xref: /freebsd/sys/net80211/ieee80211_output.c (revision 92daf3a606e655f3db4508c76c733c340d9d3a68)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2001 Atsushi Onoe
5  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 #include "opt_wlan.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/kernel.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/endian.h>
42 
43 #include <sys/socket.h>
44 
45 #include <net/bpf.h>
46 #include <net/ethernet.h>
47 #include <net/if.h>
48 #include <net/if_var.h>
49 #include <net/if_llc.h>
50 #include <net/if_media.h>
51 #include <net/if_vlan_var.h>
52 
53 #include <net80211/ieee80211_var.h>
54 #include <net80211/ieee80211_regdomain.h>
55 #ifdef IEEE80211_SUPPORT_SUPERG
56 #include <net80211/ieee80211_superg.h>
57 #endif
58 #ifdef IEEE80211_SUPPORT_TDMA
59 #include <net80211/ieee80211_tdma.h>
60 #endif
61 #include <net80211/ieee80211_wds.h>
62 #include <net80211/ieee80211_mesh.h>
63 #include <net80211/ieee80211_vht.h>
64 
65 #if defined(INET) || defined(INET6)
66 #include <netinet/in.h>
67 #endif
68 
69 #ifdef INET
70 #include <netinet/if_ether.h>
71 #include <netinet/in_systm.h>
72 #include <netinet/ip.h>
73 #endif
74 #ifdef INET6
75 #include <netinet/ip6.h>
76 #endif
77 
78 #include <security/mac/mac_framework.h>
79 
80 #define	ETHER_HEADER_COPY(dst, src) \
81 	memcpy(dst, src, sizeof(struct ether_header))
82 
83 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
84 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
85 static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
86 
87 #ifdef IEEE80211_DEBUG
88 /*
89  * Decide if an outbound management frame should be
90  * printed when debugging is enabled.  This filters some
91  * of the less interesting frames that come frequently
92  * (e.g. beacons).
93  */
94 static __inline int
95 doprint(struct ieee80211vap *vap, int subtype)
96 {
97 	switch (subtype) {
98 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
99 		return (vap->iv_opmode == IEEE80211_M_IBSS);
100 	}
101 	return 1;
102 }
103 #endif
104 
105 /*
106  * Transmit a frame to the given destination on the given VAP.
107  *
108  * It's up to the caller to figure out the details of who this
109  * is going to and resolving the node.
110  *
111  * This routine takes care of queuing it for power save,
112  * A-MPDU state stuff, fast-frames state stuff, encapsulation
113  * if required, then passing it up to the driver layer.
114  *
115  * This routine (for now) consumes the mbuf and frees the node
116  * reference; it ideally will return a TX status which reflects
117  * whether the mbuf was consumed or not, so the caller can
118  * free the mbuf (if appropriate) and the node reference (again,
119  * if appropriate.)
120  */
121 int
122 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
123     struct ieee80211_node *ni)
124 {
125 	struct ieee80211com *ic = vap->iv_ic;
126 	struct ifnet *ifp = vap->iv_ifp;
127 	int mcast;
128 	int do_ampdu = 0;
129 #ifdef IEEE80211_SUPPORT_SUPERG
130 	int do_amsdu = 0;
131 	int do_ampdu_amsdu = 0;
132 	int no_ampdu = 1; /* Will be set to 0 if ampdu is active */
133 	int do_ff = 0;
134 #endif
135 
136 	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
137 	    (m->m_flags & M_PWR_SAV) == 0) {
138 		/*
139 		 * Station in power save mode; pass the frame
140 		 * to the 802.11 layer and continue.  We'll get
141 		 * the frame back when the time is right.
142 		 * XXX lose WDS vap linkage?
143 		 */
144 		if (ieee80211_pwrsave(ni, m) != 0)
145 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
146 		ieee80211_free_node(ni);
147 
148 		/*
149 		 * We queued it fine, so tell the upper layer
150 		 * that we consumed it.
151 		 */
152 		return (0);
153 	}
154 	/* calculate priority so drivers can find the tx queue */
155 	if (ieee80211_classify(ni, m)) {
156 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
157 		    ni->ni_macaddr, NULL,
158 		    "%s", "classification failure");
159 		vap->iv_stats.is_tx_classify++;
160 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
161 		m_freem(m);
162 		ieee80211_free_node(ni);
163 
164 		/* XXX better status? */
165 		return (0);
166 	}
167 	/*
168 	 * Stash the node pointer.  Note that we do this after
169 	 * any call to ieee80211_dwds_mcast because that code
170 	 * uses any existing value for rcvif to identify the
171 	 * interface it (might have been) received on.
172 	 */
173 	MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
174 	m->m_pkthdr.rcvif = (void *)ni;
175 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
176 
177 	BPF_MTAP(ifp, m);		/* 802.3 tx */
178 
179 	/*
180 	 * Figure out if we can do A-MPDU, A-MSDU or FF.
181 	 *
182 	 * A-MPDU depends upon vap/node config.
183 	 * A-MSDU depends upon vap/node config.
184 	 * FF depends upon vap config, IE and whether
185 	 *  it's 11abg (and not 11n/11ac/etc.)
186 	 *
187 	 * Note that these flags indiciate whether we can do
188 	 * it at all, rather than the situation (eg traffic type.)
189 	 */
190 	do_ampdu = ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
191 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX));
192 #ifdef IEEE80211_SUPPORT_SUPERG
193 	do_amsdu = ((ni->ni_flags & IEEE80211_NODE_AMSDU_TX) &&
194 	    (vap->iv_flags_ht & IEEE80211_FHT_AMSDU_TX));
195 	do_ff =
196 	    ((ni->ni_flags & IEEE80211_NODE_HT) == 0) &&
197 	    ((ni->ni_flags & IEEE80211_NODE_VHT) == 0) &&
198 	    (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF));
199 #endif
200 
201 	/*
202 	 * Check if A-MPDU tx aggregation is setup or if we
203 	 * should try to enable it.  The sta must be associated
204 	 * with HT and A-MPDU enabled for use.  When the policy
205 	 * routine decides we should enable A-MPDU we issue an
206 	 * ADDBA request and wait for a reply.  The frame being
207 	 * encapsulated will go out w/o using A-MPDU, or possibly
208 	 * it might be collected by the driver and held/retransmit.
209 	 * The default ic_ampdu_enable routine handles staggering
210 	 * ADDBA requests in case the receiver NAK's us or we are
211 	 * otherwise unable to establish a BA stream.
212 	 *
213 	 * Don't treat group-addressed frames as candidates for aggregation;
214 	 * net80211 doesn't support 802.11aa-2012 and so group addressed
215 	 * frames will always have sequence numbers allocated from the NON_QOS
216 	 * TID.
217 	 */
218 	if (do_ampdu) {
219 		if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) {
220 			int tid = WME_AC_TO_TID(M_WME_GETAC(m));
221 			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
222 
223 			ieee80211_txampdu_count_packet(tap);
224 			if (IEEE80211_AMPDU_RUNNING(tap)) {
225 				/*
226 				 * Operational, mark frame for aggregation.
227 				 *
228 				 * XXX do tx aggregation here
229 				 */
230 				m->m_flags |= M_AMPDU_MPDU;
231 			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
232 			    ic->ic_ampdu_enable(ni, tap)) {
233 				/*
234 				 * Not negotiated yet, request service.
235 				 */
236 				ieee80211_ampdu_request(ni, tap);
237 				/* XXX hold frame for reply? */
238 			}
239 			/*
240 			 * Now update the no-ampdu flag.  A-MPDU may have been
241 			 * started or administratively disabled above; so now we
242 			 * know whether we're running yet or not.
243 			 *
244 			 * This will let us know whether we should be doing A-MSDU
245 			 * at this point.  We only do A-MSDU if we're either not
246 			 * doing A-MPDU, or A-MPDU is NACKed, or A-MPDU + A-MSDU
247 			 * is available.
248 			 *
249 			 * Whilst here, update the amsdu-ampdu flag.  The above may
250 			 * have also set or cleared the amsdu-in-ampdu txa_flags
251 			 * combination so we can correctly do A-MPDU + A-MSDU.
252 			 */
253 #ifdef IEEE80211_SUPPORT_SUPERG
254 			no_ampdu = (! IEEE80211_AMPDU_RUNNING(tap)
255 			    || (IEEE80211_AMPDU_NACKED(tap)));
256 			do_ampdu_amsdu = IEEE80211_AMPDU_RUNNING_AMSDU(tap);
257 #endif
258 		}
259 	}
260 
261 #ifdef IEEE80211_SUPPORT_SUPERG
262 	/*
263 	 * Check for AMSDU/FF; queue for aggregation
264 	 *
265 	 * Note: we don't bother trying to do fast frames or
266 	 * A-MSDU encapsulation for 802.3 drivers.  Now, we
267 	 * likely could do it for FF (because it's a magic
268 	 * atheros tunnel LLC type) but I don't think we're going
269 	 * to really need to.  For A-MSDU we'd have to set the
270 	 * A-MSDU QoS bit in the wifi header, so we just plain
271 	 * can't do it.
272 	 */
273 	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
274 		if ((! mcast) &&
275 		    (do_ampdu_amsdu || (no_ampdu && do_amsdu)) &&
276 		    ieee80211_amsdu_tx_ok(ni)) {
277 			m = ieee80211_amsdu_check(ni, m);
278 			if (m == NULL) {
279 				/* NB: any ni ref held on stageq */
280 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
281 				    "%s: amsdu_check queued frame\n",
282 				    __func__);
283 				return (0);
284 			}
285 		} else if ((! mcast) && do_ff) {
286 			m = ieee80211_ff_check(ni, m);
287 			if (m == NULL) {
288 				/* NB: any ni ref held on stageq */
289 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
290 				    "%s: ff_check queued frame\n",
291 				    __func__);
292 				return (0);
293 			}
294 		}
295 	}
296 #endif /* IEEE80211_SUPPORT_SUPERG */
297 
298 	/*
299 	 * Grab the TX lock - serialise the TX process from this
300 	 * point (where TX state is being checked/modified)
301 	 * through to driver queue.
302 	 */
303 	IEEE80211_TX_LOCK(ic);
304 
305 	/*
306 	 * XXX make the encap and transmit code a separate function
307 	 * so things like the FF (and later A-MSDU) path can just call
308 	 * it for flushed frames.
