1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_inet.h" 31 #include "opt_inet6.h" 32 #include "opt_wlan.h" 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/kernel.h> 37 #include <sys/malloc.h> 38 #include <sys/mbuf.h> 39 #include <sys/endian.h> 40 41 #include <sys/socket.h> 42 43 #include <net/bpf.h> 44 #include <net/ethernet.h> 45 #include <net/if.h> 46 #include <net/if_var.h> 47 #include <net/if_llc.h> 48 #include <net/if_media.h> 49 #include <net/if_vlan_var.h> 50 51 #include <net80211/ieee80211_var.h> 52 #include <net80211/ieee80211_regdomain.h> 53 #ifdef IEEE80211_SUPPORT_SUPERG 54 #include <net80211/ieee80211_superg.h> 55 #endif 56 #ifdef IEEE80211_SUPPORT_TDMA 57 #include <net80211/ieee80211_tdma.h> 58 #endif 59 #include <net80211/ieee80211_wds.h> 60 #include <net80211/ieee80211_mesh.h> 61 #include <net80211/ieee80211_vht.h> 62 63 #if defined(INET) || defined(INET6) 64 #include <netinet/in.h> 65 #endif 66 67 #ifdef INET 68 #include <netinet/if_ether.h> 69 #include <netinet/in_systm.h> 70 #include <netinet/ip.h> 71 #endif 72 #ifdef INET6 73 #include <netinet/ip6.h> 74 #endif 75 76 #include <security/mac/mac_framework.h> 77 78 #define ETHER_HEADER_COPY(dst, src) \ 79 memcpy(dst, src, sizeof(struct ether_header)) 80 81 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *, 82 u_int hdrsize, u_int ciphdrsize, u_int mtu); 83 static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int); 84 85 #ifdef IEEE80211_DEBUG 86 /* 87 * Decide if an outbound management frame should be 88 * printed when debugging is enabled. This filters some 89 * of the less interesting frames that come frequently 90 * (e.g. beacons). 91 */ 92 static __inline int 93 doprint(struct ieee80211vap *vap, int subtype) 94 { 95 switch (subtype) { 96 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 97 return (vap->iv_opmode == IEEE80211_M_IBSS); 98 } 99 return 1; 100 } 101 #endif 102 103 /* 104 * Transmit a frame to the given destination on the given VAP. 105 * 106 * It's up to the caller to figure out the details of who this 107 * is going to and resolving the node. 108 * 109 * This routine takes care of queuing it for power save, 110 * A-MPDU state stuff, fast-frames state stuff, encapsulation 111 * if required, then passing it up to the driver layer. 112 * 113 * This routine (for now) consumes the mbuf and frees the node 114 * reference; it ideally will return a TX status which reflects 115 * whether the mbuf was consumed or not, so the caller can 116 * free the mbuf (if appropriate) and the node reference (again, 117 * if appropriate.) 118 */ 119 int 120 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m, 121 struct ieee80211_node *ni) 122 { 123 struct ieee80211com *ic = vap->iv_ic; 124 struct ifnet *ifp = vap->iv_ifp; 125 int mcast; 126 127 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 128 (m->m_flags & M_PWR_SAV) == 0) { 129 /* 130 * Station in power save mode; pass the frame 131 * to the 802.11 layer and continue. We'll get 132 * the frame back when the time is right. 133 * XXX lose WDS vap linkage? 134 */ 135 if (ieee80211_pwrsave(ni, m) != 0) 136 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 137 ieee80211_free_node(ni); 138 139 /* 140 * We queued it fine, so tell the upper layer 141 * that we consumed it. 142 */ 143 return (0); 144 } 145 /* calculate priority so drivers can find the tx queue */ 146 if (ieee80211_classify(ni, m)) { 147 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 148 ni->ni_macaddr, NULL, 149 "%s", "classification failure"); 150 vap->iv_stats.is_tx_classify++; 151 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 152 m_freem(m); 153 ieee80211_free_node(ni); 154 155 /* XXX better status? */ 156 return (0); 157 } 158 /* 159 * Stash the node pointer. Note that we do this after 160 * any call to ieee80211_dwds_mcast because that code 161 * uses any existing value for rcvif to identify the 162 * interface it (might have been) received on. 163 */ 164 m->m_pkthdr.rcvif = (void *)ni; 165 mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0; 166 167 BPF_MTAP(ifp, m); /* 802.3 tx */ 168 169 /* 170 * Check if A-MPDU tx aggregation is setup or if we 171 * should try to enable it. The sta must be associated 172 * with HT and A-MPDU enabled for use. When the policy 173 * routine decides we should enable A-MPDU we issue an 174 * ADDBA request and wait for a reply. The frame being 175 * encapsulated will go out w/o using A-MPDU, or possibly 176 * it might be collected by the driver and held/retransmit. 177 * The default ic_ampdu_enable routine handles staggering 178 * ADDBA requests in case the receiver NAK's us or we are 179 * otherwise unable to establish a BA stream. 180 * 181 * Don't treat group-addressed frames as candidates for aggregation; 182 * net80211 doesn't support 802.11aa-2012 and so group addressed 183 * frames will always have sequence numbers allocated from the NON_QOS 184 * TID. 185 */ 186 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) && 187 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)) { 188 if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) { 189 int tid = WME_AC_TO_TID(M_WME_GETAC(m)); 190 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; 191 192 ieee80211_txampdu_count_packet(tap); 193 if (IEEE80211_AMPDU_RUNNING(tap)) { 194 /* 195 * Operational, mark frame for aggregation. 196 * 197 * XXX do tx aggregation here 198 */ 199 m->m_flags |= M_AMPDU_MPDU; 200 } else if (!IEEE80211_AMPDU_REQUESTED(tap) && 201 ic->ic_ampdu_enable(ni, tap)) { 202 /* 203 * Not negotiated yet, request service. 204 */ 205 ieee80211_ampdu_request(ni, tap); 206 /* XXX hold frame for reply? */ 207 } 208 } 209 } 210 211 #ifdef IEEE80211_SUPPORT_SUPERG 212 /* 213 * Check for AMSDU/FF; queue for aggregation 214 * 215 * Note: we don't bother trying to do fast frames or 216 * A-MSDU encapsulation for 802.3 drivers. Now, we 217 * likely could do it for FF (because it's a magic 218 * atheros tunnel LLC type) but I don't think we're going 219 * to really need to. For A-MSDU we'd have to set the 220 * A-MSDU QoS bit in the wifi header, so we just plain 221 * can't do it. 222 * 223 * Strictly speaking, we could actually /do/ A-MSDU / FF 224 * with A-MPDU together which for certain circumstances 225 * is beneficial (eg A-MSDU of TCK ACKs.) However, 226 * I'll ignore that for now so existing behaviour is maintained. 227 * Later on it would be good to make "amsdu + ampdu" configurable. 228 */ 229 else if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 230 if ((! mcast) && ieee80211_amsdu_tx_ok(ni)) { 231 m = ieee80211_amsdu_check(ni, m); 232 if (m == NULL) { 233 /* NB: any ni ref held on stageq */ 234 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 235 "%s: amsdu_check queued frame\n", 236 __func__); 237 return (0); 238 } 239 } else if ((! mcast) && IEEE80211_ATH_CAP(vap, ni, 240 IEEE80211_NODE_FF)) { 241 m = ieee80211_ff_check(ni, m); 242 if (m == NULL) { 243 /* NB: any ni ref held on stageq */ 244 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 245 "%s: ff_check queued frame\n", 246 __func__); 247 return (0); 248 } 249 } 250 } 251 #endif /* IEEE80211_SUPPORT_SUPERG */ 252 253 /* 254 * Grab the TX lock - serialise the TX process from this 255 * point (where TX state is being checked/modified) 256 * through to driver queue. 257 */ 258 IEEE80211_TX_LOCK(ic); 259 260 /* 261 * XXX make the encap and transmit code a separate function 262 * so things like the FF (and later A-MSDU) path can just call 263 * it for flushed frames. 264 */ 265 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 266 /* 267 * Encapsulate the packet in prep for transmission. 268 */ 269 m = ieee80211_encap(vap, ni, m); 270 if (m == NULL) { 271 /* NB: stat+msg handled in ieee80211_encap */ 272 IEEE80211_TX_UNLOCK(ic); 273 ieee80211_free_node(ni); 274 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 275 return (ENOBUFS); 276 } 277 } 278 (void) ieee80211_parent_xmitpkt(ic, m); 279 280 /* 281 * Unlock at this point - no need to hold it across 282 * ieee80211_free_node() (ie, the comlock) 283 */ 284 IEEE80211_TX_UNLOCK(ic); 285 ic->ic_lastdata = ticks; 286 287 return (0); 288 } 289 290 291 292 /* 293 * Send the given mbuf through the given vap. 294 * 295 * This consumes the mbuf regardless of whether the transmit 296 * was successful or not. 297 * 298 * This does none of the initial checks that ieee80211_start() 299 * does (eg CAC timeout, interface wakeup) - the caller must 300 * do this first. 301 */ 302 static int 303 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m) 304 { 305 #define IS_DWDS(vap) \ 306 (vap->iv_opmode == IEEE80211_M_WDS && \ 307 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0) 308 struct ieee80211com *ic = vap->iv_ic; 309 struct ifnet *ifp = vap->iv_ifp; 310 struct ieee80211_node *ni; 311 struct ether_header *eh; 312 313 /* 314 * Cancel any background scan. 315 */ 316 if (ic->ic_flags & IEEE80211_F_SCAN) 317 ieee80211_cancel_anyscan(vap); 318 /* 319 * Find the node for the destination so we can do 320 * things like power save and fast frames aggregation. 321 * 322 * NB: past this point various code assumes the first 323 * mbuf has the 802.3 header present (and contiguous). 324 */ 325 ni = NULL; 326 if (m->m_len < sizeof(struct ether_header) && 327 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 328 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 329 "discard frame, %s\n", "m_pullup failed"); 330 vap->iv_stats.is_tx_nobuf++; /* XXX */ 331 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 332 return (ENOBUFS); 333 } 334 eh = mtod(m, struct ether_header *); 335 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 336 if (IS_DWDS(vap)) { 337 /* 338 * Only unicast frames from the above go out 339 * DWDS vaps; multicast frames are handled by 340 * dispatching the frame as it comes through 341 * the AP vap (see below). 342 */ 343 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS, 344 eh->ether_dhost, "mcast", "%s", "on DWDS"); 345 vap->iv_stats.is_dwds_mcast++; 346 m_freem(m); 347 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 348 /* XXX better status? */ 349 return (ENOBUFS); 350 } 351 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { 352 /* 353 * Spam DWDS vap's w/ multicast traffic. 354 */ 355 /* XXX only if dwds in use? */ 356 ieee80211_dwds_mcast(vap, m); 357 } 358 } 359 #ifdef IEEE80211_SUPPORT_MESH 360 if (vap->iv_opmode != IEEE80211_M_MBSS) { 361 #endif 362 ni = ieee80211_find_txnode(vap, eh->ether_dhost); 363 if (ni == NULL) { 364 /* NB: ieee80211_find_txnode does stat+msg */ 365 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 366 m_freem(m); 367 /* XXX better status? */ 368 return (ENOBUFS); 369 } 370 if (ni->ni_associd == 0 && 371 (ni->ni_flags & IEEE80211_NODE_ASSOCID)) { 372 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 373 eh->ether_dhost, NULL, 374 "sta not associated (type 0x%04x)", 375 htons(eh->ether_type)); 376 vap->iv_stats.is_tx_notassoc++; 377 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 378 m_freem(m); 379 ieee80211_free_node(ni); 380 /* XXX better status? */ 381 return (ENOBUFS); 382 } 383 #ifdef IEEE80211_SUPPORT_MESH 384 } else { 385 if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) { 386 /* 387 * Proxy station only if configured. 388 */ 389 if (!ieee80211_mesh_isproxyena(vap)) { 390 IEEE80211_DISCARD_MAC(vap, 391 IEEE80211_MSG_OUTPUT | 392 IEEE80211_MSG_MESH, 393 eh->ether_dhost, NULL, 394 "%s", "proxy not enabled"); 395 vap->iv_stats.is_mesh_notproxy++; 396 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 397 m_freem(m); 398 /* XXX better status? */ 399 return (ENOBUFS); 400 } 401 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 402 "forward frame from DS SA(%6D), DA(%6D)\n", 403 eh->ether_shost, ":", 404 eh->ether_dhost, ":"); 405 ieee80211_mesh_proxy_check(vap, eh->ether_shost); 406 } 407 ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m); 408 if (ni == NULL) { 409 /* 410 * NB: ieee80211_mesh_discover holds/disposes 411 * frame (e.g. queueing on path discovery). 412 */ 413 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 414 /* XXX better status? */ 415 return (ENOBUFS); 416 } 417 } 418 #endif 419 420 /* 421 * We've resolved the sender, so attempt to transmit it. 422 */ 423 424 if (vap->iv_state == IEEE80211_S_SLEEP) { 425 /* 426 * In power save; queue frame and then wakeup device 427 * for transmit. 428 */ 429 ic->ic_lastdata = ticks; 430 if (ieee80211_pwrsave(ni, m) != 0) 431 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 432 ieee80211_free_node(ni); 433 ieee80211_new_state(vap, IEEE80211_S_RUN, 0); 434 return (0); 435 } 436 437 if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0) 438 return (ENOBUFS); 439 return (0); 440 #undef IS_DWDS 441 } 442 443 /* 444 * Start method for vap's. All packets from the stack come 445 * through here. We handle common processing of the packets 446 * before dispatching them to the underlying device. 447 * 448 * if_transmit() requires that the mbuf be consumed by this call 449 * regardless of the return condition. 450 */ 451 int 452 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m) 453 { 454 struct ieee80211vap *vap = ifp->if_softc; 455 struct ieee80211com *ic = vap->iv_ic; 456 457 /* 458 * No data frames go out unless we're running. 459 * Note in particular this covers CAC and CSA 460 * states (though maybe we should check muting 461 * for CSA). 462 */ 463 if (vap->iv_state != IEEE80211_S_RUN && 464 vap->iv_state != IEEE80211_S_SLEEP) { 465 IEEE80211_LOCK(ic); 466 /* re-check under the com lock to avoid races */ 467 if (vap->iv_state != IEEE80211_S_RUN && 468 vap->iv_state != IEEE80211_S_SLEEP) { 469 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 470 "%s: ignore queue, in %s state\n", 471 __func__, ieee80211_state_name[vap->iv_state]); 472 vap->iv_stats.is_tx_badstate++; 473 IEEE80211_UNLOCK(ic); 474 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 475 m_freem(m); 476 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 477 return (ENETDOWN); 478 } 479 IEEE80211_UNLOCK(ic); 480 } 481 482 /* 483 * Sanitize mbuf flags for net80211 use. We cannot 484 * clear M_PWR_SAV or M_MORE_DATA because these may 485 * be set for frames that are re-submitted from the 486 * power save queue. 487 * 488 * NB: This must be done before ieee80211_classify as 489 * it marks EAPOL in frames with M_EAPOL. 490 */ 491 m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA); 492 493 /* 494 * Bump to the packet transmission path. 495 * The mbuf will be consumed here. 496 */ 497 return (ieee80211_start_pkt(vap, m)); 498 } 499 500 void 501 ieee80211_vap_qflush(struct ifnet *ifp) 502 { 503 504 /* Empty for now */ 505 } 506 507 /* 508 * 802.11 raw output routine. 509 * 510 * XXX TODO: this (and other send routines) should correctly 511 * XXX keep the pwr mgmt bit set if it decides to call into the 512 * XXX driver to send a frame whilst the state is SLEEP. 513 * 514 * Otherwise the peer may decide that we're awake and flood us 515 * with traffic we are still too asleep to receive! 