1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_inet.h" 31 #include "opt_inet6.h" 32 #include "opt_wlan.h" 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/mbuf.h> 37 #include <sys/kernel.h> 38 #include <sys/endian.h> 39 40 #include <sys/socket.h> 41 42 #include <net/bpf.h> 43 #include <net/ethernet.h> 44 #include <net/if.h> 45 #include <net/if_var.h> 46 #include <net/if_llc.h> 47 #include <net/if_media.h> 48 #include <net/if_vlan_var.h> 49 50 #include <net80211/ieee80211_var.h> 51 #include <net80211/ieee80211_regdomain.h> 52 #ifdef IEEE80211_SUPPORT_SUPERG 53 #include <net80211/ieee80211_superg.h> 54 #endif 55 #ifdef IEEE80211_SUPPORT_TDMA 56 #include <net80211/ieee80211_tdma.h> 57 #endif 58 #include <net80211/ieee80211_wds.h> 59 #include <net80211/ieee80211_mesh.h> 60 61 #if defined(INET) || defined(INET6) 62 #include <netinet/in.h> 63 #endif 64 65 #ifdef INET 66 #include <netinet/if_ether.h> 67 #include <netinet/in_systm.h> 68 #include <netinet/ip.h> 69 #endif 70 #ifdef INET6 71 #include <netinet/ip6.h> 72 #endif 73 74 #include <security/mac/mac_framework.h> 75 76 #define ETHER_HEADER_COPY(dst, src) \ 77 memcpy(dst, src, sizeof(struct ether_header)) 78 79 /* unalligned little endian access */ 80 #define LE_WRITE_2(p, v) do { \ 81 ((uint8_t *)(p))[0] = (v) & 0xff; \ 82 ((uint8_t *)(p))[1] = ((v) >> 8) & 0xff; \ 83 } while (0) 84 #define LE_WRITE_4(p, v) do { \ 85 ((uint8_t *)(p))[0] = (v) & 0xff; \ 86 ((uint8_t *)(p))[1] = ((v) >> 8) & 0xff; \ 87 ((uint8_t *)(p))[2] = ((v) >> 16) & 0xff; \ 88 ((uint8_t *)(p))[3] = ((v) >> 24) & 0xff; \ 89 } while (0) 90 91 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *, 92 u_int hdrsize, u_int ciphdrsize, u_int mtu); 93 static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int); 94 95 #ifdef IEEE80211_DEBUG 96 /* 97 * Decide if an outbound management frame should be 98 * printed when debugging is enabled. This filters some 99 * of the less interesting frames that come frequently 100 * (e.g. beacons). 101 */ 102 static __inline int 103 doprint(struct ieee80211vap *vap, int subtype) 104 { 105 switch (subtype) { 106 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 107 return (vap->iv_opmode == IEEE80211_M_IBSS); 108 } 109 return 1; 110 } 111 #endif 112 113 /* 114 * Transmit a frame to the given destination on the given VAP. 115 * 116 * It's up to the caller to figure out the details of who this 117 * is going to and resolving the node. 118 * 119 * This routine takes care of queuing it for power save, 120 * A-MPDU state stuff, fast-frames state stuff, encapsulation 121 * if required, then passing it up to the driver layer. 122 * 123 * This routine (for now) consumes the mbuf and frees the node 124 * reference; it ideally will return a TX status which reflects 125 * whether the mbuf was consumed or not, so the caller can 126 * free the mbuf (if appropriate) and the node reference (again, 127 * if appropriate.) 128 */ 129 int 130 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m, 131 struct ieee80211_node *ni) 132 { 133 struct ieee80211com *ic = vap->iv_ic; 134 struct ifnet *ifp = vap->iv_ifp; 135 int error, len, mcast; 136 137 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 138 (m->m_flags & M_PWR_SAV) == 0) { 139 /* 140 * Station in power save mode; pass the frame 141 * to the 802.11 layer and continue. We'll get 142 * the frame back when the time is right. 143 * XXX lose WDS vap linkage? 144 */ 145 if (ieee80211_pwrsave(ni, m) != 0) 146 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 147 ieee80211_free_node(ni); 148 149 /* 150 * We queued it fine, so tell the upper layer 151 * that we consumed it. 152 */ 153 return (0); 154 } 155 /* calculate priority so drivers can find the tx queue */ 156 if (ieee80211_classify(ni, m)) { 157 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 158 ni->ni_macaddr, NULL, 159 "%s", "classification failure"); 160 vap->iv_stats.is_tx_classify++; 161 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 162 m_freem(m); 163 ieee80211_free_node(ni); 164 165 /* XXX better status? */ 166 return (0); 167 } 168 /* 169 * Stash the node pointer. Note that we do this after 170 * any call to ieee80211_dwds_mcast because that code 171 * uses any existing value for rcvif to identify the 172 * interface it (might have been) received on. 173 */ 174 m->m_pkthdr.rcvif = (void *)ni; 175 mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0; 176 len = m->m_pkthdr.len; 177 178 BPF_MTAP(ifp, m); /* 802.3 tx */ 179 180 /* 181 * Check if A-MPDU tx aggregation is setup or if we 182 * should try to enable it. The sta must be associated 183 * with HT and A-MPDU enabled for use. When the policy 184 * routine decides we should enable A-MPDU we issue an 185 * ADDBA request and wait for a reply. The frame being 186 * encapsulated will go out w/o using A-MPDU, or possibly 187 * it might be collected by the driver and held/retransmit. 188 * The default ic_ampdu_enable routine handles staggering 189 * ADDBA requests in case the receiver NAK's us or we are 190 * otherwise unable to establish a BA stream. 191 */ 192 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) && 193 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) && 194 (m->m_flags & M_EAPOL) == 0) { 195 int tid = WME_AC_TO_TID(M_WME_GETAC(m)); 196 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; 197 198 ieee80211_txampdu_count_packet(tap); 199 if (IEEE80211_AMPDU_RUNNING(tap)) { 200 /* 201 * Operational, mark frame for aggregation. 202 * 203 * XXX do tx aggregation here 204 */ 205 m->m_flags |= M_AMPDU_MPDU; 206 } else if (!IEEE80211_AMPDU_REQUESTED(tap) && 207 ic->ic_ampdu_enable(ni, tap)) { 208 /* 209 * Not negotiated yet, request service. 210 */ 211 ieee80211_ampdu_request(ni, tap); 212 /* XXX hold frame for reply? */ 213 } 214 } 215 216 /* 217 * XXX If we aren't doing AMPDU TX then we /could/ do 218 * fast-frames encapsulation, however right now this 219 * output logic doesn't handle that case. 220 * 221 * So we'll be limited to "fast-frames" xmit for non-11n STA 222 * and "no fast frames" xmit for 11n STAs. 223 * It'd be nice to eventually test fast-frames out by 224 * gracefully falling from failing A-MPDU transmission 225 * (driver says no, fail to negotiate it with peer) to 226 * using fast-frames. 227 * 228 * Note: we can actually put A-MSDU's inside an A-MPDU, 229 * so hopefully we can figure out how to make that particular 230 * combination work right. 231 */ 232 #ifdef IEEE80211_SUPPORT_SUPERG 233 else if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) { 234 m = ieee80211_ff_check(ni, m); 235 if (m == NULL) { 236 /* NB: any ni ref held on stageq */ 237 return (0); 238 } 239 } 240 #endif /* IEEE80211_SUPPORT_SUPERG */ 241 242 /* 243 * Grab the TX lock - serialise the TX process from this 244 * point (where TX state is being checked/modified) 245 * through to driver queue. 246 */ 247 IEEE80211_TX_LOCK(ic); 248 249 /* 250 * XXX make the encap and transmit code a separate function 251 * so things like the FF (and later A-MSDU) path can just call 252 * it for flushed frames. 253 */ 254 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 255 /* 256 * Encapsulate the packet in prep for transmission. 257 */ 258 m = ieee80211_encap(vap, ni, m); 259 if (m == NULL) { 260 /* NB: stat+msg handled in ieee80211_encap */ 261 IEEE80211_TX_UNLOCK(ic); 262 ieee80211_free_node(ni); 263 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 264 return (ENOBUFS); 265 } 266 } 267 error = ieee80211_parent_xmitpkt(ic, m); 268 269 /* 270 * Unlock at this point - no need to hold it across 271 * ieee80211_free_node() (ie, the comlock) 272 */ 273 IEEE80211_TX_UNLOCK(ic); 274 if (error != 0) { 275 /* NB: IFQ_HANDOFF reclaims mbuf */ 276 ieee80211_free_node(ni); 277 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 278 } 279 ic->ic_lastdata = ticks; 280 281 return (0); 282 } 283 284 285 286 /* 287 * Send the given mbuf through the given vap. 288 * 289 * This consumes the mbuf regardless of whether the transmit 290 * was successful or not. 291 * 292 * This does none of the initial checks that ieee80211_start() 293 * does (eg CAC timeout, interface wakeup) - the caller must 294 * do this first. 295 */ 296 static int 297 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m) 298 { 299 #define IS_DWDS(vap) \ 300 (vap->iv_opmode == IEEE80211_M_WDS && \ 301 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0) 302 struct ieee80211com *ic = vap->iv_ic; 303 struct ifnet *ifp = vap->iv_ifp; 304 struct ieee80211_node *ni; 305 struct ether_header *eh; 306 307 /* 308 * Cancel any background scan. 309 */ 310 if (ic->ic_flags & IEEE80211_F_SCAN) 311 ieee80211_cancel_anyscan(vap); 312 /* 313 * Find the node for the destination so we can do 314 * things like power save and fast frames aggregation. 315 * 316 * NB: past this point various code assumes the first 317 * mbuf has the 802.3 header present (and contiguous). 318 */ 319 ni = NULL; 320 if (m->m_len < sizeof(struct ether_header) && 321 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 322 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 323 "discard frame, %s\n", "m_pullup failed"); 324 vap->iv_stats.is_tx_nobuf++; /* XXX */ 325 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 326 return (ENOBUFS); 327 } 328 eh = mtod(m, struct ether_header *); 329 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 330 if (IS_DWDS(vap)) { 331 /* 332 * Only unicast frames from the above go out 333 * DWDS vaps; multicast frames are handled by 334 * dispatching the frame as it comes through 335 * the AP vap (see below). 336 */ 337 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS, 338 eh->ether_dhost, "mcast", "%s", "on DWDS"); 339 vap->iv_stats.is_dwds_mcast++; 340 m_freem(m); 341 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 342 /* XXX better status? */ 343 return (ENOBUFS); 344 } 345 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { 346 /* 347 * Spam DWDS vap's w/ multicast traffic. 348 */ 349 /* XXX only if dwds in use? */ 350 ieee80211_dwds_mcast(vap, m); 351 } 352 } 353 #ifdef IEEE80211_SUPPORT_MESH 354 if (vap->iv_opmode != IEEE80211_M_MBSS) { 355 #endif 356 ni = ieee80211_find_txnode(vap, eh->ether_dhost); 357 if (ni == NULL) { 358 /* NB: ieee80211_find_txnode does stat+msg */ 359 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 360 m_freem(m); 361 /* XXX better status? */ 362 return (ENOBUFS); 363 } 364 if (ni->ni_associd == 0 && 365 (ni->ni_flags & IEEE80211_NODE_ASSOCID)) { 366 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 367 eh->ether_dhost, NULL, 368 "sta not associated (type 0x%04x)", 369 htons(eh->ether_type)); 370 vap->iv_stats.is_tx_notassoc++; 371 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 372 m_freem(m); 373 ieee80211_free_node(ni); 374 /* XXX better status? */ 375 return (ENOBUFS); 376 } 377 #ifdef IEEE80211_SUPPORT_MESH 378 } else { 379 if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) { 380 /* 381 * Proxy station only if configured. 382 */ 383 if (!ieee80211_mesh_isproxyena(vap)) { 384 IEEE80211_DISCARD_MAC(vap, 385 IEEE80211_MSG_OUTPUT | 386 IEEE80211_MSG_MESH, 387 eh->ether_dhost, NULL, 388 "%s", "proxy not enabled"); 389 vap->iv_stats.is_mesh_notproxy++; 390 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 391 m_freem(m); 392 /* XXX better status? */ 393 return (ENOBUFS); 394 } 395 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 396 "forward frame from DS SA(%6D), DA(%6D)\n", 397 eh->ether_shost, ":", 398 eh->ether_dhost, ":"); 399 ieee80211_mesh_proxy_check(vap, eh->ether_shost); 400 } 401 ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m); 402 if (ni == NULL) { 403 /* 404 * NB: ieee80211_mesh_discover holds/disposes 405 * frame (e.g. queueing on path discovery). 406 */ 407 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 408 /* XXX better status? */ 409 return (ENOBUFS); 410 } 411 } 412 #endif 413 414 /* 415 * We've resolved the sender, so attempt to transmit it. 416 */ 417 418 if (vap->iv_state == IEEE80211_S_SLEEP) { 419 /* 420 * In power save; queue frame and then wakeup device 421 * for transmit. 422 */ 423 ic->ic_lastdata = ticks; 424 if (ieee80211_pwrsave(ni, m) != 0) 425 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 426 ieee80211_free_node(ni); 427 ieee80211_new_state(vap, IEEE80211_S_RUN, 0); 428 return (0); 429 } 430 431 if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0) 432 return (ENOBUFS); 433 return (0); 434 #undef IS_DWDS 435 } 436 437 /* 438 * Start method for vap's. All packets from the stack come 439 * through here. We handle common processing of the packets 440 * before dispatching them to the underlying device. 441 * 442 * if_transmit() requires that the mbuf be consumed by this call 443 * regardless of the return condition. 444 */ 445 int 446 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m) 447 { 448 struct ieee80211vap *vap = ifp->if_softc; 449 struct ieee80211com *ic = vap->iv_ic; 450 451 /* 452 * No data frames go out unless we're running. 453 * Note in particular this covers CAC and CSA 454 * states (though maybe we should check muting 455 * for CSA). 456 */ 457 if (vap->iv_state != IEEE80211_S_RUN && 458 vap->iv_state != IEEE80211_S_SLEEP) { 459 IEEE80211_LOCK(ic); 460 /* re-check under the com lock to avoid races */ 461 if (vap->iv_state != IEEE80211_S_RUN && 462 vap->iv_state != IEEE80211_S_SLEEP) { 463 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 464 "%s: ignore queue, in %s state\n", 465 __func__, ieee80211_state_name[vap->iv_state]); 466 vap->iv_stats.is_tx_badstate++; 467 IEEE80211_UNLOCK(ic); 468 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 469 m_freem(m); 470 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 471 return (ENETDOWN); 472 } 473 IEEE80211_UNLOCK(ic); 474 } 475 476 /* 477 * Sanitize mbuf flags for net80211 use. We cannot 478 * clear M_PWR_SAV or M_MORE_DATA because these may 479 * be set for frames that are re-submitted from the 480 * power save queue. 481 * 482 * NB: This must be done before ieee80211_classify as 483 * it marks EAPOL in frames with M_EAPOL. 484 */ 485 m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA); 486 487 /* 488 * Bump to the packet transmission path. 489 * The mbuf will be consumed here. 490 */ 491 return (ieee80211_start_pkt(vap, m)); 492 } 493 494 void 495 ieee80211_vap_qflush(struct ifnet *ifp) 496 { 497 498 /* Empty for now */ 499 } 500 501 /* 502 * 802.11 raw output routine. 