1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_inet.h" 33 #include "opt_inet6.h" 34 #include "opt_wlan.h" 35 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/kernel.h> 39 #include <sys/malloc.h> 40 #include <sys/mbuf.h> 41 #include <sys/endian.h> 42 43 #include <sys/socket.h> 44 45 #include <net/bpf.h> 46 #include <net/ethernet.h> 47 #include <net/if.h> 48 #include <net/if_var.h> 49 #include <net/if_llc.h> 50 #include <net/if_media.h> 51 #include <net/if_vlan_var.h> 52 53 #include <net80211/ieee80211_var.h> 54 #include <net80211/ieee80211_regdomain.h> 55 #ifdef IEEE80211_SUPPORT_SUPERG 56 #include <net80211/ieee80211_superg.h> 57 #endif 58 #ifdef IEEE80211_SUPPORT_TDMA 59 #include <net80211/ieee80211_tdma.h> 60 #endif 61 #include <net80211/ieee80211_wds.h> 62 #include <net80211/ieee80211_mesh.h> 63 #include <net80211/ieee80211_vht.h> 64 65 #if defined(INET) || defined(INET6) 66 #include <netinet/in.h> 67 #endif 68 69 #ifdef INET 70 #include <netinet/if_ether.h> 71 #include <netinet/in_systm.h> 72 #include <netinet/ip.h> 73 #endif 74 #ifdef INET6 75 #include <netinet/ip6.h> 76 #endif 77 78 #include <security/mac/mac_framework.h> 79 80 #define ETHER_HEADER_COPY(dst, src) \ 81 memcpy(dst, src, sizeof(struct ether_header)) 82 83 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *, 84 u_int hdrsize, u_int ciphdrsize, u_int mtu); 85 static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int); 86 87 #ifdef IEEE80211_DEBUG 88 /* 89 * Decide if an outbound management frame should be 90 * printed when debugging is enabled. This filters some 91 * of the less interesting frames that come frequently 92 * (e.g. beacons). 93 */ 94 static __inline int 95 doprint(struct ieee80211vap *vap, int subtype) 96 { 97 switch (subtype) { 98 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 99 return (vap->iv_opmode == IEEE80211_M_IBSS); 100 } 101 return 1; 102 } 103 #endif 104 105 /* 106 * Transmit a frame to the given destination on the given VAP. 107 * 108 * It's up to the caller to figure out the details of who this 109 * is going to and resolving the node. 110 * 111 * This routine takes care of queuing it for power save, 112 * A-MPDU state stuff, fast-frames state stuff, encapsulation 113 * if required, then passing it up to the driver layer. 114 * 115 * This routine (for now) consumes the mbuf and frees the node 116 * reference; it ideally will return a TX status which reflects 117 * whether the mbuf was consumed or not, so the caller can 118 * free the mbuf (if appropriate) and the node reference (again, 119 * if appropriate.) 120 */ 121 int 122 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m, 123 struct ieee80211_node *ni) 124 { 125 struct ieee80211com *ic = vap->iv_ic; 126 struct ifnet *ifp = vap->iv_ifp; 127 int mcast; 128 int do_ampdu = 0; 129 int do_amsdu = 0; 130 int do_ampdu_amsdu = 0; 131 int no_ampdu = 1; /* Will be set to 0 if ampdu is active */ 132 int do_ff = 0; 133 134 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 135 (m->m_flags & M_PWR_SAV) == 0) { 136 /* 137 * Station in power save mode; pass the frame 138 * to the 802.11 layer and continue. We'll get 139 * the frame back when the time is right. 140 * XXX lose WDS vap linkage? 141 */ 142 if (ieee80211_pwrsave(ni, m) != 0) 143 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 144 ieee80211_free_node(ni); 145 146 /* 147 * We queued it fine, so tell the upper layer 148 * that we consumed it. 149 */ 150 return (0); 151 } 152 /* calculate priority so drivers can find the tx queue */ 153 if (ieee80211_classify(ni, m)) { 154 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 155 ni->ni_macaddr, NULL, 156 "%s", "classification failure"); 157 vap->iv_stats.is_tx_classify++; 158 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 159 m_freem(m); 160 ieee80211_free_node(ni); 161 162 /* XXX better status? */ 163 return (0); 164 } 165 /* 166 * Stash the node pointer. Note that we do this after 167 * any call to ieee80211_dwds_mcast because that code 168 * uses any existing value for rcvif to identify the 169 * interface it (might have been) received on. 170 */ 171 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 172 m->m_pkthdr.rcvif = (void *)ni; 173 mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0; 174 175 BPF_MTAP(ifp, m); /* 802.3 tx */ 176 177 178 /* 179 * Figure out if we can do A-MPDU, A-MSDU or FF. 180 * 181 * A-MPDU depends upon vap/node config. 182 * A-MSDU depends upon vap/node config. 183 * FF depends upon vap config, IE and whether 184 * it's 11abg (and not 11n/11ac/etc.) 185 * 186 * Note that these flags indiciate whether we can do 187 * it at all, rather than the situation (eg traffic type.) 188 */ 189 do_ampdu = ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) && 190 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)); 191 do_amsdu = ((ni->ni_flags & IEEE80211_NODE_AMSDU_TX) && 192 (vap->iv_flags_ht & IEEE80211_FHT_AMSDU_TX)); 193 do_ff = 194 ((ni->ni_flags & IEEE80211_NODE_HT) == 0) && 195 ((ni->ni_flags & IEEE80211_NODE_VHT) == 0) && 196 (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)); 197 198 /* 199 * Check if A-MPDU tx aggregation is setup or if we 200 * should try to enable it. The sta must be associated 201 * with HT and A-MPDU enabled for use. When the policy 202 * routine decides we should enable A-MPDU we issue an 203 * ADDBA request and wait for a reply. The frame being 204 * encapsulated will go out w/o using A-MPDU, or possibly 205 * it might be collected by the driver and held/retransmit. 206 * The default ic_ampdu_enable routine handles staggering 207 * ADDBA requests in case the receiver NAK's us or we are 208 * otherwise unable to establish a BA stream. 209 * 210 * Don't treat group-addressed frames as candidates for aggregation; 211 * net80211 doesn't support 802.11aa-2012 and so group addressed 212 * frames will always have sequence numbers allocated from the NON_QOS 213 * TID. 214 */ 215 if (do_ampdu) { 216 if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) { 217 int tid = WME_AC_TO_TID(M_WME_GETAC(m)); 218 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; 219 220 ieee80211_txampdu_count_packet(tap); 221 if (IEEE80211_AMPDU_RUNNING(tap)) { 222 /* 223 * Operational, mark frame for aggregation. 224 * 225 * XXX do tx aggregation here 226 */ 227 m->m_flags |= M_AMPDU_MPDU; 228 } else if (!IEEE80211_AMPDU_REQUESTED(tap) && 229 ic->ic_ampdu_enable(ni, tap)) { 230 /* 231 * Not negotiated yet, request service. 232 */ 233 ieee80211_ampdu_request(ni, tap); 234 /* XXX hold frame for reply? */ 235 } 236 /* 237 * Now update the no-ampdu flag. A-MPDU may have been 238 * started or administratively disabled above; so now we 239 * know whether we're running yet or not. 240 * 241 * This will let us know whether we should be doing A-MSDU 242 * at this point. We only do A-MSDU if we're either not 243 * doing A-MPDU, or A-MPDU is NACKed, or A-MPDU + A-MSDU 244 * is available. 245 * 246 * Whilst here, update the amsdu-ampdu flag. The above may 247 * have also set or cleared the amsdu-in-ampdu txa_flags 248 * combination so we can correctly do A-MPDU + A-MSDU. 249 */ 250 no_ampdu = (! IEEE80211_AMPDU_RUNNING(tap) 251 || (IEEE80211_AMPDU_NACKED(tap))); 252 do_ampdu_amsdu = IEEE80211_AMPDU_RUNNING_AMSDU(tap); 253 } 254 } 255 256 #ifdef IEEE80211_SUPPORT_SUPERG 257 /* 258 * Check for AMSDU/FF; queue for aggregation 259 * 260 * Note: we don't bother trying to do fast frames or 261 * A-MSDU encapsulation for 802.3 drivers. Now, we 262 * likely could do it for FF (because it's a magic 263 * atheros tunnel LLC type) but I don't think we're going 264 * to really need to. For A-MSDU we'd have to set the 265 * A-MSDU QoS bit in the wifi header, so we just plain 266 * can't do it. 267 */ 268 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 269 if ((! mcast) && 270 (do_ampdu_amsdu || (no_ampdu && do_amsdu)) && 271 ieee80211_amsdu_tx_ok(ni)) { 272 m = ieee80211_amsdu_check(ni, m); 273 if (m == NULL) { 274 /* NB: any ni ref held on stageq */ 275 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 276 "%s: amsdu_check queued frame\n", 277 __func__); 278 return (0); 279 } 280 } else if ((! mcast) && do_ff) { 281 m = ieee80211_ff_check(ni, m); 282 if (m == NULL) { 283 /* NB: any ni ref held on stageq */ 284 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 285 "%s: ff_check queued frame\n", 286 __func__); 287 return (0); 288 } 289 } 290 } 291 #endif /* IEEE80211_SUPPORT_SUPERG */ 292 293 /* 294 * Grab the TX lock - serialise the TX process from this 295 * point (where TX state is being checked/modified) 296 * through to driver queue. 297 */ 298 IEEE80211_TX_LOCK(ic); 299 300 /* 301 * XXX make the encap and transmit code a separate function 302 * so things like the FF (and later A-MSDU) path can just call 303 * it for flushed frames. 304 */ 305 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 306 /* 307 * Encapsulate the packet in prep for transmission. 308 */ 309 m = ieee80211_encap(vap, ni, m); 310 if (m == NULL) { 311 /* NB: stat+msg handled in ieee80211_encap */ 312 IEEE80211_TX_UNLOCK(ic); 313 ieee80211_free_node(ni); 314 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 315 return (ENOBUFS); 316 } 317 } 318 (void) ieee80211_parent_xmitpkt(ic, m); 319 320 /* 321 * Unlock at this point - no need to hold it across 322 * ieee80211_free_node() (ie, the comlock) 323 */ 324 IEEE80211_TX_UNLOCK(ic); 325 ic->ic_lastdata = ticks; 326 327 return (0); 328 } 329 330 331 332 /* 333 * Send the given mbuf through the given vap. 334 * 335 * This consumes the mbuf regardless of whether the transmit 336 * was successful or not. 337 * 338 * This does none of the initial checks that ieee80211_start() 339 * does (eg CAC timeout, interface wakeup) - the caller must 340 * do this first. 341 */ 342 static int 343 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m) 344 { 345 #define IS_DWDS(vap) \ 346 (vap->iv_opmode == IEEE80211_M_WDS && \ 347 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0) 348 struct ieee80211com *ic = vap->iv_ic; 349 struct ifnet *ifp = vap->iv_ifp; 350 struct ieee80211_node *ni; 351 struct ether_header *eh; 352 353 /* 354 * Cancel any background scan. 355 */ 356 if (ic->ic_flags & IEEE80211_F_SCAN) 357 ieee80211_cancel_anyscan(vap); 358 /* 359 * Find the node for the destination so we can do 360 * things like power save and fast frames aggregation. 361 * 362 * NB: past this point various code assumes the first 363 * mbuf has the 802.3 header present (and contiguous). 364 */ 365 ni = NULL; 366 if (m->m_len < sizeof(struct ether_header) && 367 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 368 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 369 "discard frame, %s\n", "m_pullup failed"); 370 vap->iv_stats.is_tx_nobuf++; /* XXX */ 371 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 372 return (ENOBUFS); 373 } 374 eh = mtod(m, struct ether_header *); 375 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 376 if (IS_DWDS(vap)) { 377 /* 378 * Only unicast frames from the above go out 379 * DWDS vaps; multicast frames are handled by 380 * dispatching the frame as it comes through 381 * the AP vap (see below). 382 */ 383 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS, 384 eh->ether_dhost, "mcast", "%s", "on DWDS"); 385 vap->iv_stats.is_dwds_mcast++; 386 m_freem(m); 387 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 388 /* XXX better status? */ 389 return (ENOBUFS); 390 } 391 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { 392 /* 393 * Spam DWDS vap's w/ multicast traffic. 394 */ 395 /* XXX only if dwds in use? */ 396 ieee80211_dwds_mcast(vap, m); 397 } 398 } 399 #ifdef IEEE80211_SUPPORT_MESH 400 if (vap->iv_opmode != IEEE80211_M_MBSS) { 401 #endif 402 ni = ieee80211_find_txnode(vap, eh->ether_dhost); 403 if (ni == NULL) { 404 /* NB: ieee80211_find_txnode does stat+msg */ 405 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 406 m_freem(m); 407 /* XXX better status? */ 408 return (ENOBUFS); 409 } 410 if (ni->ni_associd == 0 && 411 (ni->ni_flags & IEEE80211_NODE_ASSOCID)) { 412 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 413 eh->ether_dhost, NULL, 414 "sta not associated (type 0x%04x)", 415 htons(eh->ether_type)); 416 vap->iv_stats.is_tx_notassoc++; 417 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 418 m_freem(m); 419 ieee80211_free_node(ni); 420 /* XXX better status? */ 421 return (ENOBUFS); 422 } 423 #ifdef IEEE80211_SUPPORT_MESH 424 } else { 425 if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) { 426 /* 427 * Proxy station only if configured. 428 */ 429 if (!ieee80211_mesh_isproxyena(vap)) { 430 IEEE80211_DISCARD_MAC(vap, 431 IEEE80211_MSG_OUTPUT | 432 IEEE80211_MSG_MESH, 433 eh->ether_dhost, NULL, 434 "%s", "proxy not enabled"); 435 vap->iv_stats.is_mesh_notproxy++; 436 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 437 m_freem(m); 438 /* XXX better status? */ 439 return (ENOBUFS); 440 } 441 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 442 "forward frame from DS SA(%6D), DA(%6D)\n", 443 eh->ether_shost, ":", 444 eh->ether_dhost, ":"); 445 ieee80211_mesh_proxy_check(vap, eh->ether_shost); 446 } 447 ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m); 448 if (ni == NULL) { 449 /* 450 * NB: ieee80211_mesh_discover holds/disposes 451 * frame (e.g. queueing on path discovery). 452 */ 453 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 454 /* XXX better status? */ 455 return (ENOBUFS); 456 } 457 } 458 #endif 459 460 /* 461 * We've resolved the sender, so attempt to transmit it. 462 */ 463 464 if (vap->iv_state == IEEE80211_S_SLEEP) { 465 /* 466 * In power save; queue frame and then wakeup device 467 * for transmit. 468 */ 469 ic->ic_lastdata = ticks; 470 if (ieee80211_pwrsave(ni, m) != 0) 471 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 472 ieee80211_free_node(ni); 473 ieee80211_new_state(vap, IEEE80211_S_RUN, 0); 474 return (0); 475 } 476 477 if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0) 478 return (ENOBUFS); 479 return (0); 480 #undef IS_DWDS 481 } 482 483 /* 484 * Start method for vap's. All packets from the stack come 485 * through here. We handle common processing of the packets 486 * before dispatching them to the underlying device. 487 * 488 * if_transmit() requires that the mbuf be consumed by this call 489 * regardless of the return condition. 490 */ 491 int 492 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m) 493 { 494 struct ieee80211vap *vap = ifp->if_softc; 495 struct ieee80211com *ic = vap->iv_ic; 496 497 /* 498 * No data frames go out unless we're running. 499 * Note in particular this covers CAC and CSA 500 * states (though maybe we should check muting 501 * for CSA). 502 */ 503 if (vap->iv_state != IEEE80211_S_RUN && 504 vap->iv_state != IEEE80211_S_SLEEP) { 505 IEEE80211_LOCK(ic); 506 /* re-check under the com lock to avoid races */ 507 if (vap->iv_state != IEEE80211_S_RUN && 508 vap->iv_state != IEEE80211_S_SLEEP) { 509 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 510 "%s: ignore queue, in %s state\n", 511 __func__, ieee80211_state_name[vap->iv_state]); 512 vap->iv_stats.is_tx_badstate++; 513 IEEE80211_UNLOCK(ic); 514 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 515 m_freem(m); 516 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 517 return (ENETDOWN); 518 } 519 IEEE80211_UNLOCK(ic); 520 } 521 522 /* 523 * Sanitize mbuf flags for net80211 use. We cannot 524 * clear M_PWR_SAV or M_MORE_DATA because these may 525 * be set for frames that are re-submitted from the 526 * power save queue. 527 * 528 * NB: This must be done before ieee80211_classify as 529 * it marks EAPOL in frames with M_EAPOL. 530 */ 531 m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA); 532 533 /* 534 * Bump to the packet transmission path. 535 * The mbuf will be consumed here. 536 */ 537 return (ieee80211_start_pkt(vap, m)); 538 } 539 540 void 541 ieee80211_vap_qflush(struct ifnet *ifp) 542 { 543 544 /* Empty for now */ 545 } 546 547 /* 548 * 802.11 raw output routine. 549 * 550 * XXX TODO: this (and other send routines) should correctly 551 * XXX keep the pwr mgmt bit set if it decides to call into the 552 * XXX driver to send a frame whilst the state is SLEEP. 553 * 554 * Otherwise the peer may decide that we're awake and flood us 555 * with traffic we are still too asleep to receive! 