309 	 */
310 	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
311 		/*
312 		 * Encapsulate the packet in prep for transmission.
313 		 */
314 		m = ieee80211_encap(vap, ni, m);
315 		if (m == NULL) {
316 			/* NB: stat+msg handled in ieee80211_encap */
317 			IEEE80211_TX_UNLOCK(ic);
318 			ieee80211_free_node(ni);
319 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
320 			return (ENOBUFS);
321 		}
322 	}
323 	(void) ieee80211_parent_xmitpkt(ic, m);
324 
325 	/*
326 	 * Unlock at this point - no need to hold it across
327 	 * ieee80211_free_node() (ie, the comlock)
328 	 */
329 	IEEE80211_TX_UNLOCK(ic);
330 	ic->ic_lastdata = ticks;
331 
332 	return (0);
333 }
334 
335 /*
336  * Send the given mbuf through the given vap.
337  *
338  * This consumes the mbuf regardless of whether the transmit
339  * was successful or not.
340  *
341  * This does none of the initial checks that ieee80211_start()
342  * does (eg CAC timeout, interface wakeup) - the caller must
343  * do this first.
344  */
345 static int
346 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
347 {
348 #define	IS_DWDS(vap) \
349 	(vap->iv_opmode == IEEE80211_M_WDS && \
350 	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
351 	struct ieee80211com *ic = vap->iv_ic;
352 	struct ifnet *ifp = vap->iv_ifp;
353 	struct ieee80211_node *ni;
354 	struct ether_header *eh;
355 
356 	/*
357 	 * Cancel any background scan.
358 	 */
359 	if (ic->ic_flags & IEEE80211_F_SCAN)
360 		ieee80211_cancel_anyscan(vap);
361 	/*
362 	 * Find the node for the destination so we can do
363 	 * things like power save and fast frames aggregation.
364 	 *
365 	 * NB: past this point various code assumes the first
366 	 *     mbuf has the 802.3 header present (and contiguous).
367 	 */
368 	ni = NULL;
369 	if (m->m_len < sizeof(struct ether_header) &&
370 	   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
371 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
372 		    "discard frame, %s\n", "m_pullup failed");
373 		vap->iv_stats.is_tx_nobuf++;	/* XXX */
374 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
375 		return (ENOBUFS);
376 	}
377 	eh = mtod(m, struct ether_header *);
378 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
379 		if (IS_DWDS(vap)) {
380 			/*
381 			 * Only unicast frames from the above go out
382 			 * DWDS vaps; multicast frames are handled by
383 			 * dispatching the frame as it comes through
384 			 * the AP vap (see below).
385 			 */
386 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
387 			    eh->ether_dhost, "mcast", "%s", "on DWDS");
388 			vap->iv_stats.is_dwds_mcast++;
389 			m_freem(m);
390 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
391 			/* XXX better status? */
392 			return (ENOBUFS);
393 		}
394 		if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
395 			/*
396 			 * Spam DWDS vap's w/ multicast traffic.
397 			 */
398 			/* XXX only if dwds in use? */
399 			ieee80211_dwds_mcast(vap, m);
400 		}
401 	}
402 #ifdef IEEE80211_SUPPORT_MESH
403 	if (vap->iv_opmode != IEEE80211_M_MBSS) {
404 #endif
405 		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
406 		if (ni == NULL) {
407 			/* NB: ieee80211_find_txnode does stat+msg */
408 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
409 			m_freem(m);
410 			/* XXX better status? */
411 			return (ENOBUFS);
412 		}
413 		if (ni->ni_associd == 0 &&
414 		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
415 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
416 			    eh->ether_dhost, NULL,
417 			    "sta not associated (type 0x%04x)",
418 			    htons(eh->ether_type));
419 			vap->iv_stats.is_tx_notassoc++;
420 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
421 			m_freem(m);
422 			ieee80211_free_node(ni);
423 			/* XXX better status? */
424 			return (ENOBUFS);
425 		}
426 #ifdef IEEE80211_SUPPORT_MESH
427 	} else {
428 		if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
429 			/*
430 			 * Proxy station only if configured.
431 			 */
432 			if (!ieee80211_mesh_isproxyena(vap)) {
433 				IEEE80211_DISCARD_MAC(vap,
434 				    IEEE80211_MSG_OUTPUT |
435 				    IEEE80211_MSG_MESH,
436 				    eh->ether_dhost, NULL,
437 				    "%s", "proxy not enabled");
438 				vap->iv_stats.is_mesh_notproxy++;
439 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
440 				m_freem(m);
441 				/* XXX better status? */
442 				return (ENOBUFS);
443 			}
444 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
445 			    "forward frame from DS SA(%6D), DA(%6D)\n",
446 			    eh->ether_shost, ":",
447 			    eh->ether_dhost, ":");
448 			ieee80211_mesh_proxy_check(vap, eh->ether_shost);
449 		}
450 		ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
451 		if (ni == NULL) {
452 			/*
453 			 * NB: ieee80211_mesh_discover holds/disposes
454 			 * frame (e.g. queueing on path discovery).
455 			 */
456 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
457 			/* XXX better status? */
458 			return (ENOBUFS);
459 		}
460 	}
461 #endif
462 
463 	/*
464 	 * We've resolved the sender, so attempt to transmit it.
465 	 */
466 
467 	if (vap->iv_state == IEEE80211_S_SLEEP) {
468 		/*
469 		 * In power save; queue frame and then  wakeup device
470 		 * for transmit.
471 		 */
472 		ic->ic_lastdata = ticks;
473 		if (ieee80211_pwrsave(ni, m) != 0)
474 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
475 		ieee80211_free_node(ni);
476 		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
477 		return (0);
478 	}
479 
480 	if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
481 		return (ENOBUFS);
482 	return (0);
483 #undef	IS_DWDS
484 }
485 
486 /*
487  * Start method for vap's.  All packets from the stack come
488  * through here.  We handle common processing of the packets
489  * before dispatching them to the underlying device.
490  *
491  * if_transmit() requires that the mbuf be consumed by this call
492  * regardless of the return condition.
493  */
494 int
495 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
496 {
497 	struct ieee80211vap *vap = ifp->if_softc;
498 	struct ieee80211com *ic = vap->iv_ic;
499 
500 	/*
501 	 * No data frames go out unless we're running.
502 	 * Note in particular this covers CAC and CSA
503 	 * states (though maybe we should check muting
504 	 * for CSA).
505 	 */
506 	if (vap->iv_state != IEEE80211_S_RUN &&
507 	    vap->iv_state != IEEE80211_S_SLEEP) {
508 		IEEE80211_LOCK(ic);
509 		/* re-check under the com lock to avoid races */
510 		if (vap->iv_state != IEEE80211_S_RUN &&
511 		    vap->iv_state != IEEE80211_S_SLEEP) {
512 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
513 			    "%s: ignore queue, in %s state\n",
514 			    __func__, ieee80211_state_name[vap->iv_state]);
515 			vap->iv_stats.is_tx_badstate++;
516 			IEEE80211_UNLOCK(ic);
517 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
518 			m_freem(m);
519 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
520 			return (ENETDOWN);
521 		}
522 		IEEE80211_UNLOCK(ic);
523 	}
524 
525 	/*
526 	 * Sanitize mbuf flags for net80211 use.  We cannot
527 	 * clear M_PWR_SAV or M_MORE_DATA because these may
528 	 * be set for frames that are re-submitted from the
529 	 * power save queue.
530 	 *
531 	 * NB: This must be done before ieee80211_classify as
532 	 *     it marks EAPOL in frames with M_EAPOL.
533 	 */
534 	m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
535 
536 	/*
537 	 * Bump to the packet transmission path.
538 	 * The mbuf will be consumed here.
539 	 */
540 	return (ieee80211_start_pkt(vap, m));
541 }
542 
543 void
544 ieee80211_vap_qflush(struct ifnet *ifp)
545 {
546 
547 	/* Empty for now */
548 }
549 
550 /*
551  * 802.11 raw output routine.
552  *
553  * XXX TODO: this (and other send routines) should correctly
554  * XXX keep the pwr mgmt bit set if it decides to call into the
555  * XXX driver to send a frame whilst the state is SLEEP.
556  *
557  * Otherwise the peer may decide that we're awake and flood us
558  * with traffic we are still too asleep to receive!
559  */
560 int
561 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
562     struct mbuf *m, const struct ieee80211_bpf_params *params)
563 {
564 	struct ieee80211com *ic = vap->iv_ic;
565 	int error;
566 
567 	/*
568 	 * Set node - the caller has taken a reference, so ensure
569 	 * that the mbuf has the same node value that
570 	 * it would if it were going via the normal path.
571 	 */
572 	MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
573 	m->m_pkthdr.rcvif = (void *)ni;
574 
575 	/*
576 	 * Attempt to add bpf transmit parameters.
577 	 *
578 	 * For now it's ok to fail; the raw_xmit api still takes
579 	 * them as an option.
580 	 *
581 	 * Later on when ic_raw_xmit() has params removed,
582 	 * they'll have to be added - so fail the transmit if
583 	 * they can't be.
