1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_inet.h" 33 #include "opt_inet6.h" 34 #include "opt_wlan.h" 35 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/kernel.h> 39 #include <sys/malloc.h> 40 #include <sys/mbuf.h> 41 #include <sys/endian.h> 42 43 #include <sys/socket.h> 44 45 #include <net/bpf.h> 46 #include <net/ethernet.h> 47 #include <net/if.h> 48 #include <net/if_var.h> 49 #include <net/if_llc.h> 50 #include <net/if_media.h> 51 #include <net/if_vlan_var.h> 52 53 #include <net80211/ieee80211_var.h> 54 #include <net80211/ieee80211_regdomain.h> 55 #ifdef IEEE80211_SUPPORT_SUPERG 56 #include <net80211/ieee80211_superg.h> 57 #endif 58 #ifdef IEEE80211_SUPPORT_TDMA 59 #include <net80211/ieee80211_tdma.h> 60 #endif 61 #include <net80211/ieee80211_wds.h> 62 #include <net80211/ieee80211_mesh.h> 63 #include <net80211/ieee80211_vht.h> 64 65 #if defined(INET) || defined(INET6) 66 #include <netinet/in.h> 67 #endif 68 69 #ifdef INET 70 #include <netinet/if_ether.h> 71 #include <netinet/in_systm.h> 72 #include <netinet/ip.h> 73 #endif 74 #ifdef INET6 75 #include <netinet/ip6.h> 76 #endif 77 78 #include <security/mac/mac_framework.h> 79 80 #define ETHER_HEADER_COPY(dst, src) \ 81 memcpy(dst, src, sizeof(struct ether_header)) 82 83 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *, 84 u_int hdrsize, u_int ciphdrsize, u_int mtu); 85 static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int); 86 87 #ifdef IEEE80211_DEBUG 88 /* 89 * Decide if an outbound management frame should be 90 * printed when debugging is enabled. This filters some 91 * of the less interesting frames that come frequently 92 * (e.g. beacons). 93 */ 94 static __inline int 95 doprint(struct ieee80211vap *vap, int subtype) 96 { 97 switch (subtype) { 98 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 99 return (vap->iv_opmode == IEEE80211_M_IBSS); 100 } 101 return 1; 102 } 103 #endif 104 105 /* 106 * Transmit a frame to the given destination on the given VAP. 107 * 108 * It's up to the caller to figure out the details of who this 109 * is going to and resolving the node. 110 * 111 * This routine takes care of queuing it for power save, 112 * A-MPDU state stuff, fast-frames state stuff, encapsulation 113 * if required, then passing it up to the driver layer. 114 * 115 * This routine (for now) consumes the mbuf and frees the node 116 * reference; it ideally will return a TX status which reflects 117 * whether the mbuf was consumed or not, so the caller can 118 * free the mbuf (if appropriate) and the node reference (again, 119 * if appropriate.) 120 */ 121 int 122 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m, 123 struct ieee80211_node *ni) 124 { 125 struct ieee80211com *ic = vap->iv_ic; 126 struct ifnet *ifp = vap->iv_ifp; 127 int mcast; 128 int do_ampdu = 0; 129 int do_amsdu = 0; 130 int do_ampdu_amsdu = 0; 131 int no_ampdu = 1; /* Will be set to 0 if ampdu is active */ 132 int do_ff = 0; 133 134 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 135 (m->m_flags & M_PWR_SAV) == 0) { 136 /* 137 * Station in power save mode; pass the frame 138 * to the 802.11 layer and continue. We'll get 139 * the frame back when the time is right. 140 * XXX lose WDS vap linkage? 141 */ 142 if (ieee80211_pwrsave(ni, m) != 0) 143 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 144 ieee80211_free_node(ni); 145 146 /* 147 * We queued it fine, so tell the upper layer 148 * that we consumed it. 149 */ 150 return (0); 151 } 152 /* calculate priority so drivers can find the tx queue */ 153 if (ieee80211_classify(ni, m)) { 154 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 155 ni->ni_macaddr, NULL, 156 "%s", "classification failure"); 157 vap->iv_stats.is_tx_classify++; 158 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 159 m_freem(m); 160 ieee80211_free_node(ni); 161 162 /* XXX better status? */ 163 return (0); 164 } 165 /* 166 * Stash the node pointer. Note that we do this after 167 * any call to ieee80211_dwds_mcast because that code 168 * uses any existing value for rcvif to identify the 169 * interface it (might have been) received on. 170 */ 171 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 172 m->m_pkthdr.rcvif = (void *)ni; 173 mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0; 174 175 BPF_MTAP(ifp, m); /* 802.3 tx */ 176 177 178 /* 179 * Figure out if we can do A-MPDU, A-MSDU or FF. 180 * 181 * A-MPDU depends upon vap/node config. 182 * A-MSDU depends upon vap/node config. 183 * FF depends upon vap config, IE and whether 184 * it's 11abg (and not 11n/11ac/etc.) 185 * 186 * Note that these flags indiciate whether we can do 187 * it at all, rather than the situation (eg traffic type.) 188 */ 189 do_ampdu = ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) && 190 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)); 191 do_amsdu = ((ni->ni_flags & IEEE80211_NODE_AMSDU_TX) && 192 (vap->iv_flags_ht & IEEE80211_FHT_AMSDU_TX)); 193 do_ff = 194 ((ni->ni_flags & IEEE80211_NODE_HT) == 0) && 195 ((ni->ni_flags & IEEE80211_NODE_VHT) == 0) && 196 (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)); 197 198 /* 199 * Check if A-MPDU tx aggregation is setup or if we 200 * should try to enable it. The sta must be associated 201 * with HT and A-MPDU enabled for use. When the policy 202 * routine decides we should enable A-MPDU we issue an 203 * ADDBA request and wait for a reply. The frame being 204 * encapsulated will go out w/o using A-MPDU, or possibly 205 * it might be collected by the driver and held/retransmit. 206 * The default ic_ampdu_enable routine handles staggering 207 * ADDBA requests in case the receiver NAK's us or we are 208 * otherwise unable to establish a BA stream. 209 * 210 * Don't treat group-addressed frames as candidates for aggregation; 211 * net80211 doesn't support 802.11aa-2012 and so group addressed 212 * frames will always have sequence numbers allocated from the NON_QOS 213 * TID. 214 */ 215 if (do_ampdu) { 216 if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) { 217 int tid = WME_AC_TO_TID(M_WME_GETAC(m)); 218 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; 219 220 ieee80211_txampdu_count_packet(tap); 221 if (IEEE80211_AMPDU_RUNNING(tap)) { 222 /* 223 * Operational, mark frame for aggregation. 224 * 225 * XXX do tx aggregation here 226 */ 227 m->m_flags |= M_AMPDU_MPDU; 228 } else if (!IEEE80211_AMPDU_REQUESTED(tap) && 229 ic->ic_ampdu_enable(ni, tap)) { 230 /* 231 * Not negotiated yet, request service. 232 */ 233 ieee80211_ampdu_request(ni, tap); 234 /* XXX hold frame for reply? */ 235 } 236 /* 237 * Now update the no-ampdu flag. A-MPDU may have been 238 * started or administratively disabled above; so now we 239 * know whether we're running yet or not. 240 * 241 * This will let us know whether we should be doing A-MSDU 242 * at this point. We only do A-MSDU if we're either not 243 * doing A-MPDU, or A-MPDU is NACKed, or A-MPDU + A-MSDU 244 * is available. 245 * 246 * Whilst here, update the amsdu-ampdu flag. The above may 247 * have also set or cleared the amsdu-in-ampdu txa_flags 248 * combination so we can correctly do A-MPDU + A-MSDU. 249 */ 250 no_ampdu = (! IEEE80211_AMPDU_RUNNING(tap) 251 || (IEEE80211_AMPDU_NACKED(tap))); 252 do_ampdu_amsdu = IEEE80211_AMPDU_RUNNING_AMSDU(tap); 253 } 254 } 255 256 #ifdef IEEE80211_SUPPORT_SUPERG 257 /* 258 * Check for AMSDU/FF; queue for aggregation 259 * 260 * Note: we don't bother trying to do fast frames or 261 * A-MSDU encapsulation for 802.3 drivers. Now, we 262 * likely could do it for FF (because it's a magic 263 * atheros tunnel LLC type) but I don't think we're going 264 * to really need to. For A-MSDU we'd have to set the 265 * A-MSDU QoS bit in the wifi header, so we just plain 266 * can't do it. 267 */ 268 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 269 if ((! mcast) && 270 (do_ampdu_amsdu || (no_ampdu && do_amsdu)) && 271 ieee80211_amsdu_tx_ok(ni)) { 272 m = ieee80211_amsdu_check(ni, m); 273 if (m == NULL) { 274 /* NB: any ni ref held on stageq */ 275 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 276 "%s: amsdu_check queued frame\n", 277 __func__); 278 return (0); 279 } 280 } else if ((! mcast) && do_ff) { 281 m = ieee80211_ff_check(ni, m); 282 if (m == NULL) { 283 /* NB: any ni ref held on stageq */ 284 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 285 "%s: ff_check queued frame\n", 286 __func__); 287 return (0); 288 } 289 } 290 } 291 #endif /* IEEE80211_SUPPORT_SUPERG */ 292 293 /* 294 * Grab the TX lock - serialise the TX process from this 295 * point (where TX state is being checked/modified) 296 * through to driver queue. 297 */ 298 IEEE80211_TX_LOCK(ic); 299 300 /* 301 * XXX make the encap and transmit code a separate function 302 * so things like the FF (and later A-MSDU) path can just call 303 * it for flushed frames. 304 */ 305 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 306 /* 307 * Encapsulate the packet in prep for transmission. 308 */ 309 m = ieee80211_encap(vap, ni, m); 310 if (m == NULL) { 311 /* NB: stat+msg handled in ieee80211_encap */ 312 IEEE80211_TX_UNLOCK(ic); 313 ieee80211_free_node(ni); 314 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 315 return (ENOBUFS); 316 } 317 } 318 (void) ieee80211_parent_xmitpkt(ic, m); 319 320 /* 321 * Unlock at this point - no need to hold it across 322 * ieee80211_free_node() (ie, the comlock) 323 */ 324 IEEE80211_TX_UNLOCK(ic); 325 ic->ic_lastdata = ticks; 326 327 return (0); 328 } 329 330 331 332 /* 333 * Send the given mbuf through the given vap. 334 * 335 * This consumes the mbuf regardless of whether the transmit 336 * was successful or not. 337 * 338 * This does none of the initial checks that ieee80211_start() 339 * does (eg CAC timeout, interface wakeup) - the caller must 340 * do this first. 341 */ 342 static int 343 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m) 344 { 345 #define IS_DWDS(vap) \ 346 (vap->iv_opmode == IEEE80211_M_WDS && \ 347 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0) 348 struct ieee80211com *ic = vap->iv_ic; 349 struct ifnet *ifp = vap->iv_ifp; 350 struct ieee80211_node *ni; 351 struct ether_header *eh; 352 353 /* 354 * Cancel any background scan. 355 */ 356 if (ic->ic_flags & IEEE80211_F_SCAN) 357 ieee80211_cancel_anyscan(vap); 358 /* 359 * Find the node for the destination so we can do 360 * things like power save and fast frames aggregation. 361 * 362 * NB: past this point various code assumes the first 363 * mbuf has the 802.3 header present (and contiguous). 364 */ 365 ni = NULL; 366 if (m->m_len < sizeof(struct ether_header) && 367 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 368 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 369 "discard frame, %s\n", "m_pullup failed"); 370 vap->iv_stats.is_tx_nobuf++; /* XXX */ 371 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 372 return (ENOBUFS); 373 } 374 eh = mtod(m, struct ether_header *); 375 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 376 if (IS_DWDS(vap)) { 377 /* 378 * Only unicast frames from the above go out 379 * DWDS vaps; multicast frames are handled by 380 * dispatching the frame as it comes through 381 * the AP vap (see below). 382 */ 383 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS, 384 eh->ether_dhost, "mcast", "%s", "on DWDS"); 385 vap->iv_stats.is_dwds_mcast++; 386 m_freem(m); 387 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 388 /* XXX better status? */ 389 return (ENOBUFS); 390 } 391 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { 392 /* 393 * Spam DWDS vap's w/ multicast traffic. 394 */ 395 /* XXX only if dwds in use? */ 396 ieee80211_dwds_mcast(vap, m); 397 } 398 } 399 #ifdef IEEE80211_SUPPORT_MESH 400 if (vap->iv_opmode != IEEE80211_M_MBSS) { 401 #endif 402 ni = ieee80211_find_txnode(vap, eh->ether_dhost); 403 if (ni == NULL) { 404 /* NB: ieee80211_find_txnode does stat+msg */ 405 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 406 m_freem(m); 407 /* XXX better status? */ 408 return (ENOBUFS); 409 } 410 if (ni->ni_associd == 0 && 411 (ni->ni_flags & IEEE80211_NODE_ASSOCID)) { 412 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 413 eh->ether_dhost, NULL, 414 "sta not associated (type 0x%04x)", 415 htons(eh->ether_type)); 416 vap->iv_stats.is_tx_notassoc++; 417 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 418 m_freem(m); 419 ieee80211_free_node(ni); 420 /* XXX better status? */ 421 return (ENOBUFS); 422 } 423 #ifdef IEEE80211_SUPPORT_MESH 424 } else { 425 if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) { 426 /* 427 * Proxy station only if configured. 428 */ 429 if (!ieee80211_mesh_isproxyena(vap)) { 430 IEEE80211_DISCARD_MAC(vap, 431 IEEE80211_MSG_OUTPUT | 432 IEEE80211_MSG_MESH, 433 eh->ether_dhost, NULL, 434 "%s", "proxy not enabled"); 435 vap->iv_stats.is_mesh_notproxy++; 436 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 437 m_freem(m); 438 /* XXX better status? */ 439 return (ENOBUFS); 440 } 441 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 442 "forward frame from DS SA(%6D), DA(%6D)\n", 443 eh->ether_shost, ":", 444 eh->ether_dhost, ":"); 445 ieee80211_mesh_proxy_check(vap, eh->ether_shost); 446 } 447 ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m); 448 if (ni == NULL) { 449 /* 450 * NB: ieee80211_mesh_discover holds/disposes 451 * frame (e.g. queueing on path discovery). 452 */ 453 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 454 /* XXX better status? */ 455 return (ENOBUFS); 456 } 457 } 458 #endif 459 460 /* 461 * We've resolved the sender, so attempt to transmit it. 462 */ 463 464 if (vap->iv_state == IEEE80211_S_SLEEP) { 465 /* 466 * In power save; queue frame and then wakeup device 467 * for transmit. 468 */ 469 ic->ic_lastdata = ticks; 470 if (ieee80211_pwrsave(ni, m) != 0) 471 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 472 ieee80211_free_node(ni); 473 ieee80211_new_state(vap, IEEE80211_S_RUN, 0); 474 return (0); 475 } 476 477 if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0) 478 return (ENOBUFS); 479 return (0); 480 #undef IS_DWDS 481 } 482 483 /* 484 * Start method for vap's. All packets from the stack come 485 * through here. We handle common processing of the packets 486 * before dispatching them to the underlying device. 487 * 488 * if_transmit() requires that the mbuf be consumed by this call 489 * regardless of the return condition. 490 */ 491 int 492 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m) 493 { 494 struct ieee80211vap *vap = ifp->if_softc; 495 struct ieee80211com *ic = vap->iv_ic; 496 497 /* 498 * No data frames go out unless we're running. 499 * Note in particular this covers CAC and CSA 500 * states (though maybe we should check muting 501 * for CSA). 502 */ 503 if (vap->iv_state != IEEE80211_S_RUN && 504 vap->iv_state != IEEE80211_S_SLEEP) { 505 IEEE80211_LOCK(ic); 506 /* re-check under the com lock to avoid races */ 507 if (vap->iv_state != IEEE80211_S_RUN && 508 vap->iv_state != IEEE80211_S_SLEEP) { 509 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 510 "%s: ignore queue, in %s state\n", 511 __func__, ieee80211_state_name[vap->iv_state]); 512 vap->iv_stats.is_tx_badstate++; 513 IEEE80211_UNLOCK(ic); 514 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 515 m_freem(m); 516 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 517 return (ENETDOWN); 518 } 519 IEEE80211_UNLOCK(ic); 520 } 521 522 /* 523 * Sanitize mbuf flags for net80211 use. We cannot 524 * clear M_PWR_SAV or M_MORE_DATA because these may 525 * be set for frames that are re-submitted from the 526 * power save queue. 527 * 528 * NB: This must be done before ieee80211_classify as 529 * it marks EAPOL in frames with M_EAPOL. 530 */ 531 m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA); 532 533 /* 534 * Bump to the packet transmission path. 535 * The mbuf will be consumed here. 536 */ 537 return (ieee80211_start_pkt(vap, m)); 538 } 539 540 void 541 ieee80211_vap_qflush(struct ifnet *ifp) 542 { 543 544 /* Empty for now */ 545 } 546 547 /* 548 * 802.11 raw output routine. 549 * 550 * XXX TODO: this (and other send routines) should correctly 551 * XXX keep the pwr mgmt bit set if it decides to call into the 552 * XXX driver to send a frame whilst the state is SLEEP. 553 * 554 * Otherwise the peer may decide that we're awake and flood us 555 * with traffic we are still too asleep to receive! 556 */ 557 int 558 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni, 559 struct mbuf *m, const struct ieee80211_bpf_params *params) 560 { 561 struct ieee80211com *ic = vap->iv_ic; 562 int error; 563 564 /* 565 * Set node - the caller has taken a reference, so ensure 566 * that the mbuf has the same node value that 567 * it would if it were going via the normal path. 568 */ 569 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 570 m->m_pkthdr.rcvif = (void *)ni; 571 572 /* 573 * Attempt to add bpf transmit parameters. 