556 */ 557 int 558 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni, 559 struct mbuf *m, const struct ieee80211_bpf_params *params) 560 { 561 struct ieee80211com *ic = vap->iv_ic; 562 int error; 563 564 /* 565 * Set node - the caller has taken a reference, so ensure 566 * that the mbuf has the same node value that 567 * it would if it were going via the normal path. 568 */ 569 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 570 m->m_pkthdr.rcvif = (void *)ni; 571 572 /* 573 * Attempt to add bpf transmit parameters. 574 * 575 * For now it's ok to fail; the raw_xmit api still takes 576 * them as an option. 577 * 578 * Later on when ic_raw_xmit() has params removed, 579 * they'll have to be added - so fail the transmit if 580 * they can't be. 581 */ 582 if (params) 583 (void) ieee80211_add_xmit_params(m, params); 584 585 error = ic->ic_raw_xmit(ni, m, params); 586 if (error) { 587 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1); 588 ieee80211_free_node(ni); 589 } 590 return (error); 591 } 592 593 static int 594 ieee80211_validate_frame(struct mbuf *m, 595 const struct ieee80211_bpf_params *params) 596 { 597 struct ieee80211_frame *wh; 598 int type; 599 600 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack)) 601 return (EINVAL); 602 603 wh = mtod(m, struct ieee80211_frame *); 604 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) != 605 IEEE80211_FC0_VERSION_0) 606 return (EINVAL); 607 608 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 609 if (type != IEEE80211_FC0_TYPE_DATA) { 610 if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != 611 IEEE80211_FC1_DIR_NODS) 612 return (EINVAL); 613 614 if (type != IEEE80211_FC0_TYPE_MGT && 615 (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) != 0) 616 return (EINVAL); 617 618 /* XXX skip other field checks? */ 619 } 620 621 if ((params && (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0) || 622 (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) != 0) { 623 int subtype; 624 625 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 626 627 /* 628 * See IEEE Std 802.11-2012, 629 * 8.2.4.1.9 'Protected Frame field' 630 */ 631 /* XXX no support for robust management frames yet. */ 632 if (!(type == IEEE80211_FC0_TYPE_DATA || 633 (type == IEEE80211_FC0_TYPE_MGT && 634 subtype == IEEE80211_FC0_SUBTYPE_AUTH))) 635 return (EINVAL); 636 637 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 638 } 639 640 if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh)) 641 return (EINVAL); 642 643 return (0); 644 } 645 646 static int 647 ieee80211_validate_rate(struct ieee80211_node *ni, uint8_t rate) 648 { 649 struct ieee80211com *ic = ni->ni_ic; 650 651 if (IEEE80211_IS_HT_RATE(rate)) { 652 if ((ic->ic_htcaps & IEEE80211_HTC_HT) == 0) 653 return (EINVAL); 654 655 rate = IEEE80211_RV(rate); 656 if (rate <= 31) { 657 if (rate > ic->ic_txstream * 8 - 1) 658 return (EINVAL); 659 660 return (0); 661 } 662 663 if (rate == 32) { 664 if ((ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0) 665 return (EINVAL); 666 667 return (0); 668 } 669 670 if ((ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) == 0) 671 return (EINVAL); 672 673 switch (ic->ic_txstream) { 674 case 0: 675 case 1: 676 return (EINVAL); 677 case 2: 678 if (rate > 38) 679 return (EINVAL); 680 681 return (0); 682 case 3: 683 if (rate > 52) 684 return (EINVAL); 685 686 return (0); 687 case 4: 688 default: 689 if (rate > 76) 690 return (EINVAL); 691 692 return (0); 693 } 694 } 695 696 if (!ieee80211_isratevalid(ic->ic_rt, rate)) 697 return (EINVAL); 698 699 return (0); 700 } 701 702 static int 703 ieee80211_sanitize_rates(struct ieee80211_node *ni, struct mbuf *m, 704 const struct ieee80211_bpf_params *params) 705 { 706 int error; 707 708 if (!params) 709 return (0); /* nothing to do */ 710 711 /* NB: most drivers assume that ibp_rate0 is set (!= 0). */ 712 if (params->ibp_rate0 != 0) { 713 error = ieee80211_validate_rate(ni, params->ibp_rate0); 714 if (error != 0) 715 return (error); 716 } else { 717 /* XXX pre-setup some default (e.g., mgmt / mcast) rate */ 718 /* XXX __DECONST? */ 719 (void) m; 720 } 721 722 if (params->ibp_rate1 != 0 && 723 (error = ieee80211_validate_rate(ni, params->ibp_rate1)) != 0) 724 return (error); 725 726 if (params->ibp_rate2 != 0 && 727 (error = ieee80211_validate_rate(ni, params->ibp_rate2)) != 0) 728 return (error); 729 730 if (params->ibp_rate3 != 0 && 731 (error = ieee80211_validate_rate(ni, params->ibp_rate3)) != 0) 732 return (error); 733 734 return (0); 735 } 736 737 /* 738 * 802.11 output routine. This is (currently) used only to 739 * connect bpf write calls to the 802.11 layer for injecting 740 * raw 802.11 frames. 741 */ 742 int 743 ieee80211_output(struct ifnet *ifp, struct mbuf *m, 744 const struct sockaddr *dst, struct route *ro) 745 { 746 #define senderr(e) do { error = (e); goto bad;} while (0) 747 const struct ieee80211_bpf_params *params = NULL; 748 struct ieee80211_node *ni = NULL; 749 struct ieee80211vap *vap; 750 struct ieee80211_frame *wh; 751 struct ieee80211com *ic = NULL; 752 int error; 753 int ret; 754 755 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 756 /* 757 * Short-circuit requests if the vap is marked OACTIVE 758 * as this can happen because a packet came down through 759 * ieee80211_start before the vap entered RUN state in 760 * which case it's ok to just drop the frame. This 761 * should not be necessary but callers of if_output don't 762 * check OACTIVE. 763 */ 764 senderr(ENETDOWN); 765 } 766 vap = ifp->if_softc; 767 ic = vap->iv_ic; 768 /* 769 * Hand to the 802.3 code if not tagged as 770 * a raw 802.11 frame. 771 */ 772 if (dst->sa_family != AF_IEEE80211) 773 return vap->iv_output(ifp, m, dst, ro); 774 #ifdef MAC 775 error = mac_ifnet_check_transmit(ifp, m); 776 if (error) 777 senderr(error); 778 #endif 779 if (ifp->if_flags & IFF_MONITOR) 780 senderr(ENETDOWN); 781 if (!IFNET_IS_UP_RUNNING(ifp)) 782 senderr(ENETDOWN); 783 if (vap->iv_state == IEEE80211_S_CAC) { 784 IEEE80211_DPRINTF(vap, 785 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 786 "block %s frame in CAC state\n", "raw data"); 787 vap->iv_stats.is_tx_badstate++; 788 senderr(EIO); /* XXX */ 789 } else if (vap->iv_state == IEEE80211_S_SCAN) 790 senderr(EIO); 791 /* XXX bypass bridge, pfil, carp, etc. */ 792 793 /* 794 * NB: DLT_IEEE802_11_RADIO identifies the parameters are 795 * present by setting the sa_len field of the sockaddr (yes, 796 * this is a hack). 797 * NB: we assume sa_data is suitably aligned to cast. 798 */ 799 if (dst->sa_len != 0) 800 params = (const struct ieee80211_bpf_params *)dst->sa_data; 801 802 error = ieee80211_validate_frame(m, params); 803 if (error != 0) 804 senderr(error); 805 806 wh = mtod(m, struct ieee80211_frame *); 807 808 /* locate destination node */ 809 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 810 case IEEE80211_FC1_DIR_NODS: 811 case IEEE80211_FC1_DIR_FROMDS: 812 ni = ieee80211_find_txnode(vap, wh->i_addr1); 813 break; 814 case IEEE80211_FC1_DIR_TODS: 815 case IEEE80211_FC1_DIR_DSTODS: 816 ni = ieee80211_find_txnode(vap, wh->i_addr3); 817 break; 818 default: 819 senderr(EDOOFUS); 820 } 821 if (ni == NULL) { 822 /* 823 * Permit packets w/ bpf params through regardless 824 * (see below about sa_len). 825 */ 826 if (dst->sa_len == 0) 827 senderr(EHOSTUNREACH); 828 ni = ieee80211_ref_node(vap->iv_bss); 829 } 830 831 /* 832 * Sanitize mbuf for net80211 flags leaked from above. 833 * 834 * NB: This must be done before ieee80211_classify as 835 * it marks EAPOL in frames with M_EAPOL. 836 */ 837 m->m_flags &= ~M_80211_TX; 838 m->m_flags |= M_ENCAP; /* mark encapsulated */ 839 840 if (IEEE80211_IS_DATA(wh)) { 841 /* calculate priority so drivers can find the tx queue */ 842 if (ieee80211_classify(ni, m)) 843 senderr(EIO); /* XXX */ 844 845 /* NB: ieee80211_encap does not include 802.11 header */ 846 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, 847 m->m_pkthdr.len - ieee80211_hdrsize(wh)); 848 } else 849 M_WME_SETAC(m, WME_AC_BE); 850 851 error = ieee80211_sanitize_rates(ni, m, params); 852 if (error != 0) 853 senderr(error); 854 855 IEEE80211_NODE_STAT(ni, tx_data); 856 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 857 IEEE80211_NODE_STAT(ni, tx_mcast); 858 m->m_flags |= M_MCAST; 859 } else 860 IEEE80211_NODE_STAT(ni, tx_ucast); 861 862 IEEE80211_TX_LOCK(ic); 863 ret = ieee80211_raw_output(vap, ni, m, params); 864 IEEE80211_TX_UNLOCK(ic); 865 return (ret); 866 bad: 867 if (m != NULL) 868 m_freem(m); 869 if (ni != NULL) 870 ieee80211_free_node(ni); 871 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 872 return error; 873 #undef senderr 874 } 875 876 /* 877 * Set the direction field and address fields of an outgoing 878 * frame. Note this should be called early on in constructing 879 * a frame as it sets i_fc[1]; other bits can then be or'd in. 880 */ 881 void 882 ieee80211_send_setup( 883 struct ieee80211_node *ni, 884 struct mbuf *m, 885 int type, int tid, 886 const uint8_t sa[IEEE80211_ADDR_LEN], 887 const uint8_t da[IEEE80211_ADDR_LEN], 888 const uint8_t bssid[IEEE80211_ADDR_LEN]) 889 { 890 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 891 struct ieee80211vap *vap = ni->ni_vap; 892 struct ieee80211_tx_ampdu *tap; 893 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 894 ieee80211_seq seqno; 895 896 IEEE80211_TX_LOCK_ASSERT(ni->ni_ic); 897 898 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 899 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 900 switch (vap->iv_opmode) { 901 case IEEE80211_M_STA: 902 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 903 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 904 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 905 IEEE80211_ADDR_COPY(wh->i_addr3, da); 906 break; 907 case IEEE80211_M_IBSS: 908 case IEEE80211_M_AHDEMO: 909 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 910 IEEE80211_ADDR_COPY(wh->i_addr1, da); 911 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 912 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 913 break; 914 case IEEE80211_M_HOSTAP: 915 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 916 IEEE80211_ADDR_COPY(wh->i_addr1, da); 917 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 918 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 919 break; 920 case IEEE80211_M_WDS: 921 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 922 IEEE80211_ADDR_COPY(wh->i_addr1, da); 923 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 924 IEEE80211_ADDR_COPY(wh->i_addr3, da); 925 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 926 break; 927 case IEEE80211_M_MBSS: 928 #ifdef IEEE80211_SUPPORT_MESH 929 if (IEEE80211_IS_MULTICAST(da)) { 930 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 931 /* XXX next hop */ 932 IEEE80211_ADDR_COPY(wh->i_addr1, da); 933 IEEE80211_ADDR_COPY(wh->i_addr2, 934 vap->iv_myaddr); 935 } else { 936 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 937 IEEE80211_ADDR_COPY(wh->i_addr1, da); 938 IEEE80211_ADDR_COPY(wh->i_addr2, 939 vap->iv_myaddr); 940 IEEE80211_ADDR_COPY(wh->i_addr3, da); 941 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 942 } 943 #endif 944 break; 945 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 946 break; 947 } 948 } else { 949 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 950 IEEE80211_ADDR_COPY(wh->i_addr1, da); 951 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 952 #ifdef IEEE80211_SUPPORT_MESH 953 if (vap->iv_opmode == IEEE80211_M_MBSS) 954 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 955 else 956 #endif 957 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 958 } 959 *(uint16_t *)&wh->i_dur[0] = 0; 960 961 /* 962 * XXX TODO: this is what the TX lock is for. 963 * Here we're incrementing sequence numbers, and they 964 * need to be in lock-step with what the driver is doing 965 * both in TX ordering and crypto encap (IV increment.) 966 * 967 * If the driver does seqno itself, then we can skip 968 * assigning sequence numbers here, and we can avoid 969 * requiring the TX lock. 970 */ 971 tap = &ni->ni_tx_ampdu[tid]; 972 if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) { 973 m->m_flags |= M_AMPDU_MPDU; 974 975 /* NB: zero out i_seq field (for s/w encryption etc) */ 976 *(uint16_t *)&wh->i_seq[0] = 0; 977 } else { 978 if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK, 979 type & IEEE80211_FC0_SUBTYPE_MASK)) 980 /* 981 * 802.11-2012 9.3.2.10 - QoS multicast frames 982 * come out of a different seqno space. 983 */ 984 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 985 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 986 } else { 987 seqno = ni->ni_txseqs[tid]++; 988 } 989 else 990 seqno = 0; 991 992 *(uint16_t *)&wh->i_seq[0] = 993 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 994 M_SEQNO_SET(m, seqno); 995 } 996 997 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 998 m->m_flags |= M_MCAST; 999 #undef WH4 1000 } 1001 1002 /* 1003 * Send a management frame to the specified node. The node pointer 1004 * must have a reference as the pointer will be passed to the driver 1005 * and potentially held for a long time. If the frame is successfully 1006 * dispatched to the driver, then it is responsible for freeing the 1007 * reference (and potentially free'ing up any associated storage); 1008 * otherwise deal with reclaiming any reference (on error). 1009 */ 1010 int 1011 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type, 1012 struct ieee80211_bpf_params *params) 1013 { 1014 struct ieee80211vap *vap = ni->ni_vap; 1015 struct ieee80211com *ic = ni->ni_ic; 1016 struct ieee80211_frame *wh; 1017 int ret; 1018 1019 KASSERT(ni != NULL, ("null node")); 1020 1021 if (vap->iv_state == IEEE80211_S_CAC) { 1022 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 1023 ni, "block %s frame in CAC state", 1024 ieee80211_mgt_subtype_name(type)); 1025 vap->iv_stats.is_tx_badstate++; 1026 ieee80211_free_node(ni); 1027 m_freem(m); 1028 return EIO; /* XXX */ 1029 } 1030 1031 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 1032 if (m == NULL) { 1033 ieee80211_free_node(ni); 1034 return ENOMEM; 1035 } 1036 1037 IEEE80211_TX_LOCK(ic); 1038 1039 wh = mtod(m, struct ieee80211_frame *); 1040 ieee80211_send_setup(ni, m, 1041 IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID, 1042 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 1043 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { 1044 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1, 1045 "encrypting frame (%s)", __func__); 1046 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 1047 } 1048 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1049 1050 KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?")); 1051 M_WME_SETAC(m, params->ibp_pri); 1052 1053 #ifdef IEEE80211_DEBUG 1054 /* avoid printing too many frames */ 1055 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) || 1056 ieee80211_msg_dumppkts(vap)) { 1057 printf("[%s] send %s on channel %u\n", 1058 ether_sprintf(wh->i_addr1), 1059 ieee80211_mgt_subtype_name(type), 1060 ieee80211_chan2ieee(ic, ic->ic_curchan)); 1061 } 1062 #endif 1063 IEEE80211_NODE_STAT(ni, tx_mgmt); 1064 1065 ret = ieee80211_raw_output(vap, ni, m, params); 1066 IEEE80211_TX_UNLOCK(ic); 1067 return (ret); 1068 } 1069 1070 static void 1071 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg, 1072 int status) 1073 { 1074 struct ieee80211vap *vap = ni->ni_vap; 1075 1076 wakeup(vap); 1077 } 1078 1079 /* 1080 * Send a null data frame to the specified node. If the station 1081 * is setup for QoS then a QoS Null Data frame is constructed. 1082 * If this is a WDS station then a 4-address frame is constructed. 