xref: /freebsd/sys/net80211/ieee80211_output.c (revision 9a14aa017b21c292740c00ee098195cd46642730)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_wlan.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/endian.h>
39 
40 #include <sys/socket.h>
41 
42 #include <net/bpf.h>
43 #include <net/ethernet.h>
44 #include <net/if.h>
45 #include <net/if_llc.h>
46 #include <net/if_media.h>
47 #include <net/if_vlan_var.h>
48 
49 #include <net80211/ieee80211_var.h>
50 #include <net80211/ieee80211_regdomain.h>
51 #ifdef IEEE80211_SUPPORT_SUPERG
52 #include <net80211/ieee80211_superg.h>
53 #endif
54 #ifdef IEEE80211_SUPPORT_TDMA
55 #include <net80211/ieee80211_tdma.h>
56 #endif
57 #include <net80211/ieee80211_wds.h>
58 #include <net80211/ieee80211_mesh.h>
59 
60 #if defined(INET) || defined(INET6)
61 #include <netinet/in.h>
62 #endif
63 
64 #ifdef INET
65 #include <netinet/if_ether.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/ip.h>
68 #endif
69 #ifdef INET6
70 #include <netinet/ip6.h>
71 #endif
72 
73 #include <security/mac/mac_framework.h>
74 
75 #define	ETHER_HEADER_COPY(dst, src) \
76 	memcpy(dst, src, sizeof(struct ether_header))
77 
78 /* unalligned little endian access */
79 #define LE_WRITE_2(p, v) do {				\
80 	((uint8_t *)(p))[0] = (v) & 0xff;		\
81 	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
82 } while (0)
83 #define LE_WRITE_4(p, v) do {				\
84 	((uint8_t *)(p))[0] = (v) & 0xff;		\
85 	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
86 	((uint8_t *)(p))[2] = ((v) >> 16) & 0xff;	\
87 	((uint8_t *)(p))[3] = ((v) >> 24) & 0xff;	\
88 } while (0)
89 
90 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
91 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
92 static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
93 
94 #ifdef IEEE80211_DEBUG
95 /*
96  * Decide if an outbound management frame should be
97  * printed when debugging is enabled.  This filters some
98  * of the less interesting frames that come frequently
99  * (e.g. beacons).
100  */
101 static __inline int
102 doprint(struct ieee80211vap *vap, int subtype)
103 {
104 	switch (subtype) {
105 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
106 		return (vap->iv_opmode == IEEE80211_M_IBSS);
107 	}
108 	return 1;
109 }
110 #endif
111 
112 /*
113  * Start method for vap's.  All packets from the stack come
114  * through here.  We handle common processing of the packets
115  * before dispatching them to the underlying device.
116  */
117 void
118 ieee80211_start(struct ifnet *ifp)
119 {
120 #define	IS_DWDS(vap) \
121 	(vap->iv_opmode == IEEE80211_M_WDS && \
122 	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
123 	struct ieee80211vap *vap = ifp->if_softc;
124 	struct ieee80211com *ic = vap->iv_ic;
125 	struct ifnet *parent = ic->ic_ifp;
126 	struct ieee80211_node *ni;
127 	struct mbuf *m;
128 	struct ether_header *eh;
129 	int error;
130 
131 	/* NB: parent must be up and running */
132 	if (!IFNET_IS_UP_RUNNING(parent)) {
133 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
134 		    "%s: ignore queue, parent %s not up+running\n",
135 		    __func__, parent->if_xname);
136 		/* XXX stat */
137 		return;
138 	}
139 	if (vap->iv_state == IEEE80211_S_SLEEP) {
140 		/*
141 		 * In power save, wakeup device for transmit.
142 		 */
143 		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
144 		return;
145 	}
146 	/*
147 	 * No data frames go out unless we're running.
148 	 * Note in particular this covers CAC and CSA
149 	 * states (though maybe we should check muting
150 	 * for CSA).
151 	 */
152 	if (vap->iv_state != IEEE80211_S_RUN) {
153 		IEEE80211_LOCK(ic);
154 		/* re-check under the com lock to avoid races */
155 		if (vap->iv_state != IEEE80211_S_RUN) {
156 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
157 			    "%s: ignore queue, in %s state\n",
158 			    __func__, ieee80211_state_name[vap->iv_state]);
159 			vap->iv_stats.is_tx_badstate++;
160 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
161 			IEEE80211_UNLOCK(ic);
162 			return;
163 		}
164 		IEEE80211_UNLOCK(ic);
165 	}
166 	for (;;) {
167 		IFQ_DEQUEUE(&ifp->if_snd, m);
168 		if (m == NULL)
169 			break;
170 		/*
171 		 * Sanitize mbuf flags for net80211 use.  We cannot
172 		 * clear M_PWR_SAV or M_MORE_DATA because these may
173 		 * be set for frames that are re-submitted from the
174 		 * power save queue.
175 		 *
176 		 * NB: This must be done before ieee80211_classify as
177 		 *     it marks EAPOL in frames with M_EAPOL.
178 		 */
179 		m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
180 		/*
181 		 * Cancel any background scan.
182 		 */
183 		if (ic->ic_flags & IEEE80211_F_SCAN)
184 			ieee80211_cancel_anyscan(vap);
185 		/*
186 		 * Find the node for the destination so we can do
187 		 * things like power save and fast frames aggregation.
188 		 *
189 		 * NB: past this point various code assumes the first
190 		 *     mbuf has the 802.3 header present (and contiguous).
191 		 */
192 		ni = NULL;
193 		if (m->m_len < sizeof(struct ether_header) &&
194 		   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
195 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
196 			    "discard frame, %s\n", "m_pullup failed");
197 			vap->iv_stats.is_tx_nobuf++;	/* XXX */
198 			ifp->if_oerrors++;
199 			continue;
200 		}
201 		eh = mtod(m, struct ether_header *);
202 		if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
203 			if (IS_DWDS(vap)) {
204 				/*
205 				 * Only unicast frames from the above go out
206 				 * DWDS vaps; multicast frames are handled by
207 				 * dispatching the frame as it comes through
208 				 * the AP vap (see below).
209 				 */
210 				IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
211 				    eh->ether_dhost, "mcast", "%s", "on DWDS");
212 				vap->iv_stats.is_dwds_mcast++;
213 				m_freem(m);
214 				continue;
215 			}
216 			if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
217 				/*
218 				 * Spam DWDS vap's w/ multicast traffic.
219 				 */
220 				/* XXX only if dwds in use? */
221 				ieee80211_dwds_mcast(vap, m);
222 			}
223 		}
224 #ifdef IEEE80211_SUPPORT_MESH
225 		if (vap->iv_opmode != IEEE80211_M_MBSS) {
226 #endif
227 			ni = ieee80211_find_txnode(vap, eh->ether_dhost);
228 			if (ni == NULL) {
229 				/* NB: ieee80211_find_txnode does stat+msg */
230 				ifp->if_oerrors++;
231 				m_freem(m);
232 				continue;
233 			}
234 			if (ni->ni_associd == 0 &&
235 			    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
236 				IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
237 				    eh->ether_dhost, NULL,
238 				    "sta not associated (type 0x%04x)",
239 				    htons(eh->ether_type));
240 				vap->iv_stats.is_tx_notassoc++;
241 				ifp->if_oerrors++;
242 				m_freem(m);
243 				ieee80211_free_node(ni);
244 				continue;
245 			}
246 #ifdef IEEE80211_SUPPORT_MESH
247 		} else {
248 			if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
249 				/*
250 				 * Proxy station only if configured.
251 				 */
252 				if (!ieee80211_mesh_isproxyena(vap)) {
253 					IEEE80211_DISCARD_MAC(vap,
254 					    IEEE80211_MSG_OUTPUT |
255 						IEEE80211_MSG_MESH,
256 					    eh->ether_dhost, NULL,
257 					    "%s", "proxy not enabled");
258 					vap->iv_stats.is_mesh_notproxy++;
259 					ifp->if_oerrors++;
260 					m_freem(m);
261 					continue;
262 				}
263 				ieee80211_mesh_proxy_check(vap, eh->ether_shost);
264 			}
265 			ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
266 			if (ni == NULL) {
267 				/*
268 				 * NB: ieee80211_mesh_discover holds/disposes
269 				 * frame (e.g. queueing on path discovery).
270 				 */
271 				ifp->if_oerrors++;
272 				continue;
273 			}
274 		}
275 #endif
276 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
277 		    (m->m_flags & M_PWR_SAV) == 0) {
278 			/*
279 			 * Station in power save mode; pass the frame
280 			 * to the 802.11 layer and continue.  We'll get
281 			 * the frame back when the time is right.
282 			 * XXX lose WDS vap linkage?
283 			 */
284 			(void) ieee80211_pwrsave(ni, m);
285 			ieee80211_free_node(ni);
286 			continue;
287 		}
288 		/* calculate priority so drivers can find the tx queue */
289 		if (ieee80211_classify(ni, m)) {
290 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
291 			    eh->ether_dhost, NULL,
292 			    "%s", "classification failure");
293 			vap->iv_stats.is_tx_classify++;
294 			ifp->if_oerrors++;
295 			m_freem(m);
296 			ieee80211_free_node(ni);
297 			continue;
298 		}
299 		/*
300 		 * Stash the node pointer.  Note that we do this after
301 		 * any call to ieee80211_dwds_mcast because that code
302 		 * uses any existing value for rcvif to identify the
303 		 * interface it (might have been) received on.
304 		 */
305 		m->m_pkthdr.rcvif = (void *)ni;
306 
307 		BPF_MTAP(ifp, m);		/* 802.3 tx */
308 
309 		/*
310 		 * Check if A-MPDU tx aggregation is setup or if we
311 		 * should try to enable it.  The sta must be associated
312 		 * with HT and A-MPDU enabled for use.  When the policy
313 		 * routine decides we should enable A-MPDU we issue an
314 		 * ADDBA request and wait for a reply.  The frame being
315 		 * encapsulated will go out w/o using A-MPDU, or possibly
316 		 * it might be collected by the driver and held/retransmit.
317 		 * The default ic_ampdu_enable routine handles staggering
318 		 * ADDBA requests in case the receiver NAK's us or we are
319 		 * otherwise unable to establish a BA stream.
320 		 */
321 		if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
322 		    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) &&
323 		    (m->m_flags & M_EAPOL) == 0) {
324 			const int ac = M_WME_GETAC(m);
325 			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
326 
327 			ieee80211_txampdu_count_packet(tap);
328 			if (IEEE80211_AMPDU_RUNNING(tap)) {
329 				/*
330 				 * Operational, mark frame for aggregation.
331 				 *
332 				 * XXX do tx aggregation here
333 				 */
334 				m->m_flags |= M_AMPDU_MPDU;
335 			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
336 			    ic->ic_ampdu_enable(ni, tap)) {
337 				/*
338 				 * Not negotiated yet, request service.
339 				 */
340 				ieee80211_ampdu_request(ni, tap);
341 				/* XXX hold frame for reply? */
342 			}
343 		}
344 #ifdef IEEE80211_SUPPORT_SUPERG
345 		else if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) {
346 			m = ieee80211_ff_check(ni, m);
347 			if (m == NULL) {
348 				/* NB: any ni ref held on stageq */
349 				continue;
350 			}
351 		}
352 #endif /* IEEE80211_SUPPORT_SUPERG */
353 		if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
354 			/*
355 			 * Encapsulate the packet in prep for transmission.
356 			 */
357 			m = ieee80211_encap(vap, ni, m);
358 			if (m == NULL) {
359 				/* NB: stat+msg handled in ieee80211_encap */
360 				ieee80211_free_node(ni);
361 				continue;
362 			}
363 		}
364 
365 		error = parent->if_transmit(parent, m);
366 		if (error != 0) {
367 			/* NB: IFQ_HANDOFF reclaims mbuf */
368 			ieee80211_free_node(ni);
369 		} else {
370 			ifp->if_opackets++;
371 		}
372 		ic->ic_lastdata = ticks;
373 	}
374 #undef IS_DWDS
375 }
376 
377 /*
378  * 802.11 output routine. This is (currently) used only to
379  * connect bpf write calls to the 802.11 layer for injecting
380  * raw 802.11 frames.
381  */
382 int
383 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
384 	struct sockaddr *dst, struct route *ro)
385 {
386 #define senderr(e) do { error = (e); goto bad;} while (0)
387 	struct ieee80211_node *ni = NULL;
388 	struct ieee80211vap *vap;
389 	struct ieee80211_frame *wh;
390 	int error;
391 
392 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
393 		/*
394 		 * Short-circuit requests if the vap is marked OACTIVE
395 		 * as this can happen because a packet came down through
396 		 * ieee80211_start before the vap entered RUN state in
397 		 * which case it's ok to just drop the frame.  This
398 		 * should not be necessary but callers of if_output don't
399 		 * check OACTIVE.
400 		 */
401 		senderr(ENETDOWN);
402 	}
403 	vap = ifp->if_softc;
404 	/*
405 	 * Hand to the 802.3 code if not tagged as
406 	 * a raw 802.11 frame.