574 * 575 * For now it's ok to fail; the raw_xmit api still takes 576 * them as an option. 577 * 578 * Later on when ic_raw_xmit() has params removed, 579 * they'll have to be added - so fail the transmit if 580 * they can't be. 581 */ 582 if (params) 583 (void) ieee80211_add_xmit_params(m, params); 584 585 error = ic->ic_raw_xmit(ni, m, params); 586 if (error) { 587 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1); 588 ieee80211_free_node(ni); 589 } 590 return (error); 591 } 592 593 static int 594 ieee80211_validate_frame(struct mbuf *m, 595 const struct ieee80211_bpf_params *params) 596 { 597 struct ieee80211_frame *wh; 598 int type; 599 600 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack)) 601 return (EINVAL); 602 603 wh = mtod(m, struct ieee80211_frame *); 604 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) != 605 IEEE80211_FC0_VERSION_0) 606 return (EINVAL); 607 608 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 609 if (type != IEEE80211_FC0_TYPE_DATA) { 610 if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != 611 IEEE80211_FC1_DIR_NODS) 612 return (EINVAL); 613 614 if (type != IEEE80211_FC0_TYPE_MGT && 615 (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) != 0) 616 return (EINVAL); 617 618 /* XXX skip other field checks? */ 619 } 620 621 if ((params && (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0) || 622 (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) != 0) { 623 int subtype; 624 625 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 626 627 /* 628 * See IEEE Std 802.11-2012, 629 * 8.2.4.1.9 'Protected Frame field' 630 */ 631 /* XXX no support for robust management frames yet. */ 632 if (!(type == IEEE80211_FC0_TYPE_DATA || 633 (type == IEEE80211_FC0_TYPE_MGT && 634 subtype == IEEE80211_FC0_SUBTYPE_AUTH))) 635 return (EINVAL); 636 637 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 638 } 639 640 if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh)) 641 return (EINVAL); 642 643 return (0); 644 } 645 646 static int 647 ieee80211_validate_rate(struct ieee80211_node *ni, uint8_t rate) 648 { 649 struct ieee80211com *ic = ni->ni_ic; 650 651 if (IEEE80211_IS_HT_RATE(rate)) { 652 if ((ic->ic_htcaps & IEEE80211_HTC_HT) == 0) 653 return (EINVAL); 654 655 rate = IEEE80211_RV(rate); 656 if (rate <= 31) { 657 if (rate > ic->ic_txstream * 8 - 1) 658 return (EINVAL); 659 660 return (0); 661 } 662 663 if (rate == 32) { 664 if ((ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0) 665 return (EINVAL); 666 667 return (0); 668 } 669 670 if ((ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) == 0) 671 return (EINVAL); 672 673 switch (ic->ic_txstream) { 674 case 0: 675 case 1: 676 return (EINVAL); 677 case 2: 678 if (rate > 38) 679 return (EINVAL); 680 681 return (0); 682 case 3: 683 if (rate > 52) 684 return (EINVAL); 685 686 return (0); 687 case 4: 688 default: 689 if (rate > 76) 690 return (EINVAL); 691 692 return (0); 693 } 694 } 695 696 if (!ieee80211_isratevalid(ic->ic_rt, rate)) 697 return (EINVAL); 698 699 return (0); 700 } 701 702 static int 703 ieee80211_sanitize_rates(struct ieee80211_node *ni, struct mbuf *m, 704 const struct ieee80211_bpf_params *params) 705 { 706 int error; 707 708 if (!params) 709 return (0); /* nothing to do */ 710 711 /* NB: most drivers assume that ibp_rate0 is set (!= 0). */ 712 if (params->ibp_rate0 != 0) { 713 error = ieee80211_validate_rate(ni, params->ibp_rate0); 714 if (error != 0) 715 return (error); 716 } else { 717 /* XXX pre-setup some default (e.g., mgmt / mcast) rate */ 718 /* XXX __DECONST? */ 719 (void) m; 720 } 721 722 if (params->ibp_rate1 != 0 && 723 (error = ieee80211_validate_rate(ni, params->ibp_rate1)) != 0) 724 return (error); 725 726 if (params->ibp_rate2 != 0 && 727 (error = ieee80211_validate_rate(ni, params->ibp_rate2)) != 0) 728 return (error); 729 730 if (params->ibp_rate3 != 0 && 731 (error = ieee80211_validate_rate(ni, params->ibp_rate3)) != 0) 732 return (error); 733 734 return (0); 735 } 736 737 /* 738 * 802.11 output routine. This is (currently) used only to 739 * connect bpf write calls to the 802.11 layer for injecting 740 * raw 802.11 frames. 741 */ 742 int 743 ieee80211_output(struct ifnet *ifp, struct mbuf *m, 744 const struct sockaddr *dst, struct route *ro) 745 { 746 #define senderr(e) do { error = (e); goto bad;} while (0) 747 const struct ieee80211_bpf_params *params = NULL; 748 struct ieee80211_node *ni = NULL; 749 struct ieee80211vap *vap; 750 struct ieee80211_frame *wh; 751 struct ieee80211com *ic = NULL; 752 int error; 753 int ret; 754 755 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 756 /* 757 * Short-circuit requests if the vap is marked OACTIVE 758 * as this can happen because a packet came down through 759 * ieee80211_start before the vap entered RUN state in 760 * which case it's ok to just drop the frame. This 761 * should not be necessary but callers of if_output don't 762 * check OACTIVE. 763 */ 764 senderr(ENETDOWN); 765 } 766 vap = ifp->if_softc; 767 ic = vap->iv_ic; 768 /* 769 * Hand to the 802.3 code if not tagged as 770 * a raw 802.11 frame. 771 */ 772 if (dst->sa_family != AF_IEEE80211) 773 return vap->iv_output(ifp, m, dst, ro); 774 #ifdef MAC 775 error = mac_ifnet_check_transmit(ifp, m); 776 if (error) 777 senderr(error); 778 #endif 779 if (ifp->if_flags & IFF_MONITOR) 780 senderr(ENETDOWN); 781 if (!IFNET_IS_UP_RUNNING(ifp)) 782 senderr(ENETDOWN); 783 if (vap->iv_state == IEEE80211_S_CAC) { 784 IEEE80211_DPRINTF(vap, 785 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 786 "block %s frame in CAC state\n", "raw data"); 787 vap->iv_stats.is_tx_badstate++; 788 senderr(EIO); /* XXX */ 789 } else if (vap->iv_state == IEEE80211_S_SCAN) 790 senderr(EIO); 791 /* XXX bypass bridge, pfil, carp, etc. */ 792 793 /* 794 * NB: DLT_IEEE802_11_RADIO identifies the parameters are 795 * present by setting the sa_len field of the sockaddr (yes, 796 * this is a hack). 797 * NB: we assume sa_data is suitably aligned to cast. 798 */ 799 if (dst->sa_len != 0) 800 params = (const struct ieee80211_bpf_params *)dst->sa_data; 801 802 error = ieee80211_validate_frame(m, params); 803 if (error != 0) 804 senderr(error); 805 806 wh = mtod(m, struct ieee80211_frame *); 807 808 /* locate destination node */ 809 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 810 case IEEE80211_FC1_DIR_NODS: 811 case IEEE80211_FC1_DIR_FROMDS: 812 ni = ieee80211_find_txnode(vap, wh->i_addr1); 813 break; 814 case IEEE80211_FC1_DIR_TODS: 815 case IEEE80211_FC1_DIR_DSTODS: 816 ni = ieee80211_find_txnode(vap, wh->i_addr3); 817 break; 818 default: 819 senderr(EDOOFUS); 820 } 821 if (ni == NULL) { 822 /* 823 * Permit packets w/ bpf params through regardless 824 * (see below about sa_len). 825 */ 826 if (dst->sa_len == 0) 827 senderr(EHOSTUNREACH); 828 ni = ieee80211_ref_node(vap->iv_bss); 829 } 830 831 /* 832 * Sanitize mbuf for net80211 flags leaked from above. 833 * 834 * NB: This must be done before ieee80211_classify as 835 * it marks EAPOL in frames with M_EAPOL. 836 */ 837 m->m_flags &= ~M_80211_TX; 838 m->m_flags |= M_ENCAP; /* mark encapsulated */ 839 840 if (IEEE80211_IS_DATA(wh)) { 841 /* calculate priority so drivers can find the tx queue */ 842 if (ieee80211_classify(ni, m)) 843 senderr(EIO); /* XXX */ 844 845 /* NB: ieee80211_encap does not include 802.11 header */ 846 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, 847 m->m_pkthdr.len - ieee80211_hdrsize(wh)); 848 } else 849 M_WME_SETAC(m, WME_AC_BE); 850 851 error = ieee80211_sanitize_rates(ni, m, params); 852 if (error != 0) 853 senderr(error); 854 855 IEEE80211_NODE_STAT(ni, tx_data); 856 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 857 IEEE80211_NODE_STAT(ni, tx_mcast); 858 m->m_flags |= M_MCAST; 859 } else 860 IEEE80211_NODE_STAT(ni, tx_ucast); 861 862 IEEE80211_TX_LOCK(ic); 863 ret = ieee80211_raw_output(vap, ni, m, params); 864 IEEE80211_TX_UNLOCK(ic); 865 return (ret); 866 bad: 867 if (m != NULL) 868 m_freem(m); 869 if (ni != NULL) 870 ieee80211_free_node(ni); 871 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 872 return error; 873 #undef senderr 874 } 875 876 /* 877 * Set the direction field and address fields of an outgoing 878 * frame. Note this should be called early on in constructing 879 * a frame as it sets i_fc[1]; other bits can then be or'd in. 880 */ 881 void 882 ieee80211_send_setup( 883 struct ieee80211_node *ni, 884 struct mbuf *m, 885 int type, int tid, 886 const uint8_t sa[IEEE80211_ADDR_LEN], 887 const uint8_t da[IEEE80211_ADDR_LEN], 888 const uint8_t bssid[IEEE80211_ADDR_LEN]) 889 { 890 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 891 struct ieee80211vap *vap = ni->ni_vap; 892 struct ieee80211_tx_ampdu *tap; 893 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 894 ieee80211_seq seqno; 895 896 IEEE80211_TX_LOCK_ASSERT(ni->ni_ic); 897 898 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 899 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 900 switch (vap->iv_opmode) { 901 case IEEE80211_M_STA: 902 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 903 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 904 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 905 IEEE80211_ADDR_COPY(wh->i_addr3, da); 906 break; 907 case IEEE80211_M_IBSS: 908 case IEEE80211_M_AHDEMO: 909 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 910 IEEE80211_ADDR_COPY(wh->i_addr1, da); 911 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 912 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 913 break; 914 case IEEE80211_M_HOSTAP: 915 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 916 IEEE80211_ADDR_COPY(wh->i_addr1, da); 917 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 918 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 919 break; 920 case IEEE80211_M_WDS: 921 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 922 IEEE80211_ADDR_COPY(wh->i_addr1, da); 923 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 924 IEEE80211_ADDR_COPY(wh->i_addr3, da); 925 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 926 break; 927 case IEEE80211_M_MBSS: 928 #ifdef IEEE80211_SUPPORT_MESH 929 if (IEEE80211_IS_MULTICAST(da)) { 930 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 931 /* XXX next hop */ 932 IEEE80211_ADDR_COPY(wh->i_addr1, da); 933 IEEE80211_ADDR_COPY(wh->i_addr2, 934 vap->iv_myaddr); 935 } else { 936 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 937 IEEE80211_ADDR_COPY(wh->i_addr1, da); 938 IEEE80211_ADDR_COPY(wh->i_addr2, 939 vap->iv_myaddr); 940 IEEE80211_ADDR_COPY(wh->i_addr3, da); 941 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 942 } 943 #endif 944 break; 945 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 946 break; 947 } 948 } else { 949 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 950 IEEE80211_ADDR_COPY(wh->i_addr1, da); 951 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 952 #ifdef IEEE80211_SUPPORT_MESH 953 if (vap->iv_opmode == IEEE80211_M_MBSS) 954 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 955 else 956 #endif 957 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 958 } 959 *(uint16_t *)&wh->i_dur[0] = 0; 960 961 /* 962 * XXX TODO: this is what the TX lock is for. 963 * Here we're incrementing sequence numbers, and they 964 * need to be in lock-step with what the driver is doing 965 * both in TX ordering and crypto encap (IV increment.) 966 * 967 * If the driver does seqno itself, then we can skip 968 * assigning sequence numbers here, and we can avoid 969 * requiring the TX lock. 970 */ 971 tap = &ni->ni_tx_ampdu[tid]; 972 if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) { 973 m->m_flags |= M_AMPDU_MPDU; 974 975 /* NB: zero out i_seq field (for s/w encryption etc) */ 976 *(uint16_t *)&wh->i_seq[0] = 0; 977 } else { 978 if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK, 979 type & IEEE80211_FC0_SUBTYPE_MASK)) 980 /* 981 * 802.11-2012 9.3.2.10 - QoS multicast frames 982 * come out of a different seqno space. 983 */ 984 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 985 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 986 } else { 987 seqno = ni->ni_txseqs[tid]++; 988 } 989 else 990 seqno = 0; 991 992 *(uint16_t *)&wh->i_seq[0] = 993 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 994 M_SEQNO_SET(m, seqno); 995 } 996 997 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 998 m->m_flags |= M_MCAST; 999 #undef WH4 1000 } 1001 1002 /* 1003 * Send a management frame to the specified node. The node pointer 1004 * must have a reference as the pointer will be passed to the driver 1005 * and potentially held for a long time. If the frame is successfully 1006 * dispatched to the driver, then it is responsible for freeing the 1007 * reference (and potentially free'ing up any associated storage); 1008 * otherwise deal with reclaiming any reference (on error). 1009 */ 1010 int 1011 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type, 1012 struct ieee80211_bpf_params *params) 1013 { 1014 struct ieee80211vap *vap = ni->ni_vap; 1015 struct ieee80211com *ic = ni->ni_ic; 1016 struct ieee80211_frame *wh; 1017 int ret; 1018 1019 KASSERT(ni != NULL, ("null node")); 1020 1021 if (vap->iv_state == IEEE80211_S_CAC) { 1022 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 1023 ni, "block %s frame in CAC state", 1024 ieee80211_mgt_subtype_name(type)); 1025 vap->iv_stats.is_tx_badstate++; 1026 ieee80211_free_node(ni); 1027 m_freem(m); 1028 return EIO; /* XXX */ 1029 } 1030 1031 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 1032 if (m == NULL) { 1033 ieee80211_free_node(ni); 1034 return ENOMEM; 1035 } 1036 1037 IEEE80211_TX_LOCK(ic); 1038 1039 wh = mtod(m, struct ieee80211_frame *); 1040 ieee80211_send_setup(ni, m, 1041 IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID, 1042 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 1043 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { 1044 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1, 1045 "encrypting frame (%s)", __func__); 1046 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 1047 } 1048 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1049 1050 KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?")); 1051 M_WME_SETAC(m, params->ibp_pri); 1052 1053 #ifdef IEEE80211_DEBUG 1054 /* avoid printing too many frames */ 1055 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) || 1056 ieee80211_msg_dumppkts(vap)) { 1057 printf("[%s] send %s on channel %u\n", 1058 ether_sprintf(wh->i_addr1), 1059 ieee80211_mgt_subtype_name(type), 1060 ieee80211_chan2ieee(ic, ic->ic_curchan)); 1061 } 1062 #endif 1063 IEEE80211_NODE_STAT(ni, tx_mgmt); 1064 1065 ret = ieee80211_raw_output(vap, ni, m, params); 1066 IEEE80211_TX_UNLOCK(ic); 1067 return (ret); 1068 } 1069 1070 static void 1071 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg, 1072 int status) 1073 { 1074 struct ieee80211vap *vap = ni->ni_vap; 1075 1076 wakeup(vap); 1077 } 1078 1079 /* 1080 * Send a null data frame to the specified node. If the station 1081 * is setup for QoS then a QoS Null Data frame is constructed. 1082 * If this is a WDS station then a 4-address frame is constructed. 