1083 * 1084 * NB: the caller is assumed to have setup a node reference 1085 * for use; this is necessary to deal with a race condition 1086 * when probing for inactive stations. Like ieee80211_mgmt_output 1087 * we must cleanup any node reference on error; however we 1088 * can safely just unref it as we know it will never be the 1089 * last reference to the node. 1090 */ 1091 int 1092 ieee80211_send_nulldata(struct ieee80211_node *ni) 1093 { 1094 struct ieee80211vap *vap = ni->ni_vap; 1095 struct ieee80211com *ic = ni->ni_ic; 1096 struct mbuf *m; 1097 struct ieee80211_frame *wh; 1098 int hdrlen; 1099 uint8_t *frm; 1100 int ret; 1101 1102 if (vap->iv_state == IEEE80211_S_CAC) { 1103 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 1104 ni, "block %s frame in CAC state", "null data"); 1105 ieee80211_unref_node(&ni); 1106 vap->iv_stats.is_tx_badstate++; 1107 return EIO; /* XXX */ 1108 } 1109 1110 if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) 1111 hdrlen = sizeof(struct ieee80211_qosframe); 1112 else 1113 hdrlen = sizeof(struct ieee80211_frame); 1114 /* NB: only WDS vap's get 4-address frames */ 1115 if (vap->iv_opmode == IEEE80211_M_WDS) 1116 hdrlen += IEEE80211_ADDR_LEN; 1117 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1118 hdrlen = roundup(hdrlen, sizeof(uint32_t)); 1119 1120 m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0); 1121 if (m == NULL) { 1122 /* XXX debug msg */ 1123 ieee80211_unref_node(&ni); 1124 vap->iv_stats.is_tx_nobuf++; 1125 return ENOMEM; 1126 } 1127 KASSERT(M_LEADINGSPACE(m) >= hdrlen, 1128 ("leading space %zd", M_LEADINGSPACE(m))); 1129 M_PREPEND(m, hdrlen, M_NOWAIT); 1130 if (m == NULL) { 1131 /* NB: cannot happen */ 1132 ieee80211_free_node(ni); 1133 return ENOMEM; 1134 } 1135 1136 IEEE80211_TX_LOCK(ic); 1137 1138 wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */ 1139 if (ni->ni_flags & IEEE80211_NODE_QOS) { 1140 const int tid = WME_AC_TO_TID(WME_AC_BE); 1141 uint8_t *qos; 1142 1143 ieee80211_send_setup(ni, m, 1144 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL, 1145 tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 1146 1147 if (vap->iv_opmode == IEEE80211_M_WDS) 1148 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1149 else 1150 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1151 qos[0] = tid & IEEE80211_QOS_TID; 1152 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy) 1153 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1154 qos[1] = 0; 1155 } else { 1156 ieee80211_send_setup(ni, m, 1157 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 1158 IEEE80211_NONQOS_TID, 1159 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 1160 } 1161 if (vap->iv_opmode != IEEE80211_M_WDS) { 1162 /* NB: power management bit is never sent by an AP */ 1163 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 1164 vap->iv_opmode != IEEE80211_M_HOSTAP) 1165 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 1166 } 1167 if ((ic->ic_flags & IEEE80211_F_SCAN) && 1168 (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) { 1169 ieee80211_add_callback(m, ieee80211_nulldata_transmitted, 1170 NULL); 1171 } 1172 m->m_len = m->m_pkthdr.len = hdrlen; 1173 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1174 1175 M_WME_SETAC(m, WME_AC_BE); 1176 1177 IEEE80211_NODE_STAT(ni, tx_data); 1178 1179 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni, 1180 "send %snull data frame on channel %u, pwr mgt %s", 1181 ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "", 1182 ieee80211_chan2ieee(ic, ic->ic_curchan), 1183 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 1184 1185 ret = ieee80211_raw_output(vap, ni, m, NULL); 1186 IEEE80211_TX_UNLOCK(ic); 1187 return (ret); 1188 } 1189 1190 /* 1191 * Assign priority to a frame based on any vlan tag assigned 1192 * to the station and/or any Diffserv setting in an IP header. 1193 * Finally, if an ACM policy is setup (in station mode) it's 1194 * applied. 1195 */ 1196 int 1197 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m) 1198 { 1199 const struct ether_header *eh = NULL; 1200 uint16_t ether_type; 1201 int v_wme_ac, d_wme_ac, ac; 1202 1203 if (__predict_false(m->m_flags & M_ENCAP)) { 1204 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 1205 struct llc *llc; 1206 int hdrlen, subtype; 1207 1208 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1209 if (subtype & IEEE80211_FC0_SUBTYPE_NODATA) { 1210 ac = WME_AC_BE; 1211 goto done; 1212 } 1213 1214 hdrlen = ieee80211_hdrsize(wh); 1215 if (m->m_pkthdr.len < hdrlen + sizeof(*llc)) 1216 return 1; 1217 1218 llc = (struct llc *)mtodo(m, hdrlen); 1219 if (llc->llc_dsap != LLC_SNAP_LSAP || 1220 llc->llc_ssap != LLC_SNAP_LSAP || 1221 llc->llc_control != LLC_UI || 1222 llc->llc_snap.org_code[0] != 0 || 1223 llc->llc_snap.org_code[1] != 0 || 1224 llc->llc_snap.org_code[2] != 0) 1225 return 1; 1226 1227 ether_type = llc->llc_snap.ether_type; 1228 } else { 1229 eh = mtod(m, struct ether_header *); 1230 ether_type = eh->ether_type; 1231 } 1232 1233 /* 1234 * Always promote PAE/EAPOL frames to high priority. 1235 */ 1236 if (ether_type == htons(ETHERTYPE_PAE)) { 1237 /* NB: mark so others don't need to check header */ 1238 m->m_flags |= M_EAPOL; 1239 ac = WME_AC_VO; 1240 goto done; 1241 } 1242 /* 1243 * Non-qos traffic goes to BE. 1244 */ 1245 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 1246 ac = WME_AC_BE; 1247 goto done; 1248 } 1249 1250 /* 1251 * If node has a vlan tag then all traffic 1252 * to it must have a matching tag. 1253 */ 1254 v_wme_ac = 0; 1255 if (ni->ni_vlan != 0) { 1256 if ((m->m_flags & M_VLANTAG) == 0) { 1257 IEEE80211_NODE_STAT(ni, tx_novlantag); 1258 return 1; 1259 } 1260 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 1261 EVL_VLANOFTAG(ni->ni_vlan)) { 1262 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 1263 return 1; 1264 } 1265 /* map vlan priority to AC */ 1266 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan)); 1267 } 1268 1269 /* XXX m_copydata may be too slow for fast path */ 1270 #ifdef INET 1271 if (eh && eh->ether_type == htons(ETHERTYPE_IP)) { 1272 uint8_t tos; 1273 /* 1274 * IP frame, map the DSCP bits from the TOS field. 1275 */ 1276 /* NB: ip header may not be in first mbuf */ 1277 m_copydata(m, sizeof(struct ether_header) + 1278 offsetof(struct ip, ip_tos), sizeof(tos), &tos); 1279 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1280 d_wme_ac = TID_TO_WME_AC(tos); 1281 } else { 1282 #endif /* INET */ 1283 #ifdef INET6 1284 if (eh && eh->ether_type == htons(ETHERTYPE_IPV6)) { 1285 uint32_t flow; 1286 uint8_t tos; 1287 /* 1288 * IPv6 frame, map the DSCP bits from the traffic class field. 1289 */ 1290 m_copydata(m, sizeof(struct ether_header) + 1291 offsetof(struct ip6_hdr, ip6_flow), sizeof(flow), 1292 (caddr_t) &flow); 1293 tos = (uint8_t)(ntohl(flow) >> 20); 1294 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1295 d_wme_ac = TID_TO_WME_AC(tos); 1296 } else { 1297 #endif /* INET6 */ 1298 d_wme_ac = WME_AC_BE; 1299 #ifdef INET6 1300 } 1301 #endif 1302 #ifdef INET 1303 } 1304 #endif 1305 /* 1306 * Use highest priority AC. 1307 */ 1308 if (v_wme_ac > d_wme_ac) 1309 ac = v_wme_ac; 1310 else 1311 ac = d_wme_ac; 1312 1313 /* 1314 * Apply ACM policy. 1315 */ 1316 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) { 1317 static const int acmap[4] = { 1318 WME_AC_BK, /* WME_AC_BE */ 1319 WME_AC_BK, /* WME_AC_BK */ 1320 WME_AC_BE, /* WME_AC_VI */ 1321 WME_AC_VI, /* WME_AC_VO */ 1322 }; 1323 struct ieee80211com *ic = ni->ni_ic; 1324 1325 while (ac != WME_AC_BK && 1326 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 1327 ac = acmap[ac]; 1328 } 1329 done: 1330 M_WME_SETAC(m, ac); 1331 return 0; 1332 } 1333 1334 /* 1335 * Insure there is sufficient contiguous space to encapsulate the 1336 * 802.11 data frame. If room isn't already there, arrange for it. 1337 * Drivers and cipher modules assume we have done the necessary work 1338 * and fail rudely if they don't find the space they need. 1339 */ 1340 struct mbuf * 1341 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize, 1342 struct ieee80211_key *key, struct mbuf *m) 1343 { 1344 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 1345 int needed_space = vap->iv_ic->ic_headroom + hdrsize; 1346 1347 if (key != NULL) { 1348 /* XXX belongs in crypto code? */ 1349 needed_space += key->wk_cipher->ic_header; 1350 /* XXX frags */ 1351 /* 1352 * When crypto is being done in the host we must insure 1353 * the data are writable for the cipher routines; clone 1354 * a writable mbuf chain. 1355 * XXX handle SWMIC specially 1356 */ 1357 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) { 1358 m = m_unshare(m, M_NOWAIT); 1359 if (m == NULL) { 1360 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1361 "%s: cannot get writable mbuf\n", __func__); 1362 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */ 1363 return NULL; 1364 } 1365 } 1366 } 1367 /* 1368 * We know we are called just before stripping an Ethernet 1369 * header and prepending an LLC header. This means we know 1370 * there will be 1371 * sizeof(struct ether_header) - sizeof(struct llc) 1372 * bytes recovered to which we need additional space for the 1373 * 802.11 header and any crypto header. 1374 */ 1375 /* XXX check trailing space and copy instead? */ 1376 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 1377 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); 1378 if (n == NULL) { 1379 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1380 "%s: cannot expand storage\n", __func__); 1381 vap->iv_stats.is_tx_nobuf++; 1382 m_freem(m); 1383 return NULL; 1384 } 1385 KASSERT(needed_space <= MHLEN, 1386 ("not enough room, need %u got %d\n", needed_space, MHLEN)); 1387 /* 1388 * Setup new mbuf to have leading space to prepend the 1389 * 802.11 header and any crypto header bits that are 1390 * required (the latter are added when the driver calls 1391 * back to ieee80211_crypto_encap to do crypto encapsulation). 1392 */ 1393 /* NB: must be first 'cuz it clobbers m_data */ 1394 m_move_pkthdr(n, m); 1395 n->m_len = 0; /* NB: m_gethdr does not set */ 1396 n->m_data += needed_space; 1397 /* 1398 * Pull up Ethernet header to create the expected layout. 1399 * We could use m_pullup but that's overkill (i.e. we don't 1400 * need the actual data) and it cannot fail so do it inline 1401 * for speed. 1402 */ 1403 /* NB: struct ether_header is known to be contiguous */ 1404 n->m_len += sizeof(struct ether_header); 1405 m->m_len -= sizeof(struct ether_header); 1406 m->m_data += sizeof(struct ether_header); 1407 /* 1408 * Replace the head of the chain. 1409 */ 1410 n->m_next = m; 1411 m = n; 1412 } 1413 return m; 1414 #undef TO_BE_RECLAIMED 1415 } 1416 1417 /* 1418 * Return the transmit key to use in sending a unicast frame. 1419 * If a unicast key is set we use that. When no unicast key is set 1420 * we fall back to the default transmit key. 1421 */ 1422 static __inline struct ieee80211_key * 1423 ieee80211_crypto_getucastkey(struct ieee80211vap *vap, 1424 struct ieee80211_node *ni) 1425 { 1426 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) { 1427 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1428 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1429 return NULL; 1430 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1431 } else { 1432 return &ni->ni_ucastkey; 1433 } 1434 } 1435 1436 /* 1437 * Return the transmit key to use in sending a multicast frame. 1438 * Multicast traffic always uses the group key which is installed as 1439 * the default tx key. 1440 */ 1441 static __inline struct ieee80211_key * 1442 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap, 1443 struct ieee80211_node *ni) 1444 { 1445 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1446 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1447 return NULL; 1448 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1449 } 1450 1451 /* 1452 * Encapsulate an outbound data frame. The mbuf chain is updated. 1453 * If an error is encountered NULL is returned. The caller is required 1454 * to provide a node reference and pullup the ethernet header in the 1455 * first mbuf. 1456 * 1457 * NB: Packet is assumed to be processed by ieee80211_classify which 1458 * marked EAPOL frames w/ M_EAPOL. 1459 */ 1460 struct mbuf * 1461 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni, 1462 struct mbuf *m) 1463 { 1464 #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh)) 1465 #define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc) 1466 struct ieee80211com *ic = ni->ni_ic; 1467 #ifdef IEEE80211_SUPPORT_MESH 1468 struct ieee80211_mesh_state *ms = vap->iv_mesh; 1469 struct ieee80211_meshcntl_ae10 *mc; 1470 struct ieee80211_mesh_route *rt = NULL; 1471 int dir = -1; 1472 #endif 1473 struct ether_header eh; 1474 struct ieee80211_frame *wh; 1475 struct ieee80211_key *key; 1476 struct llc *llc; 1477 int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast; 1478 ieee80211_seq seqno; 1479 int meshhdrsize, meshae; 1480 uint8_t *qos; 1481 int is_amsdu = 0; 1482 1483 IEEE80211_TX_LOCK_ASSERT(ic); 1484 1485 is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST)); 1486 1487 /* 1488 * Copy existing Ethernet header to a safe place. The 1489 * rest of the code assumes it's ok to strip it when 1490 * reorganizing state for the final encapsulation. 1491 */ 1492 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 1493 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t)); 1494 1495 /* 1496 * Insure space for additional headers. First identify 1497 * transmit key to use in calculating any buffer adjustments 1498 * required. This is also used below to do privacy 1499 * encapsulation work. Then calculate the 802.11 header 1500 * size and any padding required by the driver. 1501 * 1502 * Note key may be NULL if we fall back to the default 1503 * transmit key and that is not set. In that case the 1504 * buffer may not be expanded as needed by the cipher 1505 * routines, but they will/should discard it. 1506 */ 1507 if (vap->iv_flags & IEEE80211_F_PRIVACY) { 1508 if (vap->iv_opmode == IEEE80211_M_STA || 1509 !IEEE80211_IS_MULTICAST(eh.ether_dhost) || 1510 (vap->iv_opmode == IEEE80211_M_WDS && 1511 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) { 1512 key = ieee80211_crypto_getucastkey(vap, ni); 1513 } else if ((vap->iv_opmode == IEEE80211_M_WDS) && 1514 (! (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) { 1515 /* 1516 * Use ucastkey for DWDS transmit nodes, multicast 1517 * or otherwise. 1518 * 1519 * This is required to ensure that multicast frames 1520 * from a DWDS AP to a DWDS STA is encrypted with 1521 * a key that can actually work. 1522 * 1523 * There's no default key for multicast traffic 1524 * on a DWDS WDS VAP node (note NOT the DWDS enabled 1525 * AP VAP, the dynamically created per-STA WDS node) 1526 * so encap fails and transmit fails. 1527 */ 1528 key = ieee80211_crypto_getucastkey(vap, ni); 1529 } else { 1530 key = ieee80211_crypto_getmcastkey(vap, ni); 1531 } 1532 if (key == NULL && (m->m_flags & M_EAPOL) == 0) { 1533 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, 1534 eh.ether_dhost, 1535 "no default transmit key (%s) deftxkey %u", 1536 __func__, vap->iv_def_txkey); 1537 vap->iv_stats.is_tx_nodefkey++; 1538 goto bad; 1539 } 1540 } else 1541 key = NULL; 1542 /* 1543 * XXX Some ap's don't handle QoS-encapsulated EAPOL 1544 * frames so suppress use. This may be an issue if other 1545 * ap's require all data frames to be QoS-encapsulated 1546 * once negotiated in which case we'll need to make this 1547 * configurable. 1548 * 1549 * Don't send multicast QoS frames. 1550 * Technically multicast frames can be QoS if all stations in the 1551 * BSS are also QoS. 1552 * 1553 * NB: mesh data frames are QoS, including multicast frames. 1554 */ 1555 addqos = 1556 (((is_mcast == 0) && (ni->ni_flags & 1557 (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) || 1558 (vap->iv_opmode == IEEE80211_M_MBSS)) && 1559 (m->m_flags & M_EAPOL) == 0; 1560 1561 if (addqos) 1562 hdrsize = sizeof(struct ieee80211_qosframe); 1563 else 1564 hdrsize = sizeof(struct ieee80211_frame); 1565 #ifdef IEEE80211_SUPPORT_MESH 1566 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1567 /* 1568 * Mesh data frames are encapsulated according to the 1569 * rules of Section 11B.8.5 (p.139 of D3.0 spec). 1570 * o Group Addressed data (aka multicast) originating 1571 * at the local sta are sent w/ 3-address format and 1572 * address extension mode 00 1573 * o Individually Addressed data (aka unicast) originating 1574 * at the local sta are sent w/ 4-address format and 1575 * address extension mode 00 1576 * o Group Addressed data forwarded from a non-mesh sta are 1577 * sent w/ 3-address format and address extension mode 01 1578 * o Individually Address data from another sta are sent 1579 * w/ 4-address format and address extension mode 10 1580 */ 1581 is4addr = 0; /* NB: don't use, disable */ 1582 if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) { 1583 rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost); 1584 KASSERT(rt != NULL, ("route is NULL")); 1585 dir = IEEE80211_FC1_DIR_DSTODS; 1586 hdrsize += IEEE80211_ADDR_LEN; 1587 if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) { 1588 if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate, 1589 vap->iv_myaddr)) { 1590 IEEE80211_NOTE_MAC(vap, 1591 IEEE80211_MSG_MESH, 1592 eh.ether_dhost, 1593 "%s", "trying to send to ourself"); 1594 goto bad; 1595 } 1596 meshae = IEEE80211_MESH_AE_10; 1597 meshhdrsize = 1598 sizeof(struct ieee80211_meshcntl_ae10); 1599 } else { 1600 meshae = IEEE80211_MESH_AE_00; 1601 meshhdrsize = 1602 sizeof(struct ieee80211_meshcntl); 1603 } 1604 } else { 1605 dir = IEEE80211_FC1_DIR_FROMDS; 1606 if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) { 1607 /* proxy group */ 1608 meshae = IEEE80211_MESH_AE_01; 1609 meshhdrsize = 1610 sizeof(struct ieee80211_meshcntl_ae01); 1611 } else { 1612 /* group */ 1613 meshae = IEEE80211_MESH_AE_00; 1614 meshhdrsize = sizeof(struct ieee80211_meshcntl); 1615 } 1616 } 1617 } else { 1618 #endif 1619 /* 1620 * 4-address frames need to be generated for: 1621 * o packets sent through a WDS vap (IEEE80211_M_WDS) 1622 * o packets sent through a vap marked for relaying 1623 * (e.g. a station operating with dynamic WDS) 1624 */ 1625 is4addr = vap->iv_opmode == IEEE80211_M_WDS || 1626 ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) && 1627 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)); 1628 if (is4addr) 1629 hdrsize += IEEE80211_ADDR_LEN; 1630 meshhdrsize = meshae = 0; 1631 #ifdef IEEE80211_SUPPORT_MESH 1632 } 1633 #endif 1634 /* 1635 * Honor driver DATAPAD requirement. 