xref: /freebsd/sys/net80211/ieee80211_output.c (revision 97cb52fa9aefd90fad38790fded50905aeeb9b9e)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2001 Atsushi Onoe
5  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 #include "opt_wlan.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/kernel.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/endian.h>
42 
43 #include <sys/socket.h>
44 
45 #include <net/bpf.h>
46 #include <net/ethernet.h>
47 #include <net/if.h>
48 #include <net/if_var.h>
49 #include <net/if_llc.h>
50 #include <net/if_media.h>
51 #include <net/if_vlan_var.h>
52 
53 #include <net80211/ieee80211_var.h>
54 #include <net80211/ieee80211_regdomain.h>
55 #ifdef IEEE80211_SUPPORT_SUPERG
56 #include <net80211/ieee80211_superg.h>
57 #endif
58 #ifdef IEEE80211_SUPPORT_TDMA
59 #include <net80211/ieee80211_tdma.h>
60 #endif
61 #include <net80211/ieee80211_wds.h>
62 #include <net80211/ieee80211_mesh.h>
63 #include <net80211/ieee80211_vht.h>
64 
65 #if defined(INET) || defined(INET6)
66 #include <netinet/in.h>
67 #endif
68 
69 #ifdef INET
70 #include <netinet/if_ether.h>
71 #include <netinet/in_systm.h>
72 #include <netinet/ip.h>
73 #endif
74 #ifdef INET6
75 #include <netinet/ip6.h>
76 #endif
77 
78 #include <security/mac/mac_framework.h>
79 
80 #define	ETHER_HEADER_COPY(dst, src) \
81 	memcpy(dst, src, sizeof(struct ether_header))
82 
83 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
84 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
85 static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
86 
87 #ifdef IEEE80211_DEBUG
88 /*
89  * Decide if an outbound management frame should be
90  * printed when debugging is enabled.  This filters some
91  * of the less interesting frames that come frequently
92  * (e.g. beacons).
93  */
94 static __inline int
95 doprint(struct ieee80211vap *vap, int subtype)
96 {
97 	switch (subtype) {
98 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
99 		return (vap->iv_opmode == IEEE80211_M_IBSS);
100 	}
101 	return 1;
102 }
103 #endif
104 
105 /*
106  * Transmit a frame to the given destination on the given VAP.
107  *
108  * It's up to the caller to figure out the details of who this
109  * is going to and resolving the node.
110  *
111  * This routine takes care of queuing it for power save,
112  * A-MPDU state stuff, fast-frames state stuff, encapsulation
113  * if required, then passing it up to the driver layer.
114  *
115  * This routine (for now) consumes the mbuf and frees the node
116  * reference; it ideally will return a TX status which reflects
117  * whether the mbuf was consumed or not, so the caller can
118  * free the mbuf (if appropriate) and the node reference (again,
119  * if appropriate.)
120  */
121 int
122 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
123     struct ieee80211_node *ni)
124 {
125 	struct ieee80211com *ic = vap->iv_ic;
126 	struct ifnet *ifp = vap->iv_ifp;
127 	int mcast;
128 
129 	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
130 	    (m->m_flags & M_PWR_SAV) == 0) {
131 		/*
132 		 * Station in power save mode; pass the frame
133 		 * to the 802.11 layer and continue.  We'll get
134 		 * the frame back when the time is right.
135 		 * XXX lose WDS vap linkage?
136 		 */
137 		if (ieee80211_pwrsave(ni, m) != 0)
138 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
139 		ieee80211_free_node(ni);
140 
141 		/*
142 		 * We queued it fine, so tell the upper layer
143 		 * that we consumed it.
144 		 */
145 		return (0);
146 	}
147 	/* calculate priority so drivers can find the tx queue */
148 	if (ieee80211_classify(ni, m)) {
149 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
150 		    ni->ni_macaddr, NULL,
151 		    "%s", "classification failure");
152 		vap->iv_stats.is_tx_classify++;
153 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
154 		m_freem(m);
155 		ieee80211_free_node(ni);
156 
157 		/* XXX better status? */
158 		return (0);
159 	}
160 	/*
161 	 * Stash the node pointer.  Note that we do this after
162 	 * any call to ieee80211_dwds_mcast because that code
163 	 * uses any existing value for rcvif to identify the
164 	 * interface it (might have been) received on.
165 	 */
166 	m->m_pkthdr.rcvif = (void *)ni;
167 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
168 
169 	BPF_MTAP(ifp, m);		/* 802.3 tx */
170 
171 	/*
172 	 * Check if A-MPDU tx aggregation is setup or if we
173 	 * should try to enable it.  The sta must be associated
174 	 * with HT and A-MPDU enabled for use.  When the policy
175 	 * routine decides we should enable A-MPDU we issue an
176 	 * ADDBA request and wait for a reply.  The frame being
177 	 * encapsulated will go out w/o using A-MPDU, or possibly
178 	 * it might be collected by the driver and held/retransmit.
179 	 * The default ic_ampdu_enable routine handles staggering
180 	 * ADDBA requests in case the receiver NAK's us or we are
181 	 * otherwise unable to establish a BA stream.
182 	 *
183 	 * Don't treat group-addressed frames as candidates for aggregation;
184 	 * net80211 doesn't support 802.11aa-2012 and so group addressed
185 	 * frames will always have sequence numbers allocated from the NON_QOS
186 	 * TID.
187 	 */
188 	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
189 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)) {
190 		if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) {
191 			int tid = WME_AC_TO_TID(M_WME_GETAC(m));
192 			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
193 
194 			ieee80211_txampdu_count_packet(tap);
195 			if (IEEE80211_AMPDU_RUNNING(tap)) {
196 				/*
197 				 * Operational, mark frame for aggregation.
198 				 *
199 				 * XXX do tx aggregation here
200 				 */
201 				m->m_flags |= M_AMPDU_MPDU;
202 			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
203 			    ic->ic_ampdu_enable(ni, tap)) {
204 				/*
205 				 * Not negotiated yet, request service.
206 				 */
207 				ieee80211_ampdu_request(ni, tap);
208 				/* XXX hold frame for reply? */
209 			}
210 		}
211 	}
212 
213 #ifdef IEEE80211_SUPPORT_SUPERG
214 	/*
215 	 * Check for AMSDU/FF; queue for aggregation
216 	 *
217 	 * Note: we don't bother trying to do fast frames or
218 	 * A-MSDU encapsulation for 802.3 drivers.  Now, we
219 	 * likely could do it for FF (because it's a magic
220 	 * atheros tunnel LLC type) but I don't think we're going
221 	 * to really need to.  For A-MSDU we'd have to set the
222 	 * A-MSDU QoS bit in the wifi header, so we just plain
223 	 * can't do it.
224 	 *
225 	 * Strictly speaking, we could actually /do/ A-MSDU / FF
226 	 * with A-MPDU together which for certain circumstances
227 	 * is beneficial (eg A-MSDU of TCK ACKs.)  However,
228 	 * I'll ignore that for now so existing behaviour is maintained.
229 	 * Later on it would be good to make "amsdu + ampdu" configurable.
230 	 */
231 	else if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
232 		if ((! mcast) && ieee80211_amsdu_tx_ok(ni)) {
233 			m = ieee80211_amsdu_check(ni, m);
234 			if (m == NULL) {
235 				/* NB: any ni ref held on stageq */
236 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
237 				    "%s: amsdu_check queued frame\n",
238 				    __func__);
239 				return (0);
240 			}
241 		} else if ((! mcast) && IEEE80211_ATH_CAP(vap, ni,
242 		    IEEE80211_NODE_FF)) {
243 			m = ieee80211_ff_check(ni, m);
244 			if (m == NULL) {
245 				/* NB: any ni ref held on stageq */
246 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
247 				    "%s: ff_check queued frame\n",
248 				    __func__);
249 				return (0);
250 			}
251 		}
252 	}
253 #endif /* IEEE80211_SUPPORT_SUPERG */
254 
255 	/*
256 	 * Grab the TX lock - serialise the TX process from this
257 	 * point (where TX state is being checked/modified)
258 	 * through to driver queue.
259 	 */
260 	IEEE80211_TX_LOCK(ic);
261 
262 	/*
263 	 * XXX make the encap and transmit code a separate function
264 	 * so things like the FF (and later A-MSDU) path can just call
265 	 * it for flushed frames.
266 	 */
267 	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
268 		/*
269 		 * Encapsulate the packet in prep for transmission.
270 		 */
271 		m = ieee80211_encap(vap, ni, m);
272 		if (m == NULL) {
273 			/* NB: stat+msg handled in ieee80211_encap */
274 			IEEE80211_TX_UNLOCK(ic);
275 			ieee80211_free_node(ni);
276 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
277 			return (ENOBUFS);
278 		}
279 	}
280 	(void) ieee80211_parent_xmitpkt(ic, m);
281 
282 	/*
283 	 * Unlock at this point - no need to hold it across
284 	 * ieee80211_free_node() (ie, the comlock)
285 	 */
286 	IEEE80211_TX_UNLOCK(ic);
287 	ic->ic_lastdata = ticks;
288 
289 	return (0);
290 }
291 
292 
293 
294 /*
295  * Send the given mbuf through the given vap.
296  *
297  * This consumes the mbuf regardless of whether the transmit
298  * was successful or not.
299  *
300  * This does none of the initial checks that ieee80211_start()
301  * does (eg CAC timeout, interface wakeup) - the caller must
302  * do this first.
303  */
304 static int
305 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
306 {
307 #define	IS_DWDS(vap) \
308 	(vap->iv_opmode == IEEE80211_M_WDS && \
309 	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
310 	struct ieee80211com *ic = vap->iv_ic;
311 	struct ifnet *ifp = vap->iv_ifp;
312 	struct ieee80211_node *ni;
313 	struct ether_header *eh;
314 
315 	/*
316 	 * Cancel any background scan.
317 	 */
318 	if (ic->ic_flags & IEEE80211_F_SCAN)
319 		ieee80211_cancel_anyscan(vap);
320 	/*
321 	 * Find the node for the destination so we can do
322 	 * things like power save and fast frames aggregation.
323 	 *
324 	 * NB: past this point various code assumes the first
325 	 *     mbuf has the 802.3 header present (and contiguous).
326 	 */
327 	ni = NULL;
328 	if (m->m_len < sizeof(struct ether_header) &&
329 	   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
330 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
331 		    "discard frame, %s\n", "m_pullup failed");
332 		vap->iv_stats.is_tx_nobuf++;	/* XXX */
333 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
334 		return (ENOBUFS);
335 	}
336 	eh = mtod(m, struct ether_header *);
337 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
338 		if (IS_DWDS(vap)) {
339 			/*
340 			 * Only unicast frames from the above go out
341 			 * DWDS vaps; multicast frames are handled by
342 			 * dispatching the frame as it comes through
343 			 * the AP vap (see below).
344 			 */
345 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
346 			    eh->ether_dhost, "mcast", "%s", "on DWDS");
347 			vap->iv_stats.is_dwds_mcast++;
348 			m_freem(m);
349 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
350 			/* XXX better status? */
351 			return (ENOBUFS);
352 		}
353 		if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
354 			/*
355 			 * Spam DWDS vap's w/ multicast traffic.
356 			 */
357 			/* XXX only if dwds in use? */
358 			ieee80211_dwds_mcast(vap, m);
359 		}
360 	}
361 #ifdef IEEE80211_SUPPORT_MESH
362 	if (vap->iv_opmode != IEEE80211_M_MBSS) {
363 #endif
364 		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
365 		if (ni == NULL) {
366 			/* NB: ieee80211_find_txnode does stat+msg */
367 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
368 			m_freem(m);
369 			/* XXX better status? */
370 			return (ENOBUFS);
371 		}
372 		if (ni->ni_associd == 0 &&
373 		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
374 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
375 			    eh->ether_dhost, NULL,
376 			    "sta not associated (type 0x%04x)",
377 			    htons(eh->ether_type));
378 			vap->iv_stats.is_tx_notassoc++;
379 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
380 			m_freem(m);
381 			ieee80211_free_node(ni);
382 			/* XXX better status? */
383 			return (ENOBUFS);
384 		}
385 #ifdef IEEE80211_SUPPORT_MESH
386 	} else {
387 		if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
388 			/*
389 			 * Proxy station only if configured.
390 			 */
391 			if (!ieee80211_mesh_isproxyena(vap)) {
392 				IEEE80211_DISCARD_MAC(vap,
393 				    IEEE80211_MSG_OUTPUT |
394 				    IEEE80211_MSG_MESH,
395 				    eh->ether_dhost, NULL,
396 				    "%s", "proxy not enabled");
397 				vap->iv_stats.is_mesh_notproxy++;
398 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
399 				m_freem(m);
400 				/* XXX better status? */
401 				return (ENOBUFS);
402 			}
403 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
404 			    "forward frame from DS SA(%6D), DA(%6D)\n",
405 			    eh->ether_shost, ":",
406 			    eh->ether_dhost, ":");
407 			ieee80211_mesh_proxy_check(vap, eh->ether_shost);
408 		}
409 		ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
410 		if (ni == NULL) {
411 			/*
412 			 * NB: ieee80211_mesh_discover holds/disposes
413 			 * frame (e.g. queueing on path discovery).
414 			 */
415 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
416 			/* XXX better status? */
417 			return (ENOBUFS);
418 		}
419 	}
420 #endif
421 
422 	/*
423 	 * We've resolved the sender, so attempt to transmit it.
424 	 */
425 
426 	if (vap->iv_state == IEEE80211_S_SLEEP) {
427 		/*
428 		 * In power save; queue frame and then  wakeup device
429 		 * for transmit.
430 		 */
431 		ic->ic_lastdata = ticks;
432 		if (ieee80211_pwrsave(ni, m) != 0)
433 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
434 		ieee80211_free_node(ni);
435 		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
436 		return (0);
437 	}
438 
439 	if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
440 		return (ENOBUFS);
441 	return (0);
442 #undef	IS_DWDS
443 }
444 
445 /*
446  * Start method for vap's.  All packets from the stack come
447  * through here.  We handle common processing of the packets
448  * before dispatching them to the underlying device.
449  *
450  * if_transmit() requires that the mbuf be consumed by this call
451  * regardless of the return condition.
452  */
453 int
454 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
455 {
456 	struct ieee80211vap *vap = ifp->if_softc;
457 	struct ieee80211com *ic = vap->iv_ic;
458 
459 	/*
460 	 * No data frames go out unless we're running.
461 	 * Note in particular this covers CAC and CSA
462 	 * states (though maybe we should check muting
463 	 * for CSA).
464 	 */
465 	if (vap->iv_state != IEEE80211_S_RUN &&
466 	    vap->iv_state != IEEE80211_S_SLEEP) {
467 		IEEE80211_LOCK(ic);
468 		/* re-check under the com lock to avoid races */
469 		if (vap->iv_state != IEEE80211_S_RUN &&
470 		    vap->iv_state != IEEE80211_S_SLEEP) {
471 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
472 			    "%s: ignore queue, in %s state\n",
473 			    __func__, ieee80211_state_name[vap->iv_state]);
474 			vap->iv_stats.is_tx_badstate++;
475 			IEEE80211_UNLOCK(ic);
476 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
477 			m_freem(m);
478 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
479 			return (ENETDOWN);
480 		}
481 		IEEE80211_UNLOCK(ic);
482 	}
483 
484 	/*
485 	 * Sanitize mbuf flags for net80211 use.  We cannot
486 	 * clear M_PWR_SAV or M_MORE_DATA because these may
487 	 * be set for frames that are re-submitted from the
488 	 * power save queue.
489 	 *
490 	 * NB: This must be done before ieee80211_classify as
491 	 *     it marks EAPOL in frames with M_EAPOL.
492 	 */
493 	m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
494 
495 	/*
496 	 * Bump to the packet transmission path.
497 	 * The mbuf will be consumed here.
498 	 */
499 	return (ieee80211_start_pkt(vap, m));
500 }
501 
502 void
503 ieee80211_vap_qflush(struct ifnet *ifp)
504 {
505 
506 	/* Empty for now */
507 }
508 
509 /*
510  * 802.11 raw output routine.
511  *
512  * XXX TODO: this (and other send routines) should correctly
513  * XXX keep the pwr mgmt bit set if it decides to call into the
514  * XXX driver to send a frame whilst the state is SLEEP.
515  *
516  * Otherwise the peer may decide that we're awake and flood us
517  * with traffic we are still too asleep to receive!