584 	 */
585 	if (params)
586 		(void) ieee80211_add_xmit_params(m, params);
587 
588 	error = ic->ic_raw_xmit(ni, m, params);
589 	if (error) {
590 		if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
591 		ieee80211_free_node(ni);
592 	}
593 	return (error);
594 }
595 
596 static int
597 ieee80211_validate_frame(struct mbuf *m,
598     const struct ieee80211_bpf_params *params)
599 {
600 	struct ieee80211_frame *wh;
601 	int type;
602 
603 	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
604 		return (EINVAL);
605 
606 	wh = mtod(m, struct ieee80211_frame *);
607 	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
608 	    IEEE80211_FC0_VERSION_0)
609 		return (EINVAL);
610 
611 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
612 	if (type != IEEE80211_FC0_TYPE_DATA) {
613 		if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) !=
614 		    IEEE80211_FC1_DIR_NODS)
615 			return (EINVAL);
616 
617 		if (type != IEEE80211_FC0_TYPE_MGT &&
618 		    (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) != 0)
619 			return (EINVAL);
620 
621 		/* XXX skip other field checks? */
622 	}
623 
624 	if ((params && (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0) ||
625 	    (IEEE80211_IS_PROTECTED(wh))) {
626 		int subtype;
627 
628 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
629 
630 		/*
631 		 * See IEEE Std 802.11-2012,
632 		 * 8.2.4.1.9 'Protected Frame field'
633 		 */
634 		/* XXX no support for robust management frames yet. */
635 		if (!(type == IEEE80211_FC0_TYPE_DATA ||
636 		    (type == IEEE80211_FC0_TYPE_MGT &&
637 		     subtype == IEEE80211_FC0_SUBTYPE_AUTH)))
638 			return (EINVAL);
639 
640 		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
641 	}
642 
643 	if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh))
644 		return (EINVAL);
645 
646 	return (0);
647 }
648 
649 static int
650 ieee80211_validate_rate(struct ieee80211_node *ni, uint8_t rate)
651 {
652 	struct ieee80211com *ic = ni->ni_ic;
653 
654 	if (IEEE80211_IS_HT_RATE(rate)) {
655 		if ((ic->ic_htcaps & IEEE80211_HTC_HT) == 0)
656 			return (EINVAL);
657 
658 		rate = IEEE80211_RV(rate);
659 		if (rate <= 31) {
660 			if (rate > ic->ic_txstream * 8 - 1)
661 				return (EINVAL);
662 
663 			return (0);
664 		}
665 
666 		if (rate == 32) {
667 			if ((ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0)
668 				return (EINVAL);
669 
670 			return (0);
671 		}
672 
673 		if ((ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) == 0)
674 			return (EINVAL);
675 
676 		switch (ic->ic_txstream) {
677 		case 0:
678 		case 1:
679 			return (EINVAL);
680 		case 2:
681 			if (rate > 38)
682 				return (EINVAL);
683 
684 			return (0);
685 		case 3:
686 			if (rate > 52)
687 				return (EINVAL);
688 
689 			return (0);
690 		case 4:
691 		default:
692 			if (rate > 76)
693 				return (EINVAL);
694 
695 			return (0);
696 		}
697 	}
698 
699 	if (!ieee80211_isratevalid(ic->ic_rt, rate))
700 		return (EINVAL);
701 
702 	return (0);
703 }
704 
705 static int
706 ieee80211_sanitize_rates(struct ieee80211_node *ni, struct mbuf *m,
707     const struct ieee80211_bpf_params *params)
708 {
709 	int error;
710 
711 	if (!params)
712 		return (0);	/* nothing to do */
713 
714 	/* NB: most drivers assume that ibp_rate0 is set (!= 0). */
715 	if (params->ibp_rate0 != 0) {
716 		error = ieee80211_validate_rate(ni, params->ibp_rate0);
717 		if (error != 0)
718 			return (error);
719 	} else {
720 		/* XXX pre-setup some default (e.g., mgmt / mcast) rate */
721 		/* XXX __DECONST? */
722 		(void) m;
723 	}
724 
725 	if (params->ibp_rate1 != 0 &&
726 	    (error = ieee80211_validate_rate(ni, params->ibp_rate1)) != 0)
727 		return (error);
728 
729 	if (params->ibp_rate2 != 0 &&
730 	    (error = ieee80211_validate_rate(ni, params->ibp_rate2)) != 0)
731 		return (error);
732 
733 	if (params->ibp_rate3 != 0 &&
734 	    (error = ieee80211_validate_rate(ni, params->ibp_rate3)) != 0)
735 		return (error);
736 
737 	return (0);
738 }
739 
740 /*
741  * 802.11 output routine. This is (currently) used only to
742  * connect bpf write calls to the 802.11 layer for injecting
743  * raw 802.11 frames.
744  */
745 int
746 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
747 	const struct sockaddr *dst, struct route *ro)
748 {
749 #define senderr(e) do { error = (e); goto bad;} while (0)
750 	const struct ieee80211_bpf_params *params = NULL;
751 	struct ieee80211_node *ni = NULL;
752 	struct ieee80211vap *vap;
753 	struct ieee80211_frame *wh;
754 	struct ieee80211com *ic = NULL;
755 	int error;
756 	int ret;
757 
758 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
759 		/*
760 		 * Short-circuit requests if the vap is marked OACTIVE
761 		 * as this can happen because a packet came down through
762 		 * ieee80211_start before the vap entered RUN state in
763 		 * which case it's ok to just drop the frame.  This
764 		 * should not be necessary but callers of if_output don't
765 		 * check OACTIVE.
766 		 */
767 		senderr(ENETDOWN);
768 	}
769 	vap = ifp->if_softc;
770 	ic = vap->iv_ic;
771 	/*
772 	 * Hand to the 802.3 code if not tagged as
773 	 * a raw 802.11 frame.
774 	 */
775 	if (dst->sa_family != AF_IEEE80211)
776 		return vap->iv_output(ifp, m, dst, ro);
777 #ifdef MAC
778 	error = mac_ifnet_check_transmit(ifp, m);
779 	if (error)
780 		senderr(error);
781 #endif
782 	if (ifp->if_flags & IFF_MONITOR)
783 		senderr(ENETDOWN);
784 	if (!IFNET_IS_UP_RUNNING(ifp))
785 		senderr(ENETDOWN);
786 	if (vap->iv_state == IEEE80211_S_CAC) {
787 		IEEE80211_DPRINTF(vap,
788 		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
789 		    "block %s frame in CAC state\n", "raw data");
790 		vap->iv_stats.is_tx_badstate++;
791 		senderr(EIO);		/* XXX */
792 	} else if (vap->iv_state == IEEE80211_S_SCAN)
793 		senderr(EIO);
794 	/* XXX bypass bridge, pfil, carp, etc. */
795 
796 	/*
797 	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
798 	 * present by setting the sa_len field of the sockaddr (yes,
799 	 * this is a hack).
800 	 * NB: we assume sa_data is suitably aligned to cast.
801 	 */
802 	if (dst->sa_len != 0)
803 		params = (const struct ieee80211_bpf_params *)dst->sa_data;
804 
805 	error = ieee80211_validate_frame(m, params);
806 	if (error != 0)
807 		senderr(error);
808 
809 	wh = mtod(m, struct ieee80211_frame *);
810 
811 	/* locate destination node */
812 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
813 	case IEEE80211_FC1_DIR_NODS:
814 	case IEEE80211_FC1_DIR_FROMDS:
815 		ni = ieee80211_find_txnode(vap, wh->i_addr1);
816 		break;
817 	case IEEE80211_FC1_DIR_TODS:
818 	case IEEE80211_FC1_DIR_DSTODS:
819 		ni = ieee80211_find_txnode(vap, wh->i_addr3);
820 		break;
821 	default:
822 		senderr(EDOOFUS);
823 	}
824 	if (ni == NULL) {
825 		/*
826 		 * Permit packets w/ bpf params through regardless
827 		 * (see below about sa_len).
828 		 */
829 		if (dst->sa_len == 0)
830 			senderr(EHOSTUNREACH);
831 		ni = ieee80211_ref_node(vap->iv_bss);
832 	}
833 
834 	/*
835 	 * Sanitize mbuf for net80211 flags leaked from above.
836 	 *
837 	 * NB: This must be done before ieee80211_classify as
838 	 *     it marks EAPOL in frames with M_EAPOL.
839 	 */
840 	m->m_flags &= ~M_80211_TX;
841 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
842 
843 	if (IEEE80211_IS_DATA(wh)) {
844 		/* calculate priority so drivers can find the tx queue */
845 		if (ieee80211_classify(ni, m))
846 			senderr(EIO);		/* XXX */
847 
848 		/* NB: ieee80211_encap does not include 802.11 header */
849 		IEEE80211_NODE_STAT_ADD(ni, tx_bytes,
850 		    m->m_pkthdr.len - ieee80211_hdrsize(wh));
851 	} else
852 		M_WME_SETAC(m, WME_AC_BE);
853 
854 	error = ieee80211_sanitize_rates(ni, m, params);
855 	if (error != 0)
856 		senderr(error);
857 
858 	IEEE80211_NODE_STAT(ni, tx_data);
859 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
860 		IEEE80211_NODE_STAT(ni, tx_mcast);
861 		m->m_flags |= M_MCAST;
862 	} else
863 		IEEE80211_NODE_STAT(ni, tx_ucast);
864 
865 	IEEE80211_TX_LOCK(ic);
866 	ret = ieee80211_raw_output(vap, ni, m, params);
867 	IEEE80211_TX_UNLOCK(ic);
868 	return (ret);
869 bad:
870 	if (m != NULL)
871 		m_freem(m);
872 	if (ni != NULL)
873 		ieee80211_free_node(ni);
874 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
875 	return error;
876 #undef senderr
877 }
878 
879 /*
880  * Set the direction field and address fields of an outgoing
881  * frame.  Note this should be called early on in constructing
882  * a frame as it sets i_fc[1]; other bits can then be or'd in.
883  */
884 void
885 ieee80211_send_setup(
886 	struct ieee80211_node *ni,
887 	struct mbuf *m,
888 	int type, int tid,
889 	const uint8_t sa[IEEE80211_ADDR_LEN],
890 	const uint8_t da[IEEE80211_ADDR_LEN],
891 	const uint8_t bssid[IEEE80211_ADDR_LEN])
892 {
893 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
894 	struct ieee80211vap *vap = ni->ni_vap;
895 	struct ieee80211_tx_ampdu *tap;
896 	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
897 	ieee80211_seq seqno;
898 
899 	IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
900 
901 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
902 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
903 		switch (vap->iv_opmode) {
904 		case IEEE80211_M_STA:
905 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
906 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
907 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
908 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
909 			break;
910 		case IEEE80211_M_IBSS:
911 		case IEEE80211_M_AHDEMO:
912 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
913 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
914 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
915 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
916 			break;
917 		case IEEE80211_M_HOSTAP:
918 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
919 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
920 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
921 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
922 			break;
923 		case IEEE80211_M_WDS:
924 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
925 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
926 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
927 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
928 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
929 			break;
930 		case IEEE80211_M_MBSS:
931 #ifdef IEEE80211_SUPPORT_MESH
932 			if (IEEE80211_IS_MULTICAST(da)) {
933 				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
934 				/* XXX next hop */
935 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
936 				IEEE80211_ADDR_COPY(wh->i_addr2,
937 				    vap->iv_myaddr);
938 			} else {
939 				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
940 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
941 				IEEE80211_ADDR_COPY(wh->i_addr2,
942 				    vap->iv_myaddr);
943 				IEEE80211_ADDR_COPY(wh->i_addr3, da);
944 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
945 			}
946 #endif
947 			break;
948 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
949 			break;
950 		}
951 	} else {
952 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
953 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
954 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
955 #ifdef IEEE80211_SUPPORT_MESH
956 		if (vap->iv_opmode == IEEE80211_M_MBSS)
957 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
958 		else
959 #endif
960 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
961 	}
962 	*(uint16_t *)&wh->i_dur[0] = 0;
963 
964 	/*
965 	 * XXX TODO: this is what the TX lock is for.