1636 */ 1637 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1638 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1639 else 1640 hdrspace = hdrsize; 1641 1642 if (__predict_true((m->m_flags & M_FF) == 0)) { 1643 /* 1644 * Normal frame. 1645 */ 1646 m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m); 1647 if (m == NULL) { 1648 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 1649 goto bad; 1650 } 1651 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */ 1652 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 1653 llc = mtod(m, struct llc *); 1654 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 1655 llc->llc_control = LLC_UI; 1656 llc->llc_snap.org_code[0] = 0; 1657 llc->llc_snap.org_code[1] = 0; 1658 llc->llc_snap.org_code[2] = 0; 1659 llc->llc_snap.ether_type = eh.ether_type; 1660 } else { 1661 #ifdef IEEE80211_SUPPORT_SUPERG 1662 /* 1663 * Aggregated frame. Check if it's for AMSDU or FF. 1664 * 1665 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented 1666 * anywhere for some reason. But, since 11n requires 1667 * AMSDU RX, we can just assume "11n" == "AMSDU". 1668 */ 1669 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__); 1670 if (ieee80211_amsdu_tx_ok(ni)) { 1671 m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key); 1672 is_amsdu = 1; 1673 } else { 1674 m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key); 1675 } 1676 if (m == NULL) 1677 #endif 1678 goto bad; 1679 } 1680 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 1681 1682 M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT); 1683 if (m == NULL) { 1684 vap->iv_stats.is_tx_nobuf++; 1685 goto bad; 1686 } 1687 wh = mtod(m, struct ieee80211_frame *); 1688 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 1689 *(uint16_t *)wh->i_dur = 0; 1690 qos = NULL; /* NB: quiet compiler */ 1691 if (is4addr) { 1692 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 1693 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); 1694 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1695 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1696 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); 1697 } else switch (vap->iv_opmode) { 1698 case IEEE80211_M_STA: 1699 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 1700 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 1701 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1702 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1703 break; 1704 case IEEE80211_M_IBSS: 1705 case IEEE80211_M_AHDEMO: 1706 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1707 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1708 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1709 /* 1710 * NB: always use the bssid from iv_bss as the 1711 * neighbor's may be stale after an ibss merge 1712 */ 1713 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid); 1714 break; 1715 case IEEE80211_M_HOSTAP: 1716 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1717 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1718 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 1719 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 1720 break; 1721 #ifdef IEEE80211_SUPPORT_MESH 1722 case IEEE80211_M_MBSS: 1723 /* NB: offset by hdrspace to deal with DATAPAD */ 1724 mc = (struct ieee80211_meshcntl_ae10 *) 1725 (mtod(m, uint8_t *) + hdrspace); 1726 wh->i_fc[1] = dir; 1727 switch (meshae) { 1728 case IEEE80211_MESH_AE_00: /* no proxy */ 1729 mc->mc_flags = 0; 1730 if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */ 1731 IEEE80211_ADDR_COPY(wh->i_addr1, 1732 ni->ni_macaddr); 1733 IEEE80211_ADDR_COPY(wh->i_addr2, 1734 vap->iv_myaddr); 1735 IEEE80211_ADDR_COPY(wh->i_addr3, 1736 eh.ether_dhost); 1737 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, 1738 eh.ether_shost); 1739 qos =((struct ieee80211_qosframe_addr4 *) 1740 wh)->i_qos; 1741 } else if (dir == IEEE80211_FC1_DIR_FROMDS) { 1742 /* mcast */ 1743 IEEE80211_ADDR_COPY(wh->i_addr1, 1744 eh.ether_dhost); 1745 IEEE80211_ADDR_COPY(wh->i_addr2, 1746 vap->iv_myaddr); 1747 IEEE80211_ADDR_COPY(wh->i_addr3, 1748 eh.ether_shost); 1749 qos = ((struct ieee80211_qosframe *) 1750 wh)->i_qos; 1751 } 1752 break; 1753 case IEEE80211_MESH_AE_01: /* mcast, proxy */ 1754 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1755 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1756 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1757 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr); 1758 mc->mc_flags = 1; 1759 IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4, 1760 eh.ether_shost); 1761 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1762 break; 1763 case IEEE80211_MESH_AE_10: /* ucast, proxy */ 1764 KASSERT(rt != NULL, ("route is NULL")); 1765 IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop); 1766 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1767 IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate); 1768 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr); 1769 mc->mc_flags = IEEE80211_MESH_AE_10; 1770 IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost); 1771 IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost); 1772 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1773 break; 1774 default: 1775 KASSERT(0, ("meshae %d", meshae)); 1776 break; 1777 } 1778 mc->mc_ttl = ms->ms_ttl; 1779 ms->ms_seq++; 1780 le32enc(mc->mc_seq, ms->ms_seq); 1781 break; 1782 #endif 1783 case IEEE80211_M_WDS: /* NB: is4addr should always be true */ 1784 default: 1785 goto bad; 1786 } 1787 if (m->m_flags & M_MORE_DATA) 1788 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 1789 if (addqos) { 1790 int ac, tid; 1791 1792 if (is4addr) { 1793 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1794 /* NB: mesh case handled earlier */ 1795 } else if (vap->iv_opmode != IEEE80211_M_MBSS) 1796 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1797 ac = M_WME_GETAC(m); 1798 /* map from access class/queue to 11e header priorty value */ 1799 tid = WME_AC_TO_TID(ac); 1800 qos[0] = tid & IEEE80211_QOS_TID; 1801 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 1802 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1803 #ifdef IEEE80211_SUPPORT_MESH 1804 if (vap->iv_opmode == IEEE80211_M_MBSS) 1805 qos[1] = IEEE80211_QOS_MC; 1806 else 1807 #endif 1808 qos[1] = 0; 1809 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 1810 1811 /* 1812 * If this is an A-MSDU then ensure we set the 1813 * relevant field. 1814 */ 1815 if (is_amsdu) 1816 qos[0] |= IEEE80211_QOS_AMSDU; 1817 1818 /* 1819 * XXX TODO TX lock is needed for atomic updates of sequence 1820 * numbers. If the driver does it, then don't do it here; 1821 * and we don't need the TX lock held. 1822 */ 1823 if ((m->m_flags & M_AMPDU_MPDU) == 0) { 1824 /* 1825 * 802.11-2012 9.3.2.10 - 1826 * 1827 * If this is a multicast frame then we need 1828 * to ensure that the sequence number comes from 1829 * a separate seqno space and not the TID space. 1830 * 1831 * Otherwise multicast frames may actually cause 1832 * holes in the TX blockack window space and 1833 * upset various things. 1834 */ 1835 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1836 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1837 else 1838 seqno = ni->ni_txseqs[tid]++; 1839 1840 /* 1841 * NB: don't assign a sequence # to potential 1842 * aggregates; we expect this happens at the 1843 * point the frame comes off any aggregation q 1844 * as otherwise we may introduce holes in the 1845 * BA sequence space and/or make window accouting 1846 * more difficult. 1847 * 1848 * XXX may want to control this with a driver 1849 * capability; this may also change when we pull 1850 * aggregation up into net80211 1851 */ 1852 *(uint16_t *)wh->i_seq = 1853 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1854 M_SEQNO_SET(m, seqno); 1855 } else { 1856 /* NB: zero out i_seq field (for s/w encryption etc) */ 1857 *(uint16_t *)wh->i_seq = 0; 1858 } 1859 } else { 1860 /* 1861 * XXX TODO TX lock is needed for atomic updates of sequence 1862 * numbers. If the driver does it, then don't do it here; 1863 * and we don't need the TX lock held. 1864 */ 1865 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1866 *(uint16_t *)wh->i_seq = 1867 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1868 M_SEQNO_SET(m, seqno); 1869 1870 /* 1871 * XXX TODO: we shouldn't allow EAPOL, etc that would 1872 * be forced to be non-QoS traffic to be A-MSDU encapsulated. 1873 */ 1874 if (is_amsdu) 1875 printf("%s: XXX ERROR: is_amsdu set; not QoS!\n", 1876 __func__); 1877 } 1878 1879 /* 1880 * Check if xmit fragmentation is required. 1881 * 1882 * If the hardware does fragmentation offload, then don't bother 1883 * doing it here. 1884 */ 1885 if (IEEE80211_CONF_FRAG_OFFLOAD(ic)) 1886 txfrag = 0; 1887 else 1888 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold && 1889 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 1890 (vap->iv_caps & IEEE80211_C_TXFRAG) && 1891 (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0); 1892 1893 if (key != NULL) { 1894 /* 1895 * IEEE 802.1X: send EAPOL frames always in the clear. 1896 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 1897 */ 1898 if ((m->m_flags & M_EAPOL) == 0 || 1899 ((vap->iv_flags & IEEE80211_F_WPA) && 1900 (vap->iv_opmode == IEEE80211_M_STA ? 1901 !IEEE80211_KEY_UNDEFINED(key) : 1902 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) { 1903 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 1904 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) { 1905 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT, 1906 eh.ether_dhost, 1907 "%s", "enmic failed, discard frame"); 1908 vap->iv_stats.is_crypto_enmicfail++; 1909 goto bad; 1910 } 1911 } 1912 } 1913 if (txfrag && !ieee80211_fragment(vap, m, hdrsize, 1914 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold)) 1915 goto bad; 1916 1917 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1918 1919 IEEE80211_NODE_STAT(ni, tx_data); 1920 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1921 IEEE80211_NODE_STAT(ni, tx_mcast); 1922 m->m_flags |= M_MCAST; 1923 } else 1924 IEEE80211_NODE_STAT(ni, tx_ucast); 1925 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 1926 1927 return m; 1928 bad: 1929 if (m != NULL) 1930 m_freem(m); 1931 return NULL; 1932 #undef WH4 1933 #undef MC01 1934 } 1935 1936 void 1937 ieee80211_free_mbuf(struct mbuf *m) 1938 { 1939 struct mbuf *next; 1940 1941 if (m == NULL) 1942 return; 1943 1944 do { 1945 next = m->m_nextpkt; 1946 m->m_nextpkt = NULL; 1947 m_freem(m); 1948 } while ((m = next) != NULL); 1949 } 1950 1951 /* 1952 * Fragment the frame according to the specified mtu. 1953 * The size of the 802.11 header (w/o padding) is provided 1954 * so we don't need to recalculate it. We create a new 1955 * mbuf for each fragment and chain it through m_nextpkt; 1956 * we might be able to optimize this by reusing the original 1957 * packet's mbufs but that is significantly more complicated. 1958 */ 1959 static int 1960 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0, 1961 u_int hdrsize, u_int ciphdrsize, u_int mtu) 1962 { 1963 struct ieee80211com *ic = vap->iv_ic; 1964 struct ieee80211_frame *wh, *whf; 1965 struct mbuf *m, *prev; 1966 u_int totalhdrsize, fragno, fragsize, off, remainder, payload; 1967 u_int hdrspace; 1968 1969 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); 1970 KASSERT(m0->m_pkthdr.len > mtu, 1971 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); 1972 1973 /* 1974 * Honor driver DATAPAD requirement. 1975 */ 1976 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1977 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1978 else 1979 hdrspace = hdrsize; 1980 1981 wh = mtod(m0, struct ieee80211_frame *); 1982 /* NB: mark the first frag; it will be propagated below */ 1983 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; 1984 totalhdrsize = hdrspace + ciphdrsize; 1985 fragno = 1; 1986 off = mtu - ciphdrsize; 1987 remainder = m0->m_pkthdr.len - off; 1988 prev = m0; 1989 do { 1990 fragsize = MIN(totalhdrsize + remainder, mtu); 1991 m = m_get2(fragsize, M_NOWAIT, MT_DATA, M_PKTHDR); 1992 if (m == NULL) 1993 goto bad; 1994 /* leave room to prepend any cipher header */ 1995 m_align(m, fragsize - ciphdrsize); 1996 1997 /* 1998 * Form the header in the fragment. Note that since 1999 * we mark the first fragment with the MORE_FRAG bit 2000 * it automatically is propagated to each fragment; we 2001 * need only clear it on the last fragment (done below). 2002 * NB: frag 1+ dont have Mesh Control field present. 2003 */ 2004 whf = mtod(m, struct ieee80211_frame *); 2005 memcpy(whf, wh, hdrsize); 2006 #ifdef IEEE80211_SUPPORT_MESH 2007 if (vap->iv_opmode == IEEE80211_M_MBSS) 2008 ieee80211_getqos(wh)[1] &= ~IEEE80211_QOS_MC; 2009 #endif 2010 *(uint16_t *)&whf->i_seq[0] |= htole16( 2011 (fragno & IEEE80211_SEQ_FRAG_MASK) << 2012 IEEE80211_SEQ_FRAG_SHIFT); 2013 fragno++; 2014 2015 payload = fragsize - totalhdrsize; 2016 /* NB: destination is known to be contiguous */ 2017 2018 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace); 2019 m->m_len = hdrspace + payload; 2020 m->m_pkthdr.len = hdrspace + payload; 2021 m->m_flags |= M_FRAG; 2022 2023 /* chain up the fragment */ 2024 prev->m_nextpkt = m; 2025 prev = m; 2026 2027 /* deduct fragment just formed */ 2028 remainder -= payload; 2029 off += payload; 2030 } while (remainder != 0); 2031 2032 /* set the last fragment */ 2033 m->m_flags |= M_LASTFRAG; 2034 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; 2035 2036 /* strip first mbuf now that everything has been copied */ 2037 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); 2038 m0->m_flags |= M_FIRSTFRAG | M_FRAG; 2039 2040 vap->iv_stats.is_tx_fragframes++; 2041 vap->iv_stats.is_tx_frags += fragno-1; 2042 2043 return 1; 2044 bad: 2045 /* reclaim fragments but leave original frame for caller to free */ 2046 ieee80211_free_mbuf(m0->m_nextpkt); 2047 m0->m_nextpkt = NULL; 2048 return 0; 2049 } 2050 2051 /* 2052 * Add a supported rates element id to a frame. 2053 */ 2054 uint8_t * 2055 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs) 2056 { 2057 int nrates; 2058 2059 *frm++ = IEEE80211_ELEMID_RATES; 2060 nrates = rs->rs_nrates; 2061 if (nrates > IEEE80211_RATE_SIZE) 2062 nrates = IEEE80211_RATE_SIZE; 2063 *frm++ = nrates; 2064 memcpy(frm, rs->rs_rates, nrates); 2065 return frm + nrates; 2066 } 2067 2068 /* 2069 * Add an extended supported rates element id to a frame. 2070 */ 2071 uint8_t * 2072 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs) 2073 { 2074 /* 2075 * Add an extended supported rates element if operating in 11g mode. 2076 */ 2077 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 2078 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 2079 *frm++ = IEEE80211_ELEMID_XRATES; 2080 *frm++ = nrates; 2081 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 2082 frm += nrates; 2083 } 2084 return frm; 2085 } 2086 2087 /* 2088 * Add an ssid element to a frame. 2089 */ 2090 uint8_t * 2091 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) 2092 { 2093 *frm++ = IEEE80211_ELEMID_SSID; 2094 *frm++ = len; 2095 memcpy(frm, ssid, len); 2096 return frm + len; 2097 } 2098 2099 /* 2100 * Add an erp element to a frame. 