518  */
519 int
520 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
521     struct mbuf *m, const struct ieee80211_bpf_params *params)
522 {
523 	struct ieee80211com *ic = vap->iv_ic;
524 	int error;
525 
526 	/*
527 	 * Set node - the caller has taken a reference, so ensure
528 	 * that the mbuf has the same node value that
529 	 * it would if it were going via the normal path.
530 	 */
531 	m->m_pkthdr.rcvif = (void *)ni;
532 
533 	/*
534 	 * Attempt to add bpf transmit parameters.
535 	 *
536 	 * For now it's ok to fail; the raw_xmit api still takes
537 	 * them as an option.
538 	 *
539 	 * Later on when ic_raw_xmit() has params removed,
540 	 * they'll have to be added - so fail the transmit if
541 	 * they can't be.
542 	 */
543 	if (params)
544 		(void) ieee80211_add_xmit_params(m, params);
545 
546 	error = ic->ic_raw_xmit(ni, m, params);
547 	if (error) {
548 		if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
549 		ieee80211_free_node(ni);
550 	}
551 	return (error);
552 }
553 
554 /*
555  * 802.11 output routine. This is (currently) used only to
556  * connect bpf write calls to the 802.11 layer for injecting
557  * raw 802.11 frames.
558  */
559 int
560 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
561 	const struct sockaddr *dst, struct route *ro)
562 {
563 #define senderr(e) do { error = (e); goto bad;} while (0)
564 	struct ieee80211_node *ni = NULL;
565 	struct ieee80211vap *vap;
566 	struct ieee80211_frame *wh;
567 	struct ieee80211com *ic = NULL;
568 	int error;
569 	int ret;
570 
571 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
572 		/*
573 		 * Short-circuit requests if the vap is marked OACTIVE
574 		 * as this can happen because a packet came down through
575 		 * ieee80211_start before the vap entered RUN state in
576 		 * which case it's ok to just drop the frame.  This
577 		 * should not be necessary but callers of if_output don't
578 		 * check OACTIVE.
579 		 */
580 		senderr(ENETDOWN);
581 	}
582 	vap = ifp->if_softc;
583 	ic = vap->iv_ic;
584 	/*
585 	 * Hand to the 802.3 code if not tagged as
586 	 * a raw 802.11 frame.
587 	 */
588 	if (dst->sa_family != AF_IEEE80211)
589 		return vap->iv_output(ifp, m, dst, ro);
590 #ifdef MAC
591 	error = mac_ifnet_check_transmit(ifp, m);
592 	if (error)
593 		senderr(error);
594 #endif
595 	if (ifp->if_flags & IFF_MONITOR)
596 		senderr(ENETDOWN);
597 	if (!IFNET_IS_UP_RUNNING(ifp))
598 		senderr(ENETDOWN);
599 	if (vap->iv_state == IEEE80211_S_CAC) {
600 		IEEE80211_DPRINTF(vap,
601 		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
602 		    "block %s frame in CAC state\n", "raw data");
603 		vap->iv_stats.is_tx_badstate++;
604 		senderr(EIO);		/* XXX */
605 	} else if (vap->iv_state == IEEE80211_S_SCAN)
606 		senderr(EIO);
607 	/* XXX bypass bridge, pfil, carp, etc. */
608 
609 	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
610 		senderr(EIO);	/* XXX */
611 	wh = mtod(m, struct ieee80211_frame *);
612 	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
613 	    IEEE80211_FC0_VERSION_0)
614 		senderr(EIO);	/* XXX */
615 	if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh))
616 		senderr(EIO);	/* XXX */
617 
618 	/* locate destination node */
619 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
620 	case IEEE80211_FC1_DIR_NODS:
621 	case IEEE80211_FC1_DIR_FROMDS:
622 		ni = ieee80211_find_txnode(vap, wh->i_addr1);
623 		break;
624 	case IEEE80211_FC1_DIR_TODS:
625 	case IEEE80211_FC1_DIR_DSTODS:
626 		ni = ieee80211_find_txnode(vap, wh->i_addr3);
627 		break;
628 	default:
629 		senderr(EIO);	/* XXX */
630 	}
631 	if (ni == NULL) {
632 		/*
633 		 * Permit packets w/ bpf params through regardless
634 		 * (see below about sa_len).
635 		 */
636 		if (dst->sa_len == 0)
637 			senderr(EHOSTUNREACH);
638 		ni = ieee80211_ref_node(vap->iv_bss);
639 	}
640 
641 	/*
642 	 * Sanitize mbuf for net80211 flags leaked from above.
643 	 *
644 	 * NB: This must be done before ieee80211_classify as
645 	 *     it marks EAPOL in frames with M_EAPOL.
646 	 */
647 	m->m_flags &= ~M_80211_TX;
648 
649 	/* calculate priority so drivers can find the tx queue */
650 	/* XXX assumes an 802.3 frame */
651 	if (ieee80211_classify(ni, m))
652 		senderr(EIO);		/* XXX */
653 
654 	IEEE80211_NODE_STAT(ni, tx_data);
655 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
656 		IEEE80211_NODE_STAT(ni, tx_mcast);
657 		m->m_flags |= M_MCAST;
658 	} else
659 		IEEE80211_NODE_STAT(ni, tx_ucast);
660 	/* NB: ieee80211_encap does not include 802.11 header */
661 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len);
662 
663 	IEEE80211_TX_LOCK(ic);
664 
665 	/*
666 	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
667 	 * present by setting the sa_len field of the sockaddr (yes,
668 	 * this is a hack).
669 	 * NB: we assume sa_data is suitably aligned to cast.
670 	 */
671 	ret = ieee80211_raw_output(vap, ni, m,
672 	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
673 		dst->sa_data : NULL));
674 	IEEE80211_TX_UNLOCK(ic);
675 	return (ret);
676 bad:
677 	if (m != NULL)
678 		m_freem(m);
679 	if (ni != NULL)
680 		ieee80211_free_node(ni);
681 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
682 	return error;
683 #undef senderr
684 }
685 
686 /*
687  * Set the direction field and address fields of an outgoing
688  * frame.  Note this should be called early on in constructing
689  * a frame as it sets i_fc[1]; other bits can then be or'd in.
690  */
691 void
692 ieee80211_send_setup(
693 	struct ieee80211_node *ni,
694 	struct mbuf *m,
695 	int type, int tid,
696 	const uint8_t sa[IEEE80211_ADDR_LEN],
697 	const uint8_t da[IEEE80211_ADDR_LEN],
698 	const uint8_t bssid[IEEE80211_ADDR_LEN])
699 {
700 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
701 	struct ieee80211vap *vap = ni->ni_vap;
702 	struct ieee80211_tx_ampdu *tap;
703 	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
704 	ieee80211_seq seqno;
705 
706 	IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
707 
708 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
709 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
710 		switch (vap->iv_opmode) {
711 		case IEEE80211_M_STA:
712 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
713 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
714 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
715 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
716 			break;
717 		case IEEE80211_M_IBSS:
718 		case IEEE80211_M_AHDEMO:
719 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
720 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
721 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
722 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
723 			break;
724 		case IEEE80211_M_HOSTAP:
725 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
726 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
727 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
728 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
729 			break;
730 		case IEEE80211_M_WDS:
731 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
732 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
733 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
734 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
735 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
736 			break;
737 		case IEEE80211_M_MBSS:
738 #ifdef IEEE80211_SUPPORT_MESH
739 			if (IEEE80211_IS_MULTICAST(da)) {
740 				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
741 				/* XXX next hop */
742 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
743 				IEEE80211_ADDR_COPY(wh->i_addr2,
744 				    vap->iv_myaddr);
745 			} else {
746 				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
747 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
748 				IEEE80211_ADDR_COPY(wh->i_addr2,
749 				    vap->iv_myaddr);
750 				IEEE80211_ADDR_COPY(wh->i_addr3, da);
751 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
752 			}
753 #endif
754 			break;
755 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
756 			break;
757 		}
758 	} else {
759 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
760 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
761 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
762 #ifdef IEEE80211_SUPPORT_MESH
763 		if (vap->iv_opmode == IEEE80211_M_MBSS)
764 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
765 		else
766 #endif
767 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
768 	}
769 	*(uint16_t *)&wh->i_dur[0] = 0;
770 
771 	/*
772 	 * XXX TODO: this is what the TX lock is for.
773 	 * Here we're incrementing sequence numbers, and they
774 	 * need to be in lock-step with what the driver is doing
775 	 * both in TX ordering and crypto encap (IV increment.)
776 	 *
777 	 * If the driver does seqno itself, then we can skip
778 	 * assigning sequence numbers here, and we can avoid
779 	 * requiring the TX lock.
780 	 */
781 	tap = &ni->ni_tx_ampdu[tid];
782 	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) {
783 		m->m_flags |= M_AMPDU_MPDU;
784 
785 		/* NB: zero out i_seq field (for s/w encryption etc) */
786 		*(uint16_t *)&wh->i_seq[0] = 0;
787 	} else {
788 		if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
789 				      type & IEEE80211_FC0_SUBTYPE_MASK))
790 			/*
791 			 * 802.11-2012 9.3.2.10 - QoS multicast frames
792 			 * come out of a different seqno space.
793 			 */
794 			if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
795 				seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
796 			} else {
797 				seqno = ni->ni_txseqs[tid]++;
798 			}
799 		else
800 			seqno = 0;
801 
802 		*(uint16_t *)&wh->i_seq[0] =
803 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
804 		M_SEQNO_SET(m, seqno);
805 	}
806 
807 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
808 		m->m_flags |= M_MCAST;
809 #undef WH4
810 }
811 
812 /*
813  * Send a management frame to the specified node.  The node pointer
814  * must have a reference as the pointer will be passed to the driver
815  * and potentially held for a long time.  If the frame is successfully
816  * dispatched to the driver, then it is responsible for freeing the
817  * reference (and potentially free'ing up any associated storage);
818  * otherwise deal with reclaiming any reference (on error).
819  */
820 int
821 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
822 	struct ieee80211_bpf_params *params)
823 {
824 	struct ieee80211vap *vap = ni->ni_vap;
825 	struct ieee80211com *ic = ni->ni_ic;
826 	struct ieee80211_frame *wh;
827 	int ret;
828 
829 	KASSERT(ni != NULL, ("null node"));
830 
831 	if (vap->iv_state == IEEE80211_S_CAC) {
832 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
833 		    ni, "block %s frame in CAC state",
834 			ieee80211_mgt_subtype_name(type));
835 		vap->iv_stats.is_tx_badstate++;
836 		ieee80211_free_node(ni);
837 		m_freem(m);
838 		return EIO;		/* XXX */
839 	}
840 
841 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
842 	if (m == NULL) {
843 		ieee80211_free_node(ni);
844 		return ENOMEM;
845 	}
846 
847 	IEEE80211_TX_LOCK(ic);
848 
849 	wh = mtod(m, struct ieee80211_frame *);
850 	ieee80211_send_setup(ni, m,
851 	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
852 	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
853 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
854 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
855 		    "encrypting frame (%s)", __func__);
856 		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
857 	}
858 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
859 
860 	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
861 	M_WME_SETAC(m, params->ibp_pri);
862 
863 #ifdef IEEE80211_DEBUG
864 	/* avoid printing too many frames */
865 	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
866 	    ieee80211_msg_dumppkts(vap)) {
867 		printf("[%s] send %s on channel %u\n",
868 		    ether_sprintf(wh->i_addr1),
869 		    ieee80211_mgt_subtype_name(type),
870 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
871 	}
872 #endif
873 	IEEE80211_NODE_STAT(ni, tx_mgmt);
874 
875 	ret = ieee80211_raw_output(vap, ni, m, params);
876 	IEEE80211_TX_UNLOCK(ic);
877 	return (ret);
878 }
879 
880 static void
881 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg,
882     int status)
883 {
884 	struct ieee80211vap *vap = ni->ni_vap;
885 
886 	wakeup(vap);
887 }
888 
889 /*
890  * Send a null data frame to the specified node.  If the station
891  * is setup for QoS then a QoS Null Data frame is constructed.
892  * If this is a WDS station then a 4-address frame is constructed.
893  *
894  * NB: the caller is assumed to have setup a node reference
895  *     for use; this is necessary to deal with a race condition
896  *     when probing for inactive stations.  Like ieee80211_mgmt_output
897  *     we must cleanup any node reference on error;  however we
898  *     can safely just unref it as we know it will never be the
899  *     last reference to the node.
900  */
901 int
902 ieee80211_send_nulldata(struct ieee80211_node *ni)
903 {
904 	struct ieee80211vap *vap = ni->ni_vap;
905 	struct ieee80211com *ic = ni->ni_ic;
906 	struct mbuf *m;
907 	struct ieee80211_frame *wh;
908 	int hdrlen;
909 	uint8_t *frm;
910 	int ret;
911 
912 	if (vap->iv_state == IEEE80211_S_CAC) {
913 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
914 		    ni, "block %s frame in CAC state", "null data");
915 		ieee80211_unref_node(&ni);
916 		vap->iv_stats.is_tx_badstate++;
917 		return EIO;		/* XXX */
918 	}
919 
920 	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
921 		hdrlen = sizeof(struct ieee80211_qosframe);
922 	else
923 		hdrlen = sizeof(struct ieee80211_frame);
924 	/* NB: only WDS vap's get 4-address frames */
925 	if (vap->iv_opmode == IEEE80211_M_WDS)
926 		hdrlen += IEEE80211_ADDR_LEN;
927 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
928 		hdrlen = roundup(hdrlen, sizeof(uint32_t));
929 
930 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
931 	if (m == NULL) {
932 		/* XXX debug msg */
933 		ieee80211_unref_node(&ni);
934 		vap->iv_stats.is_tx_nobuf++;
935 		return ENOMEM;
936 	}
937 	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
938 	    ("leading space %zd", M_LEADINGSPACE(m)));
939 	M_PREPEND(m, hdrlen, M_NOWAIT);
940 	if (m == NULL) {
941 		/* NB: cannot happen */
942 		ieee80211_free_node(ni);
943 		return ENOMEM;
944 	}
945 
946 	IEEE80211_TX_LOCK(ic);
947 
948 	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
949 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
950 		const int tid = WME_AC_TO_TID(WME_AC_BE);
951 		uint8_t *qos;
952 
953 		ieee80211_send_setup(ni, m,
954 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
955 		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
956 
957 		if (vap->iv_opmode == IEEE80211_M_WDS)
958 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
959 		else
960 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
961 		qos[0] = tid & IEEE80211_QOS_TID;
962 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
963 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
964 		qos[1] = 0;
965 	} else {
966 		ieee80211_send_setup(ni, m,
967 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
968 		    IEEE80211_NONQOS_TID,
969 		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
970 	}
971 	if (vap->iv_opmode != IEEE80211_M_WDS) {
972 		/* NB: power management bit is never sent by an AP */
973 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
974 		    vap->iv_opmode != IEEE80211_M_HOSTAP)
975 			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
976 	}
977 	if ((ic->ic_flags & IEEE80211_F_SCAN) &&
978 	    (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) {
979 		ieee80211_add_callback(m, ieee80211_nulldata_transmitted,
980 		    NULL);
981 	}
982 	m->m_len = m->m_pkthdr.len = hdrlen;
983 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
984 
985 	M_WME_SETAC(m, WME_AC_BE);
986 
987 	IEEE80211_NODE_STAT(ni, tx_data);
988 
989 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
990 	    "send %snull data frame on channel %u, pwr mgt %s",
991 	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
992 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
993 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
994 
995 	ret = ieee80211_raw_output(vap, ni, m, NULL);
996 	IEEE80211_TX_UNLOCK(ic);
997 	return (ret);
998 }
999 
1000 /*
1001  * Assign priority to a frame based on any vlan tag assigned
1002  * to the station and/or any Diffserv setting in an IP header.
1003  * Finally, if an ACM policy is setup (in station mode) it's
1004  * applied.
1005  */
1006 int
1007 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
1008 {
1009 	const struct ether_header *eh = mtod(m, struct ether_header *);
1010 	int v_wme_ac, d_wme_ac, ac;
1011 
1012 	/*
1013 	 * Always promote PAE/EAPOL frames to high priority.
1014 	 */
1015 	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
1016 		/* NB: mark so others don't need to check header */
1017 		m->m_flags |= M_EAPOL;
1018 		ac = WME_AC_VO;
1019 		goto done;
1020 	}
1021 	/*
1022 	 * Non-qos traffic goes to BE.
1023 	 */
1024 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
1025 		ac = WME_AC_BE;
1026 		goto done;
1027 	}
1028 
1029 	/*
1030 	 * If node has a vlan tag then all traffic
1031 	 * to it must have a matching tag.