503 * 504 * XXX TODO: this (and other send routines) should correctly 505 * XXX keep the pwr mgmt bit set if it decides to call into the 506 * XXX driver to send a frame whilst the state is SLEEP. 507 * 508 * Otherwise the peer may decide that we're awake and flood us 509 * with traffic we are still too asleep to receive! 510 */ 511 int 512 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni, 513 struct mbuf *m, const struct ieee80211_bpf_params *params) 514 { 515 struct ieee80211com *ic = vap->iv_ic; 516 int error; 517 518 /* 519 * Set node - the caller has taken a reference, so ensure 520 * that the mbuf has the same node value that 521 * it would if it were going via the normal path. 522 */ 523 m->m_pkthdr.rcvif = (void *)ni; 524 525 /* 526 * Attempt to add bpf transmit parameters. 527 * 528 * For now it's ok to fail; the raw_xmit api still takes 529 * them as an option. 530 * 531 * Later on when ic_raw_xmit() has params removed, 532 * they'll have to be added - so fail the transmit if 533 * they can't be. 534 */ 535 if (params) 536 (void) ieee80211_add_xmit_params(m, params); 537 538 error = ic->ic_raw_xmit(ni, m, params); 539 if (error) 540 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1); 541 return (error); 542 } 543 544 /* 545 * 802.11 output routine. This is (currently) used only to 546 * connect bpf write calls to the 802.11 layer for injecting 547 * raw 802.11 frames. 548 */ 549 int 550 ieee80211_output(struct ifnet *ifp, struct mbuf *m, 551 const struct sockaddr *dst, struct route *ro) 552 { 553 #define senderr(e) do { error = (e); goto bad;} while (0) 554 struct ieee80211_node *ni = NULL; 555 struct ieee80211vap *vap; 556 struct ieee80211_frame *wh; 557 struct ieee80211com *ic = NULL; 558 int error; 559 int ret; 560 561 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 562 /* 563 * Short-circuit requests if the vap is marked OACTIVE 564 * as this can happen because a packet came down through 565 * ieee80211_start before the vap entered RUN state in 566 * which case it's ok to just drop the frame. This 567 * should not be necessary but callers of if_output don't 568 * check OACTIVE. 569 */ 570 senderr(ENETDOWN); 571 } 572 vap = ifp->if_softc; 573 ic = vap->iv_ic; 574 /* 575 * Hand to the 802.3 code if not tagged as 576 * a raw 802.11 frame. 577 */ 578 if (dst->sa_family != AF_IEEE80211) 579 return vap->iv_output(ifp, m, dst, ro); 580 #ifdef MAC 581 error = mac_ifnet_check_transmit(ifp, m); 582 if (error) 583 senderr(error); 584 #endif 585 if (ifp->if_flags & IFF_MONITOR) 586 senderr(ENETDOWN); 587 if (!IFNET_IS_UP_RUNNING(ifp)) 588 senderr(ENETDOWN); 589 if (vap->iv_state == IEEE80211_S_CAC) { 590 IEEE80211_DPRINTF(vap, 591 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 592 "block %s frame in CAC state\n", "raw data"); 593 vap->iv_stats.is_tx_badstate++; 594 senderr(EIO); /* XXX */ 595 } else if (vap->iv_state == IEEE80211_S_SCAN) 596 senderr(EIO); 597 /* XXX bypass bridge, pfil, carp, etc. */ 598 599 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack)) 600 senderr(EIO); /* XXX */ 601 wh = mtod(m, struct ieee80211_frame *); 602 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) != 603 IEEE80211_FC0_VERSION_0) 604 senderr(EIO); /* XXX */ 605 606 /* locate destination node */ 607 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 608 case IEEE80211_FC1_DIR_NODS: 609 case IEEE80211_FC1_DIR_FROMDS: 610 ni = ieee80211_find_txnode(vap, wh->i_addr1); 611 break; 612 case IEEE80211_FC1_DIR_TODS: 613 case IEEE80211_FC1_DIR_DSTODS: 614 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame)) 615 senderr(EIO); /* XXX */ 616 ni = ieee80211_find_txnode(vap, wh->i_addr3); 617 break; 618 default: 619 senderr(EIO); /* XXX */ 620 } 621 if (ni == NULL) { 622 /* 623 * Permit packets w/ bpf params through regardless 624 * (see below about sa_len). 625 */ 626 if (dst->sa_len == 0) 627 senderr(EHOSTUNREACH); 628 ni = ieee80211_ref_node(vap->iv_bss); 629 } 630 631 /* 632 * Sanitize mbuf for net80211 flags leaked from above. 633 * 634 * NB: This must be done before ieee80211_classify as 635 * it marks EAPOL in frames with M_EAPOL. 636 */ 637 m->m_flags &= ~M_80211_TX; 638 639 /* calculate priority so drivers can find the tx queue */ 640 /* XXX assumes an 802.3 frame */ 641 if (ieee80211_classify(ni, m)) 642 senderr(EIO); /* XXX */ 643 644 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 645 IEEE80211_NODE_STAT(ni, tx_data); 646 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 647 IEEE80211_NODE_STAT(ni, tx_mcast); 648 m->m_flags |= M_MCAST; 649 } else 650 IEEE80211_NODE_STAT(ni, tx_ucast); 651 /* NB: ieee80211_encap does not include 802.11 header */ 652 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len); 653 654 IEEE80211_TX_LOCK(ic); 655 656 /* 657 * NB: DLT_IEEE802_11_RADIO identifies the parameters are 658 * present by setting the sa_len field of the sockaddr (yes, 659 * this is a hack). 660 * NB: we assume sa_data is suitably aligned to cast. 661 */ 662 ret = ieee80211_raw_output(vap, ni, m, 663 (const struct ieee80211_bpf_params *)(dst->sa_len ? 664 dst->sa_data : NULL)); 665 IEEE80211_TX_UNLOCK(ic); 666 return (ret); 667 bad: 668 if (m != NULL) 669 m_freem(m); 670 if (ni != NULL) 671 ieee80211_free_node(ni); 672 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 673 return error; 674 #undef senderr 675 } 676 677 /* 678 * Set the direction field and address fields of an outgoing 679 * frame. Note this should be called early on in constructing 680 * a frame as it sets i_fc[1]; other bits can then be or'd in. 681 */ 682 void 683 ieee80211_send_setup( 684 struct ieee80211_node *ni, 685 struct mbuf *m, 686 int type, int tid, 687 const uint8_t sa[IEEE80211_ADDR_LEN], 688 const uint8_t da[IEEE80211_ADDR_LEN], 689 const uint8_t bssid[IEEE80211_ADDR_LEN]) 690 { 691 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 692 struct ieee80211vap *vap = ni->ni_vap; 693 struct ieee80211_tx_ampdu *tap; 694 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 695 ieee80211_seq seqno; 696 697 IEEE80211_TX_LOCK_ASSERT(ni->ni_ic); 698 699 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 700 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 701 switch (vap->iv_opmode) { 702 case IEEE80211_M_STA: 703 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 704 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 705 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 706 IEEE80211_ADDR_COPY(wh->i_addr3, da); 707 break; 708 case IEEE80211_M_IBSS: 709 case IEEE80211_M_AHDEMO: 710 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 711 IEEE80211_ADDR_COPY(wh->i_addr1, da); 712 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 713 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 714 break; 715 case IEEE80211_M_HOSTAP: 716 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 717 IEEE80211_ADDR_COPY(wh->i_addr1, da); 718 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 719 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 720 break; 721 case IEEE80211_M_WDS: 722 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 723 IEEE80211_ADDR_COPY(wh->i_addr1, da); 724 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 725 IEEE80211_ADDR_COPY(wh->i_addr3, da); 726 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 727 break; 728 case IEEE80211_M_MBSS: 729 #ifdef IEEE80211_SUPPORT_MESH 730 if (IEEE80211_IS_MULTICAST(da)) { 731 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 732 /* XXX next hop */ 733 IEEE80211_ADDR_COPY(wh->i_addr1, da); 734 IEEE80211_ADDR_COPY(wh->i_addr2, 735 vap->iv_myaddr); 736 } else { 737 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 738 IEEE80211_ADDR_COPY(wh->i_addr1, da); 739 IEEE80211_ADDR_COPY(wh->i_addr2, 740 vap->iv_myaddr); 741 IEEE80211_ADDR_COPY(wh->i_addr3, da); 742 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 743 } 744 #endif 745 break; 746 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 747 break; 748 } 749 } else { 750 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 751 IEEE80211_ADDR_COPY(wh->i_addr1, da); 752 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 753 #ifdef IEEE80211_SUPPORT_MESH 754 if (vap->iv_opmode == IEEE80211_M_MBSS) 755 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 756 else 757 #endif 758 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 759 } 760 *(uint16_t *)&wh->i_dur[0] = 0; 761 762 tap = &ni->ni_tx_ampdu[tid]; 763 if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) 764 m->m_flags |= M_AMPDU_MPDU; 765 else { 766 if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK, 767 type & IEEE80211_FC0_SUBTYPE_MASK)) 768 seqno = ni->ni_txseqs[tid]++; 769 else 770 seqno = 0; 771 772 *(uint16_t *)&wh->i_seq[0] = 773 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 774 M_SEQNO_SET(m, seqno); 775 } 776 777 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 778 m->m_flags |= M_MCAST; 779 #undef WH4 780 } 781 782 /* 783 * Send a management frame to the specified node. The node pointer 784 * must have a reference as the pointer will be passed to the driver 785 * and potentially held for a long time. If the frame is successfully 786 * dispatched to the driver, then it is responsible for freeing the 787 * reference (and potentially free'ing up any associated storage); 788 * otherwise deal with reclaiming any reference (on error). 789 */ 790 int 791 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type, 792 struct ieee80211_bpf_params *params) 793 { 794 struct ieee80211vap *vap = ni->ni_vap; 795 struct ieee80211com *ic = ni->ni_ic; 796 struct ieee80211_frame *wh; 797 int ret; 798 799 KASSERT(ni != NULL, ("null node")); 800 801 if (vap->iv_state == IEEE80211_S_CAC) { 802 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 803 ni, "block %s frame in CAC state", 804 ieee80211_mgt_subtype_name[ 805 (type & IEEE80211_FC0_SUBTYPE_MASK) >> 806 IEEE80211_FC0_SUBTYPE_SHIFT]); 807 vap->iv_stats.is_tx_badstate++; 808 ieee80211_free_node(ni); 809 m_freem(m); 810 return EIO; /* XXX */ 811 } 812 813 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 814 if (m == NULL) { 815 ieee80211_free_node(ni); 816 return ENOMEM; 817 } 818 819 IEEE80211_TX_LOCK(ic); 820 821 wh = mtod(m, struct ieee80211_frame *); 822 ieee80211_send_setup(ni, m, 823 IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID, 824 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 825 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { 826 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1, 827 "encrypting frame (%s)", __func__); 828 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 829 } 830 m->m_flags |= M_ENCAP; /* mark encapsulated */ 831 832 KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?")); 833 M_WME_SETAC(m, params->ibp_pri); 834 835 #ifdef IEEE80211_DEBUG 836 /* avoid printing too many frames */ 837 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) || 838 ieee80211_msg_dumppkts(vap)) { 839 printf("[%s] send %s on channel %u\n", 840 ether_sprintf(wh->i_addr1), 841 ieee80211_mgt_subtype_name[ 842 (type & IEEE80211_FC0_SUBTYPE_MASK) >> 843 IEEE80211_FC0_SUBTYPE_SHIFT], 844 ieee80211_chan2ieee(ic, ic->ic_curchan)); 845 } 846 #endif 847 IEEE80211_NODE_STAT(ni, tx_mgmt); 848 849 ret = ieee80211_raw_output(vap, ni, m, params); 850 IEEE80211_TX_UNLOCK(ic); 851 return (ret); 852 } 853 854 /* 855 * Send a null data frame to the specified node. If the station 856 * is setup for QoS then a QoS Null Data frame is constructed. 857 * If this is a WDS station then a 4-address frame is constructed. 858 * 859 * NB: the caller is assumed to have setup a node reference 860 * for use; this is necessary to deal with a race condition 861 * when probing for inactive stations. Like ieee80211_mgmt_output 862 * we must cleanup any node reference on error; however we 863 * can safely just unref it as we know it will never be the 864 * last reference to the node. 865 */ 866 int 867 ieee80211_send_nulldata(struct ieee80211_node *ni) 868 { 869 struct ieee80211vap *vap = ni->ni_vap; 870 struct ieee80211com *ic = ni->ni_ic; 871 struct mbuf *m; 872 struct ieee80211_frame *wh; 873 int hdrlen; 874 uint8_t *frm; 875 int ret; 876 877 if (vap->iv_state == IEEE80211_S_CAC) { 878 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 879 ni, "block %s frame in CAC state", "null data"); 880 ieee80211_unref_node(&ni); 881 vap->iv_stats.is_tx_badstate++; 882 return EIO; /* XXX */ 883 } 884 885 if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) 886 hdrlen = sizeof(struct ieee80211_qosframe); 887 else 888 hdrlen = sizeof(struct ieee80211_frame); 889 /* NB: only WDS vap's get 4-address frames */ 890 if (vap->iv_opmode == IEEE80211_M_WDS) 891 hdrlen += IEEE80211_ADDR_LEN; 892 if (ic->ic_flags & IEEE80211_F_DATAPAD) 893 hdrlen = roundup(hdrlen, sizeof(uint32_t)); 894 895 m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0); 896 if (m == NULL) { 897 /* XXX debug msg */ 898 ieee80211_unref_node(&ni); 899 vap->iv_stats.is_tx_nobuf++; 900 return ENOMEM; 901 } 902 KASSERT(M_LEADINGSPACE(m) >= hdrlen, 903 ("leading space %zd", M_LEADINGSPACE(m))); 904 M_PREPEND(m, hdrlen, M_NOWAIT); 905 if (m == NULL) { 906 /* NB: cannot happen */ 907 ieee80211_free_node(ni); 908 return ENOMEM; 909 } 910 911 IEEE80211_TX_LOCK(ic); 912 913 wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */ 914 if (ni->ni_flags & IEEE80211_NODE_QOS) { 915 const int tid = WME_AC_TO_TID(WME_AC_BE); 916 uint8_t *qos; 917 918 ieee80211_send_setup(ni, m, 919 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL, 920 tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 921 922 if (vap->iv_opmode == IEEE80211_M_WDS) 923 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 924 else 925 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 926 qos[0] = tid & IEEE80211_QOS_TID; 927 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy) 928 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 929 qos[1] = 0; 930 } else { 931 ieee80211_send_setup(ni, m, 932 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 933 IEEE80211_NONQOS_TID, 934 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 935 } 936 if (vap->iv_opmode != IEEE80211_M_WDS) { 937 /* NB: power management bit is never sent by an AP */ 938 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 939 vap->iv_opmode != IEEE80211_M_HOSTAP) 940 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 941 } 942 m->m_len = m->m_pkthdr.len = hdrlen; 943 m->m_flags |= M_ENCAP; /* mark encapsulated */ 944 945 M_WME_SETAC(m, WME_AC_BE); 946 947 IEEE80211_NODE_STAT(ni, tx_data); 948 949 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni, 950 "send %snull data frame on channel %u, pwr mgt %s", 951 ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "", 952 ieee80211_chan2ieee(ic, ic->ic_curchan), 953 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 954 955 ret = ieee80211_raw_output(vap, ni, m, NULL); 956 IEEE80211_TX_UNLOCK(ic); 957 return (ret); 958 } 959 960 /* 961 * Assign priority to a frame based on any vlan tag assigned 962 * to the station and/or any Diffserv setting in an IP header. 