1083 * 1084 * NB: the caller is assumed to have setup a node reference 1085 * for use; this is necessary to deal with a race condition 1086 * when probing for inactive stations. Like ieee80211_mgmt_output 1087 * we must cleanup any node reference on error; however we 1088 * can safely just unref it as we know it will never be the 1089 * last reference to the node. 1090 */ 1091 int 1092 ieee80211_send_nulldata(struct ieee80211_node *ni) 1093 { 1094 struct ieee80211vap *vap = ni->ni_vap; 1095 struct ieee80211com *ic = ni->ni_ic; 1096 struct mbuf *m; 1097 struct ieee80211_frame *wh; 1098 int hdrlen; 1099 uint8_t *frm; 1100 int ret; 1101 1102 if (vap->iv_state == IEEE80211_S_CAC) { 1103 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 1104 ni, "block %s frame in CAC state", "null data"); 1105 ieee80211_unref_node(&ni); 1106 vap->iv_stats.is_tx_badstate++; 1107 return EIO; /* XXX */ 1108 } 1109 1110 if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) 1111 hdrlen = sizeof(struct ieee80211_qosframe); 1112 else 1113 hdrlen = sizeof(struct ieee80211_frame); 1114 /* NB: only WDS vap's get 4-address frames */ 1115 if (vap->iv_opmode == IEEE80211_M_WDS) 1116 hdrlen += IEEE80211_ADDR_LEN; 1117 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1118 hdrlen = roundup(hdrlen, sizeof(uint32_t)); 1119 1120 m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0); 1121 if (m == NULL) { 1122 /* XXX debug msg */ 1123 ieee80211_unref_node(&ni); 1124 vap->iv_stats.is_tx_nobuf++; 1125 return ENOMEM; 1126 } 1127 KASSERT(M_LEADINGSPACE(m) >= hdrlen, 1128 ("leading space %zd", M_LEADINGSPACE(m))); 1129 M_PREPEND(m, hdrlen, M_NOWAIT); 1130 if (m == NULL) { 1131 /* NB: cannot happen */ 1132 ieee80211_free_node(ni); 1133 return ENOMEM; 1134 } 1135 1136 IEEE80211_TX_LOCK(ic); 1137 1138 wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */ 1139 if (ni->ni_flags & IEEE80211_NODE_QOS) { 1140 const int tid = WME_AC_TO_TID(WME_AC_BE); 1141 uint8_t *qos; 1142 1143 ieee80211_send_setup(ni, m, 1144 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL, 1145 tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 1146 1147 if (vap->iv_opmode == IEEE80211_M_WDS) 1148 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1149 else 1150 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1151 qos[0] = tid & IEEE80211_QOS_TID; 1152 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy) 1153 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1154 qos[1] = 0; 1155 } else { 1156 ieee80211_send_setup(ni, m, 1157 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 1158 IEEE80211_NONQOS_TID, 1159 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 1160 } 1161 if (vap->iv_opmode != IEEE80211_M_WDS) { 1162 /* NB: power management bit is never sent by an AP */ 1163 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 1164 vap->iv_opmode != IEEE80211_M_HOSTAP) 1165 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 1166 } 1167 if ((ic->ic_flags & IEEE80211_F_SCAN) && 1168 (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) { 1169 ieee80211_add_callback(m, ieee80211_nulldata_transmitted, 1170 NULL); 1171 } 1172 m->m_len = m->m_pkthdr.len = hdrlen; 1173 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1174 1175 M_WME_SETAC(m, WME_AC_BE); 1176 1177 IEEE80211_NODE_STAT(ni, tx_data); 1178 1179 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni, 1180 "send %snull data frame on channel %u, pwr mgt %s", 1181 ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "", 1182 ieee80211_chan2ieee(ic, ic->ic_curchan), 1183 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 1184 1185 ret = ieee80211_raw_output(vap, ni, m, NULL); 1186 IEEE80211_TX_UNLOCK(ic); 1187 return (ret); 1188 } 1189 1190 /* 1191 * Assign priority to a frame based on any vlan tag assigned 1192 * to the station and/or any Diffserv setting in an IP header. 1193 * Finally, if an ACM policy is setup (in station mode) it's 1194 * applied. 1195 */ 1196 int 1197 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m) 1198 { 1199 const struct ether_header *eh = NULL; 1200 uint16_t ether_type; 1201 int v_wme_ac, d_wme_ac, ac; 1202 1203 if (__predict_false(m->m_flags & M_ENCAP)) { 1204 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 1205 struct llc *llc; 1206 int hdrlen, subtype; 1207 1208 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1209 if (subtype & IEEE80211_FC0_SUBTYPE_NODATA) { 1210 ac = WME_AC_BE; 1211 goto done; 1212 } 1213 1214 hdrlen = ieee80211_hdrsize(wh); 1215 if (m->m_pkthdr.len < hdrlen + sizeof(*llc)) 1216 return 1; 1217 1218 llc = (struct llc *)mtodo(m, hdrlen); 1219 if (llc->llc_dsap != LLC_SNAP_LSAP || 1220 llc->llc_ssap != LLC_SNAP_LSAP || 1221 llc->llc_control != LLC_UI || 1222 llc->llc_snap.org_code[0] != 0 || 1223 llc->llc_snap.org_code[1] != 0 || 1224 llc->llc_snap.org_code[2] != 0) 1225 return 1; 1226 1227 ether_type = llc->llc_snap.ether_type; 1228 } else { 1229 eh = mtod(m, struct ether_header *); 1230 ether_type = eh->ether_type; 1231 } 1232 1233 /* 1234 * Always promote PAE/EAPOL frames to high priority. 1235 */ 1236 if (ether_type == htons(ETHERTYPE_PAE)) { 1237 /* NB: mark so others don't need to check header */ 1238 m->m_flags |= M_EAPOL; 1239 ac = WME_AC_VO; 1240 goto done; 1241 } 1242 /* 1243 * Non-qos traffic goes to BE. 1244 */ 1245 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 1246 ac = WME_AC_BE; 1247 goto done; 1248 } 1249 1250 /* 1251 * If node has a vlan tag then all traffic 1252 * to it must have a matching tag. 1253 */ 1254 v_wme_ac = 0; 1255 if (ni->ni_vlan != 0) { 1256 if ((m->m_flags & M_VLANTAG) == 0) { 1257 IEEE80211_NODE_STAT(ni, tx_novlantag); 1258 return 1; 1259 } 1260 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 1261 EVL_VLANOFTAG(ni->ni_vlan)) { 1262 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 1263 return 1; 1264 } 1265 /* map vlan priority to AC */ 1266 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan)); 1267 } 1268 1269 /* XXX m_copydata may be too slow for fast path */ 1270 #ifdef INET 1271 if (eh && eh->ether_type == htons(ETHERTYPE_IP)) { 1272 uint8_t tos; 1273 /* 1274 * IP frame, map the DSCP bits from the TOS field. 1275 */ 1276 /* NB: ip header may not be in first mbuf */ 1277 m_copydata(m, sizeof(struct ether_header) + 1278 offsetof(struct ip, ip_tos), sizeof(tos), &tos); 1279 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1280 d_wme_ac = TID_TO_WME_AC(tos); 1281 } else { 1282 #endif /* INET */ 1283 #ifdef INET6 1284 if (eh && eh->ether_type == htons(ETHERTYPE_IPV6)) { 1285 uint32_t flow; 1286 uint8_t tos; 1287 /* 1288 * IPv6 frame, map the DSCP bits from the traffic class field. 1289 */ 1290 m_copydata(m, sizeof(struct ether_header) + 1291 offsetof(struct ip6_hdr, ip6_flow), sizeof(flow), 1292 (caddr_t) &flow); 1293 tos = (uint8_t)(ntohl(flow) >> 20); 1294 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1295 d_wme_ac = TID_TO_WME_AC(tos); 1296 } else { 1297 #endif /* INET6 */ 1298 d_wme_ac = WME_AC_BE; 1299 #ifdef INET6 1300 } 1301 #endif 1302 #ifdef INET 1303 } 1304 #endif 1305 /* 1306 * Use highest priority AC. 1307 */ 1308 if (v_wme_ac > d_wme_ac) 1309 ac = v_wme_ac; 1310 else 1311 ac = d_wme_ac; 1312 1313 /* 1314 * Apply ACM policy. 1315 */ 1316 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) { 1317 static const int acmap[4] = { 1318 WME_AC_BK, /* WME_AC_BE */ 1319 WME_AC_BK, /* WME_AC_BK */ 1320 WME_AC_BE, /* WME_AC_VI */ 1321 WME_AC_VI, /* WME_AC_VO */ 1322 }; 1323 struct ieee80211com *ic = ni->ni_ic; 1324 1325 while (ac != WME_AC_BK && 1326 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 1327 ac = acmap[ac]; 1328 } 1329 done: 1330 M_WME_SETAC(m, ac); 1331 return 0; 1332 } 1333 1334 /* 1335 * Insure there is sufficient contiguous space to encapsulate the 1336 * 802.11 data frame. If room isn't already there, arrange for it. 1337 * Drivers and cipher modules assume we have done the necessary work 1338 * and fail rudely if they don't find the space they need. 1339 */ 1340 struct mbuf * 1341 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize, 1342 struct ieee80211_key *key, struct mbuf *m) 1343 { 1344 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 1345 int needed_space = vap->iv_ic->ic_headroom + hdrsize; 1346 1347 if (key != NULL) { 1348 /* XXX belongs in crypto code? */ 1349 needed_space += key->wk_cipher->ic_header; 1350 /* XXX frags */ 1351 /* 1352 * When crypto is being done in the host we must insure 1353 * the data are writable for the cipher routines; clone 1354 * a writable mbuf chain. 1355 * XXX handle SWMIC specially 1356 */ 1357 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) { 1358 m = m_unshare(m, M_NOWAIT); 1359 if (m == NULL) { 1360 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1361 "%s: cannot get writable mbuf\n", __func__); 1362 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */ 1363 return NULL; 1364 } 1365 } 1366 } 1367 /* 1368 * We know we are called just before stripping an Ethernet 1369 * header and prepending an LLC header. This means we know 1370 * there will be 1371 * sizeof(struct ether_header) - sizeof(struct llc) 1372 * bytes recovered to which we need additional space for the 1373 * 802.11 header and any crypto header. 1374 */ 1375 /* XXX check trailing space and copy instead? */ 1376 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 1377 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); 1378 if (n == NULL) { 1379 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1380 "%s: cannot expand storage\n", __func__); 1381 vap->iv_stats.is_tx_nobuf++; 1382 m_freem(m); 1383 return NULL; 1384 } 1385 KASSERT(needed_space <= MHLEN, 1386 ("not enough room, need %u got %d\n", needed_space, MHLEN)); 1387 /* 1388 * Setup new mbuf to have leading space to prepend the 1389 * 802.11 header and any crypto header bits that are 1390 * required (the latter are added when the driver calls 1391 * back to ieee80211_crypto_encap to do crypto encapsulation). 1392 */ 1393 /* NB: must be first 'cuz it clobbers m_data */ 1394 m_move_pkthdr(n, m); 1395 n->m_len = 0; /* NB: m_gethdr does not set */ 1396 n->m_data += needed_space; 1397 /* 1398 * Pull up Ethernet header to create the expected layout. 1399 * We could use m_pullup but that's overkill (i.e. we don't 1400 * need the actual data) and it cannot fail so do it inline 1401 * for speed. 1402 */ 1403 /* NB: struct ether_header is known to be contiguous */ 1404 n->m_len += sizeof(struct ether_header); 1405 m->m_len -= sizeof(struct ether_header); 1406 m->m_data += sizeof(struct ether_header); 1407 /* 1408 * Replace the head of the chain. 1409 */ 1410 n->m_next = m; 1411 m = n; 1412 } 1413 return m; 1414 #undef TO_BE_RECLAIMED 1415 } 1416 1417 /* 1418 * Return the transmit key to use in sending a unicast frame. 1419 * If a unicast key is set we use that. When no unicast key is set 1420 * we fall back to the default transmit key. 1421 */ 1422 static __inline struct ieee80211_key * 1423 ieee80211_crypto_getucastkey(struct ieee80211vap *vap, 1424 struct ieee80211_node *ni) 1425 { 1426 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) { 1427 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1428 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1429 return NULL; 1430 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1431 } else { 1432 return &ni->ni_ucastkey; 1433 } 1434 } 1435 1436 /* 1437 * Return the transmit key to use in sending a multicast frame. 1438 * Multicast traffic always uses the group key which is installed as 1439 * the default tx key. 1440 */ 1441 static __inline struct ieee80211_key * 1442 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap, 1443 struct ieee80211_node *ni) 1444 { 1445 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1446 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1447 return NULL; 1448 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1449 } 1450 1451 /* 1452 * Encapsulate an outbound data frame. The mbuf chain is updated. 1453 * If an error is encountered NULL is returned. The caller is required 1454 * to provide a node reference and pullup the ethernet header in the 1455 * first mbuf. 1456 * 1457 * NB: Packet is assumed to be processed by ieee80211_classify which 1458 * marked EAPOL frames w/ M_EAPOL. 1459 */ 1460 struct mbuf * 1461 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni, 1462 struct mbuf *m) 1463 { 1464 #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh)) 1465 #define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc) 1466 struct ieee80211com *ic = ni->ni_ic; 1467 #ifdef IEEE80211_SUPPORT_MESH 1468 struct ieee80211_mesh_state *ms = vap->iv_mesh; 1469 struct ieee80211_meshcntl_ae10 *mc; 1470 struct ieee80211_mesh_route *rt = NULL; 1471 int dir = -1; 1472 #endif 1473 struct ether_header eh; 1474 struct ieee80211_frame *wh; 1475 struct ieee80211_key *key; 1476 struct llc *llc; 1477 int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast; 1478 ieee80211_seq seqno; 1479 int meshhdrsize, meshae; 1480 uint8_t *qos; 1481 int is_amsdu = 0; 1482 1483 IEEE80211_TX_LOCK_ASSERT(ic); 1484 1485 is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST)); 1486 1487 /* 1488 * Copy existing Ethernet header to a safe place. The 1489 * rest of the code assumes it's ok to strip it when 1490 * reorganizing state for the final encapsulation. 1491 */ 1492 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 1493 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t)); 1494 1495 /* 1496 * Insure space for additional headers. First identify 1497 * transmit key to use in calculating any buffer adjustments 1498 * required. This is also used below to do privacy 1499 * encapsulation work. Then calculate the 802.11 header 1500 * size and any padding required by the driver. 1501 * 1502 * Note key may be NULL if we fall back to the default 1503 * transmit key and that is not set. In that case the 1504 * buffer may not be expanded as needed by the cipher 1505 * routines, but they will/should discard it. 1506 */ 1507 if (vap->iv_flags & IEEE80211_F_PRIVACY) { 1508 if (vap->iv_opmode == IEEE80211_M_STA || 1509 !IEEE80211_IS_MULTICAST(eh.ether_dhost) || 1510 (vap->iv_opmode == IEEE80211_M_WDS && 1511 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) { 1512 key = ieee80211_crypto_getucastkey(vap, ni); 1513 } else if ((vap->iv_opmode == IEEE80211_M_WDS) && 1514 (! (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) { 1515 /* 1516 * Use ucastkey for DWDS transmit nodes, multicast 1517 * or otherwise. 1518 * 1519 * This is required to ensure that multicast frames 1520 * from a DWDS AP to a DWDS STA is encrypted with 1521 * a key that can actually work. 1522 * 1523 * There's no default key for multicast traffic 1524 * on a DWDS WDS VAP node (note NOT the DWDS enabled 1525 * AP VAP, the dynamically created per-STA WDS node) 1526 * so encap fails and transmit fails. 1527 */ 1528 key = ieee80211_crypto_getucastkey(vap, ni); 1529 } else { 1530 key = ieee80211_crypto_getmcastkey(vap, ni); 1531 } 1532 if (key == NULL && (m->m_flags & M_EAPOL) == 0) { 1533 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, 1534 eh.ether_dhost, 1535 "no default transmit key (%s) deftxkey %u", 1536 __func__, vap->iv_def_txkey); 1537 vap->iv_stats.is_tx_nodefkey++; 1538 goto bad; 1539 } 1540 } else 1541 key = NULL; 1542 /* 1543 * XXX Some ap's don't handle QoS-encapsulated EAPOL 1544 * frames so suppress use. This may be an issue if other 1545 * ap's require all data frames to be QoS-encapsulated 1546 * once negotiated in which case we'll need to make this 1547 * configurable. 1548 * 1549 * Don't send multicast QoS frames. 1550 * Technically multicast frames can be QoS if all stations in the 1551 * BSS are also QoS. 1552 * 1553 * NB: mesh data frames are QoS, including multicast frames. 1554 */ 1555 addqos = 1556 (((is_mcast == 0) && (ni->ni_flags & 1557 (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) || 1558 (vap->iv_opmode == IEEE80211_M_MBSS)) && 1559 (m->m_flags & M_EAPOL) == 0; 1560 1561 if (addqos) 1562 hdrsize = sizeof(struct ieee80211_qosframe); 1563 else 1564 hdrsize = sizeof(struct ieee80211_frame); 1565 #ifdef IEEE80211_SUPPORT_MESH 1566 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1567 /* 1568 * Mesh data frames are encapsulated according to the 1569 * rules of Section 11B.8.5 (p.139 of D3.0 spec). 1570 * o Group Addressed data (aka multicast) originating 1571 * at the local sta are sent w/ 3-address format and 1572 * address extension mode 00 1573 * o Individually Addressed data (aka unicast) originating 1574 * at the local sta are sent w/ 4-address format and 1575 * address extension mode 00 1576 * o Group Addressed data forwarded from a non-mesh sta are 1577 * sent w/ 3-address format and address extension mode 01 1578 * o Individually Address data from another sta are sent 1579 * w/ 4-address format and address extension mode 10 1580 */ 1581 is4addr = 0; /* NB: don't use, disable */ 1582 if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) { 1583 rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost); 1584 KASSERT(rt != NULL, ("route is NULL")); 1585 dir = IEEE80211_FC1_DIR_DSTODS; 1586 hdrsize += IEEE80211_ADDR_LEN; 1587 if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) { 1588 if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate, 1589 vap->iv_myaddr)) { 1590 IEEE80211_NOTE_MAC(vap, 1591 IEEE80211_MSG_MESH, 1592 eh.ether_dhost, 1593 "%s", "trying to send to ourself"); 1594 goto bad; 1595 } 1596 meshae = IEEE80211_MESH_AE_10; 1597 meshhdrsize = 1598 sizeof(struct ieee80211_meshcntl_ae10); 1599 } else { 1600 meshae = IEEE80211_MESH_AE_00; 1601 meshhdrsize = 1602 sizeof(struct ieee80211_meshcntl); 1603 } 1604 } else { 1605 dir = IEEE80211_FC1_DIR_FROMDS; 1606 if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) { 1607 /* proxy group */ 1608 meshae = IEEE80211_MESH_AE_01; 1609 meshhdrsize = 1610 sizeof(struct ieee80211_meshcntl_ae01); 1611 } else { 1612 /* group */ 1613 meshae = IEEE80211_MESH_AE_00; 1614 meshhdrsize = sizeof(struct ieee80211_meshcntl); 1615 } 1616 } 1617 } else { 1618 #endif 1619 /* 1620 * 4-address frames need to be generated for: 1621 * o packets sent through a WDS vap (IEEE80211_M_WDS) 1622 * o packets sent through a vap marked for relaying 1623 * (e.g. a station operating with dynamic WDS) 1624 */ 1625 is4addr = vap->iv_opmode == IEEE80211_M_WDS || 1626 ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) && 1627 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)); 1628 if (is4addr) 1629 hdrsize += IEEE80211_ADDR_LEN; 1630 meshhdrsize = meshae = 0; 1631 #ifdef IEEE80211_SUPPORT_MESH 1632 } 1633 #endif 1634 /* 1635 * Honor driver DATAPAD requirement. 