1032 	 */
1033 	v_wme_ac = 0;
1034 	if (ni->ni_vlan != 0) {
1035 		 if ((m->m_flags & M_VLANTAG) == 0) {
1036 			IEEE80211_NODE_STAT(ni, tx_novlantag);
1037 			return 1;
1038 		}
1039 		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
1040 		    EVL_VLANOFTAG(ni->ni_vlan)) {
1041 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
1042 			return 1;
1043 		}
1044 		/* map vlan priority to AC */
1045 		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
1046 	}
1047 
1048 	/* XXX m_copydata may be too slow for fast path */
1049 #ifdef INET
1050 	if (eh->ether_type == htons(ETHERTYPE_IP)) {
1051 		uint8_t tos;
1052 		/*
1053 		 * IP frame, map the DSCP bits from the TOS field.
1054 		 */
1055 		/* NB: ip header may not be in first mbuf */
1056 		m_copydata(m, sizeof(struct ether_header) +
1057 		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
1058 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1059 		d_wme_ac = TID_TO_WME_AC(tos);
1060 	} else {
1061 #endif /* INET */
1062 #ifdef INET6
1063 	if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
1064 		uint32_t flow;
1065 		uint8_t tos;
1066 		/*
1067 		 * IPv6 frame, map the DSCP bits from the traffic class field.
1068 		 */
1069 		m_copydata(m, sizeof(struct ether_header) +
1070 		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
1071 		    (caddr_t) &flow);
1072 		tos = (uint8_t)(ntohl(flow) >> 20);
1073 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1074 		d_wme_ac = TID_TO_WME_AC(tos);
1075 	} else {
1076 #endif /* INET6 */
1077 		d_wme_ac = WME_AC_BE;
1078 #ifdef INET6
1079 	}
1080 #endif
1081 #ifdef INET
1082 	}
1083 #endif
1084 	/*
1085 	 * Use highest priority AC.
1086 	 */
1087 	if (v_wme_ac > d_wme_ac)
1088 		ac = v_wme_ac;
1089 	else
1090 		ac = d_wme_ac;
1091 
1092 	/*
1093 	 * Apply ACM policy.
1094 	 */
1095 	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1096 		static const int acmap[4] = {
1097 			WME_AC_BK,	/* WME_AC_BE */
1098 			WME_AC_BK,	/* WME_AC_BK */
1099 			WME_AC_BE,	/* WME_AC_VI */
1100 			WME_AC_VI,	/* WME_AC_VO */
1101 		};
1102 		struct ieee80211com *ic = ni->ni_ic;
1103 
1104 		while (ac != WME_AC_BK &&
1105 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1106 			ac = acmap[ac];
1107 	}
1108 done:
1109 	M_WME_SETAC(m, ac);
1110 	return 0;
1111 }
1112 
1113 /*
1114  * Insure there is sufficient contiguous space to encapsulate the
1115  * 802.11 data frame.  If room isn't already there, arrange for it.
1116  * Drivers and cipher modules assume we have done the necessary work
1117  * and fail rudely if they don't find the space they need.
1118  */
1119 struct mbuf *
1120 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1121 	struct ieee80211_key *key, struct mbuf *m)
1122 {
1123 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
1124 	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1125 
1126 	if (key != NULL) {
1127 		/* XXX belongs in crypto code? */
1128 		needed_space += key->wk_cipher->ic_header;
1129 		/* XXX frags */
1130 		/*
1131 		 * When crypto is being done in the host we must insure
1132 		 * the data are writable for the cipher routines; clone
1133 		 * a writable mbuf chain.
1134 		 * XXX handle SWMIC specially
1135 		 */
1136 		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1137 			m = m_unshare(m, M_NOWAIT);
1138 			if (m == NULL) {
1139 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1140 				    "%s: cannot get writable mbuf\n", __func__);
1141 				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1142 				return NULL;
1143 			}
1144 		}
1145 	}
1146 	/*
1147 	 * We know we are called just before stripping an Ethernet
1148 	 * header and prepending an LLC header.  This means we know
1149 	 * there will be
1150 	 *	sizeof(struct ether_header) - sizeof(struct llc)
1151 	 * bytes recovered to which we need additional space for the
1152 	 * 802.11 header and any crypto header.
1153 	 */
1154 	/* XXX check trailing space and copy instead? */
1155 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1156 		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
1157 		if (n == NULL) {
1158 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1159 			    "%s: cannot expand storage\n", __func__);
1160 			vap->iv_stats.is_tx_nobuf++;
1161 			m_freem(m);
1162 			return NULL;
1163 		}
1164 		KASSERT(needed_space <= MHLEN,
1165 		    ("not enough room, need %u got %d\n", needed_space, MHLEN));
1166 		/*
1167 		 * Setup new mbuf to have leading space to prepend the
1168 		 * 802.11 header and any crypto header bits that are
1169 		 * required (the latter are added when the driver calls
1170 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
1171 		 */
1172 		/* NB: must be first 'cuz it clobbers m_data */
1173 		m_move_pkthdr(n, m);
1174 		n->m_len = 0;			/* NB: m_gethdr does not set */
1175 		n->m_data += needed_space;
1176 		/*
1177 		 * Pull up Ethernet header to create the expected layout.
1178 		 * We could use m_pullup but that's overkill (i.e. we don't
1179 		 * need the actual data) and it cannot fail so do it inline
1180 		 * for speed.
1181 		 */
1182 		/* NB: struct ether_header is known to be contiguous */
1183 		n->m_len += sizeof(struct ether_header);
1184 		m->m_len -= sizeof(struct ether_header);
1185 		m->m_data += sizeof(struct ether_header);
1186 		/*
1187 		 * Replace the head of the chain.
1188 		 */
1189 		n->m_next = m;
1190 		m = n;
1191 	}
1192 	return m;
1193 #undef TO_BE_RECLAIMED
1194 }
1195 
1196 /*
1197  * Return the transmit key to use in sending a unicast frame.
1198  * If a unicast key is set we use that.  When no unicast key is set
1199  * we fall back to the default transmit key.
1200  */
1201 static __inline struct ieee80211_key *
1202 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1203 	struct ieee80211_node *ni)
1204 {
1205 	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1206 		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1207 		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1208 			return NULL;
1209 		return &vap->iv_nw_keys[vap->iv_def_txkey];
1210 	} else {
1211 		return &ni->ni_ucastkey;
1212 	}
1213 }
1214 
1215 /*
1216  * Return the transmit key to use in sending a multicast frame.
1217  * Multicast traffic always uses the group key which is installed as
1218  * the default tx key.
1219  */
1220 static __inline struct ieee80211_key *
1221 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1222 	struct ieee80211_node *ni)
1223 {
1224 	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1225 	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1226 		return NULL;
1227 	return &vap->iv_nw_keys[vap->iv_def_txkey];
1228 }
1229 
1230 /*
1231  * Encapsulate an outbound data frame.  The mbuf chain is updated.
1232  * If an error is encountered NULL is returned.  The caller is required
1233  * to provide a node reference and pullup the ethernet header in the
1234  * first mbuf.
1235  *
1236  * NB: Packet is assumed to be processed by ieee80211_classify which
1237  *     marked EAPOL frames w/ M_EAPOL.
1238  */
1239 struct mbuf *
1240 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1241     struct mbuf *m)
1242 {
1243 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1244 #define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
1245 	struct ieee80211com *ic = ni->ni_ic;
1246 #ifdef IEEE80211_SUPPORT_MESH
1247 	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1248 	struct ieee80211_meshcntl_ae10 *mc;
1249 	struct ieee80211_mesh_route *rt = NULL;
1250 	int dir = -1;
1251 #endif
1252 	struct ether_header eh;
1253 	struct ieee80211_frame *wh;
1254 	struct ieee80211_key *key;
1255 	struct llc *llc;
1256 	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast;
1257 	ieee80211_seq seqno;
1258 	int meshhdrsize, meshae;
1259 	uint8_t *qos;
1260 	int is_amsdu = 0;
1261 
1262 	IEEE80211_TX_LOCK_ASSERT(ic);
1263 
1264 	is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST));
1265 
1266 	/*
1267 	 * Copy existing Ethernet header to a safe place.  The
1268 	 * rest of the code assumes it's ok to strip it when
1269 	 * reorganizing state for the final encapsulation.
1270 	 */
1271 	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1272 	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1273 
1274 	/*
1275 	 * Insure space for additional headers.  First identify
1276 	 * transmit key to use in calculating any buffer adjustments
1277 	 * required.  This is also used below to do privacy
1278 	 * encapsulation work.  Then calculate the 802.11 header
1279 	 * size and any padding required by the driver.
1280 	 *
1281 	 * Note key may be NULL if we fall back to the default
1282 	 * transmit key and that is not set.  In that case the
1283 	 * buffer may not be expanded as needed by the cipher
1284 	 * routines, but they will/should discard it.
1285 	 */
1286 	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1287 		if (vap->iv_opmode == IEEE80211_M_STA ||
1288 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1289 		    (vap->iv_opmode == IEEE80211_M_WDS &&
1290 		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1291 			key = ieee80211_crypto_getucastkey(vap, ni);
1292 		else
1293 			key = ieee80211_crypto_getmcastkey(vap, ni);
1294 		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1295 			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1296 			    eh.ether_dhost,
1297 			    "no default transmit key (%s) deftxkey %u",
1298 			    __func__, vap->iv_def_txkey);
1299 			vap->iv_stats.is_tx_nodefkey++;
1300 			goto bad;
1301 		}
1302 	} else
1303 		key = NULL;
1304 	/*
1305 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1306 	 * frames so suppress use.  This may be an issue if other
1307 	 * ap's require all data frames to be QoS-encapsulated
1308 	 * once negotiated in which case we'll need to make this
1309 	 * configurable.
1310 	 *
1311 	 * Don't send multicast QoS frames.
1312 	 * Technically multicast frames can be QoS if all stations in the
1313 	 * BSS are also QoS.
1314 	 *
1315 	 * NB: mesh data frames are QoS, including multicast frames.
1316 	 */
1317 	addqos =
1318 	    (((is_mcast == 0) && (ni->ni_flags &
1319 	     (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) ||
1320 	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1321 	    (m->m_flags & M_EAPOL) == 0;
1322 
1323 	if (addqos)
1324 		hdrsize = sizeof(struct ieee80211_qosframe);
1325 	else
1326 		hdrsize = sizeof(struct ieee80211_frame);
1327 #ifdef IEEE80211_SUPPORT_MESH
1328 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1329 		/*
1330 		 * Mesh data frames are encapsulated according to the
1331 		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1332 		 * o Group Addressed data (aka multicast) originating
1333 		 *   at the local sta are sent w/ 3-address format and
1334 		 *   address extension mode 00
1335 		 * o Individually Addressed data (aka unicast) originating
1336 		 *   at the local sta are sent w/ 4-address format and
1337 		 *   address extension mode 00
1338 		 * o Group Addressed data forwarded from a non-mesh sta are
1339 		 *   sent w/ 3-address format and address extension mode 01
1340 		 * o Individually Address data from another sta are sent
1341 		 *   w/ 4-address format and address extension mode 10
1342 		 */
1343 		is4addr = 0;		/* NB: don't use, disable */
1344 		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1345 			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1346 			KASSERT(rt != NULL, ("route is NULL"));
1347 			dir = IEEE80211_FC1_DIR_DSTODS;
1348 			hdrsize += IEEE80211_ADDR_LEN;
1349 			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1350 				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1351 				    vap->iv_myaddr)) {
1352 					IEEE80211_NOTE_MAC(vap,
1353 					    IEEE80211_MSG_MESH,
1354 					    eh.ether_dhost,
1355 					    "%s", "trying to send to ourself");
1356 					goto bad;
1357 				}
1358 				meshae = IEEE80211_MESH_AE_10;
1359 				meshhdrsize =
1360 				    sizeof(struct ieee80211_meshcntl_ae10);
1361 			} else {
1362 				meshae = IEEE80211_MESH_AE_00;
1363 				meshhdrsize =
1364 				    sizeof(struct ieee80211_meshcntl);
1365 			}
1366 		} else {
1367 			dir = IEEE80211_FC1_DIR_FROMDS;
1368 			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1369 				/* proxy group */
1370 				meshae = IEEE80211_MESH_AE_01;
1371 				meshhdrsize =
1372 				    sizeof(struct ieee80211_meshcntl_ae01);
1373 			} else {
1374 				/* group */
1375 				meshae = IEEE80211_MESH_AE_00;
1376 				meshhdrsize = sizeof(struct ieee80211_meshcntl);
1377 			}
1378 		}
1379 	} else {
1380 #endif
1381 		/*
1382 		 * 4-address frames need to be generated for:
1383 		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1384 		 * o packets sent through a vap marked for relaying
1385 		 *   (e.g. a station operating with dynamic WDS)
1386 		 */
1387 		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1388 		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1389 		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1390 		if (is4addr)
1391 			hdrsize += IEEE80211_ADDR_LEN;
1392 		meshhdrsize = meshae = 0;
1393 #ifdef IEEE80211_SUPPORT_MESH
1394 	}
1395 #endif
1396 	/*
1397 	 * Honor driver DATAPAD requirement.
1398 	 */
1399 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1400 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1401 	else
1402 		hdrspace = hdrsize;
1403 
1404 	if (__predict_true((m->m_flags & M_FF) == 0)) {
1405 		/*
1406 		 * Normal frame.
1407 		 */
1408 		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1409 		if (m == NULL) {
1410 			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1411 			goto bad;
1412 		}
1413 		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1414 		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1415 		llc = mtod(m, struct llc *);
1416 		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1417 		llc->llc_control = LLC_UI;
1418 		llc->llc_snap.org_code[0] = 0;
1419 		llc->llc_snap.org_code[1] = 0;
1420 		llc->llc_snap.org_code[2] = 0;
1421 		llc->llc_snap.ether_type = eh.ether_type;
1422 	} else {
1423 #ifdef IEEE80211_SUPPORT_SUPERG
1424 		/*
1425 		 * Aggregated frame.  Check if it's for AMSDU or FF.
1426 		 *
1427 		 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented
1428 		 * anywhere for some reason.  But, since 11n requires
1429 		 * AMSDU RX, we can just assume "11n" == "AMSDU".