963 * Finally, if an ACM policy is setup (in station mode) it's 964 * applied. 965 */ 966 int 967 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m) 968 { 969 const struct ether_header *eh = mtod(m, struct ether_header *); 970 int v_wme_ac, d_wme_ac, ac; 971 972 /* 973 * Always promote PAE/EAPOL frames to high priority. 974 */ 975 if (eh->ether_type == htons(ETHERTYPE_PAE)) { 976 /* NB: mark so others don't need to check header */ 977 m->m_flags |= M_EAPOL; 978 ac = WME_AC_VO; 979 goto done; 980 } 981 /* 982 * Non-qos traffic goes to BE. 983 */ 984 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 985 ac = WME_AC_BE; 986 goto done; 987 } 988 989 /* 990 * If node has a vlan tag then all traffic 991 * to it must have a matching tag. 992 */ 993 v_wme_ac = 0; 994 if (ni->ni_vlan != 0) { 995 if ((m->m_flags & M_VLANTAG) == 0) { 996 IEEE80211_NODE_STAT(ni, tx_novlantag); 997 return 1; 998 } 999 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 1000 EVL_VLANOFTAG(ni->ni_vlan)) { 1001 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 1002 return 1; 1003 } 1004 /* map vlan priority to AC */ 1005 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan)); 1006 } 1007 1008 /* XXX m_copydata may be too slow for fast path */ 1009 #ifdef INET 1010 if (eh->ether_type == htons(ETHERTYPE_IP)) { 1011 uint8_t tos; 1012 /* 1013 * IP frame, map the DSCP bits from the TOS field. 1014 */ 1015 /* NB: ip header may not be in first mbuf */ 1016 m_copydata(m, sizeof(struct ether_header) + 1017 offsetof(struct ip, ip_tos), sizeof(tos), &tos); 1018 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1019 d_wme_ac = TID_TO_WME_AC(tos); 1020 } else { 1021 #endif /* INET */ 1022 #ifdef INET6 1023 if (eh->ether_type == htons(ETHERTYPE_IPV6)) { 1024 uint32_t flow; 1025 uint8_t tos; 1026 /* 1027 * IPv6 frame, map the DSCP bits from the traffic class field. 1028 */ 1029 m_copydata(m, sizeof(struct ether_header) + 1030 offsetof(struct ip6_hdr, ip6_flow), sizeof(flow), 1031 (caddr_t) &flow); 1032 tos = (uint8_t)(ntohl(flow) >> 20); 1033 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1034 d_wme_ac = TID_TO_WME_AC(tos); 1035 } else { 1036 #endif /* INET6 */ 1037 d_wme_ac = WME_AC_BE; 1038 #ifdef INET6 1039 } 1040 #endif 1041 #ifdef INET 1042 } 1043 #endif 1044 /* 1045 * Use highest priority AC. 1046 */ 1047 if (v_wme_ac > d_wme_ac) 1048 ac = v_wme_ac; 1049 else 1050 ac = d_wme_ac; 1051 1052 /* 1053 * Apply ACM policy. 1054 */ 1055 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) { 1056 static const int acmap[4] = { 1057 WME_AC_BK, /* WME_AC_BE */ 1058 WME_AC_BK, /* WME_AC_BK */ 1059 WME_AC_BE, /* WME_AC_VI */ 1060 WME_AC_VI, /* WME_AC_VO */ 1061 }; 1062 struct ieee80211com *ic = ni->ni_ic; 1063 1064 while (ac != WME_AC_BK && 1065 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 1066 ac = acmap[ac]; 1067 } 1068 done: 1069 M_WME_SETAC(m, ac); 1070 return 0; 1071 } 1072 1073 /* 1074 * Insure there is sufficient contiguous space to encapsulate the 1075 * 802.11 data frame. If room isn't already there, arrange for it. 1076 * Drivers and cipher modules assume we have done the necessary work 1077 * and fail rudely if they don't find the space they need. 1078 */ 1079 struct mbuf * 1080 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize, 1081 struct ieee80211_key *key, struct mbuf *m) 1082 { 1083 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 1084 int needed_space = vap->iv_ic->ic_headroom + hdrsize; 1085 1086 if (key != NULL) { 1087 /* XXX belongs in crypto code? */ 1088 needed_space += key->wk_cipher->ic_header; 1089 /* XXX frags */ 1090 /* 1091 * When crypto is being done in the host we must insure 1092 * the data are writable for the cipher routines; clone 1093 * a writable mbuf chain. 1094 * XXX handle SWMIC specially 1095 */ 1096 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) { 1097 m = m_unshare(m, M_NOWAIT); 1098 if (m == NULL) { 1099 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1100 "%s: cannot get writable mbuf\n", __func__); 1101 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */ 1102 return NULL; 1103 } 1104 } 1105 } 1106 /* 1107 * We know we are called just before stripping an Ethernet 1108 * header and prepending an LLC header. This means we know 1109 * there will be 1110 * sizeof(struct ether_header) - sizeof(struct llc) 1111 * bytes recovered to which we need additional space for the 1112 * 802.11 header and any crypto header. 1113 */ 1114 /* XXX check trailing space and copy instead? */ 1115 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 1116 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); 1117 if (n == NULL) { 1118 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1119 "%s: cannot expand storage\n", __func__); 1120 vap->iv_stats.is_tx_nobuf++; 1121 m_freem(m); 1122 return NULL; 1123 } 1124 KASSERT(needed_space <= MHLEN, 1125 ("not enough room, need %u got %d\n", needed_space, MHLEN)); 1126 /* 1127 * Setup new mbuf to have leading space to prepend the 1128 * 802.11 header and any crypto header bits that are 1129 * required (the latter are added when the driver calls 1130 * back to ieee80211_crypto_encap to do crypto encapsulation). 1131 */ 1132 /* NB: must be first 'cuz it clobbers m_data */ 1133 m_move_pkthdr(n, m); 1134 n->m_len = 0; /* NB: m_gethdr does not set */ 1135 n->m_data += needed_space; 1136 /* 1137 * Pull up Ethernet header to create the expected layout. 1138 * We could use m_pullup but that's overkill (i.e. we don't 1139 * need the actual data) and it cannot fail so do it inline 1140 * for speed. 1141 */ 1142 /* NB: struct ether_header is known to be contiguous */ 1143 n->m_len += sizeof(struct ether_header); 1144 m->m_len -= sizeof(struct ether_header); 1145 m->m_data += sizeof(struct ether_header); 1146 /* 1147 * Replace the head of the chain. 1148 */ 1149 n->m_next = m; 1150 m = n; 1151 } 1152 return m; 1153 #undef TO_BE_RECLAIMED 1154 } 1155 1156 /* 1157 * Return the transmit key to use in sending a unicast frame. 1158 * If a unicast key is set we use that. When no unicast key is set 1159 * we fall back to the default transmit key. 1160 */ 1161 static __inline struct ieee80211_key * 1162 ieee80211_crypto_getucastkey(struct ieee80211vap *vap, 1163 struct ieee80211_node *ni) 1164 { 1165 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) { 1166 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1167 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1168 return NULL; 1169 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1170 } else { 1171 return &ni->ni_ucastkey; 1172 } 1173 } 1174 1175 /* 1176 * Return the transmit key to use in sending a multicast frame. 1177 * Multicast traffic always uses the group key which is installed as 1178 * the default tx key. 1179 */ 1180 static __inline struct ieee80211_key * 1181 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap, 1182 struct ieee80211_node *ni) 1183 { 1184 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1185 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1186 return NULL; 1187 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1188 } 1189 1190 /* 1191 * Encapsulate an outbound data frame. The mbuf chain is updated. 1192 * If an error is encountered NULL is returned. The caller is required 1193 * to provide a node reference and pullup the ethernet header in the 1194 * first mbuf. 1195 * 1196 * NB: Packet is assumed to be processed by ieee80211_classify which 1197 * marked EAPOL frames w/ M_EAPOL. 1198 */ 1199 struct mbuf * 1200 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni, 1201 struct mbuf *m) 1202 { 1203 #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh)) 1204 #define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc) 1205 struct ieee80211com *ic = ni->ni_ic; 1206 #ifdef IEEE80211_SUPPORT_MESH 1207 struct ieee80211_mesh_state *ms = vap->iv_mesh; 1208 struct ieee80211_meshcntl_ae10 *mc; 1209 struct ieee80211_mesh_route *rt = NULL; 1210 int dir = -1; 1211 #endif 1212 struct ether_header eh; 1213 struct ieee80211_frame *wh; 1214 struct ieee80211_key *key; 1215 struct llc *llc; 1216 int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr; 1217 ieee80211_seq seqno; 1218 int meshhdrsize, meshae; 1219 uint8_t *qos; 1220 1221 IEEE80211_TX_LOCK_ASSERT(ic); 1222 1223 /* 1224 * Copy existing Ethernet header to a safe place. The 1225 * rest of the code assumes it's ok to strip it when 1226 * reorganizing state for the final encapsulation. 1227 */ 1228 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 1229 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t)); 1230 1231 /* 1232 * Insure space for additional headers. First identify 1233 * transmit key to use in calculating any buffer adjustments 1234 * required. This is also used below to do privacy 1235 * encapsulation work. Then calculate the 802.11 header 1236 * size and any padding required by the driver. 1237 * 1238 * Note key may be NULL if we fall back to the default 1239 * transmit key and that is not set. In that case the 1240 * buffer may not be expanded as needed by the cipher 1241 * routines, but they will/should discard it. 1242 */ 1243 if (vap->iv_flags & IEEE80211_F_PRIVACY) { 1244 if (vap->iv_opmode == IEEE80211_M_STA || 1245 !IEEE80211_IS_MULTICAST(eh.ether_dhost) || 1246 (vap->iv_opmode == IEEE80211_M_WDS && 1247 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) 1248 key = ieee80211_crypto_getucastkey(vap, ni); 1249 else 1250 key = ieee80211_crypto_getmcastkey(vap, ni); 1251 if (key == NULL && (m->m_flags & M_EAPOL) == 0) { 1252 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, 1253 eh.ether_dhost, 1254 "no default transmit key (%s) deftxkey %u", 1255 __func__, vap->iv_def_txkey); 1256 vap->iv_stats.is_tx_nodefkey++; 1257 goto bad; 1258 } 1259 } else 1260 key = NULL; 1261 /* 1262 * XXX Some ap's don't handle QoS-encapsulated EAPOL 1263 * frames so suppress use. This may be an issue if other 1264 * ap's require all data frames to be QoS-encapsulated 1265 * once negotiated in which case we'll need to make this 1266 * configurable. 1267 * NB: mesh data frames are QoS. 1268 */ 1269 addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) || 1270 (vap->iv_opmode == IEEE80211_M_MBSS)) && 1271 (m->m_flags & M_EAPOL) == 0; 1272 if (addqos) 1273 hdrsize = sizeof(struct ieee80211_qosframe); 1274 else 1275 hdrsize = sizeof(struct ieee80211_frame); 1276 #ifdef IEEE80211_SUPPORT_MESH 1277 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1278 /* 1279 * Mesh data frames are encapsulated according to the 1280 * rules of Section 11B.8.5 (p.139 of D3.0 spec). 1281 * o Group Addressed data (aka multicast) originating 1282 * at the local sta are sent w/ 3-address format and 1283 * address extension mode 00 1284 * o Individually Addressed data (aka unicast) originating 1285 * at the local sta are sent w/ 4-address format and 1286 * address extension mode 00 1287 * o Group Addressed data forwarded from a non-mesh sta are 1288 * sent w/ 3-address format and address extension mode 01 1289 * o Individually Address data from another sta are sent 1290 * w/ 4-address format and address extension mode 10 1291 */ 1292 is4addr = 0; /* NB: don't use, disable */ 1293 if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) { 1294 rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost); 1295 KASSERT(rt != NULL, ("route is NULL")); 1296 dir = IEEE80211_FC1_DIR_DSTODS; 1297 hdrsize += IEEE80211_ADDR_LEN; 1298 if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) { 1299 if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate, 1300 vap->iv_myaddr)) { 1301 IEEE80211_NOTE_MAC(vap, 1302 IEEE80211_MSG_MESH, 1303 eh.ether_dhost, 1304 "%s", "trying to send to ourself"); 1305 goto bad; 1306 } 1307 meshae = IEEE80211_MESH_AE_10; 1308 meshhdrsize = 1309 sizeof(struct ieee80211_meshcntl_ae10); 1310 } else { 1311 meshae = IEEE80211_MESH_AE_00; 1312 meshhdrsize = 1313 sizeof(struct ieee80211_meshcntl); 1314 } 1315 } else { 1316 dir = IEEE80211_FC1_DIR_FROMDS; 1317 if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) { 1318 /* proxy group */ 1319 meshae = IEEE80211_MESH_AE_01; 1320 meshhdrsize = 1321 sizeof(struct ieee80211_meshcntl_ae01); 1322 } else { 1323 /* group */ 1324 meshae = IEEE80211_MESH_AE_00; 1325 meshhdrsize = sizeof(struct ieee80211_meshcntl); 1326 } 1327 } 1328 } else { 1329 #endif 1330 /* 1331 * 4-address frames need to be generated for: 1332 * o packets sent through a WDS vap (IEEE80211_M_WDS) 1333 * o packets sent through a vap marked for relaying 1334 * (e.g. a station operating with dynamic WDS) 1335 */ 1336 is4addr = vap->iv_opmode == IEEE80211_M_WDS || 1337 ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) && 1338 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)); 1339 if (is4addr) 1340 hdrsize += IEEE80211_ADDR_LEN; 1341 meshhdrsize = meshae = 0; 1342 #ifdef IEEE80211_SUPPORT_MESH 1343 } 1344 #endif 1345 /* 1346 * Honor driver DATAPAD requirement. 1347 */ 1348 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1349 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1350 else 1351 hdrspace = hdrsize; 1352 1353 if (__predict_true((m->m_flags & M_FF) == 0)) { 1354 /* 1355 * Normal frame. 