407 	 */
408 	if (dst->sa_family != AF_IEEE80211)
409 		return vap->iv_output(ifp, m, dst, ro);
410 #ifdef MAC
411 	error = mac_ifnet_check_transmit(ifp, m);
412 	if (error)
413 		senderr(error);
414 #endif
415 	if (ifp->if_flags & IFF_MONITOR)
416 		senderr(ENETDOWN);
417 	if (!IFNET_IS_UP_RUNNING(ifp))
418 		senderr(ENETDOWN);
419 	if (vap->iv_state == IEEE80211_S_CAC) {
420 		IEEE80211_DPRINTF(vap,
421 		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
422 		    "block %s frame in CAC state\n", "raw data");
423 		vap->iv_stats.is_tx_badstate++;
424 		senderr(EIO);		/* XXX */
425 	} else if (vap->iv_state == IEEE80211_S_SCAN)
426 		senderr(EIO);
427 	/* XXX bypass bridge, pfil, carp, etc. */
428 
429 	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
430 		senderr(EIO);	/* XXX */
431 	wh = mtod(m, struct ieee80211_frame *);
432 	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
433 	    IEEE80211_FC0_VERSION_0)
434 		senderr(EIO);	/* XXX */
435 
436 	/* locate destination node */
437 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
438 	case IEEE80211_FC1_DIR_NODS:
439 	case IEEE80211_FC1_DIR_FROMDS:
440 		ni = ieee80211_find_txnode(vap, wh->i_addr1);
441 		break;
442 	case IEEE80211_FC1_DIR_TODS:
443 	case IEEE80211_FC1_DIR_DSTODS:
444 		if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
445 			senderr(EIO);	/* XXX */
446 		ni = ieee80211_find_txnode(vap, wh->i_addr3);
447 		break;
448 	default:
449 		senderr(EIO);	/* XXX */
450 	}
451 	if (ni == NULL) {
452 		/*
453 		 * Permit packets w/ bpf params through regardless
454 		 * (see below about sa_len).
455 		 */
456 		if (dst->sa_len == 0)
457 			senderr(EHOSTUNREACH);
458 		ni = ieee80211_ref_node(vap->iv_bss);
459 	}
460 
461 	/*
462 	 * Sanitize mbuf for net80211 flags leaked from above.
463 	 *
464 	 * NB: This must be done before ieee80211_classify as
465 	 *     it marks EAPOL in frames with M_EAPOL.
466 	 */
467 	m->m_flags &= ~M_80211_TX;
468 
469 	/* calculate priority so drivers can find the tx queue */
470 	/* XXX assumes an 802.3 frame */
471 	if (ieee80211_classify(ni, m))
472 		senderr(EIO);		/* XXX */
473 
474 	ifp->if_opackets++;
475 	IEEE80211_NODE_STAT(ni, tx_data);
476 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
477 		IEEE80211_NODE_STAT(ni, tx_mcast);
478 		m->m_flags |= M_MCAST;
479 	} else
480 		IEEE80211_NODE_STAT(ni, tx_ucast);
481 	/* NB: ieee80211_encap does not include 802.11 header */
482 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len);
483 
484 	/*
485 	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
486 	 * present by setting the sa_len field of the sockaddr (yes,
487 	 * this is a hack).
488 	 * NB: we assume sa_data is suitably aligned to cast.
489 	 */
490 	return vap->iv_ic->ic_raw_xmit(ni, m,
491 	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
492 		dst->sa_data : NULL));
493 bad:
494 	if (m != NULL)
495 		m_freem(m);
496 	if (ni != NULL)
497 		ieee80211_free_node(ni);
498 	ifp->if_oerrors++;
499 	return error;
500 #undef senderr
501 }
502 
503 /*
504  * Set the direction field and address fields of an outgoing
505  * frame.  Note this should be called early on in constructing
506  * a frame as it sets i_fc[1]; other bits can then be or'd in.
507  */
508 void
509 ieee80211_send_setup(
510 	struct ieee80211_node *ni,
511 	struct mbuf *m,
512 	int type, int tid,
513 	const uint8_t sa[IEEE80211_ADDR_LEN],
514 	const uint8_t da[IEEE80211_ADDR_LEN],
515 	const uint8_t bssid[IEEE80211_ADDR_LEN])
516 {
517 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
518 	struct ieee80211vap *vap = ni->ni_vap;
519 	struct ieee80211_tx_ampdu *tap;
520 	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
521 	ieee80211_seq seqno;
522 
523 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
524 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
525 		switch (vap->iv_opmode) {
526 		case IEEE80211_M_STA:
527 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
528 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
529 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
530 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
531 			break;
532 		case IEEE80211_M_IBSS:
533 		case IEEE80211_M_AHDEMO:
534 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
535 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
536 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
537 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
538 			break;
539 		case IEEE80211_M_HOSTAP:
540 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
541 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
542 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
543 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
544 			break;
545 		case IEEE80211_M_WDS:
546 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
547 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
548 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
549 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
550 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
551 			break;
552 		case IEEE80211_M_MBSS:
553 #ifdef IEEE80211_SUPPORT_MESH
554 			/* XXX add support for proxied addresses */
555 			if (IEEE80211_IS_MULTICAST(da)) {
556 				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
557 				/* XXX next hop */
558 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
559 				IEEE80211_ADDR_COPY(wh->i_addr2,
560 				    vap->iv_myaddr);
561 			} else {
562 				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
563 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
564 				IEEE80211_ADDR_COPY(wh->i_addr2,
565 				    vap->iv_myaddr);
566 				IEEE80211_ADDR_COPY(wh->i_addr3, da);
567 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
568 			}
569 #endif
570 			break;
571 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
572 			break;
573 		}
574 	} else {
575 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
576 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
577 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
578 #ifdef IEEE80211_SUPPORT_MESH
579 		if (vap->iv_opmode == IEEE80211_M_MBSS)
580 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
581 		else
582 #endif
583 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
584 	}
585 	*(uint16_t *)&wh->i_dur[0] = 0;
586 
587 	tap = &ni->ni_tx_ampdu[TID_TO_WME_AC(tid)];
588 	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap))
589 		m->m_flags |= M_AMPDU_MPDU;
590 	else {
591 		seqno = ni->ni_txseqs[tid]++;
592 		*(uint16_t *)&wh->i_seq[0] =
593 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
594 		M_SEQNO_SET(m, seqno);
595 	}
596 
597 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
598 		m->m_flags |= M_MCAST;
599 #undef WH4
600 }
601 
602 /*
603  * Send a management frame to the specified node.  The node pointer
604  * must have a reference as the pointer will be passed to the driver
605  * and potentially held for a long time.  If the frame is successfully
606  * dispatched to the driver, then it is responsible for freeing the
607  * reference (and potentially free'ing up any associated storage);
608  * otherwise deal with reclaiming any reference (on error).
609  */
610 int
611 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
612 	struct ieee80211_bpf_params *params)
613 {
614 	struct ieee80211vap *vap = ni->ni_vap;
615 	struct ieee80211com *ic = ni->ni_ic;
616 	struct ieee80211_frame *wh;
617 
618 	KASSERT(ni != NULL, ("null node"));
619 
620 	if (vap->iv_state == IEEE80211_S_CAC) {
621 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
622 		    ni, "block %s frame in CAC state",
623 			ieee80211_mgt_subtype_name[
624 			    (type & IEEE80211_FC0_SUBTYPE_MASK) >>
625 				IEEE80211_FC0_SUBTYPE_SHIFT]);
626 		vap->iv_stats.is_tx_badstate++;
627 		ieee80211_free_node(ni);
628 		m_freem(m);
629 		return EIO;		/* XXX */
630 	}
631 
632 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
633 	if (m == NULL) {
634 		ieee80211_free_node(ni);
635 		return ENOMEM;
636 	}
637 
638 	wh = mtod(m, struct ieee80211_frame *);
639 	ieee80211_send_setup(ni, m,
640 	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
641 	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
642 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
643 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
644 		    "encrypting frame (%s)", __func__);
645 		wh->i_fc[1] |= IEEE80211_FC1_WEP;
646 	}
647 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
648 
649 	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
650 	M_WME_SETAC(m, params->ibp_pri);
651 
652 #ifdef IEEE80211_DEBUG
653 	/* avoid printing too many frames */
654 	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
655 	    ieee80211_msg_dumppkts(vap)) {
656 		printf("[%s] send %s on channel %u\n",
657 		    ether_sprintf(wh->i_addr1),
658 		    ieee80211_mgt_subtype_name[
659 			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
660 				IEEE80211_FC0_SUBTYPE_SHIFT],
661 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
662 	}
663 #endif
664 	IEEE80211_NODE_STAT(ni, tx_mgmt);
665 
666 	return ic->ic_raw_xmit(ni, m, params);
667 }
668 
669 /*
670  * Send a null data frame to the specified node.  If the station
671  * is setup for QoS then a QoS Null Data frame is constructed.
672  * If this is a WDS station then a 4-address frame is constructed.
673  *
674  * NB: the caller is assumed to have setup a node reference
675  *     for use; this is necessary to deal with a race condition
676  *     when probing for inactive stations.  Like ieee80211_mgmt_output
677  *     we must cleanup any node reference on error;  however we
678  *     can safely just unref it as we know it will never be the
679  *     last reference to the node.
680  */
681 int
682 ieee80211_send_nulldata(struct ieee80211_node *ni)
683 {
684 	struct ieee80211vap *vap = ni->ni_vap;
685 	struct ieee80211com *ic = ni->ni_ic;
686 	struct mbuf *m;
687 	struct ieee80211_frame *wh;
688 	int hdrlen;
689 	uint8_t *frm;
690 
691 	if (vap->iv_state == IEEE80211_S_CAC) {
692 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
693 		    ni, "block %s frame in CAC state", "null data");
694 		ieee80211_unref_node(&ni);
695 		vap->iv_stats.is_tx_badstate++;
696 		return EIO;		/* XXX */
697 	}
698 
699 	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
700 		hdrlen = sizeof(struct ieee80211_qosframe);
701 	else
702 		hdrlen = sizeof(struct ieee80211_frame);
703 	/* NB: only WDS vap's get 4-address frames */
704 	if (vap->iv_opmode == IEEE80211_M_WDS)
705 		hdrlen += IEEE80211_ADDR_LEN;
706 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
707 		hdrlen = roundup(hdrlen, sizeof(uint32_t));
708 
709 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
710 	if (m == NULL) {
711 		/* XXX debug msg */
712 		ieee80211_unref_node(&ni);
713 		vap->iv_stats.is_tx_nobuf++;
714 		return ENOMEM;
715 	}
716 	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
717 	    ("leading space %zd", M_LEADINGSPACE(m)));
718 	M_PREPEND(m, hdrlen, M_DONTWAIT);
719 	if (m == NULL) {
720 		/* NB: cannot happen */
721 		ieee80211_free_node(ni);
722 		return ENOMEM;
723 	}
724 
725 	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
726 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
727 		const int tid = WME_AC_TO_TID(WME_AC_BE);
728 		uint8_t *qos;
729 
730 		ieee80211_send_setup(ni, m,
731 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
732 		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
733 
734 		if (vap->iv_opmode == IEEE80211_M_WDS)
735 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
736 		else
737 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
738 		qos[0] = tid & IEEE80211_QOS_TID;
739 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
740 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
741 		qos[1] = 0;
742 	} else {
743 		ieee80211_send_setup(ni, m,
744 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
745 		    IEEE80211_NONQOS_TID,
746 		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
747 	}
748 	if (vap->iv_opmode != IEEE80211_M_WDS) {
749 		/* NB: power management bit is never sent by an AP */
750 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
751 		    vap->iv_opmode != IEEE80211_M_HOSTAP)
752 			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
753 	}
754 	m->m_len = m->m_pkthdr.len = hdrlen;
755 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
756 
757 	M_WME_SETAC(m, WME_AC_BE);
758 
759 	IEEE80211_NODE_STAT(ni, tx_data);
760 
761 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
762 	    "send %snull data frame on channel %u, pwr mgt %s",
763 	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
764 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
765 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
766 
767 	return ic->ic_raw_xmit(ni, m, NULL);
768 }
769 
770 /*
771  * Assign priority to a frame based on any vlan tag assigned
772  * to the station and/or any Diffserv setting in an IP header.
773  * Finally, if an ACM policy is setup (in station mode) it's
774  * applied.
775  */
776 int
777 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
778 {
779 	const struct ether_header *eh = mtod(m, struct ether_header *);
780 	int v_wme_ac, d_wme_ac, ac;
781 
782 	/*
783 	 * Always promote PAE/EAPOL frames to high priority.
784 	 */
785 	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
786 		/* NB: mark so others don't need to check header */
787 		m->m_flags |= M_EAPOL;
788 		ac = WME_AC_VO;
789 		goto done;
790 	}
791 	/*
792 	 * Non-qos traffic goes to BE.
793 	 */
794 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
795 		ac = WME_AC_BE;
796 		goto done;
797 	}
798 
799 	/*
800 	 * If node has a vlan tag then all traffic
801 	 * to it must have a matching tag.
802 	 */
803 	v_wme_ac = 0;
804 	if (ni->ni_vlan != 0) {
805 		 if ((m->m_flags & M_VLANTAG) == 0) {
806 			IEEE80211_NODE_STAT(ni, tx_novlantag);
807 			return 1;
808 		}
809 		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
810 		    EVL_VLANOFTAG(ni->ni_vlan)) {
811 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
812 			return 1;
813 		}
814 		/* map vlan priority to AC */
815 		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
816 	}
817 
818 	/* XXX m_copydata may be too slow for fast path */
819 #ifdef INET
820 	if (eh->ether_type == htons(ETHERTYPE_IP)) {
821 		uint8_t tos;
822 		/*
823 		 * IP frame, map the DSCP bits from the TOS field.
824 		 */
825 		/* NB: ip header may not be in first mbuf */
826 		m_copydata(m, sizeof(struct ether_header) +
827 		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
828 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
829 		d_wme_ac = TID_TO_WME_AC(tos);
830 	} else {
831 #endif /* INET */
832 #ifdef INET6
833 	if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
834 		uint32_t flow;
835 		uint8_t tos;
836 		/*
837 		 * IPv6 frame, map the DSCP bits from the traffic class field.