966 	 * Here we're incrementing sequence numbers, and they
967 	 * need to be in lock-step with what the driver is doing
968 	 * both in TX ordering and crypto encap (IV increment.)
969 	 *
970 	 * If the driver does seqno itself, then we can skip
971 	 * assigning sequence numbers here, and we can avoid
972 	 * requiring the TX lock.
973 	 */
974 	tap = &ni->ni_tx_ampdu[tid];
975 	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) {
976 		m->m_flags |= M_AMPDU_MPDU;
977 
978 		/* NB: zero out i_seq field (for s/w encryption etc) */
979 		*(uint16_t *)&wh->i_seq[0] = 0;
980 	} else {
981 		if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
982 				      type & IEEE80211_FC0_SUBTYPE_MASK))
983 			/*
984 			 * 802.11-2012 9.3.2.10 - QoS multicast frames
985 			 * come out of a different seqno space.
986 			 */
987 			if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
988 				seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
989 			} else {
990 				seqno = ni->ni_txseqs[tid]++;
991 			}
992 		else
993 			seqno = 0;
994 
995 		*(uint16_t *)&wh->i_seq[0] =
996 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
997 		M_SEQNO_SET(m, seqno);
998 	}
999 
1000 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1001 		m->m_flags |= M_MCAST;
1002 #undef WH4
1003 }
1004 
1005 /*
1006  * Send a management frame to the specified node.  The node pointer
1007  * must have a reference as the pointer will be passed to the driver
1008  * and potentially held for a long time.  If the frame is successfully
1009  * dispatched to the driver, then it is responsible for freeing the
1010  * reference (and potentially free'ing up any associated storage);
1011  * otherwise deal with reclaiming any reference (on error).
1012  */
1013 int
1014 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
1015 	struct ieee80211_bpf_params *params)
1016 {
1017 	struct ieee80211vap *vap = ni->ni_vap;
1018 	struct ieee80211com *ic = ni->ni_ic;
1019 	struct ieee80211_frame *wh;
1020 	int ret;
1021 
1022 	KASSERT(ni != NULL, ("null node"));
1023 
1024 	if (vap->iv_state == IEEE80211_S_CAC) {
1025 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
1026 		    ni, "block %s frame in CAC state",
1027 			ieee80211_mgt_subtype_name(type));
1028 		vap->iv_stats.is_tx_badstate++;
1029 		ieee80211_free_node(ni);
1030 		m_freem(m);
1031 		return EIO;		/* XXX */
1032 	}
1033 
1034 	M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
1035 	if (m == NULL) {
1036 		ieee80211_free_node(ni);
1037 		return ENOMEM;
1038 	}
1039 
1040 	IEEE80211_TX_LOCK(ic);
1041 
1042 	wh = mtod(m, struct ieee80211_frame *);
1043 	ieee80211_send_setup(ni, m,
1044 	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
1045 	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1046 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
1047 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
1048 		    "encrypting frame (%s)", __func__);
1049 		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1050 	}
1051 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1052 
1053 	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
1054 	M_WME_SETAC(m, params->ibp_pri);
1055 
1056 #ifdef IEEE80211_DEBUG
1057 	/* avoid printing too many frames */
1058 	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
1059 	    ieee80211_msg_dumppkts(vap)) {
1060 		ieee80211_note(vap, "[%s] send %s on channel %u\n",
1061 		    ether_sprintf(wh->i_addr1),
1062 		    ieee80211_mgt_subtype_name(type),
1063 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
1064 	}
1065 #endif
1066 	IEEE80211_NODE_STAT(ni, tx_mgmt);
1067 
1068 	ret = ieee80211_raw_output(vap, ni, m, params);
1069 	IEEE80211_TX_UNLOCK(ic);
1070 	return (ret);
1071 }
1072 
1073 static void
1074 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg,
1075     int status)
1076 {
1077 	struct ieee80211vap *vap = ni->ni_vap;
1078 
1079 	wakeup(vap);
1080 }
1081 
1082 /*
1083  * Send a null data frame to the specified node.  If the station
1084  * is setup for QoS then a QoS Null Data frame is constructed.
1085  * If this is a WDS station then a 4-address frame is constructed.
1086  *
1087  * NB: the caller is assumed to have setup a node reference
1088  *     for use; this is necessary to deal with a race condition
1089  *     when probing for inactive stations.  Like ieee80211_mgmt_output
1090  *     we must cleanup any node reference on error;  however we
1091  *     can safely just unref it as we know it will never be the
1092  *     last reference to the node.
1093  */
1094 int
1095 ieee80211_send_nulldata(struct ieee80211_node *ni)
1096 {
1097 	struct ieee80211vap *vap = ni->ni_vap;
1098 	struct ieee80211com *ic = ni->ni_ic;
1099 	struct mbuf *m;
1100 	struct ieee80211_frame *wh;
1101 	int hdrlen;
1102 	uint8_t *frm;
1103 	int ret;
1104 
1105 	if (vap->iv_state == IEEE80211_S_CAC) {
1106 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
1107 		    ni, "block %s frame in CAC state", "null data");
1108 		ieee80211_unref_node(&ni);
1109 		vap->iv_stats.is_tx_badstate++;
1110 		return EIO;		/* XXX */
1111 	}
1112 
1113 	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
1114 		hdrlen = sizeof(struct ieee80211_qosframe);
1115 	else
1116 		hdrlen = sizeof(struct ieee80211_frame);
1117 	/* NB: only WDS vap's get 4-address frames */
1118 	if (vap->iv_opmode == IEEE80211_M_WDS)
1119 		hdrlen += IEEE80211_ADDR_LEN;
1120 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1121 		hdrlen = roundup(hdrlen, sizeof(uint32_t));
1122 
1123 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
1124 	if (m == NULL) {
1125 		/* XXX debug msg */
1126 		ieee80211_unref_node(&ni);
1127 		vap->iv_stats.is_tx_nobuf++;
1128 		return ENOMEM;
1129 	}
1130 	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
1131 	    ("leading space %zd", M_LEADINGSPACE(m)));
1132 	M_PREPEND(m, hdrlen, IEEE80211_M_NOWAIT);
1133 	if (m == NULL) {
1134 		/* NB: cannot happen */
1135 		ieee80211_free_node(ni);
1136 		return ENOMEM;
1137 	}
1138 
1139 	IEEE80211_TX_LOCK(ic);
1140 
1141 	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
1142 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
1143 		const int tid = WME_AC_TO_TID(WME_AC_BE);
1144 		uint8_t *qos;
1145 
1146 		ieee80211_send_setup(ni, m,
1147 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
1148 		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1149 
1150 		if (vap->iv_opmode == IEEE80211_M_WDS)
1151 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1152 		else
1153 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1154 		qos[0] = tid & IEEE80211_QOS_TID;
1155 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
1156 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1157 		qos[1] = 0;
1158 	} else {
1159 		ieee80211_send_setup(ni, m,
1160 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
1161 		    IEEE80211_NONQOS_TID,
1162 		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1163 	}
1164 	if (vap->iv_opmode != IEEE80211_M_WDS) {
1165 		/* NB: power management bit is never sent by an AP */
1166 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1167 		    vap->iv_opmode != IEEE80211_M_HOSTAP)
1168 			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
1169 	}
1170 	if ((ic->ic_flags & IEEE80211_F_SCAN) &&
1171 	    (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) {
1172 		ieee80211_add_callback(m, ieee80211_nulldata_transmitted,
1173 		    NULL);
1174 	}
1175 	m->m_len = m->m_pkthdr.len = hdrlen;
1176 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1177 
1178 	M_WME_SETAC(m, WME_AC_BE);
1179 
1180 	IEEE80211_NODE_STAT(ni, tx_data);
1181 
1182 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
1183 	    "send %snull data frame on channel %u, pwr mgt %s",
1184 	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
1185 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
1186 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
1187 
1188 	ret = ieee80211_raw_output(vap, ni, m, NULL);
1189 	IEEE80211_TX_UNLOCK(ic);
1190 	return (ret);
1191 }
1192 
1193 /*
1194  * Assign priority to a frame based on any vlan tag assigned
1195  * to the station and/or any Diffserv setting in an IP header.
1196  * Finally, if an ACM policy is setup (in station mode) it's
1197  * applied.
1198  */
1199 int
1200 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
1201 {
1202 	const struct ether_header *eh = NULL;
1203 	uint16_t ether_type;
1204 	int v_wme_ac, d_wme_ac, ac;
1205 
1206 	if (__predict_false(m->m_flags & M_ENCAP)) {
1207 		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
1208 		struct llc *llc;
1209 		int hdrlen, subtype;
1210 
1211 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1212 		if (subtype & IEEE80211_FC0_SUBTYPE_NODATA) {
1213 			ac = WME_AC_BE;
1214 			goto done;
1215 		}
1216 
1217 		hdrlen = ieee80211_hdrsize(wh);
1218 		if (m->m_pkthdr.len < hdrlen + sizeof(*llc))
1219 			return 1;
1220 
1221 		llc = (struct llc *)mtodo(m, hdrlen);
1222 		if (llc->llc_dsap != LLC_SNAP_LSAP ||
1223 		    llc->llc_ssap != LLC_SNAP_LSAP ||
1224 		    llc->llc_control != LLC_UI ||
1225 		    llc->llc_snap.org_code[0] != 0 ||
1226 		    llc->llc_snap.org_code[1] != 0 ||
1227 		    llc->llc_snap.org_code[2] != 0)
1228 			return 1;
1229 
1230 		ether_type = llc->llc_snap.ether_type;
1231 	} else {
1232 		eh = mtod(m, struct ether_header *);
1233 		ether_type = eh->ether_type;
1234 	}
1235 
1236 	/*
1237 	 * Always promote PAE/EAPOL frames to high priority.