2101 */ 2102 static uint8_t * 2103 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic) 2104 { 2105 uint8_t erp; 2106 2107 *frm++ = IEEE80211_ELEMID_ERP; 2108 *frm++ = 1; 2109 erp = 0; 2110 if (ic->ic_nonerpsta != 0) 2111 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 2112 if (ic->ic_flags & IEEE80211_F_USEPROT) 2113 erp |= IEEE80211_ERP_USE_PROTECTION; 2114 if (ic->ic_flags & IEEE80211_F_USEBARKER) 2115 erp |= IEEE80211_ERP_LONG_PREAMBLE; 2116 *frm++ = erp; 2117 return frm; 2118 } 2119 2120 /* 2121 * Add a CFParams element to a frame. 2122 */ 2123 static uint8_t * 2124 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic) 2125 { 2126 #define ADDSHORT(frm, v) do { \ 2127 le16enc(frm, v); \ 2128 frm += 2; \ 2129 } while (0) 2130 *frm++ = IEEE80211_ELEMID_CFPARMS; 2131 *frm++ = 6; 2132 *frm++ = 0; /* CFP count */ 2133 *frm++ = 2; /* CFP period */ 2134 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */ 2135 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */ 2136 return frm; 2137 #undef ADDSHORT 2138 } 2139 2140 static __inline uint8_t * 2141 add_appie(uint8_t *frm, const struct ieee80211_appie *ie) 2142 { 2143 memcpy(frm, ie->ie_data, ie->ie_len); 2144 return frm + ie->ie_len; 2145 } 2146 2147 static __inline uint8_t * 2148 add_ie(uint8_t *frm, const uint8_t *ie) 2149 { 2150 memcpy(frm, ie, 2 + ie[1]); 2151 return frm + 2 + ie[1]; 2152 } 2153 2154 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 2155 /* 2156 * Add a WME information element to a frame. 2157 */ 2158 uint8_t * 2159 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme) 2160 { 2161 static const struct ieee80211_wme_info info = { 2162 .wme_id = IEEE80211_ELEMID_VENDOR, 2163 .wme_len = sizeof(struct ieee80211_wme_info) - 2, 2164 .wme_oui = { WME_OUI_BYTES }, 2165 .wme_type = WME_OUI_TYPE, 2166 .wme_subtype = WME_INFO_OUI_SUBTYPE, 2167 .wme_version = WME_VERSION, 2168 .wme_info = 0, 2169 }; 2170 memcpy(frm, &info, sizeof(info)); 2171 return frm + sizeof(info); 2172 } 2173 2174 /* 2175 * Add a WME parameters element to a frame. 2176 */ 2177 static uint8_t * 2178 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme) 2179 { 2180 #define SM(_v, _f) (((_v) << _f##_S) & _f) 2181 #define ADDSHORT(frm, v) do { \ 2182 le16enc(frm, v); \ 2183 frm += 2; \ 2184 } while (0) 2185 /* NB: this works 'cuz a param has an info at the front */ 2186 static const struct ieee80211_wme_info param = { 2187 .wme_id = IEEE80211_ELEMID_VENDOR, 2188 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 2189 .wme_oui = { WME_OUI_BYTES }, 2190 .wme_type = WME_OUI_TYPE, 2191 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 2192 .wme_version = WME_VERSION, 2193 }; 2194 int i; 2195 2196 memcpy(frm, ¶m, sizeof(param)); 2197 frm += __offsetof(struct ieee80211_wme_info, wme_info); 2198 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ 2199 *frm++ = 0; /* reserved field */ 2200 for (i = 0; i < WME_NUM_AC; i++) { 2201 const struct wmeParams *ac = 2202 &wme->wme_bssChanParams.cap_wmeParams[i]; 2203 *frm++ = SM(i, WME_PARAM_ACI) 2204 | SM(ac->wmep_acm, WME_PARAM_ACM) 2205 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) 2206 ; 2207 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) 2208 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) 2209 ; 2210 ADDSHORT(frm, ac->wmep_txopLimit); 2211 } 2212 return frm; 2213 #undef SM 2214 #undef ADDSHORT 2215 } 2216 #undef WME_OUI_BYTES 2217 2218 /* 2219 * Add an 11h Power Constraint element to a frame. 2220 */ 2221 static uint8_t * 2222 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap) 2223 { 2224 const struct ieee80211_channel *c = vap->iv_bss->ni_chan; 2225 /* XXX per-vap tx power limit? */ 2226 int8_t limit = vap->iv_ic->ic_txpowlimit / 2; 2227 2228 frm[0] = IEEE80211_ELEMID_PWRCNSTR; 2229 frm[1] = 1; 2230 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0; 2231 return frm + 3; 2232 } 2233 2234 /* 2235 * Add an 11h Power Capability element to a frame. 2236 */ 2237 static uint8_t * 2238 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c) 2239 { 2240 frm[0] = IEEE80211_ELEMID_PWRCAP; 2241 frm[1] = 2; 2242 frm[2] = c->ic_minpower; 2243 frm[3] = c->ic_maxpower; 2244 return frm + 4; 2245 } 2246 2247 /* 2248 * Add an 11h Supported Channels element to a frame. 2249 */ 2250 static uint8_t * 2251 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic) 2252 { 2253 static const int ielen = 26; 2254 2255 frm[0] = IEEE80211_ELEMID_SUPPCHAN; 2256 frm[1] = ielen; 2257 /* XXX not correct */ 2258 memcpy(frm+2, ic->ic_chan_avail, ielen); 2259 return frm + 2 + ielen; 2260 } 2261 2262 /* 2263 * Add an 11h Quiet time element to a frame. 2264 */ 2265 static uint8_t * 2266 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap, int update) 2267 { 2268 struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm; 2269 2270 quiet->quiet_ie = IEEE80211_ELEMID_QUIET; 2271 quiet->len = 6; 2272 2273 /* 2274 * Only update every beacon interval - otherwise probe responses 2275 * would update the quiet count value. 2276 */ 2277 if (update) { 2278 if (vap->iv_quiet_count_value == 1) 2279 vap->iv_quiet_count_value = vap->iv_quiet_count; 2280 else if (vap->iv_quiet_count_value > 1) 2281 vap->iv_quiet_count_value--; 2282 } 2283 2284 if (vap->iv_quiet_count_value == 0) { 2285 /* value 0 is reserved as per 802.11h standerd */ 2286 vap->iv_quiet_count_value = 1; 2287 } 2288 2289 quiet->tbttcount = vap->iv_quiet_count_value; 2290 quiet->period = vap->iv_quiet_period; 2291 quiet->duration = htole16(vap->iv_quiet_duration); 2292 quiet->offset = htole16(vap->iv_quiet_offset); 2293 return frm + sizeof(*quiet); 2294 } 2295 2296 /* 2297 * Add an 11h Channel Switch Announcement element to a frame. 2298 * Note that we use the per-vap CSA count to adjust the global 2299 * counter so we can use this routine to form probe response 2300 * frames and get the current count. 2301 */ 2302 static uint8_t * 2303 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap) 2304 { 2305 struct ieee80211com *ic = vap->iv_ic; 2306 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm; 2307 2308 csa->csa_ie = IEEE80211_ELEMID_CSA; 2309 csa->csa_len = 3; 2310 csa->csa_mode = 1; /* XXX force quiet on channel */ 2311 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan); 2312 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count; 2313 return frm + sizeof(*csa); 2314 } 2315 2316 /* 2317 * Add an 11h country information element to a frame. 2318 */ 2319 static uint8_t * 2320 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic) 2321 { 2322 2323 if (ic->ic_countryie == NULL || 2324 ic->ic_countryie_chan != ic->ic_bsschan) { 2325 /* 2326 * Handle lazy construction of ie. This is done on 2327 * first use and after a channel change that requires 2328 * re-calculation. 2329 */ 2330 if (ic->ic_countryie != NULL) 2331 IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE); 2332 ic->ic_countryie = ieee80211_alloc_countryie(ic); 2333 if (ic->ic_countryie == NULL) 2334 return frm; 2335 ic->ic_countryie_chan = ic->ic_bsschan; 2336 } 2337 return add_appie(frm, ic->ic_countryie); 2338 } 2339 2340 uint8_t * 2341 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap) 2342 { 2343 if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) 2344 return (add_ie(frm, vap->iv_wpa_ie)); 2345 else { 2346 /* XXX else complain? */ 2347 return (frm); 2348 } 2349 } 2350 2351 uint8_t * 2352 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap) 2353 { 2354 if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL) 2355 return (add_ie(frm, vap->iv_rsn_ie)); 2356 else { 2357 /* XXX else complain? */ 2358 return (frm); 2359 } 2360 } 2361 2362 uint8_t * 2363 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni) 2364 { 2365 if (ni->ni_flags & IEEE80211_NODE_QOS) { 2366 *frm++ = IEEE80211_ELEMID_QOS; 2367 *frm++ = 1; 2368 *frm++ = 0; 2369 } 2370 2371 return (frm); 2372 } 2373 2374 /* 2375 * Send a probe request frame with the specified ssid 2376 * and any optional information element data. 2377 */ 2378 int 2379 ieee80211_send_probereq(struct ieee80211_node *ni, 2380 const uint8_t sa[IEEE80211_ADDR_LEN], 2381 const uint8_t da[IEEE80211_ADDR_LEN], 2382 const uint8_t bssid[IEEE80211_ADDR_LEN], 2383 const uint8_t *ssid, size_t ssidlen) 2384 { 2385 struct ieee80211vap *vap = ni->ni_vap; 2386 struct ieee80211com *ic = ni->ni_ic; 2387 struct ieee80211_node *bss; 2388 const struct ieee80211_txparam *tp; 2389 struct ieee80211_bpf_params params; 2390 const struct ieee80211_rateset *rs; 2391 struct mbuf *m; 2392 uint8_t *frm; 2393 int ret; 2394 2395 bss = ieee80211_ref_node(vap->iv_bss); 2396 2397 if (vap->iv_state == IEEE80211_S_CAC) { 2398 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni, 2399 "block %s frame in CAC state", "probe request"); 2400 vap->iv_stats.is_tx_badstate++; 2401 ieee80211_free_node(bss); 2402 return EIO; /* XXX */ 2403 } 2404 2405 /* 2406 * Hold a reference on the node so it doesn't go away until after 2407 * the xmit is complete all the way in the driver. On error we 2408 * will remove our reference. 2409 */ 2410 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2411 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2412 __func__, __LINE__, 2413 ni, ether_sprintf(ni->ni_macaddr), 2414 ieee80211_node_refcnt(ni)+1); 2415 ieee80211_ref_node(ni); 2416 2417 /* 2418 * prreq frame format 2419 * [tlv] ssid 2420 * [tlv] supported rates 2421 * [tlv] RSN (optional) 2422 * [tlv] extended supported rates 2423 * [tlv] HT cap (optional) 2424 * [tlv] VHT cap (optional) 2425 * [tlv] WPA (optional) 2426 * [tlv] user-specified ie's 2427 */ 2428 m = ieee80211_getmgtframe(&frm, 2429 ic->ic_headroom + sizeof(struct ieee80211_frame), 2430 2 + IEEE80211_NWID_LEN 2431 + 2 + IEEE80211_RATE_SIZE 2432 + sizeof(struct ieee80211_ie_htcap) 2433 + sizeof(struct ieee80211_ie_vhtcap) 2434 + sizeof(struct ieee80211_ie_htinfo) /* XXX not needed? */ 2435 + sizeof(struct ieee80211_ie_wpa) 2436 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2437 + sizeof(struct ieee80211_ie_wpa) 2438 + (vap->iv_appie_probereq != NULL ? 2439 vap->iv_appie_probereq->ie_len : 0) 2440 ); 2441 if (m == NULL) { 2442 vap->iv_stats.is_tx_nobuf++; 2443 ieee80211_free_node(ni); 2444 ieee80211_free_node(bss); 2445 return ENOMEM; 2446 } 2447 2448 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 2449 rs = ieee80211_get_suprates(ic, ic->ic_curchan); 2450 frm = ieee80211_add_rates(frm, rs); 2451 frm = ieee80211_add_rsn(frm, vap); 2452 frm = ieee80211_add_xrates(frm, rs); 2453 2454 /* 2455 * Note: we can't use bss; we don't have one yet. 2456 * 2457 * So, we should announce our capabilities 2458 * in this channel mode (2g/5g), not the 2459 * channel details itself. 2460 */ 2461 if ((vap->iv_opmode == IEEE80211_M_IBSS) && 2462 (vap->iv_flags_ht & IEEE80211_FHT_HT)) { 2463 struct ieee80211_channel *c; 2464 2465 /* 2466 * Get the HT channel that we should try upgrading to. 2467 * If we can do 40MHz then this'll upgrade it appropriately. 2468 */ 2469 c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan, 2470 vap->iv_flags_ht); 2471 frm = ieee80211_add_htcap_ch(frm, vap, c); 2472 } 2473 2474 /* 2475 * XXX TODO: need to figure out what/how to update the 2476 * VHT channel. 2477 */ 2478 #if 0 2479 (vap->iv_flags_vht & IEEE80211_FVHT_VHT) { 2480 struct ieee80211_channel *c; 2481 2482 c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan, 2483 vap->iv_flags_ht); 2484 c = ieee80211_vht_adjust_channel(ic, c, vap->iv_flags_vht); 2485 frm = ieee80211_add_vhtcap_ch(frm, vap, c); 2486 } 2487 #endif 2488 2489 frm = ieee80211_add_wpa(frm, vap); 2490 if (vap->iv_appie_probereq != NULL) 2491 frm = add_appie(frm, vap->iv_appie_probereq); 2492 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2493 2494 KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame), 2495 ("leading space %zd", M_LEADINGSPACE(m))); 2496 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2497 if (m == NULL) { 2498 /* NB: cannot happen */ 2499 ieee80211_free_node(ni); 2500 ieee80211_free_node(bss); 2501 return ENOMEM; 2502 } 2503 2504 IEEE80211_TX_LOCK(ic); 2505 ieee80211_send_setup(ni, m, 2506 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 2507 IEEE80211_NONQOS_TID, sa, da, bssid); 2508 /* XXX power management? */ 2509 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2510 2511 M_WME_SETAC(m, WME_AC_BE); 2512 2513 IEEE80211_NODE_STAT(ni, tx_probereq); 2514 IEEE80211_NODE_STAT(ni, tx_mgmt); 2515 2516 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2517 "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n", 2518 ieee80211_chan2ieee(ic, ic->ic_curchan), 2519 ether_sprintf(bssid), 2520 sa, ":", 2521 da, ":", 2522 ssidlen, ssid); 2523 2524 memset(¶ms, 0, sizeof(params)); 2525 params.ibp_pri = M_WME_GETAC(m); 2526 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 2527 params.ibp_rate0 = tp->mgmtrate; 2528 if (IEEE80211_IS_MULTICAST(da)) { 2529 params.ibp_flags |= IEEE80211_BPF_NOACK; 2530 params.ibp_try0 = 1; 2531 } else 2532 params.ibp_try0 = tp->maxretry; 2533 params.ibp_power = ni->ni_txpower; 2534 ret = ieee80211_raw_output(vap, ni, m, ¶ms); 2535 IEEE80211_TX_UNLOCK(ic); 2536 ieee80211_free_node(bss); 2537 return (ret); 2538 } 2539 2540 /* 2541 * Calculate capability information for mgt frames. 2542 */ 2543 uint16_t 2544 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan) 2545 { 2546 struct ieee80211com *ic = vap->iv_ic; 2547 uint16_t capinfo; 2548 2549 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode")); 2550 2551 if (vap->iv_opmode == IEEE80211_M_HOSTAP) 2552 capinfo = IEEE80211_CAPINFO_ESS; 2553 else if (vap->iv_opmode == IEEE80211_M_IBSS) 2554 capinfo = IEEE80211_CAPINFO_IBSS; 2555 else 2556 capinfo = 0; 2557 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2558 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2559 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2560 IEEE80211_IS_CHAN_2GHZ(chan)) 2561 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2562 if (vap->iv_flags & IEEE80211_F_SHSLOT) 2563 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2564 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH)) 2565 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2566 return capinfo; 2567 } 2568 2569 /* 2570 * Send a management frame. The node is for the destination (or ic_bss 2571 * when in station mode). Nodes other than ic_bss have their reference 2572 * count bumped to reflect our use for an indeterminant time. 2573 */ 2574 int 2575 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg) 2576 { 2577 #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT) 2578 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2579 struct ieee80211vap *vap = ni->ni_vap; 2580 struct ieee80211com *ic = ni->ni_ic; 2581 struct ieee80211_node *bss = vap->iv_bss; 2582 struct ieee80211_bpf_params params; 2583 struct mbuf *m; 2584 uint8_t *frm; 2585 uint16_t capinfo; 2586 int has_challenge, is_shared_key, ret, status; 2587 2588 KASSERT(ni != NULL, ("null node")); 2589 2590 /* 2591 * Hold a reference on the node so it doesn't go away until after 2592 * the xmit is complete all the way in the driver. On error we 2593 * will remove our reference. 2594 */ 2595 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2596 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2597 __func__, __LINE__, 2598 ni, ether_sprintf(ni->ni_macaddr), 2599 ieee80211_node_refcnt(ni)+1); 2600 ieee80211_ref_node(ni); 2601 2602 memset(¶ms, 0, sizeof(params)); 2603 switch (type) { 2604 2605 case IEEE80211_FC0_SUBTYPE_AUTH: 2606 status = arg >> 16; 2607 arg &= 0xffff; 2608 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || 2609 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 2610 ni->ni_challenge != NULL); 2611 2612 /* 2613 * Deduce whether we're doing open authentication or 2614 * shared key authentication. We do the latter if 2615 * we're in the middle of a shared key authentication 2616 * handshake or if we're initiating an authentication 2617 * request and configured to use shared key. 2618 */ 2619 is_shared_key = has_challenge || 2620 arg >= IEEE80211_AUTH_SHARED_RESPONSE || 2621 (arg == IEEE80211_AUTH_SHARED_REQUEST && 2622 bss->ni_authmode == IEEE80211_AUTH_SHARED); 2623 2624 m = ieee80211_getmgtframe(&frm, 2625 ic->ic_headroom + sizeof(struct ieee80211_frame), 2626 3 * sizeof(uint16_t) 2627 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? 