1356 */ 1357 m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m); 1358 if (m == NULL) { 1359 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 1360 goto bad; 1361 } 1362 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */ 1363 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 1364 llc = mtod(m, struct llc *); 1365 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 1366 llc->llc_control = LLC_UI; 1367 llc->llc_snap.org_code[0] = 0; 1368 llc->llc_snap.org_code[1] = 0; 1369 llc->llc_snap.org_code[2] = 0; 1370 llc->llc_snap.ether_type = eh.ether_type; 1371 } else { 1372 #ifdef IEEE80211_SUPPORT_SUPERG 1373 /* 1374 * Aggregated frame. 1375 */ 1376 m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key); 1377 if (m == NULL) 1378 #endif 1379 goto bad; 1380 } 1381 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 1382 1383 M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT); 1384 if (m == NULL) { 1385 vap->iv_stats.is_tx_nobuf++; 1386 goto bad; 1387 } 1388 wh = mtod(m, struct ieee80211_frame *); 1389 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 1390 *(uint16_t *)wh->i_dur = 0; 1391 qos = NULL; /* NB: quiet compiler */ 1392 if (is4addr) { 1393 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 1394 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); 1395 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1396 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1397 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); 1398 } else switch (vap->iv_opmode) { 1399 case IEEE80211_M_STA: 1400 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 1401 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 1402 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1403 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1404 break; 1405 case IEEE80211_M_IBSS: 1406 case IEEE80211_M_AHDEMO: 1407 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1408 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1409 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1410 /* 1411 * NB: always use the bssid from iv_bss as the 1412 * neighbor's may be stale after an ibss merge 1413 */ 1414 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid); 1415 break; 1416 case IEEE80211_M_HOSTAP: 1417 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1418 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1419 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 1420 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 1421 break; 1422 #ifdef IEEE80211_SUPPORT_MESH 1423 case IEEE80211_M_MBSS: 1424 /* NB: offset by hdrspace to deal with DATAPAD */ 1425 mc = (struct ieee80211_meshcntl_ae10 *) 1426 (mtod(m, uint8_t *) + hdrspace); 1427 wh->i_fc[1] = dir; 1428 switch (meshae) { 1429 case IEEE80211_MESH_AE_00: /* no proxy */ 1430 mc->mc_flags = 0; 1431 if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */ 1432 IEEE80211_ADDR_COPY(wh->i_addr1, 1433 ni->ni_macaddr); 1434 IEEE80211_ADDR_COPY(wh->i_addr2, 1435 vap->iv_myaddr); 1436 IEEE80211_ADDR_COPY(wh->i_addr3, 1437 eh.ether_dhost); 1438 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, 1439 eh.ether_shost); 1440 qos =((struct ieee80211_qosframe_addr4 *) 1441 wh)->i_qos; 1442 } else if (dir == IEEE80211_FC1_DIR_FROMDS) { 1443 /* mcast */ 1444 IEEE80211_ADDR_COPY(wh->i_addr1, 1445 eh.ether_dhost); 1446 IEEE80211_ADDR_COPY(wh->i_addr2, 1447 vap->iv_myaddr); 1448 IEEE80211_ADDR_COPY(wh->i_addr3, 1449 eh.ether_shost); 1450 qos = ((struct ieee80211_qosframe *) 1451 wh)->i_qos; 1452 } 1453 break; 1454 case IEEE80211_MESH_AE_01: /* mcast, proxy */ 1455 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1456 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1457 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1458 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr); 1459 mc->mc_flags = 1; 1460 IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4, 1461 eh.ether_shost); 1462 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1463 break; 1464 case IEEE80211_MESH_AE_10: /* ucast, proxy */ 1465 KASSERT(rt != NULL, ("route is NULL")); 1466 IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop); 1467 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1468 IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate); 1469 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr); 1470 mc->mc_flags = IEEE80211_MESH_AE_10; 1471 IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost); 1472 IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost); 1473 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1474 break; 1475 default: 1476 KASSERT(0, ("meshae %d", meshae)); 1477 break; 1478 } 1479 mc->mc_ttl = ms->ms_ttl; 1480 ms->ms_seq++; 1481 LE_WRITE_4(mc->mc_seq, ms->ms_seq); 1482 break; 1483 #endif 1484 case IEEE80211_M_WDS: /* NB: is4addr should always be true */ 1485 default: 1486 goto bad; 1487 } 1488 if (m->m_flags & M_MORE_DATA) 1489 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 1490 if (addqos) { 1491 int ac, tid; 1492 1493 if (is4addr) { 1494 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1495 /* NB: mesh case handled earlier */ 1496 } else if (vap->iv_opmode != IEEE80211_M_MBSS) 1497 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1498 ac = M_WME_GETAC(m); 1499 /* map from access class/queue to 11e header priorty value */ 1500 tid = WME_AC_TO_TID(ac); 1501 qos[0] = tid & IEEE80211_QOS_TID; 1502 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 1503 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1504 #ifdef IEEE80211_SUPPORT_MESH 1505 if (vap->iv_opmode == IEEE80211_M_MBSS) 1506 qos[1] = IEEE80211_QOS_MC; 1507 else 1508 #endif 1509 qos[1] = 0; 1510 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 1511 1512 if ((m->m_flags & M_AMPDU_MPDU) == 0) { 1513 /* 1514 * NB: don't assign a sequence # to potential 1515 * aggregates; we expect this happens at the 1516 * point the frame comes off any aggregation q 1517 * as otherwise we may introduce holes in the 1518 * BA sequence space and/or make window accouting 1519 * more difficult. 1520 * 1521 * XXX may want to control this with a driver 1522 * capability; this may also change when we pull 1523 * aggregation up into net80211 1524 */ 1525 seqno = ni->ni_txseqs[tid]++; 1526 *(uint16_t *)wh->i_seq = 1527 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1528 M_SEQNO_SET(m, seqno); 1529 } 1530 } else { 1531 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1532 *(uint16_t *)wh->i_seq = 1533 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1534 M_SEQNO_SET(m, seqno); 1535 } 1536 1537 1538 /* check if xmit fragmentation is required */ 1539 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold && 1540 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 1541 (vap->iv_caps & IEEE80211_C_TXFRAG) && 1542 (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0); 1543 if (key != NULL) { 1544 /* 1545 * IEEE 802.1X: send EAPOL frames always in the clear. 1546 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 1547 */ 1548 if ((m->m_flags & M_EAPOL) == 0 || 1549 ((vap->iv_flags & IEEE80211_F_WPA) && 1550 (vap->iv_opmode == IEEE80211_M_STA ? 1551 !IEEE80211_KEY_UNDEFINED(key) : 1552 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) { 1553 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 1554 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) { 1555 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT, 1556 eh.ether_dhost, 1557 "%s", "enmic failed, discard frame"); 1558 vap->iv_stats.is_crypto_enmicfail++; 1559 goto bad; 1560 } 1561 } 1562 } 1563 if (txfrag && !ieee80211_fragment(vap, m, hdrsize, 1564 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold)) 1565 goto bad; 1566 1567 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1568 1569 IEEE80211_NODE_STAT(ni, tx_data); 1570 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1571 IEEE80211_NODE_STAT(ni, tx_mcast); 1572 m->m_flags |= M_MCAST; 1573 } else 1574 IEEE80211_NODE_STAT(ni, tx_ucast); 1575 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 1576 1577 return m; 1578 bad: 1579 if (m != NULL) 1580 m_freem(m); 1581 return NULL; 1582 #undef WH4 1583 #undef MC01 1584 } 1585 1586 /* 1587 * Fragment the frame according to the specified mtu. 1588 * The size of the 802.11 header (w/o padding) is provided 1589 * so we don't need to recalculate it. We create a new 1590 * mbuf for each fragment and chain it through m_nextpkt; 1591 * we might be able to optimize this by reusing the original 1592 * packet's mbufs but that is significantly more complicated. 1593 */ 1594 static int 1595 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0, 1596 u_int hdrsize, u_int ciphdrsize, u_int mtu) 1597 { 1598 struct ieee80211com *ic = vap->iv_ic; 1599 struct ieee80211_frame *wh, *whf; 1600 struct mbuf *m, *prev, *next; 1601 u_int totalhdrsize, fragno, fragsize, off, remainder, payload; 1602 u_int hdrspace; 1603 1604 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); 1605 KASSERT(m0->m_pkthdr.len > mtu, 1606 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); 1607 1608 /* 1609 * Honor driver DATAPAD requirement. 1610 */ 1611 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1612 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1613 else 1614 hdrspace = hdrsize; 1615 1616 wh = mtod(m0, struct ieee80211_frame *); 1617 /* NB: mark the first frag; it will be propagated below */ 1618 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; 1619 totalhdrsize = hdrspace + ciphdrsize; 1620 fragno = 1; 1621 off = mtu - ciphdrsize; 1622 remainder = m0->m_pkthdr.len - off; 1623 prev = m0; 1624 do { 1625 fragsize = totalhdrsize + remainder; 1626 if (fragsize > mtu) 1627 fragsize = mtu; 1628 /* XXX fragsize can be >2048! */ 1629 KASSERT(fragsize < MCLBYTES, 1630 ("fragment size %u too big!", fragsize)); 1631 if (fragsize > MHLEN) 1632 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1633 else 1634 m = m_gethdr(M_NOWAIT, MT_DATA); 1635 if (m == NULL) 1636 goto bad; 1637 /* leave room to prepend any cipher header */ 1638 m_align(m, fragsize - ciphdrsize); 1639 1640 /* 1641 * Form the header in the fragment. Note that since 1642 * we mark the first fragment with the MORE_FRAG bit 1643 * it automatically is propagated to each fragment; we 1644 * need only clear it on the last fragment (done below). 1645 * NB: frag 1+ dont have Mesh Control field present. 1646 */ 1647 whf = mtod(m, struct ieee80211_frame *); 1648 memcpy(whf, wh, hdrsize); 1649 #ifdef IEEE80211_SUPPORT_MESH 1650 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1651 if (IEEE80211_IS_DSTODS(wh)) 1652 ((struct ieee80211_qosframe_addr4 *) 1653 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1654 else 1655 ((struct ieee80211_qosframe *) 1656 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1657 } 1658 #endif 1659 *(uint16_t *)&whf->i_seq[0] |= htole16( 1660 (fragno & IEEE80211_SEQ_FRAG_MASK) << 1661 IEEE80211_SEQ_FRAG_SHIFT); 1662 fragno++; 1663 1664 payload = fragsize - totalhdrsize; 1665 /* NB: destination is known to be contiguous */ 1666 1667 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace); 1668 m->m_len = hdrspace + payload; 1669 m->m_pkthdr.len = hdrspace + payload; 1670 m->m_flags |= M_FRAG; 1671 1672 /* chain up the fragment */ 1673 prev->m_nextpkt = m; 1674 prev = m; 1675 1676 /* deduct fragment just formed */ 1677 remainder -= payload; 1678 off += payload; 1679 } while (remainder != 0); 1680 1681 /* set the last fragment */ 1682 m->m_flags |= M_LASTFRAG; 1683 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; 1684 1685 /* strip first mbuf now that everything has been copied */ 1686 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); 1687 m0->m_flags |= M_FIRSTFRAG | M_FRAG; 1688 1689 vap->iv_stats.is_tx_fragframes++; 1690 vap->iv_stats.is_tx_frags += fragno-1; 1691 1692 return 1; 1693 bad: 1694 /* reclaim fragments but leave original frame for caller to free */ 1695 for (m = m0->m_nextpkt; m != NULL; m = next) { 1696 next = m->m_nextpkt; 1697 m->m_nextpkt = NULL; /* XXX paranoid */ 1698 m_freem(m); 1699 } 1700 m0->m_nextpkt = NULL; 1701 return 0; 1702 } 1703 1704 /* 1705 * Add a supported rates element id to a frame. 1706 */ 1707 uint8_t * 1708 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs) 1709 { 1710 int nrates; 1711 1712 *frm++ = IEEE80211_ELEMID_RATES; 1713 nrates = rs->rs_nrates; 1714 if (nrates > IEEE80211_RATE_SIZE) 1715 nrates = IEEE80211_RATE_SIZE; 1716 *frm++ = nrates; 1717 memcpy(frm, rs->rs_rates, nrates); 1718 return frm + nrates; 1719 } 1720 1721 /* 1722 * Add an extended supported rates element id to a frame. 1723 */ 1724 uint8_t * 1725 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs) 1726 { 1727 /* 1728 * Add an extended supported rates element if operating in 11g mode. 1729 */ 1730 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 1731 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 1732 *frm++ = IEEE80211_ELEMID_XRATES; 1733 *frm++ = nrates; 1734 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 1735 frm += nrates; 1736 } 1737 return frm; 1738 } 1739 1740 /* 1741 * Add an ssid element to a frame. 1742 */ 1743 uint8_t * 1744 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) 1745 { 1746 *frm++ = IEEE80211_ELEMID_SSID; 1747 *frm++ = len; 1748 memcpy(frm, ssid, len); 1749 return frm + len; 1750 } 1751 1752 /* 1753 * Add an erp element to a frame. 1754 */ 1755 static uint8_t * 1756 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic) 1757 { 1758 uint8_t erp; 1759 1760 *frm++ = IEEE80211_ELEMID_ERP; 1761 *frm++ = 1; 1762 erp = 0; 1763 if (ic->ic_nonerpsta != 0) 1764 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 1765 if (ic->ic_flags & IEEE80211_F_USEPROT) 1766 erp |= IEEE80211_ERP_USE_PROTECTION; 1767 if (ic->ic_flags & IEEE80211_F_USEBARKER) 1768 erp |= IEEE80211_ERP_LONG_PREAMBLE; 1769 *frm++ = erp; 1770 return frm; 1771 } 1772 1773 /* 1774 * Add a CFParams element to a frame. 1775 */ 1776 static uint8_t * 1777 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic) 1778 { 1779 #define ADDSHORT(frm, v) do { \ 1780 LE_WRITE_2(frm, v); \ 1781 frm += 2; \ 1782 } while (0) 1783 *frm++ = IEEE80211_ELEMID_CFPARMS; 1784 *frm++ = 6; 1785 *frm++ = 0; /* CFP count */ 1786 *frm++ = 2; /* CFP period */ 1787 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */ 1788 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */ 1789 return frm; 1790 #undef ADDSHORT 1791 } 1792 1793 static __inline uint8_t * 1794 add_appie(uint8_t *frm, const struct ieee80211_appie *ie) 1795 { 1796 memcpy(frm, ie->ie_data, ie->ie_len); 1797 return frm + ie->ie_len; 1798 } 1799 1800 static __inline uint8_t * 1801 add_ie(uint8_t *frm, const uint8_t *ie) 1802 { 1803 memcpy(frm, ie, 2 + ie[1]); 1804 return frm + 2 + ie[1]; 1805 } 1806 1807 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 1808 /* 1809 * Add a WME information element to a frame. 