1430 		 */
1431 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__);
1432 		if (ieee80211_amsdu_tx_ok(ni)) {
1433 			m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key);
1434 			is_amsdu = 1;
1435 		} else {
1436 			m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1437 		}
1438 		if (m == NULL)
1439 #endif
1440 			goto bad;
1441 	}
1442 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1443 
1444 	M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT);
1445 	if (m == NULL) {
1446 		vap->iv_stats.is_tx_nobuf++;
1447 		goto bad;
1448 	}
1449 	wh = mtod(m, struct ieee80211_frame *);
1450 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1451 	*(uint16_t *)wh->i_dur = 0;
1452 	qos = NULL;	/* NB: quiet compiler */
1453 	if (is4addr) {
1454 		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1455 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1456 		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1457 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1458 		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1459 	} else switch (vap->iv_opmode) {
1460 	case IEEE80211_M_STA:
1461 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1462 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1463 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1464 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1465 		break;
1466 	case IEEE80211_M_IBSS:
1467 	case IEEE80211_M_AHDEMO:
1468 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1469 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1470 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1471 		/*
1472 		 * NB: always use the bssid from iv_bss as the
1473 		 *     neighbor's may be stale after an ibss merge
1474 		 */
1475 		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1476 		break;
1477 	case IEEE80211_M_HOSTAP:
1478 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1479 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1480 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1481 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1482 		break;
1483 #ifdef IEEE80211_SUPPORT_MESH
1484 	case IEEE80211_M_MBSS:
1485 		/* NB: offset by hdrspace to deal with DATAPAD */
1486 		mc = (struct ieee80211_meshcntl_ae10 *)
1487 		     (mtod(m, uint8_t *) + hdrspace);
1488 		wh->i_fc[1] = dir;
1489 		switch (meshae) {
1490 		case IEEE80211_MESH_AE_00:	/* no proxy */
1491 			mc->mc_flags = 0;
1492 			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1493 				IEEE80211_ADDR_COPY(wh->i_addr1,
1494 				    ni->ni_macaddr);
1495 				IEEE80211_ADDR_COPY(wh->i_addr2,
1496 				    vap->iv_myaddr);
1497 				IEEE80211_ADDR_COPY(wh->i_addr3,
1498 				    eh.ether_dhost);
1499 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1500 				    eh.ether_shost);
1501 				qos =((struct ieee80211_qosframe_addr4 *)
1502 				    wh)->i_qos;
1503 			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1504 				 /* mcast */
1505 				IEEE80211_ADDR_COPY(wh->i_addr1,
1506 				    eh.ether_dhost);
1507 				IEEE80211_ADDR_COPY(wh->i_addr2,
1508 				    vap->iv_myaddr);
1509 				IEEE80211_ADDR_COPY(wh->i_addr3,
1510 				    eh.ether_shost);
1511 				qos = ((struct ieee80211_qosframe *)
1512 				    wh)->i_qos;
1513 			}
1514 			break;
1515 		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
1516 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1517 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1518 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1519 			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1520 			mc->mc_flags = 1;
1521 			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1522 			    eh.ether_shost);
1523 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1524 			break;
1525 		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
1526 			KASSERT(rt != NULL, ("route is NULL"));
1527 			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1528 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1529 			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1530 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1531 			mc->mc_flags = IEEE80211_MESH_AE_10;
1532 			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1533 			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1534 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1535 			break;
1536 		default:
1537 			KASSERT(0, ("meshae %d", meshae));
1538 			break;
1539 		}
1540 		mc->mc_ttl = ms->ms_ttl;
1541 		ms->ms_seq++;
1542 		le32enc(mc->mc_seq, ms->ms_seq);
1543 		break;
1544 #endif
1545 	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1546 	default:
1547 		goto bad;
1548 	}
1549 	if (m->m_flags & M_MORE_DATA)
1550 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1551 	if (addqos) {
1552 		int ac, tid;
1553 
1554 		if (is4addr) {
1555 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1556 		/* NB: mesh case handled earlier */
1557 		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1558 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1559 		ac = M_WME_GETAC(m);
1560 		/* map from access class/queue to 11e header priorty value */
1561 		tid = WME_AC_TO_TID(ac);
1562 		qos[0] = tid & IEEE80211_QOS_TID;
1563 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1564 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1565 #ifdef IEEE80211_SUPPORT_MESH
1566 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1567 			qos[1] = IEEE80211_QOS_MC;
1568 		else
1569 #endif
1570 			qos[1] = 0;
1571 		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1572 
1573 		/*
1574 		 * If this is an A-MSDU then ensure we set the
1575 		 * relevant field.
1576 		 */
1577 		if (is_amsdu)
1578 			qos[0] |= IEEE80211_QOS_AMSDU;
1579 
1580 		/*
1581 		 * XXX TODO TX lock is needed for atomic updates of sequence
1582 		 * numbers.  If the driver does it, then don't do it here;
1583 		 * and we don't need the TX lock held.
1584 		 */
1585 		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1586 			/*
1587 			 * 802.11-2012 9.3.2.10 -
1588 			 *
1589 			 * If this is a multicast frame then we need
1590 			 * to ensure that the sequence number comes from
1591 			 * a separate seqno space and not the TID space.
1592 			 *
1593 			 * Otherwise multicast frames may actually cause
1594 			 * holes in the TX blockack window space and
1595 			 * upset various things.
1596 			 */
1597 			if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1598 				seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1599 			else
1600 				seqno = ni->ni_txseqs[tid]++;
1601 
1602 			/*
1603 			 * NB: don't assign a sequence # to potential
1604 			 * aggregates; we expect this happens at the
1605 			 * point the frame comes off any aggregation q
1606 			 * as otherwise we may introduce holes in the
1607 			 * BA sequence space and/or make window accouting
1608 			 * more difficult.
1609 			 *
1610 			 * XXX may want to control this with a driver
1611 			 * capability; this may also change when we pull
1612 			 * aggregation up into net80211
1613 			 */
1614 			seqno = ni->ni_txseqs[tid]++;
1615 			*(uint16_t *)wh->i_seq =
1616 			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1617 			M_SEQNO_SET(m, seqno);
1618 		} else {
1619 			/* NB: zero out i_seq field (for s/w encryption etc) */
1620 			*(uint16_t *)wh->i_seq = 0;
1621 		}
1622 	} else {
1623 		/*
1624 		 * XXX TODO TX lock is needed for atomic updates of sequence
1625 		 * numbers.  If the driver does it, then don't do it here;
1626 		 * and we don't need the TX lock held.
1627 		 */
1628 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1629 		*(uint16_t *)wh->i_seq =
1630 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1631 		M_SEQNO_SET(m, seqno);
1632 
1633 		/*
1634 		 * XXX TODO: we shouldn't allow EAPOL, etc that would
1635 		 * be forced to be non-QoS traffic to be A-MSDU encapsulated.
1636 		 */
1637 		if (is_amsdu)
1638 			printf("%s: XXX ERROR: is_amsdu set; not QoS!\n",
1639 			    __func__);
1640 	}
1641 
1642 	/*
1643 	 * Check if xmit fragmentation is required.
1644 	 *
1645 	 * If the hardware does fragmentation offload, then don't bother
1646 	 * doing it here.
1647 	 */
1648 	if (IEEE80211_CONF_FRAG_OFFLOAD(ic))
1649 		txfrag = 0;
1650 	else
1651 		txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1652 		    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1653 		    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1654 		    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1655 
1656 	if (key != NULL) {
1657 		/*
1658 		 * IEEE 802.1X: send EAPOL frames always in the clear.
1659 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1660 		 */
1661 		if ((m->m_flags & M_EAPOL) == 0 ||
1662 		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1663 		     (vap->iv_opmode == IEEE80211_M_STA ?
1664 		      !IEEE80211_KEY_UNDEFINED(key) :
1665 		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1666 			wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1667 			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1668 				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1669 				    eh.ether_dhost,
1670 				    "%s", "enmic failed, discard frame");
1671 				vap->iv_stats.is_crypto_enmicfail++;
1672 				goto bad;
1673 			}
1674 		}
1675 	}
1676 	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1677 	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1678 		goto bad;
1679 
1680 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1681 
1682 	IEEE80211_NODE_STAT(ni, tx_data);
1683 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1684 		IEEE80211_NODE_STAT(ni, tx_mcast);
1685 		m->m_flags |= M_MCAST;
1686 	} else
1687 		IEEE80211_NODE_STAT(ni, tx_ucast);
1688 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1689 
1690 	return m;
1691 bad:
1692 	if (m != NULL)
1693 		m_freem(m);
1694 	return NULL;
1695 #undef WH4
1696 #undef MC01
1697 }
1698 
1699 void
1700 ieee80211_free_mbuf(struct mbuf *m)
1701 {
1702 	struct mbuf *next;
1703 
1704 	if (m == NULL)
1705 		return;
1706 
1707 	do {
1708 		next = m->m_nextpkt;
1709 		m->m_nextpkt = NULL;
1710 		m_freem(m);
1711 	} while ((m = next) != NULL);
1712 }
1713 
1714 /*
1715  * Fragment the frame according to the specified mtu.
1716  * The size of the 802.11 header (w/o padding) is provided
1717  * so we don't need to recalculate it.  We create a new
1718  * mbuf for each fragment and chain it through m_nextpkt;
1719  * we might be able to optimize this by reusing the original
1720  * packet's mbufs but that is significantly more complicated.
1721  */
1722 static int
1723 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1724 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1725 {
1726 	struct ieee80211com *ic = vap->iv_ic;
1727 	struct ieee80211_frame *wh, *whf;
1728 	struct mbuf *m, *prev;
1729 	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1730 	u_int hdrspace;
1731 
1732 	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1733 	KASSERT(m0->m_pkthdr.len > mtu,
1734 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1735 
1736 	/*
1737 	 * Honor driver DATAPAD requirement.
1738 	 */
1739 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1740 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1741 	else
1742 		hdrspace = hdrsize;
1743 
1744 	wh = mtod(m0, struct ieee80211_frame *);
1745 	/* NB: mark the first frag; it will be propagated below */
1746 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1747 	totalhdrsize = hdrspace + ciphdrsize;
1748 	fragno = 1;
1749 	off = mtu - ciphdrsize;
1750 	remainder = m0->m_pkthdr.len - off;
1751 	prev = m0;
1752 	do {
1753 		fragsize = MIN(totalhdrsize + remainder, mtu);
1754 		m = m_get2(fragsize, M_NOWAIT, MT_DATA, M_PKTHDR);
1755 		if (m == NULL)
1756 			goto bad;
1757 		/* leave room to prepend any cipher header */
1758 		m_align(m, fragsize - ciphdrsize);
1759 
1760 		/*
1761 		 * Form the header in the fragment.  Note that since
1762 		 * we mark the first fragment with the MORE_FRAG bit
1763 		 * it automatically is propagated to each fragment; we
1764 		 * need only clear it on the last fragment (done below).
1765 		 * NB: frag 1+ dont have Mesh Control field present.
1766 		 */
1767 		whf = mtod(m, struct ieee80211_frame *);
1768 		memcpy(whf, wh, hdrsize);
1769 #ifdef IEEE80211_SUPPORT_MESH
1770 		if (vap->iv_opmode == IEEE80211_M_MBSS) {
1771 			if (IEEE80211_IS_DSTODS(wh))
1772 				((struct ieee80211_qosframe_addr4 *)
1773 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1774 			else
1775 				((struct ieee80211_qosframe *)
1776 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1777 		}
1778 #endif
1779 		*(uint16_t *)&whf->i_seq[0] |= htole16(
1780 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1781 				IEEE80211_SEQ_FRAG_SHIFT);
1782 		fragno++;
1783 
1784 		payload = fragsize - totalhdrsize;
1785 		/* NB: destination is known to be contiguous */
1786 
1787 		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
1788 		m->m_len = hdrspace + payload;
1789 		m->m_pkthdr.len = hdrspace + payload;
1790 		m->m_flags |= M_FRAG;
1791 
1792 		/* chain up the fragment */
1793 		prev->m_nextpkt = m;
1794 		prev = m;
1795 
1796 		/* deduct fragment just formed */
1797 		remainder -= payload;
1798 		off += payload;
1799 	} while (remainder != 0);
1800 
1801 	/* set the last fragment */
1802 	m->m_flags |= M_LASTFRAG;
1803 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1804 
1805 	/* strip first mbuf now that everything has been copied */
1806 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1807 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1808 
1809 	vap->iv_stats.is_tx_fragframes++;
1810 	vap->iv_stats.is_tx_frags += fragno-1;
1811 
1812 	return 1;
1813 bad:
1814 	/* reclaim fragments but leave original frame for caller to free */
1815 	ieee80211_free_mbuf(m0->m_nextpkt);
1816 	m0->m_nextpkt = NULL;
1817 	return 0;
1818 }
1819 
1820 /*
1821  * Add a supported rates element id to a frame.
1822  */
1823 uint8_t *
1824 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1825 {
1826 	int nrates;
1827 
1828 	*frm++ = IEEE80211_ELEMID_RATES;
1829 	nrates = rs->rs_nrates;
1830 	if (nrates > IEEE80211_RATE_SIZE)
1831 		nrates = IEEE80211_RATE_SIZE;
1832 	*frm++ = nrates;
1833 	memcpy(frm, rs->rs_rates, nrates);
1834 	return frm + nrates;
1835 }
1836 
1837 /*
1838  * Add an extended supported rates element id to a frame.
1839  */
1840 uint8_t *
1841 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1842 {
1843 	/*
1844 	 * Add an extended supported rates element if operating in 11g mode.
1845 	 */
1846 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1847 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1848 		*frm++ = IEEE80211_ELEMID_XRATES;
1849 		*frm++ = nrates;
1850 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1851 		frm += nrates;
1852 	}
1853 	return frm;
1854 }
1855 
1856 /*
1857  * Add an ssid element to a frame.
1858  */
1859 uint8_t *
1860 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1861 {
1862 	*frm++ = IEEE80211_ELEMID_SSID;
1863 	*frm++ = len;
1864 	memcpy(frm, ssid, len);
1865 	return frm + len;
1866 }
1867 
1868 /*
1869  * Add an erp element to a frame.
1870  */
1871 static uint8_t *
1872 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1873 {
1874 	uint8_t erp;
1875 
1876 	*frm++ = IEEE80211_ELEMID_ERP;
1877 	*frm++ = 1;
1878 	erp = 0;
1879 	if (ic->ic_nonerpsta != 0)
1880 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1881 	if (ic->ic_flags & IEEE80211_F_USEPROT)
1882 		erp |= IEEE80211_ERP_USE_PROTECTION;
1883 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1884 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1885 	*frm++ = erp;
1886 	return frm;
1887 }
1888 
1889 /*
1890  * Add a CFParams element to a frame.
1891  */
1892 static uint8_t *
1893 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1894 {
1895 #define	ADDSHORT(frm, v) do {	\
1896 	le16enc(frm, v);	\
1897 	frm += 2;		\
1898 } while (0)
1899 	*frm++ = IEEE80211_ELEMID_CFPARMS;
1900 	*frm++ = 6;
1901 	*frm++ = 0;		/* CFP count */
1902 	*frm++ = 2;		/* CFP period */
1903 	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1904 	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1905 	return frm;
1906 #undef ADDSHORT
1907 }
1908 
1909 static __inline uint8_t *
1910 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1911 {
1912 	memcpy(frm, ie->ie_data, ie->ie_len);
1913 	return frm + ie->ie_len;
1914 }
1915 
1916 static __inline uint8_t *
1917 add_ie(uint8_t *frm, const uint8_t *ie)
1918 {
1919 	memcpy(frm, ie, 2 + ie[1]);
1920 	return frm + 2 + ie[1];
1921 }
1922 
1923 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1924 /*
1925  * Add a WME information element to a frame.
1926  */
1927 uint8_t *
1928 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1929 {
1930 	static const struct ieee80211_wme_info info = {
1931 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1932 		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1933 		.wme_oui	= { WME_OUI_BYTES },
1934 		.wme_type	= WME_OUI_TYPE,
1935 		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1936 		.wme_version	= WME_VERSION,
1937 		.wme_info	= 0,
1938 	};
1939 	memcpy(frm, &info, sizeof(info));
1940 	return frm + sizeof(info);
1941 }
1942 
1943 /*
1944  * Add a WME parameters element to a frame.
1945  */
1946 static uint8_t *
1947 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1948 {
1949 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1950 #define	ADDSHORT(frm, v) do {	\
1951 	le16enc(frm, v);	\
1952 	frm += 2;		\
1953 } while (0)
1954 	/* NB: this works 'cuz a param has an info at the front */
1955 	static const struct ieee80211_wme_info param = {
1956 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1957 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1958 		.wme_oui	= { WME_OUI_BYTES },
1959 		.wme_type	= WME_OUI_TYPE,
1960 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1961 		.wme_version	= WME_VERSION,
1962 	};
1963 	int i;
1964 
1965 	memcpy(frm, &param, sizeof(param));
1966 	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1967 	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1968 	*frm++ = 0;					/* reserved field */
1969 	for (i = 0; i < WME_NUM_AC; i++) {
1970 		const struct wmeParams *ac =
1971 		       &wme->wme_bssChanParams.cap_wmeParams[i];
1972 		*frm++ = SM(i, WME_PARAM_ACI)
1973 		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1974 		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1975 		       ;
1976 		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1977 		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1978 		       ;
1979 		ADDSHORT(frm, ac->wmep_txopLimit);
1980 	}
1981 	return frm;
1982 #undef SM
1983 #undef ADDSHORT
1984 }
1985 #undef WME_OUI_BYTES
1986 
1987 /*
1988  * Add an 11h Power Constraint element to a frame.
1989  */
1990 static uint8_t *
1991 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1992 {
1993 	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1994 	/* XXX per-vap tx power limit? */
1995 	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1996 
1997 	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1998 	frm[1] = 1;
1999 	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
2000 	return frm + 3;
2001 }
2002 
2003 /*
2004  * Add an 11h Power Capability element to a frame.
2005  */
2006 static uint8_t *
2007 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
2008 {
2009 	frm[0] = IEEE80211_ELEMID_PWRCAP;
2010 	frm[1] = 2;
2011 	frm[2] = c->ic_minpower;
2012 	frm[3] = c->ic_maxpower;
2013 	return frm + 4;
2014 }
2015 
2016 /*
2017  * Add an 11h Supported Channels element to a frame.
2018  */
2019 static uint8_t *
2020 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
2021 {
2022 	static const int ielen = 26;
2023 
2024 	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
2025 	frm[1] = ielen;
2026 	/* XXX not correct */
2027 	memcpy(frm+2, ic->ic_chan_avail, ielen);
2028 	return frm + 2 + ielen;
2029 }
2030 
2031 /*
2032  * Add an 11h Quiet time element to a frame.