2628 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0) 2629 ); 2630 if (m == NULL) 2631 senderr(ENOMEM, is_tx_nobuf); 2632 2633 ((uint16_t *)frm)[0] = 2634 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) 2635 : htole16(IEEE80211_AUTH_ALG_OPEN); 2636 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */ 2637 ((uint16_t *)frm)[2] = htole16(status);/* status */ 2638 2639 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { 2640 ((uint16_t *)frm)[3] = 2641 htole16((IEEE80211_CHALLENGE_LEN << 8) | 2642 IEEE80211_ELEMID_CHALLENGE); 2643 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge, 2644 IEEE80211_CHALLENGE_LEN); 2645 m->m_pkthdr.len = m->m_len = 2646 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN; 2647 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 2648 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2649 "request encrypt frame (%s)", __func__); 2650 /* mark frame for encryption */ 2651 params.ibp_flags |= IEEE80211_BPF_CRYPTO; 2652 } 2653 } else 2654 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t); 2655 2656 /* XXX not right for shared key */ 2657 if (status == IEEE80211_STATUS_SUCCESS) 2658 IEEE80211_NODE_STAT(ni, tx_auth); 2659 else 2660 IEEE80211_NODE_STAT(ni, tx_auth_fail); 2661 2662 if (vap->iv_opmode == IEEE80211_M_STA) 2663 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2664 (void *) vap->iv_state); 2665 break; 2666 2667 case IEEE80211_FC0_SUBTYPE_DEAUTH: 2668 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2669 "send station deauthenticate (reason: %d (%s))", arg, 2670 ieee80211_reason_to_string(arg)); 2671 m = ieee80211_getmgtframe(&frm, 2672 ic->ic_headroom + sizeof(struct ieee80211_frame), 2673 sizeof(uint16_t)); 2674 if (m == NULL) 2675 senderr(ENOMEM, is_tx_nobuf); 2676 *(uint16_t *)frm = htole16(arg); /* reason */ 2677 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2678 2679 IEEE80211_NODE_STAT(ni, tx_deauth); 2680 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 2681 2682 ieee80211_node_unauthorize(ni); /* port closed */ 2683 break; 2684 2685 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 2686 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 2687 /* 2688 * asreq frame format 2689 * [2] capability information 2690 * [2] listen interval 2691 * [6*] current AP address (reassoc only) 2692 * [tlv] ssid 2693 * [tlv] supported rates 2694 * [tlv] extended supported rates 2695 * [4] power capability (optional) 2696 * [28] supported channels (optional) 2697 * [tlv] HT capabilities 2698 * [tlv] VHT capabilities 2699 * [tlv] WME (optional) 2700 * [tlv] Vendor OUI HT capabilities (optional) 2701 * [tlv] Atheros capabilities (if negotiated) 2702 * [tlv] AppIE's (optional) 2703 */ 2704 m = ieee80211_getmgtframe(&frm, 2705 ic->ic_headroom + sizeof(struct ieee80211_frame), 2706 sizeof(uint16_t) 2707 + sizeof(uint16_t) 2708 + IEEE80211_ADDR_LEN 2709 + 2 + IEEE80211_NWID_LEN 2710 + 2 + IEEE80211_RATE_SIZE 2711 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2712 + 4 2713 + 2 + 26 2714 + sizeof(struct ieee80211_wme_info) 2715 + sizeof(struct ieee80211_ie_htcap) 2716 + sizeof(struct ieee80211_ie_vhtcap) 2717 + 4 + sizeof(struct ieee80211_ie_htcap) 2718 #ifdef IEEE80211_SUPPORT_SUPERG 2719 + sizeof(struct ieee80211_ath_ie) 2720 #endif 2721 + (vap->iv_appie_wpa != NULL ? 2722 vap->iv_appie_wpa->ie_len : 0) 2723 + (vap->iv_appie_assocreq != NULL ? 2724 vap->iv_appie_assocreq->ie_len : 0) 2725 ); 2726 if (m == NULL) 2727 senderr(ENOMEM, is_tx_nobuf); 2728 2729 KASSERT(vap->iv_opmode == IEEE80211_M_STA, 2730 ("wrong mode %u", vap->iv_opmode)); 2731 capinfo = IEEE80211_CAPINFO_ESS; 2732 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2733 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2734 /* 2735 * NB: Some 11a AP's reject the request when 2736 * short preamble is set. 2737 */ 2738 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2739 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2740 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2741 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 2742 (ic->ic_caps & IEEE80211_C_SHSLOT)) 2743 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2744 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) && 2745 (vap->iv_flags & IEEE80211_F_DOTH)) 2746 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2747 *(uint16_t *)frm = htole16(capinfo); 2748 frm += 2; 2749 2750 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!")); 2751 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval, 2752 bss->ni_intval)); 2753 frm += 2; 2754 2755 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 2756 IEEE80211_ADDR_COPY(frm, bss->ni_bssid); 2757 frm += IEEE80211_ADDR_LEN; 2758 } 2759 2760 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 2761 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2762 frm = ieee80211_add_rsn(frm, vap); 2763 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2764 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) { 2765 frm = ieee80211_add_powercapability(frm, 2766 ic->ic_curchan); 2767 frm = ieee80211_add_supportedchannels(frm, ic); 2768 } 2769 2770 /* 2771 * Check the channel - we may be using an 11n NIC with an 2772 * 11n capable station, but we're configured to be an 11b 2773 * channel. 2774 */ 2775 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2776 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2777 ni->ni_ies.htcap_ie != NULL && 2778 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) { 2779 frm = ieee80211_add_htcap(frm, ni); 2780 } 2781 2782 if ((vap->iv_flags_vht & IEEE80211_FVHT_VHT) && 2783 IEEE80211_IS_CHAN_VHT(ni->ni_chan) && 2784 ni->ni_ies.vhtcap_ie != NULL && 2785 ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) { 2786 frm = ieee80211_add_vhtcap(frm, ni); 2787 } 2788 2789 frm = ieee80211_add_wpa(frm, vap); 2790 if ((ic->ic_flags & IEEE80211_F_WME) && 2791 ni->ni_ies.wme_ie != NULL) 2792 frm = ieee80211_add_wme_info(frm, &ic->ic_wme); 2793 2794 /* 2795 * Same deal - only send HT info if we're on an 11n 2796 * capable channel. 2797 */ 2798 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2799 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2800 ni->ni_ies.htcap_ie != NULL && 2801 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) { 2802 frm = ieee80211_add_htcap_vendor(frm, ni); 2803 } 2804 #ifdef IEEE80211_SUPPORT_SUPERG 2805 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) { 2806 frm = ieee80211_add_ath(frm, 2807 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2808 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2809 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2810 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2811 } 2812 #endif /* IEEE80211_SUPPORT_SUPERG */ 2813 if (vap->iv_appie_assocreq != NULL) 2814 frm = add_appie(frm, vap->iv_appie_assocreq); 2815 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2816 2817 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2818 (void *) vap->iv_state); 2819 break; 2820 2821 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 2822 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 2823 /* 2824 * asresp frame format 2825 * [2] capability information 2826 * [2] status 2827 * [2] association ID 2828 * [tlv] supported rates 2829 * [tlv] extended supported rates 2830 * [tlv] HT capabilities (standard, if STA enabled) 2831 * [tlv] HT information (standard, if STA enabled) 2832 * [tlv] VHT capabilities (standard, if STA enabled) 2833 * [tlv] VHT information (standard, if STA enabled) 2834 * [tlv] WME (if configured and STA enabled) 2835 * [tlv] HT capabilities (vendor OUI, if STA enabled) 2836 * [tlv] HT information (vendor OUI, if STA enabled) 2837 * [tlv] Atheros capabilities (if STA enabled) 2838 * [tlv] AppIE's (optional) 2839 */ 2840 m = ieee80211_getmgtframe(&frm, 2841 ic->ic_headroom + sizeof(struct ieee80211_frame), 2842 sizeof(uint16_t) 2843 + sizeof(uint16_t) 2844 + sizeof(uint16_t) 2845 + 2 + IEEE80211_RATE_SIZE 2846 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2847 + sizeof(struct ieee80211_ie_htcap) + 4 2848 + sizeof(struct ieee80211_ie_htinfo) + 4 2849 + sizeof(struct ieee80211_ie_vhtcap) 2850 + sizeof(struct ieee80211_ie_vht_operation) 2851 + sizeof(struct ieee80211_wme_param) 2852 #ifdef IEEE80211_SUPPORT_SUPERG 2853 + sizeof(struct ieee80211_ath_ie) 2854 #endif 2855 + (vap->iv_appie_assocresp != NULL ? 2856 vap->iv_appie_assocresp->ie_len : 0) 2857 ); 2858 if (m == NULL) 2859 senderr(ENOMEM, is_tx_nobuf); 2860 2861 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2862 *(uint16_t *)frm = htole16(capinfo); 2863 frm += 2; 2864 2865 *(uint16_t *)frm = htole16(arg); /* status */ 2866 frm += 2; 2867 2868 if (arg == IEEE80211_STATUS_SUCCESS) { 2869 *(uint16_t *)frm = htole16(ni->ni_associd); 2870 IEEE80211_NODE_STAT(ni, tx_assoc); 2871 } else 2872 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 2873 frm += 2; 2874 2875 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2876 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2877 /* NB: respond according to what we received */ 2878 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) { 2879 frm = ieee80211_add_htcap(frm, ni); 2880 frm = ieee80211_add_htinfo(frm, ni); 2881 } 2882 if ((vap->iv_flags & IEEE80211_F_WME) && 2883 ni->ni_ies.wme_ie != NULL) 2884 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2885 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) { 2886 frm = ieee80211_add_htcap_vendor(frm, ni); 2887 frm = ieee80211_add_htinfo_vendor(frm, ni); 2888 } 2889 if (ni->ni_flags & IEEE80211_NODE_VHT) { 2890 frm = ieee80211_add_vhtcap(frm, ni); 2891 frm = ieee80211_add_vhtinfo(frm, ni); 2892 } 2893 #ifdef IEEE80211_SUPPORT_SUPERG 2894 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) 2895 frm = ieee80211_add_ath(frm, 2896 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2897 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2898 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2899 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2900 #endif /* IEEE80211_SUPPORT_SUPERG */ 2901 if (vap->iv_appie_assocresp != NULL) 2902 frm = add_appie(frm, vap->iv_appie_assocresp); 2903 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2904 break; 2905 2906 case IEEE80211_FC0_SUBTYPE_DISASSOC: 2907 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, 2908 "send station disassociate (reason: %d (%s))", arg, 2909 ieee80211_reason_to_string(arg)); 2910 m = ieee80211_getmgtframe(&frm, 2911 ic->ic_headroom + sizeof(struct ieee80211_frame), 2912 sizeof(uint16_t)); 2913 if (m == NULL) 2914 senderr(ENOMEM, is_tx_nobuf); 2915 *(uint16_t *)frm = htole16(arg); /* reason */ 2916 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2917 2918 IEEE80211_NODE_STAT(ni, tx_disassoc); 2919 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 2920 break; 2921 2922 default: 2923 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni, 2924 "invalid mgmt frame type %u", type); 2925 senderr(EINVAL, is_tx_unknownmgt); 2926 /* NOTREACHED */ 2927 } 2928 2929 /* NB: force non-ProbeResp frames to the highest queue */ 2930 params.ibp_pri = WME_AC_VO; 2931 params.ibp_rate0 = bss->ni_txparms->mgmtrate; 2932 /* NB: we know all frames are unicast */ 2933 params.ibp_try0 = bss->ni_txparms->maxretry; 2934 params.ibp_power = bss->ni_txpower; 2935 return ieee80211_mgmt_output(ni, m, type, ¶ms); 2936 bad: 2937 ieee80211_free_node(ni); 2938 return ret; 2939 #undef senderr 2940 #undef HTFLAGS 2941 } 2942 2943 /* 2944 * Return an mbuf with a probe response frame in it. 2945 * Space is left to prepend and 802.11 header at the 2946 * front but it's left to the caller to fill in. 2947 */ 2948 struct mbuf * 2949 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy) 2950 { 2951 struct ieee80211vap *vap = bss->ni_vap; 2952 struct ieee80211com *ic = bss->ni_ic; 2953 const struct ieee80211_rateset *rs; 2954 struct mbuf *m; 2955 uint16_t capinfo; 2956 uint8_t *frm; 2957 2958 /* 2959 * probe response frame format 2960 * [8] time stamp 2961 * [2] beacon interval 2962 * [2] cabability information 2963 * [tlv] ssid 2964 * [tlv] supported rates 2965 * [tlv] parameter set (FH/DS) 2966 * [tlv] parameter set (IBSS) 2967 * [tlv] country (optional) 2968 * [3] power control (optional) 2969 * [5] channel switch announcement (CSA) (optional) 2970 * [tlv] extended rate phy (ERP) 2971 * [tlv] extended supported rates 2972 * [tlv] RSN (optional) 2973 * [tlv] HT capabilities 2974 * [tlv] HT information 2975 * [tlv] VHT capabilities 2976 * [tlv] VHT information 2977 * [tlv] WPA (optional) 2978 * [tlv] WME (optional) 2979 * [tlv] Vendor OUI HT capabilities (optional) 2980 * [tlv] Vendor OUI HT information (optional) 2981 * [tlv] Atheros capabilities 2982 * [tlv] AppIE's (optional) 2983 * [tlv] Mesh ID (MBSS) 2984 * [tlv] Mesh Conf (MBSS) 2985 */ 2986 m = ieee80211_getmgtframe(&frm, 2987 ic->ic_headroom + sizeof(struct ieee80211_frame), 2988 8 2989 + sizeof(uint16_t) 2990 + sizeof(uint16_t) 2991 + 2 + IEEE80211_NWID_LEN 2992 + 2 + IEEE80211_RATE_SIZE 2993 + 7 /* max(7,3) */ 2994 + IEEE80211_COUNTRY_MAX_SIZE 2995 + 3 2996 + sizeof(struct ieee80211_csa_ie) 2997 + sizeof(struct ieee80211_quiet_ie) 2998 + 3 2999 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 3000 + sizeof(struct ieee80211_ie_wpa) 3001 + sizeof(struct ieee80211_ie_htcap) 3002 + sizeof(struct ieee80211_ie_htinfo) 3003 + sizeof(struct ieee80211_ie_wpa) 3004 + sizeof(struct ieee80211_wme_param) 3005 + 4 + sizeof(struct ieee80211_ie_htcap) 3006 + 4 + sizeof(struct ieee80211_ie_htinfo) 3007 + sizeof(struct ieee80211_ie_vhtcap) 3008 + sizeof(struct ieee80211_ie_vht_operation) 3009 #ifdef IEEE80211_SUPPORT_SUPERG 3010 + sizeof(struct ieee80211_ath_ie) 3011 #endif 3012 #ifdef IEEE80211_SUPPORT_MESH 3013 + 2 + IEEE80211_MESHID_LEN 3014 + sizeof(struct ieee80211_meshconf_ie) 3015 #endif 3016 + (vap->iv_appie_proberesp != NULL ? 3017 vap->iv_appie_proberesp->ie_len : 0) 3018 ); 3019 if (m == NULL) { 3020 vap->iv_stats.is_tx_nobuf++; 3021 return NULL; 3022 } 3023 3024 memset(frm, 0, 8); /* timestamp should be filled later */ 3025 frm += 8; 3026 *(uint16_t *)frm = htole16(bss->ni_intval); 3027 frm += 2; 3028 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 3029 *(uint16_t *)frm = htole16(capinfo); 3030 frm += 2; 3031 3032 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen); 3033 rs = ieee80211_get_suprates(ic, bss->ni_chan); 3034 frm = ieee80211_add_rates(frm, rs); 3035 3036 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) { 3037 *frm++ = IEEE80211_ELEMID_FHPARMS; 3038 *frm++ = 5; 3039 *frm++ = bss->ni_fhdwell & 0x00ff; 3040 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff; 3041 *frm++ = IEEE80211_FH_CHANSET( 3042 ieee80211_chan2ieee(ic, bss->ni_chan)); 3043 *frm++ = IEEE80211_FH_CHANPAT( 3044 ieee80211_chan2ieee(ic, bss->ni_chan)); 3045 *frm++ = bss->ni_fhindex; 3046 } else { 3047 *frm++ = IEEE80211_ELEMID_DSPARMS; 3048 *frm++ = 1; 3049 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan); 3050 } 3051 3052 if (vap->iv_opmode == IEEE80211_M_IBSS) { 3053 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 3054 *frm++ = 2; 3055 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 3056 } 3057 if ((vap->iv_flags & IEEE80211_F_DOTH) || 3058 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 3059 frm = ieee80211_add_countryie(frm, ic); 3060 if (vap->iv_flags & IEEE80211_F_DOTH) { 3061 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan)) 3062 frm = ieee80211_add_powerconstraint(frm, vap); 3063 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 3064 frm = ieee80211_add_csa(frm, vap); 3065 } 3066 if (vap->iv_flags & IEEE80211_F_DOTH) { 3067 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3068 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 3069 if (vap->iv_quiet) 3070 frm = ieee80211_add_quiet(frm, vap, 0); 3071 } 3072 } 3073 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan)) 3074 frm = ieee80211_add_erp(frm, ic); 3075 frm = ieee80211_add_xrates(frm, rs); 3076 frm = ieee80211_add_rsn(frm, vap); 3077 /* 3078 * NB: legacy 11b clients do not get certain ie's. 3079 * The caller identifies such clients by passing 3080 * a token in legacy to us. Could expand this to be 3081 * any legacy client for stuff like HT ie's. 3082 */ 3083 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 3084 legacy != IEEE80211_SEND_LEGACY_11B) { 3085 frm = ieee80211_add_htcap(frm, bss); 3086 frm = ieee80211_add_htinfo(frm, bss); 3087 } 3088 if (IEEE80211_IS_CHAN_VHT(bss->ni_chan) && 3089 legacy != IEEE80211_SEND_LEGACY_11B) { 3090 frm = ieee80211_add_vhtcap(frm, bss); 3091 frm = ieee80211_add_vhtinfo(frm, bss); 3092 } 3093 frm = ieee80211_add_wpa(frm, vap); 3094 if (vap->iv_flags & IEEE80211_F_WME) 3095 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 3096 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 3097 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) && 3098 legacy != IEEE80211_SEND_LEGACY_11B) { 3099 frm = ieee80211_add_htcap_vendor(frm, bss); 3100 frm = ieee80211_add_htinfo_vendor(frm, bss); 3101 } 3102 #ifdef IEEE80211_SUPPORT_SUPERG 3103 if ((vap->iv_flags & IEEE80211_F_ATHEROS) && 3104 legacy != IEEE80211_SEND_LEGACY_11B) 3105 frm = ieee80211_add_athcaps(frm, bss); 3106 #endif 3107 if (vap->iv_appie_proberesp != NULL) 3108 frm = add_appie(frm, vap->iv_appie_proberesp); 3109 #ifdef IEEE80211_SUPPORT_MESH 3110 if (vap->iv_opmode == IEEE80211_M_MBSS) { 3111 frm = ieee80211_add_meshid(frm, vap); 3112 frm = ieee80211_add_meshconf(frm, vap); 3113 } 3114 #endif 3115 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3116 3117 return m; 3118 } 3119 3120 /* 3121 * Send a probe response frame to the specified mac address. 