838 		 */
839 		m_copydata(m, sizeof(struct ether_header) +
840 		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
841 		    (caddr_t) &flow);
842 		tos = (uint8_t)(ntohl(flow) >> 20);
843 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
844 		d_wme_ac = TID_TO_WME_AC(tos);
845 	} else {
846 #endif /* INET6 */
847 		d_wme_ac = WME_AC_BE;
848 #ifdef INET6
849 	}
850 #endif
851 #ifdef INET
852 	}
853 #endif
854 	/*
855 	 * Use highest priority AC.
856 	 */
857 	if (v_wme_ac > d_wme_ac)
858 		ac = v_wme_ac;
859 	else
860 		ac = d_wme_ac;
861 
862 	/*
863 	 * Apply ACM policy.
864 	 */
865 	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
866 		static const int acmap[4] = {
867 			WME_AC_BK,	/* WME_AC_BE */
868 			WME_AC_BK,	/* WME_AC_BK */
869 			WME_AC_BE,	/* WME_AC_VI */
870 			WME_AC_VI,	/* WME_AC_VO */
871 		};
872 		struct ieee80211com *ic = ni->ni_ic;
873 
874 		while (ac != WME_AC_BK &&
875 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
876 			ac = acmap[ac];
877 	}
878 done:
879 	M_WME_SETAC(m, ac);
880 	return 0;
881 }
882 
883 /*
884  * Insure there is sufficient contiguous space to encapsulate the
885  * 802.11 data frame.  If room isn't already there, arrange for it.
886  * Drivers and cipher modules assume we have done the necessary work
887  * and fail rudely if they don't find the space they need.
888  */
889 struct mbuf *
890 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
891 	struct ieee80211_key *key, struct mbuf *m)
892 {
893 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
894 	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
895 
896 	if (key != NULL) {
897 		/* XXX belongs in crypto code? */
898 		needed_space += key->wk_cipher->ic_header;
899 		/* XXX frags */
900 		/*
901 		 * When crypto is being done in the host we must insure
902 		 * the data are writable for the cipher routines; clone
903 		 * a writable mbuf chain.
904 		 * XXX handle SWMIC specially
905 		 */
906 		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
907 			m = m_unshare(m, M_NOWAIT);
908 			if (m == NULL) {
909 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
910 				    "%s: cannot get writable mbuf\n", __func__);
911 				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
912 				return NULL;
913 			}
914 		}
915 	}
916 	/*
917 	 * We know we are called just before stripping an Ethernet
918 	 * header and prepending an LLC header.  This means we know
919 	 * there will be
920 	 *	sizeof(struct ether_header) - sizeof(struct llc)
921 	 * bytes recovered to which we need additional space for the
922 	 * 802.11 header and any crypto header.
923 	 */
924 	/* XXX check trailing space and copy instead? */
925 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
926 		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
927 		if (n == NULL) {
928 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
929 			    "%s: cannot expand storage\n", __func__);
930 			vap->iv_stats.is_tx_nobuf++;
931 			m_freem(m);
932 			return NULL;
933 		}
934 		KASSERT(needed_space <= MHLEN,
935 		    ("not enough room, need %u got %zu\n", needed_space, MHLEN));
936 		/*
937 		 * Setup new mbuf to have leading space to prepend the
938 		 * 802.11 header and any crypto header bits that are
939 		 * required (the latter are added when the driver calls
940 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
941 		 */
942 		/* NB: must be first 'cuz it clobbers m_data */
943 		m_move_pkthdr(n, m);
944 		n->m_len = 0;			/* NB: m_gethdr does not set */
945 		n->m_data += needed_space;
946 		/*
947 		 * Pull up Ethernet header to create the expected layout.
948 		 * We could use m_pullup but that's overkill (i.e. we don't
949 		 * need the actual data) and it cannot fail so do it inline
950 		 * for speed.
951 		 */
952 		/* NB: struct ether_header is known to be contiguous */
953 		n->m_len += sizeof(struct ether_header);
954 		m->m_len -= sizeof(struct ether_header);
955 		m->m_data += sizeof(struct ether_header);
956 		/*
957 		 * Replace the head of the chain.
958 		 */
959 		n->m_next = m;
960 		m = n;
961 	}
962 	return m;
963 #undef TO_BE_RECLAIMED
964 }
965 
966 /*
967  * Return the transmit key to use in sending a unicast frame.
968  * If a unicast key is set we use that.  When no unicast key is set
969  * we fall back to the default transmit key.
970  */
971 static __inline struct ieee80211_key *
972 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
973 	struct ieee80211_node *ni)
974 {
975 	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
976 		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
977 		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
978 			return NULL;
979 		return &vap->iv_nw_keys[vap->iv_def_txkey];
980 	} else {
981 		return &ni->ni_ucastkey;
982 	}
983 }
984 
985 /*
986  * Return the transmit key to use in sending a multicast frame.
987  * Multicast traffic always uses the group key which is installed as
988  * the default tx key.
989  */
990 static __inline struct ieee80211_key *
991 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
992 	struct ieee80211_node *ni)
993 {
994 	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
995 	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
996 		return NULL;
997 	return &vap->iv_nw_keys[vap->iv_def_txkey];
998 }
999 
1000 /*
1001  * Encapsulate an outbound data frame.  The mbuf chain is updated.
1002  * If an error is encountered NULL is returned.  The caller is required
1003  * to provide a node reference and pullup the ethernet header in the
1004  * first mbuf.
1005  *
1006  * NB: Packet is assumed to be processed by ieee80211_classify which
1007  *     marked EAPOL frames w/ M_EAPOL.
1008  */
1009 struct mbuf *
1010 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1011     struct mbuf *m)
1012 {
1013 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1014 	struct ieee80211com *ic = ni->ni_ic;
1015 #ifdef IEEE80211_SUPPORT_MESH
1016 	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1017 	struct ieee80211_meshcntl_ae10 *mc;
1018 #endif
1019 	struct ether_header eh;
1020 	struct ieee80211_frame *wh;
1021 	struct ieee80211_key *key;
1022 	struct llc *llc;
1023 	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr;
1024 	ieee80211_seq seqno;
1025 	int meshhdrsize, meshae;
1026 	uint8_t *qos;
1027 
1028 	/*
1029 	 * Copy existing Ethernet header to a safe place.  The
1030 	 * rest of the code assumes it's ok to strip it when
1031 	 * reorganizing state for the final encapsulation.
1032 	 */
1033 	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1034 	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1035 
1036 	/*
1037 	 * Insure space for additional headers.  First identify
1038 	 * transmit key to use in calculating any buffer adjustments
1039 	 * required.  This is also used below to do privacy
1040 	 * encapsulation work.  Then calculate the 802.11 header
1041 	 * size and any padding required by the driver.
1042 	 *
1043 	 * Note key may be NULL if we fall back to the default
1044 	 * transmit key and that is not set.  In that case the
1045 	 * buffer may not be expanded as needed by the cipher
1046 	 * routines, but they will/should discard it.
1047 	 */
1048 	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1049 		if (vap->iv_opmode == IEEE80211_M_STA ||
1050 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1051 		    (vap->iv_opmode == IEEE80211_M_WDS &&
1052 		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1053 			key = ieee80211_crypto_getucastkey(vap, ni);
1054 		else
1055 			key = ieee80211_crypto_getmcastkey(vap, ni);
1056 		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1057 			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1058 			    eh.ether_dhost,
1059 			    "no default transmit key (%s) deftxkey %u",
1060 			    __func__, vap->iv_def_txkey);
1061 			vap->iv_stats.is_tx_nodefkey++;
1062 			goto bad;
1063 		}
1064 	} else
1065 		key = NULL;
1066 	/*
1067 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1068 	 * frames so suppress use.  This may be an issue if other
1069 	 * ap's require all data frames to be QoS-encapsulated
1070 	 * once negotiated in which case we'll need to make this
1071 	 * configurable.
1072 	 */
1073 	addqos = (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) &&
1074 		 (m->m_flags & M_EAPOL) == 0;
1075 	if (addqos)
1076 		hdrsize = sizeof(struct ieee80211_qosframe);
1077 	else
1078 		hdrsize = sizeof(struct ieee80211_frame);
1079 #ifdef IEEE80211_SUPPORT_MESH
1080 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1081 		/*
1082 		 * Mesh data frames are encapsulated according to the
1083 		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1084 		 * o Group Addressed data (aka multicast) originating
1085 		 *   at the local sta are sent w/ 3-address format and
1086 		 *   address extension mode 00
1087 		 * o Individually Addressed data (aka unicast) originating
1088 		 *   at the local sta are sent w/ 4-address format and
1089 		 *   address extension mode 00
1090 		 * o Group Addressed data forwarded from a non-mesh sta are
1091 		 *   sent w/ 3-address format and address extension mode 01
1092 		 * o Individually Address data from another sta are sent
1093 		 *   w/ 4-address format and address extension mode 10
1094 		 */
1095 		is4addr = 0;		/* NB: don't use, disable */
1096 		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost))
1097 			hdrsize += IEEE80211_ADDR_LEN;	/* unicast are 4-addr */
1098 		meshhdrsize = sizeof(struct ieee80211_meshcntl);
1099 		/* XXX defines for AE modes */
1100 		if (IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1101 			if (!IEEE80211_IS_MULTICAST(eh.ether_dhost))
1102 				meshae = 0;
1103 			else
1104 				meshae = 4;		/* NB: pseudo */
1105 		} else if (IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1106 			meshae = 1;
1107 			meshhdrsize += 1*IEEE80211_ADDR_LEN;
1108 		} else {
1109 			meshae = 2;
1110 			meshhdrsize += 2*IEEE80211_ADDR_LEN;
1111 		}
1112 	} else {
1113 #endif
1114 		/*
1115 		 * 4-address frames need to be generated for:
1116 		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1117 		 * o packets sent through a vap marked for relaying
1118 		 *   (e.g. a station operating with dynamic WDS)
1119 		 */
1120 		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1121 		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1122 		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1123 		if (is4addr)
1124 			hdrsize += IEEE80211_ADDR_LEN;
1125 		meshhdrsize = meshae = 0;
1126 #ifdef IEEE80211_SUPPORT_MESH
1127 	}
1128 #endif
1129 	/*
1130 	 * Honor driver DATAPAD requirement.
1131 	 */
1132 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1133 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1134 	else
1135 		hdrspace = hdrsize;
1136 
1137 	if (__predict_true((m->m_flags & M_FF) == 0)) {
1138 		/*
1139 		 * Normal frame.
1140 		 */
1141 		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1142 		if (m == NULL) {
1143 			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1144 			goto bad;
1145 		}
1146 		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1147 		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1148 		llc = mtod(m, struct llc *);
1149 		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1150 		llc->llc_control = LLC_UI;
1151 		llc->llc_snap.org_code[0] = 0;
1152 		llc->llc_snap.org_code[1] = 0;
1153 		llc->llc_snap.org_code[2] = 0;
1154 		llc->llc_snap.ether_type = eh.ether_type;
1155 	} else {
1156 #ifdef IEEE80211_SUPPORT_SUPERG
1157 		/*
1158 		 * Aggregated frame.
1159 		 */
1160 		m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1161 		if (m == NULL)
1162 #endif
1163 			goto bad;
1164 	}
1165 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1166 
1167 	M_PREPEND(m, hdrspace + meshhdrsize, M_DONTWAIT);
1168 	if (m == NULL) {
1169 		vap->iv_stats.is_tx_nobuf++;
1170 		goto bad;
1171 	}
1172 	wh = mtod(m, struct ieee80211_frame *);
1173 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1174 	*(uint16_t *)wh->i_dur = 0;
1175 	qos = NULL;	/* NB: quiet compiler */
1176 	if (is4addr) {
1177 		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1178 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1179 		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1180 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1181 		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1182 	} else switch (vap->iv_opmode) {
1183 	case IEEE80211_M_STA:
1184 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1185 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1186 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1187 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1188 		break;
1189 	case IEEE80211_M_IBSS:
1190 	case IEEE80211_M_AHDEMO:
1191 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1192 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1193 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1194 		/*
1195 		 * NB: always use the bssid from iv_bss as the
1196 		 *     neighbor's may be stale after an ibss merge
1197 		 */
1198 		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1199 		break;
1200 	case IEEE80211_M_HOSTAP:
1201 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1202 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1203 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1204 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1205 		break;
1206 #ifdef IEEE80211_SUPPORT_MESH
1207 	case IEEE80211_M_MBSS:
1208 		/* NB: offset by hdrspace to deal with DATAPAD */
1209 		mc = (struct ieee80211_meshcntl_ae10 *)
1210 		     (mtod(m, uint8_t *) + hdrspace);
1211 		switch (meshae) {
1212 		case 0:			/* ucast, no proxy */
1213 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1214 			IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1215 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1216 			IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1217 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1218 			mc->mc_flags = 0;
1219 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1220 			break;
1221 		case 4:			/* mcast, no proxy */
1222 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1223 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1224 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1225 			IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1226 			mc->mc_flags = 0;		/* NB: AE is really 0 */
1227 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1228 			break;
1229 		case 1:			/* mcast, proxy */
1230 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1231 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1232 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1233 			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1234 			mc->mc_flags = 1;
1235 			IEEE80211_ADDR_COPY(mc->mc_addr4, eh.ether_shost);
1236 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1237 			break;
1238 		case 2:			/* ucast, proxy */
1239 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1240 			IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1241 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1242 			/* XXX not right, need MeshDA */
1243 			IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1244 			/* XXX assume are MeshSA */
1245 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1246 			mc->mc_flags = 2;
1247 			IEEE80211_ADDR_COPY(mc->mc_addr4, eh.ether_dhost);
1248 			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_shost);
1249 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1250 			break;
1251 		default:
1252 			KASSERT(0, ("meshae %d", meshae));
1253 			break;
1254 		}
1255 		mc->mc_ttl = ms->ms_ttl;
1256 		ms->ms_seq++;
1257 		LE_WRITE_4(mc->mc_seq, ms->ms_seq);
1258 		break;
1259 #endif
1260 	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1261 	default:
1262 		goto bad;
1263 	}
1264 	if (m->m_flags & M_MORE_DATA)
1265 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1266 	if (addqos) {
1267 		int ac, tid;
1268 
1269 		if (is4addr) {
1270 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1271 		/* NB: mesh case handled earlier */
1272 		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1273 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1274 		ac = M_WME_GETAC(m);
1275 		/* map from access class/queue to 11e header priorty value */
1276 		tid = WME_AC_TO_TID(ac);
1277 		qos[0] = tid & IEEE80211_QOS_TID;
1278 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1279 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1280 		qos[1] = 0;
1281 		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1282 
1283 		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1284 			/*
1285 			 * NB: don't assign a sequence # to potential
1286 			 * aggregates; we expect this happens at the
1287 			 * point the frame comes off any aggregation q
1288 			 * as otherwise we may introduce holes in the
1289 			 * BA sequence space and/or make window accouting
1290 			 * more difficult.