1636 */ 1637 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1638 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1639 else 1640 hdrspace = hdrsize; 1641 1642 if (__predict_true((m->m_flags & M_FF) == 0)) { 1643 /* 1644 * Normal frame. 1645 */ 1646 m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m); 1647 if (m == NULL) { 1648 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 1649 goto bad; 1650 } 1651 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */ 1652 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 1653 llc = mtod(m, struct llc *); 1654 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 1655 llc->llc_control = LLC_UI; 1656 llc->llc_snap.org_code[0] = 0; 1657 llc->llc_snap.org_code[1] = 0; 1658 llc->llc_snap.org_code[2] = 0; 1659 llc->llc_snap.ether_type = eh.ether_type; 1660 } else { 1661 #ifdef IEEE80211_SUPPORT_SUPERG 1662 /* 1663 * Aggregated frame. Check if it's for AMSDU or FF. 1664 * 1665 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented 1666 * anywhere for some reason. But, since 11n requires 1667 * AMSDU RX, we can just assume "11n" == "AMSDU". 1668 */ 1669 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__); 1670 if (ieee80211_amsdu_tx_ok(ni)) { 1671 m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key); 1672 is_amsdu = 1; 1673 } else { 1674 m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key); 1675 } 1676 if (m == NULL) 1677 #endif 1678 goto bad; 1679 } 1680 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 1681 1682 M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT); 1683 if (m == NULL) { 1684 vap->iv_stats.is_tx_nobuf++; 1685 goto bad; 1686 } 1687 wh = mtod(m, struct ieee80211_frame *); 1688 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 1689 *(uint16_t *)wh->i_dur = 0; 1690 qos = NULL; /* NB: quiet compiler */ 1691 if (is4addr) { 1692 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 1693 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); 1694 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1695 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1696 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); 1697 } else switch (vap->iv_opmode) { 1698 case IEEE80211_M_STA: 1699 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 1700 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 1701 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1702 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1703 break; 1704 case IEEE80211_M_IBSS: 1705 case IEEE80211_M_AHDEMO: 1706 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1707 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1708 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1709 /* 1710 * NB: always use the bssid from iv_bss as the 1711 * neighbor's may be stale after an ibss merge 1712 */ 1713 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid); 1714 break; 1715 case IEEE80211_M_HOSTAP: 1716 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1717 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1718 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 1719 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 1720 break; 1721 #ifdef IEEE80211_SUPPORT_MESH 1722 case IEEE80211_M_MBSS: 1723 /* NB: offset by hdrspace to deal with DATAPAD */ 1724 mc = (struct ieee80211_meshcntl_ae10 *) 1725 (mtod(m, uint8_t *) + hdrspace); 1726 wh->i_fc[1] = dir; 1727 switch (meshae) { 1728 case IEEE80211_MESH_AE_00: /* no proxy */ 1729 mc->mc_flags = 0; 1730 if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */ 1731 IEEE80211_ADDR_COPY(wh->i_addr1, 1732 ni->ni_macaddr); 1733 IEEE80211_ADDR_COPY(wh->i_addr2, 1734 vap->iv_myaddr); 1735 IEEE80211_ADDR_COPY(wh->i_addr3, 1736 eh.ether_dhost); 1737 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, 1738 eh.ether_shost); 1739 qos =((struct ieee80211_qosframe_addr4 *) 1740 wh)->i_qos; 1741 } else if (dir == IEEE80211_FC1_DIR_FROMDS) { 1742 /* mcast */ 1743 IEEE80211_ADDR_COPY(wh->i_addr1, 1744 eh.ether_dhost); 1745 IEEE80211_ADDR_COPY(wh->i_addr2, 1746 vap->iv_myaddr); 1747 IEEE80211_ADDR_COPY(wh->i_addr3, 1748 eh.ether_shost); 1749 qos = ((struct ieee80211_qosframe *) 1750 wh)->i_qos; 1751 } 1752 break; 1753 case IEEE80211_MESH_AE_01: /* mcast, proxy */ 1754 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1755 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1756 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1757 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr); 1758 mc->mc_flags = 1; 1759 IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4, 1760 eh.ether_shost); 1761 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1762 break; 1763 case IEEE80211_MESH_AE_10: /* ucast, proxy */ 1764 KASSERT(rt != NULL, ("route is NULL")); 1765 IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop); 1766 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1767 IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate); 1768 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr); 1769 mc->mc_flags = IEEE80211_MESH_AE_10; 1770 IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost); 1771 IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost); 1772 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1773 break; 1774 default: 1775 KASSERT(0, ("meshae %d", meshae)); 1776 break; 1777 } 1778 mc->mc_ttl = ms->ms_ttl; 1779 ms->ms_seq++; 1780 le32enc(mc->mc_seq, ms->ms_seq); 1781 break; 1782 #endif 1783 case IEEE80211_M_WDS: /* NB: is4addr should always be true */ 1784 default: 1785 goto bad; 1786 } 1787 if (m->m_flags & M_MORE_DATA) 1788 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 1789 if (addqos) { 1790 int ac, tid; 1791 1792 if (is4addr) { 1793 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1794 /* NB: mesh case handled earlier */ 1795 } else if (vap->iv_opmode != IEEE80211_M_MBSS) 1796 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1797 ac = M_WME_GETAC(m); 1798 /* map from access class/queue to 11e header priorty value */ 1799 tid = WME_AC_TO_TID(ac); 1800 qos[0] = tid & IEEE80211_QOS_TID; 1801 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 1802 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1803 #ifdef IEEE80211_SUPPORT_MESH 1804 if (vap->iv_opmode == IEEE80211_M_MBSS) 1805 qos[1] = IEEE80211_QOS_MC; 1806 else 1807 #endif 1808 qos[1] = 0; 1809 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 1810 1811 /* 1812 * If this is an A-MSDU then ensure we set the 1813 * relevant field. 1814 */ 1815 if (is_amsdu) 1816 qos[0] |= IEEE80211_QOS_AMSDU; 1817 1818 /* 1819 * XXX TODO TX lock is needed for atomic updates of sequence 1820 * numbers. If the driver does it, then don't do it here; 1821 * and we don't need the TX lock held. 1822 */ 1823 if ((m->m_flags & M_AMPDU_MPDU) == 0) { 1824 /* 1825 * 802.11-2012 9.3.2.10 - 1826 * 1827 * If this is a multicast frame then we need 1828 * to ensure that the sequence number comes from 1829 * a separate seqno space and not the TID space. 1830 * 1831 * Otherwise multicast frames may actually cause 1832 * holes in the TX blockack window space and 1833 * upset various things. 1834 */ 1835 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1836 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1837 else 1838 seqno = ni->ni_txseqs[tid]++; 1839 1840 /* 1841 * NB: don't assign a sequence # to potential 1842 * aggregates; we expect this happens at the 1843 * point the frame comes off any aggregation q 1844 * as otherwise we may introduce holes in the 1845 * BA sequence space and/or make window accouting 1846 * more difficult. 1847 * 1848 * XXX may want to control this with a driver 1849 * capability; this may also change when we pull 1850 * aggregation up into net80211 1851 */ 1852 *(uint16_t *)wh->i_seq = 1853 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1854 M_SEQNO_SET(m, seqno); 1855 } else { 1856 /* NB: zero out i_seq field (for s/w encryption etc) */ 1857 *(uint16_t *)wh->i_seq = 0; 1858 } 1859 } else { 1860 /* 1861 * XXX TODO TX lock is needed for atomic updates of sequence 1862 * numbers. If the driver does it, then don't do it here; 1863 * and we don't need the TX lock held. 1864 */ 1865 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1866 *(uint16_t *)wh->i_seq = 1867 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1868 M_SEQNO_SET(m, seqno); 1869 1870 /* 1871 * XXX TODO: we shouldn't allow EAPOL, etc that would 1872 * be forced to be non-QoS traffic to be A-MSDU encapsulated. 1873 */ 1874 if (is_amsdu) 1875 printf("%s: XXX ERROR: is_amsdu set; not QoS!\n", 1876 __func__); 1877 } 1878 1879 /* 1880 * Check if xmit fragmentation is required. 1881 * 1882 * If the hardware does fragmentation offload, then don't bother 1883 * doing it here. 1884 */ 1885 if (IEEE80211_CONF_FRAG_OFFLOAD(ic)) 1886 txfrag = 0; 1887 else 1888 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold && 1889 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 1890 (vap->iv_caps & IEEE80211_C_TXFRAG) && 1891 (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0); 1892 1893 if (key != NULL) { 1894 /* 1895 * IEEE 802.1X: send EAPOL frames always in the clear. 1896 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 1897 */ 1898 if ((m->m_flags & M_EAPOL) == 0 || 1899 ((vap->iv_flags & IEEE80211_F_WPA) && 1900 (vap->iv_opmode == IEEE80211_M_STA ? 1901 !IEEE80211_KEY_UNDEFINED(key) : 1902 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) { 1903 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 1904 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) { 1905 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT, 1906 eh.ether_dhost, 1907 "%s", "enmic failed, discard frame"); 1908 vap->iv_stats.is_crypto_enmicfail++; 1909 goto bad; 1910 } 1911 } 1912 } 1913 if (txfrag && !ieee80211_fragment(vap, m, hdrsize, 1914 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold)) 1915 goto bad; 1916 1917 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1918 1919 IEEE80211_NODE_STAT(ni, tx_data); 1920 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1921 IEEE80211_NODE_STAT(ni, tx_mcast); 1922 m->m_flags |= M_MCAST; 1923 } else 1924 IEEE80211_NODE_STAT(ni, tx_ucast); 1925 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 1926 1927 return m; 1928 bad: 1929 if (m != NULL) 1930 m_freem(m); 1931 return NULL; 1932 #undef WH4 1933 #undef MC01 1934 } 1935 1936 void 1937 ieee80211_free_mbuf(struct mbuf *m) 1938 { 1939 struct mbuf *next; 1940 1941 if (m == NULL) 1942 return; 1943 1944 do { 1945 next = m->m_nextpkt; 1946 m->m_nextpkt = NULL; 1947 m_freem(m); 1948 } while ((m = next) != NULL); 1949 } 1950 1951 /* 1952 * Fragment the frame according to the specified mtu. 1953 * The size of the 802.11 header (w/o padding) is provided 1954 * so we don't need to recalculate it. We create a new 1955 * mbuf for each fragment and chain it through m_nextpkt; 1956 * we might be able to optimize this by reusing the original 1957 * packet's mbufs but that is significantly more complicated. 1958 */ 1959 static int 1960 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0, 1961 u_int hdrsize, u_int ciphdrsize, u_int mtu) 1962 { 1963 struct ieee80211com *ic = vap->iv_ic; 1964 struct ieee80211_frame *wh, *whf; 1965 struct mbuf *m, *prev; 1966 u_int totalhdrsize, fragno, fragsize, off, remainder, payload; 1967 u_int hdrspace; 1968 1969 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); 1970 KASSERT(m0->m_pkthdr.len > mtu, 1971 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); 1972 1973 /* 1974 * Honor driver DATAPAD requirement. 1975 */ 1976 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1977 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1978 else 1979 hdrspace = hdrsize; 1980 1981 wh = mtod(m0, struct ieee80211_frame *); 1982 /* NB: mark the first frag; it will be propagated below */ 1983 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; 1984 totalhdrsize = hdrspace + ciphdrsize; 1985 fragno = 1; 1986 off = mtu - ciphdrsize; 1987 remainder = m0->m_pkthdr.len - off; 1988 prev = m0; 1989 do { 1990 fragsize = MIN(totalhdrsize + remainder, mtu); 1991 m = m_get2(fragsize, M_NOWAIT, MT_DATA, M_PKTHDR); 1992 if (m == NULL) 1993 goto bad; 1994 /* leave room to prepend any cipher header */ 1995 m_align(m, fragsize - ciphdrsize); 1996 1997 /* 1998 * Form the header in the fragment. Note that since 1999 * we mark the first fragment with the MORE_FRAG bit 2000 * it automatically is propagated to each fragment; we 2001 * need only clear it on the last fragment (done below). 2002 * NB: frag 1+ dont have Mesh Control field present. 2003 */ 2004 whf = mtod(m, struct ieee80211_frame *); 2005 memcpy(whf, wh, hdrsize); 2006 #ifdef IEEE80211_SUPPORT_MESH 2007 if (vap->iv_opmode == IEEE80211_M_MBSS) 2008 ieee80211_getqos(wh)[1] &= ~IEEE80211_QOS_MC; 2009 #endif 2010 *(uint16_t *)&whf->i_seq[0] |= htole16( 2011 (fragno & IEEE80211_SEQ_FRAG_MASK) << 2012 IEEE80211_SEQ_FRAG_SHIFT); 2013 fragno++; 2014 2015 payload = fragsize - totalhdrsize; 2016 /* NB: destination is known to be contiguous */ 2017 2018 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace); 2019 m->m_len = hdrspace + payload; 2020 m->m_pkthdr.len = hdrspace + payload; 2021 m->m_flags |= M_FRAG; 2022 2023 /* chain up the fragment */ 2024 prev->m_nextpkt = m; 2025 prev = m; 2026 2027 /* deduct fragment just formed */ 2028 remainder -= payload; 2029 off += payload; 2030 } while (remainder != 0); 2031 2032 /* set the last fragment */ 2033 m->m_flags |= M_LASTFRAG; 2034 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; 2035 2036 /* strip first mbuf now that everything has been copied */ 2037 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); 2038 m0->m_flags |= M_FIRSTFRAG | M_FRAG; 2039 2040 vap->iv_stats.is_tx_fragframes++; 2041 vap->iv_stats.is_tx_frags += fragno-1; 2042 2043 return 1; 2044 bad: 2045 /* reclaim fragments but leave original frame for caller to free */ 2046 ieee80211_free_mbuf(m0->m_nextpkt); 2047 m0->m_nextpkt = NULL; 2048 return 0; 2049 } 2050 2051 /* 2052 * Add a supported rates element id to a frame. 2053 */ 2054 uint8_t * 2055 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs) 2056 { 2057 int nrates; 2058 2059 *frm++ = IEEE80211_ELEMID_RATES; 2060 nrates = rs->rs_nrates; 2061 if (nrates > IEEE80211_RATE_SIZE) 2062 nrates = IEEE80211_RATE_SIZE; 2063 *frm++ = nrates; 2064 memcpy(frm, rs->rs_rates, nrates); 2065 return frm + nrates; 2066 } 2067 2068 /* 2069 * Add an extended supported rates element id to a frame. 2070 */ 2071 uint8_t * 2072 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs) 2073 { 2074 /* 2075 * Add an extended supported rates element if operating in 11g mode. 2076 */ 2077 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 2078 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 2079 *frm++ = IEEE80211_ELEMID_XRATES; 2080 *frm++ = nrates; 2081 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 2082 frm += nrates; 2083 } 2084 return frm; 2085 } 2086 2087 /* 2088 * Add an ssid element to a frame. 2089 */ 2090 uint8_t * 2091 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) 2092 { 2093 *frm++ = IEEE80211_ELEMID_SSID; 2094 *frm++ = len; 2095 memcpy(frm, ssid, len); 2096 return frm + len; 2097 } 2098 2099 /* 2100 * Add an erp element to a frame. 2101 */ 2102 static uint8_t * 2103 ieee80211_add_erp(uint8_t *frm, struct ieee80211vap *vap) 2104 { 2105 struct ieee80211com *ic = vap->iv_ic; 2106 uint8_t erp; 2107 2108 *frm++ = IEEE80211_ELEMID_ERP; 2109 *frm++ = 1; 2110 erp = 0; 2111 2112 /* 2113 * TODO: This uses the global flags for now because 2114 * the per-VAP flags are fine for per-VAP, but don't 2115 * take into account which VAPs share the same channel 2116 * and which are on different channels. 2117 * 2118 * ERP and HT/VHT protection mode is a function of 2119 * how many stations are on a channel, not specifically 2120 * the VAP or global. But, until we grow that status, 2121 * the global flag will have to do. 2122 */ 2123 if (ic->ic_flags_ext & IEEE80211_FEXT_NONERP_PR) 2124 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 2125 2126 /* 2127 * TODO: same as above; these should be based not 2128 * on the vap or ic flags, but instead on a combination 2129 * of per-VAP and channels. 