2033  */
2034 static uint8_t *
2035 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap, int update)
2036 {
2037 	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
2038 
2039 	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
2040 	quiet->len = 6;
2041 
2042 	/*
2043 	 * Only update every beacon interval - otherwise probe responses
2044 	 * would update the quiet count value.
2045 	 */
2046 	if (update) {
2047 		if (vap->iv_quiet_count_value == 1)
2048 			vap->iv_quiet_count_value = vap->iv_quiet_count;
2049 		else if (vap->iv_quiet_count_value > 1)
2050 			vap->iv_quiet_count_value--;
2051 	}
2052 
2053 	if (vap->iv_quiet_count_value == 0) {
2054 		/* value 0 is reserved as per 802.11h standerd */
2055 		vap->iv_quiet_count_value = 1;
2056 	}
2057 
2058 	quiet->tbttcount = vap->iv_quiet_count_value;
2059 	quiet->period = vap->iv_quiet_period;
2060 	quiet->duration = htole16(vap->iv_quiet_duration);
2061 	quiet->offset = htole16(vap->iv_quiet_offset);
2062 	return frm + sizeof(*quiet);
2063 }
2064 
2065 /*
2066  * Add an 11h Channel Switch Announcement element to a frame.
2067  * Note that we use the per-vap CSA count to adjust the global
2068  * counter so we can use this routine to form probe response
2069  * frames and get the current count.
2070  */
2071 static uint8_t *
2072 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
2073 {
2074 	struct ieee80211com *ic = vap->iv_ic;
2075 	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
2076 
2077 	csa->csa_ie = IEEE80211_ELEMID_CSA;
2078 	csa->csa_len = 3;
2079 	csa->csa_mode = 1;		/* XXX force quiet on channel */
2080 	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
2081 	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
2082 	return frm + sizeof(*csa);
2083 }
2084 
2085 /*
2086  * Add an 11h country information element to a frame.
2087  */
2088 static uint8_t *
2089 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
2090 {
2091 
2092 	if (ic->ic_countryie == NULL ||
2093 	    ic->ic_countryie_chan != ic->ic_bsschan) {
2094 		/*
2095 		 * Handle lazy construction of ie.  This is done on
2096 		 * first use and after a channel change that requires
2097 		 * re-calculation.
2098 		 */
2099 		if (ic->ic_countryie != NULL)
2100 			IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
2101 		ic->ic_countryie = ieee80211_alloc_countryie(ic);
2102 		if (ic->ic_countryie == NULL)
2103 			return frm;
2104 		ic->ic_countryie_chan = ic->ic_bsschan;
2105 	}
2106 	return add_appie(frm, ic->ic_countryie);
2107 }
2108 
2109 uint8_t *
2110 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
2111 {
2112 	if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
2113 		return (add_ie(frm, vap->iv_wpa_ie));
2114 	else {
2115 		/* XXX else complain? */
2116 		return (frm);
2117 	}
2118 }
2119 
2120 uint8_t *
2121 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
2122 {
2123 	if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
2124 		return (add_ie(frm, vap->iv_rsn_ie));
2125 	else {
2126 		/* XXX else complain? */
2127 		return (frm);
2128 	}
2129 }
2130 
2131 uint8_t *
2132 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
2133 {
2134 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
2135 		*frm++ = IEEE80211_ELEMID_QOS;
2136 		*frm++ = 1;
2137 		*frm++ = 0;
2138 	}
2139 
2140 	return (frm);
2141 }
2142 
2143 /*
2144  * Send a probe request frame with the specified ssid
2145  * and any optional information element data.
2146  */
2147 int
2148 ieee80211_send_probereq(struct ieee80211_node *ni,
2149 	const uint8_t sa[IEEE80211_ADDR_LEN],
2150 	const uint8_t da[IEEE80211_ADDR_LEN],
2151 	const uint8_t bssid[IEEE80211_ADDR_LEN],
2152 	const uint8_t *ssid, size_t ssidlen)
2153 {
2154 	struct ieee80211vap *vap = ni->ni_vap;
2155 	struct ieee80211com *ic = ni->ni_ic;
2156 	struct ieee80211_node *bss;
2157 	const struct ieee80211_txparam *tp;
2158 	struct ieee80211_bpf_params params;
2159 	const struct ieee80211_rateset *rs;
2160 	struct mbuf *m;
2161 	uint8_t *frm;
2162 	int ret;
2163 
2164 	bss = ieee80211_ref_node(vap->iv_bss);
2165 
2166 	if (vap->iv_state == IEEE80211_S_CAC) {
2167 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
2168 		    "block %s frame in CAC state", "probe request");
2169 		vap->iv_stats.is_tx_badstate++;
2170 		ieee80211_free_node(bss);
2171 		return EIO;		/* XXX */
2172 	}
2173 
2174 	/*
2175 	 * Hold a reference on the node so it doesn't go away until after
2176 	 * the xmit is complete all the way in the driver.  On error we
2177 	 * will remove our reference.
2178 	 */
2179 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2180 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2181 		__func__, __LINE__,
2182 		ni, ether_sprintf(ni->ni_macaddr),
2183 		ieee80211_node_refcnt(ni)+1);
2184 	ieee80211_ref_node(ni);
2185 
2186 	/*
2187 	 * prreq frame format
2188 	 *	[tlv] ssid
2189 	 *	[tlv] supported rates
2190 	 *	[tlv] RSN (optional)
2191 	 *	[tlv] extended supported rates
2192 	 *	[tlv] HT cap (optional)
2193 	 *	[tlv] VHT cap (optional)
2194 	 *	[tlv] WPA (optional)
2195 	 *	[tlv] user-specified ie's
2196 	 */
2197 	m = ieee80211_getmgtframe(&frm,
2198 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2199 	       	 2 + IEEE80211_NWID_LEN
2200 	       + 2 + IEEE80211_RATE_SIZE
2201 	       + sizeof(struct ieee80211_ie_htcap)
2202 	       + sizeof(struct ieee80211_ie_vhtcap)
2203 	       + sizeof(struct ieee80211_ie_htinfo)	/* XXX not needed? */
2204 	       + sizeof(struct ieee80211_ie_wpa)
2205 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2206 	       + sizeof(struct ieee80211_ie_wpa)
2207 	       + (vap->iv_appie_probereq != NULL ?
2208 		   vap->iv_appie_probereq->ie_len : 0)
2209 	);
2210 	if (m == NULL) {
2211 		vap->iv_stats.is_tx_nobuf++;
2212 		ieee80211_free_node(ni);
2213 		ieee80211_free_node(bss);
2214 		return ENOMEM;
2215 	}
2216 
2217 	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2218 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2219 	frm = ieee80211_add_rates(frm, rs);
2220 	frm = ieee80211_add_rsn(frm, vap);
2221 	frm = ieee80211_add_xrates(frm, rs);
2222 
2223 	/*
2224 	 * Note: we can't use bss; we don't have one yet.
2225 	 *
2226 	 * So, we should announce our capabilities
2227 	 * in this channel mode (2g/5g), not the
2228 	 * channel details itself.
2229 	 */
2230 	if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
2231 	    (vap->iv_flags_ht & IEEE80211_FHT_HT)) {
2232 		struct ieee80211_channel *c;
2233 
2234 		/*
2235 		 * Get the HT channel that we should try upgrading to.
2236 		 * If we can do 40MHz then this'll upgrade it appropriately.
2237 		 */
2238 		c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2239 		    vap->iv_flags_ht);
2240 		frm = ieee80211_add_htcap_ch(frm, vap, c);
2241 	}
2242 
2243 	/*
2244 	 * XXX TODO: need to figure out what/how to update the
2245 	 * VHT channel.
2246 	 */
2247 #if 0
2248 	(vap->iv_flags_vht & IEEE80211_FVHT_VHT) {
2249 		struct ieee80211_channel *c;
2250 
2251 		c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2252 		    vap->iv_flags_ht);
2253 		c = ieee80211_vht_adjust_channel(ic, c, vap->iv_flags_vht);
2254 		frm = ieee80211_add_vhtcap_ch(frm, vap, c);
2255 	}
2256 #endif
2257 
2258 	frm = ieee80211_add_wpa(frm, vap);
2259 	if (vap->iv_appie_probereq != NULL)
2260 		frm = add_appie(frm, vap->iv_appie_probereq);
2261 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2262 
2263 	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2264 	    ("leading space %zd", M_LEADINGSPACE(m)));
2265 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2266 	if (m == NULL) {
2267 		/* NB: cannot happen */
2268 		ieee80211_free_node(ni);
2269 		ieee80211_free_node(bss);
2270 		return ENOMEM;
2271 	}
2272 
2273 	IEEE80211_TX_LOCK(ic);
2274 	ieee80211_send_setup(ni, m,
2275 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2276 	     IEEE80211_NONQOS_TID, sa, da, bssid);
2277 	/* XXX power management? */
2278 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2279 
2280 	M_WME_SETAC(m, WME_AC_BE);
2281 
2282 	IEEE80211_NODE_STAT(ni, tx_probereq);
2283 	IEEE80211_NODE_STAT(ni, tx_mgmt);
2284 
2285 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2286 	    "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n",
2287 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
2288 	    ether_sprintf(bssid),
2289 	    sa, ":",
2290 	    da, ":",
2291 	    ssidlen, ssid);
2292 
2293 	memset(&params, 0, sizeof(params));
2294 	params.ibp_pri = M_WME_GETAC(m);
2295 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2296 	params.ibp_rate0 = tp->mgmtrate;
2297 	if (IEEE80211_IS_MULTICAST(da)) {
2298 		params.ibp_flags |= IEEE80211_BPF_NOACK;
2299 		params.ibp_try0 = 1;
2300 	} else
2301 		params.ibp_try0 = tp->maxretry;
2302 	params.ibp_power = ni->ni_txpower;
2303 	ret = ieee80211_raw_output(vap, ni, m, &params);
2304 	IEEE80211_TX_UNLOCK(ic);
2305 	ieee80211_free_node(bss);
2306 	return (ret);
2307 }
2308 
2309 /*
2310  * Calculate capability information for mgt frames.
2311  */
2312 uint16_t
2313 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2314 {
2315 	struct ieee80211com *ic = vap->iv_ic;
2316 	uint16_t capinfo;
2317 
2318 	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2319 
2320 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2321 		capinfo = IEEE80211_CAPINFO_ESS;
2322 	else if (vap->iv_opmode == IEEE80211_M_IBSS)
2323 		capinfo = IEEE80211_CAPINFO_IBSS;
2324 	else
2325 		capinfo = 0;
2326 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2327 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2328 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2329 	    IEEE80211_IS_CHAN_2GHZ(chan))
2330 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2331 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2332 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2333 	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2334 		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2335 	return capinfo;
2336 }
2337 
2338 /*
2339  * Send a management frame.  The node is for the destination (or ic_bss
2340  * when in station mode).  Nodes other than ic_bss have their reference
2341  * count bumped to reflect our use for an indeterminant time.
2342  */
2343 int
2344 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2345 {
2346 #define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2347 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2348 	struct ieee80211vap *vap = ni->ni_vap;
2349 	struct ieee80211com *ic = ni->ni_ic;
2350 	struct ieee80211_node *bss = vap->iv_bss;
2351 	struct ieee80211_bpf_params params;
2352 	struct mbuf *m;
2353 	uint8_t *frm;
2354 	uint16_t capinfo;
2355 	int has_challenge, is_shared_key, ret, status;
2356 
2357 	KASSERT(ni != NULL, ("null node"));
2358 
2359 	/*
2360 	 * Hold a reference on the node so it doesn't go away until after
2361 	 * the xmit is complete all the way in the driver.  On error we
2362 	 * will remove our reference.
2363 	 */
2364 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2365 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2366 		__func__, __LINE__,
2367 		ni, ether_sprintf(ni->ni_macaddr),
2368 		ieee80211_node_refcnt(ni)+1);
2369 	ieee80211_ref_node(ni);
2370 
2371 	memset(&params, 0, sizeof(params));
2372 	switch (type) {
2373 
2374 	case IEEE80211_FC0_SUBTYPE_AUTH:
2375 		status = arg >> 16;
2376 		arg &= 0xffff;
2377 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2378 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2379 		    ni->ni_challenge != NULL);
2380 
2381 		/*
2382 		 * Deduce whether we're doing open authentication or
2383 		 * shared key authentication.  We do the latter if
2384 		 * we're in the middle of a shared key authentication
2385 		 * handshake or if we're initiating an authentication
2386 		 * request and configured to use shared key.
2387 		 */
2388 		is_shared_key = has_challenge ||
2389 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2390 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2391 		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
2392 
2393 		m = ieee80211_getmgtframe(&frm,
2394 			  ic->ic_headroom + sizeof(struct ieee80211_frame),
2395 			  3 * sizeof(uint16_t)
2396 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2397 				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
2398 		);
2399 		if (m == NULL)
2400 			senderr(ENOMEM, is_tx_nobuf);
2401 
2402 		((uint16_t *)frm)[0] =
2403 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2404 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
2405 		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
2406 		((uint16_t *)frm)[2] = htole16(status);/* status */
2407 
2408 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2409 			((uint16_t *)frm)[3] =
2410 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
2411 			    IEEE80211_ELEMID_CHALLENGE);
2412 			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2413 			    IEEE80211_CHALLENGE_LEN);
2414 			m->m_pkthdr.len = m->m_len =
2415 				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2416 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2417 				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2418 				    "request encrypt frame (%s)", __func__);
2419 				/* mark frame for encryption */
2420 				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2421 			}
2422 		} else
2423 			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2424 
2425 		/* XXX not right for shared key */
2426 		if (status == IEEE80211_STATUS_SUCCESS)
2427 			IEEE80211_NODE_STAT(ni, tx_auth);
2428 		else
2429 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
2430 
2431 		if (vap->iv_opmode == IEEE80211_M_STA)
2432 			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2433 				(void *) vap->iv_state);
2434 		break;
2435 
2436 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2437 		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2438 		    "send station deauthenticate (reason: %d (%s))", arg,
2439 		    ieee80211_reason_to_string(arg));
2440 		m = ieee80211_getmgtframe(&frm,
2441 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2442 			sizeof(uint16_t));
2443 		if (m == NULL)
2444 			senderr(ENOMEM, is_tx_nobuf);
2445 		*(uint16_t *)frm = htole16(arg);	/* reason */
2446 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2447 
2448 		IEEE80211_NODE_STAT(ni, tx_deauth);
2449 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2450 
2451 		ieee80211_node_unauthorize(ni);		/* port closed */
2452 		break;
2453 
2454 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2455 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2456 		/*
2457 		 * asreq frame format
2458 		 *	[2] capability information
2459 		 *	[2] listen interval
2460 		 *	[6*] current AP address (reassoc only)
2461 		 *	[tlv] ssid
2462 		 *	[tlv] supported rates
2463 		 *	[tlv] extended supported rates
2464 		 *	[4] power capability (optional)
2465 		 *	[28] supported channels (optional)
2466 		 *	[tlv] HT capabilities
2467 		 *	[tlv] VHT capabilities
2468 		 *	[tlv] WME (optional)
2469 		 *	[tlv] Vendor OUI HT capabilities (optional)
2470 		 *	[tlv] Atheros capabilities (if negotiated)
2471 		 *	[tlv] AppIE's (optional)
2472 		 */
2473 		m = ieee80211_getmgtframe(&frm,
2474 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2475 			 sizeof(uint16_t)
2476 		       + sizeof(uint16_t)
2477 		       + IEEE80211_ADDR_LEN
2478 		       + 2 + IEEE80211_NWID_LEN
2479 		       + 2 + IEEE80211_RATE_SIZE
2480 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2481 		       + 4
2482 		       + 2 + 26
2483 		       + sizeof(struct ieee80211_wme_info)
2484 		       + sizeof(struct ieee80211_ie_htcap)
2485 		       + sizeof(struct ieee80211_ie_vhtcap)
2486 		       + 4 + sizeof(struct ieee80211_ie_htcap)
2487 #ifdef IEEE80211_SUPPORT_SUPERG
2488 		       + sizeof(struct ieee80211_ath_ie)
2489 #endif
2490 		       + (vap->iv_appie_wpa != NULL ?
2491 				vap->iv_appie_wpa->ie_len : 0)
2492 		       + (vap->iv_appie_assocreq != NULL ?