516 */ 517 int 518 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni, 519 struct mbuf *m, const struct ieee80211_bpf_params *params) 520 { 521 struct ieee80211com *ic = vap->iv_ic; 522 int error; 523 524 /* 525 * Set node - the caller has taken a reference, so ensure 526 * that the mbuf has the same node value that 527 * it would if it were going via the normal path. 528 */ 529 m->m_pkthdr.rcvif = (void *)ni; 530 531 /* 532 * Attempt to add bpf transmit parameters. 533 * 534 * For now it's ok to fail; the raw_xmit api still takes 535 * them as an option. 536 * 537 * Later on when ic_raw_xmit() has params removed, 538 * they'll have to be added - so fail the transmit if 539 * they can't be. 540 */ 541 if (params) 542 (void) ieee80211_add_xmit_params(m, params); 543 544 error = ic->ic_raw_xmit(ni, m, params); 545 if (error) { 546 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1); 547 ieee80211_free_node(ni); 548 } 549 return (error); 550 } 551 552 /* 553 * 802.11 output routine. This is (currently) used only to 554 * connect bpf write calls to the 802.11 layer for injecting 555 * raw 802.11 frames. 556 */ 557 int 558 ieee80211_output(struct ifnet *ifp, struct mbuf *m, 559 const struct sockaddr *dst, struct route *ro) 560 { 561 #define senderr(e) do { error = (e); goto bad;} while (0) 562 struct ieee80211_node *ni = NULL; 563 struct ieee80211vap *vap; 564 struct ieee80211_frame *wh; 565 struct ieee80211com *ic = NULL; 566 int error; 567 int ret; 568 569 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 570 /* 571 * Short-circuit requests if the vap is marked OACTIVE 572 * as this can happen because a packet came down through 573 * ieee80211_start before the vap entered RUN state in 574 * which case it's ok to just drop the frame. This 575 * should not be necessary but callers of if_output don't 576 * check OACTIVE. 577 */ 578 senderr(ENETDOWN); 579 } 580 vap = ifp->if_softc; 581 ic = vap->iv_ic; 582 /* 583 * Hand to the 802.3 code if not tagged as 584 * a raw 802.11 frame. 585 */ 586 if (dst->sa_family != AF_IEEE80211) 587 return vap->iv_output(ifp, m, dst, ro); 588 #ifdef MAC 589 error = mac_ifnet_check_transmit(ifp, m); 590 if (error) 591 senderr(error); 592 #endif 593 if (ifp->if_flags & IFF_MONITOR) 594 senderr(ENETDOWN); 595 if (!IFNET_IS_UP_RUNNING(ifp)) 596 senderr(ENETDOWN); 597 if (vap->iv_state == IEEE80211_S_CAC) { 598 IEEE80211_DPRINTF(vap, 599 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 600 "block %s frame in CAC state\n", "raw data"); 601 vap->iv_stats.is_tx_badstate++; 602 senderr(EIO); /* XXX */ 603 } else if (vap->iv_state == IEEE80211_S_SCAN) 604 senderr(EIO); 605 /* XXX bypass bridge, pfil, carp, etc. */ 606 607 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack)) 608 senderr(EIO); /* XXX */ 609 wh = mtod(m, struct ieee80211_frame *); 610 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) != 611 IEEE80211_FC0_VERSION_0) 612 senderr(EIO); /* XXX */ 613 if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh)) 614 senderr(EIO); /* XXX */ 615 616 /* locate destination node */ 617 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 618 case IEEE80211_FC1_DIR_NODS: 619 case IEEE80211_FC1_DIR_FROMDS: 620 ni = ieee80211_find_txnode(vap, wh->i_addr1); 621 break; 622 case IEEE80211_FC1_DIR_TODS: 623 case IEEE80211_FC1_DIR_DSTODS: 624 ni = ieee80211_find_txnode(vap, wh->i_addr3); 625 break; 626 default: 627 senderr(EIO); /* XXX */ 628 } 629 if (ni == NULL) { 630 /* 631 * Permit packets w/ bpf params through regardless 632 * (see below about sa_len). 633 */ 634 if (dst->sa_len == 0) 635 senderr(EHOSTUNREACH); 636 ni = ieee80211_ref_node(vap->iv_bss); 637 } 638 639 /* 640 * Sanitize mbuf for net80211 flags leaked from above. 641 * 642 * NB: This must be done before ieee80211_classify as 643 * it marks EAPOL in frames with M_EAPOL. 644 */ 645 m->m_flags &= ~M_80211_TX; 646 647 /* calculate priority so drivers can find the tx queue */ 648 /* XXX assumes an 802.3 frame */ 649 if (ieee80211_classify(ni, m)) 650 senderr(EIO); /* XXX */ 651 652 IEEE80211_NODE_STAT(ni, tx_data); 653 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 654 IEEE80211_NODE_STAT(ni, tx_mcast); 655 m->m_flags |= M_MCAST; 656 } else 657 IEEE80211_NODE_STAT(ni, tx_ucast); 658 /* NB: ieee80211_encap does not include 802.11 header */ 659 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len); 660 661 IEEE80211_TX_LOCK(ic); 662 663 /* 664 * NB: DLT_IEEE802_11_RADIO identifies the parameters are 665 * present by setting the sa_len field of the sockaddr (yes, 666 * this is a hack). 667 * NB: we assume sa_data is suitably aligned to cast. 668 */ 669 ret = ieee80211_raw_output(vap, ni, m, 670 (const struct ieee80211_bpf_params *)(dst->sa_len ? 671 dst->sa_data : NULL)); 672 IEEE80211_TX_UNLOCK(ic); 673 return (ret); 674 bad: 675 if (m != NULL) 676 m_freem(m); 677 if (ni != NULL) 678 ieee80211_free_node(ni); 679 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 680 return error; 681 #undef senderr 682 } 683 684 /* 685 * Set the direction field and address fields of an outgoing 686 * frame. Note this should be called early on in constructing 687 * a frame as it sets i_fc[1]; other bits can then be or'd in. 688 */ 689 void 690 ieee80211_send_setup( 691 struct ieee80211_node *ni, 692 struct mbuf *m, 693 int type, int tid, 694 const uint8_t sa[IEEE80211_ADDR_LEN], 695 const uint8_t da[IEEE80211_ADDR_LEN], 696 const uint8_t bssid[IEEE80211_ADDR_LEN]) 697 { 698 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 699 struct ieee80211vap *vap = ni->ni_vap; 700 struct ieee80211_tx_ampdu *tap; 701 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 702 ieee80211_seq seqno; 703 704 IEEE80211_TX_LOCK_ASSERT(ni->ni_ic); 705 706 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 707 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 708 switch (vap->iv_opmode) { 709 case IEEE80211_M_STA: 710 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 711 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 712 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 713 IEEE80211_ADDR_COPY(wh->i_addr3, da); 714 break; 715 case IEEE80211_M_IBSS: 716 case IEEE80211_M_AHDEMO: 717 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 718 IEEE80211_ADDR_COPY(wh->i_addr1, da); 719 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 720 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 721 break; 722 case IEEE80211_M_HOSTAP: 723 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 724 IEEE80211_ADDR_COPY(wh->i_addr1, da); 725 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 726 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 727 break; 728 case IEEE80211_M_WDS: 729 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 730 IEEE80211_ADDR_COPY(wh->i_addr1, da); 731 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 732 IEEE80211_ADDR_COPY(wh->i_addr3, da); 733 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 734 break; 735 case IEEE80211_M_MBSS: 736 #ifdef IEEE80211_SUPPORT_MESH 737 if (IEEE80211_IS_MULTICAST(da)) { 738 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 739 /* XXX next hop */ 740 IEEE80211_ADDR_COPY(wh->i_addr1, da); 741 IEEE80211_ADDR_COPY(wh->i_addr2, 742 vap->iv_myaddr); 743 } else { 744 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 745 IEEE80211_ADDR_COPY(wh->i_addr1, da); 746 IEEE80211_ADDR_COPY(wh->i_addr2, 747 vap->iv_myaddr); 748 IEEE80211_ADDR_COPY(wh->i_addr3, da); 749 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 750 } 751 #endif 752 break; 753 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 754 break; 755 } 756 } else { 757 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 758 IEEE80211_ADDR_COPY(wh->i_addr1, da); 759 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 760 #ifdef IEEE80211_SUPPORT_MESH 761 if (vap->iv_opmode == IEEE80211_M_MBSS) 762 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 763 else 764 #endif 765 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 766 } 767 *(uint16_t *)&wh->i_dur[0] = 0; 768 769 /* 770 * XXX TODO: this is what the TX lock is for. 771 * Here we're incrementing sequence numbers, and they 772 * need to be in lock-step with what the driver is doing 773 * both in TX ordering and crypto encap (IV increment.) 774 * 775 * If the driver does seqno itself, then we can skip 776 * assigning sequence numbers here, and we can avoid 777 * requiring the TX lock. 778 */ 779 tap = &ni->ni_tx_ampdu[tid]; 780 if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) { 781 m->m_flags |= M_AMPDU_MPDU; 782 } else { 783 if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK, 784 type & IEEE80211_FC0_SUBTYPE_MASK)) 785 /* 786 * 802.11-2012 9.3.2.10 - QoS multicast frames 787 * come out of a different seqno space. 788 */ 789 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 790 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 791 } else { 792 seqno = ni->ni_txseqs[tid]++; 793 } 794 else 795 seqno = 0; 796 797 *(uint16_t *)&wh->i_seq[0] = 798 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 799 M_SEQNO_SET(m, seqno); 800 } 801 802 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 803 m->m_flags |= M_MCAST; 804 #undef WH4 805 } 806 807 /* 808 * Send a management frame to the specified node. The node pointer 809 * must have a reference as the pointer will be passed to the driver 810 * and potentially held for a long time. If the frame is successfully 811 * dispatched to the driver, then it is responsible for freeing the 812 * reference (and potentially free'ing up any associated storage); 813 * otherwise deal with reclaiming any reference (on error). 814 */ 815 int 816 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type, 817 struct ieee80211_bpf_params *params) 818 { 819 struct ieee80211vap *vap = ni->ni_vap; 820 struct ieee80211com *ic = ni->ni_ic; 821 struct ieee80211_frame *wh; 822 int ret; 823 824 KASSERT(ni != NULL, ("null node")); 825 826 if (vap->iv_state == IEEE80211_S_CAC) { 827 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 828 ni, "block %s frame in CAC state", 829 ieee80211_mgt_subtype_name(type)); 830 vap->iv_stats.is_tx_badstate++; 831 ieee80211_free_node(ni); 832 m_freem(m); 833 return EIO; /* XXX */ 834 } 835 836 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 837 if (m == NULL) { 838 ieee80211_free_node(ni); 839 return ENOMEM; 840 } 841 842 IEEE80211_TX_LOCK(ic); 843 844 wh = mtod(m, struct ieee80211_frame *); 845 ieee80211_send_setup(ni, m, 846 IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID, 847 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 848 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { 849 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1, 850 "encrypting frame (%s)", __func__); 851 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 852 } 853 m->m_flags |= M_ENCAP; /* mark encapsulated */ 854 855 KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?")); 856 M_WME_SETAC(m, params->ibp_pri); 857 858 #ifdef IEEE80211_DEBUG 859 /* avoid printing too many frames */ 860 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) || 861 ieee80211_msg_dumppkts(vap)) { 862 printf("[%s] send %s on channel %u\n", 863 ether_sprintf(wh->i_addr1), 864 ieee80211_mgt_subtype_name(type), 865 ieee80211_chan2ieee(ic, ic->ic_curchan)); 866 } 867 #endif 868 IEEE80211_NODE_STAT(ni, tx_mgmt); 869 870 ret = ieee80211_raw_output(vap, ni, m, params); 871 IEEE80211_TX_UNLOCK(ic); 872 return (ret); 873 } 874 875 static void 876 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg, 877 int status) 878 { 879 struct ieee80211vap *vap = ni->ni_vap; 880 881 wakeup(vap); 882 } 883 884 /* 885 * Send a null data frame to the specified node. If the station 886 * is setup for QoS then a QoS Null Data frame is constructed. 887 * If this is a WDS station then a 4-address frame is constructed. 888 * 889 * NB: the caller is assumed to have setup a node reference 890 * for use; this is necessary to deal with a race condition 891 * when probing for inactive stations. Like ieee80211_mgmt_output 892 * we must cleanup any node reference on error; however we 893 * can safely just unref it as we know it will never be the 894 * last reference to the node. 895 */ 896 int 897 ieee80211_send_nulldata(struct ieee80211_node *ni) 898 { 899 struct ieee80211vap *vap = ni->ni_vap; 900 struct ieee80211com *ic = ni->ni_ic; 901 struct mbuf *m; 902 struct ieee80211_frame *wh; 903 int hdrlen; 904 uint8_t *frm; 905 int ret; 906 907 if (vap->iv_state == IEEE80211_S_CAC) { 908 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 909 ni, "block %s frame in CAC state", "null data"); 910 ieee80211_unref_node(&ni); 911 vap->iv_stats.is_tx_badstate++; 912 return EIO; /* XXX */ 913 } 914 915 if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) 916 hdrlen = sizeof(struct ieee80211_qosframe); 917 else 918 hdrlen = sizeof(struct ieee80211_frame); 919 /* NB: only WDS vap's get 4-address frames */ 920 if (vap->iv_opmode == IEEE80211_M_WDS) 921 hdrlen += IEEE80211_ADDR_LEN; 922 if (ic->ic_flags & IEEE80211_F_DATAPAD) 923 hdrlen = roundup(hdrlen, sizeof(uint32_t)); 924 925 m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0); 926 if (m == NULL) { 927 /* XXX debug msg */ 928 ieee80211_unref_node(&ni); 929 vap->iv_stats.is_tx_nobuf++; 930 return ENOMEM; 931 } 932 KASSERT(M_LEADINGSPACE(m) >= hdrlen, 933 ("leading space %zd", M_LEADINGSPACE(m))); 934 M_PREPEND(m, hdrlen, M_NOWAIT); 935 if (m == NULL) { 936 /* NB: cannot happen */ 937 ieee80211_free_node(ni); 938 return ENOMEM; 939 } 940 941 IEEE80211_TX_LOCK(ic); 942 943 wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */ 944 if (ni->ni_flags & IEEE80211_NODE_QOS) { 945 const int tid = WME_AC_TO_TID(WME_AC_BE); 946 uint8_t *qos; 947 948 ieee80211_send_setup(ni, m, 949 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL, 950 tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 951 952 if (vap->iv_opmode == IEEE80211_M_WDS) 953 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 954 else 955 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 956 qos[0] = tid & IEEE80211_QOS_TID; 957 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy) 958 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 959 qos[1] = 0; 960 } else { 961 ieee80211_send_setup(ni, m, 962 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 963 IEEE80211_NONQOS_TID, 964 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 965 } 966 if (vap->iv_opmode != IEEE80211_M_WDS) { 967 /* NB: power management bit is never sent by an AP */ 968 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 969 vap->iv_opmode != IEEE80211_M_HOSTAP) 970 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 971 } 972 if ((ic->ic_flags & IEEE80211_F_SCAN) && 973 (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) { 974 ieee80211_add_callback(m, ieee80211_nulldata_transmitted, 975 NULL); 976 } 977 m->m_len = m->m_pkthdr.len = hdrlen; 978 m->m_flags |= M_ENCAP; /* mark encapsulated */ 979 980 M_WME_SETAC(m, WME_AC_BE); 981 982 IEEE80211_NODE_STAT(ni, tx_data); 983 984 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni, 985 "send %snull data frame on channel %u, pwr mgt %s", 986 ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "", 987 ieee80211_chan2ieee(ic, ic->ic_curchan), 988 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 989 990 ret = ieee80211_raw_output(vap, ni, m, NULL); 991 IEEE80211_TX_UNLOCK(ic); 992 return (ret); 993 } 994 995 /* 996 * Assign priority to a frame based on any vlan tag assigned 997 * to the station and/or any Diffserv setting in an IP header. 