1810 */ 1811 uint8_t * 1812 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme) 1813 { 1814 static const struct ieee80211_wme_info info = { 1815 .wme_id = IEEE80211_ELEMID_VENDOR, 1816 .wme_len = sizeof(struct ieee80211_wme_info) - 2, 1817 .wme_oui = { WME_OUI_BYTES }, 1818 .wme_type = WME_OUI_TYPE, 1819 .wme_subtype = WME_INFO_OUI_SUBTYPE, 1820 .wme_version = WME_VERSION, 1821 .wme_info = 0, 1822 }; 1823 memcpy(frm, &info, sizeof(info)); 1824 return frm + sizeof(info); 1825 } 1826 1827 /* 1828 * Add a WME parameters element to a frame. 1829 */ 1830 static uint8_t * 1831 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme) 1832 { 1833 #define SM(_v, _f) (((_v) << _f##_S) & _f) 1834 #define ADDSHORT(frm, v) do { \ 1835 LE_WRITE_2(frm, v); \ 1836 frm += 2; \ 1837 } while (0) 1838 /* NB: this works 'cuz a param has an info at the front */ 1839 static const struct ieee80211_wme_info param = { 1840 .wme_id = IEEE80211_ELEMID_VENDOR, 1841 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 1842 .wme_oui = { WME_OUI_BYTES }, 1843 .wme_type = WME_OUI_TYPE, 1844 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 1845 .wme_version = WME_VERSION, 1846 }; 1847 int i; 1848 1849 memcpy(frm, ¶m, sizeof(param)); 1850 frm += __offsetof(struct ieee80211_wme_info, wme_info); 1851 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ 1852 *frm++ = 0; /* reserved field */ 1853 for (i = 0; i < WME_NUM_AC; i++) { 1854 const struct wmeParams *ac = 1855 &wme->wme_bssChanParams.cap_wmeParams[i]; 1856 *frm++ = SM(i, WME_PARAM_ACI) 1857 | SM(ac->wmep_acm, WME_PARAM_ACM) 1858 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) 1859 ; 1860 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) 1861 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) 1862 ; 1863 ADDSHORT(frm, ac->wmep_txopLimit); 1864 } 1865 return frm; 1866 #undef SM 1867 #undef ADDSHORT 1868 } 1869 #undef WME_OUI_BYTES 1870 1871 /* 1872 * Add an 11h Power Constraint element to a frame. 1873 */ 1874 static uint8_t * 1875 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap) 1876 { 1877 const struct ieee80211_channel *c = vap->iv_bss->ni_chan; 1878 /* XXX per-vap tx power limit? */ 1879 int8_t limit = vap->iv_ic->ic_txpowlimit / 2; 1880 1881 frm[0] = IEEE80211_ELEMID_PWRCNSTR; 1882 frm[1] = 1; 1883 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0; 1884 return frm + 3; 1885 } 1886 1887 /* 1888 * Add an 11h Power Capability element to a frame. 1889 */ 1890 static uint8_t * 1891 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c) 1892 { 1893 frm[0] = IEEE80211_ELEMID_PWRCAP; 1894 frm[1] = 2; 1895 frm[2] = c->ic_minpower; 1896 frm[3] = c->ic_maxpower; 1897 return frm + 4; 1898 } 1899 1900 /* 1901 * Add an 11h Supported Channels element to a frame. 1902 */ 1903 static uint8_t * 1904 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic) 1905 { 1906 static const int ielen = 26; 1907 1908 frm[0] = IEEE80211_ELEMID_SUPPCHAN; 1909 frm[1] = ielen; 1910 /* XXX not correct */ 1911 memcpy(frm+2, ic->ic_chan_avail, ielen); 1912 return frm + 2 + ielen; 1913 } 1914 1915 /* 1916 * Add an 11h Quiet time element to a frame. 1917 */ 1918 static uint8_t * 1919 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap) 1920 { 1921 struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm; 1922 1923 quiet->quiet_ie = IEEE80211_ELEMID_QUIET; 1924 quiet->len = 6; 1925 if (vap->iv_quiet_count_value == 1) 1926 vap->iv_quiet_count_value = vap->iv_quiet_count; 1927 else if (vap->iv_quiet_count_value > 1) 1928 vap->iv_quiet_count_value--; 1929 1930 if (vap->iv_quiet_count_value == 0) { 1931 /* value 0 is reserved as per 802.11h standerd */ 1932 vap->iv_quiet_count_value = 1; 1933 } 1934 1935 quiet->tbttcount = vap->iv_quiet_count_value; 1936 quiet->period = vap->iv_quiet_period; 1937 quiet->duration = htole16(vap->iv_quiet_duration); 1938 quiet->offset = htole16(vap->iv_quiet_offset); 1939 return frm + sizeof(*quiet); 1940 } 1941 1942 /* 1943 * Add an 11h Channel Switch Announcement element to a frame. 1944 * Note that we use the per-vap CSA count to adjust the global 1945 * counter so we can use this routine to form probe response 1946 * frames and get the current count. 1947 */ 1948 static uint8_t * 1949 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap) 1950 { 1951 struct ieee80211com *ic = vap->iv_ic; 1952 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm; 1953 1954 csa->csa_ie = IEEE80211_ELEMID_CSA; 1955 csa->csa_len = 3; 1956 csa->csa_mode = 1; /* XXX force quiet on channel */ 1957 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan); 1958 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count; 1959 return frm + sizeof(*csa); 1960 } 1961 1962 /* 1963 * Add an 11h country information element to a frame. 1964 */ 1965 static uint8_t * 1966 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic) 1967 { 1968 1969 if (ic->ic_countryie == NULL || 1970 ic->ic_countryie_chan != ic->ic_bsschan) { 1971 /* 1972 * Handle lazy construction of ie. This is done on 1973 * first use and after a channel change that requires 1974 * re-calculation. 1975 */ 1976 if (ic->ic_countryie != NULL) 1977 IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE); 1978 ic->ic_countryie = ieee80211_alloc_countryie(ic); 1979 if (ic->ic_countryie == NULL) 1980 return frm; 1981 ic->ic_countryie_chan = ic->ic_bsschan; 1982 } 1983 return add_appie(frm, ic->ic_countryie); 1984 } 1985 1986 uint8_t * 1987 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap) 1988 { 1989 if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) 1990 return (add_ie(frm, vap->iv_wpa_ie)); 1991 else { 1992 /* XXX else complain? */ 1993 return (frm); 1994 } 1995 } 1996 1997 uint8_t * 1998 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap) 1999 { 2000 if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL) 2001 return (add_ie(frm, vap->iv_rsn_ie)); 2002 else { 2003 /* XXX else complain? */ 2004 return (frm); 2005 } 2006 } 2007 2008 uint8_t * 2009 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni) 2010 { 2011 if (ni->ni_flags & IEEE80211_NODE_QOS) { 2012 *frm++ = IEEE80211_ELEMID_QOS; 2013 *frm++ = 1; 2014 *frm++ = 0; 2015 } 2016 2017 return (frm); 2018 } 2019 2020 /* 2021 * Send a probe request frame with the specified ssid 2022 * and any optional information element data. 2023 */ 2024 int 2025 ieee80211_send_probereq(struct ieee80211_node *ni, 2026 const uint8_t sa[IEEE80211_ADDR_LEN], 2027 const uint8_t da[IEEE80211_ADDR_LEN], 2028 const uint8_t bssid[IEEE80211_ADDR_LEN], 2029 const uint8_t *ssid, size_t ssidlen) 2030 { 2031 struct ieee80211vap *vap = ni->ni_vap; 2032 struct ieee80211com *ic = ni->ni_ic; 2033 const struct ieee80211_txparam *tp; 2034 struct ieee80211_bpf_params params; 2035 struct ieee80211_frame *wh; 2036 const struct ieee80211_rateset *rs; 2037 struct mbuf *m; 2038 uint8_t *frm; 2039 int ret; 2040 2041 if (vap->iv_state == IEEE80211_S_CAC) { 2042 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni, 2043 "block %s frame in CAC state", "probe request"); 2044 vap->iv_stats.is_tx_badstate++; 2045 return EIO; /* XXX */ 2046 } 2047 2048 /* 2049 * Hold a reference on the node so it doesn't go away until after 2050 * the xmit is complete all the way in the driver. On error we 2051 * will remove our reference. 2052 */ 2053 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2054 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2055 __func__, __LINE__, 2056 ni, ether_sprintf(ni->ni_macaddr), 2057 ieee80211_node_refcnt(ni)+1); 2058 ieee80211_ref_node(ni); 2059 2060 /* 2061 * prreq frame format 2062 * [tlv] ssid 2063 * [tlv] supported rates 2064 * [tlv] RSN (optional) 2065 * [tlv] extended supported rates 2066 * [tlv] WPA (optional) 2067 * [tlv] user-specified ie's 2068 */ 2069 m = ieee80211_getmgtframe(&frm, 2070 ic->ic_headroom + sizeof(struct ieee80211_frame), 2071 2 + IEEE80211_NWID_LEN 2072 + 2 + IEEE80211_RATE_SIZE 2073 + sizeof(struct ieee80211_ie_wpa) 2074 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2075 + sizeof(struct ieee80211_ie_wpa) 2076 + (vap->iv_appie_probereq != NULL ? 2077 vap->iv_appie_probereq->ie_len : 0) 2078 ); 2079 if (m == NULL) { 2080 vap->iv_stats.is_tx_nobuf++; 2081 ieee80211_free_node(ni); 2082 return ENOMEM; 2083 } 2084 2085 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 2086 rs = ieee80211_get_suprates(ic, ic->ic_curchan); 2087 frm = ieee80211_add_rates(frm, rs); 2088 frm = ieee80211_add_rsn(frm, vap); 2089 frm = ieee80211_add_xrates(frm, rs); 2090 frm = ieee80211_add_wpa(frm, vap); 2091 if (vap->iv_appie_probereq != NULL) 2092 frm = add_appie(frm, vap->iv_appie_probereq); 2093 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2094 2095 KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame), 2096 ("leading space %zd", M_LEADINGSPACE(m))); 2097 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2098 if (m == NULL) { 2099 /* NB: cannot happen */ 2100 ieee80211_free_node(ni); 2101 return ENOMEM; 2102 } 2103 2104 IEEE80211_TX_LOCK(ic); 2105 wh = mtod(m, struct ieee80211_frame *); 2106 ieee80211_send_setup(ni, m, 2107 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 2108 IEEE80211_NONQOS_TID, sa, da, bssid); 2109 /* XXX power management? */ 2110 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2111 2112 M_WME_SETAC(m, WME_AC_BE); 2113 2114 IEEE80211_NODE_STAT(ni, tx_probereq); 2115 IEEE80211_NODE_STAT(ni, tx_mgmt); 2116 2117 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2118 "send probe req on channel %u bssid %s ssid \"%.*s\"\n", 2119 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid), 2120 ssidlen, ssid); 2121 2122 memset(¶ms, 0, sizeof(params)); 2123 params.ibp_pri = M_WME_GETAC(m); 2124 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 2125 params.ibp_rate0 = tp->mgmtrate; 2126 if (IEEE80211_IS_MULTICAST(da)) { 2127 params.ibp_flags |= IEEE80211_BPF_NOACK; 2128 params.ibp_try0 = 1; 2129 } else 2130 params.ibp_try0 = tp->maxretry; 2131 params.ibp_power = ni->ni_txpower; 2132 ret = ieee80211_raw_output(vap, ni, m, ¶ms); 2133 IEEE80211_TX_UNLOCK(ic); 2134 return (ret); 2135 } 2136 2137 /* 2138 * Calculate capability information for mgt frames. 2139 */ 2140 uint16_t 2141 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan) 2142 { 2143 struct ieee80211com *ic = vap->iv_ic; 2144 uint16_t capinfo; 2145 2146 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode")); 2147 2148 if (vap->iv_opmode == IEEE80211_M_HOSTAP) 2149 capinfo = IEEE80211_CAPINFO_ESS; 2150 else if (vap->iv_opmode == IEEE80211_M_IBSS) 2151 capinfo = IEEE80211_CAPINFO_IBSS; 2152 else 2153 capinfo = 0; 2154 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2155 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2156 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2157 IEEE80211_IS_CHAN_2GHZ(chan)) 2158 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2159 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2160 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2161 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH)) 2162 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2163 return capinfo; 2164 } 2165 2166 /* 2167 * Send a management frame. The node is for the destination (or ic_bss 2168 * when in station mode). Nodes other than ic_bss have their reference 2169 * count bumped to reflect our use for an indeterminant time. 2170 */ 2171 int 2172 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg) 2173 { 2174 #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT) 2175 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2176 struct ieee80211vap *vap = ni->ni_vap; 2177 struct ieee80211com *ic = ni->ni_ic; 2178 struct ieee80211_node *bss = vap->iv_bss; 2179 struct ieee80211_bpf_params params; 2180 struct mbuf *m; 2181 uint8_t *frm; 2182 uint16_t capinfo; 2183 int has_challenge, is_shared_key, ret, status; 2184 2185 KASSERT(ni != NULL, ("null node")); 2186 2187 /* 2188 * Hold a reference on the node so it doesn't go away until after 2189 * the xmit is complete all the way in the driver. On error we 2190 * will remove our reference. 2191 */ 2192 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2193 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2194 __func__, __LINE__, 2195 ni, ether_sprintf(ni->ni_macaddr), 2196 ieee80211_node_refcnt(ni)+1); 2197 ieee80211_ref_node(ni); 2198 2199 memset(¶ms, 0, sizeof(params)); 2200 switch (type) { 2201 2202 case IEEE80211_FC0_SUBTYPE_AUTH: 2203 status = arg >> 16; 2204 arg &= 0xffff; 2205 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || 2206 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 2207 ni->ni_challenge != NULL); 2208 2209 /* 2210 * Deduce whether we're doing open authentication or 2211 * shared key authentication. We do the latter if 2212 * we're in the middle of a shared key authentication 2213 * handshake or if we're initiating an authentication 2214 * request and configured to use shared key. 2215 */ 2216 is_shared_key = has_challenge || 2217 arg >= IEEE80211_AUTH_SHARED_RESPONSE || 2218 (arg == IEEE80211_AUTH_SHARED_REQUEST && 2219 bss->ni_authmode == IEEE80211_AUTH_SHARED); 2220 2221 m = ieee80211_getmgtframe(&frm, 2222 ic->ic_headroom + sizeof(struct ieee80211_frame), 2223 3 * sizeof(uint16_t) 2224 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? 