 		senderr(ENETDOWN);
602 	if (!IFNET_IS_UP_RUNNING(ifp))
603 		senderr(ENETDOWN);
604 	if (vap->iv_state == IEEE80211_S_CAC) {
605 		IEEE80211_DPRINTF(vap,
606 		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
607 		    "block %s frame in CAC state\n", "raw data");
608 		vap->iv_stats.is_tx_badstate++;
609 		senderr(EIO);		/* XXX */
610 	} else if (vap->iv_state == IEEE80211_S_SCAN)
611 		senderr(EIO);
612 	/* XXX bypass bridge, pfil, carp, etc. */
613 
614 	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
615 		senderr(EIO);	/* XXX */
616 	wh = mtod(m, struct ieee80211_frame *);
617 	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
618 	    IEEE80211_FC0_VERSION_0)
619 		senderr(EIO);	/* XXX */
620 
621 	/* locate destination node */
622 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
623 	case IEEE80211_FC1_DIR_NODS:
624 	case IEEE80211_FC1_DIR_FROMDS:
625 		ni = ieee80211_find_txnode(vap, wh->i_addr1);
626 		break;
627 	case IEEE80211_FC1_DIR_TODS:
628 	case IEEE80211_FC1_DIR_DSTODS:
629 		if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
630 			senderr(EIO);	/* XXX */
631 		ni = ieee80211_find_txnode(vap, wh->i_addr3);
632 		break;
633 	default:
634 		senderr(EIO);	/* XXX */
635 	}
636 	if (ni == NULL) {
637 		/*
638 		 * Permit packets w/ bpf params through regardless
639 		 * (see below about sa_len).
640 		 */
641 		if (dst->sa_len == 0)
642 			senderr(EHOSTUNREACH);
643 		ni = ieee80211_ref_node(vap->iv_bss);
644 	}
645 
646 	/*
647 	 * Sanitize mbuf for net80211 flags leaked from above.
648 	 *
649 	 * NB: This must be done before ieee80211_classify as
650 	 *     it marks EAPOL in frames with M_EAPOL.
651 	 */
652 	m->m_flags &= ~M_80211_TX;
653 
654 	/* calculate priority so drivers can find the tx queue */
655 	/* XXX assumes an 802.3 frame */
656 	if (ieee80211_classify(ni, m))
657 		senderr(EIO);		/* XXX */
658 
659 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
660 	IEEE80211_NODE_STAT(ni, tx_data);
661 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
662 		IEEE80211_NODE_STAT(ni, tx_mcast);
663 		m->m_flags |= M_MCAST;
664 	} else
665 		IEEE80211_NODE_STAT(ni, tx_ucast);
666 	/* NB: ieee80211_encap does not include 802.11 header */
667 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len);
668 
669 	IEEE80211_TX_LOCK(ic);
670 
671 	/*
672 	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
673 	 * present by setting the sa_len field of the sockaddr (yes,
674 	 * this is a hack).
675 	 * NB: we assume sa_data is suitably aligned to cast.
676 	 */
677 	ret = ieee80211_raw_output(vap, ni, m,
678 	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
679 		dst->sa_data : NULL));
680 	IEEE80211_TX_UNLOCK(ic);
681 	return (ret);
682 bad:
683 	if (m != NULL)
684 		m_freem(m);
685 	if (ni != NULL)
686 		ieee80211_free_node(ni);
687 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
688 	return error;
689 #undef senderr
690 }
691 
692 /*
693  * Set the direction field and address fields of an outgoing
694  * frame.  Note this should be called early on in constructing
695  * a frame as it sets i_fc[1]; other bits can then be or'd in.
696  */
697 void
698 ieee80211_send_setup(
699 	struct ieee80211_node *ni,
700 	struct mbuf *m,
701 	int type, int tid,
702 	const uint8_t sa[IEEE80211_ADDR_LEN],
703 	const uint8_t da[IEEE80211_ADDR_LEN],
704 	const uint8_t bssid[IEEE80211_ADDR_LEN])
705 {
706 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
707 	struct ieee80211vap *vap = ni->ni_vap;
708 	struct ieee80211_tx_ampdu *tap;
709 	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
710 	ieee80211_seq seqno;
711 
712 	IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
713 
714 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
715 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
716 		switch (vap->iv_opmode) {
717 		case IEEE80211_M_STA:
718 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
719 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
720 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
721 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
722 			break;
723 		case IEEE80211_M_IBSS:
724 		case IEEE80211_M_AHDEMO:
725 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
726 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
727 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
728 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
729 			break;
730 		case IEEE80211_M_HOSTAP:
731 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
732 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
733 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
734 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
735 			break;
736 		case IEEE80211_M_WDS:
737 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
738 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
739 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
740 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
741 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
742 			break;
743 		case IEEE80211_M_MBSS:
744 #ifdef IEEE80211_SUPPORT_MESH
745 			if (IEEE80211_IS_MULTICAST(da)) {
746 				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
747 				/* XXX next hop */
748 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
749 				IEEE80211_ADDR_COPY(wh->i_addr2,
750 				    vap->iv_myaddr);
751 			} else {
752 				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
753 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
754 				IEEE80211_ADDR_COPY(wh->i_addr2,
755 				    vap->iv_myaddr);
756 				IEEE80211_ADDR_COPY(wh->i_addr3, da);
757 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
758 			}
759 #endif
760 			break;
761 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
762 			break;
763 		}
764 	} else {
765 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
766 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
767 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
768 #ifdef IEEE80211_SUPPORT_MESH
769 		if (vap->iv_opmode == IEEE80211_M_MBSS)
770 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
771 		else
772 #endif
773 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
774 	}
775 	*(uint16_t *)&wh->i_dur[0] = 0;
776 
777 	tap = &ni->ni_tx_ampdu[tid];
778 	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap))
779 		m->m_flags |= M_AMPDU_MPDU;
780 	else {
781 		if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
782 				      type & IEEE80211_FC0_SUBTYPE_MASK))
783 			seqno = ni->ni_txseqs[tid]++;
784 		else
785 			seqno = 0;
786 
787 		*(uint16_t *)&wh->i_seq[0] =
788 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
789 		M_SEQNO_SET(m, seqno);
790 	}
791 
792 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
793 		m->m_flags |= M_MCAST;
794 #undef WH4
795 }
796 
797 /*
798  * Send a management frame to the specified node.  The node pointer
799  * must have a reference as the pointer will be passed to the driver
800  * and potentially held for a long time.  If the frame is successfully
801  * dispatched to the driver, then it is responsible for freeing the
802  * reference (and potentially free'ing up any associated storage);
803  * otherwise deal with reclaiming any reference (on error).
804  */
805 int
806 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
807 	struct ieee80211_bpf_params *params)
808 {
809 	struct ieee80211vap *vap = ni->ni_vap;
810 	struct ieee80211com *ic = ni->ni_ic;
811 	struct ieee80211_frame *wh;
812 	int ret;
813 
814 	KASSERT(ni != NULL, ("null node"));
815 
816 	if (vap->iv_state == IEEE80211_S_CAC) {
817 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
818 		    ni, "block %s frame in CAC state",
819 			ieee80211_mgt_subtype_name[
820 			    (type & IEEE80211_FC0_SUBTYPE_MASK) >>
821 				IEEE80211_FC0_SUBTYPE_SHIFT]);
822 		vap->iv_stats.is_tx_badstate++;
823 		ieee80211_free_node(ni);
824 		m_freem(m);
825 		return EIO;		/* XXX */
826 	}
827 
828 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
829 	if (m == NULL) {
830 		ieee80211_free_node(ni);
831 		return ENOMEM;
832 	}
833 
834 	IEEE80211_TX_LOCK(ic);
835 
836 	wh = mtod(m, struct ieee80211_frame *);
837 	ieee80211_send_setup(ni, m,
838 	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
839 	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
840 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
841 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
842 		    "encrypting frame (%s)", __func__);
843 		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
844 	}
845 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
846 
847 	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
848 	M_WME_SETAC(m, params->ibp_pri);
849 
850 #ifdef IEEE80211_DEBUG
851 	/* avoid printing too many frames */
852 	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
853 	    ieee80211_msg_dumppkts(vap)) {
854 		printf("[%s] send %s on channel %u\n",
855 		    ether_sprintf(wh->i_addr1),
856 		    ieee80211_mgt_subtype_name[
857 			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
858 				IEEE80211_FC0_SUBTYPE_SHIFT],
859 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
860 	}
861 #endif
862 	IEEE80211_NODE_STAT(ni, tx_mgmt);
863 
864 	ret = ieee80211_raw_output(vap, ni, m, params);
865 	IEEE80211_TX_UNLOCK(ic);
866 	return (ret);
867 }
868 
869 static void
870 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg,
871     int status)
872 {
873 	struct ieee80211vap *vap = ni->ni_vap;
874 
875 	wakeup(vap);
876 }
877 
878 /*
879  * Send a null data frame to the specified node.  If the station
880  * is setup for QoS then a QoS Null Data frame is constructed.
881  * If this is a WDS station then a 4-address frame is constructed.
882  *
883  * NB: the caller is assumed to have setup a node reference
884  *     for use; this is necessary to deal with a race condition
885  *     when probing for inactive stations.  Like ieee80211_mgmt_output
886  *     we must cleanup any node reference on error;  however we
887  *     can safely just unref it as we know it will never be the
888  *     last reference to the node.
889  */
890 int
891 ieee80211_send_nulldata(struct ieee80211_node *ni)
892 {
893 	struct ieee80211vap *vap = ni->ni_vap;
894 	struct ieee80211com *ic = ni->ni_ic;
895 	struct mbuf *m;
896 	struct ieee80211_frame *wh;
897 	int hdrlen;
898 	uint8_t *frm;
899 	int ret;
900 
901 	if (vap->iv_state == IEEE80211_S_CAC) {
902 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
903 		    ni, "block %s frame in CAC state", "null data");
904 		ieee80211_unref_node(&ni);
905 		vap->iv_stats.is_tx_badstate++;
906 		return EIO;		/* XXX */
907 	}
908 
909 	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
910 		hdrlen = sizeof(struct ieee80211_qosframe);
911 	else
912 		hdrlen = sizeof(struct ieee80211_frame);
913 	/* NB: only WDS vap's get 4-address frames */
914 	if (vap->iv_opmode == IEEE80211_M_WDS)
915 		hdrlen += IEEE80211_ADDR_LEN;
916 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
917 		hdrlen = roundup(hdrlen, sizeof(uint32_t));
918 
919 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
920 	if (m == NULL) {
921 		/* XXX debug msg */
922 		ieee80211_unref_node(&ni);
923 		vap->iv_stats.is_tx_nobuf++;
924 		return ENOMEM;
925 	}
926 	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
927 	    ("leading space %zd", M_LEADINGSPACE(m)));
928 	M_PREPEND(m, hdrlen, M_NOWAIT);
929 	if (m == NULL) {
930 		/* NB: cannot happen */
931 		ieee80211_free_node(ni);
932 		return ENOMEM;
933 	}
934 
935 	IEEE80211_TX_LOCK(ic);
936 
937 	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
938 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
939 		const int tid = WME_AC_TO_TID(WME_AC_BE);
940 		uint8_t *qos;
941 
942 		ieee80211_send_setup(ni, m,
943 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
944 		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
945 
946 		if (vap->iv_opmode == IEEE80211_M_WDS)
947 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
948 		else
949 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
950 		qos[0] = tid & IEEE80211_QOS_TID;
951 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
952 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
953 		qos[1] = 0;
954 	} else {
955 		ieee80211_send_setup(ni, m,
956 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
957 		    IEEE80211_NONQOS_TID,
958 		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
959 	}
960 	if (vap->iv_opmode != IEEE80211_M_WDS) {
961 		/* NB: power management bit is never sent by an AP */
962 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
963 		    vap->iv_opmode != IEEE80211_M_HOSTAP)
964 			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
965 	}
966 	if ((ic->ic_flags & IEEE80211_F_SCAN) &&
967 	    (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) {
968 		ieee80211_add_callback(m, ieee80211_nulldata_transmitted,
969 		    NULL);
970 	}
971 	m->m_len = m->m_pkthdr.len = hdrlen;
972 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
973 
974 	M_WME_SETAC(m, WME_AC_BE);
975 
976 	IEEE80211_NODE_STAT(ni, tx_data);
977 
978 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
979 	    "send %snull data frame on channel %u, pwr mgt %s",
980 	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
981 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
982 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
983 
984 	ret = ieee80211_raw_output(vap, ni, m, NULL);
985 	IEEE80211_TX_UNLOCK(ic);
986 	return (ret);
987 }
988 
989 /*
990  * Assign priority to a frame based on any vlan tag assigned
991  * to the station and/or any Diffserv setting in an IP header.
992  * Finally, if an ACM policy is setup (in station mode) it's
993  * applied.