2493 				vap->iv_appie_assocreq->ie_len : 0)
2494 		);
2495 		if (m == NULL)
2496 			senderr(ENOMEM, is_tx_nobuf);
2497 
2498 		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2499 		    ("wrong mode %u", vap->iv_opmode));
2500 		capinfo = IEEE80211_CAPINFO_ESS;
2501 		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2502 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2503 		/*
2504 		 * NB: Some 11a AP's reject the request when
2505 		 *     short preamble is set.
2506 		 */
2507 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2508 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2509 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2510 		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2511 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2512 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2513 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2514 		    (vap->iv_flags & IEEE80211_F_DOTH))
2515 			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2516 		*(uint16_t *)frm = htole16(capinfo);
2517 		frm += 2;
2518 
2519 		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2520 		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2521 						    bss->ni_intval));
2522 		frm += 2;
2523 
2524 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2525 			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2526 			frm += IEEE80211_ADDR_LEN;
2527 		}
2528 
2529 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2530 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2531 		frm = ieee80211_add_rsn(frm, vap);
2532 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2533 		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2534 			frm = ieee80211_add_powercapability(frm,
2535 			    ic->ic_curchan);
2536 			frm = ieee80211_add_supportedchannels(frm, ic);
2537 		}
2538 
2539 		/*
2540 		 * Check the channel - we may be using an 11n NIC with an
2541 		 * 11n capable station, but we're configured to be an 11b
2542 		 * channel.
2543 		 */
2544 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2545 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2546 		    ni->ni_ies.htcap_ie != NULL &&
2547 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
2548 			frm = ieee80211_add_htcap(frm, ni);
2549 		}
2550 
2551 		if ((vap->iv_flags_vht & IEEE80211_FVHT_VHT) &&
2552 		    IEEE80211_IS_CHAN_VHT(ni->ni_chan) &&
2553 		    ni->ni_ies.vhtcap_ie != NULL &&
2554 		    ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) {
2555 			frm = ieee80211_add_vhtcap(frm, ni);
2556 		}
2557 
2558 		frm = ieee80211_add_wpa(frm, vap);
2559 		if ((ic->ic_flags & IEEE80211_F_WME) &&
2560 		    ni->ni_ies.wme_ie != NULL)
2561 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2562 
2563 		/*
2564 		 * Same deal - only send HT info if we're on an 11n
2565 		 * capable channel.
2566 		 */
2567 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2568 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2569 		    ni->ni_ies.htcap_ie != NULL &&
2570 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
2571 			frm = ieee80211_add_htcap_vendor(frm, ni);
2572 		}
2573 #ifdef IEEE80211_SUPPORT_SUPERG
2574 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2575 			frm = ieee80211_add_ath(frm,
2576 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2577 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2578 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2579 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2580 		}
2581 #endif /* IEEE80211_SUPPORT_SUPERG */
2582 		if (vap->iv_appie_assocreq != NULL)
2583 			frm = add_appie(frm, vap->iv_appie_assocreq);
2584 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2585 
2586 		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2587 			(void *) vap->iv_state);
2588 		break;
2589 
2590 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2591 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2592 		/*
2593 		 * asresp frame format
2594 		 *	[2] capability information
2595 		 *	[2] status
2596 		 *	[2] association ID
2597 		 *	[tlv] supported rates
2598 		 *	[tlv] extended supported rates
2599 		 *	[tlv] HT capabilities (standard, if STA enabled)
2600 		 *	[tlv] HT information (standard, if STA enabled)
2601 		 *	[tlv] VHT capabilities (standard, if STA enabled)
2602 		 *	[tlv] VHT information (standard, if STA enabled)
2603 		 *	[tlv] WME (if configured and STA enabled)
2604 		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2605 		 *	[tlv] HT information (vendor OUI, if STA enabled)
2606 		 *	[tlv] Atheros capabilities (if STA enabled)
2607 		 *	[tlv] AppIE's (optional)
2608 		 */
2609 		m = ieee80211_getmgtframe(&frm,
2610 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2611 			 sizeof(uint16_t)
2612 		       + sizeof(uint16_t)
2613 		       + sizeof(uint16_t)
2614 		       + 2 + IEEE80211_RATE_SIZE
2615 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2616 		       + sizeof(struct ieee80211_ie_htcap) + 4
2617 		       + sizeof(struct ieee80211_ie_htinfo) + 4
2618 		       + sizeof(struct ieee80211_ie_vhtcap)
2619 		       + sizeof(struct ieee80211_ie_vht_operation)
2620 		       + sizeof(struct ieee80211_wme_param)
2621 #ifdef IEEE80211_SUPPORT_SUPERG
2622 		       + sizeof(struct ieee80211_ath_ie)
2623 #endif
2624 		       + (vap->iv_appie_assocresp != NULL ?
2625 				vap->iv_appie_assocresp->ie_len : 0)
2626 		);
2627 		if (m == NULL)
2628 			senderr(ENOMEM, is_tx_nobuf);
2629 
2630 		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2631 		*(uint16_t *)frm = htole16(capinfo);
2632 		frm += 2;
2633 
2634 		*(uint16_t *)frm = htole16(arg);	/* status */
2635 		frm += 2;
2636 
2637 		if (arg == IEEE80211_STATUS_SUCCESS) {
2638 			*(uint16_t *)frm = htole16(ni->ni_associd);
2639 			IEEE80211_NODE_STAT(ni, tx_assoc);
2640 		} else
2641 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2642 		frm += 2;
2643 
2644 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2645 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2646 		/* NB: respond according to what we received */
2647 		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2648 			frm = ieee80211_add_htcap(frm, ni);
2649 			frm = ieee80211_add_htinfo(frm, ni);
2650 		}
2651 		if ((vap->iv_flags & IEEE80211_F_WME) &&
2652 		    ni->ni_ies.wme_ie != NULL)
2653 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2654 		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2655 			frm = ieee80211_add_htcap_vendor(frm, ni);
2656 			frm = ieee80211_add_htinfo_vendor(frm, ni);
2657 		}
2658 		if (ni->ni_flags & IEEE80211_NODE_VHT) {
2659 			frm = ieee80211_add_vhtcap(frm, ni);
2660 			frm = ieee80211_add_vhtinfo(frm, ni);
2661 		}
2662 #ifdef IEEE80211_SUPPORT_SUPERG
2663 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2664 			frm = ieee80211_add_ath(frm,
2665 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2666 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2667 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2668 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2669 #endif /* IEEE80211_SUPPORT_SUPERG */
2670 		if (vap->iv_appie_assocresp != NULL)
2671 			frm = add_appie(frm, vap->iv_appie_assocresp);
2672 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2673 		break;
2674 
2675 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2676 		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2677 		    "send station disassociate (reason: %d (%s))", arg,
2678 		    ieee80211_reason_to_string(arg));
2679 		m = ieee80211_getmgtframe(&frm,
2680 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2681 			sizeof(uint16_t));
2682 		if (m == NULL)
2683 			senderr(ENOMEM, is_tx_nobuf);
2684 		*(uint16_t *)frm = htole16(arg);	/* reason */
2685 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2686 
2687 		IEEE80211_NODE_STAT(ni, tx_disassoc);
2688 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2689 		break;
2690 
2691 	default:
2692 		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2693 		    "invalid mgmt frame type %u", type);
2694 		senderr(EINVAL, is_tx_unknownmgt);
2695 		/* NOTREACHED */
2696 	}
2697 
2698 	/* NB: force non-ProbeResp frames to the highest queue */
2699 	params.ibp_pri = WME_AC_VO;
2700 	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2701 	/* NB: we know all frames are unicast */
2702 	params.ibp_try0 = bss->ni_txparms->maxretry;
2703 	params.ibp_power = bss->ni_txpower;
2704 	return ieee80211_mgmt_output(ni, m, type, &params);
2705 bad:
2706 	ieee80211_free_node(ni);
2707 	return ret;
2708 #undef senderr
2709 #undef HTFLAGS
2710 }
2711 
2712 /*
2713  * Return an mbuf with a probe response frame in it.
2714  * Space is left to prepend and 802.11 header at the
2715  * front but it's left to the caller to fill in.
2716  */
2717 struct mbuf *
2718 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2719 {
2720 	struct ieee80211vap *vap = bss->ni_vap;
2721 	struct ieee80211com *ic = bss->ni_ic;
2722 	const struct ieee80211_rateset *rs;
2723 	struct mbuf *m;
2724 	uint16_t capinfo;
2725 	uint8_t *frm;
2726 
2727 	/*
2728 	 * probe response frame format
2729 	 *	[8] time stamp
2730 	 *	[2] beacon interval
2731 	 *	[2] cabability information
2732 	 *	[tlv] ssid
2733 	 *	[tlv] supported rates
2734 	 *	[tlv] parameter set (FH/DS)
2735 	 *	[tlv] parameter set (IBSS)
2736 	 *	[tlv] country (optional)
2737 	 *	[3] power control (optional)
2738 	 *	[5] channel switch announcement (CSA) (optional)
2739 	 *	[tlv] extended rate phy (ERP)
2740 	 *	[tlv] extended supported rates
2741 	 *	[tlv] RSN (optional)
2742 	 *	[tlv] HT capabilities
2743 	 *	[tlv] HT information
2744 	 *	[tlv] VHT capabilities
2745 	 *	[tlv] VHT information
2746 	 *	[tlv] WPA (optional)
2747 	 *	[tlv] WME (optional)
2748 	 *	[tlv] Vendor OUI HT capabilities (optional)
2749 	 *	[tlv] Vendor OUI HT information (optional)
2750 	 *	[tlv] Atheros capabilities
2751 	 *	[tlv] AppIE's (optional)
2752 	 *	[tlv] Mesh ID (MBSS)
2753 	 *	[tlv] Mesh Conf (MBSS)
2754 	 */
2755 	m = ieee80211_getmgtframe(&frm,
2756 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2757 		 8
2758 	       + sizeof(uint16_t)
2759 	       + sizeof(uint16_t)
2760 	       + 2 + IEEE80211_NWID_LEN
2761 	       + 2 + IEEE80211_RATE_SIZE
2762 	       + 7	/* max(7,3) */
2763 	       + IEEE80211_COUNTRY_MAX_SIZE
2764 	       + 3
2765 	       + sizeof(struct ieee80211_csa_ie)
2766 	       + sizeof(struct ieee80211_quiet_ie)
2767 	       + 3
2768 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2769 	       + sizeof(struct ieee80211_ie_wpa)
2770 	       + sizeof(struct ieee80211_ie_htcap)
2771 	       + sizeof(struct ieee80211_ie_htinfo)
2772 	       + sizeof(struct ieee80211_ie_wpa)
2773 	       + sizeof(struct ieee80211_wme_param)
2774 	       + 4 + sizeof(struct ieee80211_ie_htcap)
2775 	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2776 	       +  sizeof(struct ieee80211_ie_vhtcap)
2777 	       +  sizeof(struct ieee80211_ie_vht_operation)
2778 #ifdef IEEE80211_SUPPORT_SUPERG
2779 	       + sizeof(struct ieee80211_ath_ie)
2780 #endif
2781 #ifdef IEEE80211_SUPPORT_MESH
2782 	       + 2 + IEEE80211_MESHID_LEN
2783 	       + sizeof(struct ieee80211_meshconf_ie)
2784 #endif
2785 	       + (vap->iv_appie_proberesp != NULL ?
2786 			vap->iv_appie_proberesp->ie_len : 0)
2787 	);
2788 	if (m == NULL) {
2789 		vap->iv_stats.is_tx_nobuf++;
2790 		return NULL;
2791 	}
2792 
2793 	memset(frm, 0, 8);	/* timestamp should be filled later */
2794 	frm += 8;
2795 	*(uint16_t *)frm = htole16(bss->ni_intval);
2796 	frm += 2;
2797 	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2798 	*(uint16_t *)frm = htole16(capinfo);
2799 	frm += 2;
2800 
2801 	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2802 	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2803 	frm = ieee80211_add_rates(frm, rs);
2804 
2805 	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2806 		*frm++ = IEEE80211_ELEMID_FHPARMS;
2807 		*frm++ = 5;
2808 		*frm++ = bss->ni_fhdwell & 0x00ff;
2809 		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2810 		*frm++ = IEEE80211_FH_CHANSET(
2811 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2812 		*frm++ = IEEE80211_FH_CHANPAT(
2813 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2814 		*frm++ = bss->ni_fhindex;
2815 	} else {
2816 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2817 		*frm++ = 1;
2818 		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2819 	}
2820 
2821 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2822 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2823 		*frm++ = 2;
2824 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2825 	}
2826 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2827 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2828 		frm = ieee80211_add_countryie(frm, ic);
2829 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2830 		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2831 			frm = ieee80211_add_powerconstraint(frm, vap);
2832 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2833 			frm = ieee80211_add_csa(frm, vap);
2834 	}
2835 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2836 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2837 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2838 			if (vap->iv_quiet)
2839 				frm = ieee80211_add_quiet(frm, vap, 0);
2840 		}
2841 	}
2842 	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2843 		frm = ieee80211_add_erp(frm, ic);
2844 	frm = ieee80211_add_xrates(frm, rs);
2845 	frm = ieee80211_add_rsn(frm, vap);
2846 	/*
2847 	 * NB: legacy 11b clients do not get certain ie's.
2848 	 *     The caller identifies such clients by passing
2849 	 *     a token in legacy to us.  Could expand this to be
2850 	 *     any legacy client for stuff like HT ie's.
2851 	 */
2852 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2853 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2854 		frm = ieee80211_add_htcap(frm, bss);
2855 		frm = ieee80211_add_htinfo(frm, bss);
2856 	}
2857 	if (IEEE80211_IS_CHAN_VHT(bss->ni_chan) &&
2858 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2859 		frm = ieee80211_add_vhtcap(frm, bss);
2860 		frm = ieee80211_add_vhtinfo(frm, bss);
2861 	}
2862 	frm = ieee80211_add_wpa(frm, vap);
2863 	if (vap->iv_flags & IEEE80211_F_WME)
2864 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2865 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2866 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
2867 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2868 		frm = ieee80211_add_htcap_vendor(frm, bss);
2869 		frm = ieee80211_add_htinfo_vendor(frm, bss);
2870 	}
2871 #ifdef IEEE80211_SUPPORT_SUPERG
2872 	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
2873 	    legacy != IEEE80211_SEND_LEGACY_11B)
2874 		frm = ieee80211_add_athcaps(frm, bss);
2875 #endif
2876 	if (vap->iv_appie_proberesp != NULL)
2877 		frm = add_appie(frm, vap->iv_appie_proberesp);
2878 #ifdef IEEE80211_SUPPORT_MESH
2879 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2880 		frm = ieee80211_add_meshid(frm, vap);
2881 		frm = ieee80211_add_meshconf(frm, vap);
2882 	}
2883 #endif
2884 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2885 
2886 	return m;
2887 }
2888 
2889 /*
2890  * Send a probe response frame to the specified mac address.
2891  * This does not go through the normal mgt frame api so we
2892  * can specify the destination address and re-use the bss node
2893  * for the sta reference.
2894  */
2895 int
2896 ieee80211_send_proberesp(struct ieee80211vap *vap,
2897 	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2898 {
2899 	struct ieee80211_node *bss = vap->iv_bss;
2900 	struct ieee80211com *ic = vap->iv_ic;
2901 	struct mbuf *m;
2902 	int ret;
2903 
2904 	if (vap->iv_state == IEEE80211_S_CAC) {
2905 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2906 		    "block %s frame in CAC state", "probe response");
2907 		vap->iv_stats.is_tx_badstate++;
2908 		return EIO;		/* XXX */
2909 	}
2910 
2911 	/*
2912 	 * Hold a reference on the node so it doesn't go away until after
2913 	 * the xmit is complete all the way in the driver.  On error we
2914 	 * will remove our reference.
2915 	 */
2916 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2917 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2918 	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2919 	    ieee80211_node_refcnt(bss)+1);
2920 	ieee80211_ref_node(bss);
2921 
2922 	m = ieee80211_alloc_proberesp(bss, legacy);
2923 	if (m == NULL) {
2924 		ieee80211_free_node(bss);
2925 		return ENOMEM;
2926 	}
2927 
2928 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2929 	KASSERT(m != NULL, ("no room for header"));
2930 
2931 	IEEE80211_TX_LOCK(ic);
2932 	ieee80211_send_setup(bss, m,
2933 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2934 	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2935 	/* XXX power management? */
2936 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2937 
2938 	M_WME_SETAC(m, WME_AC_BE);
2939 
2940 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2941 	    "send probe resp on channel %u to %s%s\n",
2942 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2943 	    legacy ? " <legacy>" : "");
2944 	IEEE80211_NODE_STAT(bss, tx_mgmt);
2945 
2946 	ret = ieee80211_raw_output(vap, bss, m, NULL);
2947 	IEEE80211_TX_UNLOCK(ic);
2948 	return (ret);
2949 }
2950 
2951 /*
2952  * Allocate and build a RTS (Request To Send) control frame.