1291 			 *
1292 			 * XXX may want to control this with a driver
1293 			 * capability; this may also change when we pull
1294 			 * aggregation up into net80211
1295 			 */
1296 			seqno = ni->ni_txseqs[tid]++;
1297 			*(uint16_t *)wh->i_seq =
1298 			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1299 			M_SEQNO_SET(m, seqno);
1300 		}
1301 	} else {
1302 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1303 		*(uint16_t *)wh->i_seq =
1304 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1305 		M_SEQNO_SET(m, seqno);
1306 	}
1307 
1308 
1309 	/* check if xmit fragmentation is required */
1310 	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1311 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1312 	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1313 	    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1314 	if (key != NULL) {
1315 		/*
1316 		 * IEEE 802.1X: send EAPOL frames always in the clear.
1317 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1318 		 */
1319 		if ((m->m_flags & M_EAPOL) == 0 ||
1320 		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1321 		     (vap->iv_opmode == IEEE80211_M_STA ?
1322 		      !IEEE80211_KEY_UNDEFINED(key) :
1323 		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1324 			wh->i_fc[1] |= IEEE80211_FC1_WEP;
1325 			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1326 				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1327 				    eh.ether_dhost,
1328 				    "%s", "enmic failed, discard frame");
1329 				vap->iv_stats.is_crypto_enmicfail++;
1330 				goto bad;
1331 			}
1332 		}
1333 	}
1334 	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1335 	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1336 		goto bad;
1337 
1338 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1339 
1340 	IEEE80211_NODE_STAT(ni, tx_data);
1341 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1342 		IEEE80211_NODE_STAT(ni, tx_mcast);
1343 		m->m_flags |= M_MCAST;
1344 	} else
1345 		IEEE80211_NODE_STAT(ni, tx_ucast);
1346 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1347 
1348 	return m;
1349 bad:
1350 	if (m != NULL)
1351 		m_freem(m);
1352 	return NULL;
1353 #undef WH4
1354 }
1355 
1356 /*
1357  * Fragment the frame according to the specified mtu.
1358  * The size of the 802.11 header (w/o padding) is provided
1359  * so we don't need to recalculate it.  We create a new
1360  * mbuf for each fragment and chain it through m_nextpkt;
1361  * we might be able to optimize this by reusing the original
1362  * packet's mbufs but that is significantly more complicated.
1363  */
1364 static int
1365 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1366 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1367 {
1368 	struct ieee80211_frame *wh, *whf;
1369 	struct mbuf *m, *prev, *next;
1370 	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1371 
1372 	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1373 	KASSERT(m0->m_pkthdr.len > mtu,
1374 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1375 
1376 	wh = mtod(m0, struct ieee80211_frame *);
1377 	/* NB: mark the first frag; it will be propagated below */
1378 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1379 	totalhdrsize = hdrsize + ciphdrsize;
1380 	fragno = 1;
1381 	off = mtu - ciphdrsize;
1382 	remainder = m0->m_pkthdr.len - off;
1383 	prev = m0;
1384 	do {
1385 		fragsize = totalhdrsize + remainder;
1386 		if (fragsize > mtu)
1387 			fragsize = mtu;
1388 		/* XXX fragsize can be >2048! */
1389 		KASSERT(fragsize < MCLBYTES,
1390 			("fragment size %u too big!", fragsize));
1391 		if (fragsize > MHLEN)
1392 			m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1393 		else
1394 			m = m_gethdr(M_DONTWAIT, MT_DATA);
1395 		if (m == NULL)
1396 			goto bad;
1397 		/* leave room to prepend any cipher header */
1398 		m_align(m, fragsize - ciphdrsize);
1399 
1400 		/*
1401 		 * Form the header in the fragment.  Note that since
1402 		 * we mark the first fragment with the MORE_FRAG bit
1403 		 * it automatically is propagated to each fragment; we
1404 		 * need only clear it on the last fragment (done below).
1405 		 */
1406 		whf = mtod(m, struct ieee80211_frame *);
1407 		memcpy(whf, wh, hdrsize);
1408 		*(uint16_t *)&whf->i_seq[0] |= htole16(
1409 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1410 				IEEE80211_SEQ_FRAG_SHIFT);
1411 		fragno++;
1412 
1413 		payload = fragsize - totalhdrsize;
1414 		/* NB: destination is known to be contiguous */
1415 		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrsize);
1416 		m->m_len = hdrsize + payload;
1417 		m->m_pkthdr.len = hdrsize + payload;
1418 		m->m_flags |= M_FRAG;
1419 
1420 		/* chain up the fragment */
1421 		prev->m_nextpkt = m;
1422 		prev = m;
1423 
1424 		/* deduct fragment just formed */
1425 		remainder -= payload;
1426 		off += payload;
1427 	} while (remainder != 0);
1428 
1429 	/* set the last fragment */
1430 	m->m_flags |= M_LASTFRAG;
1431 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1432 
1433 	/* strip first mbuf now that everything has been copied */
1434 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1435 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1436 
1437 	vap->iv_stats.is_tx_fragframes++;
1438 	vap->iv_stats.is_tx_frags += fragno-1;
1439 
1440 	return 1;
1441 bad:
1442 	/* reclaim fragments but leave original frame for caller to free */
1443 	for (m = m0->m_nextpkt; m != NULL; m = next) {
1444 		next = m->m_nextpkt;
1445 		m->m_nextpkt = NULL;		/* XXX paranoid */
1446 		m_freem(m);
1447 	}
1448 	m0->m_nextpkt = NULL;
1449 	return 0;
1450 }
1451 
1452 /*
1453  * Add a supported rates element id to a frame.
1454  */
1455 uint8_t *
1456 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1457 {
1458 	int nrates;
1459 
1460 	*frm++ = IEEE80211_ELEMID_RATES;
1461 	nrates = rs->rs_nrates;
1462 	if (nrates > IEEE80211_RATE_SIZE)
1463 		nrates = IEEE80211_RATE_SIZE;
1464 	*frm++ = nrates;
1465 	memcpy(frm, rs->rs_rates, nrates);
1466 	return frm + nrates;
1467 }
1468 
1469 /*
1470  * Add an extended supported rates element id to a frame.
1471  */
1472 uint8_t *
1473 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1474 {
1475 	/*
1476 	 * Add an extended supported rates element if operating in 11g mode.
1477 	 */
1478 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1479 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1480 		*frm++ = IEEE80211_ELEMID_XRATES;
1481 		*frm++ = nrates;
1482 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1483 		frm += nrates;
1484 	}
1485 	return frm;
1486 }
1487 
1488 /*
1489  * Add an ssid element to a frame.
1490  */
1491 static uint8_t *
1492 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1493 {
1494 	*frm++ = IEEE80211_ELEMID_SSID;
1495 	*frm++ = len;
1496 	memcpy(frm, ssid, len);
1497 	return frm + len;
1498 }
1499 
1500 /*
1501  * Add an erp element to a frame.
1502  */
1503 static uint8_t *
1504 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1505 {
1506 	uint8_t erp;
1507 
1508 	*frm++ = IEEE80211_ELEMID_ERP;
1509 	*frm++ = 1;
1510 	erp = 0;
1511 	if (ic->ic_nonerpsta != 0)
1512 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1513 	if (ic->ic_flags & IEEE80211_F_USEPROT)
1514 		erp |= IEEE80211_ERP_USE_PROTECTION;
1515 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1516 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1517 	*frm++ = erp;
1518 	return frm;
1519 }
1520 
1521 /*
1522  * Add a CFParams element to a frame.
1523  */
1524 static uint8_t *
1525 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1526 {
1527 #define	ADDSHORT(frm, v) do {	\
1528 	LE_WRITE_2(frm, v);	\
1529 	frm += 2;		\
1530 } while (0)
1531 	*frm++ = IEEE80211_ELEMID_CFPARMS;
1532 	*frm++ = 6;
1533 	*frm++ = 0;		/* CFP count */
1534 	*frm++ = 2;		/* CFP period */
1535 	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1536 	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1537 	return frm;
1538 #undef ADDSHORT
1539 }
1540 
1541 static __inline uint8_t *
1542 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1543 {
1544 	memcpy(frm, ie->ie_data, ie->ie_len);
1545 	return frm + ie->ie_len;
1546 }
1547 
1548 static __inline uint8_t *
1549 add_ie(uint8_t *frm, const uint8_t *ie)
1550 {
1551 	memcpy(frm, ie, 2 + ie[1]);
1552 	return frm + 2 + ie[1];
1553 }
1554 
1555 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1556 /*
1557  * Add a WME information element to a frame.
1558  */
1559 static uint8_t *
1560 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1561 {
1562 	static const struct ieee80211_wme_info info = {
1563 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1564 		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1565 		.wme_oui	= { WME_OUI_BYTES },
1566 		.wme_type	= WME_OUI_TYPE,
1567 		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1568 		.wme_version	= WME_VERSION,
1569 		.wme_info	= 0,
1570 	};
1571 	memcpy(frm, &info, sizeof(info));
1572 	return frm + sizeof(info);
1573 }
1574 
1575 /*
1576  * Add a WME parameters element to a frame.
1577  */
1578 static uint8_t *
1579 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1580 {
1581 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1582 #define	ADDSHORT(frm, v) do {	\
1583 	LE_WRITE_2(frm, v);	\
1584 	frm += 2;		\
1585 } while (0)
1586 	/* NB: this works 'cuz a param has an info at the front */
1587 	static const struct ieee80211_wme_info param = {
1588 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1589 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1590 		.wme_oui	= { WME_OUI_BYTES },
1591 		.wme_type	= WME_OUI_TYPE,
1592 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1593 		.wme_version	= WME_VERSION,
1594 	};
1595 	int i;
1596 
1597 	memcpy(frm, &param, sizeof(param));
1598 	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1599 	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1600 	*frm++ = 0;					/* reserved field */
1601 	for (i = 0; i < WME_NUM_AC; i++) {
1602 		const struct wmeParams *ac =
1603 		       &wme->wme_bssChanParams.cap_wmeParams[i];
1604 		*frm++ = SM(i, WME_PARAM_ACI)
1605 		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1606 		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1607 		       ;
1608 		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1609 		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1610 		       ;
1611 		ADDSHORT(frm, ac->wmep_txopLimit);
1612 	}
1613 	return frm;
1614 #undef SM
1615 #undef ADDSHORT
1616 }
1617 #undef WME_OUI_BYTES
1618 
1619 /*
1620  * Add an 11h Power Constraint element to a frame.
1621  */
1622 static uint8_t *
1623 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1624 {
1625 	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1626 	/* XXX per-vap tx power limit? */
1627 	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1628 
1629 	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1630 	frm[1] = 1;
1631 	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1632 	return frm + 3;
1633 }
1634 
1635 /*
1636  * Add an 11h Power Capability element to a frame.
1637  */
1638 static uint8_t *
1639 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1640 {
1641 	frm[0] = IEEE80211_ELEMID_PWRCAP;
1642 	frm[1] = 2;
1643 	frm[2] = c->ic_minpower;
1644 	frm[3] = c->ic_maxpower;
1645 	return frm + 4;
1646 }
1647 
1648 /*
1649  * Add an 11h Supported Channels element to a frame.
1650  */
1651 static uint8_t *
1652 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1653 {
1654 	static const int ielen = 26;
1655 
1656 	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1657 	frm[1] = ielen;
1658 	/* XXX not correct */
1659 	memcpy(frm+2, ic->ic_chan_avail, ielen);
1660 	return frm + 2 + ielen;
1661 }
1662 
1663 /*
1664  * Add an 11h Quiet time element to a frame.