994  */
995 int
996 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
997 {
998 	const struct ether_header *eh = mtod(m, struct ether_header *);
999 	int v_wme_ac, d_wme_ac, ac;
1000 
1001 	/*
1002 	 * Always promote PAE/EAPOL frames to high priority.
1003 	 */
1004 	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
1005 		/* NB: mark so others don't need to check header */
1006 		m->m_flags |= M_EAPOL;
1007 		ac = WME_AC_VO;
1008 		goto done;
1009 	}
1010 	/*
1011 	 * Non-qos traffic goes to BE.
1012 	 */
1013 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
1014 		ac = WME_AC_BE;
1015 		goto done;
1016 	}
1017 
1018 	/*
1019 	 * If node has a vlan tag then all traffic
1020 	 * to it must have a matching tag.
1021 	 */
1022 	v_wme_ac = 0;
1023 	if (ni->ni_vlan != 0) {
1024 		 if ((m->m_flags & M_VLANTAG) == 0) {
1025 			IEEE80211_NODE_STAT(ni, tx_novlantag);
1026 			return 1;
1027 		}
1028 		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
1029 		    EVL_VLANOFTAG(ni->ni_vlan)) {
1030 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
1031 			return 1;
1032 		}
1033 		/* map vlan priority to AC */
1034 		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
1035 	}
1036 
1037 	/* XXX m_copydata may be too slow for fast path */
1038 #ifdef INET
1039 	if (eh->ether_type == htons(ETHERTYPE_IP)) {
1040 		uint8_t tos;
1041 		/*
1042 		 * IP frame, map the DSCP bits from the TOS field.
1043 		 */
1044 		/* NB: ip header may not be in first mbuf */
1045 		m_copydata(m, sizeof(struct ether_header) +
1046 		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
1047 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1048 		d_wme_ac = TID_TO_WME_AC(tos);
1049 	} else {
1050 #endif /* INET */
1051 #ifdef INET6
1052 	if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
1053 		uint32_t flow;
1054 		uint8_t tos;
1055 		/*
1056 		 * IPv6 frame, map the DSCP bits from the traffic class field.
1057 		 */
1058 		m_copydata(m, sizeof(struct ether_header) +
1059 		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
1060 		    (caddr_t) &flow);
1061 		tos = (uint8_t)(ntohl(flow) >> 20);
1062 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1063 		d_wme_ac = TID_TO_WME_AC(tos);
1064 	} else {
1065 #endif /* INET6 */
1066 		d_wme_ac = WME_AC_BE;
1067 #ifdef INET6
1068 	}
1069 #endif
1070 #ifdef INET
1071 	}
1072 #endif
1073 	/*
1074 	 * Use highest priority AC.
1075 	 */
1076 	if (v_wme_ac > d_wme_ac)
1077 		ac = v_wme_ac;
1078 	else
1079 		ac = d_wme_ac;
1080 
1081 	/*
1082 	 * Apply ACM policy.
1083 	 */
1084 	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1085 		static const int acmap[4] = {
1086 			WME_AC_BK,	/* WME_AC_BE */
1087 			WME_AC_BK,	/* WME_AC_BK */
1088 			WME_AC_BE,	/* WME_AC_VI */
1089 			WME_AC_VI,	/* WME_AC_VO */
1090 		};
1091 		struct ieee80211com *ic = ni->ni_ic;
1092 
1093 		while (ac != WME_AC_BK &&
1094 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1095 			ac = acmap[ac];
1096 	}
1097 done:
1098 	M_WME_SETAC(m, ac);
1099 	return 0;
1100 }
1101 
1102 /*
1103  * Insure there is sufficient contiguous space to encapsulate the
1104  * 802.11 data frame.  If room isn't already there, arrange for it.
1105  * Drivers and cipher modules assume we have done the necessary work
1106  * and fail rudely if they don't find the space they need.
1107  */
1108 struct mbuf *
1109 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1110 	struct ieee80211_key *key, struct mbuf *m)
1111 {
1112 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
1113 	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1114 
1115 	if (key != NULL) {
1116 		/* XXX belongs in crypto code? */
1117 		needed_space += key->wk_cipher->ic_header;
1118 		/* XXX frags */
1119 		/*
1120 		 * When crypto is being done in the host we must insure
1121 		 * the data are writable for the cipher routines; clone
1122 		 * a writable mbuf chain.
1123 		 * XXX handle SWMIC specially
1124 		 */
1125 		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1126 			m = m_unshare(m, M_NOWAIT);
1127 			if (m == NULL) {
1128 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1129 				    "%s: cannot get writable mbuf\n", __func__);
1130 				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1131 				return NULL;
1132 			}
1133 		}
1134 	}
1135 	/*
1136 	 * We know we are called just before stripping an Ethernet
1137 	 * header and prepending an LLC header.  This means we know
1138 	 * there will be
1139 	 *	sizeof(struct ether_header) - sizeof(struct llc)
1140 	 * bytes recovered to which we need additional space for the
1141 	 * 802.11 header and any crypto header.
1142 	 */
1143 	/* XXX check trailing space and copy instead? */
1144 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1145 		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
1146 		if (n == NULL) {
1147 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1148 			    "%s: cannot expand storage\n", __func__);
1149 			vap->iv_stats.is_tx_nobuf++;
1150 			m_freem(m);
1151 			return NULL;
1152 		}
1153 		KASSERT(needed_space <= MHLEN,
1154 		    ("not enough room, need %u got %d\n", needed_space, MHLEN));
1155 		/*
1156 		 * Setup new mbuf to have leading space to prepend the
1157 		 * 802.11 header and any crypto header bits that are
1158 		 * required (the latter are added when the driver calls
1159 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
1160 		 */
1161 		/* NB: must be first 'cuz it clobbers m_data */
1162 		m_move_pkthdr(n, m);
1163 		n->m_len = 0;			/* NB: m_gethdr does not set */
1164 		n->m_data += needed_space;
1165 		/*
1166 		 * Pull up Ethernet header to create the expected layout.
1167 		 * We could use m_pullup but that's overkill (i.e. we don't
1168 		 * need the actual data) and it cannot fail so do it inline
1169 		 * for speed.
1170 		 */
1171 		/* NB: struct ether_header is known to be contiguous */
1172 		n->m_len += sizeof(struct ether_header);
1173 		m->m_len -= sizeof(struct ether_header);
1174 		m->m_data += sizeof(struct ether_header);
1175 		/*
1176 		 * Replace the head of the chain.
1177 		 */
1178 		n->m_next = m;
1179 		m = n;
1180 	}
1181 	return m;
1182 #undef TO_BE_RECLAIMED
1183 }
1184 
1185 /*
1186  * Return the transmit key to use in sending a unicast frame.
1187  * If a unicast key is set we use that.  When no unicast key is set
1188  * we fall back to the default transmit key.
1189  */
1190 static __inline struct ieee80211_key *
1191 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1192 	struct ieee80211_node *ni)
1193 {
1194 	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1195 		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1196 		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1197 			return NULL;
1198 		return &vap->iv_nw_keys[vap->iv_def_txkey];
1199 	} else {
1200 		return &ni->ni_ucastkey;
1201 	}
1202 }
1203 
1204 /*
1205  * Return the transmit key to use in sending a multicast frame.
1206  * Multicast traffic always uses the group key which is installed as
1207  * the default tx key.
1208  */
1209 static __inline struct ieee80211_key *
1210 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1211 	struct ieee80211_node *ni)
1212 {
1213 	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1214 	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1215 		return NULL;
1216 	return &vap->iv_nw_keys[vap->iv_def_txkey];
1217 }
1218 
1219 /*
1220  * Encapsulate an outbound data frame.  The mbuf chain is updated.
1221  * If an error is encountered NULL is returned.  The caller is required
1222  * to provide a node reference and pullup the ethernet header in the
1223  * first mbuf.
1224  *
1225  * NB: Packet is assumed to be processed by ieee80211_classify which
1226  *     marked EAPOL frames w/ M_EAPOL.
1227  */
1228 struct mbuf *
1229 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1230     struct mbuf *m)
1231 {
1232 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1233 #define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
1234 	struct ieee80211com *ic = ni->ni_ic;
1235 #ifdef IEEE80211_SUPPORT_MESH
1236 	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1237 	struct ieee80211_meshcntl_ae10 *mc;
1238 	struct ieee80211_mesh_route *rt = NULL;
1239 	int dir = -1;
1240 #endif
1241 	struct ether_header eh;
1242 	struct ieee80211_frame *wh;
1243 	struct ieee80211_key *key;
1244 	struct llc *llc;
1245 	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr;
1246 	ieee80211_seq seqno;
1247 	int meshhdrsize, meshae;
1248 	uint8_t *qos;
1249 	int is_amsdu = 0;
1250 
1251 	IEEE80211_TX_LOCK_ASSERT(ic);
1252 
1253 	/*
1254 	 * Copy existing Ethernet header to a safe place.  The
1255 	 * rest of the code assumes it's ok to strip it when
1256 	 * reorganizing state for the final encapsulation.
1257 	 */
1258 	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1259 	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1260 
1261 	/*
1262 	 * Insure space for additional headers.  First identify
1263 	 * transmit key to use in calculating any buffer adjustments
1264 	 * required.  This is also used below to do privacy
1265 	 * encapsulation work.  Then calculate the 802.11 header
1266 	 * size and any padding required by the driver.
1267 	 *
1268 	 * Note key may be NULL if we fall back to the default
1269 	 * transmit key and that is not set.  In that case the
1270 	 * buffer may not be expanded as needed by the cipher
1271 	 * routines, but they will/should discard it.
1272 	 */
1273 	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1274 		if (vap->iv_opmode == IEEE80211_M_STA ||
1275 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1276 		    (vap->iv_opmode == IEEE80211_M_WDS &&
1277 		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1278 			key = ieee80211_crypto_getucastkey(vap, ni);
1279 		else
1280 			key = ieee80211_crypto_getmcastkey(vap, ni);
1281 		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1282 			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1283 			    eh.ether_dhost,
1284 			    "no default transmit key (%s) deftxkey %u",
1285 			    __func__, vap->iv_def_txkey);
1286 			vap->iv_stats.is_tx_nodefkey++;
1287 			goto bad;
1288 		}
1289 	} else
1290 		key = NULL;
1291 	/*
1292 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1293 	 * frames so suppress use.  This may be an issue if other
1294 	 * ap's require all data frames to be QoS-encapsulated
1295 	 * once negotiated in which case we'll need to make this
1296 	 * configurable.
1297 	 * NB: mesh data frames are QoS.
1298 	 */
1299 	addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) ||
1300 	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1301 	    (m->m_flags & M_EAPOL) == 0;
1302 	if (addqos)
1303 		hdrsize = sizeof(struct ieee80211_qosframe);
1304 	else
1305 		hdrsize = sizeof(struct ieee80211_frame);
1306 #ifdef IEEE80211_SUPPORT_MESH
1307 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1308 		/*
1309 		 * Mesh data frames are encapsulated according to the
1310 		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1311 		 * o Group Addressed data (aka multicast) originating
1312 		 *   at the local sta are sent w/ 3-address format and
1313 		 *   address extension mode 00
1314 		 * o Individually Addressed data (aka unicast) originating
1315 		 *   at the local sta are sent w/ 4-address format and
1316 		 *   address extension mode 00
1317 		 * o Group Addressed data forwarded from a non-mesh sta are
1318 		 *   sent w/ 3-address format and address extension mode 01
1319 		 * o Individually Address data from another sta are sent
1320 		 *   w/ 4-address format and address extension mode 10
1321 		 */
1322 		is4addr = 0;		/* NB: don't use, disable */
1323 		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1324 			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1325 			KASSERT(rt != NULL, ("route is NULL"));
1326 			dir = IEEE80211_FC1_DIR_DSTODS;
1327 			hdrsize += IEEE80211_ADDR_LEN;
1328 			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1329 				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1330 				    vap->iv_myaddr)) {
1331 					IEEE80211_NOTE_MAC(vap,
1332 					    IEEE80211_MSG_MESH,
1333 					    eh.ether_dhost,
1334 					    "%s", "trying to send to ourself");
1335 					goto bad;
1336 				}
1337 				meshae = IEEE80211_MESH_AE_10;
1338 				meshhdrsize =
1339 				    sizeof(struct ieee80211_meshcntl_ae10);
1340 			} else {
1341 				meshae = IEEE80211_MESH_AE_00;
1342 				meshhdrsize =
1343 				    sizeof(struct ieee80211_meshcntl);
1344 			}
1345 		} else {
1346 			dir = IEEE80211_FC1_DIR_FROMDS;
1347 			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1348 				/* proxy group */
1349 				meshae = IEEE80211_MESH_AE_01;
1350 				meshhdrsize =
1351 				    sizeof(struct ieee80211_meshcntl_ae01);
1352 			} else {
1353 				/* group */
1354 				meshae = IEEE80211_MESH_AE_00;
1355 				meshhdrsize = sizeof(struct ieee80211_meshcntl);
1356 			}
1357 		}
1358 	} else {
1359 #endif
1360 		/*
1361 		 * 4-address frames need to be generated for:
1362 		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1363 		 * o packets sent through a vap marked for relaying
1364 		 *   (e.g. a station operating with dynamic WDS)
1365 		 */
1366 		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1367 		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1368 		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1369 		if (is4addr)
1370 			hdrsize += IEEE80211_ADDR_LEN;
1371 		meshhdrsize = meshae = 0;
1372 #ifdef IEEE80211_SUPPORT_MESH
1373 	}
1374 #endif
1375 	/*
1376 	 * Honor driver DATAPAD requirement.