2130 */ 2131 if (ic->ic_flags & IEEE80211_F_USEPROT) 2132 erp |= IEEE80211_ERP_USE_PROTECTION; 2133 if (ic->ic_flags & IEEE80211_F_USEBARKER) 2134 erp |= IEEE80211_ERP_LONG_PREAMBLE; 2135 *frm++ = erp; 2136 return frm; 2137 } 2138 2139 /* 2140 * Add a CFParams element to a frame. 2141 */ 2142 static uint8_t * 2143 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic) 2144 { 2145 #define ADDSHORT(frm, v) do { \ 2146 le16enc(frm, v); \ 2147 frm += 2; \ 2148 } while (0) 2149 *frm++ = IEEE80211_ELEMID_CFPARMS; 2150 *frm++ = 6; 2151 *frm++ = 0; /* CFP count */ 2152 *frm++ = 2; /* CFP period */ 2153 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */ 2154 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */ 2155 return frm; 2156 #undef ADDSHORT 2157 } 2158 2159 static __inline uint8_t * 2160 add_appie(uint8_t *frm, const struct ieee80211_appie *ie) 2161 { 2162 memcpy(frm, ie->ie_data, ie->ie_len); 2163 return frm + ie->ie_len; 2164 } 2165 2166 static __inline uint8_t * 2167 add_ie(uint8_t *frm, const uint8_t *ie) 2168 { 2169 memcpy(frm, ie, 2 + ie[1]); 2170 return frm + 2 + ie[1]; 2171 } 2172 2173 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 2174 /* 2175 * Add a WME information element to a frame. 2176 */ 2177 uint8_t * 2178 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme, 2179 struct ieee80211_node *ni) 2180 { 2181 static const uint8_t oui[4] = { WME_OUI_BYTES, WME_OUI_TYPE }; 2182 struct ieee80211vap *vap = ni->ni_vap; 2183 2184 *frm++ = IEEE80211_ELEMID_VENDOR; 2185 *frm++ = sizeof(struct ieee80211_wme_info) - 2; 2186 memcpy(frm, oui, sizeof(oui)); 2187 frm += sizeof(oui); 2188 *frm++ = WME_INFO_OUI_SUBTYPE; 2189 *frm++ = WME_VERSION; 2190 2191 /* QoS info field depends upon operating mode */ 2192 switch (vap->iv_opmode) { 2193 case IEEE80211_M_HOSTAP: 2194 *frm = wme->wme_bssChanParams.cap_info; 2195 if (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD) 2196 *frm |= WME_CAPINFO_UAPSD_EN; 2197 frm++; 2198 break; 2199 case IEEE80211_M_STA: 2200 /* 2201 * NB: UAPSD drivers must set this up in their 2202 * VAP creation method. 2203 */ 2204 *frm++ = vap->iv_uapsdinfo; 2205 break; 2206 default: 2207 *frm++ = 0; 2208 break; 2209 } 2210 2211 return frm; 2212 } 2213 2214 /* 2215 * Add a WME parameters element to a frame. 2216 */ 2217 static uint8_t * 2218 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme, 2219 int uapsd_enable) 2220 { 2221 #define SM(_v, _f) (((_v) << _f##_S) & _f) 2222 #define ADDSHORT(frm, v) do { \ 2223 le16enc(frm, v); \ 2224 frm += 2; \ 2225 } while (0) 2226 /* NB: this works 'cuz a param has an info at the front */ 2227 static const struct ieee80211_wme_info param = { 2228 .wme_id = IEEE80211_ELEMID_VENDOR, 2229 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 2230 .wme_oui = { WME_OUI_BYTES }, 2231 .wme_type = WME_OUI_TYPE, 2232 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 2233 .wme_version = WME_VERSION, 2234 }; 2235 int i; 2236 2237 memcpy(frm, ¶m, sizeof(param)); 2238 frm += __offsetof(struct ieee80211_wme_info, wme_info); 2239 *frm = wme->wme_bssChanParams.cap_info; /* AC info */ 2240 if (uapsd_enable) 2241 *frm |= WME_CAPINFO_UAPSD_EN; 2242 frm++; 2243 *frm++ = 0; /* reserved field */ 2244 /* XXX TODO - U-APSD bits - SP, flags below */ 2245 for (i = 0; i < WME_NUM_AC; i++) { 2246 const struct wmeParams *ac = 2247 &wme->wme_bssChanParams.cap_wmeParams[i]; 2248 *frm++ = SM(i, WME_PARAM_ACI) 2249 | SM(ac->wmep_acm, WME_PARAM_ACM) 2250 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) 2251 ; 2252 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) 2253 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) 2254 ; 2255 ADDSHORT(frm, ac->wmep_txopLimit); 2256 } 2257 return frm; 2258 #undef SM 2259 #undef ADDSHORT 2260 } 2261 #undef WME_OUI_BYTES 2262 2263 /* 2264 * Add an 11h Power Constraint element to a frame. 2265 */ 2266 static uint8_t * 2267 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap) 2268 { 2269 const struct ieee80211_channel *c = vap->iv_bss->ni_chan; 2270 /* XXX per-vap tx power limit? */ 2271 int8_t limit = vap->iv_ic->ic_txpowlimit / 2; 2272 2273 frm[0] = IEEE80211_ELEMID_PWRCNSTR; 2274 frm[1] = 1; 2275 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0; 2276 return frm + 3; 2277 } 2278 2279 /* 2280 * Add an 11h Power Capability element to a frame. 2281 */ 2282 static uint8_t * 2283 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c) 2284 { 2285 frm[0] = IEEE80211_ELEMID_PWRCAP; 2286 frm[1] = 2; 2287 frm[2] = c->ic_minpower; 2288 frm[3] = c->ic_maxpower; 2289 return frm + 4; 2290 } 2291 2292 /* 2293 * Add an 11h Supported Channels element to a frame. 2294 */ 2295 static uint8_t * 2296 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic) 2297 { 2298 static const int ielen = 26; 2299 2300 frm[0] = IEEE80211_ELEMID_SUPPCHAN; 2301 frm[1] = ielen; 2302 /* XXX not correct */ 2303 memcpy(frm+2, ic->ic_chan_avail, ielen); 2304 return frm + 2 + ielen; 2305 } 2306 2307 /* 2308 * Add an 11h Quiet time element to a frame. 2309 */ 2310 static uint8_t * 2311 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap, int update) 2312 { 2313 struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm; 2314 2315 quiet->quiet_ie = IEEE80211_ELEMID_QUIET; 2316 quiet->len = 6; 2317 2318 /* 2319 * Only update every beacon interval - otherwise probe responses 2320 * would update the quiet count value. 2321 */ 2322 if (update) { 2323 if (vap->iv_quiet_count_value == 1) 2324 vap->iv_quiet_count_value = vap->iv_quiet_count; 2325 else if (vap->iv_quiet_count_value > 1) 2326 vap->iv_quiet_count_value--; 2327 } 2328 2329 if (vap->iv_quiet_count_value == 0) { 2330 /* value 0 is reserved as per 802.11h standerd */ 2331 vap->iv_quiet_count_value = 1; 2332 } 2333 2334 quiet->tbttcount = vap->iv_quiet_count_value; 2335 quiet->period = vap->iv_quiet_period; 2336 quiet->duration = htole16(vap->iv_quiet_duration); 2337 quiet->offset = htole16(vap->iv_quiet_offset); 2338 return frm + sizeof(*quiet); 2339 } 2340 2341 /* 2342 * Add an 11h Channel Switch Announcement element to a frame. 2343 * Note that we use the per-vap CSA count to adjust the global 2344 * counter so we can use this routine to form probe response 2345 * frames and get the current count. 2346 */ 2347 static uint8_t * 2348 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap) 2349 { 2350 struct ieee80211com *ic = vap->iv_ic; 2351 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm; 2352 2353 csa->csa_ie = IEEE80211_ELEMID_CSA; 2354 csa->csa_len = 3; 2355 csa->csa_mode = 1; /* XXX force quiet on channel */ 2356 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan); 2357 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count; 2358 return frm + sizeof(*csa); 2359 } 2360 2361 /* 2362 * Add an 11h country information element to a frame. 2363 */ 2364 static uint8_t * 2365 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic) 2366 { 2367 2368 if (ic->ic_countryie == NULL || 2369 ic->ic_countryie_chan != ic->ic_bsschan) { 2370 /* 2371 * Handle lazy construction of ie. This is done on 2372 * first use and after a channel change that requires 2373 * re-calculation. 2374 */ 2375 if (ic->ic_countryie != NULL) 2376 IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE); 2377 ic->ic_countryie = ieee80211_alloc_countryie(ic); 2378 if (ic->ic_countryie == NULL) 2379 return frm; 2380 ic->ic_countryie_chan = ic->ic_bsschan; 2381 } 2382 return add_appie(frm, ic->ic_countryie); 2383 } 2384 2385 uint8_t * 2386 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap) 2387 { 2388 if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) 2389 return (add_ie(frm, vap->iv_wpa_ie)); 2390 else { 2391 /* XXX else complain? */ 2392 return (frm); 2393 } 2394 } 2395 2396 uint8_t * 2397 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap) 2398 { 2399 if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL) 2400 return (add_ie(frm, vap->iv_rsn_ie)); 2401 else { 2402 /* XXX else complain? */ 2403 return (frm); 2404 } 2405 } 2406 2407 uint8_t * 2408 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni) 2409 { 2410 if (ni->ni_flags & IEEE80211_NODE_QOS) { 2411 *frm++ = IEEE80211_ELEMID_QOS; 2412 *frm++ = 1; 2413 *frm++ = 0; 2414 } 2415 2416 return (frm); 2417 } 2418 2419 /* 2420 * Send a probe request frame with the specified ssid 2421 * and any optional information element data. 2422 */ 2423 int 2424 ieee80211_send_probereq(struct ieee80211_node *ni, 2425 const uint8_t sa[IEEE80211_ADDR_LEN], 2426 const uint8_t da[IEEE80211_ADDR_LEN], 2427 const uint8_t bssid[IEEE80211_ADDR_LEN], 2428 const uint8_t *ssid, size_t ssidlen) 2429 { 2430 struct ieee80211vap *vap = ni->ni_vap; 2431 struct ieee80211com *ic = ni->ni_ic; 2432 struct ieee80211_node *bss; 2433 const struct ieee80211_txparam *tp; 2434 struct ieee80211_bpf_params params; 2435 const struct ieee80211_rateset *rs; 2436 struct mbuf *m; 2437 uint8_t *frm; 2438 int ret; 2439 2440 bss = ieee80211_ref_node(vap->iv_bss); 2441 2442 if (vap->iv_state == IEEE80211_S_CAC) { 2443 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni, 2444 "block %s frame in CAC state", "probe request"); 2445 vap->iv_stats.is_tx_badstate++; 2446 ieee80211_free_node(bss); 2447 return EIO; /* XXX */ 2448 } 2449 2450 /* 2451 * Hold a reference on the node so it doesn't go away until after 2452 * the xmit is complete all the way in the driver. On error we 2453 * will remove our reference. 2454 */ 2455 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2456 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2457 __func__, __LINE__, 2458 ni, ether_sprintf(ni->ni_macaddr), 2459 ieee80211_node_refcnt(ni)+1); 2460 ieee80211_ref_node(ni); 2461 2462 /* 2463 * prreq frame format 2464 * [tlv] ssid 2465 * [tlv] supported rates 2466 * [tlv] RSN (optional) 2467 * [tlv] extended supported rates 2468 * [tlv] HT cap (optional) 2469 * [tlv] VHT cap (optional) 2470 * [tlv] WPA (optional) 2471 * [tlv] user-specified ie's 2472 */ 2473 m = ieee80211_getmgtframe(&frm, 2474 ic->ic_headroom + sizeof(struct ieee80211_frame), 2475 2 + IEEE80211_NWID_LEN 2476 + 2 + IEEE80211_RATE_SIZE 2477 + sizeof(struct ieee80211_ie_htcap) 2478 + sizeof(struct ieee80211_ie_vhtcap) 2479 + sizeof(struct ieee80211_ie_htinfo) /* XXX not needed? */ 2480 + sizeof(struct ieee80211_ie_wpa) 2481 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2482 + sizeof(struct ieee80211_ie_wpa) 2483 + (vap->iv_appie_probereq != NULL ? 2484 vap->iv_appie_probereq->ie_len : 0) 2485 ); 2486 if (m == NULL) { 2487 vap->iv_stats.is_tx_nobuf++; 2488 ieee80211_free_node(ni); 2489 ieee80211_free_node(bss); 2490 return ENOMEM; 2491 } 2492 2493 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 2494 rs = ieee80211_get_suprates(ic, ic->ic_curchan); 2495 frm = ieee80211_add_rates(frm, rs); 2496 frm = ieee80211_add_rsn(frm, vap); 2497 frm = ieee80211_add_xrates(frm, rs); 2498 2499 /* 2500 * Note: we can't use bss; we don't have one yet. 2501 * 2502 * So, we should announce our capabilities 2503 * in this channel mode (2g/5g), not the 2504 * channel details itself. 2505 */ 2506 if ((vap->iv_opmode == IEEE80211_M_IBSS) && 2507 (vap->iv_flags_ht & IEEE80211_FHT_HT)) { 2508 struct ieee80211_channel *c; 2509 2510 /* 2511 * Get the HT channel that we should try upgrading to. 2512 * If we can do 40MHz then this'll upgrade it appropriately. 2513 */ 2514 c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan, 2515 vap->iv_flags_ht); 2516 frm = ieee80211_add_htcap_ch(frm, vap, c); 2517 } 2518 2519 /* 2520 * XXX TODO: need to figure out what/how to update the 2521 * VHT channel. 2522 */ 2523 #if 0 2524 (vap->iv_flags_vht & IEEE80211_FVHT_VHT) { 2525 struct ieee80211_channel *c; 2526 2527 c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan, 2528 vap->iv_flags_ht); 2529 c = ieee80211_vht_adjust_channel(ic, c, vap->iv_flags_vht); 2530 frm = ieee80211_add_vhtcap_ch(frm, vap, c); 2531 } 2532 #endif 2533 2534 frm = ieee80211_add_wpa(frm, vap); 2535 if (vap->iv_appie_probereq != NULL) 2536 frm = add_appie(frm, vap->iv_appie_probereq); 2537 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2538 2539 KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame), 2540 ("leading space %zd", M_LEADINGSPACE(m))); 2541 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2542 if (m == NULL) { 2543 /* NB: cannot happen */ 2544 ieee80211_free_node(ni); 2545 ieee80211_free_node(bss); 2546 return ENOMEM; 2547 } 2548 2549 IEEE80211_TX_LOCK(ic); 2550 ieee80211_send_setup(ni, m, 2551 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 2552 IEEE80211_NONQOS_TID, sa, da, bssid); 2553 /* XXX power management? */ 2554 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2555 2556 M_WME_SETAC(m, WME_AC_BE); 2557 2558 IEEE80211_NODE_STAT(ni, tx_probereq); 2559 IEEE80211_NODE_STAT(ni, tx_mgmt); 2560 2561 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2562 "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n", 2563 ieee80211_chan2ieee(ic, ic->ic_curchan), 2564 ether_sprintf(bssid), 2565 sa, ":", 2566 da, ":", 2567 ssidlen, ssid); 2568 2569 memset(¶ms, 0, sizeof(params)); 2570 params.ibp_pri = M_WME_GETAC(m); 2571 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 2572 params.ibp_rate0 = tp->mgmtrate; 2573 if (IEEE80211_IS_MULTICAST(da)) { 2574 params.ibp_flags |= IEEE80211_BPF_NOACK; 2575 params.ibp_try0 = 1; 2576 } else 2577 params.ibp_try0 = tp->maxretry; 2578 params.ibp_power = ni->ni_txpower; 2579 ret = ieee80211_raw_output(vap, ni, m, ¶ms); 2580 IEEE80211_TX_UNLOCK(ic); 2581 ieee80211_free_node(bss); 2582 return (ret); 2583 } 2584 2585 /* 2586 * Calculate capability information for mgt frames. 2587 */ 2588 uint16_t 2589 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan) 2590 { 2591 uint16_t capinfo; 2592 2593 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode")); 2594 2595 if (vap->iv_opmode == IEEE80211_M_HOSTAP) 2596 capinfo = IEEE80211_CAPINFO_ESS; 2597 else if (vap->iv_opmode == IEEE80211_M_IBSS) 2598 capinfo = IEEE80211_CAPINFO_IBSS; 2599 else 2600 capinfo = 0; 2601 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2602 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2603 if ((vap->iv_flags & IEEE80211_F_SHPREAMBLE) && 2604 IEEE80211_IS_CHAN_2GHZ(chan)) 2605 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2606 if (vap->iv_flags & IEEE80211_F_SHSLOT) 2607 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2608 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH)) 2609 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2610 return capinfo; 2611 } 2612 2613 /* 2614 * Send a management frame. The node is for the destination (or ic_bss 2615 * when in station mode). Nodes other than ic_bss have their reference 2616 * count bumped to reflect our use for an indeterminant time. 2617 */ 2618 int 2619 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg) 2620 { 2621 #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT) 2622 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2623 struct ieee80211vap *vap = ni->ni_vap; 2624 struct ieee80211com *ic = ni->ni_ic; 2625 struct ieee80211_node *bss = vap->iv_bss; 2626 struct ieee80211_bpf_params params; 2627 struct mbuf *m; 2628 uint8_t *frm; 2629 uint16_t capinfo; 2630 int has_challenge, is_shared_key, ret, status; 2631 2632 KASSERT(ni != NULL, ("null node")); 2633 2634 /* 2635 * Hold a reference on the node so it doesn't go away until after 2636 * the xmit is complete all the way in the driver. On error we 2637 * will remove our reference. 2638 */ 2639 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2640 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2641 __func__, __LINE__, 2642 ni, ether_sprintf(ni->ni_macaddr), 2643 ieee80211_node_refcnt(ni)+1); 2644 ieee80211_ref_node(ni); 2645 2646 memset(¶ms, 0, sizeof(params)); 2647 switch (type) { 2648 2649 case IEEE80211_FC0_SUBTYPE_AUTH: 2650 status = arg >> 16; 2651 arg &= 0xffff; 2652 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || 2653 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 2654 ni->ni_challenge != NULL); 2655 2656 /* 2657 * Deduce whether we're doing open authentication or 2658 * shared key authentication. We do the latter if 2659 * we're in the middle of a shared key authentication 2660 * handshake or if we're initiating an authentication 2661 * request and configured to use shared key. 2662 */ 2663 is_shared_key = has_challenge || 2664 arg >= IEEE80211_AUTH_SHARED_RESPONSE || 2665 (arg == IEEE80211_AUTH_SHARED_REQUEST && 2666 bss->ni_authmode == IEEE80211_AUTH_SHARED); 2667 2668 m = ieee80211_getmgtframe(&frm, 2669 ic->ic_headroom + sizeof(struct ieee80211_frame), 2670 3 * sizeof(uint16_t) 2671 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? 