1665  */
1666 static uint8_t *
1667 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap)
1668 {
1669 	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
1670 
1671 	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
1672 	quiet->len = 6;
1673 	if (vap->iv_quiet_count_value == 1)
1674 		vap->iv_quiet_count_value = vap->iv_quiet_count;
1675 	else if (vap->iv_quiet_count_value > 1)
1676 		vap->iv_quiet_count_value--;
1677 
1678 	if (vap->iv_quiet_count_value == 0) {
1679 		/* value 0 is reserved as per 802.11h standerd */
1680 		vap->iv_quiet_count_value = 1;
1681 	}
1682 
1683 	quiet->tbttcount = vap->iv_quiet_count_value;
1684 	quiet->period = vap->iv_quiet_period;
1685 	quiet->duration = htole16(vap->iv_quiet_duration);
1686 	quiet->offset = htole16(vap->iv_quiet_offset);
1687 	return frm + sizeof(*quiet);
1688 }
1689 
1690 /*
1691  * Add an 11h Channel Switch Announcement element to a frame.
1692  * Note that we use the per-vap CSA count to adjust the global
1693  * counter so we can use this routine to form probe response
1694  * frames and get the current count.
1695  */
1696 static uint8_t *
1697 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
1698 {
1699 	struct ieee80211com *ic = vap->iv_ic;
1700 	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
1701 
1702 	csa->csa_ie = IEEE80211_ELEMID_CSA;
1703 	csa->csa_len = 3;
1704 	csa->csa_mode = 1;		/* XXX force quiet on channel */
1705 	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
1706 	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
1707 	return frm + sizeof(*csa);
1708 }
1709 
1710 /*
1711  * Add an 11h country information element to a frame.
1712  */
1713 static uint8_t *
1714 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
1715 {
1716 
1717 	if (ic->ic_countryie == NULL ||
1718 	    ic->ic_countryie_chan != ic->ic_bsschan) {
1719 		/*
1720 		 * Handle lazy construction of ie.  This is done on
1721 		 * first use and after a channel change that requires
1722 		 * re-calculation.
1723 		 */
1724 		if (ic->ic_countryie != NULL)
1725 			free(ic->ic_countryie, M_80211_NODE_IE);
1726 		ic->ic_countryie = ieee80211_alloc_countryie(ic);
1727 		if (ic->ic_countryie == NULL)
1728 			return frm;
1729 		ic->ic_countryie_chan = ic->ic_bsschan;
1730 	}
1731 	return add_appie(frm, ic->ic_countryie);
1732 }
1733 
1734 /*
1735  * Send a probe request frame with the specified ssid
1736  * and any optional information element data.
1737  */
1738 int
1739 ieee80211_send_probereq(struct ieee80211_node *ni,
1740 	const uint8_t sa[IEEE80211_ADDR_LEN],
1741 	const uint8_t da[IEEE80211_ADDR_LEN],
1742 	const uint8_t bssid[IEEE80211_ADDR_LEN],
1743 	const uint8_t *ssid, size_t ssidlen)
1744 {
1745 	struct ieee80211vap *vap = ni->ni_vap;
1746 	struct ieee80211com *ic = ni->ni_ic;
1747 	const struct ieee80211_txparam *tp;
1748 	struct ieee80211_bpf_params params;
1749 	struct ieee80211_frame *wh;
1750 	const struct ieee80211_rateset *rs;
1751 	struct mbuf *m;
1752 	uint8_t *frm;
1753 
1754 	if (vap->iv_state == IEEE80211_S_CAC) {
1755 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
1756 		    "block %s frame in CAC state", "probe request");
1757 		vap->iv_stats.is_tx_badstate++;
1758 		return EIO;		/* XXX */
1759 	}
1760 
1761 	/*
1762 	 * Hold a reference on the node so it doesn't go away until after
1763 	 * the xmit is complete all the way in the driver.  On error we
1764 	 * will remove our reference.
1765 	 */
1766 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1767 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1768 		__func__, __LINE__,
1769 		ni, ether_sprintf(ni->ni_macaddr),
1770 		ieee80211_node_refcnt(ni)+1);
1771 	ieee80211_ref_node(ni);
1772 
1773 	/*
1774 	 * prreq frame format
1775 	 *	[tlv] ssid
1776 	 *	[tlv] supported rates
1777 	 *	[tlv] RSN (optional)
1778 	 *	[tlv] extended supported rates
1779 	 *	[tlv] WPA (optional)
1780 	 *	[tlv] user-specified ie's
1781 	 */
1782 	m = ieee80211_getmgtframe(&frm,
1783 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
1784 	       	 2 + IEEE80211_NWID_LEN
1785 	       + 2 + IEEE80211_RATE_SIZE
1786 	       + sizeof(struct ieee80211_ie_wpa)
1787 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1788 	       + sizeof(struct ieee80211_ie_wpa)
1789 	       + (vap->iv_appie_probereq != NULL ?
1790 		   vap->iv_appie_probereq->ie_len : 0)
1791 	);
1792 	if (m == NULL) {
1793 		vap->iv_stats.is_tx_nobuf++;
1794 		ieee80211_free_node(ni);
1795 		return ENOMEM;
1796 	}
1797 
1798 	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
1799 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
1800 	frm = ieee80211_add_rates(frm, rs);
1801 	if (vap->iv_flags & IEEE80211_F_WPA2) {
1802 		if (vap->iv_rsn_ie != NULL)
1803 			frm = add_ie(frm, vap->iv_rsn_ie);
1804 		/* XXX else complain? */
1805 	}
1806 	frm = ieee80211_add_xrates(frm, rs);
1807 	if (vap->iv_flags & IEEE80211_F_WPA1) {
1808 		if (vap->iv_wpa_ie != NULL)
1809 			frm = add_ie(frm, vap->iv_wpa_ie);
1810 		/* XXX else complain? */
1811 	}
1812 	if (vap->iv_appie_probereq != NULL)
1813 		frm = add_appie(frm, vap->iv_appie_probereq);
1814 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
1815 
1816 	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
1817 	    ("leading space %zd", M_LEADINGSPACE(m)));
1818 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
1819 	if (m == NULL) {
1820 		/* NB: cannot happen */
1821 		ieee80211_free_node(ni);
1822 		return ENOMEM;
1823 	}
1824 
1825 	wh = mtod(m, struct ieee80211_frame *);
1826 	ieee80211_send_setup(ni, m,
1827 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
1828 	     IEEE80211_NONQOS_TID, sa, da, bssid);
1829 	/* XXX power management? */
1830 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1831 
1832 	M_WME_SETAC(m, WME_AC_BE);
1833 
1834 	IEEE80211_NODE_STAT(ni, tx_probereq);
1835 	IEEE80211_NODE_STAT(ni, tx_mgmt);
1836 
1837 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
1838 	    "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
1839 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
1840 	    ssidlen, ssid);
1841 
1842 	memset(&params, 0, sizeof(params));
1843 	params.ibp_pri = M_WME_GETAC(m);
1844 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1845 	params.ibp_rate0 = tp->mgmtrate;
1846 	if (IEEE80211_IS_MULTICAST(da)) {
1847 		params.ibp_flags |= IEEE80211_BPF_NOACK;
1848 		params.ibp_try0 = 1;
1849 	} else
1850 		params.ibp_try0 = tp->maxretry;
1851 	params.ibp_power = ni->ni_txpower;
1852 	return ic->ic_raw_xmit(ni, m, &params);
1853 }
1854 
1855 /*
1856  * Calculate capability information for mgt frames.
1857  */
1858 uint16_t
1859 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
1860 {
1861 	struct ieee80211com *ic = vap->iv_ic;
1862 	uint16_t capinfo;
1863 
1864 	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
1865 
1866 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
1867 		capinfo = IEEE80211_CAPINFO_ESS;
1868 	else if (vap->iv_opmode == IEEE80211_M_IBSS)
1869 		capinfo = IEEE80211_CAPINFO_IBSS;
1870 	else
1871 		capinfo = 0;
1872 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
1873 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
1874 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1875 	    IEEE80211_IS_CHAN_2GHZ(chan))
1876 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1877 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1878 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1879 	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
1880 		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
1881 	return capinfo;
1882 }
1883 
1884 /*
1885  * Send a management frame.  The node is for the destination (or ic_bss
1886  * when in station mode).  Nodes other than ic_bss have their reference
1887  * count bumped to reflect our use for an indeterminant time.
1888  */
1889 int
1890 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
1891 {
1892 #define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
1893 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
1894 	struct ieee80211vap *vap = ni->ni_vap;
1895 	struct ieee80211com *ic = ni->ni_ic;
1896 	struct ieee80211_node *bss = vap->iv_bss;
1897 	struct ieee80211_bpf_params params;
1898 	struct mbuf *m;
1899 	uint8_t *frm;
1900 	uint16_t capinfo;
1901 	int has_challenge, is_shared_key, ret, status;
1902 
1903 	KASSERT(ni != NULL, ("null node"));
1904 
1905 	/*
1906 	 * Hold a reference on the node so it doesn't go away until after
1907 	 * the xmit is complete all the way in the driver.  On error we
1908 	 * will remove our reference.
1909 	 */
1910 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1911 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1912 		__func__, __LINE__,
1913 		ni, ether_sprintf(ni->ni_macaddr),
1914 		ieee80211_node_refcnt(ni)+1);
1915 	ieee80211_ref_node(ni);
1916 
1917 	memset(&params, 0, sizeof(params));
1918 	switch (type) {
1919 
1920 	case IEEE80211_FC0_SUBTYPE_AUTH:
1921 		status = arg >> 16;
1922 		arg &= 0xffff;
1923 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
1924 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
1925 		    ni->ni_challenge != NULL);
1926 
1927 		/*
1928 		 * Deduce whether we're doing open authentication or
1929 		 * shared key authentication.  We do the latter if
1930 		 * we're in the middle of a shared key authentication
1931 		 * handshake or if we're initiating an authentication
1932 		 * request and configured to use shared key.
1933 		 */
1934 		is_shared_key = has_challenge ||
1935 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
1936 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
1937 		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
1938 
1939 		m = ieee80211_getmgtframe(&frm,
1940 			  ic->ic_headroom + sizeof(struct ieee80211_frame),
1941 			  3 * sizeof(uint16_t)
1942 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
1943 				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
1944 		);
1945 		if (m == NULL)
1946 			senderr(ENOMEM, is_tx_nobuf);
1947 
1948 		((uint16_t *)frm)[0] =
1949 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
1950 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
1951 		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
1952 		((uint16_t *)frm)[2] = htole16(status);/* status */
1953 
1954 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
1955 			((uint16_t *)frm)[3] =
1956 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
1957 			    IEEE80211_ELEMID_CHALLENGE);
1958 			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
1959 			    IEEE80211_CHALLENGE_LEN);
1960 			m->m_pkthdr.len = m->m_len =
1961 				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
1962 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
1963 				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
1964 				    "request encrypt frame (%s)", __func__);
1965 				/* mark frame for encryption */
1966 				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
1967 			}
1968 		} else
1969 			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
1970 
1971 		/* XXX not right for shared key */
1972 		if (status == IEEE80211_STATUS_SUCCESS)
1973 			IEEE80211_NODE_STAT(ni, tx_auth);
1974 		else
1975 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
1976 
1977 		if (vap->iv_opmode == IEEE80211_M_STA)
1978 			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
1979 				(void *) vap->iv_state);
1980 		break;
1981 
1982 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
1983 		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
1984 		    "send station deauthenticate (reason %d)", arg);
1985 		m = ieee80211_getmgtframe(&frm,
1986 			ic->ic_headroom + sizeof(struct ieee80211_frame),
1987 			sizeof(uint16_t));
1988 		if (m == NULL)
1989 			senderr(ENOMEM, is_tx_nobuf);
1990 		*(uint16_t *)frm = htole16(arg);	/* reason */
1991 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
1992 
1993 		IEEE80211_NODE_STAT(ni, tx_deauth);
1994 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
1995 
1996 		ieee80211_node_unauthorize(ni);		/* port closed */
1997 		break;
1998 
1999 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2000 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2001 		/*
2002 		 * asreq frame format
2003 		 *	[2] capability information
2004 		 *	[2] listen interval
2005 		 *	[6*] current AP address (reassoc only)
2006 		 *	[tlv] ssid
2007 		 *	[tlv] supported rates
2008 		 *	[tlv] extended supported rates
2009 		 *	[4] power capability (optional)
2010 		 *	[28] supported channels (optional)
2011 		 *	[tlv] HT capabilities
2012 		 *	[tlv] WME (optional)
2013 		 *	[tlv] Vendor OUI HT capabilities (optional)
2014 		 *	[tlv] Atheros capabilities (if negotiated)
2015 		 *	[tlv] AppIE's (optional)
2016 		 */
2017 		m = ieee80211_getmgtframe(&frm,
2018 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2019 			 sizeof(uint16_t)
2020 		       + sizeof(uint16_t)
2021 		       + IEEE80211_ADDR_LEN
2022 		       + 2 + IEEE80211_NWID_LEN
2023 		       + 2 + IEEE80211_RATE_SIZE
2024 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2025 		       + 4
2026 		       + 2 + 26
2027 		       + sizeof(struct ieee80211_wme_info)
2028 		       + sizeof(struct ieee80211_ie_htcap)
2029 		       + 4 + sizeof(struct ieee80211_ie_htcap)
2030 #ifdef IEEE80211_SUPPORT_SUPERG
2031 		       + sizeof(struct ieee80211_ath_ie)
2032 #endif
2033 		       + (vap->iv_appie_wpa != NULL ?
2034 				vap->iv_appie_wpa->ie_len : 0)
2035 		       + (vap->iv_appie_assocreq != NULL ?
2036 				vap->iv_appie_assocreq->ie_len : 0)
2037 		);
2038 		if (m == NULL)
2039 			senderr(ENOMEM, is_tx_nobuf);
2040 
2041 		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2042 		    ("wrong mode %u", vap->iv_opmode));
2043 		capinfo = IEEE80211_CAPINFO_ESS;
2044 		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2045 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2046 		/*
2047 		 * NB: Some 11a AP's reject the request when
2048 		 *     short premable is set.