1377 	 */
1378 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1379 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1380 	else
1381 		hdrspace = hdrsize;
1382 
1383 	if (__predict_true((m->m_flags & M_FF) == 0)) {
1384 		/*
1385 		 * Normal frame.
1386 		 */
1387 		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1388 		if (m == NULL) {
1389 			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1390 			goto bad;
1391 		}
1392 		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1393 		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1394 		llc = mtod(m, struct llc *);
1395 		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1396 		llc->llc_control = LLC_UI;
1397 		llc->llc_snap.org_code[0] = 0;
1398 		llc->llc_snap.org_code[1] = 0;
1399 		llc->llc_snap.org_code[2] = 0;
1400 		llc->llc_snap.ether_type = eh.ether_type;
1401 	} else {
1402 #ifdef IEEE80211_SUPPORT_SUPERG
1403 		/*
1404 		 * Aggregated frame.  Check if it's for AMSDU or FF.
1405 		 *
1406 		 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented
1407 		 * anywhere for some reason.  But, since 11n requires
1408 		 * AMSDU RX, we can just assume "11n" == "AMSDU".
1409 		 */
1410 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__);
1411 		if (ieee80211_amsdu_tx_ok(ni)) {
1412 			m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key);
1413 			is_amsdu = 1;
1414 		} else {
1415 			m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1416 		}
1417 		if (m == NULL)
1418 #endif
1419 			goto bad;
1420 	}
1421 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1422 
1423 	M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT);
1424 	if (m == NULL) {
1425 		vap->iv_stats.is_tx_nobuf++;
1426 		goto bad;
1427 	}
1428 	wh = mtod(m, struct ieee80211_frame *);
1429 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1430 	*(uint16_t *)wh->i_dur = 0;
1431 	qos = NULL;	/* NB: quiet compiler */
1432 	if (is4addr) {
1433 		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1434 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1435 		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1436 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1437 		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1438 	} else switch (vap->iv_opmode) {
1439 	case IEEE80211_M_STA:
1440 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1441 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1442 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1443 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1444 		break;
1445 	case IEEE80211_M_IBSS:
1446 	case IEEE80211_M_AHDEMO:
1447 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1448 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1449 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1450 		/*
1451 		 * NB: always use the bssid from iv_bss as the
1452 		 *     neighbor's may be stale after an ibss merge
1453 		 */
1454 		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1455 		break;
1456 	case IEEE80211_M_HOSTAP:
1457 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1458 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1459 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1460 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1461 		break;
1462 #ifdef IEEE80211_SUPPORT_MESH
1463 	case IEEE80211_M_MBSS:
1464 		/* NB: offset by hdrspace to deal with DATAPAD */
1465 		mc = (struct ieee80211_meshcntl_ae10 *)
1466 		     (mtod(m, uint8_t *) + hdrspace);
1467 		wh->i_fc[1] = dir;
1468 		switch (meshae) {
1469 		case IEEE80211_MESH_AE_00:	/* no proxy */
1470 			mc->mc_flags = 0;
1471 			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1472 				IEEE80211_ADDR_COPY(wh->i_addr1,
1473 				    ni->ni_macaddr);
1474 				IEEE80211_ADDR_COPY(wh->i_addr2,
1475 				    vap->iv_myaddr);
1476 				IEEE80211_ADDR_COPY(wh->i_addr3,
1477 				    eh.ether_dhost);
1478 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1479 				    eh.ether_shost);
1480 				qos =((struct ieee80211_qosframe_addr4 *)
1481 				    wh)->i_qos;
1482 			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1483 				 /* mcast */
1484 				IEEE80211_ADDR_COPY(wh->i_addr1,
1485 				    eh.ether_dhost);
1486 				IEEE80211_ADDR_COPY(wh->i_addr2,
1487 				    vap->iv_myaddr);
1488 				IEEE80211_ADDR_COPY(wh->i_addr3,
1489 				    eh.ether_shost);
1490 				qos = ((struct ieee80211_qosframe *)
1491 				    wh)->i_qos;
1492 			}
1493 			break;
1494 		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
1495 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1496 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1497 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1498 			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1499 			mc->mc_flags = 1;
1500 			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1501 			    eh.ether_shost);
1502 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1503 			break;
1504 		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
1505 			KASSERT(rt != NULL, ("route is NULL"));
1506 			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1507 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1508 			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1509 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1510 			mc->mc_flags = IEEE80211_MESH_AE_10;
1511 			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1512 			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1513 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1514 			break;
1515 		default:
1516 			KASSERT(0, ("meshae %d", meshae));
1517 			break;
1518 		}
1519 		mc->mc_ttl = ms->ms_ttl;
1520 		ms->ms_seq++;
1521 		LE_WRITE_4(mc->mc_seq, ms->ms_seq);
1522 		break;
1523 #endif
1524 	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1525 	default:
1526 		goto bad;
1527 	}
1528 	if (m->m_flags & M_MORE_DATA)
1529 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1530 	if (addqos) {
1531 		int ac, tid;
1532 
1533 		if (is4addr) {
1534 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1535 		/* NB: mesh case handled earlier */
1536 		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1537 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1538 		ac = M_WME_GETAC(m);
1539 		/* map from access class/queue to 11e header priorty value */
1540 		tid = WME_AC_TO_TID(ac);
1541 		qos[0] = tid & IEEE80211_QOS_TID;
1542 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1543 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1544 #ifdef IEEE80211_SUPPORT_MESH
1545 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1546 			qos[1] = IEEE80211_QOS_MC;
1547 		else
1548 #endif
1549 			qos[1] = 0;
1550 		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1551 
1552 		/*
1553 		 * If this is an A-MSDU then ensure we set the
1554 		 * relevant field.
1555 		 */
1556 		if (is_amsdu)
1557 			qos[0] |= IEEE80211_QOS_AMSDU;
1558 
1559 		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1560 			/*
1561 			 * NB: don't assign a sequence # to potential
1562 			 * aggregates; we expect this happens at the
1563 			 * point the frame comes off any aggregation q
1564 			 * as otherwise we may introduce holes in the
1565 			 * BA sequence space and/or make window accouting
1566 			 * more difficult.
1567 			 *
1568 			 * XXX may want to control this with a driver
1569 			 * capability; this may also change when we pull
1570 			 * aggregation up into net80211
1571 			 */
1572 			seqno = ni->ni_txseqs[tid]++;
1573 			*(uint16_t *)wh->i_seq =
1574 			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1575 			M_SEQNO_SET(m, seqno);
1576 		}
1577 	} else {
1578 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1579 		*(uint16_t *)wh->i_seq =
1580 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1581 		M_SEQNO_SET(m, seqno);
1582 
1583 		/*
1584 		 * XXX TODO: we shouldn't allow EAPOL, etc that would
1585 		 * be forced to be non-QoS traffic to be A-MSDU encapsulated.
1586 		 */
1587 		if (is_amsdu)
1588 			printf("%s: XXX ERROR: is_amsdu set; not QoS!\n",
1589 			    __func__);
1590 	}
1591 
1592 
1593 	/* check if xmit fragmentation is required */
1594 	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1595 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1596 	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1597 	    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1598 	if (key != NULL) {
1599 		/*
1600 		 * IEEE 802.1X: send EAPOL frames always in the clear.
1601 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1602 		 */
1603 		if ((m->m_flags & M_EAPOL) == 0 ||
1604 		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1605 		     (vap->iv_opmode == IEEE80211_M_STA ?
1606 		      !IEEE80211_KEY_UNDEFINED(key) :
1607 		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1608 			wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1609 			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1610 				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1611 				    eh.ether_dhost,
1612 				    "%s", "enmic failed, discard frame");
1613 				vap->iv_stats.is_crypto_enmicfail++;
1614 				goto bad;
1615 			}
1616 		}
1617 	}
1618 	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1619 	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1620 		goto bad;
1621 
1622 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1623 
1624 	IEEE80211_NODE_STAT(ni, tx_data);
1625 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1626 		IEEE80211_NODE_STAT(ni, tx_mcast);
1627 		m->m_flags |= M_MCAST;
1628 	} else
1629 		IEEE80211_NODE_STAT(ni, tx_ucast);
1630 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1631 
1632 	return m;
1633 bad:
1634 	if (m != NULL)
1635 		m_freem(m);
1636 	return NULL;
1637 #undef WH4
1638 #undef MC01
1639 }
1640 
1641 void
1642 ieee80211_free_mbuf(struct mbuf *m)
1643 {
1644 	struct mbuf *next;
1645 
1646 	if (m == NULL)
1647 		return;
1648 
1649 	do {
1650 		next = m->m_nextpkt;
1651 		m->m_nextpkt = NULL;
1652 		m_freem(m);
1653 	} while ((m = next) != NULL);
1654 }
1655 
1656 /*
1657  * Fragment the frame according to the specified mtu.
1658  * The size of the 802.11 header (w/o padding) is provided
1659  * so we don't need to recalculate it.  We create a new
1660  * mbuf for each fragment and chain it through m_nextpkt;
1661  * we might be able to optimize this by reusing the original
1662  * packet's mbufs but that is significantly more complicated.
1663  */
1664 static int
1665 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1666 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1667 {
1668 	struct ieee80211com *ic = vap->iv_ic;
1669 	struct ieee80211_frame *wh, *whf;
1670 	struct mbuf *m, *prev;
1671 	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1672 	u_int hdrspace;
1673 
1674 	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1675 	KASSERT(m0->m_pkthdr.len > mtu,
1676 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1677 
1678 	/*
1679 	 * Honor driver DATAPAD requirement.
1680 	 */
1681 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1682 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1683 	else
1684 		hdrspace = hdrsize;
1685 
1686 	wh = mtod(m0, struct ieee80211_frame *);
1687 	/* NB: mark the first frag; it will be propagated below */
1688 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1689 	totalhdrsize = hdrspace + ciphdrsize;
1690 	fragno = 1;
1691 	off = mtu - ciphdrsize;
1692 	remainder = m0->m_pkthdr.len - off;
1693 	prev = m0;
1694 	do {
1695 		fragsize = totalhdrsize + remainder;
1696 		if (fragsize > mtu)
1697 			fragsize = mtu;
1698 		/* XXX fragsize can be >2048! */
1699 		KASSERT(fragsize < MCLBYTES,
1700 			("fragment size %u too big!", fragsize));
1701 		if (fragsize > MHLEN)
1702 			m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1703 		else
1704 			m = m_gethdr(M_NOWAIT, MT_DATA);
1705 		if (m == NULL)
1706 			goto bad;
1707 		/* leave room to prepend any cipher header */
1708 		m_align(m, fragsize - ciphdrsize);
1709 
1710 		/*
1711 		 * Form the header in the fragment.  Note that since
1712 		 * we mark the first fragment with the MORE_FRAG bit
1713 		 * it automatically is propagated to each fragment; we
1714 		 * need only clear it on the last fragment (done below).
1715 		 * NB: frag 1+ dont have Mesh Control field present.
1716 		 */
1717 		whf = mtod(m, struct ieee80211_frame *);
1718 		memcpy(whf, wh, hdrsize);
1719 #ifdef IEEE80211_SUPPORT_MESH
1720 		if (vap->iv_opmode == IEEE80211_M_MBSS) {
1721 			if (IEEE80211_IS_DSTODS(wh))
1722 				((struct ieee80211_qosframe_addr4 *)
1723 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1724 			else
1725 				((struct ieee80211_qosframe *)
1726 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1727 		}
1728 #endif
1729 		*(uint16_t *)&whf->i_seq[0] |= htole16(
1730 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1731 				IEEE80211_SEQ_FRAG_SHIFT);
1732 		fragno++;
1733 
1734 		payload = fragsize - totalhdrsize;
1735 		/* NB: destination is known to be contiguous */
1736 
1737 		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
1738 		m->m_len = hdrspace + payload;
1739 		m->m_pkthdr.len = hdrspace + payload;
1740 		m->m_flags |= M_FRAG;
1741 
1742 		/* chain up the fragment */
1743 		prev->m_nextpkt = m;
1744 		prev = m;
1745 
1746 		/* deduct fragment just formed */
1747 		remainder -= payload;
1748 		off += payload;
1749 	} while (remainder != 0);
1750 
1751 	/* set the last fragment */
1752 	m->m_flags |= M_LASTFRAG;
1753 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1754 
1755 	/* strip first mbuf now that everything has been copied */
1756 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1757 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1758 
1759 	vap->iv_stats.is_tx_fragframes++;
1760 	vap->iv_stats.is_tx_frags += fragno-1;
1761 
1762 	return 1;
1763 bad:
1764 	/* reclaim fragments but leave original frame for caller to free */
1765 	ieee80211_free_mbuf(m0->m_nextpkt);
1766 	m0->m_nextpkt = NULL;
1767 	return 0;
1768 }
1769 
1770 /*
1771  * Add a supported rates element id to a frame.