1238 	 */
1239 	if (ether_type == htons(ETHERTYPE_PAE)) {
1240 		/* NB: mark so others don't need to check header */
1241 		m->m_flags |= M_EAPOL;
1242 		ac = WME_AC_VO;
1243 		goto done;
1244 	}
1245 	/*
1246 	 * Non-qos traffic goes to BE.
1247 	 */
1248 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
1249 		ac = WME_AC_BE;
1250 		goto done;
1251 	}
1252 
1253 	/*
1254 	 * If node has a vlan tag then all traffic
1255 	 * to it must have a matching tag.
1256 	 */
1257 	v_wme_ac = 0;
1258 	if (ni->ni_vlan != 0) {
1259 		 if ((m->m_flags & M_VLANTAG) == 0) {
1260 			IEEE80211_NODE_STAT(ni, tx_novlantag);
1261 			return 1;
1262 		}
1263 		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
1264 		    EVL_VLANOFTAG(ni->ni_vlan)) {
1265 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
1266 			return 1;
1267 		}
1268 		/* map vlan priority to AC */
1269 		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
1270 	}
1271 
1272 	if (eh == NULL)
1273 		goto no_eh;
1274 
1275 	/* XXX m_copydata may be too slow for fast path */
1276 	switch (ntohs(eh->ether_type)) {
1277 #ifdef INET
1278 	case ETHERTYPE_IP:
1279 	{
1280 		uint8_t tos;
1281 		/*
1282 		 * IP frame, map the DSCP bits from the TOS field.
1283 		 */
1284 		/* NB: ip header may not be in first mbuf */
1285 		m_copydata(m, sizeof(struct ether_header) +
1286 		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
1287 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1288 		d_wme_ac = TID_TO_WME_AC(tos);
1289 		break;
1290 	}
1291 #endif
1292 #ifdef INET6
1293 	case ETHERTYPE_IPV6:
1294 	{
1295 		uint32_t flow;
1296 		uint8_t tos;
1297 		/*
1298 		 * IPv6 frame, map the DSCP bits from the traffic class field.
1299 		 */
1300 		m_copydata(m, sizeof(struct ether_header) +
1301 		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
1302 		    (caddr_t) &flow);
1303 		tos = (uint8_t)(ntohl(flow) >> 20);
1304 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1305 		d_wme_ac = TID_TO_WME_AC(tos);
1306 		break;
1307 	}
1308 #endif
1309 	default:
1310 no_eh:
1311 		d_wme_ac = WME_AC_BE;
1312 		break;
1313 	}
1314 
1315 	/*
1316 	 * Use highest priority AC.
1317 	 */
1318 	if (v_wme_ac > d_wme_ac)
1319 		ac = v_wme_ac;
1320 	else
1321 		ac = d_wme_ac;
1322 
1323 	/*
1324 	 * Apply ACM policy.
1325 	 */
1326 	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1327 		static const int acmap[4] = {
1328 			WME_AC_BK,	/* WME_AC_BE */
1329 			WME_AC_BK,	/* WME_AC_BK */
1330 			WME_AC_BE,	/* WME_AC_VI */
1331 			WME_AC_VI,	/* WME_AC_VO */
1332 		};
1333 		struct ieee80211com *ic = ni->ni_ic;
1334 
1335 		while (ac != WME_AC_BK &&
1336 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1337 			ac = acmap[ac];
1338 	}
1339 done:
1340 	M_WME_SETAC(m, ac);
1341 	return 0;
1342 }
1343 
1344 /*
1345  * Insure there is sufficient contiguous space to encapsulate the
1346  * 802.11 data frame.  If room isn't already there, arrange for it.
1347  * Drivers and cipher modules assume we have done the necessary work
1348  * and fail rudely if they don't find the space they need.
1349  */
1350 struct mbuf *
1351 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1352 	struct ieee80211_key *key, struct mbuf *m)
1353 {
1354 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
1355 	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1356 
1357 	if (key != NULL) {
1358 		/* XXX belongs in crypto code? */
1359 		needed_space += key->wk_cipher->ic_header;
1360 		/* XXX frags */
1361 		/*
1362 		 * When crypto is being done in the host we must insure
1363 		 * the data are writable for the cipher routines; clone
1364 		 * a writable mbuf chain.
1365 		 * XXX handle SWMIC specially
1366 		 */
1367 		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1368 			m = m_unshare(m, IEEE80211_M_NOWAIT);
1369 			if (m == NULL) {
1370 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1371 				    "%s: cannot get writable mbuf\n", __func__);
1372 				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1373 				return NULL;
1374 			}
1375 		}
1376 	}
1377 	/*
1378 	 * We know we are called just before stripping an Ethernet
1379 	 * header and prepending an LLC header.  This means we know
1380 	 * there will be
1381 	 *	sizeof(struct ether_header) - sizeof(struct llc)
1382 	 * bytes recovered to which we need additional space for the
1383 	 * 802.11 header and any crypto header.
1384 	 */
1385 	/* XXX check trailing space and copy instead? */
1386 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1387 		struct mbuf *n = m_gethdr(IEEE80211_M_NOWAIT, m->m_type);
1388 		if (n == NULL) {
1389 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1390 			    "%s: cannot expand storage\n", __func__);
1391 			vap->iv_stats.is_tx_nobuf++;
1392 			m_freem(m);
1393 			return NULL;
1394 		}
1395 		KASSERT(needed_space <= MHLEN,
1396 		    ("not enough room, need %u got %d\n", needed_space, MHLEN));
1397 		/*
1398 		 * Setup new mbuf to have leading space to prepend the
1399 		 * 802.11 header and any crypto header bits that are
1400 		 * required (the latter are added when the driver calls
1401 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
1402 		 */
1403 		/* NB: must be first 'cuz it clobbers m_data */
1404 		m_move_pkthdr(n, m);
1405 		n->m_len = 0;			/* NB: m_gethdr does not set */
1406 		n->m_data += needed_space;
1407 		/*
1408 		 * Pull up Ethernet header to create the expected layout.
1409 		 * We could use m_pullup but that's overkill (i.e. we don't
1410 		 * need the actual data) and it cannot fail so do it inline
1411 		 * for speed.
1412 		 */
1413 		/* NB: struct ether_header is known to be contiguous */
1414 		n->m_len += sizeof(struct ether_header);
1415 		m->m_len -= sizeof(struct ether_header);
1416 		m->m_data += sizeof(struct ether_header);
1417 		/*
1418 		 * Replace the head of the chain.
1419 		 */
1420 		n->m_next = m;
1421 		m = n;
1422 	}
1423 	return m;
1424 #undef TO_BE_RECLAIMED
1425 }
1426 
1427 /*
1428  * Return the transmit key to use in sending a unicast frame.
1429  * If a unicast key is set we use that.  When no unicast key is set
1430  * we fall back to the default transmit key.
1431  */
1432 static __inline struct ieee80211_key *
1433 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1434 	struct ieee80211_node *ni)
1435 {
1436 	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1437 		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1438 		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1439 			return NULL;
1440 		return &vap->iv_nw_keys[vap->iv_def_txkey];
1441 	} else {
1442 		return &ni->ni_ucastkey;
1443 	}
1444 }
1445 
1446 /*
1447  * Return the transmit key to use in sending a multicast frame.
1448  * Multicast traffic always uses the group key which is installed as
1449  * the default tx key.
1450  */
1451 static __inline struct ieee80211_key *
1452 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1453 	struct ieee80211_node *ni)
1454 {
1455 	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1456 	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1457 		return NULL;
1458 	return &vap->iv_nw_keys[vap->iv_def_txkey];
1459 }
1460 
1461 /*
1462  * Encapsulate an outbound data frame.  The mbuf chain is updated.
1463  * If an error is encountered NULL is returned.  The caller is required
1464  * to provide a node reference and pullup the ethernet header in the
1465  * first mbuf.
1466  *
1467  * NB: Packet is assumed to be processed by ieee80211_classify which
1468  *     marked EAPOL frames w/ M_EAPOL.
1469  */
1470 struct mbuf *
1471 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1472     struct mbuf *m)
1473 {
1474 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1475 #define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
1476 	struct ieee80211com *ic = ni->ni_ic;
1477 #ifdef IEEE80211_SUPPORT_MESH
1478 	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1479 	struct ieee80211_meshcntl_ae10 *mc;
1480 	struct ieee80211_mesh_route *rt = NULL;
1481 	int dir = -1;
1482 #endif
1483 	struct ether_header eh;
1484 	struct ieee80211_frame *wh;
1485 	struct ieee80211_key *key;
1486 	struct llc *llc;
1487 	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast;
1488 	ieee80211_seq seqno;
1489 	int meshhdrsize, meshae;
1490 	uint8_t *qos;
1491 	int is_amsdu = 0;
1492 
1493 	IEEE80211_TX_LOCK_ASSERT(ic);
1494 
1495 	is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST));
1496 
1497 	/*
1498 	 * Copy existing Ethernet header to a safe place.  The
1499 	 * rest of the code assumes it's ok to strip it when
1500 	 * reorganizing state for the final encapsulation.
1501 	 */
1502 	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1503 	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1504 
1505 	/*
1506 	 * Insure space for additional headers.  First identify
1507 	 * transmit key to use in calculating any buffer adjustments
1508 	 * required.  This is also used below to do privacy
1509 	 * encapsulation work.  Then calculate the 802.11 header
1510 	 * size and any padding required by the driver.
1511 	 *
1512 	 * Note key may be NULL if we fall back to the default
1513 	 * transmit key and that is not set.  In that case the
1514 	 * buffer may not be expanded as needed by the cipher
1515 	 * routines, but they will/should discard it.
1516 	 */
1517 	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1518 		if (vap->iv_opmode == IEEE80211_M_STA ||
1519 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1520 		    (vap->iv_opmode == IEEE80211_M_WDS &&
1521 		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) {
1522 			key = ieee80211_crypto_getucastkey(vap, ni);
1523 		} else if ((vap->iv_opmode == IEEE80211_M_WDS) &&
1524 		    (! (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) {
1525 			/*
1526 			 * Use ucastkey for DWDS transmit nodes, multicast
1527 			 * or otherwise.