2049 		 */
2050 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2051 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2052 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2053 		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2054 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2055 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2056 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2057 		    (vap->iv_flags & IEEE80211_F_DOTH))
2058 			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2059 		*(uint16_t *)frm = htole16(capinfo);
2060 		frm += 2;
2061 
2062 		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2063 		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2064 						    bss->ni_intval));
2065 		frm += 2;
2066 
2067 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2068 			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2069 			frm += IEEE80211_ADDR_LEN;
2070 		}
2071 
2072 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2073 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2074 		if (vap->iv_flags & IEEE80211_F_WPA2) {
2075 			if (vap->iv_rsn_ie != NULL)
2076 				frm = add_ie(frm, vap->iv_rsn_ie);
2077 			/* XXX else complain? */
2078 		}
2079 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2080 		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2081 			frm = ieee80211_add_powercapability(frm,
2082 			    ic->ic_curchan);
2083 			frm = ieee80211_add_supportedchannels(frm, ic);
2084 		}
2085 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2086 		    ni->ni_ies.htcap_ie != NULL &&
2087 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP)
2088 			frm = ieee80211_add_htcap(frm, ni);
2089 		if (vap->iv_flags & IEEE80211_F_WPA1) {
2090 			if (vap->iv_wpa_ie != NULL)
2091 				frm = add_ie(frm, vap->iv_wpa_ie);
2092 			/* XXX else complain */
2093 		}
2094 		if ((ic->ic_flags & IEEE80211_F_WME) &&
2095 		    ni->ni_ies.wme_ie != NULL)
2096 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2097 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2098 		    ni->ni_ies.htcap_ie != NULL &&
2099 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR)
2100 			frm = ieee80211_add_htcap_vendor(frm, ni);
2101 #ifdef IEEE80211_SUPPORT_SUPERG
2102 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2103 			frm = ieee80211_add_ath(frm,
2104 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2105 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2106 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2107 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2108 		}
2109 #endif /* IEEE80211_SUPPORT_SUPERG */
2110 		if (vap->iv_appie_assocreq != NULL)
2111 			frm = add_appie(frm, vap->iv_appie_assocreq);
2112 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2113 
2114 		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2115 			(void *) vap->iv_state);
2116 		break;
2117 
2118 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2119 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2120 		/*
2121 		 * asresp frame format
2122 		 *	[2] capability information
2123 		 *	[2] status
2124 		 *	[2] association ID
2125 		 *	[tlv] supported rates
2126 		 *	[tlv] extended supported rates
2127 		 *	[tlv] HT capabilities (standard, if STA enabled)
2128 		 *	[tlv] HT information (standard, if STA enabled)
2129 		 *	[tlv] WME (if configured and STA enabled)
2130 		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2131 		 *	[tlv] HT information (vendor OUI, if STA enabled)
2132 		 *	[tlv] Atheros capabilities (if STA enabled)
2133 		 *	[tlv] AppIE's (optional)
2134 		 */
2135 		m = ieee80211_getmgtframe(&frm,
2136 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2137 			 sizeof(uint16_t)
2138 		       + sizeof(uint16_t)
2139 		       + sizeof(uint16_t)
2140 		       + 2 + IEEE80211_RATE_SIZE
2141 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2142 		       + sizeof(struct ieee80211_ie_htcap) + 4
2143 		       + sizeof(struct ieee80211_ie_htinfo) + 4
2144 		       + sizeof(struct ieee80211_wme_param)
2145 #ifdef IEEE80211_SUPPORT_SUPERG
2146 		       + sizeof(struct ieee80211_ath_ie)
2147 #endif
2148 		       + (vap->iv_appie_assocresp != NULL ?
2149 				vap->iv_appie_assocresp->ie_len : 0)
2150 		);
2151 		if (m == NULL)
2152 			senderr(ENOMEM, is_tx_nobuf);
2153 
2154 		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2155 		*(uint16_t *)frm = htole16(capinfo);
2156 		frm += 2;
2157 
2158 		*(uint16_t *)frm = htole16(arg);	/* status */
2159 		frm += 2;
2160 
2161 		if (arg == IEEE80211_STATUS_SUCCESS) {
2162 			*(uint16_t *)frm = htole16(ni->ni_associd);
2163 			IEEE80211_NODE_STAT(ni, tx_assoc);
2164 		} else
2165 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2166 		frm += 2;
2167 
2168 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2169 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2170 		/* NB: respond according to what we received */
2171 		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2172 			frm = ieee80211_add_htcap(frm, ni);
2173 			frm = ieee80211_add_htinfo(frm, ni);
2174 		}
2175 		if ((vap->iv_flags & IEEE80211_F_WME) &&
2176 		    ni->ni_ies.wme_ie != NULL)
2177 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2178 		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2179 			frm = ieee80211_add_htcap_vendor(frm, ni);
2180 			frm = ieee80211_add_htinfo_vendor(frm, ni);
2181 		}
2182 #ifdef IEEE80211_SUPPORT_SUPERG
2183 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2184 			frm = ieee80211_add_ath(frm,
2185 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2186 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2187 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2188 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2189 #endif /* IEEE80211_SUPPORT_SUPERG */
2190 		if (vap->iv_appie_assocresp != NULL)
2191 			frm = add_appie(frm, vap->iv_appie_assocresp);
2192 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2193 		break;
2194 
2195 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2196 		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2197 		    "send station disassociate (reason %d)", arg);
2198 		m = ieee80211_getmgtframe(&frm,
2199 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2200 			sizeof(uint16_t));
2201 		if (m == NULL)
2202 			senderr(ENOMEM, is_tx_nobuf);
2203 		*(uint16_t *)frm = htole16(arg);	/* reason */
2204 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2205 
2206 		IEEE80211_NODE_STAT(ni, tx_disassoc);
2207 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2208 		break;
2209 
2210 	default:
2211 		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2212 		    "invalid mgmt frame type %u", type);
2213 		senderr(EINVAL, is_tx_unknownmgt);
2214 		/* NOTREACHED */
2215 	}
2216 
2217 	/* NB: force non-ProbeResp frames to the highest queue */
2218 	params.ibp_pri = WME_AC_VO;
2219 	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2220 	/* NB: we know all frames are unicast */
2221 	params.ibp_try0 = bss->ni_txparms->maxretry;
2222 	params.ibp_power = bss->ni_txpower;
2223 	return ieee80211_mgmt_output(ni, m, type, &params);
2224 bad:
2225 	ieee80211_free_node(ni);
2226 	return ret;
2227 #undef senderr
2228 #undef HTFLAGS
2229 }
2230 
2231 /*
2232  * Return an mbuf with a probe response frame in it.
2233  * Space is left to prepend and 802.11 header at the
2234  * front but it's left to the caller to fill in.
2235  */
2236 struct mbuf *
2237 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2238 {
2239 	struct ieee80211vap *vap = bss->ni_vap;
2240 	struct ieee80211com *ic = bss->ni_ic;
2241 	const struct ieee80211_rateset *rs;
2242 	struct mbuf *m;
2243 	uint16_t capinfo;
2244 	uint8_t *frm;
2245 
2246 	/*
2247 	 * probe response frame format
2248 	 *	[8] time stamp
2249 	 *	[2] beacon interval
2250 	 *	[2] cabability information
2251 	 *	[tlv] ssid
2252 	 *	[tlv] supported rates
2253 	 *	[tlv] parameter set (FH/DS)
2254 	 *	[tlv] parameter set (IBSS)
2255 	 *	[tlv] country (optional)
2256 	 *	[3] power control (optional)
2257 	 *	[5] channel switch announcement (CSA) (optional)
2258 	 *	[tlv] extended rate phy (ERP)
2259 	 *	[tlv] extended supported rates
2260 	 *	[tlv] RSN (optional)
2261 	 *	[tlv] HT capabilities
2262 	 *	[tlv] HT information
2263 	 *	[tlv] WPA (optional)
2264 	 *	[tlv] WME (optional)
2265 	 *	[tlv] Vendor OUI HT capabilities (optional)
2266 	 *	[tlv] Vendor OUI HT information (optional)
2267 	 *	[tlv] Atheros capabilities
2268 	 *	[tlv] AppIE's (optional)
2269 	 *	[tlv] Mesh ID (MBSS)
2270 	 *	[tlv] Mesh Conf (MBSS)
2271 	 */
2272 	m = ieee80211_getmgtframe(&frm,
2273 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2274 		 8
2275 	       + sizeof(uint16_t)
2276 	       + sizeof(uint16_t)
2277 	       + 2 + IEEE80211_NWID_LEN
2278 	       + 2 + IEEE80211_RATE_SIZE
2279 	       + 7	/* max(7,3) */
2280 	       + IEEE80211_COUNTRY_MAX_SIZE
2281 	       + 3
2282 	       + sizeof(struct ieee80211_csa_ie)
2283 	       + sizeof(struct ieee80211_quiet_ie)
2284 	       + 3
2285 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2286 	       + sizeof(struct ieee80211_ie_wpa)
2287 	       + sizeof(struct ieee80211_ie_htcap)
2288 	       + sizeof(struct ieee80211_ie_htinfo)
2289 	       + sizeof(struct ieee80211_ie_wpa)
2290 	       + sizeof(struct ieee80211_wme_param)
2291 	       + 4 + sizeof(struct ieee80211_ie_htcap)
2292 	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2293 #ifdef IEEE80211_SUPPORT_SUPERG
2294 	       + sizeof(struct ieee80211_ath_ie)
2295 #endif
2296 #ifdef IEEE80211_SUPPORT_MESH
2297 	       + 2 + IEEE80211_MESHID_LEN
2298 	       + sizeof(struct ieee80211_meshconf_ie)
2299 #endif
2300 	       + (vap->iv_appie_proberesp != NULL ?
2301 			vap->iv_appie_proberesp->ie_len : 0)
2302 	);
2303 	if (m == NULL) {
2304 		vap->iv_stats.is_tx_nobuf++;
2305 		return NULL;
2306 	}
2307 
2308 	memset(frm, 0, 8);	/* timestamp should be filled later */
2309 	frm += 8;
2310 	*(uint16_t *)frm = htole16(bss->ni_intval);
2311 	frm += 2;
2312 	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2313 	*(uint16_t *)frm = htole16(capinfo);
2314 	frm += 2;
2315 
2316 	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2317 	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2318 	frm = ieee80211_add_rates(frm, rs);
2319 
2320 	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2321 		*frm++ = IEEE80211_ELEMID_FHPARMS;
2322 		*frm++ = 5;
2323 		*frm++ = bss->ni_fhdwell & 0x00ff;
2324 		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2325 		*frm++ = IEEE80211_FH_CHANSET(
2326 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2327 		*frm++ = IEEE80211_FH_CHANPAT(
2328 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2329 		*frm++ = bss->ni_fhindex;
2330 	} else {
2331 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2332 		*frm++ = 1;
2333 		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2334 	}
2335 
2336 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2337 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2338 		*frm++ = 2;
2339 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2340 	}
2341 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2342 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2343 		frm = ieee80211_add_countryie(frm, ic);
2344 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2345 		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2346 			frm = ieee80211_add_powerconstraint(frm, vap);
2347 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2348 			frm = ieee80211_add_csa(frm, vap);
2349 	}
2350 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2351 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2352 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2353 			if (vap->iv_quiet)
2354 				frm = ieee80211_add_quiet(frm, vap);
2355 		}
2356 	}
2357 	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2358 		frm = ieee80211_add_erp(frm, ic);
2359 	frm = ieee80211_add_xrates(frm, rs);
2360 	if (vap->iv_flags & IEEE80211_F_WPA2) {
2361 		if (vap->iv_rsn_ie != NULL)
2362 			frm = add_ie(frm, vap->iv_rsn_ie);
2363 		/* XXX else complain? */
2364 	}
2365 	/*
2366 	 * NB: legacy 11b clients do not get certain ie's.
2367 	 *     The caller identifies such clients by passing
2368 	 *     a token in legacy to us.  Could expand this to be
2369 	 *     any legacy client for stuff like HT ie's.
2370 	 */
2371 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2372 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2373 		frm = ieee80211_add_htcap(frm, bss);
2374 		frm = ieee80211_add_htinfo(frm, bss);
2375 	}
2376 	if (vap->iv_flags & IEEE80211_F_WPA1) {
2377 		if (vap->iv_wpa_ie != NULL)
2378 			frm = add_ie(frm, vap->iv_wpa_ie);
2379 		/* XXX else complain? */
2380 	}
2381 	if (vap->iv_flags & IEEE80211_F_WME)
2382 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2383 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2384 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
2385 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2386 		frm = ieee80211_add_htcap_vendor(frm, bss);
2387 		frm = ieee80211_add_htinfo_vendor(frm, bss);
2388 	}
2389 #ifdef IEEE80211_SUPPORT_SUPERG
2390 	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
2391 	    legacy != IEEE80211_SEND_LEGACY_11B)
2392 		frm = ieee80211_add_athcaps(frm, bss);
2393 #endif
2394 	if (vap->iv_appie_proberesp != NULL)
2395 		frm = add_appie(frm, vap->iv_appie_proberesp);
2396 #ifdef IEEE80211_SUPPORT_MESH
2397 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2398 		frm = ieee80211_add_meshid(frm, vap);
2399 		frm = ieee80211_add_meshconf(frm, vap);
2400 	}
2401 #endif
2402 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2403 
2404 	return m;
2405 }
2406 
2407 /*
2408  * Send a probe response frame to the specified mac address.