2225 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0) 2226 ); 2227 if (m == NULL) 2228 senderr(ENOMEM, is_tx_nobuf); 2229 2230 ((uint16_t *)frm)[0] = 2231 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) 2232 : htole16(IEEE80211_AUTH_ALG_OPEN); 2233 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */ 2234 ((uint16_t *)frm)[2] = htole16(status);/* status */ 2235 2236 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { 2237 ((uint16_t *)frm)[3] = 2238 htole16((IEEE80211_CHALLENGE_LEN << 8) | 2239 IEEE80211_ELEMID_CHALLENGE); 2240 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge, 2241 IEEE80211_CHALLENGE_LEN); 2242 m->m_pkthdr.len = m->m_len = 2243 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN; 2244 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 2245 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2246 "request encrypt frame (%s)", __func__); 2247 /* mark frame for encryption */ 2248 params.ibp_flags |= IEEE80211_BPF_CRYPTO; 2249 } 2250 } else 2251 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t); 2252 2253 /* XXX not right for shared key */ 2254 if (status == IEEE80211_STATUS_SUCCESS) 2255 IEEE80211_NODE_STAT(ni, tx_auth); 2256 else 2257 IEEE80211_NODE_STAT(ni, tx_auth_fail); 2258 2259 if (vap->iv_opmode == IEEE80211_M_STA) 2260 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2261 (void *) vap->iv_state); 2262 break; 2263 2264 case IEEE80211_FC0_SUBTYPE_DEAUTH: 2265 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2266 "send station deauthenticate (reason %d)", arg); 2267 m = ieee80211_getmgtframe(&frm, 2268 ic->ic_headroom + sizeof(struct ieee80211_frame), 2269 sizeof(uint16_t)); 2270 if (m == NULL) 2271 senderr(ENOMEM, is_tx_nobuf); 2272 *(uint16_t *)frm = htole16(arg); /* reason */ 2273 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2274 2275 IEEE80211_NODE_STAT(ni, tx_deauth); 2276 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 2277 2278 ieee80211_node_unauthorize(ni); /* port closed */ 2279 break; 2280 2281 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 2282 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 2283 /* 2284 * asreq frame format 2285 * [2] capability information 2286 * [2] listen interval 2287 * [6*] current AP address (reassoc only) 2288 * [tlv] ssid 2289 * [tlv] supported rates 2290 * [tlv] extended supported rates 2291 * [4] power capability (optional) 2292 * [28] supported channels (optional) 2293 * [tlv] HT capabilities 2294 * [tlv] WME (optional) 2295 * [tlv] Vendor OUI HT capabilities (optional) 2296 * [tlv] Atheros capabilities (if negotiated) 2297 * [tlv] AppIE's (optional) 2298 */ 2299 m = ieee80211_getmgtframe(&frm, 2300 ic->ic_headroom + sizeof(struct ieee80211_frame), 2301 sizeof(uint16_t) 2302 + sizeof(uint16_t) 2303 + IEEE80211_ADDR_LEN 2304 + 2 + IEEE80211_NWID_LEN 2305 + 2 + IEEE80211_RATE_SIZE 2306 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2307 + 4 2308 + 2 + 26 2309 + sizeof(struct ieee80211_wme_info) 2310 + sizeof(struct ieee80211_ie_htcap) 2311 + 4 + sizeof(struct ieee80211_ie_htcap) 2312 #ifdef IEEE80211_SUPPORT_SUPERG 2313 + sizeof(struct ieee80211_ath_ie) 2314 #endif 2315 + (vap->iv_appie_wpa != NULL ? 2316 vap->iv_appie_wpa->ie_len : 0) 2317 + (vap->iv_appie_assocreq != NULL ? 2318 vap->iv_appie_assocreq->ie_len : 0) 2319 ); 2320 if (m == NULL) 2321 senderr(ENOMEM, is_tx_nobuf); 2322 2323 KASSERT(vap->iv_opmode == IEEE80211_M_STA, 2324 ("wrong mode %u", vap->iv_opmode)); 2325 capinfo = IEEE80211_CAPINFO_ESS; 2326 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2327 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2328 /* 2329 * NB: Some 11a AP's reject the request when 2330 * short premable is set. 2331 */ 2332 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2333 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2334 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2335 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 2336 (ic->ic_caps & IEEE80211_C_SHSLOT)) 2337 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2338 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) && 2339 (vap->iv_flags & IEEE80211_F_DOTH)) 2340 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2341 *(uint16_t *)frm = htole16(capinfo); 2342 frm += 2; 2343 2344 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!")); 2345 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval, 2346 bss->ni_intval)); 2347 frm += 2; 2348 2349 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 2350 IEEE80211_ADDR_COPY(frm, bss->ni_bssid); 2351 frm += IEEE80211_ADDR_LEN; 2352 } 2353 2354 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 2355 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2356 frm = ieee80211_add_rsn(frm, vap); 2357 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2358 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) { 2359 frm = ieee80211_add_powercapability(frm, 2360 ic->ic_curchan); 2361 frm = ieee80211_add_supportedchannels(frm, ic); 2362 } 2363 2364 /* 2365 * Check the channel - we may be using an 11n NIC with an 2366 * 11n capable station, but we're configured to be an 11b 2367 * channel. 2368 */ 2369 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2370 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2371 ni->ni_ies.htcap_ie != NULL && 2372 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) { 2373 frm = ieee80211_add_htcap(frm, ni); 2374 } 2375 frm = ieee80211_add_wpa(frm, vap); 2376 if ((ic->ic_flags & IEEE80211_F_WME) && 2377 ni->ni_ies.wme_ie != NULL) 2378 frm = ieee80211_add_wme_info(frm, &ic->ic_wme); 2379 2380 /* 2381 * Same deal - only send HT info if we're on an 11n 2382 * capable channel. 2383 */ 2384 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2385 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2386 ni->ni_ies.htcap_ie != NULL && 2387 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) { 2388 frm = ieee80211_add_htcap_vendor(frm, ni); 2389 } 2390 #ifdef IEEE80211_SUPPORT_SUPERG 2391 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) { 2392 frm = ieee80211_add_ath(frm, 2393 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2394 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2395 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2396 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2397 } 2398 #endif /* IEEE80211_SUPPORT_SUPERG */ 2399 if (vap->iv_appie_assocreq != NULL) 2400 frm = add_appie(frm, vap->iv_appie_assocreq); 2401 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2402 2403 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2404 (void *) vap->iv_state); 2405 break; 2406 2407 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 2408 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 2409 /* 2410 * asresp frame format 2411 * [2] capability information 2412 * [2] status 2413 * [2] association ID 2414 * [tlv] supported rates 2415 * [tlv] extended supported rates 2416 * [tlv] HT capabilities (standard, if STA enabled) 2417 * [tlv] HT information (standard, if STA enabled) 2418 * [tlv] WME (if configured and STA enabled) 2419 * [tlv] HT capabilities (vendor OUI, if STA enabled) 2420 * [tlv] HT information (vendor OUI, if STA enabled) 2421 * [tlv] Atheros capabilities (if STA enabled) 2422 * [tlv] AppIE's (optional) 2423 */ 2424 m = ieee80211_getmgtframe(&frm, 2425 ic->ic_headroom + sizeof(struct ieee80211_frame), 2426 sizeof(uint16_t) 2427 + sizeof(uint16_t) 2428 + sizeof(uint16_t) 2429 + 2 + IEEE80211_RATE_SIZE 2430 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2431 + sizeof(struct ieee80211_ie_htcap) + 4 2432 + sizeof(struct ieee80211_ie_htinfo) + 4 2433 + sizeof(struct ieee80211_wme_param) 2434 #ifdef IEEE80211_SUPPORT_SUPERG 2435 + sizeof(struct ieee80211_ath_ie) 2436 #endif 2437 + (vap->iv_appie_assocresp != NULL ? 2438 vap->iv_appie_assocresp->ie_len : 0) 2439 ); 2440 if (m == NULL) 2441 senderr(ENOMEM, is_tx_nobuf); 2442 2443 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2444 *(uint16_t *)frm = htole16(capinfo); 2445 frm += 2; 2446 2447 *(uint16_t *)frm = htole16(arg); /* status */ 2448 frm += 2; 2449 2450 if (arg == IEEE80211_STATUS_SUCCESS) { 2451 *(uint16_t *)frm = htole16(ni->ni_associd); 2452 IEEE80211_NODE_STAT(ni, tx_assoc); 2453 } else 2454 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 2455 frm += 2; 2456 2457 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2458 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2459 /* NB: respond according to what we received */ 2460 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) { 2461 frm = ieee80211_add_htcap(frm, ni); 2462 frm = ieee80211_add_htinfo(frm, ni); 2463 } 2464 if ((vap->iv_flags & IEEE80211_F_WME) && 2465 ni->ni_ies.wme_ie != NULL) 2466 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2467 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) { 2468 frm = ieee80211_add_htcap_vendor(frm, ni); 2469 frm = ieee80211_add_htinfo_vendor(frm, ni); 2470 } 2471 #ifdef IEEE80211_SUPPORT_SUPERG 2472 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) 2473 frm = ieee80211_add_ath(frm, 2474 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2475 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2476 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2477 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2478 #endif /* IEEE80211_SUPPORT_SUPERG */ 2479 if (vap->iv_appie_assocresp != NULL) 2480 frm = add_appie(frm, vap->iv_appie_assocresp); 2481 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2482 break; 2483 2484 case IEEE80211_FC0_SUBTYPE_DISASSOC: 2485 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, 2486 "send station disassociate (reason %d)", arg); 2487 m = ieee80211_getmgtframe(&frm, 2488 ic->ic_headroom + sizeof(struct ieee80211_frame), 2489 sizeof(uint16_t)); 2490 if (m == NULL) 2491 senderr(ENOMEM, is_tx_nobuf); 2492 *(uint16_t *)frm = htole16(arg); /* reason */ 2493 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2494 2495 IEEE80211_NODE_STAT(ni, tx_disassoc); 2496 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 2497 break; 2498 2499 default: 2500 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni, 2501 "invalid mgmt frame type %u", type); 2502 senderr(EINVAL, is_tx_unknownmgt); 2503 /* NOTREACHED */ 2504 } 2505 2506 /* NB: force non-ProbeResp frames to the highest queue */ 2507 params.ibp_pri = WME_AC_VO; 2508 params.ibp_rate0 = bss->ni_txparms->mgmtrate; 2509 /* NB: we know all frames are unicast */ 2510 params.ibp_try0 = bss->ni_txparms->maxretry; 2511 params.ibp_power = bss->ni_txpower; 2512 return ieee80211_mgmt_output(ni, m, type, ¶ms); 2513 bad: 2514 ieee80211_free_node(ni); 2515 return ret; 2516 #undef senderr 2517 #undef HTFLAGS 2518 } 2519 2520 /* 2521 * Return an mbuf with a probe response frame in it. 2522 * Space is left to prepend and 802.11 header at the 2523 * front but it's left to the caller to fill in. 2524 */ 2525 struct mbuf * 2526 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy) 2527 { 2528 struct ieee80211vap *vap = bss->ni_vap; 2529 struct ieee80211com *ic = bss->ni_ic; 2530 const struct ieee80211_rateset *rs; 2531 struct mbuf *m; 2532 uint16_t capinfo; 2533 uint8_t *frm; 2534 2535 /* 2536 * probe response frame format 2537 * [8] time stamp 2538 * [2] beacon interval 2539 * [2] cabability information 2540 * [tlv] ssid 2541 * [tlv] supported rates 2542 * [tlv] parameter set (FH/DS) 2543 * [tlv] parameter set (IBSS) 2544 * [tlv] country (optional) 2545 * [3] power control (optional) 2546 * [5] channel switch announcement (CSA) (optional) 2547 * [tlv] extended rate phy (ERP) 2548 * [tlv] extended supported rates 2549 * [tlv] RSN (optional) 2550 * [tlv] HT capabilities 2551 * [tlv] HT information 2552 * [tlv] WPA (optional) 2553 * [tlv] WME (optional) 2554 * [tlv] Vendor OUI HT capabilities (optional) 2555 * [tlv] Vendor OUI HT information (optional) 2556 * [tlv] Atheros capabilities 2557 * [tlv] AppIE's (optional) 2558 * [tlv] Mesh ID (MBSS) 2559 * [tlv] Mesh Conf (MBSS) 2560 */ 2561 m = ieee80211_getmgtframe(&frm, 2562 ic->ic_headroom + sizeof(struct ieee80211_frame), 2563 8 2564 + sizeof(uint16_t) 2565 + sizeof(uint16_t) 2566 + 2 + IEEE80211_NWID_LEN 2567 + 2 + IEEE80211_RATE_SIZE 2568 + 7 /* max(7,3) */ 2569 + IEEE80211_COUNTRY_MAX_SIZE 2570 + 3 2571 + sizeof(struct ieee80211_csa_ie) 2572 + sizeof(struct ieee80211_quiet_ie) 2573 + 3 2574 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2575 + sizeof(struct ieee80211_ie_wpa) 2576 + sizeof(struct ieee80211_ie_htcap) 2577 + sizeof(struct ieee80211_ie_htinfo) 2578 + sizeof(struct ieee80211_ie_wpa) 2579 + sizeof(struct ieee80211_wme_param) 2580 + 4 + sizeof(struct ieee80211_ie_htcap) 2581 + 4 + sizeof(struct ieee80211_ie_htinfo) 2582 #ifdef IEEE80211_SUPPORT_SUPERG 2583 + sizeof(struct ieee80211_ath_ie) 2584 #endif 2585 #ifdef IEEE80211_SUPPORT_MESH 2586 + 2 + IEEE80211_MESHID_LEN 2587 + sizeof(struct ieee80211_meshconf_ie) 2588 #endif 2589 + (vap->iv_appie_proberesp != NULL ? 2590 vap->iv_appie_proberesp->ie_len : 0) 2591 ); 2592 if (m == NULL) { 2593 vap->iv_stats.is_tx_nobuf++; 2594 return NULL; 2595 } 2596 2597 memset(frm, 0, 8); /* timestamp should be filled later */ 2598 frm += 8; 2599 *(uint16_t *)frm = htole16(bss->ni_intval); 2600 frm += 2; 2601 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2602 *(uint16_t *)frm = htole16(capinfo); 2603 frm += 2; 2604 2605 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen); 2606 rs = ieee80211_get_suprates(ic, bss->ni_chan); 2607 frm = ieee80211_add_rates(frm, rs); 2608 2609 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) { 2610 *frm++ = IEEE80211_ELEMID_FHPARMS; 2611 *frm++ = 5; 2612 *frm++ = bss->ni_fhdwell & 0x00ff; 2613 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff; 2614 *frm++ = IEEE80211_FH_CHANSET( 2615 ieee80211_chan2ieee(ic, bss->ni_chan)); 2616 *frm++ = IEEE80211_FH_CHANPAT( 2617 ieee80211_chan2ieee(ic, bss->ni_chan)); 2618 *frm++ = bss->ni_fhindex; 2619 } else { 2620 *frm++ = IEEE80211_ELEMID_DSPARMS; 2621 *frm++ = 1; 2622 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan); 2623 } 2624 2625 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2626 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2627 *frm++ = 2; 2628 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2629 } 2630 if ((vap->iv_flags & IEEE80211_F_DOTH) || 2631 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 2632 frm = ieee80211_add_countryie(frm, ic); 2633 if (vap->iv_flags & IEEE80211_F_DOTH) { 2634 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan)) 2635 frm = ieee80211_add_powerconstraint(frm, vap); 2636 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 2637 frm = ieee80211_add_csa(frm, vap); 2638 } 2639 if (vap->iv_flags & IEEE80211_F_DOTH) { 2640 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2641 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 2642 if (vap->iv_quiet) 2643 frm = ieee80211_add_quiet(frm, vap); 2644 } 2645 } 2646 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan)) 2647 frm = ieee80211_add_erp(frm, ic); 2648 frm = ieee80211_add_xrates(frm, rs); 2649 frm = ieee80211_add_rsn(frm, vap); 2650 /* 2651 * NB: legacy 11b clients do not get certain ie's. 2652 * The caller identifies such clients by passing 2653 * a token in legacy to us. Could expand this to be 2654 * any legacy client for stuff like HT ie's. 2655 */ 2656 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2657 legacy != IEEE80211_SEND_LEGACY_11B) { 2658 frm = ieee80211_add_htcap(frm, bss); 2659 frm = ieee80211_add_htinfo(frm, bss); 2660 } 2661 frm = ieee80211_add_wpa(frm, vap); 2662 if (vap->iv_flags & IEEE80211_F_WME) 2663 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2664 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2665 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) && 2666 legacy != IEEE80211_SEND_LEGACY_11B) { 2667 frm = ieee80211_add_htcap_vendor(frm, bss); 2668 frm = ieee80211_add_htinfo_vendor(frm, bss); 2669 } 2670 #ifdef IEEE80211_SUPPORT_SUPERG 2671 if ((vap->iv_flags & IEEE80211_F_ATHEROS) && 2672 legacy != IEEE80211_SEND_LEGACY_11B) 2673 frm = ieee80211_add_athcaps(frm, bss); 2674 #endif 2675 if (vap->iv_appie_proberesp != NULL) 2676 frm = add_appie(frm, vap->iv_appie_proberesp); 2677 #ifdef IEEE80211_SUPPORT_MESH 2678 if (vap->iv_opmode == IEEE80211_M_MBSS) { 2679 frm = ieee80211_add_meshid(frm, vap); 2680 frm = ieee80211_add_meshconf(frm, vap); 2681 } 2682 #endif 2683 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2684 2685 return m; 2686 } 2687 2688 /* 2689 * Send a probe response frame to the specified mac address. 