1528 			 *
1529 			 * This is required to ensure that multicast frames
1530 			 * from a DWDS AP to a DWDS STA is encrypted with
1531 			 * a key that can actually work.
1532 			 *
1533 			 * There's no default key for multicast traffic
1534 			 * on a DWDS WDS VAP node (note NOT the DWDS enabled
1535 			 * AP VAP, the dynamically created per-STA WDS node)
1536 			 * so encap fails and transmit fails.
1537 			 */
1538 			key = ieee80211_crypto_getucastkey(vap, ni);
1539 		} else {
1540 			key = ieee80211_crypto_getmcastkey(vap, ni);
1541 		}
1542 		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1543 			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1544 			    eh.ether_dhost,
1545 			    "no default transmit key (%s) deftxkey %u",
1546 			    __func__, vap->iv_def_txkey);
1547 			vap->iv_stats.is_tx_nodefkey++;
1548 			goto bad;
1549 		}
1550 	} else
1551 		key = NULL;
1552 	/*
1553 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1554 	 * frames so suppress use.  This may be an issue if other
1555 	 * ap's require all data frames to be QoS-encapsulated
1556 	 * once negotiated in which case we'll need to make this
1557 	 * configurable.
1558 	 *
1559 	 * Don't send multicast QoS frames.
1560 	 * Technically multicast frames can be QoS if all stations in the
1561 	 * BSS are also QoS.
1562 	 *
1563 	 * NB: mesh data frames are QoS, including multicast frames.
1564 	 */
1565 	addqos =
1566 	    (((is_mcast == 0) && (ni->ni_flags &
1567 	     (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) ||
1568 	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1569 	    (m->m_flags & M_EAPOL) == 0;
1570 
1571 	if (addqos)
1572 		hdrsize = sizeof(struct ieee80211_qosframe);
1573 	else
1574 		hdrsize = sizeof(struct ieee80211_frame);
1575 #ifdef IEEE80211_SUPPORT_MESH
1576 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1577 		/*
1578 		 * Mesh data frames are encapsulated according to the
1579 		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1580 		 * o Group Addressed data (aka multicast) originating
1581 		 *   at the local sta are sent w/ 3-address format and
1582 		 *   address extension mode 00
1583 		 * o Individually Addressed data (aka unicast) originating
1584 		 *   at the local sta are sent w/ 4-address format and
1585 		 *   address extension mode 00
1586 		 * o Group Addressed data forwarded from a non-mesh sta are
1587 		 *   sent w/ 3-address format and address extension mode 01
1588 		 * o Individually Address data from another sta are sent
1589 		 *   w/ 4-address format and address extension mode 10
1590 		 */
1591 		is4addr = 0;		/* NB: don't use, disable */
1592 		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1593 			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1594 			KASSERT(rt != NULL, ("route is NULL"));
1595 			dir = IEEE80211_FC1_DIR_DSTODS;
1596 			hdrsize += IEEE80211_ADDR_LEN;
1597 			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1598 				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1599 				    vap->iv_myaddr)) {
1600 					IEEE80211_NOTE_MAC(vap,
1601 					    IEEE80211_MSG_MESH,
1602 					    eh.ether_dhost,
1603 					    "%s", "trying to send to ourself");
1604 					goto bad;
1605 				}
1606 				meshae = IEEE80211_MESH_AE_10;
1607 				meshhdrsize =
1608 				    sizeof(struct ieee80211_meshcntl_ae10);
1609 			} else {
1610 				meshae = IEEE80211_MESH_AE_00;
1611 				meshhdrsize =
1612 				    sizeof(struct ieee80211_meshcntl);
1613 			}
1614 		} else {
1615 			dir = IEEE80211_FC1_DIR_FROMDS;
1616 			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1617 				/* proxy group */
1618 				meshae = IEEE80211_MESH_AE_01;
1619 				meshhdrsize =
1620 				    sizeof(struct ieee80211_meshcntl_ae01);
1621 			} else {
1622 				/* group */
1623 				meshae = IEEE80211_MESH_AE_00;
1624 				meshhdrsize = sizeof(struct ieee80211_meshcntl);
1625 			}
1626 		}
1627 	} else {
1628 #endif
1629 		/*
1630 		 * 4-address frames need to be generated for:
1631 		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1632 		 * o packets sent through a vap marked for relaying
1633 		 *   (e.g. a station operating with dynamic WDS)
1634 		 */
1635 		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1636 		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1637 		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1638 		if (is4addr)
1639 			hdrsize += IEEE80211_ADDR_LEN;
1640 		meshhdrsize = meshae = 0;
1641 #ifdef IEEE80211_SUPPORT_MESH
1642 	}
1643 #endif
1644 	/*
1645 	 * Honor driver DATAPAD requirement.
1646 	 */
1647 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1648 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1649 	else
1650 		hdrspace = hdrsize;
1651 
1652 	if (__predict_true((m->m_flags & M_FF) == 0)) {
1653 		/*
1654 		 * Normal frame.
1655 		 */
1656 		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1657 		if (m == NULL) {
1658 			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1659 			goto bad;
1660 		}
1661 		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1662 		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1663 		llc = mtod(m, struct llc *);
1664 		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1665 		llc->llc_control = LLC_UI;
1666 		llc->llc_snap.org_code[0] = 0;
1667 		llc->llc_snap.org_code[1] = 0;
1668 		llc->llc_snap.org_code[2] = 0;
1669 		llc->llc_snap.ether_type = eh.ether_type;
1670 	} else {
1671 #ifdef IEEE80211_SUPPORT_SUPERG
1672 		/*
1673 		 * Aggregated frame.  Check if it's for AMSDU or FF.
1674 		 *
1675 		 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented
1676 		 * anywhere for some reason.  But, since 11n requires
1677 		 * AMSDU RX, we can just assume "11n" == "AMSDU".
1678 		 */
1679 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__);
1680 		if (ieee80211_amsdu_tx_ok(ni)) {
1681 			m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key);
1682 			is_amsdu = 1;
1683 		} else {
1684 			m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1685 		}
1686 		if (m == NULL)
1687 #endif
1688 			goto bad;
1689 	}
1690 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1691 
1692 	M_PREPEND(m, hdrspace + meshhdrsize, IEEE80211_M_NOWAIT);
1693 	if (m == NULL) {
1694 		vap->iv_stats.is_tx_nobuf++;
1695 		goto bad;
1696 	}
1697 	wh = mtod(m, struct ieee80211_frame *);
1698 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1699 	*(uint16_t *)wh->i_dur = 0;
1700 	qos = NULL;	/* NB: quiet compiler */
1701 	if (is4addr) {
1702 		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1703 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1704 		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1705 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1706 		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1707 	} else switch (vap->iv_opmode) {
1708 	case IEEE80211_M_STA:
1709 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1710 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1711 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1712 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1713 		break;
1714 	case IEEE80211_M_IBSS:
1715 	case IEEE80211_M_AHDEMO:
1716 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1717 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1718 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1719 		/*
1720 		 * NB: always use the bssid from iv_bss as the
1721 		 *     neighbor's may be stale after an ibss merge
1722 		 */
1723 		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1724 		break;
1725 	case IEEE80211_M_HOSTAP:
1726 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1727 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1728 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1729 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1730 		break;
1731 #ifdef IEEE80211_SUPPORT_MESH
1732 	case IEEE80211_M_MBSS:
1733 		/* NB: offset by hdrspace to deal with DATAPAD */
1734 		mc = (struct ieee80211_meshcntl_ae10 *)
1735 		     (mtod(m, uint8_t *) + hdrspace);
1736 		wh->i_fc[1] = dir;
1737 		switch (meshae) {
1738 		case IEEE80211_MESH_AE_00:	/* no proxy */
1739 			mc->mc_flags = 0;
1740 			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1741 				IEEE80211_ADDR_COPY(wh->i_addr1,
1742 				    ni->ni_macaddr);
1743 				IEEE80211_ADDR_COPY(wh->i_addr2,
1744 				    vap->iv_myaddr);
1745 				IEEE80211_ADDR_COPY(wh->i_addr3,
1746 				    eh.ether_dhost);
1747 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1748 				    eh.ether_shost);
1749 				qos =((struct ieee80211_qosframe_addr4 *)
1750 				    wh)->i_qos;
1751 			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1752 				 /* mcast */
1753 				IEEE80211_ADDR_COPY(wh->i_addr1,
1754 				    eh.ether_dhost);
1755 				IEEE80211_ADDR_COPY(wh->i_addr2,
1756 				    vap->iv_myaddr);
1757 				IEEE80211_ADDR_COPY(wh->i_addr3,
1758 				    eh.ether_shost);
1759 				qos = ((struct ieee80211_qosframe *)
1760 				    wh)->i_qos;
1761 			}
1762 			break;
1763 		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
1764 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1765 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1766 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1767 			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1768 			mc->mc_flags = 1;
1769 			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1770 			    eh.ether_shost);
1771 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1772 			break;
1773 		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
1774 			KASSERT(rt != NULL, ("route is NULL"));
1775 			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1776 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1777 			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1778 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1779 			mc->mc_flags = IEEE80211_MESH_AE_10;
1780 			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1781 			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1782 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1783 			break;
1784 		default:
1785 			KASSERT(0, ("meshae %d", meshae));
1786 			break;
1787 		}
1788 		mc->mc_ttl = ms->ms_ttl;
1789 		ms->ms_seq++;
1790 		le32enc(mc->mc_seq, ms->ms_seq);
1791 		break;
1792 #endif
1793 	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1794 	default:
1795 		goto bad;
1796 	}
1797 	if (m->m_flags & M_MORE_DATA)
1798 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1799 	if (addqos) {
1800 		int ac, tid;
1801 
1802 		if (is4addr) {
1803 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1804 		/* NB: mesh case handled earlier */
1805 		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1806 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1807 		ac = M_WME_GETAC(m);
1808 		/* map from access class/queue to 11e header priorty value */
1809 		tid = WME_AC_TO_TID(ac);
1810 		qos[0] = tid & IEEE80211_QOS_TID;
1811 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1812 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1813 #ifdef IEEE80211_SUPPORT_MESH
1814 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1815 			qos[1] = IEEE80211_QOS_MC;
1816 		else
1817 #endif
1818 			qos[1] = 0;
1819 		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS_DATA;
1820 
1821 		/*
1822 		 * If this is an A-MSDU then ensure we set the
1823 		 * relevant field.