1772  */
1773 uint8_t *
1774 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1775 {
1776 	int nrates;
1777 
1778 	*frm++ = IEEE80211_ELEMID_RATES;
1779 	nrates = rs->rs_nrates;
1780 	if (nrates > IEEE80211_RATE_SIZE)
1781 		nrates = IEEE80211_RATE_SIZE;
1782 	*frm++ = nrates;
1783 	memcpy(frm, rs->rs_rates, nrates);
1784 	return frm + nrates;
1785 }
1786 
1787 /*
1788  * Add an extended supported rates element id to a frame.
1789  */
1790 uint8_t *
1791 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1792 {
1793 	/*
1794 	 * Add an extended supported rates element if operating in 11g mode.
1795 	 */
1796 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1797 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1798 		*frm++ = IEEE80211_ELEMID_XRATES;
1799 		*frm++ = nrates;
1800 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1801 		frm += nrates;
1802 	}
1803 	return frm;
1804 }
1805 
1806 /*
1807  * Add an ssid element to a frame.
1808  */
1809 uint8_t *
1810 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1811 {
1812 	*frm++ = IEEE80211_ELEMID_SSID;
1813 	*frm++ = len;
1814 	memcpy(frm, ssid, len);
1815 	return frm + len;
1816 }
1817 
1818 /*
1819  * Add an erp element to a frame.
1820  */
1821 static uint8_t *
1822 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1823 {
1824 	uint8_t erp;
1825 
1826 	*frm++ = IEEE80211_ELEMID_ERP;
1827 	*frm++ = 1;
1828 	erp = 0;
1829 	if (ic->ic_nonerpsta != 0)
1830 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1831 	if (ic->ic_flags & IEEE80211_F_USEPROT)
1832 		erp |= IEEE80211_ERP_USE_PROTECTION;
1833 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1834 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1835 	*frm++ = erp;
1836 	return frm;
1837 }
1838 
1839 /*
1840  * Add a CFParams element to a frame.
1841  */
1842 static uint8_t *
1843 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1844 {
1845 #define	ADDSHORT(frm, v) do {	\
1846 	LE_WRITE_2(frm, v);	\
1847 	frm += 2;		\
1848 } while (0)
1849 	*frm++ = IEEE80211_ELEMID_CFPARMS;
1850 	*frm++ = 6;
1851 	*frm++ = 0;		/* CFP count */
1852 	*frm++ = 2;		/* CFP period */
1853 	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1854 	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1855 	return frm;
1856 #undef ADDSHORT
1857 }
1858 
1859 static __inline uint8_t *
1860 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1861 {
1862 	memcpy(frm, ie->ie_data, ie->ie_len);
1863 	return frm + ie->ie_len;
1864 }
1865 
1866 static __inline uint8_t *
1867 add_ie(uint8_t *frm, const uint8_t *ie)
1868 {
1869 	memcpy(frm, ie, 2 + ie[1]);
1870 	return frm + 2 + ie[1];
1871 }
1872 
1873 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1874 /*
1875  * Add a WME information element to a frame.
1876  */
1877 uint8_t *
1878 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1879 {
1880 	static const struct ieee80211_wme_info info = {
1881 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1882 		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1883 		.wme_oui	= { WME_OUI_BYTES },
1884 		.wme_type	= WME_OUI_TYPE,
1885 		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1886 		.wme_version	= WME_VERSION,
1887 		.wme_info	= 0,
1888 	};
1889 	memcpy(frm, &info, sizeof(info));
1890 	return frm + sizeof(info);
1891 }
1892 
1893 /*
1894  * Add a WME parameters element to a frame.
1895  */
1896 static uint8_t *
1897 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1898 {
1899 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1900 #define	ADDSHORT(frm, v) do {	\
1901 	LE_WRITE_2(frm, v);	\
1902 	frm += 2;		\
1903 } while (0)
1904 	/* NB: this works 'cuz a param has an info at the front */
1905 	static const struct ieee80211_wme_info param = {
1906 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1907 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1908 		.wme_oui	= { WME_OUI_BYTES },
1909 		.wme_type	= WME_OUI_TYPE,
1910 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1911 		.wme_version	= WME_VERSION,
1912 	};
1913 	int i;
1914 
1915 	memcpy(frm, &param, sizeof(param));
1916 	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1917 	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1918 	*frm++ = 0;					/* reserved field */
1919 	for (i = 0; i < WME_NUM_AC; i++) {
1920 		const struct wmeParams *ac =
1921 		       &wme->wme_bssChanParams.cap_wmeParams[i];
1922 		*frm++ = SM(i, WME_PARAM_ACI)
1923 		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1924 		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1925 		       ;
1926 		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1927 		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1928 		       ;
1929 		ADDSHORT(frm, ac->wmep_txopLimit);
1930 	}
1931 	return frm;
1932 #undef SM
1933 #undef ADDSHORT
1934 }
1935 #undef WME_OUI_BYTES
1936 
1937 /*
1938  * Add an 11h Power Constraint element to a frame.
1939  */
1940 static uint8_t *
1941 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1942 {
1943 	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1944 	/* XXX per-vap tx power limit? */
1945 	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1946 
1947 	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1948 	frm[1] = 1;
1949 	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1950 	return frm + 3;
1951 }
1952 
1953 /*
1954  * Add an 11h Power Capability element to a frame.
1955  */
1956 static uint8_t *
1957 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1958 {
1959 	frm[0] = IEEE80211_ELEMID_PWRCAP;
1960 	frm[1] = 2;
1961 	frm[2] = c->ic_minpower;
1962 	frm[3] = c->ic_maxpower;
1963 	return frm + 4;
1964 }
1965 
1966 /*
1967  * Add an 11h Supported Channels element to a frame.
1968  */
1969 static uint8_t *
1970 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1971 {
1972 	static const int ielen = 26;
1973 
1974 	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1975 	frm[1] = ielen;
1976 	/* XXX not correct */
1977 	memcpy(frm+2, ic->ic_chan_avail, ielen);
1978 	return frm + 2 + ielen;
1979 }
1980 
1981 /*
1982  * Add an 11h Quiet time element to a frame.
1983  */
1984 static uint8_t *
1985 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap)
1986 {
1987 	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
1988 
1989 	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
1990 	quiet->len = 6;
1991 	if (vap->iv_quiet_count_value == 1)
1992 		vap->iv_quiet_count_value = vap->iv_quiet_count;
1993 	else if (vap->iv_quiet_count_value > 1)
1994 		vap->iv_quiet_count_value--;
1995 
1996 	if (vap->iv_quiet_count_value == 0) {
1997 		/* value 0 is reserved as per 802.11h standerd */
1998 		vap->iv_quiet_count_value = 1;
1999 	}
2000 
2001 	quiet->tbttcount = vap->iv_quiet_count_value;
2002 	quiet->period = vap->iv_quiet_period;
2003 	quiet->duration = htole16(vap->iv_quiet_duration);
2004 	quiet->offset = htole16(vap->iv_quiet_offset);
2005 	return frm + sizeof(*quiet);
2006 }
2007 
2008 /*
2009  * Add an 11h Channel Switch Announcement element to a frame.
2010  * Note that we use the per-vap CSA count to adjust the global
2011  * counter so we can use this routine to form probe response
2012  * frames and get the current count.
2013  */
2014 static uint8_t *
2015 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
2016 {
2017 	struct ieee80211com *ic = vap->iv_ic;
2018 	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
2019 
2020 	csa->csa_ie = IEEE80211_ELEMID_CSA;
2021 	csa->csa_len = 3;
2022 	csa->csa_mode = 1;		/* XXX force quiet on channel */
2023 	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
2024 	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
2025 	return frm + sizeof(*csa);
2026 }
2027 
2028 /*
2029  * Add an 11h country information element to a frame.
2030  */
2031 static uint8_t *
2032 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
2033 {
2034 
2035 	if (ic->ic_countryie == NULL ||
2036 	    ic->ic_countryie_chan != ic->ic_bsschan) {
2037 		/*
2038 		 * Handle lazy construction of ie.  This is done on
2039 		 * first use and after a channel change that requires
2040 		 * re-calculation.
2041 		 */
2042 		if (ic->ic_countryie != NULL)
2043 			IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
2044 		ic->ic_countryie = ieee80211_alloc_countryie(ic);
2045 		if (ic->ic_countryie == NULL)
2046 			return frm;
2047 		ic->ic_countryie_chan = ic->ic_bsschan;
2048 	}
2049 	return add_appie(frm, ic->ic_countryie);
2050 }
2051 
2052 uint8_t *
2053 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
2054 {
2055 	if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
2056 		return (add_ie(frm, vap->iv_wpa_ie));
2057 	else {
2058 		/* XXX else complain? */
2059 		return (frm);
2060 	}
2061 }
2062 
2063 uint8_t *
2064 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
2065 {
2066 	if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
2067 		return (add_ie(frm, vap->iv_rsn_ie));
2068 	else {
2069 		/* XXX else complain? */
2070 		return (frm);
2071 	}
2072 }
2073 
2074 uint8_t *
2075 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
2076 {
2077 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
2078 		*frm++ = IEEE80211_ELEMID_QOS;
2079 		*frm++ = 1;
2080 		*frm++ = 0;
2081 	}
2082 
2083 	return (frm);
2084 }
2085 
2086 /*
2087  * Send a probe request frame with the specified ssid
2088  * and any optional information element data.
2089  */
2090 int
2091 ieee80211_send_probereq(struct ieee80211_node *ni,
2092 	const uint8_t sa[IEEE80211_ADDR_LEN],
2093 	const uint8_t da[IEEE80211_ADDR_LEN],
2094 	const uint8_t bssid[IEEE80211_ADDR_LEN],
2095 	const uint8_t *ssid, size_t ssidlen)
2096 {
2097 	struct ieee80211vap *vap = ni->ni_vap;
2098 	struct ieee80211com *ic = ni->ni_ic;
2099 	const struct ieee80211_txparam *tp;
2100 	struct ieee80211_bpf_params params;
2101 	struct ieee80211_frame *wh;
2102 	const struct ieee80211_rateset *rs;
2103 	struct mbuf *m;
2104 	uint8_t *frm;
2105 	int ret;
2106 
2107 	if (vap->iv_state == IEEE80211_S_CAC) {
2108 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
2109 		    "block %s frame in CAC state", "probe request");
2110 		vap->iv_stats.is_tx_badstate++;
2111 		return EIO;		/* XXX */
2112 	}
2113 
2114 	/*
2115 	 * Hold a reference on the node so it doesn't go away until after
2116 	 * the xmit is complete all the way in the driver.  On error we
2117 	 * will remove our reference.
2118 	 */
2119 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2120 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2121 		__func__, __LINE__,
2122 		ni, ether_sprintf(ni->ni_macaddr),
2123 		ieee80211_node_refcnt(ni)+1);
2124 	ieee80211_ref_node(ni);
2125 
2126 	/*
2127 	 * prreq frame format
2128 	 *	[tlv] ssid
2129 	 *	[tlv] supported rates
2130 	 *	[tlv] RSN (optional)
2131 	 *	[tlv] extended supported rates
2132 	 *	[tlv] WPA (optional)
2133 	 *	[tlv] user-specified ie's
2134 	 */
2135 	m = ieee80211_getmgtframe(&frm,
2136 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2137 	       	 2 + IEEE80211_NWID_LEN
2138 	       + 2 + IEEE80211_RATE_SIZE
2139 	       + sizeof(struct ieee80211_ie_wpa)
2140 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2141 	       + sizeof(struct ieee80211_ie_wpa)
2142 	       + (vap->iv_appie_probereq != NULL ?