2672 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0) 2673 ); 2674 if (m == NULL) 2675 senderr(ENOMEM, is_tx_nobuf); 2676 2677 ((uint16_t *)frm)[0] = 2678 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) 2679 : htole16(IEEE80211_AUTH_ALG_OPEN); 2680 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */ 2681 ((uint16_t *)frm)[2] = htole16(status);/* status */ 2682 2683 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { 2684 ((uint16_t *)frm)[3] = 2685 htole16((IEEE80211_CHALLENGE_LEN << 8) | 2686 IEEE80211_ELEMID_CHALLENGE); 2687 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge, 2688 IEEE80211_CHALLENGE_LEN); 2689 m->m_pkthdr.len = m->m_len = 2690 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN; 2691 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 2692 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2693 "request encrypt frame (%s)", __func__); 2694 /* mark frame for encryption */ 2695 params.ibp_flags |= IEEE80211_BPF_CRYPTO; 2696 } 2697 } else 2698 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t); 2699 2700 /* XXX not right for shared key */ 2701 if (status == IEEE80211_STATUS_SUCCESS) 2702 IEEE80211_NODE_STAT(ni, tx_auth); 2703 else 2704 IEEE80211_NODE_STAT(ni, tx_auth_fail); 2705 2706 if (vap->iv_opmode == IEEE80211_M_STA) 2707 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2708 (void *) vap->iv_state); 2709 break; 2710 2711 case IEEE80211_FC0_SUBTYPE_DEAUTH: 2712 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2713 "send station deauthenticate (reason: %d (%s))", arg, 2714 ieee80211_reason_to_string(arg)); 2715 m = ieee80211_getmgtframe(&frm, 2716 ic->ic_headroom + sizeof(struct ieee80211_frame), 2717 sizeof(uint16_t)); 2718 if (m == NULL) 2719 senderr(ENOMEM, is_tx_nobuf); 2720 *(uint16_t *)frm = htole16(arg); /* reason */ 2721 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2722 2723 IEEE80211_NODE_STAT(ni, tx_deauth); 2724 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 2725 2726 ieee80211_node_unauthorize(ni); /* port closed */ 2727 break; 2728 2729 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 2730 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 2731 /* 2732 * asreq frame format 2733 * [2] capability information 2734 * [2] listen interval 2735 * [6*] current AP address (reassoc only) 2736 * [tlv] ssid 2737 * [tlv] supported rates 2738 * [tlv] extended supported rates 2739 * [4] power capability (optional) 2740 * [28] supported channels (optional) 2741 * [tlv] HT capabilities 2742 * [tlv] VHT capabilities 2743 * [tlv] WME (optional) 2744 * [tlv] Vendor OUI HT capabilities (optional) 2745 * [tlv] Atheros capabilities (if negotiated) 2746 * [tlv] AppIE's (optional) 2747 */ 2748 m = ieee80211_getmgtframe(&frm, 2749 ic->ic_headroom + sizeof(struct ieee80211_frame), 2750 sizeof(uint16_t) 2751 + sizeof(uint16_t) 2752 + IEEE80211_ADDR_LEN 2753 + 2 + IEEE80211_NWID_LEN 2754 + 2 + IEEE80211_RATE_SIZE 2755 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2756 + 4 2757 + 2 + 26 2758 + sizeof(struct ieee80211_wme_info) 2759 + sizeof(struct ieee80211_ie_htcap) 2760 + sizeof(struct ieee80211_ie_vhtcap) 2761 + 4 + sizeof(struct ieee80211_ie_htcap) 2762 #ifdef IEEE80211_SUPPORT_SUPERG 2763 + sizeof(struct ieee80211_ath_ie) 2764 #endif 2765 + (vap->iv_appie_wpa != NULL ? 2766 vap->iv_appie_wpa->ie_len : 0) 2767 + (vap->iv_appie_assocreq != NULL ? 2768 vap->iv_appie_assocreq->ie_len : 0) 2769 ); 2770 if (m == NULL) 2771 senderr(ENOMEM, is_tx_nobuf); 2772 2773 KASSERT(vap->iv_opmode == IEEE80211_M_STA, 2774 ("wrong mode %u", vap->iv_opmode)); 2775 capinfo = IEEE80211_CAPINFO_ESS; 2776 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2777 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2778 /* 2779 * NB: Some 11a AP's reject the request when 2780 * short preamble is set. 2781 */ 2782 if ((vap->iv_flags & IEEE80211_F_SHPREAMBLE) && 2783 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2784 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2785 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 2786 (ic->ic_caps & IEEE80211_C_SHSLOT)) 2787 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2788 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) && 2789 (vap->iv_flags & IEEE80211_F_DOTH)) 2790 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2791 *(uint16_t *)frm = htole16(capinfo); 2792 frm += 2; 2793 2794 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!")); 2795 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval, 2796 bss->ni_intval)); 2797 frm += 2; 2798 2799 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 2800 IEEE80211_ADDR_COPY(frm, bss->ni_bssid); 2801 frm += IEEE80211_ADDR_LEN; 2802 } 2803 2804 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 2805 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2806 frm = ieee80211_add_rsn(frm, vap); 2807 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2808 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) { 2809 frm = ieee80211_add_powercapability(frm, 2810 ic->ic_curchan); 2811 frm = ieee80211_add_supportedchannels(frm, ic); 2812 } 2813 2814 /* 2815 * Check the channel - we may be using an 11n NIC with an 2816 * 11n capable station, but we're configured to be an 11b 2817 * channel. 2818 */ 2819 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2820 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2821 ni->ni_ies.htcap_ie != NULL && 2822 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) { 2823 frm = ieee80211_add_htcap(frm, ni); 2824 } 2825 2826 if ((vap->iv_flags_vht & IEEE80211_FVHT_VHT) && 2827 IEEE80211_IS_CHAN_VHT(ni->ni_chan) && 2828 ni->ni_ies.vhtcap_ie != NULL && 2829 ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) { 2830 frm = ieee80211_add_vhtcap(frm, ni); 2831 } 2832 2833 frm = ieee80211_add_wpa(frm, vap); 2834 if ((ic->ic_flags & IEEE80211_F_WME) && 2835 ni->ni_ies.wme_ie != NULL) 2836 frm = ieee80211_add_wme_info(frm, &ic->ic_wme, ni); 2837 2838 /* 2839 * Same deal - only send HT info if we're on an 11n 2840 * capable channel. 2841 */ 2842 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2843 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2844 ni->ni_ies.htcap_ie != NULL && 2845 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) { 2846 frm = ieee80211_add_htcap_vendor(frm, ni); 2847 } 2848 #ifdef IEEE80211_SUPPORT_SUPERG 2849 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) { 2850 frm = ieee80211_add_ath(frm, 2851 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2852 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2853 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2854 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2855 } 2856 #endif /* IEEE80211_SUPPORT_SUPERG */ 2857 if (vap->iv_appie_assocreq != NULL) 2858 frm = add_appie(frm, vap->iv_appie_assocreq); 2859 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2860 2861 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2862 (void *) vap->iv_state); 2863 break; 2864 2865 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 2866 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 2867 /* 2868 * asresp frame format 2869 * [2] capability information 2870 * [2] status 2871 * [2] association ID 2872 * [tlv] supported rates 2873 * [tlv] extended supported rates 2874 * [tlv] HT capabilities (standard, if STA enabled) 2875 * [tlv] HT information (standard, if STA enabled) 2876 * [tlv] VHT capabilities (standard, if STA enabled) 2877 * [tlv] VHT information (standard, if STA enabled) 2878 * [tlv] WME (if configured and STA enabled) 2879 * [tlv] HT capabilities (vendor OUI, if STA enabled) 2880 * [tlv] HT information (vendor OUI, if STA enabled) 2881 * [tlv] Atheros capabilities (if STA enabled) 2882 * [tlv] AppIE's (optional) 2883 */ 2884 m = ieee80211_getmgtframe(&frm, 2885 ic->ic_headroom + sizeof(struct ieee80211_frame), 2886 sizeof(uint16_t) 2887 + sizeof(uint16_t) 2888 + sizeof(uint16_t) 2889 + 2 + IEEE80211_RATE_SIZE 2890 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2891 + sizeof(struct ieee80211_ie_htcap) + 4 2892 + sizeof(struct ieee80211_ie_htinfo) + 4 2893 + sizeof(struct ieee80211_ie_vhtcap) 2894 + sizeof(struct ieee80211_ie_vht_operation) 2895 + sizeof(struct ieee80211_wme_param) 2896 #ifdef IEEE80211_SUPPORT_SUPERG 2897 + sizeof(struct ieee80211_ath_ie) 2898 #endif 2899 + (vap->iv_appie_assocresp != NULL ? 2900 vap->iv_appie_assocresp->ie_len : 0) 2901 ); 2902 if (m == NULL) 2903 senderr(ENOMEM, is_tx_nobuf); 2904 2905 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2906 *(uint16_t *)frm = htole16(capinfo); 2907 frm += 2; 2908 2909 *(uint16_t *)frm = htole16(arg); /* status */ 2910 frm += 2; 2911 2912 if (arg == IEEE80211_STATUS_SUCCESS) { 2913 *(uint16_t *)frm = htole16(ni->ni_associd); 2914 IEEE80211_NODE_STAT(ni, tx_assoc); 2915 } else 2916 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 2917 frm += 2; 2918 2919 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2920 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2921 /* NB: respond according to what we received */ 2922 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) { 2923 frm = ieee80211_add_htcap(frm, ni); 2924 frm = ieee80211_add_htinfo(frm, ni); 2925 } 2926 if ((vap->iv_flags & IEEE80211_F_WME) && 2927 ni->ni_ies.wme_ie != NULL) 2928 frm = ieee80211_add_wme_param(frm, &ic->ic_wme, 2929 !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD)); 2930 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) { 2931 frm = ieee80211_add_htcap_vendor(frm, ni); 2932 frm = ieee80211_add_htinfo_vendor(frm, ni); 2933 } 2934 if (ni->ni_flags & IEEE80211_NODE_VHT) { 2935 frm = ieee80211_add_vhtcap(frm, ni); 2936 frm = ieee80211_add_vhtinfo(frm, ni); 2937 } 2938 #ifdef IEEE80211_SUPPORT_SUPERG 2939 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) 2940 frm = ieee80211_add_ath(frm, 2941 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2942 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2943 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2944 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2945 #endif /* IEEE80211_SUPPORT_SUPERG */ 2946 if (vap->iv_appie_assocresp != NULL) 2947 frm = add_appie(frm, vap->iv_appie_assocresp); 2948 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2949 break; 2950 2951 case IEEE80211_FC0_SUBTYPE_DISASSOC: 2952 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, 2953 "send station disassociate (reason: %d (%s))", arg, 2954 ieee80211_reason_to_string(arg)); 2955 m = ieee80211_getmgtframe(&frm, 2956 ic->ic_headroom + sizeof(struct ieee80211_frame), 2957 sizeof(uint16_t)); 2958 if (m == NULL) 2959 senderr(ENOMEM, is_tx_nobuf); 2960 *(uint16_t *)frm = htole16(arg); /* reason */ 2961 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2962 2963 IEEE80211_NODE_STAT(ni, tx_disassoc); 2964 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 2965 break; 2966 2967 default: 2968 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni, 2969 "invalid mgmt frame type %u", type); 2970 senderr(EINVAL, is_tx_unknownmgt); 2971 /* NOTREACHED */ 2972 } 2973 2974 /* NB: force non-ProbeResp frames to the highest queue */ 2975 params.ibp_pri = WME_AC_VO; 2976 params.ibp_rate0 = bss->ni_txparms->mgmtrate; 2977 /* NB: we know all frames are unicast */ 2978 params.ibp_try0 = bss->ni_txparms->maxretry; 2979 params.ibp_power = bss->ni_txpower; 2980 return ieee80211_mgmt_output(ni, m, type, ¶ms); 2981 bad: 2982 ieee80211_free_node(ni); 2983 return ret; 2984 #undef senderr 2985 #undef HTFLAGS 2986 } 2987 2988 /* 2989 * Return an mbuf with a probe response frame in it. 2990 * Space is left to prepend and 802.11 header at the 2991 * front but it's left to the caller to fill in. 2992 */ 2993 struct mbuf * 2994 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy) 2995 { 2996 struct ieee80211vap *vap = bss->ni_vap; 2997 struct ieee80211com *ic = bss->ni_ic; 2998 const struct ieee80211_rateset *rs; 2999 struct mbuf *m; 3000 uint16_t capinfo; 3001 uint8_t *frm; 3002 3003 /* 3004 * probe response frame format 3005 * [8] time stamp 3006 * [2] beacon interval 3007 * [2] cabability information 3008 * [tlv] ssid 3009 * [tlv] supported rates 3010 * [tlv] parameter set (FH/DS) 3011 * [tlv] parameter set (IBSS) 3012 * [tlv] country (optional) 3013 * [3] power control (optional) 3014 * [5] channel switch announcement (CSA) (optional) 3015 * [tlv] extended rate phy (ERP) 3016 * [tlv] extended supported rates 3017 * [tlv] RSN (optional) 3018 * [tlv] HT capabilities 3019 * [tlv] HT information 3020 * [tlv] VHT capabilities 3021 * [tlv] VHT information 3022 * [tlv] WPA (optional) 3023 * [tlv] WME (optional) 3024 * [tlv] Vendor OUI HT capabilities (optional) 3025 * [tlv] Vendor OUI HT information (optional) 3026 * [tlv] Atheros capabilities 3027 * [tlv] AppIE's (optional) 3028 * [tlv] Mesh ID (MBSS) 3029 * [tlv] Mesh Conf (MBSS) 3030 */ 3031 m = ieee80211_getmgtframe(&frm, 3032 ic->ic_headroom + sizeof(struct ieee80211_frame), 3033 8 3034 + sizeof(uint16_t) 3035 + sizeof(uint16_t) 3036 + 2 + IEEE80211_NWID_LEN 3037 + 2 + IEEE80211_RATE_SIZE 3038 + 7 /* max(7,3) */ 3039 + IEEE80211_COUNTRY_MAX_SIZE 3040 + 3 3041 + sizeof(struct ieee80211_csa_ie) 3042 + sizeof(struct ieee80211_quiet_ie) 3043 + 3 3044 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 3045 + sizeof(struct ieee80211_ie_wpa) 3046 + sizeof(struct ieee80211_ie_htcap) 3047 + sizeof(struct ieee80211_ie_htinfo) 3048 + sizeof(struct ieee80211_ie_wpa) 3049 + sizeof(struct ieee80211_wme_param) 3050 + 4 + sizeof(struct ieee80211_ie_htcap) 3051 + 4 + sizeof(struct ieee80211_ie_htinfo) 3052 + sizeof(struct ieee80211_ie_vhtcap) 3053 + sizeof(struct ieee80211_ie_vht_operation) 3054 #ifdef IEEE80211_SUPPORT_SUPERG 3055 + sizeof(struct ieee80211_ath_ie) 3056 #endif 3057 #ifdef IEEE80211_SUPPORT_MESH 3058 + 2 + IEEE80211_MESHID_LEN 3059 + sizeof(struct ieee80211_meshconf_ie) 3060 #endif 3061 + (vap->iv_appie_proberesp != NULL ? 3062 vap->iv_appie_proberesp->ie_len : 0) 3063 ); 3064 if (m == NULL) { 3065 vap->iv_stats.is_tx_nobuf++; 3066 return NULL; 3067 } 3068 3069 memset(frm, 0, 8); /* timestamp should be filled later */ 3070 frm += 8; 3071 *(uint16_t *)frm = htole16(bss->ni_intval); 3072 frm += 2; 3073 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 3074 *(uint16_t *)frm = htole16(capinfo); 3075 frm += 2; 3076 3077 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen); 3078 rs = ieee80211_get_suprates(ic, bss->ni_chan); 3079 frm = ieee80211_add_rates(frm, rs); 3080 3081 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) { 3082 *frm++ = IEEE80211_ELEMID_FHPARMS; 3083 *frm++ = 5; 3084 *frm++ = bss->ni_fhdwell & 0x00ff; 3085 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff; 3086 *frm++ = IEEE80211_FH_CHANSET( 3087 ieee80211_chan2ieee(ic, bss->ni_chan)); 3088 *frm++ = IEEE80211_FH_CHANPAT( 3089 ieee80211_chan2ieee(ic, bss->ni_chan)); 3090 *frm++ = bss->ni_fhindex; 3091 } else { 3092 *frm++ = IEEE80211_ELEMID_DSPARMS; 3093 *frm++ = 1; 3094 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan); 3095 } 3096 3097 if (vap->iv_opmode == IEEE80211_M_IBSS) { 3098 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 3099 *frm++ = 2; 3100 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 3101 } 3102 if ((vap->iv_flags & IEEE80211_F_DOTH) || 3103 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 3104 frm = ieee80211_add_countryie(frm, ic); 3105 if (vap->iv_flags & IEEE80211_F_DOTH) { 3106 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan)) 3107 frm = ieee80211_add_powerconstraint(frm, vap); 3108 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 3109 frm = ieee80211_add_csa(frm, vap); 3110 } 3111 if (vap->iv_flags & IEEE80211_F_DOTH) { 3112 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3113 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 3114 if (vap->iv_quiet) 3115 frm = ieee80211_add_quiet(frm, vap, 0); 3116 } 3117 } 3118 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan)) 3119 frm = ieee80211_add_erp(frm, vap); 3120 frm = ieee80211_add_xrates(frm, rs); 3121 frm = ieee80211_add_rsn(frm, vap); 3122 /* 3123 * NB: legacy 11b clients do not get certain ie's. 3124 * The caller identifies such clients by passing 3125 * a token in legacy to us. Could expand this to be 3126 * any legacy client for stuff like HT ie's. 3127 */ 3128 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 3129 legacy != IEEE80211_SEND_LEGACY_11B) { 3130 frm = ieee80211_add_htcap(frm, bss); 3131 frm = ieee80211_add_htinfo(frm, bss); 3132 } 3133 if (IEEE80211_IS_CHAN_VHT(bss->ni_chan) && 3134 legacy != IEEE80211_SEND_LEGACY_11B) { 3135 frm = ieee80211_add_vhtcap(frm, bss); 3136 frm = ieee80211_add_vhtinfo(frm, bss); 3137 } 3138 frm = ieee80211_add_wpa(frm, vap); 3139 if (vap->iv_flags & IEEE80211_F_WME) 3140 frm = ieee80211_add_wme_param(frm, &ic->ic_wme, 3141 !