3122 * This does not go through the normal mgt frame api so we 3123 * can specify the destination address and re-use the bss node 3124 * for the sta reference. 3125 */ 3126 int 3127 ieee80211_send_proberesp(struct ieee80211vap *vap, 3128 const uint8_t da[IEEE80211_ADDR_LEN], int legacy) 3129 { 3130 struct ieee80211_node *bss = vap->iv_bss; 3131 struct ieee80211com *ic = vap->iv_ic; 3132 struct mbuf *m; 3133 int ret; 3134 3135 if (vap->iv_state == IEEE80211_S_CAC) { 3136 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss, 3137 "block %s frame in CAC state", "probe response"); 3138 vap->iv_stats.is_tx_badstate++; 3139 return EIO; /* XXX */ 3140 } 3141 3142 /* 3143 * Hold a reference on the node so it doesn't go away until after 3144 * the xmit is complete all the way in the driver. On error we 3145 * will remove our reference. 3146 */ 3147 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 3148 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 3149 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr), 3150 ieee80211_node_refcnt(bss)+1); 3151 ieee80211_ref_node(bss); 3152 3153 m = ieee80211_alloc_proberesp(bss, legacy); 3154 if (m == NULL) { 3155 ieee80211_free_node(bss); 3156 return ENOMEM; 3157 } 3158 3159 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 3160 KASSERT(m != NULL, ("no room for header")); 3161 3162 IEEE80211_TX_LOCK(ic); 3163 ieee80211_send_setup(bss, m, 3164 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP, 3165 IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid); 3166 /* XXX power management? */ 3167 m->m_flags |= M_ENCAP; /* mark encapsulated */ 3168 3169 M_WME_SETAC(m, WME_AC_BE); 3170 3171 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 3172 "send probe resp on channel %u to %s%s\n", 3173 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da), 3174 legacy ? " <legacy>" : ""); 3175 IEEE80211_NODE_STAT(bss, tx_mgmt); 3176 3177 ret = ieee80211_raw_output(vap, bss, m, NULL); 3178 IEEE80211_TX_UNLOCK(ic); 3179 return (ret); 3180 } 3181 3182 /* 3183 * Allocate and build a RTS (Request To Send) control frame. 3184 */ 3185 struct mbuf * 3186 ieee80211_alloc_rts(struct ieee80211com *ic, 3187 const uint8_t ra[IEEE80211_ADDR_LEN], 3188 const uint8_t ta[IEEE80211_ADDR_LEN], 3189 uint16_t dur) 3190 { 3191 struct ieee80211_frame_rts *rts; 3192 struct mbuf *m; 3193 3194 /* XXX honor ic_headroom */ 3195 m = m_gethdr(M_NOWAIT, MT_DATA); 3196 if (m != NULL) { 3197 rts = mtod(m, struct ieee80211_frame_rts *); 3198 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 3199 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS; 3200 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3201 *(u_int16_t *)rts->i_dur = htole16(dur); 3202 IEEE80211_ADDR_COPY(rts->i_ra, ra); 3203 IEEE80211_ADDR_COPY(rts->i_ta, ta); 3204 3205 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); 3206 } 3207 return m; 3208 } 3209 3210 /* 3211 * Allocate and build a CTS (Clear To Send) control frame. 3212 */ 3213 struct mbuf * 3214 ieee80211_alloc_cts(struct ieee80211com *ic, 3215 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur) 3216 { 3217 struct ieee80211_frame_cts *cts; 3218 struct mbuf *m; 3219 3220 /* XXX honor ic_headroom */ 3221 m = m_gethdr(M_NOWAIT, MT_DATA); 3222 if (m != NULL) { 3223 cts = mtod(m, struct ieee80211_frame_cts *); 3224 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 3225 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS; 3226 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3227 *(u_int16_t *)cts->i_dur = htole16(dur); 3228 IEEE80211_ADDR_COPY(cts->i_ra, ra); 3229 3230 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts); 3231 } 3232 return m; 3233 } 3234 3235 /* 3236 * Wrapper for CTS/RTS frame allocation. 3237 */ 3238 struct mbuf * 3239 ieee80211_alloc_prot(struct ieee80211_node *ni, const struct mbuf *m, 3240 uint8_t rate, int prot) 3241 { 3242 struct ieee80211com *ic = ni->ni_ic; 3243 const struct ieee80211_frame *wh; 3244 struct mbuf *mprot; 3245 uint16_t dur; 3246 int pktlen, isshort; 3247 3248 KASSERT(prot == IEEE80211_PROT_RTSCTS || 3249 prot == IEEE80211_PROT_CTSONLY, 3250 ("wrong protection type %d", prot)); 3251 3252 wh = mtod(m, const struct ieee80211_frame *); 3253 pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; 3254 isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0; 3255 dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort) 3256 + ieee80211_ack_duration(ic->ic_rt, rate, isshort); 3257 3258 if (prot == IEEE80211_PROT_RTSCTS) { 3259 /* NB: CTS is the same size as an ACK */ 3260 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); 3261 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); 3262 } else 3263 mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur); 3264 3265 return (mprot); 3266 } 3267 3268 static void 3269 ieee80211_tx_mgt_timeout(void *arg) 3270 { 3271 struct ieee80211vap *vap = arg; 3272 3273 IEEE80211_LOCK(vap->iv_ic); 3274 if (vap->iv_state != IEEE80211_S_INIT && 3275 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) { 3276 /* 3277 * NB: it's safe to specify a timeout as the reason here; 3278 * it'll only be used in the right state. 3279 */ 3280 ieee80211_new_state_locked(vap, IEEE80211_S_SCAN, 3281 IEEE80211_SCAN_FAIL_TIMEOUT); 3282 } 3283 IEEE80211_UNLOCK(vap->iv_ic); 3284 } 3285 3286 /* 3287 * This is the callback set on net80211-sourced transmitted 3288 * authentication request frames. 3289 * 3290 * This does a couple of things: 3291 * 3292 * + If the frame transmitted was a success, it schedules a future 3293 * event which will transition the interface to scan. 3294 * If a state transition _then_ occurs before that event occurs, 3295 * said state transition will cancel this callout. 3296 * 3297 * + If the frame transmit was a failure, it immediately schedules 3298 * the transition back to scan. 3299 */ 3300 static void 3301 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status) 3302 { 3303 struct ieee80211vap *vap = ni->ni_vap; 3304 enum ieee80211_state ostate = (enum ieee80211_state)(uintptr_t)arg; 3305 3306 /* 3307 * Frame transmit completed; arrange timer callback. If 3308 * transmit was successfully we wait for response. Otherwise 3309 * we arrange an immediate callback instead of doing the 3310 * callback directly since we don't know what state the driver 3311 * is in (e.g. what locks it is holding). This work should 3312 * not be too time-critical and not happen too often so the 3313 * added overhead is acceptable. 3314 * 3315 * XXX what happens if !acked but response shows up before callback? 3316 */ 3317 if (vap->iv_state == ostate) { 3318 callout_reset(&vap->iv_mgtsend, 3319 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0, 3320 ieee80211_tx_mgt_timeout, vap); 3321 } 3322 } 3323 3324 static void 3325 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm, 3326 struct ieee80211_node *ni) 3327 { 3328 struct ieee80211vap *vap = ni->ni_vap; 3329 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 3330 struct ieee80211com *ic = ni->ni_ic; 3331 struct ieee80211_rateset *rs = &ni->ni_rates; 3332 uint16_t capinfo; 3333 3334 /* 3335 * beacon frame format 3336 * 3337 * TODO: update to 802.11-2012; a lot of stuff has changed; 3338 * vendor extensions should be at the end, etc. 3339 * 3340 * [8] time stamp 3341 * [2] beacon interval 3342 * [2] cabability information 3343 * [tlv] ssid 3344 * [tlv] supported rates 3345 * [3] parameter set (DS) 3346 * [8] CF parameter set (optional) 3347 * [tlv] parameter set (IBSS/TIM) 3348 * [tlv] country (optional) 3349 * [3] power control (optional) 3350 * [5] channel switch announcement (CSA) (optional) 3351 * XXX TODO: Quiet 3352 * XXX TODO: IBSS DFS 3353 * XXX TODO: TPC report 3354 * [tlv] extended rate phy (ERP) 3355 * [tlv] extended supported rates 3356 * [tlv] RSN parameters 3357 * XXX TODO: BSSLOAD 3358 * (XXX EDCA parameter set, QoS capability?) 3359 * XXX TODO: AP channel report 3360 * 3361 * [tlv] HT capabilities 3362 * [tlv] HT information 3363 * XXX TODO: 20/40 BSS coexistence 3364 * Mesh: 3365 * XXX TODO: Meshid 3366 * XXX TODO: mesh config 3367 * XXX TODO: mesh awake window 3368 * XXX TODO: beacon timing (mesh, etc) 3369 * XXX TODO: MCCAOP Advertisement Overview 3370 * XXX TODO: MCCAOP Advertisement 3371 * XXX TODO: Mesh channel switch parameters 3372 * VHT: 3373 * XXX TODO: VHT capabilities 3374 * XXX TODO: VHT operation 3375 * XXX TODO: VHT transmit power envelope 3376 * XXX TODO: channel switch wrapper element 3377 * XXX TODO: extended BSS load element 3378 * 3379 * XXX Vendor-specific OIDs (e.g. Atheros) 3380 * [tlv] WPA parameters 3381 * [tlv] WME parameters 3382 * [tlv] Vendor OUI HT capabilities (optional) 3383 * [tlv] Vendor OUI HT information (optional) 3384 * [tlv] Atheros capabilities (optional) 3385 * [tlv] TDMA parameters (optional) 3386 * [tlv] Mesh ID (MBSS) 3387 * [tlv] Mesh Conf (MBSS) 3388 * [tlv] application data (optional) 3389 */ 3390 3391 memset(bo, 0, sizeof(*bo)); 3392 3393 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 3394 frm += 8; 3395 *(uint16_t *)frm = htole16(ni->ni_intval); 3396 frm += 2; 3397 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3398 bo->bo_caps = (uint16_t *)frm; 3399 *(uint16_t *)frm = htole16(capinfo); 3400 frm += 2; 3401 *frm++ = IEEE80211_ELEMID_SSID; 3402 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) { 3403 *frm++ = ni->ni_esslen; 3404 memcpy(frm, ni->ni_essid, ni->ni_esslen); 3405 frm += ni->ni_esslen; 3406 } else 3407 *frm++ = 0; 3408 frm = ieee80211_add_rates(frm, rs); 3409 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) { 3410 *frm++ = IEEE80211_ELEMID_DSPARMS; 3411 *frm++ = 1; 3412 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 3413 } 3414 if (ic->ic_flags & IEEE80211_F_PCF) { 3415 bo->bo_cfp = frm; 3416 frm = ieee80211_add_cfparms(frm, ic); 3417 } 3418 bo->bo_tim = frm; 3419 if (vap->iv_opmode == IEEE80211_M_IBSS) { 3420 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 3421 *frm++ = 2; 3422 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 3423 bo->bo_tim_len = 0; 3424 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3425 vap->iv_opmode == IEEE80211_M_MBSS) { 3426 /* TIM IE is the same for Mesh and Hostap */ 3427 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; 3428 3429 tie->tim_ie = IEEE80211_ELEMID_TIM; 3430 tie->tim_len = 4; /* length */ 3431 tie->tim_count = 0; /* DTIM count */ 3432 tie->tim_period = vap->iv_dtim_period; /* DTIM period */ 3433 tie->tim_bitctl = 0; /* bitmap control */ 3434 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 3435 frm += sizeof(struct ieee80211_tim_ie); 3436 bo->bo_tim_len = 1; 3437 } 3438 bo->bo_tim_trailer = frm; 3439 if ((vap->iv_flags & IEEE80211_F_DOTH) || 3440 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 3441 frm = ieee80211_add_countryie(frm, ic); 3442 if (vap->iv_flags & IEEE80211_F_DOTH) { 3443 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) 3444 frm = ieee80211_add_powerconstraint(frm, vap); 3445 bo->bo_csa = frm; 3446 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 3447 frm = ieee80211_add_csa(frm, vap); 3448 } else 3449 bo->bo_csa = frm; 3450 3451 bo->bo_quiet = NULL; 3452 if (vap->iv_flags & IEEE80211_F_DOTH) { 3453 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3454 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && 3455 (vap->iv_quiet == 1)) { 3456 /* 3457 * We only insert the quiet IE offset if 3458 * the quiet IE is enabled. Otherwise don't 3459 * put it here or we'll just overwrite 3460 * some other beacon contents. 3461 */ 3462 if (vap->iv_quiet) { 3463 bo->bo_quiet = frm; 3464 frm = ieee80211_add_quiet(frm,vap, 0); 3465 } 3466 } 3467 } 3468 3469 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) { 3470 bo->bo_erp = frm; 3471 frm = ieee80211_add_erp(frm, ic); 3472 } 3473 frm = ieee80211_add_xrates(frm, rs); 3474 frm = ieee80211_add_rsn(frm, vap); 3475 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 3476 frm = ieee80211_add_htcap(frm, ni); 3477 bo->bo_htinfo = frm; 3478 frm = ieee80211_add_htinfo(frm, ni); 3479 } 3480 3481 if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) { 3482 frm = ieee80211_add_vhtcap(frm, ni); 3483 bo->bo_vhtinfo = frm; 3484 frm = ieee80211_add_vhtinfo(frm, ni); 3485 /* Transmit power envelope */ 3486 /* Channel switch wrapper element */ 3487 /* Extended bss load element */ 3488 } 3489 3490 frm = ieee80211_add_wpa(frm, vap); 3491 if (vap->iv_flags & IEEE80211_F_WME) { 3492 bo->bo_wme = frm; 3493 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 3494 } 3495 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && 3496 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) { 3497 frm = ieee80211_add_htcap_vendor(frm, ni); 3498 frm = ieee80211_add_htinfo_vendor(frm, ni); 3499 } 3500 3501 #ifdef IEEE80211_SUPPORT_SUPERG 3502 if (vap->iv_flags & IEEE80211_F_ATHEROS) { 3503 bo->bo_ath = frm; 3504 frm = ieee80211_add_athcaps(frm, ni); 3505 } 3506 #endif 3507 #ifdef IEEE80211_SUPPORT_TDMA 3508 if (vap->iv_caps & IEEE80211_C_TDMA) { 3509 bo->bo_tdma = frm; 3510 frm = ieee80211_add_tdma(frm, vap); 3511 } 3512 #endif 3513 if (vap->iv_appie_beacon != NULL) { 3514 bo->bo_appie = frm; 3515 bo->bo_appie_len = vap->iv_appie_beacon->ie_len; 3516 frm = add_appie(frm, vap->iv_appie_beacon); 3517 } 3518 3519 /* XXX TODO: move meshid/meshconf up to before vendor extensions? */ 3520 #ifdef IEEE80211_SUPPORT_MESH 3521 if (vap->iv_opmode == IEEE80211_M_MBSS) { 3522 frm = ieee80211_add_meshid(frm, vap); 3523 bo->bo_meshconf = frm; 3524 frm = ieee80211_add_meshconf(frm, vap); 3525 } 3526 #endif 3527 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer; 3528 bo->bo_csa_trailer_len = frm - bo->bo_csa; 3529 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3530 } 3531 3532 /* 3533 * Allocate a beacon frame and fillin the appropriate bits. 3534 */ 3535 struct mbuf * 3536 ieee80211_beacon_alloc(struct ieee80211_node *ni) 3537 { 3538 struct ieee80211vap *vap = ni->ni_vap; 3539 struct ieee80211com *ic = ni->ni_ic; 3540 struct ifnet *ifp = vap->iv_ifp; 3541 struct ieee80211_frame *wh; 3542 struct mbuf *m; 3543 int pktlen; 3544 uint8_t *frm; 3545 3546 /* 3547 * Update the "We're putting the quiet IE in the beacon" state. 3548 */ 3549 if (vap->iv_quiet == 1) 3550 vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE; 3551 else if (vap->iv_quiet == 0) 3552 vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE; 3553 3554 /* 3555 * beacon frame format 3556 * 3557 * Note: This needs updating for 802.11-2012. 3558 * 3559 * [8] time stamp 3560 * [2] beacon interval 3561 * [2] cabability information 3562 * [tlv] ssid 3563 * [tlv] supported rates 3564 * [3] parameter set (DS) 3565 * [8] CF parameter set (optional) 3566 * [tlv] parameter set (IBSS/TIM) 3567 * [tlv] country (optional) 3568 * [3] power control (optional) 3569 * [5] channel switch announcement (CSA) (optional) 3570 * [tlv] extended rate phy (ERP) 3571 * [tlv] extended supported rates 3572 * [tlv] RSN parameters 3573 * [tlv] HT capabilities 3574 * [tlv] HT information 3575 * [tlv] VHT capabilities 3576 * [tlv] VHT operation 3577 * [tlv] Vendor OUI HT capabilities (optional) 3578 * [tlv] Vendor OUI HT information (optional) 3579 * XXX Vendor-specific OIDs (e.g. Atheros) 3580 * [tlv] WPA parameters 3581 * [tlv] WME parameters 3582 * [tlv] TDMA parameters (optional) 3583 * [tlv] Mesh ID (MBSS) 3584 * [tlv] Mesh Conf (MBSS) 3585 * [tlv] application data (optional) 3586 * NB: we allocate the max space required for the TIM bitmap. 