2143 		   vap->iv_appie_probereq->ie_len : 0)
2144 	);
2145 	if (m == NULL) {
2146 		vap->iv_stats.is_tx_nobuf++;
2147 		ieee80211_free_node(ni);
2148 		return ENOMEM;
2149 	}
2150 
2151 	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2152 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2153 	frm = ieee80211_add_rates(frm, rs);
2154 	frm = ieee80211_add_rsn(frm, vap);
2155 	frm = ieee80211_add_xrates(frm, rs);
2156 	frm = ieee80211_add_wpa(frm, vap);
2157 	if (vap->iv_appie_probereq != NULL)
2158 		frm = add_appie(frm, vap->iv_appie_probereq);
2159 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2160 
2161 	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2162 	    ("leading space %zd", M_LEADINGSPACE(m)));
2163 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2164 	if (m == NULL) {
2165 		/* NB: cannot happen */
2166 		ieee80211_free_node(ni);
2167 		return ENOMEM;
2168 	}
2169 
2170 	IEEE80211_TX_LOCK(ic);
2171 	wh = mtod(m, struct ieee80211_frame *);
2172 	ieee80211_send_setup(ni, m,
2173 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2174 	     IEEE80211_NONQOS_TID, sa, da, bssid);
2175 	/* XXX power management? */
2176 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2177 
2178 	M_WME_SETAC(m, WME_AC_BE);
2179 
2180 	IEEE80211_NODE_STAT(ni, tx_probereq);
2181 	IEEE80211_NODE_STAT(ni, tx_mgmt);
2182 
2183 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2184 	    "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
2185 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
2186 	    ssidlen, ssid);
2187 
2188 	memset(&params, 0, sizeof(params));
2189 	params.ibp_pri = M_WME_GETAC(m);
2190 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2191 	params.ibp_rate0 = tp->mgmtrate;
2192 	if (IEEE80211_IS_MULTICAST(da)) {
2193 		params.ibp_flags |= IEEE80211_BPF_NOACK;
2194 		params.ibp_try0 = 1;
2195 	} else
2196 		params.ibp_try0 = tp->maxretry;
2197 	params.ibp_power = ni->ni_txpower;
2198 	ret = ieee80211_raw_output(vap, ni, m, &params);
2199 	IEEE80211_TX_UNLOCK(ic);
2200 	return (ret);
2201 }
2202 
2203 /*
2204  * Calculate capability information for mgt frames.
2205  */
2206 uint16_t
2207 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2208 {
2209 	struct ieee80211com *ic = vap->iv_ic;
2210 	uint16_t capinfo;
2211 
2212 	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2213 
2214 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2215 		capinfo = IEEE80211_CAPINFO_ESS;
2216 	else if (vap->iv_opmode == IEEE80211_M_IBSS)
2217 		capinfo = IEEE80211_CAPINFO_IBSS;
2218 	else
2219 		capinfo = 0;
2220 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2221 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2222 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2223 	    IEEE80211_IS_CHAN_2GHZ(chan))
2224 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2225 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2226 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2227 	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2228 		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2229 	return capinfo;
2230 }
2231 
2232 /*
2233  * Send a management frame.  The node is for the destination (or ic_bss
2234  * when in station mode).  Nodes other than ic_bss have their reference
2235  * count bumped to reflect our use for an indeterminant time.
2236  */
2237 int
2238 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2239 {
2240 #define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2241 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2242 	struct ieee80211vap *vap = ni->ni_vap;
2243 	struct ieee80211com *ic = ni->ni_ic;
2244 	struct ieee80211_node *bss = vap->iv_bss;
2245 	struct ieee80211_bpf_params params;
2246 	struct mbuf *m;
2247 	uint8_t *frm;
2248 	uint16_t capinfo;
2249 	int has_challenge, is_shared_key, ret, status;
2250 
2251 	KASSERT(ni != NULL, ("null node"));
2252 
2253 	/*
2254 	 * Hold a reference on the node so it doesn't go away until after
2255 	 * the xmit is complete all the way in the driver.  On error we
2256 	 * will remove our reference.
2257 	 */
2258 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2259 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2260 		__func__, __LINE__,
2261 		ni, ether_sprintf(ni->ni_macaddr),
2262 		ieee80211_node_refcnt(ni)+1);
2263 	ieee80211_ref_node(ni);
2264 
2265 	memset(&params, 0, sizeof(params));
2266 	switch (type) {
2267 
2268 	case IEEE80211_FC0_SUBTYPE_AUTH:
2269 		status = arg >> 16;
2270 		arg &= 0xffff;
2271 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2272 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2273 		    ni->ni_challenge != NULL);
2274 
2275 		/*
2276 		 * Deduce whether we're doing open authentication or
2277 		 * shared key authentication.  We do the latter if
2278 		 * we're in the middle of a shared key authentication
2279 		 * handshake or if we're initiating an authentication
2280 		 * request and configured to use shared key.
2281 		 */
2282 		is_shared_key = has_challenge ||
2283 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2284 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2285 		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
2286 
2287 		m = ieee80211_getmgtframe(&frm,
2288 			  ic->ic_headroom + sizeof(struct ieee80211_frame),
2289 			  3 * sizeof(uint16_t)
2290 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2291 				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
2292 		);
2293 		if (m == NULL)
2294 			senderr(ENOMEM, is_tx_nobuf);
2295 
2296 		((uint16_t *)frm)[0] =
2297 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2298 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
2299 		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
2300 		((uint16_t *)frm)[2] = htole16(status);/* status */
2301 
2302 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2303 			((uint16_t *)frm)[3] =
2304 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
2305 			    IEEE80211_ELEMID_CHALLENGE);
2306 			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2307 			    IEEE80211_CHALLENGE_LEN);
2308 			m->m_pkthdr.len = m->m_len =
2309 				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2310 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2311 				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2312 				    "request encrypt frame (%s)", __func__);
2313 				/* mark frame for encryption */
2314 				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2315 			}
2316 		} else
2317 			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2318 
2319 		/* XXX not right for shared key */
2320 		if (status == IEEE80211_STATUS_SUCCESS)
2321 			IEEE80211_NODE_STAT(ni, tx_auth);
2322 		else
2323 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
2324 
2325 		if (vap->iv_opmode == IEEE80211_M_STA)
2326 			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2327 				(void *) vap->iv_state);
2328 		break;
2329 
2330 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2331 		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2332 		    "send station deauthenticate (reason %d)", arg);
2333 		m = ieee80211_getmgtframe(&frm,
2334 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2335 			sizeof(uint16_t));
2336 		if (m == NULL)
2337 			senderr(ENOMEM, is_tx_nobuf);
2338 		*(uint16_t *)frm = htole16(arg);	/* reason */
2339 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2340 
2341 		IEEE80211_NODE_STAT(ni, tx_deauth);
2342 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2343 
2344 		ieee80211_node_unauthorize(ni);		/* port closed */
2345 		break;
2346 
2347 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2348 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2349 		/*
2350 		 * asreq frame format
2351 		 *	[2] capability information
2352 		 *	[2] listen interval
2353 		 *	[6*] current AP address (reassoc only)
2354 		 *	[tlv] ssid
2355 		 *	[tlv] supported rates
2356 		 *	[tlv] extended supported rates
2357 		 *	[4] power capability (optional)
2358 		 *	[28] supported channels (optional)
2359 		 *	[tlv] HT capabilities
2360 		 *	[tlv] WME (optional)
2361 		 *	[tlv] Vendor OUI HT capabilities (optional)
2362 		 *	[tlv] Atheros capabilities (if negotiated)
2363 		 *	[tlv] AppIE's (optional)
2364 		 */
2365 		m = ieee80211_getmgtframe(&frm,
2366 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2367 			 sizeof(uint16_t)
2368 		       + sizeof(uint16_t)
2369 		       + IEEE80211_ADDR_LEN
2370 		       + 2 + IEEE80211_NWID_LEN
2371 		       + 2 + IEEE80211_RATE_SIZE
2372 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2373 		       + 4
2374 		       + 2 + 26
2375 		       + sizeof(struct ieee80211_wme_info)
2376 		       + sizeof(struct ieee80211_ie_htcap)
2377 		       + 4 + sizeof(struct ieee80211_ie_htcap)
2378 #ifdef IEEE80211_SUPPORT_SUPERG
2379 		       + sizeof(struct ieee80211_ath_ie)
2380 #endif
2381 		       + (vap->iv_appie_wpa != NULL ?
2382 				vap->iv_appie_wpa->ie_len : 0)
2383 		       + (vap->iv_appie_assocreq != NULL ?
2384 				vap->iv_appie_assocreq->ie_len : 0)
2385 		);
2386 		if (m == NULL)
2387 			senderr(ENOMEM, is_tx_nobuf);
2388 
2389 		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2390 		    ("wrong mode %u", vap->iv_opmode));
2391 		capinfo = IEEE80211_CAPINFO_ESS;
2392 		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2393 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2394 		/*
2395 		 * NB: Some 11a AP's reject the request when
2396 		 *     short premable is set.
2397 		 */
2398 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2399 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2400 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2401 		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2402 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2403 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2404 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2405 		    (vap->iv_flags & IEEE80211_F_DOTH))
2406 			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2407 		*(uint16_t *)frm = htole16(capinfo);
2408 		frm += 2;
2409 
2410 		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2411 		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2412 						    bss->ni_intval));
2413 		frm += 2;
2414 
2415 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2416 			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2417 			frm += IEEE80211_ADDR_LEN;
2418 		}
2419 
2420 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2421 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2422 		frm = ieee80211_add_rsn(frm, vap);
2423 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2424 		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2425 			frm = ieee80211_add_powercapability(frm,
2426 			    ic->ic_curchan);
2427 			frm = ieee80211_add_supportedchannels(frm, ic);
2428 		}
2429 
2430 		/*
2431 		 * Check the channel - we may be using an 11n NIC with an
2432 		 * 11n capable station, but we're configured to be an 11b
2433 		 * channel.
2434 		 */
2435 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2436 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2437 		    ni->ni_ies.htcap_ie != NULL &&
2438 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
2439 			frm = ieee80211_add_htcap(frm, ni);
2440 		}
2441 		frm = ieee80211_add_wpa(frm, vap);
2442 		if ((ic->ic_flags & IEEE80211_F_WME) &&
2443 		    ni->ni_ies.wme_ie != NULL)
2444 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2445 
2446 		/*
2447 		 * Same deal - only send HT info if we're on an 11n
2448 		 * capable channel.
2449 		 */
2450 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2451 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2452 		    ni->ni_ies.htcap_ie != NULL &&
2453 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
2454 			frm = ieee80211_add_htcap_vendor(frm, ni);
2455 		}
2456 #ifdef IEEE80211_SUPPORT_SUPERG
2457 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2458 			frm = ieee80211_add_ath(frm,
2459 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2460 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2461 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2462 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2463 		}
2464 #endif /* IEEE80211_SUPPORT_SUPERG */
2465 		if (vap->iv_appie_assocreq != NULL)
2466 			frm = add_appie(frm, vap->iv_appie_assocreq);
2467 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2468 
2469 		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2470 			(void *) vap->iv_state);
2471 		break;
2472 
2473 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2474 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2475 		/*
2476 		 * asresp frame format
2477 		 *	[2] capability information
2478 		 *	[2] status
2479 		 *	[2] association ID
2480 		 *	[tlv] supported rates
2481 		 *	[tlv] extended supported rates
2482 		 *	[tlv] HT capabilities (standard, if STA enabled)
2483 		 *	[tlv] HT information (standard, if STA enabled)
2484 		 *	[tlv] WME (if configured and STA enabled)
2485 		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2486 		 *	[tlv] HT information (vendor OUI, if STA enabled)
2487 		 *	[tlv] Atheros capabilities (if STA enabled)
2488 		 *	[tlv] AppIE's (optional)
2489 		 */
2490 		m = ieee80211_getmgtframe(&frm,
2491 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2492 			 sizeof(uint16_t)
2493 		       + sizeof(uint16_t)
2494 		       + sizeof(uint16_t)
2495 		       + 2 + IEEE80211_RATE_SIZE
2496 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2497 		       + sizeof(struct ieee80211_ie_htcap) + 4
2498 		       + sizeof(struct ieee80211_ie_htinfo) + 4
2499 		       + sizeof(struct ieee80211_wme_param)
2500 #ifdef IEEE80211_SUPPORT_SUPERG
2501 		       + sizeof(struct ieee80211_ath_ie)
2502 #endif
2503 		       + (vap->iv_appie_assocresp != NULL ?