998 * Finally, if an ACM policy is setup (in station mode) it's 999 * applied. 1000 */ 1001 int 1002 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m) 1003 { 1004 const struct ether_header *eh = mtod(m, struct ether_header *); 1005 int v_wme_ac, d_wme_ac, ac; 1006 1007 /* 1008 * Always promote PAE/EAPOL frames to high priority. 1009 */ 1010 if (eh->ether_type == htons(ETHERTYPE_PAE)) { 1011 /* NB: mark so others don't need to check header */ 1012 m->m_flags |= M_EAPOL; 1013 ac = WME_AC_VO; 1014 goto done; 1015 } 1016 /* 1017 * Non-qos traffic goes to BE. 1018 */ 1019 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 1020 ac = WME_AC_BE; 1021 goto done; 1022 } 1023 1024 /* 1025 * If node has a vlan tag then all traffic 1026 * to it must have a matching tag. 1027 */ 1028 v_wme_ac = 0; 1029 if (ni->ni_vlan != 0) { 1030 if ((m->m_flags & M_VLANTAG) == 0) { 1031 IEEE80211_NODE_STAT(ni, tx_novlantag); 1032 return 1; 1033 } 1034 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 1035 EVL_VLANOFTAG(ni->ni_vlan)) { 1036 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 1037 return 1; 1038 } 1039 /* map vlan priority to AC */ 1040 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan)); 1041 } 1042 1043 /* XXX m_copydata may be too slow for fast path */ 1044 #ifdef INET 1045 if (eh->ether_type == htons(ETHERTYPE_IP)) { 1046 uint8_t tos; 1047 /* 1048 * IP frame, map the DSCP bits from the TOS field. 1049 */ 1050 /* NB: ip header may not be in first mbuf */ 1051 m_copydata(m, sizeof(struct ether_header) + 1052 offsetof(struct ip, ip_tos), sizeof(tos), &tos); 1053 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1054 d_wme_ac = TID_TO_WME_AC(tos); 1055 } else { 1056 #endif /* INET */ 1057 #ifdef INET6 1058 if (eh->ether_type == htons(ETHERTYPE_IPV6)) { 1059 uint32_t flow; 1060 uint8_t tos; 1061 /* 1062 * IPv6 frame, map the DSCP bits from the traffic class field. 1063 */ 1064 m_copydata(m, sizeof(struct ether_header) + 1065 offsetof(struct ip6_hdr, ip6_flow), sizeof(flow), 1066 (caddr_t) &flow); 1067 tos = (uint8_t)(ntohl(flow) >> 20); 1068 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1069 d_wme_ac = TID_TO_WME_AC(tos); 1070 } else { 1071 #endif /* INET6 */ 1072 d_wme_ac = WME_AC_BE; 1073 #ifdef INET6 1074 } 1075 #endif 1076 #ifdef INET 1077 } 1078 #endif 1079 /* 1080 * Use highest priority AC. 1081 */ 1082 if (v_wme_ac > d_wme_ac) 1083 ac = v_wme_ac; 1084 else 1085 ac = d_wme_ac; 1086 1087 /* 1088 * Apply ACM policy. 1089 */ 1090 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) { 1091 static const int acmap[4] = { 1092 WME_AC_BK, /* WME_AC_BE */ 1093 WME_AC_BK, /* WME_AC_BK */ 1094 WME_AC_BE, /* WME_AC_VI */ 1095 WME_AC_VI, /* WME_AC_VO */ 1096 }; 1097 struct ieee80211com *ic = ni->ni_ic; 1098 1099 while (ac != WME_AC_BK && 1100 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 1101 ac = acmap[ac]; 1102 } 1103 done: 1104 M_WME_SETAC(m, ac); 1105 return 0; 1106 } 1107 1108 /* 1109 * Insure there is sufficient contiguous space to encapsulate the 1110 * 802.11 data frame. If room isn't already there, arrange for it. 1111 * Drivers and cipher modules assume we have done the necessary work 1112 * and fail rudely if they don't find the space they need. 1113 */ 1114 struct mbuf * 1115 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize, 1116 struct ieee80211_key *key, struct mbuf *m) 1117 { 1118 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 1119 int needed_space = vap->iv_ic->ic_headroom + hdrsize; 1120 1121 if (key != NULL) { 1122 /* XXX belongs in crypto code? */ 1123 needed_space += key->wk_cipher->ic_header; 1124 /* XXX frags */ 1125 /* 1126 * When crypto is being done in the host we must insure 1127 * the data are writable for the cipher routines; clone 1128 * a writable mbuf chain. 1129 * XXX handle SWMIC specially 1130 */ 1131 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) { 1132 m = m_unshare(m, M_NOWAIT); 1133 if (m == NULL) { 1134 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1135 "%s: cannot get writable mbuf\n", __func__); 1136 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */ 1137 return NULL; 1138 } 1139 } 1140 } 1141 /* 1142 * We know we are called just before stripping an Ethernet 1143 * header and prepending an LLC header. This means we know 1144 * there will be 1145 * sizeof(struct ether_header) - sizeof(struct llc) 1146 * bytes recovered to which we need additional space for the 1147 * 802.11 header and any crypto header. 1148 */ 1149 /* XXX check trailing space and copy instead? */ 1150 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 1151 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); 1152 if (n == NULL) { 1153 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1154 "%s: cannot expand storage\n", __func__); 1155 vap->iv_stats.is_tx_nobuf++; 1156 m_freem(m); 1157 return NULL; 1158 } 1159 KASSERT(needed_space <= MHLEN, 1160 ("not enough room, need %u got %d\n", needed_space, MHLEN)); 1161 /* 1162 * Setup new mbuf to have leading space to prepend the 1163 * 802.11 header and any crypto header bits that are 1164 * required (the latter are added when the driver calls 1165 * back to ieee80211_crypto_encap to do crypto encapsulation). 1166 */ 1167 /* NB: must be first 'cuz it clobbers m_data */ 1168 m_move_pkthdr(n, m); 1169 n->m_len = 0; /* NB: m_gethdr does not set */ 1170 n->m_data += needed_space; 1171 /* 1172 * Pull up Ethernet header to create the expected layout. 1173 * We could use m_pullup but that's overkill (i.e. we don't 1174 * need the actual data) and it cannot fail so do it inline 1175 * for speed. 1176 */ 1177 /* NB: struct ether_header is known to be contiguous */ 1178 n->m_len += sizeof(struct ether_header); 1179 m->m_len -= sizeof(struct ether_header); 1180 m->m_data += sizeof(struct ether_header); 1181 /* 1182 * Replace the head of the chain. 1183 */ 1184 n->m_next = m; 1185 m = n; 1186 } 1187 return m; 1188 #undef TO_BE_RECLAIMED 1189 } 1190 1191 /* 1192 * Return the transmit key to use in sending a unicast frame. 1193 * If a unicast key is set we use that. When no unicast key is set 1194 * we fall back to the default transmit key. 1195 */ 1196 static __inline struct ieee80211_key * 1197 ieee80211_crypto_getucastkey(struct ieee80211vap *vap, 1198 struct ieee80211_node *ni) 1199 { 1200 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) { 1201 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1202 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1203 return NULL; 1204 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1205 } else { 1206 return &ni->ni_ucastkey; 1207 } 1208 } 1209 1210 /* 1211 * Return the transmit key to use in sending a multicast frame. 1212 * Multicast traffic always uses the group key which is installed as 1213 * the default tx key. 1214 */ 1215 static __inline struct ieee80211_key * 1216 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap, 1217 struct ieee80211_node *ni) 1218 { 1219 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1220 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1221 return NULL; 1222 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1223 } 1224 1225 /* 1226 * Encapsulate an outbound data frame. The mbuf chain is updated. 1227 * If an error is encountered NULL is returned. The caller is required 1228 * to provide a node reference and pullup the ethernet header in the 1229 * first mbuf. 1230 * 1231 * NB: Packet is assumed to be processed by ieee80211_classify which 1232 * marked EAPOL frames w/ M_EAPOL. 1233 */ 1234 struct mbuf * 1235 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni, 1236 struct mbuf *m) 1237 { 1238 #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh)) 1239 #define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc) 1240 struct ieee80211com *ic = ni->ni_ic; 1241 #ifdef IEEE80211_SUPPORT_MESH 1242 struct ieee80211_mesh_state *ms = vap->iv_mesh; 1243 struct ieee80211_meshcntl_ae10 *mc; 1244 struct ieee80211_mesh_route *rt = NULL; 1245 int dir = -1; 1246 #endif 1247 struct ether_header eh; 1248 struct ieee80211_frame *wh; 1249 struct ieee80211_key *key; 1250 struct llc *llc; 1251 int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast; 1252 ieee80211_seq seqno; 1253 int meshhdrsize, meshae; 1254 uint8_t *qos; 1255 int is_amsdu = 0; 1256 1257 IEEE80211_TX_LOCK_ASSERT(ic); 1258 1259 is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST)); 1260 1261 /* 1262 * Copy existing Ethernet header to a safe place. The 1263 * rest of the code assumes it's ok to strip it when 1264 * reorganizing state for the final encapsulation. 1265 */ 1266 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 1267 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t)); 1268 1269 /* 1270 * Insure space for additional headers. First identify 1271 * transmit key to use in calculating any buffer adjustments 1272 * required. This is also used below to do privacy 1273 * encapsulation work. Then calculate the 802.11 header 1274 * size and any padding required by the driver. 1275 * 1276 * Note key may be NULL if we fall back to the default 1277 * transmit key and that is not set. In that case the 1278 * buffer may not be expanded as needed by the cipher 1279 * routines, but they will/should discard it. 1280 */ 1281 if (vap->iv_flags & IEEE80211_F_PRIVACY) { 1282 if (vap->iv_opmode == IEEE80211_M_STA || 1283 !IEEE80211_IS_MULTICAST(eh.ether_dhost) || 1284 (vap->iv_opmode == IEEE80211_M_WDS && 1285 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) 1286 key = ieee80211_crypto_getucastkey(vap, ni); 1287 else 1288 key = ieee80211_crypto_getmcastkey(vap, ni); 1289 if (key == NULL && (m->m_flags & M_EAPOL) == 0) { 1290 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, 1291 eh.ether_dhost, 1292 "no default transmit key (%s) deftxkey %u", 1293 __func__, vap->iv_def_txkey); 1294 vap->iv_stats.is_tx_nodefkey++; 1295 goto bad; 1296 } 1297 } else 1298 key = NULL; 1299 /* 1300 * XXX Some ap's don't handle QoS-encapsulated EAPOL 1301 * frames so suppress use. This may be an issue if other 1302 * ap's require all data frames to be QoS-encapsulated 1303 * once negotiated in which case we'll need to make this 1304 * configurable. 1305 * 1306 * Don't send multicast QoS frames. 1307 * Technically multicast frames can be QoS if all stations in the 1308 * BSS are also QoS. 1309 * 1310 * NB: mesh data frames are QoS, including multicast frames. 1311 */ 1312 addqos = 1313 (((is_mcast == 0) && (ni->ni_flags & 1314 (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) || 1315 (vap->iv_opmode == IEEE80211_M_MBSS)) && 1316 (m->m_flags & M_EAPOL) == 0; 1317 1318 if (addqos) 1319 hdrsize = sizeof(struct ieee80211_qosframe); 1320 else 1321 hdrsize = sizeof(struct ieee80211_frame); 1322 #ifdef IEEE80211_SUPPORT_MESH 1323 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1324 /* 1325 * Mesh data frames are encapsulated according to the 1326 * rules of Section 11B.8.5 (p.139 of D3.0 spec). 1327 * o Group Addressed data (aka multicast) originating 1328 * at the local sta are sent w/ 3-address format and 1329 * address extension mode 00 1330 * o Individually Addressed data (aka unicast) originating 1331 * at the local sta are sent w/ 4-address format and 1332 * address extension mode 00 1333 * o Group Addressed data forwarded from a non-mesh sta are 1334 * sent w/ 3-address format and address extension mode 01 1335 * o Individually Address data from another sta are sent 1336 * w/ 4-address format and address extension mode 10 1337 */ 1338 is4addr = 0; /* NB: don't use, disable */ 1339 if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) { 1340 rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost); 1341 KASSERT(rt != NULL, ("route is NULL")); 1342 dir = IEEE80211_FC1_DIR_DSTODS; 1343 hdrsize += IEEE80211_ADDR_LEN; 1344 if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) { 1345 if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate, 1346 vap->iv_myaddr)) { 1347 IEEE80211_NOTE_MAC(vap, 1348 IEEE80211_MSG_MESH, 1349 eh.ether_dhost, 1350 "%s", "trying to send to ourself"); 1351 goto bad; 1352 } 1353 meshae = IEEE80211_MESH_AE_10; 1354 meshhdrsize = 1355 sizeof(struct ieee80211_meshcntl_ae10); 1356 } else { 1357 meshae = IEEE80211_MESH_AE_00; 1358 meshhdrsize = 1359 sizeof(struct ieee80211_meshcntl); 1360 } 1361 } else { 1362 dir = IEEE80211_FC1_DIR_FROMDS; 1363 if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) { 1364 /* proxy group */ 1365 meshae = IEEE80211_MESH_AE_01; 1366 meshhdrsize = 1367 sizeof(struct ieee80211_meshcntl_ae01); 1368 } else { 1369 /* group */ 1370 meshae = IEEE80211_MESH_AE_00; 1371 meshhdrsize = sizeof(struct ieee80211_meshcntl); 1372 } 1373 } 1374 } else { 1375 #endif 1376 /* 1377 * 4-address frames need to be generated for: 1378 * o packets sent through a WDS vap (IEEE80211_M_WDS) 1379 * o packets sent through a vap marked for relaying 1380 * (e.g. a station operating with dynamic WDS) 1381 */ 1382 is4addr = vap->iv_opmode == IEEE80211_M_WDS || 1383 ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) && 1384 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)); 1385 if (is4addr) 1386 hdrsize += IEEE80211_ADDR_LEN; 1387 meshhdrsize = meshae = 0; 1388 #ifdef IEEE80211_SUPPORT_MESH 1389 } 1390 #endif 1391 /* 1392 * Honor driver DATAPAD requirement. 1393 */ 1394 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1395 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1396 else 1397 hdrspace = hdrsize; 1398 1399 if (__predict_true((m->m_flags & M_FF) == 0)) { 1400 /* 1401 * Normal frame. 1402 */ 1403 m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m); 1404 if (m == NULL) { 1405 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 1406 goto bad; 1407 } 1408 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */ 1409 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 1410 llc = mtod(m, struct llc *); 1411 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 1412 llc->llc_control = LLC_UI; 1413 llc->llc_snap.org_code[0] = 0; 1414 llc->llc_snap.org_code[1] = 0; 1415 llc->llc_snap.org_code[2] = 0; 1416 llc->llc_snap.ether_type = eh.ether_type; 1417 } else { 1418 #ifdef IEEE80211_SUPPORT_SUPERG 1419 /* 1420 * Aggregated frame. Check if it's for AMSDU or FF. 1421 * 1422 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented 1423 * anywhere for some reason. But, since 11n requires 1424 * AMSDU RX, we can just assume "11n" == "AMSDU". 