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD)); 3142 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 3143 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) && 3144 legacy != IEEE80211_SEND_LEGACY_11B) { 3145 frm = ieee80211_add_htcap_vendor(frm, bss); 3146 frm = ieee80211_add_htinfo_vendor(frm, bss); 3147 } 3148 #ifdef IEEE80211_SUPPORT_SUPERG 3149 if ((vap->iv_flags & IEEE80211_F_ATHEROS) && 3150 legacy != IEEE80211_SEND_LEGACY_11B) 3151 frm = ieee80211_add_athcaps(frm, bss); 3152 #endif 3153 if (vap->iv_appie_proberesp != NULL) 3154 frm = add_appie(frm, vap->iv_appie_proberesp); 3155 #ifdef IEEE80211_SUPPORT_MESH 3156 if (vap->iv_opmode == IEEE80211_M_MBSS) { 3157 frm = ieee80211_add_meshid(frm, vap); 3158 frm = ieee80211_add_meshconf(frm, vap); 3159 } 3160 #endif 3161 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3162 3163 return m; 3164 } 3165 3166 /* 3167 * Send a probe response frame to the specified mac address. 3168 * This does not go through the normal mgt frame api so we 3169 * can specify the destination address and re-use the bss node 3170 * for the sta reference. 3171 */ 3172 int 3173 ieee80211_send_proberesp(struct ieee80211vap *vap, 3174 const uint8_t da[IEEE80211_ADDR_LEN], int legacy) 3175 { 3176 struct ieee80211_node *bss = vap->iv_bss; 3177 struct ieee80211com *ic = vap->iv_ic; 3178 struct mbuf *m; 3179 int ret; 3180 3181 if (vap->iv_state == IEEE80211_S_CAC) { 3182 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss, 3183 "block %s frame in CAC state", "probe response"); 3184 vap->iv_stats.is_tx_badstate++; 3185 return EIO; /* XXX */ 3186 } 3187 3188 /* 3189 * Hold a reference on the node so it doesn't go away until after 3190 * the xmit is complete all the way in the driver. On error we 3191 * will remove our reference. 3192 */ 3193 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 3194 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 3195 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr), 3196 ieee80211_node_refcnt(bss)+1); 3197 ieee80211_ref_node(bss); 3198 3199 m = ieee80211_alloc_proberesp(bss, legacy); 3200 if (m == NULL) { 3201 ieee80211_free_node(bss); 3202 return ENOMEM; 3203 } 3204 3205 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 3206 KASSERT(m != NULL, ("no room for header")); 3207 3208 IEEE80211_TX_LOCK(ic); 3209 ieee80211_send_setup(bss, m, 3210 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP, 3211 IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid); 3212 /* XXX power management? */ 3213 m->m_flags |= M_ENCAP; /* mark encapsulated */ 3214 3215 M_WME_SETAC(m, WME_AC_BE); 3216 3217 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 3218 "send probe resp on channel %u to %s%s\n", 3219 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da), 3220 legacy ? " <legacy>" : ""); 3221 IEEE80211_NODE_STAT(bss, tx_mgmt); 3222 3223 ret = ieee80211_raw_output(vap, bss, m, NULL); 3224 IEEE80211_TX_UNLOCK(ic); 3225 return (ret); 3226 } 3227 3228 /* 3229 * Allocate and build a RTS (Request To Send) control frame. 3230 */ 3231 struct mbuf * 3232 ieee80211_alloc_rts(struct ieee80211com *ic, 3233 const uint8_t ra[IEEE80211_ADDR_LEN], 3234 const uint8_t ta[IEEE80211_ADDR_LEN], 3235 uint16_t dur) 3236 { 3237 struct ieee80211_frame_rts *rts; 3238 struct mbuf *m; 3239 3240 /* XXX honor ic_headroom */ 3241 m = m_gethdr(M_NOWAIT, MT_DATA); 3242 if (m != NULL) { 3243 rts = mtod(m, struct ieee80211_frame_rts *); 3244 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 3245 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS; 3246 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3247 *(u_int16_t *)rts->i_dur = htole16(dur); 3248 IEEE80211_ADDR_COPY(rts->i_ra, ra); 3249 IEEE80211_ADDR_COPY(rts->i_ta, ta); 3250 3251 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); 3252 } 3253 return m; 3254 } 3255 3256 /* 3257 * Allocate and build a CTS (Clear To Send) control frame. 3258 */ 3259 struct mbuf * 3260 ieee80211_alloc_cts(struct ieee80211com *ic, 3261 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur) 3262 { 3263 struct ieee80211_frame_cts *cts; 3264 struct mbuf *m; 3265 3266 /* XXX honor ic_headroom */ 3267 m = m_gethdr(M_NOWAIT, MT_DATA); 3268 if (m != NULL) { 3269 cts = mtod(m, struct ieee80211_frame_cts *); 3270 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 3271 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS; 3272 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3273 *(u_int16_t *)cts->i_dur = htole16(dur); 3274 IEEE80211_ADDR_COPY(cts->i_ra, ra); 3275 3276 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts); 3277 } 3278 return m; 3279 } 3280 3281 /* 3282 * Wrapper for CTS/RTS frame allocation. 3283 */ 3284 struct mbuf * 3285 ieee80211_alloc_prot(struct ieee80211_node *ni, const struct mbuf *m, 3286 uint8_t rate, int prot) 3287 { 3288 struct ieee80211com *ic = ni->ni_ic; 3289 struct ieee80211vap *vap = ni->ni_vap; 3290 const struct ieee80211_frame *wh; 3291 struct mbuf *mprot; 3292 uint16_t dur; 3293 int pktlen, isshort; 3294 3295 KASSERT(prot == IEEE80211_PROT_RTSCTS || 3296 prot == IEEE80211_PROT_CTSONLY, 3297 ("wrong protection type %d", prot)); 3298 3299 wh = mtod(m, const struct ieee80211_frame *); 3300 pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; 3301 isshort = (vap->iv_flags & IEEE80211_F_SHPREAMBLE) != 0; 3302 dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort) 3303 + ieee80211_ack_duration(ic->ic_rt, rate, isshort); 3304 3305 if (prot == IEEE80211_PROT_RTSCTS) { 3306 /* NB: CTS is the same size as an ACK */ 3307 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); 3308 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); 3309 } else 3310 mprot = ieee80211_alloc_cts(ic, vap->iv_myaddr, dur); 3311 3312 return (mprot); 3313 } 3314 3315 static void 3316 ieee80211_tx_mgt_timeout(void *arg) 3317 { 3318 struct ieee80211vap *vap = arg; 3319 3320 IEEE80211_LOCK(vap->iv_ic); 3321 if (vap->iv_state != IEEE80211_S_INIT && 3322 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) { 3323 /* 3324 * NB: it's safe to specify a timeout as the reason here; 3325 * it'll only be used in the right state. 3326 */ 3327 ieee80211_new_state_locked(vap, IEEE80211_S_SCAN, 3328 IEEE80211_SCAN_FAIL_TIMEOUT); 3329 } 3330 IEEE80211_UNLOCK(vap->iv_ic); 3331 } 3332 3333 /* 3334 * This is the callback set on net80211-sourced transmitted 3335 * authentication request frames. 3336 * 3337 * This does a couple of things: 3338 * 3339 * + If the frame transmitted was a success, it schedules a future 3340 * event which will transition the interface to scan. 3341 * If a state transition _then_ occurs before that event occurs, 3342 * said state transition will cancel this callout. 3343 * 3344 * + If the frame transmit was a failure, it immediately schedules 3345 * the transition back to scan. 3346 */ 3347 static void 3348 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status) 3349 { 3350 struct ieee80211vap *vap = ni->ni_vap; 3351 enum ieee80211_state ostate = (enum ieee80211_state)(uintptr_t)arg; 3352 3353 /* 3354 * Frame transmit completed; arrange timer callback. If 3355 * transmit was successfully we wait for response. Otherwise 3356 * we arrange an immediate callback instead of doing the 3357 * callback directly since we don't know what state the driver 3358 * is in (e.g. what locks it is holding). This work should 3359 * not be too time-critical and not happen too often so the 3360 * added overhead is acceptable. 3361 * 3362 * XXX what happens if !acked but response shows up before callback? 3363 */ 3364 if (vap->iv_state == ostate) { 3365 callout_reset(&vap->iv_mgtsend, 3366 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0, 3367 ieee80211_tx_mgt_timeout, vap); 3368 } 3369 } 3370 3371 static void 3372 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm, 3373 struct ieee80211_node *ni) 3374 { 3375 struct ieee80211vap *vap = ni->ni_vap; 3376 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 3377 struct ieee80211com *ic = ni->ni_ic; 3378 struct ieee80211_rateset *rs = &ni->ni_rates; 3379 uint16_t capinfo; 3380 3381 /* 3382 * beacon frame format 3383 * 3384 * TODO: update to 802.11-2012; a lot of stuff has changed; 3385 * vendor extensions should be at the end, etc. 3386 * 3387 * [8] time stamp 3388 * [2] beacon interval 3389 * [2] cabability information 3390 * [tlv] ssid 3391 * [tlv] supported rates 3392 * [3] parameter set (DS) 3393 * [8] CF parameter set (optional) 3394 * [tlv] parameter set (IBSS/TIM) 3395 * [tlv] country (optional) 3396 * [3] power control (optional) 3397 * [5] channel switch announcement (CSA) (optional) 3398 * XXX TODO: Quiet 3399 * XXX TODO: IBSS DFS 3400 * XXX TODO: TPC report 3401 * [tlv] extended rate phy (ERP) 3402 * [tlv] extended supported rates 3403 * [tlv] RSN parameters 3404 * XXX TODO: BSSLOAD 3405 * (XXX EDCA parameter set, QoS capability?) 3406 * XXX TODO: AP channel report 3407 * 3408 * [tlv] HT capabilities 3409 * [tlv] HT information 3410 * XXX TODO: 20/40 BSS coexistence 3411 * Mesh: 3412 * XXX TODO: Meshid 3413 * XXX TODO: mesh config 3414 * XXX TODO: mesh awake window 3415 * XXX TODO: beacon timing (mesh, etc) 3416 * XXX TODO: MCCAOP Advertisement Overview 3417 * XXX TODO: MCCAOP Advertisement 3418 * XXX TODO: Mesh channel switch parameters 3419 * VHT: 3420 * XXX TODO: VHT capabilities 3421 * XXX TODO: VHT operation 3422 * XXX TODO: VHT transmit power envelope 3423 * XXX TODO: channel switch wrapper element 3424 * XXX TODO: extended BSS load element 3425 * 3426 * XXX Vendor-specific OIDs (e.g. Atheros) 3427 * [tlv] WPA parameters 3428 * [tlv] WME parameters 3429 * [tlv] Vendor OUI HT capabilities (optional) 3430 * [tlv] Vendor OUI HT information (optional) 3431 * [tlv] Atheros capabilities (optional) 3432 * [tlv] TDMA parameters (optional) 3433 * [tlv] Mesh ID (MBSS) 3434 * [tlv] Mesh Conf (MBSS) 3435 * [tlv] application data (optional) 3436 */ 3437 3438 memset(bo, 0, sizeof(*bo)); 3439 3440 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 3441 frm += 8; 3442 *(uint16_t *)frm = htole16(ni->ni_intval); 3443 frm += 2; 3444 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3445 bo->bo_caps = (uint16_t *)frm; 3446 *(uint16_t *)frm = htole16(capinfo); 3447 frm += 2; 3448 *frm++ = IEEE80211_ELEMID_SSID; 3449 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) { 3450 *frm++ = ni->ni_esslen; 3451 memcpy(frm, ni->ni_essid, ni->ni_esslen); 3452 frm += ni->ni_esslen; 3453 } else 3454 *frm++ = 0; 3455 frm = ieee80211_add_rates(frm, rs); 3456 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) { 3457 *frm++ = IEEE80211_ELEMID_DSPARMS; 3458 *frm++ = 1; 3459 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 3460 } 3461 if (ic->ic_flags & IEEE80211_F_PCF) { 3462 bo->bo_cfp = frm; 3463 frm = ieee80211_add_cfparms(frm, ic); 3464 } 3465 bo->bo_tim = frm; 3466 if (vap->iv_opmode == IEEE80211_M_IBSS) { 3467 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 3468 *frm++ = 2; 3469 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 3470 bo->bo_tim_len = 0; 3471 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3472 vap->iv_opmode == IEEE80211_M_MBSS) { 3473 /* TIM IE is the same for Mesh and Hostap */ 3474 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; 3475 3476 tie->tim_ie = IEEE80211_ELEMID_TIM; 3477 tie->tim_len = 4; /* length */ 3478 tie->tim_count = 0; /* DTIM count */ 3479 tie->tim_period = vap->iv_dtim_period; /* DTIM period */ 3480 tie->tim_bitctl = 0; /* bitmap control */ 3481 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 3482 frm += sizeof(struct ieee80211_tim_ie); 3483 bo->bo_tim_len = 1; 3484 } 3485 bo->bo_tim_trailer = frm; 3486 if ((vap->iv_flags & IEEE80211_F_DOTH) || 3487 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 3488 frm = ieee80211_add_countryie(frm, ic); 3489 if (vap->iv_flags & IEEE80211_F_DOTH) { 3490 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) 3491 frm = ieee80211_add_powerconstraint(frm, vap); 3492 bo->bo_csa = frm; 3493 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 3494 frm = ieee80211_add_csa(frm, vap); 3495 } else 3496 bo->bo_csa = frm; 3497 3498 bo->bo_quiet = NULL; 3499 if (vap->iv_flags & IEEE80211_F_DOTH) { 3500 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3501 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && 3502 (vap->iv_quiet == 1)) { 3503 /* 3504 * We only insert the quiet IE offset if 3505 * the quiet IE is enabled. Otherwise don't 3506 * put it here or we'll just overwrite 3507 * some other beacon contents. 3508 */ 3509 if (vap->iv_quiet) { 3510 bo->bo_quiet = frm; 3511 frm = ieee80211_add_quiet(frm,vap, 0); 3512 } 3513 } 3514 } 3515 3516 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) { 3517 bo->bo_erp = frm; 3518 frm = ieee80211_add_erp(frm, vap); 3519 } 3520 frm = ieee80211_add_xrates(frm, rs); 3521 frm = ieee80211_add_rsn(frm, vap); 3522 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 3523 frm = ieee80211_add_htcap(frm, ni); 3524 bo->bo_htinfo = frm; 3525 frm = ieee80211_add_htinfo(frm, ni); 3526 } 3527 3528 if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) { 3529 frm = ieee80211_add_vhtcap(frm, ni); 3530 bo->bo_vhtinfo = frm; 3531 frm = ieee80211_add_vhtinfo(frm, ni); 3532 /* Transmit power envelope */ 3533 /* Channel switch wrapper element */ 3534 /* Extended bss load element */ 3535 } 3536 3537 frm = ieee80211_add_wpa(frm, vap); 3538 if (vap->iv_flags & IEEE80211_F_WME) { 3539 bo->bo_wme = frm; 3540 frm = ieee80211_add_wme_param(frm, &ic->ic_wme, 3541 !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD)); 3542 } 3543 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && 3544 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) { 3545 frm = ieee80211_add_htcap_vendor(frm, ni); 3546 frm = ieee80211_add_htinfo_vendor(frm, ni); 3547 } 3548 3549 #ifdef IEEE80211_SUPPORT_SUPERG 3550 if (vap->iv_flags & IEEE80211_F_ATHEROS) { 3551 bo->bo_ath = frm; 3552 frm = ieee80211_add_athcaps(frm, ni); 3553 } 3554 #endif 3555 #ifdef IEEE80211_SUPPORT_TDMA 3556 if (vap->iv_caps & IEEE80211_C_TDMA) { 3557 bo->bo_tdma = frm; 3558 frm = ieee80211_add_tdma(frm, vap); 3559 } 3560 #endif 3561 if (vap->iv_appie_beacon != NULL) { 3562 bo->bo_appie = frm; 3563 bo->bo_appie_len = vap->iv_appie_beacon->ie_len; 3564 frm = add_appie(frm, vap->iv_appie_beacon); 3565 } 3566 3567 /* XXX TODO: move meshid/meshconf up to before vendor extensions? */ 3568 #ifdef IEEE80211_SUPPORT_MESH 3569 if (vap->iv_opmode == IEEE80211_M_MBSS) { 3570 frm = ieee80211_add_meshid(frm, vap); 3571 bo->bo_meshconf = frm; 3572 frm = ieee80211_add_meshconf(frm, vap); 3573 } 3574 #endif 3575 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer; 3576 bo->bo_csa_trailer_len = frm - bo->bo_csa; 3577 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3578 } 3579 3580 /* 3581 * Allocate a beacon frame and fillin the appropriate bits. 3582 */ 3583 struct mbuf * 3584 ieee80211_beacon_alloc(struct ieee80211_node *ni) 3585 { 3586 struct ieee80211vap *vap = ni->ni_vap; 3587 struct ieee80211com *ic = ni->ni_ic; 3588 struct ifnet *ifp = vap->iv_ifp; 3589 struct ieee80211_frame *wh; 3590 struct mbuf *m; 3591 int pktlen; 3592 uint8_t *frm; 3593 3594 /* 3595 * Update the "We're putting the quiet IE in the beacon" state. 3596 */ 3597 if (vap->iv_quiet == 1) 3598 vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE; 3599 else if (vap->iv_quiet == 0) 3600 vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE; 3601 3602 /* 3603 * beacon frame format 3604 * 3605 * Note: This needs updating for 802.11-2012. 3606 * 3607 * [8] time stamp 3608 * [2] beacon interval 3609 * [2] cabability information 3610 * [tlv] ssid 3611 * [tlv] supported rates 3612 * [3] parameter set (DS) 3613 * [8] CF parameter set (optional) 3614 * [tlv] parameter set (IBSS/TIM) 3615 * [tlv] country (optional) 3616 * [3] power control (optional) 3617 * [5] channel switch announcement (CSA) (optional) 3618 * [tlv] extended rate phy (ERP) 3619 * [tlv] extended supported rates 3620 * [tlv] RSN parameters 3621 * [tlv] HT capabilities 3622 * [tlv] HT information 3623 * [tlv] VHT capabilities 3624 * [tlv] VHT operation 3625 * [tlv] Vendor OUI HT capabilities (optional) 3626 * [tlv] Vendor OUI HT information (optional) 3627 * XXX Vendor-specific OIDs (e.g. Atheros) 3628 * [tlv] WPA parameters 3629 * [tlv] WME parameters 3630 * [tlv] TDMA parameters (optional) 3631 * [tlv] Mesh ID (MBSS) 3632 * [tlv] Mesh Conf (MBSS) 3633 * [tlv] application data (optional) 3634 * NB: we allocate the max space required for the TIM bitmap. 