2953  */
2954 struct mbuf *
2955 ieee80211_alloc_rts(struct ieee80211com *ic,
2956 	const uint8_t ra[IEEE80211_ADDR_LEN],
2957 	const uint8_t ta[IEEE80211_ADDR_LEN],
2958 	uint16_t dur)
2959 {
2960 	struct ieee80211_frame_rts *rts;
2961 	struct mbuf *m;
2962 
2963 	/* XXX honor ic_headroom */
2964 	m = m_gethdr(M_NOWAIT, MT_DATA);
2965 	if (m != NULL) {
2966 		rts = mtod(m, struct ieee80211_frame_rts *);
2967 		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2968 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2969 		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2970 		*(u_int16_t *)rts->i_dur = htole16(dur);
2971 		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2972 		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2973 
2974 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2975 	}
2976 	return m;
2977 }
2978 
2979 /*
2980  * Allocate and build a CTS (Clear To Send) control frame.
2981  */
2982 struct mbuf *
2983 ieee80211_alloc_cts(struct ieee80211com *ic,
2984 	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2985 {
2986 	struct ieee80211_frame_cts *cts;
2987 	struct mbuf *m;
2988 
2989 	/* XXX honor ic_headroom */
2990 	m = m_gethdr(M_NOWAIT, MT_DATA);
2991 	if (m != NULL) {
2992 		cts = mtod(m, struct ieee80211_frame_cts *);
2993 		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2994 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2995 		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2996 		*(u_int16_t *)cts->i_dur = htole16(dur);
2997 		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2998 
2999 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
3000 	}
3001 	return m;
3002 }
3003 
3004 static void
3005 ieee80211_tx_mgt_timeout(void *arg)
3006 {
3007 	struct ieee80211vap *vap = arg;
3008 
3009 	IEEE80211_LOCK(vap->iv_ic);
3010 	if (vap->iv_state != IEEE80211_S_INIT &&
3011 	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3012 		/*
3013 		 * NB: it's safe to specify a timeout as the reason here;
3014 		 *     it'll only be used in the right state.
3015 		 */
3016 		ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
3017 			IEEE80211_SCAN_FAIL_TIMEOUT);
3018 	}
3019 	IEEE80211_UNLOCK(vap->iv_ic);
3020 }
3021 
3022 /*
3023  * This is the callback set on net80211-sourced transmitted
3024  * authentication request frames.
3025  *
3026  * This does a couple of things:
3027  *
3028  * + If the frame transmitted was a success, it schedules a future
3029  *   event which will transition the interface to scan.
3030  *   If a state transition _then_ occurs before that event occurs,
3031  *   said state transition will cancel this callout.
3032  *
3033  * + If the frame transmit was a failure, it immediately schedules
3034  *   the transition back to scan.
3035  */
3036 static void
3037 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
3038 {
3039 	struct ieee80211vap *vap = ni->ni_vap;
3040 	enum ieee80211_state ostate = (enum ieee80211_state) arg;
3041 
3042 	/*
3043 	 * Frame transmit completed; arrange timer callback.  If
3044 	 * transmit was successfully we wait for response.  Otherwise
3045 	 * we arrange an immediate callback instead of doing the
3046 	 * callback directly since we don't know what state the driver
3047 	 * is in (e.g. what locks it is holding).  This work should
3048 	 * not be too time-critical and not happen too often so the
3049 	 * added overhead is acceptable.
3050 	 *
3051 	 * XXX what happens if !acked but response shows up before callback?
3052 	 */
3053 	if (vap->iv_state == ostate) {
3054 		callout_reset(&vap->iv_mgtsend,
3055 			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
3056 			ieee80211_tx_mgt_timeout, vap);
3057 	}
3058 }
3059 
3060 static void
3061 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
3062 	struct ieee80211_node *ni)
3063 {
3064 	struct ieee80211vap *vap = ni->ni_vap;
3065 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3066 	struct ieee80211com *ic = ni->ni_ic;
3067 	struct ieee80211_rateset *rs = &ni->ni_rates;
3068 	uint16_t capinfo;
3069 
3070 	/*
3071 	 * beacon frame format
3072 	 *
3073 	 * TODO: update to 802.11-2012; a lot of stuff has changed;
3074 	 * vendor extensions should be at the end, etc.
3075 	 *
3076 	 *	[8] time stamp
3077 	 *	[2] beacon interval
3078 	 *	[2] cabability information
3079 	 *	[tlv] ssid
3080 	 *	[tlv] supported rates
3081 	 *	[3] parameter set (DS)
3082 	 *	[8] CF parameter set (optional)
3083 	 *	[tlv] parameter set (IBSS/TIM)
3084 	 *	[tlv] country (optional)
3085 	 *	[3] power control (optional)
3086 	 *	[5] channel switch announcement (CSA) (optional)
3087 	 * XXX TODO: Quiet
3088 	 * XXX TODO: IBSS DFS
3089 	 * XXX TODO: TPC report
3090 	 *	[tlv] extended rate phy (ERP)
3091 	 *	[tlv] extended supported rates
3092 	 *	[tlv] RSN parameters
3093 	 * XXX TODO: BSSLOAD
3094 	 * (XXX EDCA parameter set, QoS capability?)
3095 	 * XXX TODO: AP channel report
3096 	 *
3097 	 *	[tlv] HT capabilities
3098 	 *	[tlv] HT information
3099 	 *	XXX TODO: 20/40 BSS coexistence
3100 	 * Mesh:
3101 	 * XXX TODO: Meshid
3102 	 * XXX TODO: mesh config
3103 	 * XXX TODO: mesh awake window
3104 	 * XXX TODO: beacon timing (mesh, etc)
3105 	 * XXX TODO: MCCAOP Advertisement Overview
3106 	 * XXX TODO: MCCAOP Advertisement
3107 	 * XXX TODO: Mesh channel switch parameters
3108 	 * VHT:
3109 	 * XXX TODO: VHT capabilities
3110 	 * XXX TODO: VHT operation
3111 	 * XXX TODO: VHT transmit power envelope
3112 	 * XXX TODO: channel switch wrapper element
3113 	 * XXX TODO: extended BSS load element
3114 	 *
3115 	 * XXX Vendor-specific OIDs (e.g. Atheros)
3116 	 *	[tlv] WPA parameters
3117 	 *	[tlv] WME parameters
3118 	 *	[tlv] Vendor OUI HT capabilities (optional)
3119 	 *	[tlv] Vendor OUI HT information (optional)
3120 	 *	[tlv] Atheros capabilities (optional)
3121 	 *	[tlv] TDMA parameters (optional)
3122 	 *	[tlv] Mesh ID (MBSS)
3123 	 *	[tlv] Mesh Conf (MBSS)
3124 	 *	[tlv] application data (optional)
3125 	 */
3126 
3127 	memset(bo, 0, sizeof(*bo));
3128 
3129 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
3130 	frm += 8;
3131 	*(uint16_t *)frm = htole16(ni->ni_intval);
3132 	frm += 2;
3133 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3134 	bo->bo_caps = (uint16_t *)frm;
3135 	*(uint16_t *)frm = htole16(capinfo);
3136 	frm += 2;
3137 	*frm++ = IEEE80211_ELEMID_SSID;
3138 	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
3139 		*frm++ = ni->ni_esslen;
3140 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
3141 		frm += ni->ni_esslen;
3142 	} else
3143 		*frm++ = 0;
3144 	frm = ieee80211_add_rates(frm, rs);
3145 	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
3146 		*frm++ = IEEE80211_ELEMID_DSPARMS;
3147 		*frm++ = 1;
3148 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
3149 	}
3150 	if (ic->ic_flags & IEEE80211_F_PCF) {
3151 		bo->bo_cfp = frm;
3152 		frm = ieee80211_add_cfparms(frm, ic);
3153 	}
3154 	bo->bo_tim = frm;
3155 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
3156 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
3157 		*frm++ = 2;
3158 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
3159 		bo->bo_tim_len = 0;
3160 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3161 	    vap->iv_opmode == IEEE80211_M_MBSS) {
3162 		/* TIM IE is the same for Mesh and Hostap */
3163 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
3164 
3165 		tie->tim_ie = IEEE80211_ELEMID_TIM;
3166 		tie->tim_len = 4;	/* length */
3167 		tie->tim_count = 0;	/* DTIM count */
3168 		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
3169 		tie->tim_bitctl = 0;	/* bitmap control */
3170 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
3171 		frm += sizeof(struct ieee80211_tim_ie);
3172 		bo->bo_tim_len = 1;
3173 	}
3174 	bo->bo_tim_trailer = frm;
3175 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3176 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3177 		frm = ieee80211_add_countryie(frm, ic);
3178 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3179 		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
3180 			frm = ieee80211_add_powerconstraint(frm, vap);
3181 		bo->bo_csa = frm;
3182 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3183 			frm = ieee80211_add_csa(frm, vap);
3184 	} else
3185 		bo->bo_csa = frm;
3186 
3187 	bo->bo_quiet = NULL;
3188 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3189 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3190 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
3191 		    (vap->iv_quiet == 1)) {
3192 			/*
3193 			 * We only insert the quiet IE offset if
3194 			 * the quiet IE is enabled.  Otherwise don't
3195 			 * put it here or we'll just overwrite
3196 			 * some other beacon contents.
3197 			 */
3198 			if (vap->iv_quiet) {
3199 				bo->bo_quiet = frm;
3200 				frm = ieee80211_add_quiet(frm,vap, 0);
3201 			}
3202 		}
3203 	}
3204 
3205 	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
3206 		bo->bo_erp = frm;
3207 		frm = ieee80211_add_erp(frm, ic);
3208 	}
3209 	frm = ieee80211_add_xrates(frm, rs);
3210 	frm = ieee80211_add_rsn(frm, vap);
3211 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
3212 		frm = ieee80211_add_htcap(frm, ni);
3213 		bo->bo_htinfo = frm;
3214 		frm = ieee80211_add_htinfo(frm, ni);
3215 	}
3216 
3217 	if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) {
3218 		frm = ieee80211_add_vhtcap(frm, ni);
3219 		bo->bo_vhtinfo = frm;
3220 		frm = ieee80211_add_vhtinfo(frm, ni);
3221 		/* Transmit power envelope */
3222 		/* Channel switch wrapper element */
3223 		/* Extended bss load element */
3224 	}
3225 
3226 	frm = ieee80211_add_wpa(frm, vap);
3227 	if (vap->iv_flags & IEEE80211_F_WME) {
3228 		bo->bo_wme = frm;
3229 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
3230 	}
3231 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
3232 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
3233 		frm = ieee80211_add_htcap_vendor(frm, ni);
3234 		frm = ieee80211_add_htinfo_vendor(frm, ni);
3235 	}
3236 
3237 #ifdef IEEE80211_SUPPORT_SUPERG
3238 	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
3239 		bo->bo_ath = frm;
3240 		frm = ieee80211_add_athcaps(frm, ni);
3241 	}
3242 #endif
3243 #ifdef IEEE80211_SUPPORT_TDMA
3244 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3245 		bo->bo_tdma = frm;
3246 		frm = ieee80211_add_tdma(frm, vap);
3247 	}
3248 #endif
3249 	if (vap->iv_appie_beacon != NULL) {
3250 		bo->bo_appie = frm;
3251 		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
3252 		frm = add_appie(frm, vap->iv_appie_beacon);
3253 	}
3254 
3255 	/* XXX TODO: move meshid/meshconf up to before vendor extensions? */
3256 #ifdef IEEE80211_SUPPORT_MESH
3257 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3258 		frm = ieee80211_add_meshid(frm, vap);
3259 		bo->bo_meshconf = frm;
3260 		frm = ieee80211_add_meshconf(frm, vap);
3261 	}
3262 #endif
3263 	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
3264 	bo->bo_csa_trailer_len = frm - bo->bo_csa;
3265 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3266 }
3267 
3268 /*
3269  * Allocate a beacon frame and fillin the appropriate bits.
3270  */
3271 struct mbuf *
3272 ieee80211_beacon_alloc(struct ieee80211_node *ni)
3273 {
3274 	struct ieee80211vap *vap = ni->ni_vap;
3275 	struct ieee80211com *ic = ni->ni_ic;
3276 	struct ifnet *ifp = vap->iv_ifp;
3277 	struct ieee80211_frame *wh;
3278 	struct mbuf *m;
3279 	int pktlen;
3280 	uint8_t *frm;
3281 
3282 	/*
3283 	 * Update the "We're putting the quiet IE in the beacon" state.
3284 	 */
3285 	if (vap->iv_quiet == 1)
3286 		vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
3287 	else if (vap->iv_quiet == 0)
3288 		vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
3289 
3290 	/*
3291 	 * beacon frame format
3292 	 *
3293 	 * Note: This needs updating for 802.11-2012.
3294 	 *
3295 	 *	[8] time stamp
3296 	 *	[2] beacon interval
3297 	 *	[2] cabability information
3298 	 *	[tlv] ssid
3299 	 *	[tlv] supported rates
3300 	 *	[3] parameter set (DS)
3301 	 *	[8] CF parameter set (optional)
3302 	 *	[tlv] parameter set (IBSS/TIM)
3303 	 *	[tlv] country (optional)
3304 	 *	[3] power control (optional)
3305 	 *	[5] channel switch announcement (CSA) (optional)
3306 	 *	[tlv] extended rate phy (ERP)
3307 	 *	[tlv] extended supported rates
3308 	 *	[tlv] RSN parameters
3309 	 *	[tlv] HT capabilities
3310 	 *	[tlv] HT information
3311 	 *	[tlv] VHT capabilities
3312 	 *	[tlv] VHT operation
3313 	 *	[tlv] Vendor OUI HT capabilities (optional)
3314 	 *	[tlv] Vendor OUI HT information (optional)
3315 	 * XXX Vendor-specific OIDs (e.g. Atheros)
3316 	 *	[tlv] WPA parameters
3317 	 *	[tlv] WME parameters
3318 	 *	[tlv] TDMA parameters (optional)
3319 	 *	[tlv] Mesh ID (MBSS)
3320 	 *	[tlv] Mesh Conf (MBSS)
3321 	 *	[tlv] application data (optional)
3322 	 * NB: we allocate the max space required for the TIM bitmap.
3323 	 * XXX how big is this?
3324 	 */
3325 	pktlen =   8					/* time stamp */
3326 		 + sizeof(uint16_t)			/* beacon interval */
3327 		 + sizeof(uint16_t)			/* capabilities */
3328 		 + 2 + ni->ni_esslen			/* ssid */
3329 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
3330 	         + 2 + 1				/* DS parameters */
3331 		 + 2 + 6				/* CF parameters */
3332 		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
3333 		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
3334 		 + 2 + 1				/* power control */
3335 		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
3336 		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
3337 		 + 2 + 1				/* ERP */
3338 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3339 		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
3340 			2*sizeof(struct ieee80211_ie_wpa) : 0)
3341 		 /* XXX conditional? */
3342 		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3343 		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3344 		 + sizeof(struct ieee80211_ie_vhtcap)/* VHT caps */
3345 		 + sizeof(struct ieee80211_ie_vht_operation)/* VHT info */
3346 		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
3347 			sizeof(struct ieee80211_wme_param) : 0)
3348 #ifdef IEEE80211_SUPPORT_SUPERG
3349 		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
3350 #endif
3351 #ifdef IEEE80211_SUPPORT_TDMA
3352 		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
3353 			sizeof(struct ieee80211_tdma_param) : 0)
3354 #endif
3355 #ifdef IEEE80211_SUPPORT_MESH
3356 		 + 2 + ni->ni_meshidlen
3357 		 + sizeof(struct ieee80211_meshconf_ie)
3358 #endif
3359 		 + IEEE80211_MAX_APPIE
3360 		 ;
3361 	m = ieee80211_getmgtframe(&frm,
3362 		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3363 	if (m == NULL) {
3364 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3365 			"%s: cannot get buf; size %u\n", __func__, pktlen);
3366 		vap->iv_stats.is_tx_nobuf++;
3367 		return NULL;
3368 	}
3369 	ieee80211_beacon_construct(m, frm, ni);
3370 
3371 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
3372 	KASSERT(m != NULL, ("no space for 802.11 header?"));
3373 	wh = mtod(m, struct ieee80211_frame *);
3374 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3375 	    IEEE80211_FC0_SUBTYPE_BEACON;
3376 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3377 	*(uint16_t *)wh->i_dur = 0;
3378 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3379 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3380 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3381 	*(uint16_t *)wh->i_seq = 0;
3382 
3383 	return m;
3384 }
3385 
3386 /*
3387  * Update the dynamic parts of a beacon frame based on the current state.