2504 				vap->iv_appie_assocresp->ie_len : 0)
2505 		);
2506 		if (m == NULL)
2507 			senderr(ENOMEM, is_tx_nobuf);
2508 
2509 		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2510 		*(uint16_t *)frm = htole16(capinfo);
2511 		frm += 2;
2512 
2513 		*(uint16_t *)frm = htole16(arg);	/* status */
2514 		frm += 2;
2515 
2516 		if (arg == IEEE80211_STATUS_SUCCESS) {
2517 			*(uint16_t *)frm = htole16(ni->ni_associd);
2518 			IEEE80211_NODE_STAT(ni, tx_assoc);
2519 		} else
2520 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2521 		frm += 2;
2522 
2523 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2524 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2525 		/* NB: respond according to what we received */
2526 		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2527 			frm = ieee80211_add_htcap(frm, ni);
2528 			frm = ieee80211_add_htinfo(frm, ni);
2529 		}
2530 		if ((vap->iv_flags & IEEE80211_F_WME) &&
2531 		    ni->ni_ies.wme_ie != NULL)
2532 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2533 		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2534 			frm = ieee80211_add_htcap_vendor(frm, ni);
2535 			frm = ieee80211_add_htinfo_vendor(frm, ni);
2536 		}
2537 #ifdef IEEE80211_SUPPORT_SUPERG
2538 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2539 			frm = ieee80211_add_ath(frm,
2540 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2541 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2542 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2543 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2544 #endif /* IEEE80211_SUPPORT_SUPERG */
2545 		if (vap->iv_appie_assocresp != NULL)
2546 			frm = add_appie(frm, vap->iv_appie_assocresp);
2547 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2548 		break;
2549 
2550 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2551 		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2552 		    "send station disassociate (reason %d)", arg);
2553 		m = ieee80211_getmgtframe(&frm,
2554 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2555 			sizeof(uint16_t));
2556 		if (m == NULL)
2557 			senderr(ENOMEM, is_tx_nobuf);
2558 		*(uint16_t *)frm = htole16(arg);	/* reason */
2559 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2560 
2561 		IEEE80211_NODE_STAT(ni, tx_disassoc);
2562 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2563 		break;
2564 
2565 	default:
2566 		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2567 		    "invalid mgmt frame type %u", type);
2568 		senderr(EINVAL, is_tx_unknownmgt);
2569 		/* NOTREACHED */
2570 	}
2571 
2572 	/* NB: force non-ProbeResp frames to the highest queue */
2573 	params.ibp_pri = WME_AC_VO;
2574 	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2575 	/* NB: we know all frames are unicast */
2576 	params.ibp_try0 = bss->ni_txparms->maxretry;
2577 	params.ibp_power = bss->ni_txpower;
2578 	return ieee80211_mgmt_output(ni, m, type, &params);
2579 bad:
2580 	ieee80211_free_node(ni);
2581 	return ret;
2582 #undef senderr
2583 #undef HTFLAGS
2584 }
2585 
2586 /*
2587  * Return an mbuf with a probe response frame in it.
2588  * Space is left to prepend and 802.11 header at the
2589  * front but it's left to the caller to fill in.
2590  */
2591 struct mbuf *
2592 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2593 {
2594 	struct ieee80211vap *vap = bss->ni_vap;
2595 	struct ieee80211com *ic = bss->ni_ic;
2596 	const struct ieee80211_rateset *rs;
2597 	struct mbuf *m;
2598 	uint16_t capinfo;
2599 	uint8_t *frm;
2600 
2601 	/*
2602 	 * probe response frame format
2603 	 *	[8] time stamp
2604 	 *	[2] beacon interval
2605 	 *	[2] cabability information
2606 	 *	[tlv] ssid
2607 	 *	[tlv] supported rates
2608 	 *	[tlv] parameter set (FH/DS)
2609 	 *	[tlv] parameter set (IBSS)
2610 	 *	[tlv] country (optional)
2611 	 *	[3] power control (optional)
2612 	 *	[5] channel switch announcement (CSA) (optional)
2613 	 *	[tlv] extended rate phy (ERP)
2614 	 *	[tlv] extended supported rates
2615 	 *	[tlv] RSN (optional)
2616 	 *	[tlv] HT capabilities
2617 	 *	[tlv] HT information
2618 	 *	[tlv] WPA (optional)
2619 	 *	[tlv] WME (optional)
2620 	 *	[tlv] Vendor OUI HT capabilities (optional)
2621 	 *	[tlv] Vendor OUI HT information (optional)
2622 	 *	[tlv] Atheros capabilities
2623 	 *	[tlv] AppIE's (optional)
2624 	 *	[tlv] Mesh ID (MBSS)
2625 	 *	[tlv] Mesh Conf (MBSS)
2626 	 */
2627 	m = ieee80211_getmgtframe(&frm,
2628 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2629 		 8
2630 	       + sizeof(uint16_t)
2631 	       + sizeof(uint16_t)
2632 	       + 2 + IEEE80211_NWID_LEN
2633 	       + 2 + IEEE80211_RATE_SIZE
2634 	       + 7	/* max(7,3) */
2635 	       + IEEE80211_COUNTRY_MAX_SIZE
2636 	       + 3
2637 	       + sizeof(struct ieee80211_csa_ie)
2638 	       + sizeof(struct ieee80211_quiet_ie)
2639 	       + 3
2640 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2641 	       + sizeof(struct ieee80211_ie_wpa)
2642 	       + sizeof(struct ieee80211_ie_htcap)
2643 	       + sizeof(struct ieee80211_ie_htinfo)
2644 	       + sizeof(struct ieee80211_ie_wpa)
2645 	       + sizeof(struct ieee80211_wme_param)
2646 	       + 4 + sizeof(struct ieee80211_ie_htcap)
2647 	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2648 #ifdef IEEE80211_SUPPORT_SUPERG
2649 	       + sizeof(struct ieee80211_ath_ie)
2650 #endif
2651 #ifdef IEEE80211_SUPPORT_MESH
2652 	       + 2 + IEEE80211_MESHID_LEN
2653 	       + sizeof(struct ieee80211_meshconf_ie)
2654 #endif
2655 	       + (vap->iv_appie_proberesp != NULL ?
2656 			vap->iv_appie_proberesp->ie_len : 0)
2657 	);
2658 	if (m == NULL) {
2659 		vap->iv_stats.is_tx_nobuf++;
2660 		return NULL;
2661 	}
2662 
2663 	memset(frm, 0, 8);	/* timestamp should be filled later */
2664 	frm += 8;
2665 	*(uint16_t *)frm = htole16(bss->ni_intval);
2666 	frm += 2;
2667 	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2668 	*(uint16_t *)frm = htole16(capinfo);
2669 	frm += 2;
2670 
2671 	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2672 	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2673 	frm = ieee80211_add_rates(frm, rs);
2674 
2675 	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2676 		*frm++ = IEEE80211_ELEMID_FHPARMS;
2677 		*frm++ = 5;
2678 		*frm++ = bss->ni_fhdwell & 0x00ff;
2679 		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2680 		*frm++ = IEEE80211_FH_CHANSET(
2681 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2682 		*frm++ = IEEE80211_FH_CHANPAT(
2683 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2684 		*frm++ = bss->ni_fhindex;
2685 	} else {
2686 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2687 		*frm++ = 1;
2688 		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2689 	}
2690 
2691 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2692 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2693 		*frm++ = 2;
2694 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2695 	}
2696 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2697 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2698 		frm = ieee80211_add_countryie(frm, ic);
2699 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2700 		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2701 			frm = ieee80211_add_powerconstraint(frm, vap);
2702 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2703 			frm = ieee80211_add_csa(frm, vap);
2704 	}
2705 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2706 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2707 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2708 			if (vap->iv_quiet)
2709 				frm = ieee80211_add_quiet(frm, vap);
2710 		}
2711 	}
2712 	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2713 		frm = ieee80211_add_erp(frm, ic);
2714 	frm = ieee80211_add_xrates(frm, rs);
2715 	frm = ieee80211_add_rsn(frm, vap);
2716 	/*
2717 	 * NB: legacy 11b clients do not get certain ie's.
2718 	 *     The caller identifies such clients by passing
2719 	 *     a token in legacy to us.  Could expand this to be
2720 	 *     any legacy client for stuff like HT ie's.
2721 	 */
2722 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2723 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2724 		frm = ieee80211_add_htcap(frm, bss);
2725 		frm = ieee80211_add_htinfo(frm, bss);
2726 	}
2727 	frm = ieee80211_add_wpa(frm, vap);
2728 	if (vap->iv_flags & IEEE80211_F_WME)
2729 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2730 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2731 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
2732 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2733 		frm = ieee80211_add_htcap_vendor(frm, bss);
2734 		frm = ieee80211_add_htinfo_vendor(frm, bss);
2735 	}
2736 #ifdef IEEE80211_SUPPORT_SUPERG
2737 	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
2738 	    legacy != IEEE80211_SEND_LEGACY_11B)
2739 		frm = ieee80211_add_athcaps(frm, bss);
2740 #endif
2741 	if (vap->iv_appie_proberesp != NULL)
2742 		frm = add_appie(frm, vap->iv_appie_proberesp);
2743 #ifdef IEEE80211_SUPPORT_MESH
2744 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2745 		frm = ieee80211_add_meshid(frm, vap);
2746 		frm = ieee80211_add_meshconf(frm, vap);
2747 	}
2748 #endif
2749 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2750 
2751 	return m;
2752 }
2753 
2754 /*
2755  * Send a probe response frame to the specified mac address.
2756  * This does not go through the normal mgt frame api so we
2757  * can specify the destination address and re-use the bss node
2758  * for the sta reference.
2759  */
2760 int
2761 ieee80211_send_proberesp(struct ieee80211vap *vap,
2762 	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2763 {
2764 	struct ieee80211_node *bss = vap->iv_bss;
2765 	struct ieee80211com *ic = vap->iv_ic;
2766 	struct ieee80211_frame *wh;
2767 	struct mbuf *m;
2768 	int ret;
2769 
2770 	if (vap->iv_state == IEEE80211_S_CAC) {
2771 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2772 		    "block %s frame in CAC state", "probe response");
2773 		vap->iv_stats.is_tx_badstate++;
2774 		return EIO;		/* XXX */
2775 	}
2776 
2777 	/*
2778 	 * Hold a reference on the node so it doesn't go away until after
2779 	 * the xmit is complete all the way in the driver.  On error we
2780 	 * will remove our reference.
2781 	 */
2782 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2783 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2784 	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2785 	    ieee80211_node_refcnt(bss)+1);
2786 	ieee80211_ref_node(bss);
2787 
2788 	m = ieee80211_alloc_proberesp(bss, legacy);
2789 	if (m == NULL) {
2790 		ieee80211_free_node(bss);
2791 		return ENOMEM;
2792 	}
2793 
2794 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2795 	KASSERT(m != NULL, ("no room for header"));
2796 
2797 	IEEE80211_TX_LOCK(ic);
2798 	wh = mtod(m, struct ieee80211_frame *);
2799 	ieee80211_send_setup(bss, m,
2800 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2801 	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2802 	/* XXX power management? */
2803 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2804 
2805 	M_WME_SETAC(m, WME_AC_BE);
2806 
2807 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2808 	    "send probe resp on channel %u to %s%s\n",
2809 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2810 	    legacy ? " <legacy>" : "");
2811 	IEEE80211_NODE_STAT(bss, tx_mgmt);
2812 
2813 	ret = ieee80211_raw_output(vap, bss, m, NULL);
2814 	IEEE80211_TX_UNLOCK(ic);
2815 	return (ret);
2816 }
2817 
2818 /*
2819  * Allocate and build a RTS (Request To Send) control frame.
2820  */
2821 struct mbuf *
2822 ieee80211_alloc_rts(struct ieee80211com *ic,
2823 	const uint8_t ra[IEEE80211_ADDR_LEN],
2824 	const uint8_t ta[IEEE80211_ADDR_LEN],
2825 	uint16_t dur)
2826 {
2827 	struct ieee80211_frame_rts *rts;
2828 	struct mbuf *m;
2829 
2830 	/* XXX honor ic_headroom */
2831 	m = m_gethdr(M_NOWAIT, MT_DATA);
2832 	if (m != NULL) {
2833 		rts = mtod(m, struct ieee80211_frame_rts *);
2834 		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2835 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2836 		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2837 		*(u_int16_t *)rts->i_dur = htole16(dur);
2838 		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2839 		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2840 
2841 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2842 	}
2843 	return m;
2844 }
2845 
2846 /*
2847  * Allocate and build a CTS (Clear To Send) control frame.
2848  */
2849 struct mbuf *
2850 ieee80211_alloc_cts(struct ieee80211com *ic,
2851 	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2852 {
2853 	struct ieee80211_frame_cts *cts;
2854 	struct mbuf *m;
2855 
2856 	/* XXX honor ic_headroom */
2857 	m = m_gethdr(M_NOWAIT, MT_DATA);
2858 	if (m != NULL) {
2859 		cts = mtod(m, struct ieee80211_frame_cts *);
2860 		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2861 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2862 		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2863 		*(u_int16_t *)cts->i_dur = htole16(dur);
2864 		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2865 
2866 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2867 	}
2868 	return m;
2869 }
2870 
2871 static void
2872 ieee80211_tx_mgt_timeout(void *arg)
2873 {
2874 	struct ieee80211vap *vap = arg;
2875 
2876 	IEEE80211_LOCK(vap->iv_ic);
2877 	if (vap->iv_state != IEEE80211_S_INIT &&
2878 	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2879 		/*
2880 		 * NB: it's safe to specify a timeout as the reason here;
2881 		 *     it'll only be used in the right state.