3587 * XXX how big is this? 3588 */ 3589 pktlen = 8 /* time stamp */ 3590 + sizeof(uint16_t) /* beacon interval */ 3591 + sizeof(uint16_t) /* capabilities */ 3592 + 2 + ni->ni_esslen /* ssid */ 3593 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 3594 + 2 + 1 /* DS parameters */ 3595 + 2 + 6 /* CF parameters */ 3596 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */ 3597 + IEEE80211_COUNTRY_MAX_SIZE /* country */ 3598 + 2 + 1 /* power control */ 3599 + sizeof(struct ieee80211_csa_ie) /* CSA */ 3600 + sizeof(struct ieee80211_quiet_ie) /* Quiet */ 3601 + 2 + 1 /* ERP */ 3602 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 3603 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 3604 2*sizeof(struct ieee80211_ie_wpa) : 0) 3605 /* XXX conditional? */ 3606 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */ 3607 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */ 3608 + sizeof(struct ieee80211_ie_vhtcap)/* VHT caps */ 3609 + sizeof(struct ieee80211_ie_vht_operation)/* VHT info */ 3610 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */ 3611 sizeof(struct ieee80211_wme_param) : 0) 3612 #ifdef IEEE80211_SUPPORT_SUPERG 3613 + sizeof(struct ieee80211_ath_ie) /* ATH */ 3614 #endif 3615 #ifdef IEEE80211_SUPPORT_TDMA 3616 + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */ 3617 sizeof(struct ieee80211_tdma_param) : 0) 3618 #endif 3619 #ifdef IEEE80211_SUPPORT_MESH 3620 + 2 + ni->ni_meshidlen 3621 + sizeof(struct ieee80211_meshconf_ie) 3622 #endif 3623 + IEEE80211_MAX_APPIE 3624 ; 3625 m = ieee80211_getmgtframe(&frm, 3626 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen); 3627 if (m == NULL) { 3628 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, 3629 "%s: cannot get buf; size %u\n", __func__, pktlen); 3630 vap->iv_stats.is_tx_nobuf++; 3631 return NULL; 3632 } 3633 ieee80211_beacon_construct(m, frm, ni); 3634 3635 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 3636 KASSERT(m != NULL, ("no space for 802.11 header?")); 3637 wh = mtod(m, struct ieee80211_frame *); 3638 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 3639 IEEE80211_FC0_SUBTYPE_BEACON; 3640 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3641 *(uint16_t *)wh->i_dur = 0; 3642 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 3643 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 3644 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 3645 *(uint16_t *)wh->i_seq = 0; 3646 3647 return m; 3648 } 3649 3650 /* 3651 * Update the dynamic parts of a beacon frame based on the current state. 3652 */ 3653 int 3654 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast) 3655 { 3656 struct ieee80211vap *vap = ni->ni_vap; 3657 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 3658 struct ieee80211com *ic = ni->ni_ic; 3659 int len_changed = 0; 3660 uint16_t capinfo; 3661 struct ieee80211_frame *wh; 3662 ieee80211_seq seqno; 3663 3664 IEEE80211_LOCK(ic); 3665 /* 3666 * Handle 11h channel change when we've reached the count. 3667 * We must recalculate the beacon frame contents to account 3668 * for the new channel. Note we do this only for the first 3669 * vap that reaches this point; subsequent vaps just update 3670 * their beacon state to reflect the recalculated channel. 3671 */ 3672 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) && 3673 vap->iv_csa_count == ic->ic_csa_count) { 3674 vap->iv_csa_count = 0; 3675 /* 3676 * Effect channel change before reconstructing the beacon 3677 * frame contents as many places reference ni_chan. 3678 */ 3679 if (ic->ic_csa_newchan != NULL) 3680 ieee80211_csa_completeswitch(ic); 3681 /* 3682 * NB: ieee80211_beacon_construct clears all pending 3683 * updates in bo_flags so we don't need to explicitly 3684 * clear IEEE80211_BEACON_CSA. 3685 */ 3686 ieee80211_beacon_construct(m, 3687 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3688 3689 /* XXX do WME aggressive mode processing? */ 3690 IEEE80211_UNLOCK(ic); 3691 return 1; /* just assume length changed */ 3692 } 3693 3694 /* 3695 * Handle the quiet time element being added and removed. 3696 * Again, for now we just cheat and reconstruct the whole 3697 * beacon - that way the gap is provided as appropriate. 3698 * 3699 * So, track whether we have already added the IE versus 3700 * whether we want to be adding the IE. 3701 */ 3702 if ((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) && 3703 (vap->iv_quiet == 0)) { 3704 /* 3705 * Quiet time beacon IE enabled, but it's disabled; 3706 * recalc 3707 */ 3708 vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE; 3709 ieee80211_beacon_construct(m, 3710 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3711 /* XXX do WME aggressive mode processing? */ 3712 IEEE80211_UNLOCK(ic); 3713 return 1; /* just assume length changed */ 3714 } 3715 3716 if (((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) == 0) && 3717 (vap->iv_quiet == 1)) { 3718 /* 3719 * Quiet time beacon IE disabled, but it's now enabled; 3720 * recalc 3721 */ 3722 vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE; 3723 ieee80211_beacon_construct(m, 3724 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3725 /* XXX do WME aggressive mode processing? */ 3726 IEEE80211_UNLOCK(ic); 3727 return 1; /* just assume length changed */ 3728 } 3729 3730 wh = mtod(m, struct ieee80211_frame *); 3731 3732 /* 3733 * XXX TODO Strictly speaking this should be incremented with the TX 3734 * lock held so as to serialise access to the non-qos TID sequence 3735 * number space. 3736 * 3737 * If the driver identifies it does its own TX seqno management then 3738 * we can skip this (and still not do the TX seqno.) 3739 */ 3740 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 3741 *(uint16_t *)&wh->i_seq[0] = 3742 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 3743 M_SEQNO_SET(m, seqno); 3744 3745 /* XXX faster to recalculate entirely or just changes? */ 3746 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3747 *bo->bo_caps = htole16(capinfo); 3748 3749 if (vap->iv_flags & IEEE80211_F_WME) { 3750 struct ieee80211_wme_state *wme = &ic->ic_wme; 3751 3752 /* 3753 * Check for aggressive mode change. When there is 3754 * significant high priority traffic in the BSS 3755 * throttle back BE traffic by using conservative 3756 * parameters. Otherwise BE uses aggressive params 3757 * to optimize performance of legacy/non-QoS traffic. 3758 */ 3759 if (wme->wme_flags & WME_F_AGGRMODE) { 3760 if (wme->wme_hipri_traffic > 3761 wme->wme_hipri_switch_thresh) { 3762 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3763 "%s: traffic %u, disable aggressive mode\n", 3764 __func__, wme->wme_hipri_traffic); 3765 wme->wme_flags &= ~WME_F_AGGRMODE; 3766 ieee80211_wme_updateparams_locked(vap); 3767 wme->wme_hipri_traffic = 3768 wme->wme_hipri_switch_hysteresis; 3769 } else 3770 wme->wme_hipri_traffic = 0; 3771 } else { 3772 if (wme->wme_hipri_traffic <= 3773 wme->wme_hipri_switch_thresh) { 3774 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3775 "%s: traffic %u, enable aggressive mode\n", 3776 __func__, wme->wme_hipri_traffic); 3777 wme->wme_flags |= WME_F_AGGRMODE; 3778 ieee80211_wme_updateparams_locked(vap); 3779 wme->wme_hipri_traffic = 0; 3780 } else 3781 wme->wme_hipri_traffic = 3782 wme->wme_hipri_switch_hysteresis; 3783 } 3784 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) { 3785 (void) ieee80211_add_wme_param(bo->bo_wme, wme); 3786 clrbit(bo->bo_flags, IEEE80211_BEACON_WME); 3787 } 3788 } 3789 3790 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) { 3791 ieee80211_ht_update_beacon(vap, bo); 3792 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO); 3793 } 3794 #ifdef IEEE80211_SUPPORT_TDMA 3795 if (vap->iv_caps & IEEE80211_C_TDMA) { 3796 /* 3797 * NB: the beacon is potentially updated every TBTT. 3798 */ 3799 ieee80211_tdma_update_beacon(vap, bo); 3800 } 3801 #endif 3802 #ifdef IEEE80211_SUPPORT_MESH 3803 if (vap->iv_opmode == IEEE80211_M_MBSS) 3804 ieee80211_mesh_update_beacon(vap, bo); 3805 #endif 3806 3807 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3808 vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/ 3809 struct ieee80211_tim_ie *tie = 3810 (struct ieee80211_tim_ie *) bo->bo_tim; 3811 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) { 3812 u_int timlen, timoff, i; 3813 /* 3814 * ATIM/DTIM needs updating. If it fits in the 3815 * current space allocated then just copy in the 3816 * new bits. Otherwise we need to move any trailing 3817 * data to make room. Note that we know there is 3818 * contiguous space because ieee80211_beacon_allocate 3819 * insures there is space in the mbuf to write a 3820 * maximal-size virtual bitmap (based on iv_max_aid). 3821 */ 3822 /* 3823 * Calculate the bitmap size and offset, copy any 3824 * trailer out of the way, and then copy in the 3825 * new bitmap and update the information element. 3826 * Note that the tim bitmap must contain at least 3827 * one byte and any offset must be even. 3828 */ 3829 if (vap->iv_ps_pending != 0) { 3830 timoff = 128; /* impossibly large */ 3831 for (i = 0; i < vap->iv_tim_len; i++) 3832 if (vap->iv_tim_bitmap[i]) { 3833 timoff = i &~ 1; 3834 break; 3835 } 3836 KASSERT(timoff != 128, ("tim bitmap empty!")); 3837 for (i = vap->iv_tim_len-1; i >= timoff; i--) 3838 if (vap->iv_tim_bitmap[i]) 3839 break; 3840 timlen = 1 + (i - timoff); 3841 } else { 3842 timoff = 0; 3843 timlen = 1; 3844 } 3845 3846 /* 3847 * TODO: validate this! 3848 */ 3849 if (timlen != bo->bo_tim_len) { 3850 /* copy up/down trailer */ 3851 int adjust = tie->tim_bitmap+timlen 3852 - bo->bo_tim_trailer; 3853 ovbcopy(bo->bo_tim_trailer, 3854 bo->bo_tim_trailer+adjust, 3855 bo->bo_tim_trailer_len); 3856 bo->bo_tim_trailer += adjust; 3857 bo->bo_erp += adjust; 3858 bo->bo_htinfo += adjust; 3859 bo->bo_vhtinfo += adjust; 3860 #ifdef IEEE80211_SUPPORT_SUPERG 3861 bo->bo_ath += adjust; 3862 #endif 3863 #ifdef IEEE80211_SUPPORT_TDMA 3864 bo->bo_tdma += adjust; 3865 #endif 3866 #ifdef IEEE80211_SUPPORT_MESH 3867 bo->bo_meshconf += adjust; 3868 #endif 3869 bo->bo_appie += adjust; 3870 bo->bo_wme += adjust; 3871 bo->bo_csa += adjust; 3872 bo->bo_quiet += adjust; 3873 bo->bo_tim_len = timlen; 3874 3875 /* update information element */ 3876 tie->tim_len = 3 + timlen; 3877 tie->tim_bitctl = timoff; 3878 len_changed = 1; 3879 } 3880 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff, 3881 bo->bo_tim_len); 3882 3883 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM); 3884 3885 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER, 3886 "%s: TIM updated, pending %u, off %u, len %u\n", 3887 __func__, vap->iv_ps_pending, timoff, timlen); 3888 } 3889 /* count down DTIM period */ 3890 if (tie->tim_count == 0) 3891 tie->tim_count = tie->tim_period - 1; 3892 else 3893 tie->tim_count--; 3894 /* update state for buffered multicast frames on DTIM */ 3895 if (mcast && tie->tim_count == 0) 3896 tie->tim_bitctl |= 1; 3897 else 3898 tie->tim_bitctl &= ~1; 3899 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) { 3900 struct ieee80211_csa_ie *csa = 3901 (struct ieee80211_csa_ie *) bo->bo_csa; 3902 3903 /* 3904 * Insert or update CSA ie. If we're just starting 3905 * to count down to the channel switch then we need 3906 * to insert the CSA ie. Otherwise we just need to 3907 * drop the count. The actual change happens above 3908 * when the vap's count reaches the target count. 3909 */ 3910 if (vap->iv_csa_count == 0) { 3911 memmove(&csa[1], csa, bo->bo_csa_trailer_len); 3912 bo->bo_erp += sizeof(*csa); 3913 bo->bo_htinfo += sizeof(*csa); 3914 bo->bo_vhtinfo += sizeof(*csa); 3915 bo->bo_wme += sizeof(*csa); 3916 #ifdef IEEE80211_SUPPORT_SUPERG 3917 bo->bo_ath += sizeof(*csa); 3918 #endif 3919 #ifdef IEEE80211_SUPPORT_TDMA 3920 bo->bo_tdma += sizeof(*csa); 3921 #endif 3922 #ifdef IEEE80211_SUPPORT_MESH 3923 bo->bo_meshconf += sizeof(*csa); 3924 #endif 3925 bo->bo_appie += sizeof(*csa); 3926 bo->bo_csa_trailer_len += sizeof(*csa); 3927 bo->bo_quiet += sizeof(*csa); 3928 bo->bo_tim_trailer_len += sizeof(*csa); 3929 m->m_len += sizeof(*csa); 3930 m->m_pkthdr.len += sizeof(*csa); 3931 3932 ieee80211_add_csa(bo->bo_csa, vap); 3933 } else 3934 csa->csa_count--; 3935 vap->iv_csa_count++; 3936 /* NB: don't clear IEEE80211_BEACON_CSA */ 3937 } 3938 3939 /* 3940 * Only add the quiet time IE if we've enabled it 3941 * as appropriate. 3942 */ 3943 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3944 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 3945 if (vap->iv_quiet && 3946 (vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE)) { 3947 ieee80211_add_quiet(bo->bo_quiet, vap, 1); 3948 } 3949 } 3950 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) { 3951 /* 3952 * ERP element needs updating. 3953 */ 3954 (void) ieee80211_add_erp(bo->bo_erp, ic); 3955 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP); 3956 } 3957 #ifdef IEEE80211_SUPPORT_SUPERG 3958 if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) { 3959 ieee80211_add_athcaps(bo->bo_ath, ni); 3960 clrbit(bo->bo_flags, IEEE80211_BEACON_ATH); 3961 } 3962 #endif 3963 } 3964 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) { 3965 const struct ieee80211_appie *aie = vap->iv_appie_beacon; 3966 int aielen; 3967 uint8_t *frm; 3968 3969 aielen = 0; 3970 if (aie != NULL) 3971 aielen += aie->ie_len; 3972 if (aielen != bo->bo_appie_len) { 3973 /* copy up/down trailer */ 3974 int adjust = aielen - bo->bo_appie_len; 3975 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust, 3976 bo->bo_tim_trailer_len); 3977 bo->bo_tim_trailer += adjust; 3978 bo->bo_appie += adjust; 3979 bo->bo_appie_len = aielen; 3980 3981 len_changed = 1; 3982 } 3983 frm = bo->bo_appie; 3984 if (aie != NULL) 3985 frm = add_appie(frm, aie); 3986 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE); 3987 } 3988 IEEE80211_UNLOCK(ic); 3989 3990 return len_changed; 3991 } 3992 3993 /* 3994 * Do Ethernet-LLC encapsulation for each payload in a fast frame 3995 * tunnel encapsulation. The frame is assumed to have an Ethernet 3996 * header at the front that must be stripped before prepending the 3997 * LLC followed by the Ethernet header passed in (with an Ethernet 3998 * type that specifies the payload size). 3999 */ 4000 struct mbuf * 4001 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m, 4002 const struct ether_header *eh) 4003 { 4004 struct llc *llc; 4005 uint16_t payload; 4006 4007 /* XXX optimize by combining m_adj+M_PREPEND */ 4008 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 4009 llc = mtod(m, struct llc *); 4010 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 4011 llc->llc_control = LLC_UI; 4012 llc->llc_snap.org_code[0] = 0; 4013 llc->llc_snap.org_code[1] = 0; 4014 llc->llc_snap.org_code[2] = 0; 4015 llc->llc_snap.ether_type = eh->ether_type; 4016 payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */ 4017 4018 M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT); 4019 if (m == NULL) { /* XXX cannot happen */ 4020 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 4021 "%s: no space for ether_header\n", __func__); 4022 vap->iv_stats.is_tx_nobuf++; 4023 return NULL; 4024 } 4025 ETHER_HEADER_COPY(mtod(m, void *), eh); 4026 mtod(m, struct ether_header *)->ether_type = htons(payload); 4027 return m; 4028 } 4029 4030 /* 4031 * Complete an mbuf transmission. 4032 * 4033 * For now, this simply processes a completed frame after the 4034 * driver has completed it's transmission and/or retransmission. 4035 * It assumes the frame is an 802.11 encapsulated frame. 4036 * 4037 * Later on it will grow to become the exit path for a given frame 4038 * from the driver and, depending upon how it's been encapsulated 4039 * and already transmitted, it may end up doing A-MPDU retransmission, 4040 * power save requeuing, etc. 4041 * 4042 * In order for the above to work, the driver entry point to this 4043 * must not hold any driver locks. Thus, the driver needs to delay 4044 * any actual mbuf completion until it can release said locks. 4045 * 4046 * This frees the mbuf and if the mbuf has a node reference, 4047 * the node reference will be freed. 4048 */ 4049 void 4050 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status) 4051 { 4052 4053 if (ni != NULL) { 4054 struct ifnet *ifp = ni->ni_vap->iv_ifp; 4055 4056 if (status == 0) { 4057 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len); 4058 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 4059 if (m->m_flags & M_MCAST) 4060 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 4061 } else 4062 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 4063 if (m->m_flags & M_TXCB) 4064 ieee80211_process_callback(ni, m, status); 4065 ieee80211_free_node(ni); 4066 } 4067 m_freem(m); 4068 } 4069