2409  * This does not go through the normal mgt frame api so we
2410  * can specify the destination address and re-use the bss node
2411  * for the sta reference.
2412  */
2413 int
2414 ieee80211_send_proberesp(struct ieee80211vap *vap,
2415 	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2416 {
2417 	struct ieee80211_node *bss = vap->iv_bss;
2418 	struct ieee80211com *ic = vap->iv_ic;
2419 	struct ieee80211_frame *wh;
2420 	struct mbuf *m;
2421 
2422 	if (vap->iv_state == IEEE80211_S_CAC) {
2423 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2424 		    "block %s frame in CAC state", "probe response");
2425 		vap->iv_stats.is_tx_badstate++;
2426 		return EIO;		/* XXX */
2427 	}
2428 
2429 	/*
2430 	 * Hold a reference on the node so it doesn't go away until after
2431 	 * the xmit is complete all the way in the driver.  On error we
2432 	 * will remove our reference.
2433 	 */
2434 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2435 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2436 	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2437 	    ieee80211_node_refcnt(bss)+1);
2438 	ieee80211_ref_node(bss);
2439 
2440 	m = ieee80211_alloc_proberesp(bss, legacy);
2441 	if (m == NULL) {
2442 		ieee80211_free_node(bss);
2443 		return ENOMEM;
2444 	}
2445 
2446 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
2447 	KASSERT(m != NULL, ("no room for header"));
2448 
2449 	wh = mtod(m, struct ieee80211_frame *);
2450 	ieee80211_send_setup(bss, m,
2451 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2452 	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2453 	/* XXX power management? */
2454 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2455 
2456 	M_WME_SETAC(m, WME_AC_BE);
2457 
2458 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2459 	    "send probe resp on channel %u to %s%s\n",
2460 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2461 	    legacy ? " <legacy>" : "");
2462 	IEEE80211_NODE_STAT(bss, tx_mgmt);
2463 
2464 	return ic->ic_raw_xmit(bss, m, NULL);
2465 }
2466 
2467 /*
2468  * Allocate and build a RTS (Request To Send) control frame.
2469  */
2470 struct mbuf *
2471 ieee80211_alloc_rts(struct ieee80211com *ic,
2472 	const uint8_t ra[IEEE80211_ADDR_LEN],
2473 	const uint8_t ta[IEEE80211_ADDR_LEN],
2474 	uint16_t dur)
2475 {
2476 	struct ieee80211_frame_rts *rts;
2477 	struct mbuf *m;
2478 
2479 	/* XXX honor ic_headroom */
2480 	m = m_gethdr(M_DONTWAIT, MT_DATA);
2481 	if (m != NULL) {
2482 		rts = mtod(m, struct ieee80211_frame_rts *);
2483 		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2484 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2485 		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2486 		*(u_int16_t *)rts->i_dur = htole16(dur);
2487 		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2488 		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2489 
2490 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2491 	}
2492 	return m;
2493 }
2494 
2495 /*
2496  * Allocate and build a CTS (Clear To Send) control frame.
2497  */
2498 struct mbuf *
2499 ieee80211_alloc_cts(struct ieee80211com *ic,
2500 	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2501 {
2502 	struct ieee80211_frame_cts *cts;
2503 	struct mbuf *m;
2504 
2505 	/* XXX honor ic_headroom */
2506 	m = m_gethdr(M_DONTWAIT, MT_DATA);
2507 	if (m != NULL) {
2508 		cts = mtod(m, struct ieee80211_frame_cts *);
2509 		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2510 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2511 		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2512 		*(u_int16_t *)cts->i_dur = htole16(dur);
2513 		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2514 
2515 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2516 	}
2517 	return m;
2518 }
2519 
2520 static void
2521 ieee80211_tx_mgt_timeout(void *arg)
2522 {
2523 	struct ieee80211_node *ni = arg;
2524 	struct ieee80211vap *vap = ni->ni_vap;
2525 
2526 	if (vap->iv_state != IEEE80211_S_INIT &&
2527 	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2528 		/*
2529 		 * NB: it's safe to specify a timeout as the reason here;
2530 		 *     it'll only be used in the right state.
2531 		 */
2532 		ieee80211_new_state(vap, IEEE80211_S_SCAN,
2533 			IEEE80211_SCAN_FAIL_TIMEOUT);
2534 	}
2535 }
2536 
2537 static void
2538 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2539 {
2540 	struct ieee80211vap *vap = ni->ni_vap;
2541 	enum ieee80211_state ostate = (enum ieee80211_state) arg;
2542 
2543 	/*
2544 	 * Frame transmit completed; arrange timer callback.  If
2545 	 * transmit was successfuly we wait for response.  Otherwise
2546 	 * we arrange an immediate callback instead of doing the
2547 	 * callback directly since we don't know what state the driver
2548 	 * is in (e.g. what locks it is holding).  This work should
2549 	 * not be too time-critical and not happen too often so the
2550 	 * added overhead is acceptable.
2551 	 *
2552 	 * XXX what happens if !acked but response shows up before callback?
2553 	 */
2554 	if (vap->iv_state == ostate)
2555 		callout_reset(&vap->iv_mgtsend,
2556 			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2557 			ieee80211_tx_mgt_timeout, ni);
2558 }
2559 
2560 static void
2561 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2562 	struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni)
2563 {
2564 	struct ieee80211vap *vap = ni->ni_vap;
2565 	struct ieee80211com *ic = ni->ni_ic;
2566 	struct ieee80211_rateset *rs = &ni->ni_rates;
2567 	uint16_t capinfo;
2568 
2569 	/*
2570 	 * beacon frame format
2571 	 *	[8] time stamp
2572 	 *	[2] beacon interval
2573 	 *	[2] cabability information
2574 	 *	[tlv] ssid
2575 	 *	[tlv] supported rates
2576 	 *	[3] parameter set (DS)
2577 	 *	[8] CF parameter set (optional)
2578 	 *	[tlv] parameter set (IBSS/TIM)
2579 	 *	[tlv] country (optional)
2580 	 *	[3] power control (optional)
2581 	 *	[5] channel switch announcement (CSA) (optional)
2582 	 *	[tlv] extended rate phy (ERP)
2583 	 *	[tlv] extended supported rates
2584 	 *	[tlv] RSN parameters
2585 	 *	[tlv] HT capabilities
2586 	 *	[tlv] HT information
2587 	 * XXX Vendor-specific OIDs (e.g. Atheros)
2588 	 *	[tlv] WPA parameters
2589 	 *	[tlv] WME parameters
2590 	 *	[tlv] Vendor OUI HT capabilities (optional)
2591 	 *	[tlv] Vendor OUI HT information (optional)
2592 	 *	[tlv] Atheros capabilities (optional)
2593 	 *	[tlv] TDMA parameters (optional)
2594 	 *	[tlv] Mesh ID (MBSS)
2595 	 *	[tlv] Mesh Conf (MBSS)
2596 	 *	[tlv] application data (optional)
2597 	 */
2598 
2599 	memset(bo, 0, sizeof(*bo));
2600 
2601 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
2602 	frm += 8;
2603 	*(uint16_t *)frm = htole16(ni->ni_intval);
2604 	frm += 2;
2605 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
2606 	bo->bo_caps = (uint16_t *)frm;
2607 	*(uint16_t *)frm = htole16(capinfo);
2608 	frm += 2;
2609 	*frm++ = IEEE80211_ELEMID_SSID;
2610 	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2611 		*frm++ = ni->ni_esslen;
2612 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
2613 		frm += ni->ni_esslen;
2614 	} else
2615 		*frm++ = 0;
2616 	frm = ieee80211_add_rates(frm, rs);
2617 	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2618 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2619 		*frm++ = 1;
2620 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2621 	}
2622 	if (ic->ic_flags & IEEE80211_F_PCF) {
2623 		bo->bo_cfp = frm;
2624 		frm = ieee80211_add_cfparms(frm, ic);
2625 	}
2626 	bo->bo_tim = frm;
2627 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2628 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2629 		*frm++ = 2;
2630 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2631 		bo->bo_tim_len = 0;
2632 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2633 	    vap->iv_opmode == IEEE80211_M_MBSS) {
2634 		/* TIM IE is the same for Mesh and Hostap */
2635 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2636 
2637 		tie->tim_ie = IEEE80211_ELEMID_TIM;
2638 		tie->tim_len = 4;	/* length */
2639 		tie->tim_count = 0;	/* DTIM count */
2640 		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
2641 		tie->tim_bitctl = 0;	/* bitmap control */
2642 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
2643 		frm += sizeof(struct ieee80211_tim_ie);
2644 		bo->bo_tim_len = 1;
2645 	}
2646 	bo->bo_tim_trailer = frm;
2647 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2648 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2649 		frm = ieee80211_add_countryie(frm, ic);
2650 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2651 		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
2652 			frm = ieee80211_add_powerconstraint(frm, vap);
2653 		bo->bo_csa = frm;
2654 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2655 			frm = ieee80211_add_csa(frm, vap);
2656 	} else
2657 		bo->bo_csa = frm;
2658 
2659 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2660 		bo->bo_quiet = frm;
2661 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2662 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2663 			if (vap->iv_quiet)
2664 				frm = ieee80211_add_quiet(frm,vap);
2665 		}
2666 	} else
2667 		bo->bo_quiet = frm;
2668 
2669 	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
2670 		bo->bo_erp = frm;
2671 		frm = ieee80211_add_erp(frm, ic);
2672 	}
2673 	frm = ieee80211_add_xrates(frm, rs);
2674 	if (vap->iv_flags & IEEE80211_F_WPA2) {
2675 		if (vap->iv_rsn_ie != NULL)
2676 			frm = add_ie(frm, vap->iv_rsn_ie);
2677 		/* XXX else complain */
2678 	}
2679 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2680 		frm = ieee80211_add_htcap(frm, ni);
2681 		bo->bo_htinfo = frm;
2682 		frm = ieee80211_add_htinfo(frm, ni);
2683 	}
2684 	if (vap->iv_flags & IEEE80211_F_WPA1) {
2685 		if (vap->iv_wpa_ie != NULL)
2686 			frm = add_ie(frm, vap->iv_wpa_ie);
2687 		/* XXX else complain */
2688 	}
2689 	if (vap->iv_flags & IEEE80211_F_WME) {
2690 		bo->bo_wme = frm;
2691 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2692 	}
2693 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2694 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
2695 		frm = ieee80211_add_htcap_vendor(frm, ni);
2696 		frm = ieee80211_add_htinfo_vendor(frm, ni);
2697 	}
2698 #ifdef IEEE80211_SUPPORT_SUPERG
2699 	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
2700 		bo->bo_ath = frm;
2701 		frm = ieee80211_add_athcaps(frm, ni);
2702 	}
2703 #endif
2704 #ifdef IEEE80211_SUPPORT_TDMA
2705 	if (vap->iv_caps & IEEE80211_C_TDMA) {
2706 		bo->bo_tdma = frm;
2707 		frm = ieee80211_add_tdma(frm, vap);
2708 	}
2709 #endif
2710 	if (vap->iv_appie_beacon != NULL) {
2711 		bo->bo_appie = frm;
2712 		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
2713 		frm = add_appie(frm, vap->iv_appie_beacon);
2714 	}
2715 #ifdef IEEE80211_SUPPORT_MESH
2716 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2717 		frm = ieee80211_add_meshid(frm, vap);
2718 		bo->bo_meshconf = frm;
2719 		frm = ieee80211_add_meshconf(frm, vap);
2720 	}
2721 #endif
2722 	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
2723 	bo->bo_csa_trailer_len = frm - bo->bo_csa;
2724 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2725 }
2726 
2727 /*
2728  * Allocate a beacon frame and fillin the appropriate bits.
2729  */
2730 struct mbuf *
2731 ieee80211_beacon_alloc(struct ieee80211_node *ni,
2732 	struct ieee80211_beacon_offsets *bo)
2733 {
2734 	struct ieee80211vap *vap = ni->ni_vap;
2735 	struct ieee80211com *ic = ni->ni_ic;
2736 	struct ifnet *ifp = vap->iv_ifp;
2737 	struct ieee80211_frame *wh;
2738 	struct mbuf *m;
2739 	int pktlen;
2740 	uint8_t *frm;
2741 
2742 	/*
2743 	 * beacon frame format
2744 	 *	[8] time stamp
2745 	 *	[2] beacon interval
2746 	 *	[2] cabability information
2747 	 *	[tlv] ssid
2748 	 *	[tlv] supported rates
2749 	 *	[3] parameter set (DS)
2750 	 *	[8] CF parameter set (optional)
2751 	 *	[tlv] parameter set (IBSS/TIM)
2752 	 *	[tlv] country (optional)
2753 	 *	[3] power control (optional)
2754 	 *	[5] channel switch announcement (CSA) (optional)
2755 	 *	[tlv] extended rate phy (ERP)
2756 	 *	[tlv] extended supported rates
2757 	 *	[tlv] RSN parameters
2758 	 *	[tlv] HT capabilities
2759 	 *	[tlv] HT information
2760 	 *	[tlv] Vendor OUI HT capabilities (optional)
2761 	 *	[tlv] Vendor OUI HT information (optional)
2762 	 * XXX Vendor-specific OIDs (e.g. Atheros)
2763 	 *	[tlv] WPA parameters
2764 	 *	[tlv] WME parameters
2765 	 *	[tlv] TDMA parameters (optional)
2766 	 *	[tlv] Mesh ID (MBSS)
2767 	 *	[tlv] Mesh Conf (MBSS)
2768 	 *	[tlv] application data (optional)
2769 	 * NB: we allocate the max space required for the TIM bitmap.
2770 	 * XXX how big is this?