2882 		 */
2883 		ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
2884 			IEEE80211_SCAN_FAIL_TIMEOUT);
2885 	}
2886 	IEEE80211_UNLOCK(vap->iv_ic);
2887 }
2888 
2889 /*
2890  * This is the callback set on net80211-sourced transmitted
2891  * authentication request frames.
2892  *
2893  * This does a couple of things:
2894  *
2895  * + If the frame transmitted was a success, it schedules a future
2896  *   event which will transition the interface to scan.
2897  *   If a state transition _then_ occurs before that event occurs,
2898  *   said state transition will cancel this callout.
2899  *
2900  * + If the frame transmit was a failure, it immediately schedules
2901  *   the transition back to scan.
2902  */
2903 static void
2904 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2905 {
2906 	struct ieee80211vap *vap = ni->ni_vap;
2907 	enum ieee80211_state ostate = (enum ieee80211_state) arg;
2908 
2909 	/*
2910 	 * Frame transmit completed; arrange timer callback.  If
2911 	 * transmit was successfuly we wait for response.  Otherwise
2912 	 * we arrange an immediate callback instead of doing the
2913 	 * callback directly since we don't know what state the driver
2914 	 * is in (e.g. what locks it is holding).  This work should
2915 	 * not be too time-critical and not happen too often so the
2916 	 * added overhead is acceptable.
2917 	 *
2918 	 * XXX what happens if !acked but response shows up before callback?
2919 	 */
2920 	if (vap->iv_state == ostate) {
2921 		callout_reset(&vap->iv_mgtsend,
2922 			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2923 			ieee80211_tx_mgt_timeout, vap);
2924 	}
2925 }
2926 
2927 static void
2928 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2929 	struct ieee80211_node *ni)
2930 {
2931 	struct ieee80211vap *vap = ni->ni_vap;
2932 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
2933 	struct ieee80211com *ic = ni->ni_ic;
2934 	struct ieee80211_rateset *rs = &ni->ni_rates;
2935 	uint16_t capinfo;
2936 
2937 	/*
2938 	 * beacon frame format
2939 	 *	[8] time stamp
2940 	 *	[2] beacon interval
2941 	 *	[2] cabability information
2942 	 *	[tlv] ssid
2943 	 *	[tlv] supported rates
2944 	 *	[3] parameter set (DS)
2945 	 *	[8] CF parameter set (optional)
2946 	 *	[tlv] parameter set (IBSS/TIM)
2947 	 *	[tlv] country (optional)
2948 	 *	[3] power control (optional)
2949 	 *	[5] channel switch announcement (CSA) (optional)
2950 	 *	[tlv] extended rate phy (ERP)
2951 	 *	[tlv] extended supported rates
2952 	 *	[tlv] RSN parameters
2953 	 *	[tlv] HT capabilities
2954 	 *	[tlv] HT information
2955 	 * XXX Vendor-specific OIDs (e.g. Atheros)
2956 	 *	[tlv] WPA parameters
2957 	 *	[tlv] WME parameters
2958 	 *	[tlv] Vendor OUI HT capabilities (optional)
2959 	 *	[tlv] Vendor OUI HT information (optional)
2960 	 *	[tlv] Atheros capabilities (optional)
2961 	 *	[tlv] TDMA parameters (optional)
2962 	 *	[tlv] Mesh ID (MBSS)
2963 	 *	[tlv] Mesh Conf (MBSS)
2964 	 *	[tlv] application data (optional)
2965 	 */
2966 
2967 	memset(bo, 0, sizeof(*bo));
2968 
2969 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
2970 	frm += 8;
2971 	*(uint16_t *)frm = htole16(ni->ni_intval);
2972 	frm += 2;
2973 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
2974 	bo->bo_caps = (uint16_t *)frm;
2975 	*(uint16_t *)frm = htole16(capinfo);
2976 	frm += 2;
2977 	*frm++ = IEEE80211_ELEMID_SSID;
2978 	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2979 		*frm++ = ni->ni_esslen;
2980 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
2981 		frm += ni->ni_esslen;
2982 	} else
2983 		*frm++ = 0;
2984 	frm = ieee80211_add_rates(frm, rs);
2985 	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2986 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2987 		*frm++ = 1;
2988 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2989 	}
2990 	if (ic->ic_flags & IEEE80211_F_PCF) {
2991 		bo->bo_cfp = frm;
2992 		frm = ieee80211_add_cfparms(frm, ic);
2993 	}
2994 	bo->bo_tim = frm;
2995 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2996 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2997 		*frm++ = 2;
2998 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2999 		bo->bo_tim_len = 0;
3000 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3001 	    vap->iv_opmode == IEEE80211_M_MBSS) {
3002 		/* TIM IE is the same for Mesh and Hostap */
3003 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
3004 
3005 		tie->tim_ie = IEEE80211_ELEMID_TIM;
3006 		tie->tim_len = 4;	/* length */
3007 		tie->tim_count = 0;	/* DTIM count */
3008 		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
3009 		tie->tim_bitctl = 0;	/* bitmap control */
3010 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
3011 		frm += sizeof(struct ieee80211_tim_ie);
3012 		bo->bo_tim_len = 1;
3013 	}
3014 	bo->bo_tim_trailer = frm;
3015 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3016 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3017 		frm = ieee80211_add_countryie(frm, ic);
3018 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3019 		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
3020 			frm = ieee80211_add_powerconstraint(frm, vap);
3021 		bo->bo_csa = frm;
3022 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3023 			frm = ieee80211_add_csa(frm, vap);
3024 	} else
3025 		bo->bo_csa = frm;
3026 
3027 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3028 		bo->bo_quiet = frm;
3029 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3030 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
3031 			if (vap->iv_quiet)
3032 				frm = ieee80211_add_quiet(frm,vap);
3033 		}
3034 	} else
3035 		bo->bo_quiet = frm;
3036 
3037 	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
3038 		bo->bo_erp = frm;
3039 		frm = ieee80211_add_erp(frm, ic);
3040 	}
3041 	frm = ieee80211_add_xrates(frm, rs);
3042 	frm = ieee80211_add_rsn(frm, vap);
3043 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
3044 		frm = ieee80211_add_htcap(frm, ni);
3045 		bo->bo_htinfo = frm;
3046 		frm = ieee80211_add_htinfo(frm, ni);
3047 	}
3048 	frm = ieee80211_add_wpa(frm, vap);
3049 	if (vap->iv_flags & IEEE80211_F_WME) {
3050 		bo->bo_wme = frm;
3051 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
3052 	}
3053 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
3054 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
3055 		frm = ieee80211_add_htcap_vendor(frm, ni);
3056 		frm = ieee80211_add_htinfo_vendor(frm, ni);
3057 	}
3058 #ifdef IEEE80211_SUPPORT_SUPERG
3059 	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
3060 		bo->bo_ath = frm;
3061 		frm = ieee80211_add_athcaps(frm, ni);
3062 	}
3063 #endif
3064 #ifdef IEEE80211_SUPPORT_TDMA
3065 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3066 		bo->bo_tdma = frm;
3067 		frm = ieee80211_add_tdma(frm, vap);
3068 	}
3069 #endif
3070 	if (vap->iv_appie_beacon != NULL) {
3071 		bo->bo_appie = frm;
3072 		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
3073 		frm = add_appie(frm, vap->iv_appie_beacon);
3074 	}
3075 #ifdef IEEE80211_SUPPORT_MESH
3076 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3077 		frm = ieee80211_add_meshid(frm, vap);
3078 		bo->bo_meshconf = frm;
3079 		frm = ieee80211_add_meshconf(frm, vap);
3080 	}
3081 #endif
3082 	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
3083 	bo->bo_csa_trailer_len = frm - bo->bo_csa;
3084 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3085 }
3086 
3087 /*
3088  * Allocate a beacon frame and fillin the appropriate bits.
3089  */
3090 struct mbuf *
3091 ieee80211_beacon_alloc(struct ieee80211_node *ni)
3092 {
3093 	struct ieee80211vap *vap = ni->ni_vap;
3094 	struct ieee80211com *ic = ni->ni_ic;
3095 	struct ifnet *ifp = vap->iv_ifp;
3096 	struct ieee80211_frame *wh;
3097 	struct mbuf *m;
3098 	int pktlen;
3099 	uint8_t *frm;
3100 
3101 	/*
3102 	 * beacon frame format
3103 	 *	[8] time stamp
3104 	 *	[2] beacon interval
3105 	 *	[2] cabability information
3106 	 *	[tlv] ssid
3107 	 *	[tlv] supported rates
3108 	 *	[3] parameter set (DS)
3109 	 *	[8] CF parameter set (optional)
3110 	 *	[tlv] parameter set (IBSS/TIM)
3111 	 *	[tlv] country (optional)
3112 	 *	[3] power control (optional)
3113 	 *	[5] channel switch announcement (CSA) (optional)
3114 	 *	[tlv] extended rate phy (ERP)
3115 	 *	[tlv] extended supported rates
3116 	 *	[tlv] RSN parameters
3117 	 *	[tlv] HT capabilities
3118 	 *	[tlv] HT information
3119 	 *	[tlv] Vendor OUI HT capabilities (optional)
3120 	 *	[tlv] Vendor OUI HT information (optional)
3121 	 * XXX Vendor-specific OIDs (e.g. Atheros)
3122 	 *	[tlv] WPA parameters
3123 	 *	[tlv] WME parameters
3124 	 *	[tlv] TDMA parameters (optional)
3125 	 *	[tlv] Mesh ID (MBSS)
3126 	 *	[tlv] Mesh Conf (MBSS)
3127 	 *	[tlv] application data (optional)
3128 	 * NB: we allocate the max space required for the TIM bitmap.
3129 	 * XXX how big is this?
3130 	 */
3131 	pktlen =   8					/* time stamp */
3132 		 + sizeof(uint16_t)			/* beacon interval */
3133 		 + sizeof(uint16_t)			/* capabilities */
3134 		 + 2 + ni->ni_esslen			/* ssid */
3135 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
3136 	         + 2 + 1				/* DS parameters */
3137 		 + 2 + 6				/* CF parameters */
3138 		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
3139 		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
3140 		 + 2 + 1				/* power control */
3141 		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
3142 		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
3143 		 + 2 + 1				/* ERP */
3144 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3145 		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
3146 			2*sizeof(struct ieee80211_ie_wpa) : 0)
3147 		 /* XXX conditional? */
3148 		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3149 		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3150 		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
3151 			sizeof(struct ieee80211_wme_param) : 0)
3152 #ifdef IEEE80211_SUPPORT_SUPERG
3153 		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
3154 #endif
3155 #ifdef IEEE80211_SUPPORT_TDMA
3156 		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
3157 			sizeof(struct ieee80211_tdma_param) : 0)
3158 #endif
3159 #ifdef IEEE80211_SUPPORT_MESH
3160 		 + 2 + ni->ni_meshidlen
3161 		 + sizeof(struct ieee80211_meshconf_ie)
3162 #endif
3163 		 + IEEE80211_MAX_APPIE
3164 		 ;
3165 	m = ieee80211_getmgtframe(&frm,
3166 		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3167 	if (m == NULL) {
3168 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3169 			"%s: cannot get buf; size %u\n", __func__, pktlen);
3170 		vap->iv_stats.is_tx_nobuf++;
3171 		return NULL;
3172 	}
3173 	ieee80211_beacon_construct(m, frm, ni);
3174 
3175 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
3176 	KASSERT(m != NULL, ("no space for 802.11 header?"));
3177 	wh = mtod(m, struct ieee80211_frame *);
3178 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3179 	    IEEE80211_FC0_SUBTYPE_BEACON;
3180 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3181 	*(uint16_t *)wh->i_dur = 0;
3182 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3183 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3184 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3185 	*(uint16_t *)wh->i_seq = 0;
3186 
3187 	return m;
3188 }
3189 
3190 /*
3191  * Update the dynamic parts of a beacon frame based on the current state.
3192  */
3193 int
3194 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast)
3195 {
3196 	struct ieee80211vap *vap = ni->ni_vap;
3197 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3198 	struct ieee80211com *ic = ni->ni_ic;
3199 	int len_changed = 0;
3200 	uint16_t capinfo;
3201 	struct ieee80211_frame *wh;
3202 	ieee80211_seq seqno;
3203 
3204 	IEEE80211_LOCK(ic);
3205 	/*
3206 	 * Handle 11h channel change when we've reached the count.
3207 	 * We must recalculate the beacon frame contents to account
3208 	 * for the new channel.  Note we do this only for the first
3209 	 * vap that reaches this point; subsequent vaps just update
3210 	 * their beacon state to reflect the recalculated channel.
3211 	 */
3212 	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3213 	    vap->iv_csa_count == ic->ic_csa_count) {
3214 		vap->iv_csa_count = 0;
3215 		/*
3216 		 * Effect channel change before reconstructing the beacon
3217 		 * frame contents as many places reference ni_chan.