1425 */ 1426 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__); 1427 if (ieee80211_amsdu_tx_ok(ni)) { 1428 m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key); 1429 is_amsdu = 1; 1430 } else { 1431 m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key); 1432 } 1433 if (m == NULL) 1434 #endif 1435 goto bad; 1436 } 1437 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 1438 1439 M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT); 1440 if (m == NULL) { 1441 vap->iv_stats.is_tx_nobuf++; 1442 goto bad; 1443 } 1444 wh = mtod(m, struct ieee80211_frame *); 1445 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 1446 *(uint16_t *)wh->i_dur = 0; 1447 qos = NULL; /* NB: quiet compiler */ 1448 if (is4addr) { 1449 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 1450 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); 1451 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1452 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1453 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); 1454 } else switch (vap->iv_opmode) { 1455 case IEEE80211_M_STA: 1456 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 1457 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 1458 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1459 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1460 break; 1461 case IEEE80211_M_IBSS: 1462 case IEEE80211_M_AHDEMO: 1463 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1464 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1465 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1466 /* 1467 * NB: always use the bssid from iv_bss as the 1468 * neighbor's may be stale after an ibss merge 1469 */ 1470 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid); 1471 break; 1472 case IEEE80211_M_HOSTAP: 1473 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1474 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1475 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 1476 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 1477 break; 1478 #ifdef IEEE80211_SUPPORT_MESH 1479 case IEEE80211_M_MBSS: 1480 /* NB: offset by hdrspace to deal with DATAPAD */ 1481 mc = (struct ieee80211_meshcntl_ae10 *) 1482 (mtod(m, uint8_t *) + hdrspace); 1483 wh->i_fc[1] = dir; 1484 switch (meshae) { 1485 case IEEE80211_MESH_AE_00: /* no proxy */ 1486 mc->mc_flags = 0; 1487 if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */ 1488 IEEE80211_ADDR_COPY(wh->i_addr1, 1489 ni->ni_macaddr); 1490 IEEE80211_ADDR_COPY(wh->i_addr2, 1491 vap->iv_myaddr); 1492 IEEE80211_ADDR_COPY(wh->i_addr3, 1493 eh.ether_dhost); 1494 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, 1495 eh.ether_shost); 1496 qos =((struct ieee80211_qosframe_addr4 *) 1497 wh)->i_qos; 1498 } else if (dir == IEEE80211_FC1_DIR_FROMDS) { 1499 /* mcast */ 1500 IEEE80211_ADDR_COPY(wh->i_addr1, 1501 eh.ether_dhost); 1502 IEEE80211_ADDR_COPY(wh->i_addr2, 1503 vap->iv_myaddr); 1504 IEEE80211_ADDR_COPY(wh->i_addr3, 1505 eh.ether_shost); 1506 qos = ((struct ieee80211_qosframe *) 1507 wh)->i_qos; 1508 } 1509 break; 1510 case IEEE80211_MESH_AE_01: /* mcast, proxy */ 1511 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1512 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1513 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1514 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr); 1515 mc->mc_flags = 1; 1516 IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4, 1517 eh.ether_shost); 1518 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1519 break; 1520 case IEEE80211_MESH_AE_10: /* ucast, proxy */ 1521 KASSERT(rt != NULL, ("route is NULL")); 1522 IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop); 1523 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1524 IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate); 1525 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr); 1526 mc->mc_flags = IEEE80211_MESH_AE_10; 1527 IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost); 1528 IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost); 1529 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1530 break; 1531 default: 1532 KASSERT(0, ("meshae %d", meshae)); 1533 break; 1534 } 1535 mc->mc_ttl = ms->ms_ttl; 1536 ms->ms_seq++; 1537 le32enc(mc->mc_seq, ms->ms_seq); 1538 break; 1539 #endif 1540 case IEEE80211_M_WDS: /* NB: is4addr should always be true */ 1541 default: 1542 goto bad; 1543 } 1544 if (m->m_flags & M_MORE_DATA) 1545 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 1546 if (addqos) { 1547 int ac, tid; 1548 1549 if (is4addr) { 1550 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1551 /* NB: mesh case handled earlier */ 1552 } else if (vap->iv_opmode != IEEE80211_M_MBSS) 1553 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1554 ac = M_WME_GETAC(m); 1555 /* map from access class/queue to 11e header priorty value */ 1556 tid = WME_AC_TO_TID(ac); 1557 qos[0] = tid & IEEE80211_QOS_TID; 1558 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 1559 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1560 #ifdef IEEE80211_SUPPORT_MESH 1561 if (vap->iv_opmode == IEEE80211_M_MBSS) 1562 qos[1] = IEEE80211_QOS_MC; 1563 else 1564 #endif 1565 qos[1] = 0; 1566 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 1567 1568 /* 1569 * If this is an A-MSDU then ensure we set the 1570 * relevant field. 1571 */ 1572 if (is_amsdu) 1573 qos[0] |= IEEE80211_QOS_AMSDU; 1574 1575 /* 1576 * XXX TODO TX lock is needed for atomic updates of sequence 1577 * numbers. If the driver does it, then don't do it here; 1578 * and we don't need the TX lock held. 1579 */ 1580 if ((m->m_flags & M_AMPDU_MPDU) == 0) { 1581 /* 1582 * 802.11-2012 9.3.2.10 - 1583 * 1584 * If this is a multicast frame then we need 1585 * to ensure that the sequence number comes from 1586 * a separate seqno space and not the TID space. 1587 * 1588 * Otherwise multicast frames may actually cause 1589 * holes in the TX blockack window space and 1590 * upset various things. 1591 */ 1592 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1593 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1594 else 1595 seqno = ni->ni_txseqs[tid]++; 1596 1597 /* 1598 * NB: don't assign a sequence # to potential 1599 * aggregates; we expect this happens at the 1600 * point the frame comes off any aggregation q 1601 * as otherwise we may introduce holes in the 1602 * BA sequence space and/or make window accouting 1603 * more difficult. 1604 * 1605 * XXX may want to control this with a driver 1606 * capability; this may also change when we pull 1607 * aggregation up into net80211 1608 */ 1609 seqno = ni->ni_txseqs[tid]++; 1610 *(uint16_t *)wh->i_seq = 1611 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1612 M_SEQNO_SET(m, seqno); 1613 } 1614 } else { 1615 /* 1616 * XXX TODO TX lock is needed for atomic updates of sequence 1617 * numbers. If the driver does it, then don't do it here; 1618 * and we don't need the TX lock held. 1619 */ 1620 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1621 *(uint16_t *)wh->i_seq = 1622 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1623 M_SEQNO_SET(m, seqno); 1624 1625 /* 1626 * XXX TODO: we shouldn't allow EAPOL, etc that would 1627 * be forced to be non-QoS traffic to be A-MSDU encapsulated. 1628 */ 1629 if (is_amsdu) 1630 printf("%s: XXX ERROR: is_amsdu set; not QoS!\n", 1631 __func__); 1632 } 1633 1634 1635 /* check if xmit fragmentation is required */ 1636 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold && 1637 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 1638 (vap->iv_caps & IEEE80211_C_TXFRAG) && 1639 (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0); 1640 if (key != NULL) { 1641 /* 1642 * IEEE 802.1X: send EAPOL frames always in the clear. 1643 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 1644 */ 1645 if ((m->m_flags & M_EAPOL) == 0 || 1646 ((vap->iv_flags & IEEE80211_F_WPA) && 1647 (vap->iv_opmode == IEEE80211_M_STA ? 1648 !IEEE80211_KEY_UNDEFINED(key) : 1649 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) { 1650 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 1651 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) { 1652 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT, 1653 eh.ether_dhost, 1654 "%s", "enmic failed, discard frame"); 1655 vap->iv_stats.is_crypto_enmicfail++; 1656 goto bad; 1657 } 1658 } 1659 } 1660 if (txfrag && !ieee80211_fragment(vap, m, hdrsize, 1661 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold)) 1662 goto bad; 1663 1664 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1665 1666 IEEE80211_NODE_STAT(ni, tx_data); 1667 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1668 IEEE80211_NODE_STAT(ni, tx_mcast); 1669 m->m_flags |= M_MCAST; 1670 } else 1671 IEEE80211_NODE_STAT(ni, tx_ucast); 1672 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 1673 1674 return m; 1675 bad: 1676 if (m != NULL) 1677 m_freem(m); 1678 return NULL; 1679 #undef WH4 1680 #undef MC01 1681 } 1682 1683 void 1684 ieee80211_free_mbuf(struct mbuf *m) 1685 { 1686 struct mbuf *next; 1687 1688 if (m == NULL) 1689 return; 1690 1691 do { 1692 next = m->m_nextpkt; 1693 m->m_nextpkt = NULL; 1694 m_freem(m); 1695 } while ((m = next) != NULL); 1696 } 1697 1698 /* 1699 * Fragment the frame according to the specified mtu. 1700 * The size of the 802.11 header (w/o padding) is provided 1701 * so we don't need to recalculate it. We create a new 1702 * mbuf for each fragment and chain it through m_nextpkt; 1703 * we might be able to optimize this by reusing the original 1704 * packet's mbufs but that is significantly more complicated. 1705 */ 1706 static int 1707 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0, 1708 u_int hdrsize, u_int ciphdrsize, u_int mtu) 1709 { 1710 struct ieee80211com *ic = vap->iv_ic; 1711 struct ieee80211_frame *wh, *whf; 1712 struct mbuf *m, *prev; 1713 u_int totalhdrsize, fragno, fragsize, off, remainder, payload; 1714 u_int hdrspace; 1715 1716 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); 1717 KASSERT(m0->m_pkthdr.len > mtu, 1718 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); 1719 1720 /* 1721 * Honor driver DATAPAD requirement. 1722 */ 1723 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1724 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1725 else 1726 hdrspace = hdrsize; 1727 1728 wh = mtod(m0, struct ieee80211_frame *); 1729 /* NB: mark the first frag; it will be propagated below */ 1730 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; 1731 totalhdrsize = hdrspace + ciphdrsize; 1732 fragno = 1; 1733 off = mtu - ciphdrsize; 1734 remainder = m0->m_pkthdr.len - off; 1735 prev = m0; 1736 do { 1737 fragsize = MIN(totalhdrsize + remainder, mtu); 1738 m = m_get2(fragsize, M_NOWAIT, MT_DATA, M_PKTHDR); 1739 if (m == NULL) 1740 goto bad; 1741 /* leave room to prepend any cipher header */ 1742 m_align(m, fragsize - ciphdrsize); 1743 1744 /* 1745 * Form the header in the fragment. Note that since 1746 * we mark the first fragment with the MORE_FRAG bit 1747 * it automatically is propagated to each fragment; we 1748 * need only clear it on the last fragment (done below). 1749 * NB: frag 1+ dont have Mesh Control field present. 1750 */ 1751 whf = mtod(m, struct ieee80211_frame *); 1752 memcpy(whf, wh, hdrsize); 1753 #ifdef IEEE80211_SUPPORT_MESH 1754 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1755 if (IEEE80211_IS_DSTODS(wh)) 1756 ((struct ieee80211_qosframe_addr4 *) 1757 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1758 else 1759 ((struct ieee80211_qosframe *) 1760 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1761 } 1762 #endif 1763 *(uint16_t *)&whf->i_seq[0] |= htole16( 1764 (fragno & IEEE80211_SEQ_FRAG_MASK) << 1765 IEEE80211_SEQ_FRAG_SHIFT); 1766 fragno++; 1767 1768 payload = fragsize - totalhdrsize; 1769 /* NB: destination is known to be contiguous */ 1770 1771 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace); 1772 m->m_len = hdrspace + payload; 1773 m->m_pkthdr.len = hdrspace + payload; 1774 m->m_flags |= M_FRAG; 1775 1776 /* chain up the fragment */ 1777 prev->m_nextpkt = m; 1778 prev = m; 1779 1780 /* deduct fragment just formed */ 1781 remainder -= payload; 1782 off += payload; 1783 } while (remainder != 0); 1784 1785 /* set the last fragment */ 1786 m->m_flags |= M_LASTFRAG; 1787 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; 1788 1789 /* strip first mbuf now that everything has been copied */ 1790 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); 1791 m0->m_flags |= M_FIRSTFRAG | M_FRAG; 1792 1793 vap->iv_stats.is_tx_fragframes++; 1794 vap->iv_stats.is_tx_frags += fragno-1; 1795 1796 return 1; 1797 bad: 1798 /* reclaim fragments but leave original frame for caller to free */ 1799 ieee80211_free_mbuf(m0->m_nextpkt); 1800 m0->m_nextpkt = NULL; 1801 return 0; 1802 } 1803 1804 /* 1805 * Add a supported rates element id to a frame. 1806 */ 1807 uint8_t * 1808 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs) 1809 { 1810 int nrates; 1811 1812 *frm++ = IEEE80211_ELEMID_RATES; 1813 nrates = rs->rs_nrates; 1814 if (nrates > IEEE80211_RATE_SIZE) 1815 nrates = IEEE80211_RATE_SIZE; 1816 *frm++ = nrates; 1817 memcpy(frm, rs->rs_rates, nrates); 1818 return frm + nrates; 1819 } 1820 1821 /* 1822 * Add an extended supported rates element id to a frame. 1823 */ 1824 uint8_t * 1825 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs) 1826 { 1827 /* 1828 * Add an extended supported rates element if operating in 11g mode. 1829 */ 1830 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 1831 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 1832 *frm++ = IEEE80211_ELEMID_XRATES; 1833 *frm++ = nrates; 1834 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 1835 frm += nrates; 1836 } 1837 return frm; 1838 } 1839 1840 /* 1841 * Add an ssid element to a frame. 1842 */ 1843 uint8_t * 1844 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) 1845 { 1846 *frm++ = IEEE80211_ELEMID_SSID; 1847 *frm++ = len; 1848 memcpy(frm, ssid, len); 1849 return frm + len; 1850 } 1851 1852 /* 1853 * Add an erp element to a frame. 1854 */ 1855 static uint8_t * 1856 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic) 1857 { 1858 uint8_t erp; 1859 1860 *frm++ = IEEE80211_ELEMID_ERP; 1861 *frm++ = 1; 1862 erp = 0; 1863 if (ic->ic_nonerpsta != 0) 1864 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 1865 if (ic->ic_flags & IEEE80211_F_USEPROT) 1866 erp |= IEEE80211_ERP_USE_PROTECTION; 1867 if (ic->ic_flags & IEEE80211_F_USEBARKER) 1868 erp |= IEEE80211_ERP_LONG_PREAMBLE; 1869 *frm++ = erp; 1870 return frm; 1871 } 1872 1873 /* 1874 * Add a CFParams element to a frame. 1875 */ 1876 static uint8_t * 1877 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic) 1878 { 1879 #define ADDSHORT(frm, v) do { \ 1880 le16enc(frm, v); \ 1881 frm += 2; \ 1882 } while (0) 1883 *frm++ = IEEE80211_ELEMID_CFPARMS; 1884 *frm++ = 6; 1885 *frm++ = 0; /* CFP count */ 1886 *frm++ = 2; /* CFP period */ 1887 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */ 1888 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */ 1889 return frm; 1890 #undef ADDSHORT 1891 } 1892 1893 static __inline uint8_t * 1894 add_appie(uint8_t *frm, const struct ieee80211_appie *ie) 1895 { 1896 memcpy(frm, ie->ie_data, ie->ie_len); 1897 return frm + ie->ie_len; 1898 } 1899 1900 static __inline uint8_t * 1901 add_ie(uint8_t *frm, const uint8_t *ie) 1902 { 1903 memcpy(frm, ie, 2 + ie[1]); 1904 return frm + 2 + ie[1]; 1905 } 1906 1907 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 1908 /* 1909 * Add a WME information element to a frame. 1910 */ 1911 uint8_t * 1912 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme) 1913 { 1914 static const struct ieee80211_wme_info info = { 1915 .wme_id = IEEE80211_ELEMID_VENDOR, 1916 .wme_len = sizeof(struct ieee80211_wme_info) - 2, 1917 .wme_oui = { WME_OUI_BYTES }, 1918 .wme_type = WME_OUI_TYPE, 1919 .wme_subtype = WME_INFO_OUI_SUBTYPE, 1920 .wme_version = WME_VERSION, 1921 .wme_info = 0, 1922 }; 1923 memcpy(frm, &info, sizeof(info)); 1924 return frm + sizeof(info); 1925 } 1926 1927 /* 1928 * Add a WME parameters element to a frame. 