2690 * This does not go through the normal mgt frame api so we 2691 * can specify the destination address and re-use the bss node 2692 * for the sta reference. 2693 */ 2694 int 2695 ieee80211_send_proberesp(struct ieee80211vap *vap, 2696 const uint8_t da[IEEE80211_ADDR_LEN], int legacy) 2697 { 2698 struct ieee80211_node *bss = vap->iv_bss; 2699 struct ieee80211com *ic = vap->iv_ic; 2700 struct ieee80211_frame *wh; 2701 struct mbuf *m; 2702 int ret; 2703 2704 if (vap->iv_state == IEEE80211_S_CAC) { 2705 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss, 2706 "block %s frame in CAC state", "probe response"); 2707 vap->iv_stats.is_tx_badstate++; 2708 return EIO; /* XXX */ 2709 } 2710 2711 /* 2712 * Hold a reference on the node so it doesn't go away until after 2713 * the xmit is complete all the way in the driver. On error we 2714 * will remove our reference. 2715 */ 2716 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2717 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2718 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr), 2719 ieee80211_node_refcnt(bss)+1); 2720 ieee80211_ref_node(bss); 2721 2722 m = ieee80211_alloc_proberesp(bss, legacy); 2723 if (m == NULL) { 2724 ieee80211_free_node(bss); 2725 return ENOMEM; 2726 } 2727 2728 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2729 KASSERT(m != NULL, ("no room for header")); 2730 2731 IEEE80211_TX_LOCK(ic); 2732 wh = mtod(m, struct ieee80211_frame *); 2733 ieee80211_send_setup(bss, m, 2734 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP, 2735 IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid); 2736 /* XXX power management? */ 2737 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2738 2739 M_WME_SETAC(m, WME_AC_BE); 2740 2741 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2742 "send probe resp on channel %u to %s%s\n", 2743 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da), 2744 legacy ? " <legacy>" : ""); 2745 IEEE80211_NODE_STAT(bss, tx_mgmt); 2746 2747 ret = ieee80211_raw_output(vap, bss, m, NULL); 2748 IEEE80211_TX_UNLOCK(ic); 2749 return (ret); 2750 } 2751 2752 /* 2753 * Allocate and build a RTS (Request To Send) control frame. 2754 */ 2755 struct mbuf * 2756 ieee80211_alloc_rts(struct ieee80211com *ic, 2757 const uint8_t ra[IEEE80211_ADDR_LEN], 2758 const uint8_t ta[IEEE80211_ADDR_LEN], 2759 uint16_t dur) 2760 { 2761 struct ieee80211_frame_rts *rts; 2762 struct mbuf *m; 2763 2764 /* XXX honor ic_headroom */ 2765 m = m_gethdr(M_NOWAIT, MT_DATA); 2766 if (m != NULL) { 2767 rts = mtod(m, struct ieee80211_frame_rts *); 2768 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2769 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS; 2770 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2771 *(u_int16_t *)rts->i_dur = htole16(dur); 2772 IEEE80211_ADDR_COPY(rts->i_ra, ra); 2773 IEEE80211_ADDR_COPY(rts->i_ta, ta); 2774 2775 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); 2776 } 2777 return m; 2778 } 2779 2780 /* 2781 * Allocate and build a CTS (Clear To Send) control frame. 2782 */ 2783 struct mbuf * 2784 ieee80211_alloc_cts(struct ieee80211com *ic, 2785 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur) 2786 { 2787 struct ieee80211_frame_cts *cts; 2788 struct mbuf *m; 2789 2790 /* XXX honor ic_headroom */ 2791 m = m_gethdr(M_NOWAIT, MT_DATA); 2792 if (m != NULL) { 2793 cts = mtod(m, struct ieee80211_frame_cts *); 2794 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2795 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS; 2796 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2797 *(u_int16_t *)cts->i_dur = htole16(dur); 2798 IEEE80211_ADDR_COPY(cts->i_ra, ra); 2799 2800 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts); 2801 } 2802 return m; 2803 } 2804 2805 static void 2806 ieee80211_tx_mgt_timeout(void *arg) 2807 { 2808 struct ieee80211vap *vap = arg; 2809 2810 IEEE80211_LOCK(vap->iv_ic); 2811 if (vap->iv_state != IEEE80211_S_INIT && 2812 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) { 2813 /* 2814 * NB: it's safe to specify a timeout as the reason here; 2815 * it'll only be used in the right state. 2816 */ 2817 ieee80211_new_state_locked(vap, IEEE80211_S_SCAN, 2818 IEEE80211_SCAN_FAIL_TIMEOUT); 2819 } 2820 IEEE80211_UNLOCK(vap->iv_ic); 2821 } 2822 2823 /* 2824 * This is the callback set on net80211-sourced transmitted 2825 * authentication request frames. 2826 * 2827 * This does a couple of things: 2828 * 2829 * + If the frame transmitted was a success, it schedules a future 2830 * event which will transition the interface to scan. 2831 * If a state transition _then_ occurs before that event occurs, 2832 * said state transition will cancel this callout. 2833 * 2834 * + If the frame transmit was a failure, it immediately schedules 2835 * the transition back to scan. 2836 */ 2837 static void 2838 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status) 2839 { 2840 struct ieee80211vap *vap = ni->ni_vap; 2841 enum ieee80211_state ostate = (enum ieee80211_state) arg; 2842 2843 /* 2844 * Frame transmit completed; arrange timer callback. If 2845 * transmit was successfuly we wait for response. Otherwise 2846 * we arrange an immediate callback instead of doing the 2847 * callback directly since we don't know what state the driver 2848 * is in (e.g. what locks it is holding). This work should 2849 * not be too time-critical and not happen too often so the 2850 * added overhead is acceptable. 2851 * 2852 * XXX what happens if !acked but response shows up before callback? 2853 */ 2854 if (vap->iv_state == ostate) { 2855 callout_reset(&vap->iv_mgtsend, 2856 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0, 2857 ieee80211_tx_mgt_timeout, vap); 2858 } 2859 } 2860 2861 static void 2862 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm, 2863 struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni) 2864 { 2865 struct ieee80211vap *vap = ni->ni_vap; 2866 struct ieee80211com *ic = ni->ni_ic; 2867 struct ieee80211_rateset *rs = &ni->ni_rates; 2868 uint16_t capinfo; 2869 2870 /* 2871 * beacon frame format 2872 * [8] time stamp 2873 * [2] beacon interval 2874 * [2] cabability information 2875 * [tlv] ssid 2876 * [tlv] supported rates 2877 * [3] parameter set (DS) 2878 * [8] CF parameter set (optional) 2879 * [tlv] parameter set (IBSS/TIM) 2880 * [tlv] country (optional) 2881 * [3] power control (optional) 2882 * [5] channel switch announcement (CSA) (optional) 2883 * [tlv] extended rate phy (ERP) 2884 * [tlv] extended supported rates 2885 * [tlv] RSN parameters 2886 * [tlv] HT capabilities 2887 * [tlv] HT information 2888 * XXX Vendor-specific OIDs (e.g. Atheros) 2889 * [tlv] WPA parameters 2890 * [tlv] WME parameters 2891 * [tlv] Vendor OUI HT capabilities (optional) 2892 * [tlv] Vendor OUI HT information (optional) 2893 * [tlv] Atheros capabilities (optional) 2894 * [tlv] TDMA parameters (optional) 2895 * [tlv] Mesh ID (MBSS) 2896 * [tlv] Mesh Conf (MBSS) 2897 * [tlv] application data (optional) 2898 */ 2899 2900 memset(bo, 0, sizeof(*bo)); 2901 2902 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 2903 frm += 8; 2904 *(uint16_t *)frm = htole16(ni->ni_intval); 2905 frm += 2; 2906 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 2907 bo->bo_caps = (uint16_t *)frm; 2908 *(uint16_t *)frm = htole16(capinfo); 2909 frm += 2; 2910 *frm++ = IEEE80211_ELEMID_SSID; 2911 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) { 2912 *frm++ = ni->ni_esslen; 2913 memcpy(frm, ni->ni_essid, ni->ni_esslen); 2914 frm += ni->ni_esslen; 2915 } else 2916 *frm++ = 0; 2917 frm = ieee80211_add_rates(frm, rs); 2918 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) { 2919 *frm++ = IEEE80211_ELEMID_DSPARMS; 2920 *frm++ = 1; 2921 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 2922 } 2923 if (ic->ic_flags & IEEE80211_F_PCF) { 2924 bo->bo_cfp = frm; 2925 frm = ieee80211_add_cfparms(frm, ic); 2926 } 2927 bo->bo_tim = frm; 2928 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2929 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2930 *frm++ = 2; 2931 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2932 bo->bo_tim_len = 0; 2933 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 2934 vap->iv_opmode == IEEE80211_M_MBSS) { 2935 /* TIM IE is the same for Mesh and Hostap */ 2936 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; 2937 2938 tie->tim_ie = IEEE80211_ELEMID_TIM; 2939 tie->tim_len = 4; /* length */ 2940 tie->tim_count = 0; /* DTIM count */ 2941 tie->tim_period = vap->iv_dtim_period; /* DTIM period */ 2942 tie->tim_bitctl = 0; /* bitmap control */ 2943 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 2944 frm += sizeof(struct ieee80211_tim_ie); 2945 bo->bo_tim_len = 1; 2946 } 2947 bo->bo_tim_trailer = frm; 2948 if ((vap->iv_flags & IEEE80211_F_DOTH) || 2949 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 2950 frm = ieee80211_add_countryie(frm, ic); 2951 if (vap->iv_flags & IEEE80211_F_DOTH) { 2952 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) 2953 frm = ieee80211_add_powerconstraint(frm, vap); 2954 bo->bo_csa = frm; 2955 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 2956 frm = ieee80211_add_csa(frm, vap); 2957 } else 2958 bo->bo_csa = frm; 2959 2960 if (vap->iv_flags & IEEE80211_F_DOTH) { 2961 bo->bo_quiet = frm; 2962 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2963 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 2964 if (vap->iv_quiet) 2965 frm = ieee80211_add_quiet(frm,vap); 2966 } 2967 } else 2968 bo->bo_quiet = frm; 2969 2970 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) { 2971 bo->bo_erp = frm; 2972 frm = ieee80211_add_erp(frm, ic); 2973 } 2974 frm = ieee80211_add_xrates(frm, rs); 2975 frm = ieee80211_add_rsn(frm, vap); 2976 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 2977 frm = ieee80211_add_htcap(frm, ni); 2978 bo->bo_htinfo = frm; 2979 frm = ieee80211_add_htinfo(frm, ni); 2980 } 2981 frm = ieee80211_add_wpa(frm, vap); 2982 if (vap->iv_flags & IEEE80211_F_WME) { 2983 bo->bo_wme = frm; 2984 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2985 } 2986 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2987 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) { 2988 frm = ieee80211_add_htcap_vendor(frm, ni); 2989 frm = ieee80211_add_htinfo_vendor(frm, ni); 2990 } 2991 #ifdef IEEE80211_SUPPORT_SUPERG 2992 if (vap->iv_flags & IEEE80211_F_ATHEROS) { 2993 bo->bo_ath = frm; 2994 frm = ieee80211_add_athcaps(frm, ni); 2995 } 2996 #endif 2997 #ifdef IEEE80211_SUPPORT_TDMA 2998 if (vap->iv_caps & IEEE80211_C_TDMA) { 2999 bo->bo_tdma = frm; 3000 frm = ieee80211_add_tdma(frm, vap); 3001 } 3002 #endif 3003 if (vap->iv_appie_beacon != NULL) { 3004 bo->bo_appie = frm; 3005 bo->bo_appie_len = vap->iv_appie_beacon->ie_len; 3006 frm = add_appie(frm, vap->iv_appie_beacon); 3007 } 3008 #ifdef IEEE80211_SUPPORT_MESH 3009 if (vap->iv_opmode == IEEE80211_M_MBSS) { 3010 frm = ieee80211_add_meshid(frm, vap); 3011 bo->bo_meshconf = frm; 3012 frm = ieee80211_add_meshconf(frm, vap); 3013 } 3014 #endif 3015 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer; 3016 bo->bo_csa_trailer_len = frm - bo->bo_csa; 3017 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3018 } 3019 3020 /* 3021 * Allocate a beacon frame and fillin the appropriate bits. 3022 */ 3023 struct mbuf * 3024 ieee80211_beacon_alloc(struct ieee80211_node *ni, 3025 struct ieee80211_beacon_offsets *bo) 3026 { 3027 struct ieee80211vap *vap = ni->ni_vap; 3028 struct ieee80211com *ic = ni->ni_ic; 3029 struct ifnet *ifp = vap->iv_ifp; 3030 struct ieee80211_frame *wh; 3031 struct mbuf *m; 3032 int pktlen; 3033 uint8_t *frm; 3034 3035 /* 3036 * beacon frame format 3037 * [8] time stamp 3038 * [2] beacon interval 3039 * [2] cabability information 3040 * [tlv] ssid 3041 * [tlv] supported rates 3042 * [3] parameter set (DS) 3043 * [8] CF parameter set (optional) 3044 * [tlv] parameter set (IBSS/TIM) 3045 * [tlv] country (optional) 3046 * [3] power control (optional) 3047 * [5] channel switch announcement (CSA) (optional) 3048 * [tlv] extended rate phy (ERP) 3049 * [tlv] extended supported rates 3050 * [tlv] RSN parameters 3051 * [tlv] HT capabilities 3052 * [tlv] HT information 3053 * [tlv] Vendor OUI HT capabilities (optional) 3054 * [tlv] Vendor OUI HT information (optional) 3055 * XXX Vendor-specific OIDs (e.g. Atheros) 3056 * [tlv] WPA parameters 3057 * [tlv] WME parameters 3058 * [tlv] TDMA parameters (optional) 3059 * [tlv] Mesh ID (MBSS) 3060 * [tlv] Mesh Conf (MBSS) 3061 * [tlv] application data (optional) 3062 * NB: we allocate the max space required for the TIM bitmap. 