3388  */
3389 int
3390 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast)
3391 {
3392 	struct ieee80211vap *vap = ni->ni_vap;
3393 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3394 	struct ieee80211com *ic = ni->ni_ic;
3395 	int len_changed = 0;
3396 	uint16_t capinfo;
3397 	struct ieee80211_frame *wh;
3398 	ieee80211_seq seqno;
3399 
3400 	IEEE80211_LOCK(ic);
3401 	/*
3402 	 * Handle 11h channel change when we've reached the count.
3403 	 * We must recalculate the beacon frame contents to account
3404 	 * for the new channel.  Note we do this only for the first
3405 	 * vap that reaches this point; subsequent vaps just update
3406 	 * their beacon state to reflect the recalculated channel.
3407 	 */
3408 	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3409 	    vap->iv_csa_count == ic->ic_csa_count) {
3410 		vap->iv_csa_count = 0;
3411 		/*
3412 		 * Effect channel change before reconstructing the beacon
3413 		 * frame contents as many places reference ni_chan.
3414 		 */
3415 		if (ic->ic_csa_newchan != NULL)
3416 			ieee80211_csa_completeswitch(ic);
3417 		/*
3418 		 * NB: ieee80211_beacon_construct clears all pending
3419 		 * updates in bo_flags so we don't need to explicitly
3420 		 * clear IEEE80211_BEACON_CSA.
3421 		 */
3422 		ieee80211_beacon_construct(m,
3423 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3424 
3425 		/* XXX do WME aggressive mode processing? */
3426 		IEEE80211_UNLOCK(ic);
3427 		return 1;		/* just assume length changed */
3428 	}
3429 
3430 	/*
3431 	 * Handle the quiet time element being added and removed.
3432 	 * Again, for now we just cheat and reconstruct the whole
3433 	 * beacon - that way the gap is provided as appropriate.
3434 	 *
3435 	 * So, track whether we have already added the IE versus
3436 	 * whether we want to be adding the IE.
3437 	 */
3438 	if ((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) &&
3439 	    (vap->iv_quiet == 0)) {
3440 		/*
3441 		 * Quiet time beacon IE enabled, but it's disabled;
3442 		 * recalc
3443 		 */
3444 		vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
3445 		ieee80211_beacon_construct(m,
3446 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3447 		/* XXX do WME aggressive mode processing? */
3448 		IEEE80211_UNLOCK(ic);
3449 		return 1;		/* just assume length changed */
3450 	}
3451 
3452 	if (((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) == 0) &&
3453 	    (vap->iv_quiet == 1)) {
3454 		/*
3455 		 * Quiet time beacon IE disabled, but it's now enabled;
3456 		 * recalc
3457 		 */
3458 		vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
3459 		ieee80211_beacon_construct(m,
3460 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3461 		/* XXX do WME aggressive mode processing? */
3462 		IEEE80211_UNLOCK(ic);
3463 		return 1;		/* just assume length changed */
3464 	}
3465 
3466 	wh = mtod(m, struct ieee80211_frame *);
3467 
3468 	/*
3469 	 * XXX TODO Strictly speaking this should be incremented with the TX
3470 	 * lock held so as to serialise access to the non-qos TID sequence
3471 	 * number space.
3472 	 *
3473 	 * If the driver identifies it does its own TX seqno management then
3474 	 * we can skip this (and still not do the TX seqno.)
3475 	 */
3476 	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3477 	*(uint16_t *)&wh->i_seq[0] =
3478 		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3479 	M_SEQNO_SET(m, seqno);
3480 
3481 	/* XXX faster to recalculate entirely or just changes? */
3482 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3483 	*bo->bo_caps = htole16(capinfo);
3484 
3485 	if (vap->iv_flags & IEEE80211_F_WME) {
3486 		struct ieee80211_wme_state *wme = &ic->ic_wme;
3487 
3488 		/*
3489 		 * Check for aggressive mode change.  When there is
3490 		 * significant high priority traffic in the BSS
3491 		 * throttle back BE traffic by using conservative
3492 		 * parameters.  Otherwise BE uses aggressive params
3493 		 * to optimize performance of legacy/non-QoS traffic.
3494 		 */
3495 		if (wme->wme_flags & WME_F_AGGRMODE) {
3496 			if (wme->wme_hipri_traffic >
3497 			    wme->wme_hipri_switch_thresh) {
3498 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3499 				    "%s: traffic %u, disable aggressive mode\n",
3500 				    __func__, wme->wme_hipri_traffic);
3501 				wme->wme_flags &= ~WME_F_AGGRMODE;
3502 				ieee80211_wme_updateparams_locked(vap);
3503 				wme->wme_hipri_traffic =
3504 					wme->wme_hipri_switch_hysteresis;
3505 			} else
3506 				wme->wme_hipri_traffic = 0;
3507 		} else {
3508 			if (wme->wme_hipri_traffic <=
3509 			    wme->wme_hipri_switch_thresh) {
3510 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3511 				    "%s: traffic %u, enable aggressive mode\n",
3512 				    __func__, wme->wme_hipri_traffic);
3513 				wme->wme_flags |= WME_F_AGGRMODE;
3514 				ieee80211_wme_updateparams_locked(vap);
3515 				wme->wme_hipri_traffic = 0;
3516 			} else
3517 				wme->wme_hipri_traffic =
3518 					wme->wme_hipri_switch_hysteresis;
3519 		}
3520 		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3521 			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
3522 			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3523 		}
3524 	}
3525 
3526 	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
3527 		ieee80211_ht_update_beacon(vap, bo);
3528 		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3529 	}
3530 #ifdef IEEE80211_SUPPORT_TDMA
3531 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3532 		/*
3533 		 * NB: the beacon is potentially updated every TBTT.
3534 		 */
3535 		ieee80211_tdma_update_beacon(vap, bo);
3536 	}
3537 #endif
3538 #ifdef IEEE80211_SUPPORT_MESH
3539 	if (vap->iv_opmode == IEEE80211_M_MBSS)
3540 		ieee80211_mesh_update_beacon(vap, bo);
3541 #endif
3542 
3543 	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3544 	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
3545 		struct ieee80211_tim_ie *tie =
3546 			(struct ieee80211_tim_ie *) bo->bo_tim;
3547 		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3548 			u_int timlen, timoff, i;
3549 			/*
3550 			 * ATIM/DTIM needs updating.  If it fits in the
3551 			 * current space allocated then just copy in the
3552 			 * new bits.  Otherwise we need to move any trailing
3553 			 * data to make room.  Note that we know there is
3554 			 * contiguous space because ieee80211_beacon_allocate
3555 			 * insures there is space in the mbuf to write a
3556 			 * maximal-size virtual bitmap (based on iv_max_aid).
3557 			 */
3558 			/*
3559 			 * Calculate the bitmap size and offset, copy any
3560 			 * trailer out of the way, and then copy in the
3561 			 * new bitmap and update the information element.
3562 			 * Note that the tim bitmap must contain at least
3563 			 * one byte and any offset must be even.
3564 			 */
3565 			if (vap->iv_ps_pending != 0) {
3566 				timoff = 128;		/* impossibly large */
3567 				for (i = 0; i < vap->iv_tim_len; i++)
3568 					if (vap->iv_tim_bitmap[i]) {
3569 						timoff = i &~ 1;
3570 						break;
3571 					}
3572 				KASSERT(timoff != 128, ("tim bitmap empty!"));
3573 				for (i = vap->iv_tim_len-1; i >= timoff; i--)
3574 					if (vap->iv_tim_bitmap[i])
3575 						break;
3576 				timlen = 1 + (i - timoff);
3577 			} else {
3578 				timoff = 0;
3579 				timlen = 1;
3580 			}
3581 
3582 			/*
3583 			 * TODO: validate this!
3584 			 */
3585 			if (timlen != bo->bo_tim_len) {
3586 				/* copy up/down trailer */
3587 				int adjust = tie->tim_bitmap+timlen
3588 					   - bo->bo_tim_trailer;
3589 				ovbcopy(bo->bo_tim_trailer,
3590 				    bo->bo_tim_trailer+adjust,
3591 				    bo->bo_tim_trailer_len);
3592 				bo->bo_tim_trailer += adjust;
3593 				bo->bo_erp += adjust;
3594 				bo->bo_htinfo += adjust;
3595 				bo->bo_vhtinfo += adjust;
3596 #ifdef IEEE80211_SUPPORT_SUPERG
3597 				bo->bo_ath += adjust;
3598 #endif
3599 #ifdef IEEE80211_SUPPORT_TDMA
3600 				bo->bo_tdma += adjust;
3601 #endif
3602 #ifdef IEEE80211_SUPPORT_MESH
3603 				bo->bo_meshconf += adjust;
3604 #endif
3605 				bo->bo_appie += adjust;
3606 				bo->bo_wme += adjust;
3607 				bo->bo_csa += adjust;
3608 				bo->bo_quiet += adjust;
3609 				bo->bo_tim_len = timlen;
3610 
3611 				/* update information element */
3612 				tie->tim_len = 3 + timlen;
3613 				tie->tim_bitctl = timoff;
3614 				len_changed = 1;
3615 			}
3616 			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
3617 				bo->bo_tim_len);
3618 
3619 			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
3620 
3621 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
3622 				"%s: TIM updated, pending %u, off %u, len %u\n",
3623 				__func__, vap->iv_ps_pending, timoff, timlen);
3624 		}
3625 		/* count down DTIM period */
3626 		if (tie->tim_count == 0)
3627 			tie->tim_count = tie->tim_period - 1;
3628 		else
3629 			tie->tim_count--;
3630 		/* update state for buffered multicast frames on DTIM */
3631 		if (mcast && tie->tim_count == 0)
3632 			tie->tim_bitctl |= 1;
3633 		else
3634 			tie->tim_bitctl &= ~1;
3635 		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
3636 			struct ieee80211_csa_ie *csa =
3637 			    (struct ieee80211_csa_ie *) bo->bo_csa;
3638 
3639 			/*
3640 			 * Insert or update CSA ie.  If we're just starting
3641 			 * to count down to the channel switch then we need
3642 			 * to insert the CSA ie.  Otherwise we just need to
3643 			 * drop the count.  The actual change happens above
3644 			 * when the vap's count reaches the target count.
3645 			 */
3646 			if (vap->iv_csa_count == 0) {
3647 				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
3648 				bo->bo_erp += sizeof(*csa);
3649 				bo->bo_htinfo += sizeof(*csa);
3650 				bo->bo_vhtinfo += sizeof(*csa);
3651 				bo->bo_wme += sizeof(*csa);
3652 #ifdef IEEE80211_SUPPORT_SUPERG
3653 				bo->bo_ath += sizeof(*csa);
3654 #endif
3655 #ifdef IEEE80211_SUPPORT_TDMA
3656 				bo->bo_tdma += sizeof(*csa);
3657 #endif
3658 #ifdef IEEE80211_SUPPORT_MESH
3659 				bo->bo_meshconf += sizeof(*csa);
3660 #endif
3661 				bo->bo_appie += sizeof(*csa);
3662 				bo->bo_csa_trailer_len += sizeof(*csa);
3663 				bo->bo_quiet += sizeof(*csa);
3664 				bo->bo_tim_trailer_len += sizeof(*csa);
3665 				m->m_len += sizeof(*csa);
3666 				m->m_pkthdr.len += sizeof(*csa);
3667 
3668 				ieee80211_add_csa(bo->bo_csa, vap);
3669 			} else
3670 				csa->csa_count--;
3671 			vap->iv_csa_count++;
3672 			/* NB: don't clear IEEE80211_BEACON_CSA */
3673 		}
3674 
3675 		/*
3676 		 * Only add the quiet time IE if we've enabled it
3677 		 * as appropriate.
3678 		 */
3679 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3680 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
3681 			if (vap->iv_quiet &&
3682 			    (vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE)) {
3683 				ieee80211_add_quiet(bo->bo_quiet, vap, 1);
3684 			}
3685 		}
3686 		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3687 			/*
3688 			 * ERP element needs updating.
3689 			 */
3690 			(void) ieee80211_add_erp(bo->bo_erp, ic);
3691 			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3692 		}
3693 #ifdef IEEE80211_SUPPORT_SUPERG
3694 		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
3695 			ieee80211_add_athcaps(bo->bo_ath, ni);
3696 			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3697 		}
3698 #endif
3699 	}
3700 	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3701 		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3702 		int aielen;
3703 		uint8_t *frm;
3704 
3705 		aielen = 0;
3706 		if (aie != NULL)
3707 			aielen += aie->ie_len;
3708 		if (aielen != bo->bo_appie_len) {
3709 			/* copy up/down trailer */
3710 			int adjust = aielen - bo->bo_appie_len;
3711 			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3712 				bo->bo_tim_trailer_len);
3713 			bo->bo_tim_trailer += adjust;
3714 			bo->bo_appie += adjust;
3715 			bo->bo_appie_len = aielen;
3716 
3717 			len_changed = 1;
3718 		}
3719 		frm = bo->bo_appie;
3720 		if (aie != NULL)
3721 			frm  = add_appie(frm, aie);
3722 		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3723 	}
3724 	IEEE80211_UNLOCK(ic);
3725 
3726 	return len_changed;
3727 }
3728 
3729 /*
3730  * Do Ethernet-LLC encapsulation for each payload in a fast frame
3731  * tunnel encapsulation.  The frame is assumed to have an Ethernet
3732  * header at the front that must be stripped before prepending the
3733  * LLC followed by the Ethernet header passed in (with an Ethernet
3734  * type that specifies the payload size).
3735  */
3736 struct mbuf *
3737 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
3738 	const struct ether_header *eh)
3739 {
3740 	struct llc *llc;
3741 	uint16_t payload;
3742 
3743 	/* XXX optimize by combining m_adj+M_PREPEND */
3744 	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
3745 	llc = mtod(m, struct llc *);
3746 	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
3747 	llc->llc_control = LLC_UI;
3748 	llc->llc_snap.org_code[0] = 0;
3749 	llc->llc_snap.org_code[1] = 0;
3750 	llc->llc_snap.org_code[2] = 0;
3751 	llc->llc_snap.ether_type = eh->ether_type;
3752 	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
3753 
3754 	M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
3755 	if (m == NULL) {		/* XXX cannot happen */
3756 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
3757 			"%s: no space for ether_header\n", __func__);
3758 		vap->iv_stats.is_tx_nobuf++;
3759 		return NULL;
3760 	}
3761 	ETHER_HEADER_COPY(mtod(m, void *), eh);
3762 	mtod(m, struct ether_header *)->ether_type = htons(payload);
3763 	return m;
3764 }
3765 
3766 /*
3767  * Complete an mbuf transmission.
3768  *
3769  * For now, this simply processes a completed frame after the
3770  * driver has completed it's transmission and/or retransmission.
3771  * It assumes the frame is an 802.11 encapsulated frame.
3772  *
3773  * Later on it will grow to become the exit path for a given frame
3774  * from the driver and, depending upon how it's been encapsulated
3775  * and already transmitted, it may end up doing A-MPDU retransmission,
3776  * power save requeuing, etc.
3777  *
3778  * In order for the above to work, the driver entry point to this
3779  * must not hold any driver locks.  Thus, the driver needs to delay
3780  * any actual mbuf completion until it can release said locks.
3781  *
3782  * This frees the mbuf and if the mbuf has a node reference,
3783  * the node reference will be freed.
3784  */
3785 void
3786 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
3787 {
3788 
3789 	if (ni != NULL) {
3790 		struct ifnet *ifp = ni->ni_vap->iv_ifp;
3791 
3792 		if (status == 0) {
3793 			if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
3794 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3795 			if (m->m_flags & M_MCAST)
3796 				if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
3797 		} else
3798 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3799 		if (m->m_flags & M_TXCB)
3800 			ieee80211_process_callback(ni, m, status);
3801 		ieee80211_free_node(ni);
3802 	}
3803 	m_freem(m);
3804 }
3805