1929 */ 1930 static uint8_t * 1931 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme) 1932 { 1933 #define SM(_v, _f) (((_v) << _f##_S) & _f) 1934 #define ADDSHORT(frm, v) do { \ 1935 le16enc(frm, v); \ 1936 frm += 2; \ 1937 } while (0) 1938 /* NB: this works 'cuz a param has an info at the front */ 1939 static const struct ieee80211_wme_info param = { 1940 .wme_id = IEEE80211_ELEMID_VENDOR, 1941 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 1942 .wme_oui = { WME_OUI_BYTES }, 1943 .wme_type = WME_OUI_TYPE, 1944 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 1945 .wme_version = WME_VERSION, 1946 }; 1947 int i; 1948 1949 memcpy(frm, ¶m, sizeof(param)); 1950 frm += __offsetof(struct ieee80211_wme_info, wme_info); 1951 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ 1952 *frm++ = 0; /* reserved field */ 1953 for (i = 0; i < WME_NUM_AC; i++) { 1954 const struct wmeParams *ac = 1955 &wme->wme_bssChanParams.cap_wmeParams[i]; 1956 *frm++ = SM(i, WME_PARAM_ACI) 1957 | SM(ac->wmep_acm, WME_PARAM_ACM) 1958 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) 1959 ; 1960 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) 1961 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) 1962 ; 1963 ADDSHORT(frm, ac->wmep_txopLimit); 1964 } 1965 return frm; 1966 #undef SM 1967 #undef ADDSHORT 1968 } 1969 #undef WME_OUI_BYTES 1970 1971 /* 1972 * Add an 11h Power Constraint element to a frame. 1973 */ 1974 static uint8_t * 1975 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap) 1976 { 1977 const struct ieee80211_channel *c = vap->iv_bss->ni_chan; 1978 /* XXX per-vap tx power limit? */ 1979 int8_t limit = vap->iv_ic->ic_txpowlimit / 2; 1980 1981 frm[0] = IEEE80211_ELEMID_PWRCNSTR; 1982 frm[1] = 1; 1983 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0; 1984 return frm + 3; 1985 } 1986 1987 /* 1988 * Add an 11h Power Capability element to a frame. 1989 */ 1990 static uint8_t * 1991 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c) 1992 { 1993 frm[0] = IEEE80211_ELEMID_PWRCAP; 1994 frm[1] = 2; 1995 frm[2] = c->ic_minpower; 1996 frm[3] = c->ic_maxpower; 1997 return frm + 4; 1998 } 1999 2000 /* 2001 * Add an 11h Supported Channels element to a frame. 2002 */ 2003 static uint8_t * 2004 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic) 2005 { 2006 static const int ielen = 26; 2007 2008 frm[0] = IEEE80211_ELEMID_SUPPCHAN; 2009 frm[1] = ielen; 2010 /* XXX not correct */ 2011 memcpy(frm+2, ic->ic_chan_avail, ielen); 2012 return frm + 2 + ielen; 2013 } 2014 2015 /* 2016 * Add an 11h Quiet time element to a frame. 2017 */ 2018 static uint8_t * 2019 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap) 2020 { 2021 struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm; 2022 2023 quiet->quiet_ie = IEEE80211_ELEMID_QUIET; 2024 quiet->len = 6; 2025 if (vap->iv_quiet_count_value == 1) 2026 vap->iv_quiet_count_value = vap->iv_quiet_count; 2027 else if (vap->iv_quiet_count_value > 1) 2028 vap->iv_quiet_count_value--; 2029 2030 if (vap->iv_quiet_count_value == 0) { 2031 /* value 0 is reserved as per 802.11h standerd */ 2032 vap->iv_quiet_count_value = 1; 2033 } 2034 2035 quiet->tbttcount = vap->iv_quiet_count_value; 2036 quiet->period = vap->iv_quiet_period; 2037 quiet->duration = htole16(vap->iv_quiet_duration); 2038 quiet->offset = htole16(vap->iv_quiet_offset); 2039 return frm + sizeof(*quiet); 2040 } 2041 2042 /* 2043 * Add an 11h Channel Switch Announcement element to a frame. 2044 * Note that we use the per-vap CSA count to adjust the global 2045 * counter so we can use this routine to form probe response 2046 * frames and get the current count. 2047 */ 2048 static uint8_t * 2049 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap) 2050 { 2051 struct ieee80211com *ic = vap->iv_ic; 2052 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm; 2053 2054 csa->csa_ie = IEEE80211_ELEMID_CSA; 2055 csa->csa_len = 3; 2056 csa->csa_mode = 1; /* XXX force quiet on channel */ 2057 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan); 2058 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count; 2059 return frm + sizeof(*csa); 2060 } 2061 2062 /* 2063 * Add an 11h country information element to a frame. 2064 */ 2065 static uint8_t * 2066 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic) 2067 { 2068 2069 if (ic->ic_countryie == NULL || 2070 ic->ic_countryie_chan != ic->ic_bsschan) { 2071 /* 2072 * Handle lazy construction of ie. This is done on 2073 * first use and after a channel change that requires 2074 * re-calculation. 2075 */ 2076 if (ic->ic_countryie != NULL) 2077 IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE); 2078 ic->ic_countryie = ieee80211_alloc_countryie(ic); 2079 if (ic->ic_countryie == NULL) 2080 return frm; 2081 ic->ic_countryie_chan = ic->ic_bsschan; 2082 } 2083 return add_appie(frm, ic->ic_countryie); 2084 } 2085 2086 uint8_t * 2087 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap) 2088 { 2089 if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) 2090 return (add_ie(frm, vap->iv_wpa_ie)); 2091 else { 2092 /* XXX else complain? */ 2093 return (frm); 2094 } 2095 } 2096 2097 uint8_t * 2098 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap) 2099 { 2100 if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL) 2101 return (add_ie(frm, vap->iv_rsn_ie)); 2102 else { 2103 /* XXX else complain? */ 2104 return (frm); 2105 } 2106 } 2107 2108 uint8_t * 2109 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni) 2110 { 2111 if (ni->ni_flags & IEEE80211_NODE_QOS) { 2112 *frm++ = IEEE80211_ELEMID_QOS; 2113 *frm++ = 1; 2114 *frm++ = 0; 2115 } 2116 2117 return (frm); 2118 } 2119 2120 /* 2121 * Send a probe request frame with the specified ssid 2122 * and any optional information element data. 2123 */ 2124 /* XXX VHT? */ 2125 int 2126 ieee80211_send_probereq(struct ieee80211_node *ni, 2127 const uint8_t sa[IEEE80211_ADDR_LEN], 2128 const uint8_t da[IEEE80211_ADDR_LEN], 2129 const uint8_t bssid[IEEE80211_ADDR_LEN], 2130 const uint8_t *ssid, size_t ssidlen) 2131 { 2132 struct ieee80211vap *vap = ni->ni_vap; 2133 struct ieee80211com *ic = ni->ni_ic; 2134 struct ieee80211_node *bss; 2135 const struct ieee80211_txparam *tp; 2136 struct ieee80211_bpf_params params; 2137 const struct ieee80211_rateset *rs; 2138 struct mbuf *m; 2139 uint8_t *frm; 2140 int ret; 2141 2142 bss = ieee80211_ref_node(vap->iv_bss); 2143 2144 if (vap->iv_state == IEEE80211_S_CAC) { 2145 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni, 2146 "block %s frame in CAC state", "probe request"); 2147 vap->iv_stats.is_tx_badstate++; 2148 ieee80211_free_node(bss); 2149 return EIO; /* XXX */ 2150 } 2151 2152 /* 2153 * Hold a reference on the node so it doesn't go away until after 2154 * the xmit is complete all the way in the driver. On error we 2155 * will remove our reference. 2156 */ 2157 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2158 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2159 __func__, __LINE__, 2160 ni, ether_sprintf(ni->ni_macaddr), 2161 ieee80211_node_refcnt(ni)+1); 2162 ieee80211_ref_node(ni); 2163 2164 /* 2165 * prreq frame format 2166 * [tlv] ssid 2167 * [tlv] supported rates 2168 * [tlv] RSN (optional) 2169 * [tlv] extended supported rates 2170 * [tlv] HT cap (optional) 2171 * [tlv] VHT cap (optional) 2172 * [tlv] WPA (optional) 2173 * [tlv] user-specified ie's 2174 */ 2175 m = ieee80211_getmgtframe(&frm, 2176 ic->ic_headroom + sizeof(struct ieee80211_frame), 2177 2 + IEEE80211_NWID_LEN 2178 + 2 + IEEE80211_RATE_SIZE 2179 + sizeof(struct ieee80211_ie_htcap) 2180 + sizeof(struct ieee80211_ie_vhtcap) 2181 + sizeof(struct ieee80211_ie_htinfo) /* XXX not needed? */ 2182 + sizeof(struct ieee80211_ie_wpa) 2183 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2184 + sizeof(struct ieee80211_ie_wpa) 2185 + (vap->iv_appie_probereq != NULL ? 2186 vap->iv_appie_probereq->ie_len : 0) 2187 ); 2188 if (m == NULL) { 2189 vap->iv_stats.is_tx_nobuf++; 2190 ieee80211_free_node(ni); 2191 ieee80211_free_node(bss); 2192 return ENOMEM; 2193 } 2194 2195 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 2196 rs = ieee80211_get_suprates(ic, ic->ic_curchan); 2197 frm = ieee80211_add_rates(frm, rs); 2198 frm = ieee80211_add_rsn(frm, vap); 2199 frm = ieee80211_add_xrates(frm, rs); 2200 2201 /* 2202 * Note: we can't use bss; we don't have one yet. 2203 * 2204 * So, we should announce our capabilities 2205 * in this channel mode (2g/5g), not the 2206 * channel details itself. 2207 */ 2208 if ((vap->iv_opmode == IEEE80211_M_IBSS) && 2209 (vap->iv_flags_ht & IEEE80211_FHT_HT)) { 2210 struct ieee80211_channel *c; 2211 2212 /* 2213 * Get the HT channel that we should try upgrading to. 2214 * If we can do 40MHz then this'll upgrade it appropriately. 2215 */ 2216 c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan, 2217 vap->iv_flags_ht); 2218 frm = ieee80211_add_htcap_ch(frm, vap, c); 2219 } 2220 2221 /* 2222 * XXX TODO: need to figure out what/how to update the 2223 * VHT channel. 2224 */ 2225 #if 0 2226 (vap->iv_flags_vht & IEEE80211_FVHT_VHT) { 2227 struct ieee80211_channel *c; 2228 2229 c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan, 2230 vap->iv_flags_ht); 2231 c = ieee80211_vht_adjust_channel(ic, c, vap->iv_flags_vht); 2232 frm = ieee80211_add_vhtcap_ch(frm, vap, c); 2233 } 2234 #endif 2235 2236 frm = ieee80211_add_wpa(frm, vap); 2237 if (vap->iv_appie_probereq != NULL) 2238 frm = add_appie(frm, vap->iv_appie_probereq); 2239 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2240 2241 KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame), 2242 ("leading space %zd", M_LEADINGSPACE(m))); 2243 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2244 if (m == NULL) { 2245 /* NB: cannot happen */ 2246 ieee80211_free_node(ni); 2247 ieee80211_free_node(bss); 2248 return ENOMEM; 2249 } 2250 2251 IEEE80211_TX_LOCK(ic); 2252 ieee80211_send_setup(ni, m, 2253 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 2254 IEEE80211_NONQOS_TID, sa, da, bssid); 2255 /* XXX power management? */ 2256 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2257 2258 M_WME_SETAC(m, WME_AC_BE); 2259 2260 IEEE80211_NODE_STAT(ni, tx_probereq); 2261 IEEE80211_NODE_STAT(ni, tx_mgmt); 2262 2263 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2264 "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n", 2265 ieee80211_chan2ieee(ic, ic->ic_curchan), 2266 ether_sprintf(bssid), 2267 sa, ":", 2268 da, ":", 2269 ssidlen, ssid); 2270 2271 memset(¶ms, 0, sizeof(params)); 2272 params.ibp_pri = M_WME_GETAC(m); 2273 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 2274 params.ibp_rate0 = tp->mgmtrate; 2275 if (IEEE80211_IS_MULTICAST(da)) { 2276 params.ibp_flags |= IEEE80211_BPF_NOACK; 2277 params.ibp_try0 = 1; 2278 } else 2279 params.ibp_try0 = tp->maxretry; 2280 params.ibp_power = ni->ni_txpower; 2281 ret = ieee80211_raw_output(vap, ni, m, ¶ms); 2282 IEEE80211_TX_UNLOCK(ic); 2283 ieee80211_free_node(bss); 2284 return (ret); 2285 } 2286 2287 /* 2288 * Calculate capability information for mgt frames. 2289 */ 2290 uint16_t 2291 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan) 2292 { 2293 struct ieee80211com *ic = vap->iv_ic; 2294 uint16_t capinfo; 2295 2296 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode")); 2297 2298 if (vap->iv_opmode == IEEE80211_M_HOSTAP) 2299 capinfo = IEEE80211_CAPINFO_ESS; 2300 else if (vap->iv_opmode == IEEE80211_M_IBSS) 2301 capinfo = IEEE80211_CAPINFO_IBSS; 2302 else 2303 capinfo = 0; 2304 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2305 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2306 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2307 IEEE80211_IS_CHAN_2GHZ(chan)) 2308 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2309 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2310 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2311 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH)) 2312 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2313 return capinfo; 2314 } 2315 2316 /* 2317 * Send a management frame. The node is for the destination (or ic_bss 2318 * when in station mode). Nodes other than ic_bss have their reference 2319 * count bumped to reflect our use for an indeterminant time. 2320 */ 2321 int 2322 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg) 2323 { 2324 #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT) 2325 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2326 struct ieee80211vap *vap = ni->ni_vap; 2327 struct ieee80211com *ic = ni->ni_ic; 2328 struct ieee80211_node *bss = vap->iv_bss; 2329 struct ieee80211_bpf_params params; 2330 struct mbuf *m; 2331 uint8_t *frm; 2332 uint16_t capinfo; 2333 int has_challenge, is_shared_key, ret, status; 2334 2335 KASSERT(ni != NULL, ("null node")); 2336 2337 /* 2338 * Hold a reference on the node so it doesn't go away until after 2339 * the xmit is complete all the way in the driver. On error we 2340 * will remove our reference. 2341 */ 2342 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2343 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2344 __func__, __LINE__, 2345 ni, ether_sprintf(ni->ni_macaddr), 2346 ieee80211_node_refcnt(ni)+1); 2347 ieee80211_ref_node(ni); 2348 2349 memset(¶ms, 0, sizeof(params)); 2350 switch (type) { 2351 2352 case IEEE80211_FC0_SUBTYPE_AUTH: 2353 status = arg >> 16; 2354 arg &= 0xffff; 2355 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || 2356 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 2357 ni->ni_challenge != NULL); 2358 2359 /* 2360 * Deduce whether we're doing open authentication or 2361 * shared key authentication. We do the latter if 2362 * we're in the middle of a shared key authentication 2363 * handshake or if we're initiating an authentication 2364 * request and configured to use shared key. 2365 */ 2366 is_shared_key = has_challenge || 2367 arg >= IEEE80211_AUTH_SHARED_RESPONSE || 2368 (arg == IEEE80211_AUTH_SHARED_REQUEST && 2369 bss->ni_authmode == IEEE80211_AUTH_SHARED); 2370 2371 m = ieee80211_getmgtframe(&frm, 2372 ic->ic_headroom + sizeof(struct ieee80211_frame), 2373 3 * sizeof(uint16_t) 2374 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? 