1824 		 */
1825 		if (is_amsdu)
1826 			qos[0] |= IEEE80211_QOS_AMSDU;
1827 
1828 		/*
1829 		 * XXX TODO TX lock is needed for atomic updates of sequence
1830 		 * numbers.  If the driver does it, then don't do it here;
1831 		 * and we don't need the TX lock held.
1832 		 */
1833 		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1834 			/*
1835 			 * 802.11-2012 9.3.2.10 -
1836 			 *
1837 			 * If this is a multicast frame then we need
1838 			 * to ensure that the sequence number comes from
1839 			 * a separate seqno space and not the TID space.
1840 			 *
1841 			 * Otherwise multicast frames may actually cause
1842 			 * holes in the TX blockack window space and
1843 			 * upset various things.
1844 			 */
1845 			if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1846 				seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1847 			else
1848 				seqno = ni->ni_txseqs[tid]++;
1849 
1850 			/*
1851 			 * NB: don't assign a sequence # to potential
1852 			 * aggregates; we expect this happens at the
1853 			 * point the frame comes off any aggregation q
1854 			 * as otherwise we may introduce holes in the
1855 			 * BA sequence space and/or make window accouting
1856 			 * more difficult.
1857 			 *
1858 			 * XXX may want to control this with a driver
1859 			 * capability; this may also change when we pull
1860 			 * aggregation up into net80211
1861 			 */
1862 			*(uint16_t *)wh->i_seq =
1863 			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1864 			M_SEQNO_SET(m, seqno);
1865 		} else {
1866 			/* NB: zero out i_seq field (for s/w encryption etc) */
1867 			*(uint16_t *)wh->i_seq = 0;
1868 		}
1869 	} else {
1870 		/*
1871 		 * XXX TODO TX lock is needed for atomic updates of sequence
1872 		 * numbers.  If the driver does it, then don't do it here;
1873 		 * and we don't need the TX lock held.
1874 		 */
1875 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1876 		*(uint16_t *)wh->i_seq =
1877 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1878 		M_SEQNO_SET(m, seqno);
1879 
1880 		/*
1881 		 * XXX TODO: we shouldn't allow EAPOL, etc that would
1882 		 * be forced to be non-QoS traffic to be A-MSDU encapsulated.
1883 		 */
1884 		if (is_amsdu)
1885 			printf("%s: XXX ERROR: is_amsdu set; not QoS!\n",
1886 			    __func__);
1887 	}
1888 
1889 	/*
1890 	 * Check if xmit fragmentation is required.
1891 	 *
1892 	 * If the hardware does fragmentation offload, then don't bother
1893 	 * doing it here.
1894 	 */
1895 	if (IEEE80211_CONF_FRAG_OFFLOAD(ic))
1896 		txfrag = 0;
1897 	else
1898 		txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1899 		    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1900 		    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1901 		    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1902 
1903 	if (key != NULL) {
1904 		/*
1905 		 * IEEE 802.1X: send EAPOL frames always in the clear.
1906 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1907 		 */
1908 		if ((m->m_flags & M_EAPOL) == 0 ||
1909 		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1910 		     (vap->iv_opmode == IEEE80211_M_STA ?
1911 		      !IEEE80211_KEY_UNDEFINED(key) :
1912 		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1913 			wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1914 			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1915 				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1916 				    eh.ether_dhost,
1917 				    "%s", "enmic failed, discard frame");
1918 				vap->iv_stats.is_crypto_enmicfail++;
1919 				goto bad;
1920 			}
1921 		}
1922 	}
1923 	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1924 	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1925 		goto bad;
1926 
1927 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1928 
1929 	IEEE80211_NODE_STAT(ni, tx_data);
1930 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1931 		IEEE80211_NODE_STAT(ni, tx_mcast);
1932 		m->m_flags |= M_MCAST;
1933 	} else
1934 		IEEE80211_NODE_STAT(ni, tx_ucast);
1935 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1936 
1937 	return m;
1938 bad:
1939 	if (m != NULL)
1940 		m_freem(m);
1941 	return NULL;
1942 #undef WH4
1943 #undef MC01
1944 }
1945 
1946 void
1947 ieee80211_free_mbuf(struct mbuf *m)
1948 {
1949 	struct mbuf *next;
1950 
1951 	if (m == NULL)
1952 		return;
1953 
1954 	do {
1955 		next = m->m_nextpkt;
1956 		m->m_nextpkt = NULL;
1957 		m_freem(m);
1958 	} while ((m = next) != NULL);
1959 }
1960 
1961 /*
1962  * Fragment the frame according to the specified mtu.
1963  * The size of the 802.11 header (w/o padding) is provided
1964  * so we don't need to recalculate it.  We create a new
1965  * mbuf for each fragment and chain it through m_nextpkt;
1966  * we might be able to optimize this by reusing the original
1967  * packet's mbufs but that is significantly more complicated.
1968  */
1969 static int
1970 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1971 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1972 {
1973 	struct ieee80211com *ic = vap->iv_ic;
1974 	struct ieee80211_frame *wh, *whf;
1975 	struct mbuf *m, *prev;
1976 	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1977 	u_int hdrspace;
1978 
1979 	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1980 	KASSERT(m0->m_pkthdr.len > mtu,
1981 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1982 
1983 	/*
1984 	 * Honor driver DATAPAD requirement.
1985 	 */
1986 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1987 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1988 	else
1989 		hdrspace = hdrsize;
1990 
1991 	wh = mtod(m0, struct ieee80211_frame *);
1992 	/* NB: mark the first frag; it will be propagated below */
1993 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1994 	totalhdrsize = hdrspace + ciphdrsize;
1995 	fragno = 1;
1996 	off = mtu - ciphdrsize;
1997 	remainder = m0->m_pkthdr.len - off;
1998 	prev = m0;
1999 	do {
2000 		fragsize = MIN(totalhdrsize + remainder, mtu);
2001 		m = m_get2(fragsize, IEEE80211_M_NOWAIT, MT_DATA, M_PKTHDR);
2002 		if (m == NULL)
2003 			goto bad;
2004 		/* leave room to prepend any cipher header */
2005 		m_align(m, fragsize - ciphdrsize);
2006 
2007 		/*
2008 		 * Form the header in the fragment.  Note that since
2009 		 * we mark the first fragment with the MORE_FRAG bit
2010 		 * it automatically is propagated to each fragment; we
2011 		 * need only clear it on the last fragment (done below).
2012 		 * NB: frag 1+ dont have Mesh Control field present.
2013 		 */
2014 		whf = mtod(m, struct ieee80211_frame *);
2015 		memcpy(whf, wh, hdrsize);
2016 #ifdef IEEE80211_SUPPORT_MESH
2017 		if (vap->iv_opmode == IEEE80211_M_MBSS)
2018 			ieee80211_getqos(wh)[1] &= ~IEEE80211_QOS_MC;
2019 #endif
2020 		*(uint16_t *)&whf->i_seq[0] |= htole16(
2021 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
2022 				IEEE80211_SEQ_FRAG_SHIFT);
2023 		fragno++;
2024 
2025 		payload = fragsize - totalhdrsize;
2026 		/* NB: destination is known to be contiguous */
2027 
2028 		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
2029 		m->m_len = hdrspace + payload;
2030 		m->m_pkthdr.len = hdrspace + payload;
2031 		m->m_flags |= M_FRAG;
2032 
2033 		/* chain up the fragment */
2034 		prev->m_nextpkt = m;
2035 		prev = m;
2036 
2037 		/* deduct fragment just formed */
2038 		remainder -= payload;
2039 		off += payload;
2040 	} while (remainder != 0);
2041 
2042 	/* set the last fragment */
2043 	m->m_flags |= M_LASTFRAG;
2044 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
2045 
2046 	/* strip first mbuf now that everything has been copied */
2047 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
2048 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
2049 
2050 	vap->iv_stats.is_tx_fragframes++;
2051 	vap->iv_stats.is_tx_frags += fragno-1;
2052 
2053 	return 1;
2054 bad:
2055 	/* reclaim fragments but leave original frame for caller to free */
2056 	ieee80211_free_mbuf(m0->m_nextpkt);
2057 	m0->m_nextpkt = NULL;
2058 	return 0;
2059 }
2060 
2061 /*
2062  * Add a supported rates element id to a frame.
2063  */
2064 uint8_t *
2065 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
2066 {
2067 	int nrates;
2068 
2069 	*frm++ = IEEE80211_ELEMID_RATES;
2070 	nrates = rs->rs_nrates;
2071 	if (nrates > IEEE80211_RATE_SIZE)
2072 		nrates = IEEE80211_RATE_SIZE;
2073 	*frm++ = nrates;
2074 	memcpy(frm, rs->rs_rates, nrates);
2075 	return frm + nrates;
2076 }
2077 
2078 /*
2079  * Add an extended supported rates element id to a frame.
2080  */
2081 uint8_t *
2082 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
2083 {
2084 	/*
2085 	 * Add an extended supported rates element if operating in 11g mode.
2086 	 */
2087 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2088 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2089 		*frm++ = IEEE80211_ELEMID_XRATES;
2090 		*frm++ = nrates;
2091 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2092 		frm += nrates;
2093 	}
2094 	return frm;
2095 }
2096 
2097 /*
2098  * Add an ssid element to a frame.
2099  */
2100 uint8_t *
2101 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
2102 {
2103 	*frm++ = IEEE80211_ELEMID_SSID;
2104 	*frm++ = len;
2105 	memcpy(frm, ssid, len);
2106 	return frm + len;
2107 }
2108 
2109 /*
2110  * Add an erp element to a frame.