2771 	 */
2772 	pktlen =   8					/* time stamp */
2773 		 + sizeof(uint16_t)			/* beacon interval */
2774 		 + sizeof(uint16_t)			/* capabilities */
2775 		 + 2 + ni->ni_esslen			/* ssid */
2776 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
2777 	         + 2 + 1				/* DS parameters */
2778 		 + 2 + 6				/* CF parameters */
2779 		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
2780 		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
2781 		 + 2 + 1				/* power control */
2782 		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
2783 		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
2784 		 + 2 + 1				/* ERP */
2785 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2786 		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
2787 			2*sizeof(struct ieee80211_ie_wpa) : 0)
2788 		 /* XXX conditional? */
2789 		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
2790 		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
2791 		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
2792 			sizeof(struct ieee80211_wme_param) : 0)
2793 #ifdef IEEE80211_SUPPORT_SUPERG
2794 		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
2795 #endif
2796 #ifdef IEEE80211_SUPPORT_TDMA
2797 		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
2798 			sizeof(struct ieee80211_tdma_param) : 0)
2799 #endif
2800 #ifdef IEEE80211_SUPPORT_MESH
2801 		 + 2 + ni->ni_meshidlen
2802 		 + sizeof(struct ieee80211_meshconf_ie)
2803 #endif
2804 		 + IEEE80211_MAX_APPIE
2805 		 ;
2806 	m = ieee80211_getmgtframe(&frm,
2807 		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
2808 	if (m == NULL) {
2809 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
2810 			"%s: cannot get buf; size %u\n", __func__, pktlen);
2811 		vap->iv_stats.is_tx_nobuf++;
2812 		return NULL;
2813 	}
2814 	ieee80211_beacon_construct(m, frm, bo, ni);
2815 
2816 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
2817 	KASSERT(m != NULL, ("no space for 802.11 header?"));
2818 	wh = mtod(m, struct ieee80211_frame *);
2819 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2820 	    IEEE80211_FC0_SUBTYPE_BEACON;
2821 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2822 	*(uint16_t *)wh->i_dur = 0;
2823 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2824 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
2825 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
2826 	*(uint16_t *)wh->i_seq = 0;
2827 
2828 	return m;
2829 }
2830 
2831 /*
2832  * Update the dynamic parts of a beacon frame based on the current state.
2833  */
2834 int
2835 ieee80211_beacon_update(struct ieee80211_node *ni,
2836 	struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
2837 {
2838 	struct ieee80211vap *vap = ni->ni_vap;
2839 	struct ieee80211com *ic = ni->ni_ic;
2840 	int len_changed = 0;
2841 	uint16_t capinfo;
2842 	struct ieee80211_frame *wh;
2843 	ieee80211_seq seqno;
2844 
2845 	IEEE80211_LOCK(ic);
2846 	/*
2847 	 * Handle 11h channel change when we've reached the count.
2848 	 * We must recalculate the beacon frame contents to account
2849 	 * for the new channel.  Note we do this only for the first
2850 	 * vap that reaches this point; subsequent vaps just update
2851 	 * their beacon state to reflect the recalculated channel.
2852 	 */
2853 	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
2854 	    vap->iv_csa_count == ic->ic_csa_count) {
2855 		vap->iv_csa_count = 0;
2856 		/*
2857 		 * Effect channel change before reconstructing the beacon
2858 		 * frame contents as many places reference ni_chan.
2859 		 */
2860 		if (ic->ic_csa_newchan != NULL)
2861 			ieee80211_csa_completeswitch(ic);
2862 		/*
2863 		 * NB: ieee80211_beacon_construct clears all pending
2864 		 * updates in bo_flags so we don't need to explicitly
2865 		 * clear IEEE80211_BEACON_CSA.
2866 		 */
2867 		ieee80211_beacon_construct(m,
2868 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni);
2869 
2870 		/* XXX do WME aggressive mode processing? */
2871 		IEEE80211_UNLOCK(ic);
2872 		return 1;		/* just assume length changed */
2873 	}
2874 
2875 	wh = mtod(m, struct ieee80211_frame *);
2876 	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
2877 	*(uint16_t *)&wh->i_seq[0] =
2878 		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
2879 	M_SEQNO_SET(m, seqno);
2880 
2881 	/* XXX faster to recalculate entirely or just changes? */
2882 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
2883 	*bo->bo_caps = htole16(capinfo);
2884 
2885 	if (vap->iv_flags & IEEE80211_F_WME) {
2886 		struct ieee80211_wme_state *wme = &ic->ic_wme;
2887 
2888 		/*
2889 		 * Check for agressive mode change.  When there is
2890 		 * significant high priority traffic in the BSS
2891 		 * throttle back BE traffic by using conservative
2892 		 * parameters.  Otherwise BE uses agressive params
2893 		 * to optimize performance of legacy/non-QoS traffic.
2894 		 */
2895 		if (wme->wme_flags & WME_F_AGGRMODE) {
2896 			if (wme->wme_hipri_traffic >
2897 			    wme->wme_hipri_switch_thresh) {
2898 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2899 				    "%s: traffic %u, disable aggressive mode\n",
2900 				    __func__, wme->wme_hipri_traffic);
2901 				wme->wme_flags &= ~WME_F_AGGRMODE;
2902 				ieee80211_wme_updateparams_locked(vap);
2903 				wme->wme_hipri_traffic =
2904 					wme->wme_hipri_switch_hysteresis;
2905 			} else
2906 				wme->wme_hipri_traffic = 0;
2907 		} else {
2908 			if (wme->wme_hipri_traffic <=
2909 			    wme->wme_hipri_switch_thresh) {
2910 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2911 				    "%s: traffic %u, enable aggressive mode\n",
2912 				    __func__, wme->wme_hipri_traffic);
2913 				wme->wme_flags |= WME_F_AGGRMODE;
2914 				ieee80211_wme_updateparams_locked(vap);
2915 				wme->wme_hipri_traffic = 0;
2916 			} else
2917 				wme->wme_hipri_traffic =
2918 					wme->wme_hipri_switch_hysteresis;
2919 		}
2920 		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
2921 			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
2922 			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
2923 		}
2924 	}
2925 
2926 	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
2927 		ieee80211_ht_update_beacon(vap, bo);
2928 		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
2929 	}
2930 #ifdef IEEE80211_SUPPORT_TDMA
2931 	if (vap->iv_caps & IEEE80211_C_TDMA) {
2932 		/*
2933 		 * NB: the beacon is potentially updated every TBTT.
2934 		 */
2935 		ieee80211_tdma_update_beacon(vap, bo);
2936 	}
2937 #endif
2938 #ifdef IEEE80211_SUPPORT_MESH
2939 	if (vap->iv_opmode == IEEE80211_M_MBSS)
2940 		ieee80211_mesh_update_beacon(vap, bo);
2941 #endif
2942 
2943 	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2944 	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
2945 		struct ieee80211_tim_ie *tie =
2946 			(struct ieee80211_tim_ie *) bo->bo_tim;
2947 		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
2948 			u_int timlen, timoff, i;
2949 			/*
2950 			 * ATIM/DTIM needs updating.  If it fits in the
2951 			 * current space allocated then just copy in the
2952 			 * new bits.  Otherwise we need to move any trailing
2953 			 * data to make room.  Note that we know there is
2954 			 * contiguous space because ieee80211_beacon_allocate
2955 			 * insures there is space in the mbuf to write a
2956 			 * maximal-size virtual bitmap (based on iv_max_aid).
2957 			 */
2958 			/*
2959 			 * Calculate the bitmap size and offset, copy any
2960 			 * trailer out of the way, and then copy in the
2961 			 * new bitmap and update the information element.
2962 			 * Note that the tim bitmap must contain at least
2963 			 * one byte and any offset must be even.
2964 			 */
2965 			if (vap->iv_ps_pending != 0) {
2966 				timoff = 128;		/* impossibly large */
2967 				for (i = 0; i < vap->iv_tim_len; i++)
2968 					if (vap->iv_tim_bitmap[i]) {
2969 						timoff = i &~ 1;
2970 						break;
2971 					}
2972 				KASSERT(timoff != 128, ("tim bitmap empty!"));
2973 				for (i = vap->iv_tim_len-1; i >= timoff; i--)
2974 					if (vap->iv_tim_bitmap[i])
2975 						break;
2976 				timlen = 1 + (i - timoff);
2977 			} else {
2978 				timoff = 0;
2979 				timlen = 1;
2980 			}
2981 			if (timlen != bo->bo_tim_len) {
2982 				/* copy up/down trailer */
2983 				int adjust = tie->tim_bitmap+timlen
2984 					   - bo->bo_tim_trailer;
2985 				ovbcopy(bo->bo_tim_trailer,
2986 				    bo->bo_tim_trailer+adjust,
2987 				    bo->bo_tim_trailer_len);
2988 				bo->bo_tim_trailer += adjust;
2989 				bo->bo_erp += adjust;
2990 				bo->bo_htinfo += adjust;
2991 #ifdef IEEE80211_SUPPORT_SUPERG
2992 				bo->bo_ath += adjust;
2993 #endif
2994 #ifdef IEEE80211_SUPPORT_TDMA
2995 				bo->bo_tdma += adjust;
2996 #endif
2997 #ifdef IEEE80211_SUPPORT_MESH
2998 				bo->bo_meshconf += adjust;
2999 #endif
3000 				bo->bo_appie += adjust;
3001 				bo->bo_wme += adjust;
3002 				bo->bo_csa += adjust;
3003 				bo->bo_quiet += adjust;
3004 				bo->bo_tim_len = timlen;
3005 
3006 				/* update information element */
3007 				tie->tim_len = 3 + timlen;
3008 				tie->tim_bitctl = timoff;
3009 				len_changed = 1;
3010 			}
3011 			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
3012 				bo->bo_tim_len);
3013 
3014 			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
3015 
3016 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
3017 				"%s: TIM updated, pending %u, off %u, len %u\n",
3018 				__func__, vap->iv_ps_pending, timoff, timlen);
3019 		}
3020 		/* count down DTIM period */
3021 		if (tie->tim_count == 0)
3022 			tie->tim_count = tie->tim_period - 1;
3023 		else
3024 			tie->tim_count--;
3025 		/* update state for buffered multicast frames on DTIM */
3026 		if (mcast && tie->tim_count == 0)
3027 			tie->tim_bitctl |= 1;
3028 		else
3029 			tie->tim_bitctl &= ~1;
3030 		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
3031 			struct ieee80211_csa_ie *csa =
3032 			    (struct ieee80211_csa_ie *) bo->bo_csa;
3033 
3034 			/*
3035 			 * Insert or update CSA ie.  If we're just starting
3036 			 * to count down to the channel switch then we need
3037 			 * to insert the CSA ie.  Otherwise we just need to
3038 			 * drop the count.  The actual change happens above
3039 			 * when the vap's count reaches the target count.
3040 			 */
3041 			if (vap->iv_csa_count == 0) {
3042 				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
3043 				bo->bo_erp += sizeof(*csa);
3044 				bo->bo_htinfo += sizeof(*csa);
3045 				bo->bo_wme += sizeof(*csa);
3046 #ifdef IEEE80211_SUPPORT_SUPERG
3047 				bo->bo_ath += sizeof(*csa);
3048 #endif
3049 #ifdef IEEE80211_SUPPORT_TDMA
3050 				bo->bo_tdma += sizeof(*csa);
3051 #endif
3052 #ifdef IEEE80211_SUPPORT_MESH
3053 				bo->bo_meshconf += sizeof(*csa);
3054 #endif
3055 				bo->bo_appie += sizeof(*csa);
3056 				bo->bo_csa_trailer_len += sizeof(*csa);
3057 				bo->bo_quiet += sizeof(*csa);
3058 				bo->bo_tim_trailer_len += sizeof(*csa);
3059 				m->m_len += sizeof(*csa);
3060 				m->m_pkthdr.len += sizeof(*csa);
3061 
3062 				ieee80211_add_csa(bo->bo_csa, vap);
3063 			} else
3064 				csa->csa_count--;
3065 			vap->iv_csa_count++;
3066 			/* NB: don't clear IEEE80211_BEACON_CSA */
3067 		}
3068 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3069 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){
3070 			if (vap->iv_quiet)
3071 				ieee80211_add_quiet(bo->bo_quiet, vap);
3072 		}
3073 		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3074 			/*
3075 			 * ERP element needs updating.
3076 			 */
3077 			(void) ieee80211_add_erp(bo->bo_erp, ic);
3078 			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3079 		}
3080 #ifdef IEEE80211_SUPPORT_SUPERG
3081 		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
3082 			ieee80211_add_athcaps(bo->bo_ath, ni);
3083 			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3084 		}
3085 #endif
3086 	}
3087 	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3088 		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3089 		int aielen;
3090 		uint8_t *frm;
3091 
3092 		aielen = 0;
3093 		if (aie != NULL)
3094 			aielen += aie->ie_len;
3095 		if (aielen != bo->bo_appie_len) {
3096 			/* copy up/down trailer */
3097 			int adjust = aielen - bo->bo_appie_len;
3098 			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3099 				bo->bo_tim_trailer_len);
3100 			bo->bo_tim_trailer += adjust;
3101 			bo->bo_appie += adjust;
3102 			bo->bo_appie_len = aielen;
3103 
3104 			len_changed = 1;
3105 		}
3106 		frm = bo->bo_appie;
3107 		if (aie != NULL)
3108 			frm  = add_appie(frm, aie);
3109 		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3110 	}
3111 	IEEE80211_UNLOCK(ic);
3112 
3113 	return len_changed;
3114 }
3115