2375 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0) 2376 ); 2377 if (m == NULL) 2378 senderr(ENOMEM, is_tx_nobuf); 2379 2380 ((uint16_t *)frm)[0] = 2381 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) 2382 : htole16(IEEE80211_AUTH_ALG_OPEN); 2383 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */ 2384 ((uint16_t *)frm)[2] = htole16(status);/* status */ 2385 2386 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { 2387 ((uint16_t *)frm)[3] = 2388 htole16((IEEE80211_CHALLENGE_LEN << 8) | 2389 IEEE80211_ELEMID_CHALLENGE); 2390 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge, 2391 IEEE80211_CHALLENGE_LEN); 2392 m->m_pkthdr.len = m->m_len = 2393 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN; 2394 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 2395 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2396 "request encrypt frame (%s)", __func__); 2397 /* mark frame for encryption */ 2398 params.ibp_flags |= IEEE80211_BPF_CRYPTO; 2399 } 2400 } else 2401 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t); 2402 2403 /* XXX not right for shared key */ 2404 if (status == IEEE80211_STATUS_SUCCESS) 2405 IEEE80211_NODE_STAT(ni, tx_auth); 2406 else 2407 IEEE80211_NODE_STAT(ni, tx_auth_fail); 2408 2409 if (vap->iv_opmode == IEEE80211_M_STA) 2410 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2411 (void *) vap->iv_state); 2412 break; 2413 2414 case IEEE80211_FC0_SUBTYPE_DEAUTH: 2415 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2416 "send station deauthenticate (reason: %d (%s))", arg, 2417 ieee80211_reason_to_string(arg)); 2418 m = ieee80211_getmgtframe(&frm, 2419 ic->ic_headroom + sizeof(struct ieee80211_frame), 2420 sizeof(uint16_t)); 2421 if (m == NULL) 2422 senderr(ENOMEM, is_tx_nobuf); 2423 *(uint16_t *)frm = htole16(arg); /* reason */ 2424 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2425 2426 IEEE80211_NODE_STAT(ni, tx_deauth); 2427 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 2428 2429 ieee80211_node_unauthorize(ni); /* port closed */ 2430 break; 2431 2432 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 2433 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 2434 /* XXX VHT? */ 2435 /* 2436 * asreq frame format 2437 * [2] capability information 2438 * [2] listen interval 2439 * [6*] current AP address (reassoc only) 2440 * [tlv] ssid 2441 * [tlv] supported rates 2442 * [tlv] extended supported rates 2443 * [4] power capability (optional) 2444 * [28] supported channels (optional) 2445 * [tlv] HT capabilities 2446 * [tlv] VHT capabilities 2447 * [tlv] WME (optional) 2448 * [tlv] Vendor OUI HT capabilities (optional) 2449 * [tlv] Atheros capabilities (if negotiated) 2450 * [tlv] AppIE's (optional) 2451 */ 2452 m = ieee80211_getmgtframe(&frm, 2453 ic->ic_headroom + sizeof(struct ieee80211_frame), 2454 sizeof(uint16_t) 2455 + sizeof(uint16_t) 2456 + IEEE80211_ADDR_LEN 2457 + 2 + IEEE80211_NWID_LEN 2458 + 2 + IEEE80211_RATE_SIZE 2459 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2460 + 4 2461 + 2 + 26 2462 + sizeof(struct ieee80211_wme_info) 2463 + sizeof(struct ieee80211_ie_htcap) 2464 + sizeof(struct ieee80211_ie_vhtcap) 2465 + 4 + sizeof(struct ieee80211_ie_htcap) 2466 #ifdef IEEE80211_SUPPORT_SUPERG 2467 + sizeof(struct ieee80211_ath_ie) 2468 #endif 2469 + (vap->iv_appie_wpa != NULL ? 2470 vap->iv_appie_wpa->ie_len : 0) 2471 + (vap->iv_appie_assocreq != NULL ? 2472 vap->iv_appie_assocreq->ie_len : 0) 2473 ); 2474 if (m == NULL) 2475 senderr(ENOMEM, is_tx_nobuf); 2476 2477 KASSERT(vap->iv_opmode == IEEE80211_M_STA, 2478 ("wrong mode %u", vap->iv_opmode)); 2479 capinfo = IEEE80211_CAPINFO_ESS; 2480 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2481 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2482 /* 2483 * NB: Some 11a AP's reject the request when 2484 * short premable is set. 2485 */ 2486 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2487 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2488 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2489 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 2490 (ic->ic_caps & IEEE80211_C_SHSLOT)) 2491 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2492 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) && 2493 (vap->iv_flags & IEEE80211_F_DOTH)) 2494 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2495 *(uint16_t *)frm = htole16(capinfo); 2496 frm += 2; 2497 2498 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!")); 2499 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval, 2500 bss->ni_intval)); 2501 frm += 2; 2502 2503 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 2504 IEEE80211_ADDR_COPY(frm, bss->ni_bssid); 2505 frm += IEEE80211_ADDR_LEN; 2506 } 2507 2508 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 2509 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2510 frm = ieee80211_add_rsn(frm, vap); 2511 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2512 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) { 2513 frm = ieee80211_add_powercapability(frm, 2514 ic->ic_curchan); 2515 frm = ieee80211_add_supportedchannels(frm, ic); 2516 } 2517 2518 /* 2519 * Check the channel - we may be using an 11n NIC with an 2520 * 11n capable station, but we're configured to be an 11b 2521 * channel. 2522 */ 2523 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2524 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2525 ni->ni_ies.htcap_ie != NULL && 2526 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) { 2527 frm = ieee80211_add_htcap(frm, ni); 2528 } 2529 2530 if ((vap->iv_flags_vht & IEEE80211_FVHT_VHT) && 2531 IEEE80211_IS_CHAN_VHT(ni->ni_chan) && 2532 ni->ni_ies.vhtcap_ie != NULL && 2533 ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) { 2534 frm = ieee80211_add_vhtcap(frm, ni); 2535 } 2536 2537 frm = ieee80211_add_wpa(frm, vap); 2538 if ((ic->ic_flags & IEEE80211_F_WME) && 2539 ni->ni_ies.wme_ie != NULL) 2540 frm = ieee80211_add_wme_info(frm, &ic->ic_wme); 2541 2542 /* 2543 * Same deal - only send HT info if we're on an 11n 2544 * capable channel. 2545 */ 2546 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2547 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2548 ni->ni_ies.htcap_ie != NULL && 2549 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) { 2550 frm = ieee80211_add_htcap_vendor(frm, ni); 2551 } 2552 #ifdef IEEE80211_SUPPORT_SUPERG 2553 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) { 2554 frm = ieee80211_add_ath(frm, 2555 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2556 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2557 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2558 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2559 } 2560 #endif /* IEEE80211_SUPPORT_SUPERG */ 2561 if (vap->iv_appie_assocreq != NULL) 2562 frm = add_appie(frm, vap->iv_appie_assocreq); 2563 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2564 2565 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2566 (void *) vap->iv_state); 2567 break; 2568 2569 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 2570 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 2571 /* 2572 * asresp frame format 2573 * [2] capability information 2574 * [2] status 2575 * [2] association ID 2576 * [tlv] supported rates 2577 * [tlv] extended supported rates 2578 * [tlv] HT capabilities (standard, if STA enabled) 2579 * [tlv] HT information (standard, if STA enabled) 2580 * [tlv] VHT capabilities (standard, if STA enabled) 2581 * [tlv] VHT information (standard, if STA enabled) 2582 * [tlv] WME (if configured and STA enabled) 2583 * [tlv] HT capabilities (vendor OUI, if STA enabled) 2584 * [tlv] HT information (vendor OUI, if STA enabled) 2585 * [tlv] Atheros capabilities (if STA enabled) 2586 * [tlv] AppIE's (optional) 2587 */ 2588 m = ieee80211_getmgtframe(&frm, 2589 ic->ic_headroom + sizeof(struct ieee80211_frame), 2590 sizeof(uint16_t) 2591 + sizeof(uint16_t) 2592 + sizeof(uint16_t) 2593 + 2 + IEEE80211_RATE_SIZE 2594 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2595 + sizeof(struct ieee80211_ie_htcap) + 4 2596 + sizeof(struct ieee80211_ie_htinfo) + 4 2597 + sizeof(struct ieee80211_ie_vhtcap) 2598 + sizeof(struct ieee80211_ie_vht_operation) 2599 + sizeof(struct ieee80211_wme_param) 2600 #ifdef IEEE80211_SUPPORT_SUPERG 2601 + sizeof(struct ieee80211_ath_ie) 2602 #endif 2603 + (vap->iv_appie_assocresp != NULL ? 2604 vap->iv_appie_assocresp->ie_len : 0) 2605 ); 2606 if (m == NULL) 2607 senderr(ENOMEM, is_tx_nobuf); 2608 2609 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2610 *(uint16_t *)frm = htole16(capinfo); 2611 frm += 2; 2612 2613 *(uint16_t *)frm = htole16(arg); /* status */ 2614 frm += 2; 2615 2616 if (arg == IEEE80211_STATUS_SUCCESS) { 2617 *(uint16_t *)frm = htole16(ni->ni_associd); 2618 IEEE80211_NODE_STAT(ni, tx_assoc); 2619 } else 2620 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 2621 frm += 2; 2622 2623 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2624 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2625 /* NB: respond according to what we received */ 2626 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) { 2627 frm = ieee80211_add_htcap(frm, ni); 2628 frm = ieee80211_add_htinfo(frm, ni); 2629 } 2630 if ((vap->iv_flags & IEEE80211_F_WME) && 2631 ni->ni_ies.wme_ie != NULL) 2632 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2633 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) { 2634 frm = ieee80211_add_htcap_vendor(frm, ni); 2635 frm = ieee80211_add_htinfo_vendor(frm, ni); 2636 } 2637 if (ni->ni_flags & IEEE80211_NODE_VHT) { 2638 frm = ieee80211_add_vhtcap(frm, ni); 2639 frm = ieee80211_add_vhtinfo(frm, ni); 2640 } 2641 #ifdef IEEE80211_SUPPORT_SUPERG 2642 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) 2643 frm = ieee80211_add_ath(frm, 2644 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2645 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2646 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2647 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2648 #endif /* IEEE80211_SUPPORT_SUPERG */ 2649 if (vap->iv_appie_assocresp != NULL) 2650 frm = add_appie(frm, vap->iv_appie_assocresp); 2651 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2652 break; 2653 2654 case IEEE80211_FC0_SUBTYPE_DISASSOC: 2655 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, 2656 "send station disassociate (reason: %d (%s))", arg, 2657 ieee80211_reason_to_string(arg)); 2658 m = ieee80211_getmgtframe(&frm, 2659 ic->ic_headroom + sizeof(struct ieee80211_frame), 2660 sizeof(uint16_t)); 2661 if (m == NULL) 2662 senderr(ENOMEM, is_tx_nobuf); 2663 *(uint16_t *)frm = htole16(arg); /* reason */ 2664 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2665 2666 IEEE80211_NODE_STAT(ni, tx_disassoc); 2667 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 2668 break; 2669 2670 default: 2671 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni, 2672 "invalid mgmt frame type %u", type); 2673 senderr(EINVAL, is_tx_unknownmgt); 2674 /* NOTREACHED */ 2675 } 2676 2677 /* NB: force non-ProbeResp frames to the highest queue */ 2678 params.ibp_pri = WME_AC_VO; 2679 params.ibp_rate0 = bss->ni_txparms->mgmtrate; 2680 /* NB: we know all frames are unicast */ 2681 params.ibp_try0 = bss->ni_txparms->maxretry; 2682 params.ibp_power = bss->ni_txpower; 2683 return ieee80211_mgmt_output(ni, m, type, ¶ms); 2684 bad: 2685 ieee80211_free_node(ni); 2686 return ret; 2687 #undef senderr 2688 #undef HTFLAGS 2689 } 2690 2691 /* 2692 * Return an mbuf with a probe response frame in it. 2693 * Space is left to prepend and 802.11 header at the 2694 * front but it's left to the caller to fill in. 2695 */ 2696 /* XXX VHT? */ 2697 struct mbuf * 2698 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy) 2699 { 2700 struct ieee80211vap *vap = bss->ni_vap; 2701 struct ieee80211com *ic = bss->ni_ic; 2702 const struct ieee80211_rateset *rs; 2703 struct mbuf *m; 2704 uint16_t capinfo; 2705 uint8_t *frm; 2706 2707 /* 2708 * probe response frame format 2709 * [8] time stamp 2710 * [2] beacon interval 2711 * [2] cabability information 2712 * [tlv] ssid 2713 * [tlv] supported rates 2714 * [tlv] parameter set (FH/DS) 2715 * [tlv] parameter set (IBSS) 2716 * [tlv] country (optional) 2717 * [3] power control (optional) 2718 * [5] channel switch announcement (CSA) (optional) 2719 * [tlv] extended rate phy (ERP) 2720 * [tlv] extended supported rates 2721 * [tlv] RSN (optional) 2722 * [tlv] HT capabilities 2723 * [tlv] HT information 2724 * [tlv] WPA (optional) 2725 * [tlv] WME (optional) 2726 * [tlv] Vendor OUI HT capabilities (optional) 2727 * [tlv] Vendor OUI HT information (optional) 2728 * [tlv] Atheros capabilities 2729 * [tlv] AppIE's (optional) 2730 * [tlv] Mesh ID (MBSS) 2731 * [tlv] Mesh Conf (MBSS) 2732 */ 2733 m = ieee80211_getmgtframe(&frm, 2734 ic->ic_headroom + sizeof(struct ieee80211_frame), 2735 8 2736 + sizeof(uint16_t) 2737 + sizeof(uint16_t) 2738 + 2 + IEEE80211_NWID_LEN 2739 + 2 + IEEE80211_RATE_SIZE 2740 + 7 /* max(7,3) */ 2741 + IEEE80211_COUNTRY_MAX_SIZE 2742 + 3 2743 + sizeof(struct ieee80211_csa_ie) 2744 + sizeof(struct ieee80211_quiet_ie) 2745 + 3 2746 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2747 + sizeof(struct ieee80211_ie_wpa) 2748 + sizeof(struct ieee80211_ie_htcap) 2749 + sizeof(struct ieee80211_ie_htinfo) 2750 + sizeof(struct ieee80211_ie_wpa) 2751 + sizeof(struct ieee80211_wme_param) 2752 + 4 + sizeof(struct ieee80211_ie_htcap) 2753 + 4 + sizeof(struct ieee80211_ie_htinfo) 2754 #ifdef IEEE80211_SUPPORT_SUPERG 2755 + sizeof(struct ieee80211_ath_ie) 2756 #endif 2757 #ifdef IEEE80211_SUPPORT_MESH 2758 + 2 + IEEE80211_MESHID_LEN 2759 + sizeof(struct ieee80211_meshconf_ie) 2760 #endif 2761 + (vap->iv_appie_proberesp != NULL ? 2762 vap->iv_appie_proberesp->ie_len : 0) 2763 ); 2764 if (m == NULL) { 2765 vap->iv_stats.is_tx_nobuf++; 2766 return NULL; 2767 } 2768 2769 memset(frm, 0, 8); /* timestamp should be filled later */ 2770 frm += 8; 2771 *(uint16_t *)frm = htole16(bss->ni_intval); 2772 frm += 2; 2773 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2774 *(uint16_t *)frm = htole16(capinfo); 2775 frm += 2; 2776 2777 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen); 2778 rs = ieee80211_get_suprates(ic, bss->ni_chan); 2779 frm = ieee80211_add_rates(frm, rs); 2780 2781 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) { 2782 *frm++ = IEEE80211_ELEMID_FHPARMS; 2783 *frm++ = 5; 2784 *frm++ = bss->ni_fhdwell & 0x00ff; 2785 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff; 2786 *frm++ = IEEE80211_FH_CHANSET( 2787 ieee80211_chan2ieee(ic, bss->ni_chan)); 2788 *frm++ = IEEE80211_FH_CHANPAT( 2789 ieee80211_chan2ieee(ic, bss->ni_chan)); 2790 *frm++ = bss->ni_fhindex; 2791 } else { 2792 *frm++ = IEEE80211_ELEMID_DSPARMS; 2793 *frm++ = 1; 2794 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan); 2795 } 2796 2797 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2798 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2799 *frm++ = 2; 2800 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2801 } 2802 if ((vap->iv_flags & IEEE80211_F_DOTH) || 2803 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 2804 frm = ieee80211_add_countryie(frm, ic); 2805 if (vap->iv_flags & IEEE80211_F_DOTH) { 2806 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan)) 2807 frm = ieee80211_add_powerconstraint(frm, vap); 2808 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 2809 frm = ieee80211_add_csa(frm, vap); 2810 } 2811 if (vap->iv_flags & IEEE80211_F_DOTH) { 2812 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2813 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 2814 if (vap->iv_quiet) 2815 frm = ieee80211_add_quiet(frm, vap); 2816 } 2817 } 2818 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan)) 2819 frm = ieee80211_add_erp(frm, ic); 2820 frm = ieee80211_add_xrates(frm, rs); 2821 frm = ieee80211_add_rsn(frm, vap); 2822 /* 2823 * NB: legacy 11b clients do not get certain ie's. 2824 * The caller identifies such clients by passing 2825 * a token in legacy to us. Could expand this to be 2826 * any legacy client for stuff like HT ie's. 2827 */ 2828 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2829 legacy != IEEE80211_SEND_LEGACY_11B) { 2830 frm = ieee80211_add_htcap(frm, bss); 2831 frm = ieee80211_add_htinfo(frm, bss); 2832 } 2833 frm = ieee80211_add_wpa(frm, vap); 2834 if (vap->iv_flags & IEEE80211_F_WME) 2835 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2836 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2837 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) && 2838 legacy != IEEE80211_SEND_LEGACY_11B) { 2839 frm = ieee80211_add_htcap_vendor(frm, bss); 2840 frm = ieee80211_add_htinfo_vendor(frm, bss); 2841 } 2842 #ifdef IEEE80211_SUPPORT_SUPERG 2843 if ((vap->iv_flags & IEEE80211_F_ATHEROS) && 2844 legacy != IEEE80211_SEND_LEGACY_11B) 2845 frm = ieee80211_add_athcaps(frm, bss); 2846 #endif 2847 if (vap->iv_appie_proberesp != NULL) 2848 frm = add_appie(frm, vap->iv_appie_proberesp); 2849 #ifdef IEEE80211_SUPPORT_MESH 2850 if (vap->iv_opmode == IEEE80211_M_MBSS) { 2851 frm = ieee80211_add_meshid(frm, vap); 2852 frm = ieee80211_add_meshconf(frm, vap); 2853 } 2854 #endif 2855 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2856 2857 return m; 2858 } 2859 2860 /* 2861 * Send a probe response frame to the specified mac address. 