3218 		 */
3219 		if (ic->ic_csa_newchan != NULL)
3220 			ieee80211_csa_completeswitch(ic);
3221 		/*
3222 		 * NB: ieee80211_beacon_construct clears all pending
3223 		 * updates in bo_flags so we don't need to explicitly
3224 		 * clear IEEE80211_BEACON_CSA.
3225 		 */
3226 		ieee80211_beacon_construct(m,
3227 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3228 
3229 		/* XXX do WME aggressive mode processing? */
3230 		IEEE80211_UNLOCK(ic);
3231 		return 1;		/* just assume length changed */
3232 	}
3233 
3234 	wh = mtod(m, struct ieee80211_frame *);
3235 	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3236 	*(uint16_t *)&wh->i_seq[0] =
3237 		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3238 	M_SEQNO_SET(m, seqno);
3239 
3240 	/* XXX faster to recalculate entirely or just changes? */
3241 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3242 	*bo->bo_caps = htole16(capinfo);
3243 
3244 	if (vap->iv_flags & IEEE80211_F_WME) {
3245 		struct ieee80211_wme_state *wme = &ic->ic_wme;
3246 
3247 		/*
3248 		 * Check for agressive mode change.  When there is
3249 		 * significant high priority traffic in the BSS
3250 		 * throttle back BE traffic by using conservative
3251 		 * parameters.  Otherwise BE uses agressive params
3252 		 * to optimize performance of legacy/non-QoS traffic.
3253 		 */
3254 		if (wme->wme_flags & WME_F_AGGRMODE) {
3255 			if (wme->wme_hipri_traffic >
3256 			    wme->wme_hipri_switch_thresh) {
3257 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3258 				    "%s: traffic %u, disable aggressive mode\n",
3259 				    __func__, wme->wme_hipri_traffic);
3260 				wme->wme_flags &= ~WME_F_AGGRMODE;
3261 				ieee80211_wme_updateparams_locked(vap);
3262 				wme->wme_hipri_traffic =
3263 					wme->wme_hipri_switch_hysteresis;
3264 			} else
3265 				wme->wme_hipri_traffic = 0;
3266 		} else {
3267 			if (wme->wme_hipri_traffic <=
3268 			    wme->wme_hipri_switch_thresh) {
3269 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3270 				    "%s: traffic %u, enable aggressive mode\n",
3271 				    __func__, wme->wme_hipri_traffic);
3272 				wme->wme_flags |= WME_F_AGGRMODE;
3273 				ieee80211_wme_updateparams_locked(vap);
3274 				wme->wme_hipri_traffic = 0;
3275 			} else
3276 				wme->wme_hipri_traffic =
3277 					wme->wme_hipri_switch_hysteresis;
3278 		}
3279 		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3280 			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
3281 			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3282 		}
3283 	}
3284 
3285 	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
3286 		ieee80211_ht_update_beacon(vap, bo);
3287 		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3288 	}
3289 #ifdef IEEE80211_SUPPORT_TDMA
3290 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3291 		/*
3292 		 * NB: the beacon is potentially updated every TBTT.
3293 		 */
3294 		ieee80211_tdma_update_beacon(vap, bo);
3295 	}
3296 #endif
3297 #ifdef IEEE80211_SUPPORT_MESH
3298 	if (vap->iv_opmode == IEEE80211_M_MBSS)
3299 		ieee80211_mesh_update_beacon(vap, bo);
3300 #endif
3301 
3302 	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3303 	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
3304 		struct ieee80211_tim_ie *tie =
3305 			(struct ieee80211_tim_ie *) bo->bo_tim;
3306 		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3307 			u_int timlen, timoff, i;
3308 			/*
3309 			 * ATIM/DTIM needs updating.  If it fits in the
3310 			 * current space allocated then just copy in the
3311 			 * new bits.  Otherwise we need to move any trailing
3312 			 * data to make room.  Note that we know there is
3313 			 * contiguous space because ieee80211_beacon_allocate
3314 			 * insures there is space in the mbuf to write a
3315 			 * maximal-size virtual bitmap (based on iv_max_aid).
3316 			 */
3317 			/*
3318 			 * Calculate the bitmap size and offset, copy any
3319 			 * trailer out of the way, and then copy in the
3320 			 * new bitmap and update the information element.
3321 			 * Note that the tim bitmap must contain at least
3322 			 * one byte and any offset must be even.
3323 			 */
3324 			if (vap->iv_ps_pending != 0) {
3325 				timoff = 128;		/* impossibly large */
3326 				for (i = 0; i < vap->iv_tim_len; i++)
3327 					if (vap->iv_tim_bitmap[i]) {
3328 						timoff = i &~ 1;
3329 						break;
3330 					}
3331 				KASSERT(timoff != 128, ("tim bitmap empty!"));
3332 				for (i = vap->iv_tim_len-1; i >= timoff; i--)
3333 					if (vap->iv_tim_bitmap[i])
3334 						break;
3335 				timlen = 1 + (i - timoff);
3336 			} else {
3337 				timoff = 0;
3338 				timlen = 1;
3339 			}
3340 			if (timlen != bo->bo_tim_len) {
3341 				/* copy up/down trailer */
3342 				int adjust = tie->tim_bitmap+timlen
3343 					   - bo->bo_tim_trailer;
3344 				ovbcopy(bo->bo_tim_trailer,
3345 				    bo->bo_tim_trailer+adjust,
3346 				    bo->bo_tim_trailer_len);
3347 				bo->bo_tim_trailer += adjust;
3348 				bo->bo_erp += adjust;
3349 				bo->bo_htinfo += adjust;
3350 #ifdef IEEE80211_SUPPORT_SUPERG
3351 				bo->bo_ath += adjust;
3352 #endif
3353 #ifdef IEEE80211_SUPPORT_TDMA
3354 				bo->bo_tdma += adjust;
3355 #endif
3356 #ifdef IEEE80211_SUPPORT_MESH
3357 				bo->bo_meshconf += adjust;
3358 #endif
3359 				bo->bo_appie += adjust;
3360 				bo->bo_wme += adjust;
3361 				bo->bo_csa += adjust;
3362 				bo->bo_quiet += adjust;
3363 				bo->bo_tim_len = timlen;
3364 
3365 				/* update information element */
3366 				tie->tim_len = 3 + timlen;
3367 				tie->tim_bitctl = timoff;
3368 				len_changed = 1;
3369 			}
3370 			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
3371 				bo->bo_tim_len);
3372 
3373 			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
3374 
3375 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
3376 				"%s: TIM updated, pending %u, off %u, len %u\n",
3377 				__func__, vap->iv_ps_pending, timoff, timlen);
3378 		}
3379 		/* count down DTIM period */
3380 		if (tie->tim_count == 0)
3381 			tie->tim_count = tie->tim_period - 1;
3382 		else
3383 			tie->tim_count--;
3384 		/* update state for buffered multicast frames on DTIM */
3385 		if (mcast && tie->tim_count == 0)
3386 			tie->tim_bitctl |= 1;
3387 		else
3388 			tie->tim_bitctl &= ~1;
3389 		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
3390 			struct ieee80211_csa_ie *csa =
3391 			    (struct ieee80211_csa_ie *) bo->bo_csa;
3392 
3393 			/*
3394 			 * Insert or update CSA ie.  If we're just starting
3395 			 * to count down to the channel switch then we need
3396 			 * to insert the CSA ie.  Otherwise we just need to
3397 			 * drop the count.  The actual change happens above
3398 			 * when the vap's count reaches the target count.
3399 			 */
3400 			if (vap->iv_csa_count == 0) {
3401 				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
3402 				bo->bo_erp += sizeof(*csa);
3403 				bo->bo_htinfo += sizeof(*csa);
3404 				bo->bo_wme += sizeof(*csa);
3405 #ifdef IEEE80211_SUPPORT_SUPERG
3406 				bo->bo_ath += sizeof(*csa);
3407 #endif
3408 #ifdef IEEE80211_SUPPORT_TDMA
3409 				bo->bo_tdma += sizeof(*csa);
3410 #endif
3411 #ifdef IEEE80211_SUPPORT_MESH
3412 				bo->bo_meshconf += sizeof(*csa);
3413 #endif
3414 				bo->bo_appie += sizeof(*csa);
3415 				bo->bo_csa_trailer_len += sizeof(*csa);
3416 				bo->bo_quiet += sizeof(*csa);
3417 				bo->bo_tim_trailer_len += sizeof(*csa);
3418 				m->m_len += sizeof(*csa);
3419 				m->m_pkthdr.len += sizeof(*csa);
3420 
3421 				ieee80211_add_csa(bo->bo_csa, vap);
3422 			} else
3423 				csa->csa_count--;
3424 			vap->iv_csa_count++;
3425 			/* NB: don't clear IEEE80211_BEACON_CSA */
3426 		}
3427 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3428 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){
3429 			if (vap->iv_quiet)
3430 				ieee80211_add_quiet(bo->bo_quiet, vap);
3431 		}
3432 		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3433 			/*
3434 			 * ERP element needs updating.
3435 			 */
3436 			(void) ieee80211_add_erp(bo->bo_erp, ic);
3437 			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3438 		}
3439 #ifdef IEEE80211_SUPPORT_SUPERG
3440 		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
3441 			ieee80211_add_athcaps(bo->bo_ath, ni);
3442 			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3443 		}
3444 #endif
3445 	}
3446 	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3447 		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3448 		int aielen;
3449 		uint8_t *frm;
3450 
3451 		aielen = 0;
3452 		if (aie != NULL)
3453 			aielen += aie->ie_len;
3454 		if (aielen != bo->bo_appie_len) {
3455 			/* copy up/down trailer */
3456 			int adjust = aielen - bo->bo_appie_len;
3457 			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3458 				bo->bo_tim_trailer_len);
3459 			bo->bo_tim_trailer += adjust;
3460 			bo->bo_appie += adjust;
3461 			bo->bo_appie_len = aielen;
3462 
3463 			len_changed = 1;
3464 		}
3465 		frm = bo->bo_appie;
3466 		if (aie != NULL)
3467 			frm  = add_appie(frm, aie);
3468 		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3469 	}
3470 	IEEE80211_UNLOCK(ic);
3471 
3472 	return len_changed;
3473 }
3474 
3475 /*
3476  * Do Ethernet-LLC encapsulation for each payload in a fast frame
3477  * tunnel encapsulation.  The frame is assumed to have an Ethernet
3478  * header at the front that must be stripped before prepending the
3479  * LLC followed by the Ethernet header passed in (with an Ethernet
3480  * type that specifies the payload size).
3481  */
3482 struct mbuf *
3483 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
3484 	const struct ether_header *eh)
3485 {
3486 	struct llc *llc;
3487 	uint16_t payload;
3488 
3489 	/* XXX optimize by combining m_adj+M_PREPEND */
3490 	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
3491 	llc = mtod(m, struct llc *);
3492 	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
3493 	llc->llc_control = LLC_UI;
3494 	llc->llc_snap.org_code[0] = 0;
3495 	llc->llc_snap.org_code[1] = 0;
3496 	llc->llc_snap.org_code[2] = 0;
3497 	llc->llc_snap.ether_type = eh->ether_type;
3498 	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
3499 
3500 	M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
3501 	if (m == NULL) {		/* XXX cannot happen */
3502 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
3503 			"%s: no space for ether_header\n", __func__);
3504 		vap->iv_stats.is_tx_nobuf++;
3505 		return NULL;
3506 	}
3507 	ETHER_HEADER_COPY(mtod(m, void *), eh);
3508 	mtod(m, struct ether_header *)->ether_type = htons(payload);
3509 	return m;
3510 }
3511 
3512 /*
3513  * Complete an mbuf transmission.
3514  *
3515  * For now, this simply processes a completed frame after the
3516  * driver has completed it's transmission and/or retransmission.
3517  * It assumes the frame is an 802.11 encapsulated frame.
3518  *
3519  * Later on it will grow to become the exit path for a given frame
3520  * from the driver and, depending upon how it's been encapsulated
3521  * and already transmitted, it may end up doing A-MPDU retransmission,
3522  * power save requeuing, etc.
3523  *
3524  * In order for the above to work, the driver entry point to this
3525  * must not hold any driver locks.  Thus, the driver needs to delay
3526  * any actual mbuf completion until it can release said locks.
3527  *
3528  * This frees the mbuf and if the mbuf has a node reference,
3529  * the node reference will be freed.
3530  */
3531 void
3532 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
3533 {
3534 
3535 	if (ni != NULL) {
3536 		struct ifnet *ifp = ni->ni_vap->iv_ifp;
3537 
3538 		if (status == 0) {
3539 			if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
3540 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3541 			if (m->m_flags & M_MCAST)
3542 				if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
3543 		} else
3544 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3545 		if (m->m_flags & M_TXCB)
3546 			ieee80211_process_callback(ni, m, status);
3547 		ieee80211_free_node(ni);
3548 	}
3549 	m_freem(m);
3550 }
3551