3635 * XXX how big is this? 3636 */ 3637 pktlen = 8 /* time stamp */ 3638 + sizeof(uint16_t) /* beacon interval */ 3639 + sizeof(uint16_t) /* capabilities */ 3640 + 2 + ni->ni_esslen /* ssid */ 3641 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 3642 + 2 + 1 /* DS parameters */ 3643 + 2 + 6 /* CF parameters */ 3644 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */ 3645 + IEEE80211_COUNTRY_MAX_SIZE /* country */ 3646 + 2 + 1 /* power control */ 3647 + sizeof(struct ieee80211_csa_ie) /* CSA */ 3648 + sizeof(struct ieee80211_quiet_ie) /* Quiet */ 3649 + 2 + 1 /* ERP */ 3650 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 3651 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 3652 2*sizeof(struct ieee80211_ie_wpa) : 0) 3653 /* XXX conditional? */ 3654 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */ 3655 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */ 3656 + sizeof(struct ieee80211_ie_vhtcap)/* VHT caps */ 3657 + sizeof(struct ieee80211_ie_vht_operation)/* VHT info */ 3658 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */ 3659 sizeof(struct ieee80211_wme_param) : 0) 3660 #ifdef IEEE80211_SUPPORT_SUPERG 3661 + sizeof(struct ieee80211_ath_ie) /* ATH */ 3662 #endif 3663 #ifdef IEEE80211_SUPPORT_TDMA 3664 + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */ 3665 sizeof(struct ieee80211_tdma_param) : 0) 3666 #endif 3667 #ifdef IEEE80211_SUPPORT_MESH 3668 + 2 + ni->ni_meshidlen 3669 + sizeof(struct ieee80211_meshconf_ie) 3670 #endif 3671 + IEEE80211_MAX_APPIE 3672 ; 3673 m = ieee80211_getmgtframe(&frm, 3674 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen); 3675 if (m == NULL) { 3676 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, 3677 "%s: cannot get buf; size %u\n", __func__, pktlen); 3678 vap->iv_stats.is_tx_nobuf++; 3679 return NULL; 3680 } 3681 ieee80211_beacon_construct(m, frm, ni); 3682 3683 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 3684 KASSERT(m != NULL, ("no space for 802.11 header?")); 3685 wh = mtod(m, struct ieee80211_frame *); 3686 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 3687 IEEE80211_FC0_SUBTYPE_BEACON; 3688 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3689 *(uint16_t *)wh->i_dur = 0; 3690 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 3691 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 3692 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 3693 *(uint16_t *)wh->i_seq = 0; 3694 3695 return m; 3696 } 3697 3698 /* 3699 * Update the dynamic parts of a beacon frame based on the current state. 3700 */ 3701 int 3702 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast) 3703 { 3704 struct ieee80211vap *vap = ni->ni_vap; 3705 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 3706 struct ieee80211com *ic = ni->ni_ic; 3707 int len_changed = 0; 3708 uint16_t capinfo; 3709 struct ieee80211_frame *wh; 3710 ieee80211_seq seqno; 3711 3712 IEEE80211_LOCK(ic); 3713 /* 3714 * Handle 11h channel change when we've reached the count. 3715 * We must recalculate the beacon frame contents to account 3716 * for the new channel. Note we do this only for the first 3717 * vap that reaches this point; subsequent vaps just update 3718 * their beacon state to reflect the recalculated channel. 3719 */ 3720 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) && 3721 vap->iv_csa_count == ic->ic_csa_count) { 3722 vap->iv_csa_count = 0; 3723 /* 3724 * Effect channel change before reconstructing the beacon 3725 * frame contents as many places reference ni_chan. 3726 */ 3727 if (ic->ic_csa_newchan != NULL) 3728 ieee80211_csa_completeswitch(ic); 3729 /* 3730 * NB: ieee80211_beacon_construct clears all pending 3731 * updates in bo_flags so we don't need to explicitly 3732 * clear IEEE80211_BEACON_CSA. 3733 */ 3734 ieee80211_beacon_construct(m, 3735 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3736 3737 /* XXX do WME aggressive mode processing? */ 3738 IEEE80211_UNLOCK(ic); 3739 return 1; /* just assume length changed */ 3740 } 3741 3742 /* 3743 * Handle the quiet time element being added and removed. 3744 * Again, for now we just cheat and reconstruct the whole 3745 * beacon - that way the gap is provided as appropriate. 3746 * 3747 * So, track whether we have already added the IE versus 3748 * whether we want to be adding the IE. 3749 */ 3750 if ((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) && 3751 (vap->iv_quiet == 0)) { 3752 /* 3753 * Quiet time beacon IE enabled, but it's disabled; 3754 * recalc 3755 */ 3756 vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE; 3757 ieee80211_beacon_construct(m, 3758 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3759 /* XXX do WME aggressive mode processing? */ 3760 IEEE80211_UNLOCK(ic); 3761 return 1; /* just assume length changed */ 3762 } 3763 3764 if (((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) == 0) && 3765 (vap->iv_quiet == 1)) { 3766 /* 3767 * Quiet time beacon IE disabled, but it's now enabled; 3768 * recalc 3769 */ 3770 vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE; 3771 ieee80211_beacon_construct(m, 3772 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3773 /* XXX do WME aggressive mode processing? */ 3774 IEEE80211_UNLOCK(ic); 3775 return 1; /* just assume length changed */ 3776 } 3777 3778 wh = mtod(m, struct ieee80211_frame *); 3779 3780 /* 3781 * XXX TODO Strictly speaking this should be incremented with the TX 3782 * lock held so as to serialise access to the non-qos TID sequence 3783 * number space. 3784 * 3785 * If the driver identifies it does its own TX seqno management then 3786 * we can skip this (and still not do the TX seqno.) 3787 */ 3788 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 3789 *(uint16_t *)&wh->i_seq[0] = 3790 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 3791 M_SEQNO_SET(m, seqno); 3792 3793 /* XXX faster to recalculate entirely or just changes? */ 3794 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3795 *bo->bo_caps = htole16(capinfo); 3796 3797 if (vap->iv_flags & IEEE80211_F_WME) { 3798 struct ieee80211_wme_state *wme = &ic->ic_wme; 3799 3800 /* 3801 * Check for aggressive mode change. When there is 3802 * significant high priority traffic in the BSS 3803 * throttle back BE traffic by using conservative 3804 * parameters. Otherwise BE uses aggressive params 3805 * to optimize performance of legacy/non-QoS traffic. 3806 */ 3807 if (wme->wme_flags & WME_F_AGGRMODE) { 3808 if (wme->wme_hipri_traffic > 3809 wme->wme_hipri_switch_thresh) { 3810 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3811 "%s: traffic %u, disable aggressive mode\n", 3812 __func__, wme->wme_hipri_traffic); 3813 wme->wme_flags &= ~WME_F_AGGRMODE; 3814 ieee80211_wme_updateparams_locked(vap); 3815 wme->wme_hipri_traffic = 3816 wme->wme_hipri_switch_hysteresis; 3817 } else 3818 wme->wme_hipri_traffic = 0; 3819 } else { 3820 if (wme->wme_hipri_traffic <= 3821 wme->wme_hipri_switch_thresh) { 3822 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3823 "%s: traffic %u, enable aggressive mode\n", 3824 __func__, wme->wme_hipri_traffic); 3825 wme->wme_flags |= WME_F_AGGRMODE; 3826 ieee80211_wme_updateparams_locked(vap); 3827 wme->wme_hipri_traffic = 0; 3828 } else 3829 wme->wme_hipri_traffic = 3830 wme->wme_hipri_switch_hysteresis; 3831 } 3832 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) { 3833 (void) ieee80211_add_wme_param(bo->bo_wme, wme, 3834 vap->iv_flags_ext & IEEE80211_FEXT_UAPSD); 3835 clrbit(bo->bo_flags, IEEE80211_BEACON_WME); 3836 } 3837 } 3838 3839 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) { 3840 ieee80211_ht_update_beacon(vap, bo); 3841 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO); 3842 } 3843 #ifdef IEEE80211_SUPPORT_TDMA 3844 if (vap->iv_caps & IEEE80211_C_TDMA) { 3845 /* 3846 * NB: the beacon is potentially updated every TBTT. 3847 */ 3848 ieee80211_tdma_update_beacon(vap, bo); 3849 } 3850 #endif 3851 #ifdef IEEE80211_SUPPORT_MESH 3852 if (vap->iv_opmode == IEEE80211_M_MBSS) 3853 ieee80211_mesh_update_beacon(vap, bo); 3854 #endif 3855 3856 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3857 vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/ 3858 struct ieee80211_tim_ie *tie = 3859 (struct ieee80211_tim_ie *) bo->bo_tim; 3860 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) { 3861 u_int timlen, timoff, i; 3862 /* 3863 * ATIM/DTIM needs updating. If it fits in the 3864 * current space allocated then just copy in the 3865 * new bits. Otherwise we need to move any trailing 3866 * data to make room. Note that we know there is 3867 * contiguous space because ieee80211_beacon_allocate 3868 * insures there is space in the mbuf to write a 3869 * maximal-size virtual bitmap (based on iv_max_aid). 3870 */ 3871 /* 3872 * Calculate the bitmap size and offset, copy any 3873 * trailer out of the way, and then copy in the 3874 * new bitmap and update the information element. 3875 * Note that the tim bitmap must contain at least 3876 * one byte and any offset must be even. 3877 */ 3878 if (vap->iv_ps_pending != 0) { 3879 timoff = 128; /* impossibly large */ 3880 for (i = 0; i < vap->iv_tim_len; i++) 3881 if (vap->iv_tim_bitmap[i]) { 3882 timoff = i &~ 1; 3883 break; 3884 } 3885 KASSERT(timoff != 128, ("tim bitmap empty!")); 3886 for (i = vap->iv_tim_len-1; i >= timoff; i--) 3887 if (vap->iv_tim_bitmap[i]) 3888 break; 3889 timlen = 1 + (i - timoff); 3890 } else { 3891 timoff = 0; 3892 timlen = 1; 3893 } 3894 3895 /* 3896 * TODO: validate this! 3897 */ 3898 if (timlen != bo->bo_tim_len) { 3899 /* copy up/down trailer */ 3900 int adjust = tie->tim_bitmap+timlen 3901 - bo->bo_tim_trailer; 3902 ovbcopy(bo->bo_tim_trailer, 3903 bo->bo_tim_trailer+adjust, 3904 bo->bo_tim_trailer_len); 3905 bo->bo_tim_trailer += adjust; 3906 bo->bo_erp += adjust; 3907 bo->bo_htinfo += adjust; 3908 bo->bo_vhtinfo += adjust; 3909 #ifdef IEEE80211_SUPPORT_SUPERG 3910 bo->bo_ath += adjust; 3911 #endif 3912 #ifdef IEEE80211_SUPPORT_TDMA 3913 bo->bo_tdma += adjust; 3914 #endif 3915 #ifdef IEEE80211_SUPPORT_MESH 3916 bo->bo_meshconf += adjust; 3917 #endif 3918 bo->bo_appie += adjust; 3919 bo->bo_wme += adjust; 3920 bo->bo_csa += adjust; 3921 bo->bo_quiet += adjust; 3922 bo->bo_tim_len = timlen; 3923 3924 /* update information element */ 3925 tie->tim_len = 3 + timlen; 3926 tie->tim_bitctl = timoff; 3927 len_changed = 1; 3928 } 3929 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff, 3930 bo->bo_tim_len); 3931 3932 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM); 3933 3934 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER, 3935 "%s: TIM updated, pending %u, off %u, len %u\n", 3936 __func__, vap->iv_ps_pending, timoff, timlen); 3937 } 3938 /* count down DTIM period */ 3939 if (tie->tim_count == 0) 3940 tie->tim_count = tie->tim_period - 1; 3941 else 3942 tie->tim_count--; 3943 /* update state for buffered multicast frames on DTIM */ 3944 if (mcast && tie->tim_count == 0) 3945 tie->tim_bitctl |= 1; 3946 else 3947 tie->tim_bitctl &= ~1; 3948 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) { 3949 struct ieee80211_csa_ie *csa = 3950 (struct ieee80211_csa_ie *) bo->bo_csa; 3951 3952 /* 3953 * Insert or update CSA ie. If we're just starting 3954 * to count down to the channel switch then we need 3955 * to insert the CSA ie. Otherwise we just need to 3956 * drop the count. The actual change happens above 3957 * when the vap's count reaches the target count. 3958 */ 3959 if (vap->iv_csa_count == 0) { 3960 memmove(&csa[1], csa, bo->bo_csa_trailer_len); 3961 bo->bo_erp += sizeof(*csa); 3962 bo->bo_htinfo += sizeof(*csa); 3963 bo->bo_vhtinfo += sizeof(*csa); 3964 bo->bo_wme += sizeof(*csa); 3965 #ifdef IEEE80211_SUPPORT_SUPERG 3966 bo->bo_ath += sizeof(*csa); 3967 #endif 3968 #ifdef IEEE80211_SUPPORT_TDMA 3969 bo->bo_tdma += sizeof(*csa); 3970 #endif 3971 #ifdef IEEE80211_SUPPORT_MESH 3972 bo->bo_meshconf += sizeof(*csa); 3973 #endif 3974 bo->bo_appie += sizeof(*csa); 3975 bo->bo_csa_trailer_len += sizeof(*csa); 3976 bo->bo_quiet += sizeof(*csa); 3977 bo->bo_tim_trailer_len += sizeof(*csa); 3978 m->m_len += sizeof(*csa); 3979 m->m_pkthdr.len += sizeof(*csa); 3980 3981 ieee80211_add_csa(bo->bo_csa, vap); 3982 } else 3983 csa->csa_count--; 3984 vap->iv_csa_count++; 3985 /* NB: don't clear IEEE80211_BEACON_CSA */ 3986 } 3987 3988 /* 3989 * Only add the quiet time IE if we've enabled it 3990 * as appropriate. 3991 */ 3992 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3993 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 3994 if (vap->iv_quiet && 3995 (vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE)) { 3996 ieee80211_add_quiet(bo->bo_quiet, vap, 1); 3997 } 3998 } 3999 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) { 4000 /* 4001 * ERP element needs updating. 4002 */ 4003 (void) ieee80211_add_erp(bo->bo_erp, vap); 4004 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP); 4005 } 4006 #ifdef IEEE80211_SUPPORT_SUPERG 4007 if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) { 4008 ieee80211_add_athcaps(bo->bo_ath, ni); 4009 clrbit(bo->bo_flags, IEEE80211_BEACON_ATH); 4010 } 4011 #endif 4012 } 4013 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) { 4014 const struct ieee80211_appie *aie = vap->iv_appie_beacon; 4015 int aielen; 4016 uint8_t *frm; 4017 4018 aielen = 0; 4019 if (aie != NULL) 4020 aielen += aie->ie_len; 4021 if (aielen != bo->bo_appie_len) { 4022 /* copy up/down trailer */ 4023 int adjust = aielen - bo->bo_appie_len; 4024 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust, 4025 bo->bo_tim_trailer_len); 4026 bo->bo_tim_trailer += adjust; 4027 bo->bo_appie += adjust; 4028 bo->bo_appie_len = aielen; 4029 4030 len_changed = 1; 4031 } 4032 frm = bo->bo_appie; 4033 if (aie != NULL) 4034 frm = add_appie(frm, aie); 4035 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE); 4036 } 4037 IEEE80211_UNLOCK(ic); 4038 4039 return len_changed; 4040 } 4041 4042 /* 4043 * Do Ethernet-LLC encapsulation for each payload in a fast frame 4044 * tunnel encapsulation. The frame is assumed to have an Ethernet 4045 * header at the front that must be stripped before prepending the 4046 * LLC followed by the Ethernet header passed in (with an Ethernet 4047 * type that specifies the payload size). 4048 */ 4049 struct mbuf * 4050 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m, 4051 const struct ether_header *eh) 4052 { 4053 struct llc *llc; 4054 uint16_t payload; 4055 4056 /* XXX optimize by combining m_adj+M_PREPEND */ 4057 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 4058 llc = mtod(m, struct llc *); 4059 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 4060 llc->llc_control = LLC_UI; 4061 llc->llc_snap.org_code[0] = 0; 4062 llc->llc_snap.org_code[1] = 0; 4063 llc->llc_snap.org_code[2] = 0; 4064 llc->llc_snap.ether_type = eh->ether_type; 4065 payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */ 4066 4067 M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT); 4068 if (m == NULL) { /* XXX cannot happen */ 4069 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 4070 "%s: no space for ether_header\n", __func__); 4071 vap->iv_stats.is_tx_nobuf++; 4072 return NULL; 4073 } 4074 ETHER_HEADER_COPY(mtod(m, void *), eh); 4075 mtod(m, struct ether_header *)->ether_type = htons(payload); 4076 return m; 4077 } 4078 4079 /* 4080 * Complete an mbuf transmission. 4081 * 4082 * For now, this simply processes a completed frame after the 4083 * driver has completed it's transmission and/or retransmission. 4084 * It assumes the frame is an 802.11 encapsulated frame. 4085 * 4086 * Later on it will grow to become the exit path for a given frame 4087 * from the driver and, depending upon how it's been encapsulated 4088 * and already transmitted, it may end up doing A-MPDU retransmission, 4089 * power save requeuing, etc. 4090 * 4091 * In order for the above to work, the driver entry point to this 4092 * must not hold any driver locks. Thus, the driver needs to delay 4093 * any actual mbuf completion until it can release said locks. 4094 * 4095 * This frees the mbuf and if the mbuf has a node reference, 4096 * the node reference will be freed. 4097 */ 4098 void 4099 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status) 4100 { 4101 4102 if (ni != NULL) { 4103 struct ifnet *ifp = ni->ni_vap->iv_ifp; 4104 4105 if (status == 0) { 4106 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len); 4107 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 4108 if (m->m_flags & M_MCAST) 4109 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 4110 } else 4111 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 4112 if (m->m_flags & M_TXCB) 4113 ieee80211_process_callback(ni, m, status); 4114 ieee80211_free_node(ni); 4115 } 4116 m_freem(m); 4117 } 4118