2862 * This does not go through the normal mgt frame api so we 2863 * can specify the destination address and re-use the bss node 2864 * for the sta reference. 2865 */ 2866 int 2867 ieee80211_send_proberesp(struct ieee80211vap *vap, 2868 const uint8_t da[IEEE80211_ADDR_LEN], int legacy) 2869 { 2870 struct ieee80211_node *bss = vap->iv_bss; 2871 struct ieee80211com *ic = vap->iv_ic; 2872 struct mbuf *m; 2873 int ret; 2874 2875 if (vap->iv_state == IEEE80211_S_CAC) { 2876 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss, 2877 "block %s frame in CAC state", "probe response"); 2878 vap->iv_stats.is_tx_badstate++; 2879 return EIO; /* XXX */ 2880 } 2881 2882 /* 2883 * Hold a reference on the node so it doesn't go away until after 2884 * the xmit is complete all the way in the driver. On error we 2885 * will remove our reference. 2886 */ 2887 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2888 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2889 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr), 2890 ieee80211_node_refcnt(bss)+1); 2891 ieee80211_ref_node(bss); 2892 2893 m = ieee80211_alloc_proberesp(bss, legacy); 2894 if (m == NULL) { 2895 ieee80211_free_node(bss); 2896 return ENOMEM; 2897 } 2898 2899 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2900 KASSERT(m != NULL, ("no room for header")); 2901 2902 IEEE80211_TX_LOCK(ic); 2903 ieee80211_send_setup(bss, m, 2904 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP, 2905 IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid); 2906 /* XXX power management? */ 2907 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2908 2909 M_WME_SETAC(m, WME_AC_BE); 2910 2911 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2912 "send probe resp on channel %u to %s%s\n", 2913 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da), 2914 legacy ? " <legacy>" : ""); 2915 IEEE80211_NODE_STAT(bss, tx_mgmt); 2916 2917 ret = ieee80211_raw_output(vap, bss, m, NULL); 2918 IEEE80211_TX_UNLOCK(ic); 2919 return (ret); 2920 } 2921 2922 /* 2923 * Allocate and build a RTS (Request To Send) control frame. 2924 */ 2925 struct mbuf * 2926 ieee80211_alloc_rts(struct ieee80211com *ic, 2927 const uint8_t ra[IEEE80211_ADDR_LEN], 2928 const uint8_t ta[IEEE80211_ADDR_LEN], 2929 uint16_t dur) 2930 { 2931 struct ieee80211_frame_rts *rts; 2932 struct mbuf *m; 2933 2934 /* XXX honor ic_headroom */ 2935 m = m_gethdr(M_NOWAIT, MT_DATA); 2936 if (m != NULL) { 2937 rts = mtod(m, struct ieee80211_frame_rts *); 2938 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2939 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS; 2940 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2941 *(u_int16_t *)rts->i_dur = htole16(dur); 2942 IEEE80211_ADDR_COPY(rts->i_ra, ra); 2943 IEEE80211_ADDR_COPY(rts->i_ta, ta); 2944 2945 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); 2946 } 2947 return m; 2948 } 2949 2950 /* 2951 * Allocate and build a CTS (Clear To Send) control frame. 2952 */ 2953 struct mbuf * 2954 ieee80211_alloc_cts(struct ieee80211com *ic, 2955 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur) 2956 { 2957 struct ieee80211_frame_cts *cts; 2958 struct mbuf *m; 2959 2960 /* XXX honor ic_headroom */ 2961 m = m_gethdr(M_NOWAIT, MT_DATA); 2962 if (m != NULL) { 2963 cts = mtod(m, struct ieee80211_frame_cts *); 2964 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2965 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS; 2966 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2967 *(u_int16_t *)cts->i_dur = htole16(dur); 2968 IEEE80211_ADDR_COPY(cts->i_ra, ra); 2969 2970 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts); 2971 } 2972 return m; 2973 } 2974 2975 static void 2976 ieee80211_tx_mgt_timeout(void *arg) 2977 { 2978 struct ieee80211vap *vap = arg; 2979 2980 IEEE80211_LOCK(vap->iv_ic); 2981 if (vap->iv_state != IEEE80211_S_INIT && 2982 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) { 2983 /* 2984 * NB: it's safe to specify a timeout as the reason here; 2985 * it'll only be used in the right state. 2986 */ 2987 ieee80211_new_state_locked(vap, IEEE80211_S_SCAN, 2988 IEEE80211_SCAN_FAIL_TIMEOUT); 2989 } 2990 IEEE80211_UNLOCK(vap->iv_ic); 2991 } 2992 2993 /* 2994 * This is the callback set on net80211-sourced transmitted 2995 * authentication request frames. 2996 * 2997 * This does a couple of things: 2998 * 2999 * + If the frame transmitted was a success, it schedules a future 3000 * event which will transition the interface to scan. 3001 * If a state transition _then_ occurs before that event occurs, 3002 * said state transition will cancel this callout. 3003 * 3004 * + If the frame transmit was a failure, it immediately schedules 3005 * the transition back to scan. 3006 */ 3007 static void 3008 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status) 3009 { 3010 struct ieee80211vap *vap = ni->ni_vap; 3011 enum ieee80211_state ostate = (enum ieee80211_state) arg; 3012 3013 /* 3014 * Frame transmit completed; arrange timer callback. If 3015 * transmit was successfully we wait for response. Otherwise 3016 * we arrange an immediate callback instead of doing the 3017 * callback directly since we don't know what state the driver 3018 * is in (e.g. what locks it is holding). This work should 3019 * not be too time-critical and not happen too often so the 3020 * added overhead is acceptable. 3021 * 3022 * XXX what happens if !acked but response shows up before callback? 3023 */ 3024 if (vap->iv_state == ostate) { 3025 callout_reset(&vap->iv_mgtsend, 3026 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0, 3027 ieee80211_tx_mgt_timeout, vap); 3028 } 3029 } 3030 3031 /* XXX VHT? */ 3032 static void 3033 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm, 3034 struct ieee80211_node *ni) 3035 { 3036 struct ieee80211vap *vap = ni->ni_vap; 3037 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 3038 struct ieee80211com *ic = ni->ni_ic; 3039 struct ieee80211_rateset *rs = &ni->ni_rates; 3040 uint16_t capinfo; 3041 3042 /* 3043 * beacon frame format 3044 * 3045 * TODO: update to 802.11-2012; a lot of stuff has changed; 3046 * vendor extensions should be at the end, etc. 3047 * 3048 * [8] time stamp 3049 * [2] beacon interval 3050 * [2] cabability information 3051 * [tlv] ssid 3052 * [tlv] supported rates 3053 * [3] parameter set (DS) 3054 * [8] CF parameter set (optional) 3055 * [tlv] parameter set (IBSS/TIM) 3056 * [tlv] country (optional) 3057 * [3] power control (optional) 3058 * [5] channel switch announcement (CSA) (optional) 3059 * XXX TODO: Quiet 3060 * XXX TODO: IBSS DFS 3061 * XXX TODO: TPC report 3062 * [tlv] extended rate phy (ERP) 3063 * [tlv] extended supported rates 3064 * [tlv] RSN parameters 3065 * XXX TODO: BSSLOAD 3066 * (XXX EDCA parameter set, QoS capability?) 3067 * XXX TODO: AP channel report 3068 * 3069 * [tlv] HT capabilities 3070 * [tlv] HT information 3071 * XXX TODO: 20/40 BSS coexistence 3072 * Mesh: 3073 * XXX TODO: Meshid 3074 * XXX TODO: mesh config 3075 * XXX TODO: mesh awake window 3076 * XXX TODO: beacon timing (mesh, etc) 3077 * XXX TODO: MCCAOP Advertisement Overview 3078 * XXX TODO: MCCAOP Advertisement 3079 * XXX TODO: Mesh channel switch parameters 3080 * VHT: 3081 * XXX TODO: VHT capabilities 3082 * XXX TODO: VHT operation 3083 * XXX TODO: VHT transmit power envelope 3084 * XXX TODO: channel switch wrapper element 3085 * XXX TODO: extended BSS load element 3086 * 3087 * XXX Vendor-specific OIDs (e.g. Atheros) 3088 * [tlv] WPA parameters 3089 * [tlv] WME parameters 3090 * [tlv] Vendor OUI HT capabilities (optional) 3091 * [tlv] Vendor OUI HT information (optional) 3092 * [tlv] Atheros capabilities (optional) 3093 * [tlv] TDMA parameters (optional) 3094 * [tlv] Mesh ID (MBSS) 3095 * [tlv] Mesh Conf (MBSS) 3096 * [tlv] application data (optional) 3097 */ 3098 3099 memset(bo, 0, sizeof(*bo)); 3100 3101 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 3102 frm += 8; 3103 *(uint16_t *)frm = htole16(ni->ni_intval); 3104 frm += 2; 3105 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3106 bo->bo_caps = (uint16_t *)frm; 3107 *(uint16_t *)frm = htole16(capinfo); 3108 frm += 2; 3109 *frm++ = IEEE80211_ELEMID_SSID; 3110 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) { 3111 *frm++ = ni->ni_esslen; 3112 memcpy(frm, ni->ni_essid, ni->ni_esslen); 3113 frm += ni->ni_esslen; 3114 } else 3115 *frm++ = 0; 3116 frm = ieee80211_add_rates(frm, rs); 3117 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) { 3118 *frm++ = IEEE80211_ELEMID_DSPARMS; 3119 *frm++ = 1; 3120 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 3121 } 3122 if (ic->ic_flags & IEEE80211_F_PCF) { 3123 bo->bo_cfp = frm; 3124 frm = ieee80211_add_cfparms(frm, ic); 3125 } 3126 bo->bo_tim = frm; 3127 if (vap->iv_opmode == IEEE80211_M_IBSS) { 3128 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 3129 *frm++ = 2; 3130 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 3131 bo->bo_tim_len = 0; 3132 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3133 vap->iv_opmode == IEEE80211_M_MBSS) { 3134 /* TIM IE is the same for Mesh and Hostap */ 3135 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; 3136 3137 tie->tim_ie = IEEE80211_ELEMID_TIM; 3138 tie->tim_len = 4; /* length */ 3139 tie->tim_count = 0; /* DTIM count */ 3140 tie->tim_period = vap->iv_dtim_period; /* DTIM period */ 3141 tie->tim_bitctl = 0; /* bitmap control */ 3142 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 3143 frm += sizeof(struct ieee80211_tim_ie); 3144 bo->bo_tim_len = 1; 3145 } 3146 bo->bo_tim_trailer = frm; 3147 if ((vap->iv_flags & IEEE80211_F_DOTH) || 3148 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 3149 frm = ieee80211_add_countryie(frm, ic); 3150 if (vap->iv_flags & IEEE80211_F_DOTH) { 3151 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) 3152 frm = ieee80211_add_powerconstraint(frm, vap); 3153 bo->bo_csa = frm; 3154 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 3155 frm = ieee80211_add_csa(frm, vap); 3156 } else 3157 bo->bo_csa = frm; 3158 3159 if (vap->iv_flags & IEEE80211_F_DOTH) { 3160 bo->bo_quiet = frm; 3161 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3162 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 3163 if (vap->iv_quiet) 3164 frm = ieee80211_add_quiet(frm,vap); 3165 } 3166 } else 3167 bo->bo_quiet = frm; 3168 3169 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) { 3170 bo->bo_erp = frm; 3171 frm = ieee80211_add_erp(frm, ic); 3172 } 3173 frm = ieee80211_add_xrates(frm, rs); 3174 frm = ieee80211_add_rsn(frm, vap); 3175 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 3176 frm = ieee80211_add_htcap(frm, ni); 3177 bo->bo_htinfo = frm; 3178 frm = ieee80211_add_htinfo(frm, ni); 3179 } 3180 3181 if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) { 3182 frm = ieee80211_add_vhtcap(frm, ni); 3183 bo->bo_vhtinfo = frm; 3184 frm = ieee80211_add_vhtinfo(frm, ni); 3185 /* Transmit power envelope */ 3186 /* Channel switch wrapper element */ 3187 /* Extended bss load element */ 3188 } 3189 3190 frm = ieee80211_add_wpa(frm, vap); 3191 if (vap->iv_flags & IEEE80211_F_WME) { 3192 bo->bo_wme = frm; 3193 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 3194 } 3195 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && 3196 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) { 3197 frm = ieee80211_add_htcap_vendor(frm, ni); 3198 frm = ieee80211_add_htinfo_vendor(frm, ni); 3199 } 3200 3201 #ifdef IEEE80211_SUPPORT_SUPERG 3202 if (vap->iv_flags & IEEE80211_F_ATHEROS) { 3203 bo->bo_ath = frm; 3204 frm = ieee80211_add_athcaps(frm, ni); 3205 } 3206 #endif 3207 #ifdef IEEE80211_SUPPORT_TDMA 3208 if (vap->iv_caps & IEEE80211_C_TDMA) { 3209 bo->bo_tdma = frm; 3210 frm = ieee80211_add_tdma(frm, vap); 3211 } 3212 #endif 3213 if (vap->iv_appie_beacon != NULL) { 3214 bo->bo_appie = frm; 3215 bo->bo_appie_len = vap->iv_appie_beacon->ie_len; 3216 frm = add_appie(frm, vap->iv_appie_beacon); 3217 } 3218 3219 /* XXX TODO: move meshid/meshconf up to before vendor extensions? */ 3220 #ifdef IEEE80211_SUPPORT_MESH 3221 if (vap->iv_opmode == IEEE80211_M_MBSS) { 3222 frm = ieee80211_add_meshid(frm, vap); 3223 bo->bo_meshconf = frm; 3224 frm = ieee80211_add_meshconf(frm, vap); 3225 } 3226 #endif 3227 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer; 3228 bo->bo_csa_trailer_len = frm - bo->bo_csa; 3229 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3230 } 3231 3232 /* 3233 * Allocate a beacon frame and fillin the appropriate bits. 3234 */ 3235 /* XXX VHT? */ 3236 struct mbuf * 3237 ieee80211_beacon_alloc(struct ieee80211_node *ni) 3238 { 3239 struct ieee80211vap *vap = ni->ni_vap; 3240 struct ieee80211com *ic = ni->ni_ic; 3241 struct ifnet *ifp = vap->iv_ifp; 3242 struct ieee80211_frame *wh; 3243 struct mbuf *m; 3244 int pktlen; 3245 uint8_t *frm; 3246 3247 /* 3248 * beacon frame format 3249 * 3250 * Note: This needs updating for 802.11-2012. 3251 * 3252 * [8] time stamp 3253 * [2] beacon interval 3254 * [2] cabability information 3255 * [tlv] ssid 3256 * [tlv] supported rates 3257 * [3] parameter set (DS) 3258 * [8] CF parameter set (optional) 3259 * [tlv] parameter set (IBSS/TIM) 3260 * [tlv] country (optional) 3261 * [3] power control (optional) 3262 * [5] channel switch announcement (CSA) (optional) 3263 * [tlv] extended rate phy (ERP) 3264 * [tlv] extended supported rates 3265 * [tlv] RSN parameters 3266 * [tlv] HT capabilities 3267 * [tlv] HT information 3268 * [tlv] VHT capabilities 3269 * [tlv] VHT operation 3270 * [tlv] Vendor OUI HT capabilities (optional) 3271 * [tlv] Vendor OUI HT information (optional) 3272 * XXX Vendor-specific OIDs (e.g. Atheros) 3273 * [tlv] WPA parameters 3274 * [tlv] WME parameters 3275 * [tlv] TDMA parameters (optional) 3276 * [tlv] Mesh ID (MBSS) 3277 * [tlv] Mesh Conf (MBSS) 3278 * [tlv] application data (optional) 3279 * NB: we allocate the max space required for the TIM bitmap. 