3063 * XXX how big is this? 3064 */ 3065 pktlen = 8 /* time stamp */ 3066 + sizeof(uint16_t) /* beacon interval */ 3067 + sizeof(uint16_t) /* capabilities */ 3068 + 2 + ni->ni_esslen /* ssid */ 3069 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 3070 + 2 + 1 /* DS parameters */ 3071 + 2 + 6 /* CF parameters */ 3072 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */ 3073 + IEEE80211_COUNTRY_MAX_SIZE /* country */ 3074 + 2 + 1 /* power control */ 3075 + sizeof(struct ieee80211_csa_ie) /* CSA */ 3076 + sizeof(struct ieee80211_quiet_ie) /* Quiet */ 3077 + 2 + 1 /* ERP */ 3078 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 3079 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 3080 2*sizeof(struct ieee80211_ie_wpa) : 0) 3081 /* XXX conditional? */ 3082 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */ 3083 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */ 3084 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */ 3085 sizeof(struct ieee80211_wme_param) : 0) 3086 #ifdef IEEE80211_SUPPORT_SUPERG 3087 + sizeof(struct ieee80211_ath_ie) /* ATH */ 3088 #endif 3089 #ifdef IEEE80211_SUPPORT_TDMA 3090 + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */ 3091 sizeof(struct ieee80211_tdma_param) : 0) 3092 #endif 3093 #ifdef IEEE80211_SUPPORT_MESH 3094 + 2 + ni->ni_meshidlen 3095 + sizeof(struct ieee80211_meshconf_ie) 3096 #endif 3097 + IEEE80211_MAX_APPIE 3098 ; 3099 m = ieee80211_getmgtframe(&frm, 3100 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen); 3101 if (m == NULL) { 3102 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, 3103 "%s: cannot get buf; size %u\n", __func__, pktlen); 3104 vap->iv_stats.is_tx_nobuf++; 3105 return NULL; 3106 } 3107 ieee80211_beacon_construct(m, frm, bo, ni); 3108 3109 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 3110 KASSERT(m != NULL, ("no space for 802.11 header?")); 3111 wh = mtod(m, struct ieee80211_frame *); 3112 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 3113 IEEE80211_FC0_SUBTYPE_BEACON; 3114 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3115 *(uint16_t *)wh->i_dur = 0; 3116 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 3117 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 3118 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 3119 *(uint16_t *)wh->i_seq = 0; 3120 3121 return m; 3122 } 3123 3124 /* 3125 * Update the dynamic parts of a beacon frame based on the current state. 3126 */ 3127 int 3128 ieee80211_beacon_update(struct ieee80211_node *ni, 3129 struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast) 3130 { 3131 struct ieee80211vap *vap = ni->ni_vap; 3132 struct ieee80211com *ic = ni->ni_ic; 3133 int len_changed = 0; 3134 uint16_t capinfo; 3135 struct ieee80211_frame *wh; 3136 ieee80211_seq seqno; 3137 3138 IEEE80211_LOCK(ic); 3139 /* 3140 * Handle 11h channel change when we've reached the count. 3141 * We must recalculate the beacon frame contents to account 3142 * for the new channel. Note we do this only for the first 3143 * vap that reaches this point; subsequent vaps just update 3144 * their beacon state to reflect the recalculated channel. 3145 */ 3146 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) && 3147 vap->iv_csa_count == ic->ic_csa_count) { 3148 vap->iv_csa_count = 0; 3149 /* 3150 * Effect channel change before reconstructing the beacon 3151 * frame contents as many places reference ni_chan. 3152 */ 3153 if (ic->ic_csa_newchan != NULL) 3154 ieee80211_csa_completeswitch(ic); 3155 /* 3156 * NB: ieee80211_beacon_construct clears all pending 3157 * updates in bo_flags so we don't need to explicitly 3158 * clear IEEE80211_BEACON_CSA. 3159 */ 3160 ieee80211_beacon_construct(m, 3161 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni); 3162 3163 /* XXX do WME aggressive mode processing? */ 3164 IEEE80211_UNLOCK(ic); 3165 return 1; /* just assume length changed */ 3166 } 3167 3168 wh = mtod(m, struct ieee80211_frame *); 3169 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 3170 *(uint16_t *)&wh->i_seq[0] = 3171 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 3172 M_SEQNO_SET(m, seqno); 3173 3174 /* XXX faster to recalculate entirely or just changes? */ 3175 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3176 *bo->bo_caps = htole16(capinfo); 3177 3178 if (vap->iv_flags & IEEE80211_F_WME) { 3179 struct ieee80211_wme_state *wme = &ic->ic_wme; 3180 3181 /* 3182 * Check for agressive mode change. When there is 3183 * significant high priority traffic in the BSS 3184 * throttle back BE traffic by using conservative 3185 * parameters. Otherwise BE uses agressive params 3186 * to optimize performance of legacy/non-QoS traffic. 3187 */ 3188 if (wme->wme_flags & WME_F_AGGRMODE) { 3189 if (wme->wme_hipri_traffic > 3190 wme->wme_hipri_switch_thresh) { 3191 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3192 "%s: traffic %u, disable aggressive mode\n", 3193 __func__, wme->wme_hipri_traffic); 3194 wme->wme_flags &= ~WME_F_AGGRMODE; 3195 ieee80211_wme_updateparams_locked(vap); 3196 wme->wme_hipri_traffic = 3197 wme->wme_hipri_switch_hysteresis; 3198 } else 3199 wme->wme_hipri_traffic = 0; 3200 } else { 3201 if (wme->wme_hipri_traffic <= 3202 wme->wme_hipri_switch_thresh) { 3203 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3204 "%s: traffic %u, enable aggressive mode\n", 3205 __func__, wme->wme_hipri_traffic); 3206 wme->wme_flags |= WME_F_AGGRMODE; 3207 ieee80211_wme_updateparams_locked(vap); 3208 wme->wme_hipri_traffic = 0; 3209 } else 3210 wme->wme_hipri_traffic = 3211 wme->wme_hipri_switch_hysteresis; 3212 } 3213 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) { 3214 (void) ieee80211_add_wme_param(bo->bo_wme, wme); 3215 clrbit(bo->bo_flags, IEEE80211_BEACON_WME); 3216 } 3217 } 3218 3219 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) { 3220 ieee80211_ht_update_beacon(vap, bo); 3221 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO); 3222 } 3223 #ifdef IEEE80211_SUPPORT_TDMA 3224 if (vap->iv_caps & IEEE80211_C_TDMA) { 3225 /* 3226 * NB: the beacon is potentially updated every TBTT. 3227 */ 3228 ieee80211_tdma_update_beacon(vap, bo); 3229 } 3230 #endif 3231 #ifdef IEEE80211_SUPPORT_MESH 3232 if (vap->iv_opmode == IEEE80211_M_MBSS) 3233 ieee80211_mesh_update_beacon(vap, bo); 3234 #endif 3235 3236 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3237 vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/ 3238 struct ieee80211_tim_ie *tie = 3239 (struct ieee80211_tim_ie *) bo->bo_tim; 3240 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) { 3241 u_int timlen, timoff, i; 3242 /* 3243 * ATIM/DTIM needs updating. If it fits in the 3244 * current space allocated then just copy in the 3245 * new bits. Otherwise we need to move any trailing 3246 * data to make room. Note that we know there is 3247 * contiguous space because ieee80211_beacon_allocate 3248 * insures there is space in the mbuf to write a 3249 * maximal-size virtual bitmap (based on iv_max_aid). 3250 */ 3251 /* 3252 * Calculate the bitmap size and offset, copy any 3253 * trailer out of the way, and then copy in the 3254 * new bitmap and update the information element. 3255 * Note that the tim bitmap must contain at least 3256 * one byte and any offset must be even. 3257 */ 3258 if (vap->iv_ps_pending != 0) { 3259 timoff = 128; /* impossibly large */ 3260 for (i = 0; i < vap->iv_tim_len; i++) 3261 if (vap->iv_tim_bitmap[i]) { 3262 timoff = i &~ 1; 3263 break; 3264 } 3265 KASSERT(timoff != 128, ("tim bitmap empty!")); 3266 for (i = vap->iv_tim_len-1; i >= timoff; i--) 3267 if (vap->iv_tim_bitmap[i]) 3268 break; 3269 timlen = 1 + (i - timoff); 3270 } else { 3271 timoff = 0; 3272 timlen = 1; 3273 } 3274 if (timlen != bo->bo_tim_len) { 3275 /* copy up/down trailer */ 3276 int adjust = tie->tim_bitmap+timlen 3277 - bo->bo_tim_trailer; 3278 ovbcopy(bo->bo_tim_trailer, 3279 bo->bo_tim_trailer+adjust, 3280 bo->bo_tim_trailer_len); 3281 bo->bo_tim_trailer += adjust; 3282 bo->bo_erp += adjust; 3283 bo->bo_htinfo += adjust; 3284 #ifdef IEEE80211_SUPPORT_SUPERG 3285 bo->bo_ath += adjust; 3286 #endif 3287 #ifdef IEEE80211_SUPPORT_TDMA 3288 bo->bo_tdma += adjust; 3289 #endif 3290 #ifdef IEEE80211_SUPPORT_MESH 3291 bo->bo_meshconf += adjust; 3292 #endif 3293 bo->bo_appie += adjust; 3294 bo->bo_wme += adjust; 3295 bo->bo_csa += adjust; 3296 bo->bo_quiet += adjust; 3297 bo->bo_tim_len = timlen; 3298 3299 /* update information element */ 3300 tie->tim_len = 3 + timlen; 3301 tie->tim_bitctl = timoff; 3302 len_changed = 1; 3303 } 3304 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff, 3305 bo->bo_tim_len); 3306 3307 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM); 3308 3309 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER, 3310 "%s: TIM updated, pending %u, off %u, len %u\n", 3311 __func__, vap->iv_ps_pending, timoff, timlen); 3312 } 3313 /* count down DTIM period */ 3314 if (tie->tim_count == 0) 3315 tie->tim_count = tie->tim_period - 1; 3316 else 3317 tie->tim_count--; 3318 /* update state for buffered multicast frames on DTIM */ 3319 if (mcast && tie->tim_count == 0) 3320 tie->tim_bitctl |= 1; 3321 else 3322 tie->tim_bitctl &= ~1; 3323 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) { 3324 struct ieee80211_csa_ie *csa = 3325 (struct ieee80211_csa_ie *) bo->bo_csa; 3326 3327 /* 3328 * Insert or update CSA ie. If we're just starting 3329 * to count down to the channel switch then we need 3330 * to insert the CSA ie. Otherwise we just need to 3331 * drop the count. The actual change happens above 3332 * when the vap's count reaches the target count. 3333 */ 3334 if (vap->iv_csa_count == 0) { 3335 memmove(&csa[1], csa, bo->bo_csa_trailer_len); 3336 bo->bo_erp += sizeof(*csa); 3337 bo->bo_htinfo += sizeof(*csa); 3338 bo->bo_wme += sizeof(*csa); 3339 #ifdef IEEE80211_SUPPORT_SUPERG 3340 bo->bo_ath += sizeof(*csa); 3341 #endif 3342 #ifdef IEEE80211_SUPPORT_TDMA 3343 bo->bo_tdma += sizeof(*csa); 3344 #endif 3345 #ifdef IEEE80211_SUPPORT_MESH 3346 bo->bo_meshconf += sizeof(*csa); 3347 #endif 3348 bo->bo_appie += sizeof(*csa); 3349 bo->bo_csa_trailer_len += sizeof(*csa); 3350 bo->bo_quiet += sizeof(*csa); 3351 bo->bo_tim_trailer_len += sizeof(*csa); 3352 m->m_len += sizeof(*csa); 3353 m->m_pkthdr.len += sizeof(*csa); 3354 3355 ieee80211_add_csa(bo->bo_csa, vap); 3356 } else 3357 csa->csa_count--; 3358 vap->iv_csa_count++; 3359 /* NB: don't clear IEEE80211_BEACON_CSA */ 3360 } 3361 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3362 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){ 3363 if (vap->iv_quiet) 3364 ieee80211_add_quiet(bo->bo_quiet, vap); 3365 } 3366 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) { 3367 /* 3368 * ERP element needs updating. 3369 */ 3370 (void) ieee80211_add_erp(bo->bo_erp, ic); 3371 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP); 3372 } 3373 #ifdef IEEE80211_SUPPORT_SUPERG 3374 if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) { 3375 ieee80211_add_athcaps(bo->bo_ath, ni); 3376 clrbit(bo->bo_flags, IEEE80211_BEACON_ATH); 3377 } 3378 #endif 3379 } 3380 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) { 3381 const struct ieee80211_appie *aie = vap->iv_appie_beacon; 3382 int aielen; 3383 uint8_t *frm; 3384 3385 aielen = 0; 3386 if (aie != NULL) 3387 aielen += aie->ie_len; 3388 if (aielen != bo->bo_appie_len) { 3389 /* copy up/down trailer */ 3390 int adjust = aielen - bo->bo_appie_len; 3391 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust, 3392 bo->bo_tim_trailer_len); 3393 bo->bo_tim_trailer += adjust; 3394 bo->bo_appie += adjust; 3395 bo->bo_appie_len = aielen; 3396 3397 len_changed = 1; 3398 } 3399 frm = bo->bo_appie; 3400 if (aie != NULL) 3401 frm = add_appie(frm, aie); 3402 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE); 3403 } 3404 IEEE80211_UNLOCK(ic); 3405 3406 return len_changed; 3407 } 3408 3409 /* 3410 * Do Ethernet-LLC encapsulation for each payload in a fast frame 3411 * tunnel encapsulation. The frame is assumed to have an Ethernet 3412 * header at the front that must be stripped before prepending the 3413 * LLC followed by the Ethernet header passed in (with an Ethernet 3414 * type that specifies the payload size). 3415 */ 3416 struct mbuf * 3417 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m, 3418 const struct ether_header *eh) 3419 { 3420 struct llc *llc; 3421 uint16_t payload; 3422 3423 /* XXX optimize by combining m_adj+M_PREPEND */ 3424 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 3425 llc = mtod(m, struct llc *); 3426 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 3427 llc->llc_control = LLC_UI; 3428 llc->llc_snap.org_code[0] = 0; 3429 llc->llc_snap.org_code[1] = 0; 3430 llc->llc_snap.org_code[2] = 0; 3431 llc->llc_snap.ether_type = eh->ether_type; 3432 payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */ 3433 3434 M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT); 3435 if (m == NULL) { /* XXX cannot happen */ 3436 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 3437 "%s: no space for ether_header\n", __func__); 3438 vap->iv_stats.is_tx_nobuf++; 3439 return NULL; 3440 } 3441 ETHER_HEADER_COPY(mtod(m, void *), eh); 3442 mtod(m, struct ether_header *)->ether_type = htons(payload); 3443 return m; 3444 } 3445 3446 /* 3447 * Complete an mbuf transmission. 3448 * 3449 * For now, this simply processes a completed frame after the 3450 * driver has completed it's transmission and/or retransmission. 3451 * It assumes the frame is an 802.11 encapsulated frame. 3452 * 3453 * Later on it will grow to become the exit path for a given frame 3454 * from the driver and, depending upon how it's been encapsulated 3455 * and already transmitted, it may end up doing A-MPDU retransmission, 3456 * power save requeuing, etc. 3457 * 3458 * In order for the above to work, the driver entry point to this 3459 * must not hold any driver locks. Thus, the driver needs to delay 3460 * any actual mbuf completion until it can release said locks. 3461 * 3462 * This frees the mbuf and if the mbuf has a node reference, 3463 * the node reference will be freed. 3464 */ 3465 void 3466 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status) 3467 { 3468 3469 if (ni != NULL) { 3470 struct ifnet *ifp = ni->ni_vap->iv_ifp; 3471 3472 if (status == 0) { 3473 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len); 3474 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 3475 if (m->m_flags & M_MCAST) 3476 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 3477 } else 3478 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 3479 if (m->m_flags & M_TXCB) 3480 ieee80211_process_callback(ni, m, status); 3481 ieee80211_free_node(ni); 3482 } 3483 m_freem(m); 3484 } 3485