3280 * XXX how big is this? 3281 */ 3282 /* XXX VHT? */ 3283 pktlen = 8 /* time stamp */ 3284 + sizeof(uint16_t) /* beacon interval */ 3285 + sizeof(uint16_t) /* capabilities */ 3286 + 2 + ni->ni_esslen /* ssid */ 3287 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 3288 + 2 + 1 /* DS parameters */ 3289 + 2 + 6 /* CF parameters */ 3290 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */ 3291 + IEEE80211_COUNTRY_MAX_SIZE /* country */ 3292 + 2 + 1 /* power control */ 3293 + sizeof(struct ieee80211_csa_ie) /* CSA */ 3294 + sizeof(struct ieee80211_quiet_ie) /* Quiet */ 3295 + 2 + 1 /* ERP */ 3296 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 3297 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 3298 2*sizeof(struct ieee80211_ie_wpa) : 0) 3299 /* XXX conditional? */ 3300 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */ 3301 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */ 3302 + sizeof(struct ieee80211_ie_vhtcap)/* VHT caps */ 3303 + sizeof(struct ieee80211_ie_vht_operation)/* VHT info */ 3304 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */ 3305 sizeof(struct ieee80211_wme_param) : 0) 3306 #ifdef IEEE80211_SUPPORT_SUPERG 3307 + sizeof(struct ieee80211_ath_ie) /* ATH */ 3308 #endif 3309 #ifdef IEEE80211_SUPPORT_TDMA 3310 + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */ 3311 sizeof(struct ieee80211_tdma_param) : 0) 3312 #endif 3313 #ifdef IEEE80211_SUPPORT_MESH 3314 + 2 + ni->ni_meshidlen 3315 + sizeof(struct ieee80211_meshconf_ie) 3316 #endif 3317 + IEEE80211_MAX_APPIE 3318 ; 3319 m = ieee80211_getmgtframe(&frm, 3320 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen); 3321 if (m == NULL) { 3322 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, 3323 "%s: cannot get buf; size %u\n", __func__, pktlen); 3324 vap->iv_stats.is_tx_nobuf++; 3325 return NULL; 3326 } 3327 ieee80211_beacon_construct(m, frm, ni); 3328 3329 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 3330 KASSERT(m != NULL, ("no space for 802.11 header?")); 3331 wh = mtod(m, struct ieee80211_frame *); 3332 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 3333 IEEE80211_FC0_SUBTYPE_BEACON; 3334 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3335 *(uint16_t *)wh->i_dur = 0; 3336 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 3337 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 3338 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 3339 *(uint16_t *)wh->i_seq = 0; 3340 3341 return m; 3342 } 3343 3344 /* 3345 * Update the dynamic parts of a beacon frame based on the current state. 3346 */ 3347 int 3348 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast) 3349 { 3350 struct ieee80211vap *vap = ni->ni_vap; 3351 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 3352 struct ieee80211com *ic = ni->ni_ic; 3353 int len_changed = 0; 3354 uint16_t capinfo; 3355 struct ieee80211_frame *wh; 3356 ieee80211_seq seqno; 3357 3358 IEEE80211_LOCK(ic); 3359 /* 3360 * Handle 11h channel change when we've reached the count. 3361 * We must recalculate the beacon frame contents to account 3362 * for the new channel. Note we do this only for the first 3363 * vap that reaches this point; subsequent vaps just update 3364 * their beacon state to reflect the recalculated channel. 3365 */ 3366 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) && 3367 vap->iv_csa_count == ic->ic_csa_count) { 3368 vap->iv_csa_count = 0; 3369 /* 3370 * Effect channel change before reconstructing the beacon 3371 * frame contents as many places reference ni_chan. 3372 */ 3373 if (ic->ic_csa_newchan != NULL) 3374 ieee80211_csa_completeswitch(ic); 3375 /* 3376 * NB: ieee80211_beacon_construct clears all pending 3377 * updates in bo_flags so we don't need to explicitly 3378 * clear IEEE80211_BEACON_CSA. 3379 */ 3380 ieee80211_beacon_construct(m, 3381 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3382 3383 /* XXX do WME aggressive mode processing? */ 3384 IEEE80211_UNLOCK(ic); 3385 return 1; /* just assume length changed */ 3386 } 3387 3388 wh = mtod(m, struct ieee80211_frame *); 3389 3390 /* 3391 * XXX TODO Strictly speaking this should be incremented with the TX 3392 * lock held so as to serialise access to the non-qos TID sequence 3393 * number space. 3394 * 3395 * If the driver identifies it does its own TX seqno management then 3396 * we can skip this (and still not do the TX seqno.) 3397 */ 3398 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 3399 *(uint16_t *)&wh->i_seq[0] = 3400 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 3401 M_SEQNO_SET(m, seqno); 3402 3403 /* XXX faster to recalculate entirely or just changes? */ 3404 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3405 *bo->bo_caps = htole16(capinfo); 3406 3407 if (vap->iv_flags & IEEE80211_F_WME) { 3408 struct ieee80211_wme_state *wme = &ic->ic_wme; 3409 3410 /* 3411 * Check for aggressive mode change. When there is 3412 * significant high priority traffic in the BSS 3413 * throttle back BE traffic by using conservative 3414 * parameters. Otherwise BE uses aggressive params 3415 * to optimize performance of legacy/non-QoS traffic. 3416 */ 3417 if (wme->wme_flags & WME_F_AGGRMODE) { 3418 if (wme->wme_hipri_traffic > 3419 wme->wme_hipri_switch_thresh) { 3420 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3421 "%s: traffic %u, disable aggressive mode\n", 3422 __func__, wme->wme_hipri_traffic); 3423 wme->wme_flags &= ~WME_F_AGGRMODE; 3424 ieee80211_wme_updateparams_locked(vap); 3425 wme->wme_hipri_traffic = 3426 wme->wme_hipri_switch_hysteresis; 3427 } else 3428 wme->wme_hipri_traffic = 0; 3429 } else { 3430 if (wme->wme_hipri_traffic <= 3431 wme->wme_hipri_switch_thresh) { 3432 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3433 "%s: traffic %u, enable aggressive mode\n", 3434 __func__, wme->wme_hipri_traffic); 3435 wme->wme_flags |= WME_F_AGGRMODE; 3436 ieee80211_wme_updateparams_locked(vap); 3437 wme->wme_hipri_traffic = 0; 3438 } else 3439 wme->wme_hipri_traffic = 3440 wme->wme_hipri_switch_hysteresis; 3441 } 3442 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) { 3443 (void) ieee80211_add_wme_param(bo->bo_wme, wme); 3444 clrbit(bo->bo_flags, IEEE80211_BEACON_WME); 3445 } 3446 } 3447 3448 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) { 3449 ieee80211_ht_update_beacon(vap, bo); 3450 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO); 3451 } 3452 #ifdef IEEE80211_SUPPORT_TDMA 3453 if (vap->iv_caps & IEEE80211_C_TDMA) { 3454 /* 3455 * NB: the beacon is potentially updated every TBTT. 3456 */ 3457 ieee80211_tdma_update_beacon(vap, bo); 3458 } 3459 #endif 3460 #ifdef IEEE80211_SUPPORT_MESH 3461 if (vap->iv_opmode == IEEE80211_M_MBSS) 3462 ieee80211_mesh_update_beacon(vap, bo); 3463 #endif 3464 3465 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3466 vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/ 3467 struct ieee80211_tim_ie *tie = 3468 (struct ieee80211_tim_ie *) bo->bo_tim; 3469 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) { 3470 u_int timlen, timoff, i; 3471 /* 3472 * ATIM/DTIM needs updating. If it fits in the 3473 * current space allocated then just copy in the 3474 * new bits. Otherwise we need to move any trailing 3475 * data to make room. Note that we know there is 3476 * contiguous space because ieee80211_beacon_allocate 3477 * insures there is space in the mbuf to write a 3478 * maximal-size virtual bitmap (based on iv_max_aid). 3479 */ 3480 /* 3481 * Calculate the bitmap size and offset, copy any 3482 * trailer out of the way, and then copy in the 3483 * new bitmap and update the information element. 3484 * Note that the tim bitmap must contain at least 3485 * one byte and any offset must be even. 3486 */ 3487 if (vap->iv_ps_pending != 0) { 3488 timoff = 128; /* impossibly large */ 3489 for (i = 0; i < vap->iv_tim_len; i++) 3490 if (vap->iv_tim_bitmap[i]) { 3491 timoff = i &~ 1; 3492 break; 3493 } 3494 KASSERT(timoff != 128, ("tim bitmap empty!")); 3495 for (i = vap->iv_tim_len-1; i >= timoff; i--) 3496 if (vap->iv_tim_bitmap[i]) 3497 break; 3498 timlen = 1 + (i - timoff); 3499 } else { 3500 timoff = 0; 3501 timlen = 1; 3502 } 3503 3504 /* 3505 * TODO: validate this! 3506 */ 3507 if (timlen != bo->bo_tim_len) { 3508 /* copy up/down trailer */ 3509 int adjust = tie->tim_bitmap+timlen 3510 - bo->bo_tim_trailer; 3511 ovbcopy(bo->bo_tim_trailer, 3512 bo->bo_tim_trailer+adjust, 3513 bo->bo_tim_trailer_len); 3514 bo->bo_tim_trailer += adjust; 3515 bo->bo_erp += adjust; 3516 bo->bo_htinfo += adjust; 3517 bo->bo_vhtinfo += adjust; 3518 #ifdef IEEE80211_SUPPORT_SUPERG 3519 bo->bo_ath += adjust; 3520 #endif 3521 #ifdef IEEE80211_SUPPORT_TDMA 3522 bo->bo_tdma += adjust; 3523 #endif 3524 #ifdef IEEE80211_SUPPORT_MESH 3525 bo->bo_meshconf += adjust; 3526 #endif 3527 bo->bo_appie += adjust; 3528 bo->bo_wme += adjust; 3529 bo->bo_csa += adjust; 3530 bo->bo_quiet += adjust; 3531 bo->bo_tim_len = timlen; 3532 3533 /* update information element */ 3534 tie->tim_len = 3 + timlen; 3535 tie->tim_bitctl = timoff; 3536 len_changed = 1; 3537 } 3538 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff, 3539 bo->bo_tim_len); 3540 3541 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM); 3542 3543 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER, 3544 "%s: TIM updated, pending %u, off %u, len %u\n", 3545 __func__, vap->iv_ps_pending, timoff, timlen); 3546 } 3547 /* count down DTIM period */ 3548 if (tie->tim_count == 0) 3549 tie->tim_count = tie->tim_period - 1; 3550 else 3551 tie->tim_count--; 3552 /* update state for buffered multicast frames on DTIM */ 3553 if (mcast && tie->tim_count == 0) 3554 tie->tim_bitctl |= 1; 3555 else 3556 tie->tim_bitctl &= ~1; 3557 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) { 3558 struct ieee80211_csa_ie *csa = 3559 (struct ieee80211_csa_ie *) bo->bo_csa; 3560 3561 /* 3562 * Insert or update CSA ie. If we're just starting 3563 * to count down to the channel switch then we need 3564 * to insert the CSA ie. Otherwise we just need to 3565 * drop the count. The actual change happens above 3566 * when the vap's count reaches the target count. 3567 */ 3568 if (vap->iv_csa_count == 0) { 3569 memmove(&csa[1], csa, bo->bo_csa_trailer_len); 3570 bo->bo_erp += sizeof(*csa); 3571 bo->bo_htinfo += sizeof(*csa); 3572 bo->bo_vhtinfo += sizeof(*csa); 3573 bo->bo_wme += sizeof(*csa); 3574 #ifdef IEEE80211_SUPPORT_SUPERG 3575 bo->bo_ath += sizeof(*csa); 3576 #endif 3577 #ifdef IEEE80211_SUPPORT_TDMA 3578 bo->bo_tdma += sizeof(*csa); 3579 #endif 3580 #ifdef IEEE80211_SUPPORT_MESH 3581 bo->bo_meshconf += sizeof(*csa); 3582 #endif 3583 bo->bo_appie += sizeof(*csa); 3584 bo->bo_csa_trailer_len += sizeof(*csa); 3585 bo->bo_quiet += sizeof(*csa); 3586 bo->bo_tim_trailer_len += sizeof(*csa); 3587 m->m_len += sizeof(*csa); 3588 m->m_pkthdr.len += sizeof(*csa); 3589 3590 ieee80211_add_csa(bo->bo_csa, vap); 3591 } else 3592 csa->csa_count--; 3593 vap->iv_csa_count++; 3594 /* NB: don't clear IEEE80211_BEACON_CSA */ 3595 } 3596 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3597 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){ 3598 if (vap->iv_quiet) 3599 ieee80211_add_quiet(bo->bo_quiet, vap); 3600 } 3601 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) { 3602 /* 3603 * ERP element needs updating. 3604 */ 3605 (void) ieee80211_add_erp(bo->bo_erp, ic); 3606 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP); 3607 } 3608 #ifdef IEEE80211_SUPPORT_SUPERG 3609 if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) { 3610 ieee80211_add_athcaps(bo->bo_ath, ni); 3611 clrbit(bo->bo_flags, IEEE80211_BEACON_ATH); 3612 } 3613 #endif 3614 } 3615 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) { 3616 const struct ieee80211_appie *aie = vap->iv_appie_beacon; 3617 int aielen; 3618 uint8_t *frm; 3619 3620 aielen = 0; 3621 if (aie != NULL) 3622 aielen += aie->ie_len; 3623 if (aielen != bo->bo_appie_len) { 3624 /* copy up/down trailer */ 3625 int adjust = aielen - bo->bo_appie_len; 3626 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust, 3627 bo->bo_tim_trailer_len); 3628 bo->bo_tim_trailer += adjust; 3629 bo->bo_appie += adjust; 3630 bo->bo_appie_len = aielen; 3631 3632 len_changed = 1; 3633 } 3634 frm = bo->bo_appie; 3635 if (aie != NULL) 3636 frm = add_appie(frm, aie); 3637 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE); 3638 } 3639 IEEE80211_UNLOCK(ic); 3640 3641 return len_changed; 3642 } 3643 3644 /* 3645 * Do Ethernet-LLC encapsulation for each payload in a fast frame 3646 * tunnel encapsulation. The frame is assumed to have an Ethernet 3647 * header at the front that must be stripped before prepending the 3648 * LLC followed by the Ethernet header passed in (with an Ethernet 3649 * type that specifies the payload size). 3650 */ 3651 struct mbuf * 3652 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m, 3653 const struct ether_header *eh) 3654 { 3655 struct llc *llc; 3656 uint16_t payload; 3657 3658 /* XXX optimize by combining m_adj+M_PREPEND */ 3659 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 3660 llc = mtod(m, struct llc *); 3661 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 3662 llc->llc_control = LLC_UI; 3663 llc->llc_snap.org_code[0] = 0; 3664 llc->llc_snap.org_code[1] = 0; 3665 llc->llc_snap.org_code[2] = 0; 3666 llc->llc_snap.ether_type = eh->ether_type; 3667 payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */ 3668 3669 M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT); 3670 if (m == NULL) { /* XXX cannot happen */ 3671 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 3672 "%s: no space for ether_header\n", __func__); 3673 vap->iv_stats.is_tx_nobuf++; 3674 return NULL; 3675 } 3676 ETHER_HEADER_COPY(mtod(m, void *), eh); 3677 mtod(m, struct ether_header *)->ether_type = htons(payload); 3678 return m; 3679 } 3680 3681 /* 3682 * Complete an mbuf transmission. 3683 * 3684 * For now, this simply processes a completed frame after the 3685 * driver has completed it's transmission and/or retransmission. 3686 * It assumes the frame is an 802.11 encapsulated frame. 3687 * 3688 * Later on it will grow to become the exit path for a given frame 3689 * from the driver and, depending upon how it's been encapsulated 3690 * and already transmitted, it may end up doing A-MPDU retransmission, 3691 * power save requeuing, etc. 3692 * 3693 * In order for the above to work, the driver entry point to this 3694 * must not hold any driver locks. Thus, the driver needs to delay 3695 * any actual mbuf completion until it can release said locks. 3696 * 3697 * This frees the mbuf and if the mbuf has a node reference, 3698 * the node reference will be freed. 3699 */ 3700 void 3701 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status) 3702 { 3703 3704 if (ni != NULL) { 3705 struct ifnet *ifp = ni->ni_vap->iv_ifp; 3706 3707 if (status == 0) { 3708 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len); 3709 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 3710 if (m->m_flags & M_MCAST) 3711 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 3712 } else 3713 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 3714 if (m->m_flags & M_TXCB) 3715 ieee80211_process_callback(ni, m, status); 3716 ieee80211_free_node(ni); 3717 } 3718 m_freem(m); 3719 } 3720