2111  */
2112 static uint8_t *
2113 ieee80211_add_erp(uint8_t *frm, struct ieee80211vap *vap)
2114 {
2115 	struct ieee80211com *ic = vap->iv_ic;
2116 	uint8_t erp;
2117 
2118 	*frm++ = IEEE80211_ELEMID_ERP;
2119 	*frm++ = 1;
2120 	erp = 0;
2121 
2122 	/*
2123 	 * TODO:  This uses the global flags for now because
2124 	 * the per-VAP flags are fine for per-VAP, but don't
2125 	 * take into account which VAPs share the same channel
2126 	 * and which are on different channels.
2127 	 *
2128 	 * ERP and HT/VHT protection mode is a function of
2129 	 * how many stations are on a channel, not specifically
2130 	 * the VAP or global.  But, until we grow that status,
2131 	 * the global flag will have to do.
2132 	 */
2133 	if (ic->ic_flags_ext & IEEE80211_FEXT_NONERP_PR)
2134 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
2135 
2136 	/*
2137 	 * TODO: same as above; these should be based not
2138 	 * on the vap or ic flags, but instead on a combination
2139 	 * of per-VAP and channels.
2140 	 */
2141 	if (ic->ic_flags & IEEE80211_F_USEPROT)
2142 		erp |= IEEE80211_ERP_USE_PROTECTION;
2143 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
2144 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
2145 	*frm++ = erp;
2146 	return frm;
2147 }
2148 
2149 /*
2150  * Add a CFParams element to a frame.
2151  */
2152 static uint8_t *
2153 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
2154 {
2155 #define	ADDSHORT(frm, v) do {	\
2156 	le16enc(frm, v);	\
2157 	frm += 2;		\
2158 } while (0)
2159 	*frm++ = IEEE80211_ELEMID_CFPARMS;
2160 	*frm++ = 6;
2161 	*frm++ = 0;		/* CFP count */
2162 	*frm++ = 2;		/* CFP period */
2163 	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
2164 	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
2165 	return frm;
2166 #undef ADDSHORT
2167 }
2168 
2169 static __inline uint8_t *
2170 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
2171 {
2172 	memcpy(frm, ie->ie_data, ie->ie_len);
2173 	return frm + ie->ie_len;
2174 }
2175 
2176 static __inline uint8_t *
2177 add_ie(uint8_t *frm, const uint8_t *ie)
2178 {
2179 	memcpy(frm, ie, 2 + ie[1]);
2180 	return frm + 2 + ie[1];
2181 }
2182 
2183 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
2184 /*
2185  * Add a WME information element to a frame.
2186  */
2187 uint8_t *
2188 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme,
2189     struct ieee80211_node *ni)
2190 {
2191 	static const uint8_t oui[4] = { WME_OUI_BYTES, WME_OUI_TYPE };
2192 	struct ieee80211vap *vap = ni->ni_vap;
2193 
2194 	*frm++ = IEEE80211_ELEMID_VENDOR;
2195 	*frm++ = sizeof(struct ieee80211_wme_info) - 2;
2196 	memcpy(frm, oui, sizeof(oui));
2197 	frm += sizeof(oui);
2198 	*frm++ = WME_INFO_OUI_SUBTYPE;
2199 	*frm++ = WME_VERSION;
2200 
2201 	/* QoS info field depends upon operating mode */
2202 	switch (vap->iv_opmode) {
2203 	case IEEE80211_M_HOSTAP:
2204 		*frm = wme->wme_bssChanParams.cap_info;
2205 		if (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD)
2206 			*frm |= WME_CAPINFO_UAPSD_EN;
2207 		frm++;
2208 		break;
2209 	case IEEE80211_M_STA:
2210 		/*
2211 		 * NB: UAPSD drivers must set this up in their
2212 		 * VAP creation method.
2213 		 */
2214 		*frm++ = vap->iv_uapsdinfo;
2215 		break;
2216 	default:
2217 		*frm++ = 0;
2218 		break;
2219 	}
2220 
2221 	return frm;
2222 }
2223 
2224 /*
2225  * Add a WME parameters element to a frame.
2226  */
2227 static uint8_t *
2228 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme,
2229     int uapsd_enable)
2230 {
2231 #define	ADDSHORT(frm, v) do {	\
2232 	le16enc(frm, v);	\
2233 	frm += 2;		\
2234 } while (0)
2235 	/* NB: this works 'cuz a param has an info at the front */
2236 	static const struct ieee80211_wme_info param = {
2237 		.wme_id		= IEEE80211_ELEMID_VENDOR,
2238 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
2239 		.wme_oui	= { WME_OUI_BYTES },
2240 		.wme_type	= WME_OUI_TYPE,
2241 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
2242 		.wme_version	= WME_VERSION,
2243 	};
2244 	int i;
2245 
2246 	memcpy(frm, &param, sizeof(param));
2247 	frm += __offsetof(struct ieee80211_wme_info, wme_info);
2248 	*frm = wme->wme_bssChanParams.cap_info;	/* AC info */
2249 	if (uapsd_enable)
2250 		*frm |= WME_CAPINFO_UAPSD_EN;
2251 	frm++;
2252 	*frm++ = 0;					/* reserved field */
2253 	/* XXX TODO - U-APSD bits - SP, flags below */
2254 	for (i = 0; i < WME_NUM_AC; i++) {
2255 		const struct wmeParams *ac =
2256 		       &wme->wme_bssChanParams.cap_wmeParams[i];
2257 		*frm++ = _IEEE80211_SHIFTMASK(i, WME_PARAM_ACI)
2258 		       | _IEEE80211_SHIFTMASK(ac->wmep_acm, WME_PARAM_ACM)
2259 		       | _IEEE80211_SHIFTMASK(ac->wmep_aifsn, WME_PARAM_AIFSN)
2260 		       ;
2261 		*frm++ = _IEEE80211_SHIFTMASK(ac->wmep_logcwmax,
2262 			    WME_PARAM_LOGCWMAX)
2263 		       | _IEEE80211_SHIFTMASK(ac->wmep_logcwmin,
2264 			    WME_PARAM_LOGCWMIN)
2265 		       ;
2266 		ADDSHORT(frm, ac->wmep_txopLimit);
2267 	}
2268 	return frm;
2269 #undef ADDSHORT
2270 }
2271 #undef WME_OUI_BYTES
2272 
2273 /*
2274  * Add an 11h Power Constraint element to a frame.
2275  */
2276 static uint8_t *
2277 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
2278 {
2279 	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
2280 	/* XXX per-vap tx power limit? */
2281 	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
2282 
2283 	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
2284 	frm[1] = 1;
2285 	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
2286 	return frm + 3;
2287 }
2288 
2289 /*
2290  * Add an 11h Power Capability element to a frame.
2291  */
2292 static uint8_t *
2293 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
2294 {
2295 	frm[0] = IEEE80211_ELEMID_PWRCAP;
2296 	frm[1] = 2;
2297 	frm[2] = c->ic_minpower;
2298 	frm[3] = c->ic_maxpower;
2299 	return frm + 4;
2300 }
2301 
2302 /*
2303  * Add an 11h Supported Channels element to a frame.
2304  */
2305 static uint8_t *
2306 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
2307 {
2308 	static const int ielen = 26;
2309 
2310 	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
2311 	frm[1] = ielen;
2312 	/* XXX not correct */
2313 	memcpy(frm+2, ic->ic_chan_avail, ielen);
2314 	return frm + 2 + ielen;
2315 }
2316 
2317 /*
2318  * Add an 11h Quiet time element to a frame.
2319  */
2320 static uint8_t *
2321 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap, int update)
2322 {
2323 	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
2324 
2325 	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
2326 	quiet->len = 6;
2327 
2328 	/*
2329 	 * Only update every beacon interval - otherwise probe responses
2330 	 * would update the quiet count value.
2331 	 */
2332 	if (update) {
2333 		if (vap->iv_quiet_count_value == 1)
2334 			vap->iv_quiet_count_value = vap->iv_quiet_count;
2335 		else if (vap->iv_quiet_count_value > 1)
2336 			vap->iv_quiet_count_value--;
2337 	}
2338 
2339 	if (vap->iv_quiet_count_value == 0) {
2340 		/* value 0 is reserved as per 802.11h standerd */
2341 		vap->iv_quiet_count_value = 1;
2342 	}
2343 
2344 	quiet->tbttcount = vap->iv_quiet_count_value;
2345 	quiet->period = vap->iv_quiet_period;
2346 	quiet->duration = htole16(vap->iv_quiet_duration);
2347 	quiet->offset = htole16(vap->iv_quiet_offset);
2348 	return frm + sizeof(*quiet);
2349 }
2350 
2351 /*
2352  * Add an 11h Channel Switch Announcement element to a frame.
2353  * Note that we use the per-vap CSA count to adjust the global
2354  * counter so we can use this routine to form probe response
2355  * frames and get the current count.
2356  */
2357 static uint8_t *
2358 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
2359 {
2360 	struct ieee80211com *ic = vap->iv_ic;
2361 	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
2362 
2363 	csa->csa_ie = IEEE80211_ELEMID_CSA;
2364 	csa->csa_len = 3;
2365 	csa->csa_mode = 1;		/* XXX force quiet on channel */
2366 	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
2367 	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
2368 	return frm + sizeof(*csa);
2369 }
2370 
2371 /*
2372  * Add an 11h country information element to a frame.
2373  */
2374 static uint8_t *
2375 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
2376 {
2377 
2378 	if (ic->ic_countryie == NULL ||
2379 	    ic->ic_countryie_chan != ic->ic_bsschan) {
2380 		/*
2381 		 * Handle lazy construction of ie.  This is done on
2382 		 * first use and after a channel change that requires
2383 		 * re-calculation.
2384 		 */
2385 		if (ic->ic_countryie != NULL)
2386 			IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
2387 		ic->ic_countryie = ieee80211_alloc_countryie(ic);
2388 		if (ic->ic_countryie == NULL)
2389 			return frm;
2390 		ic->ic_countryie_chan = ic->ic_bsschan;
2391 	}
2392 	return add_appie(frm, ic->ic_countryie);
2393 }
2394 
2395 uint8_t *
2396 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
2397 {
2398 	if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
2399 		return (add_ie(frm, vap->iv_wpa_ie));
2400 	else {
2401 		/* XXX else complain? */
2402 		return (frm);
2403 	}
2404 }
2405 
2406 uint8_t *
2407 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
2408 {
2409 	if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
2410 		return (add_ie(frm, vap->iv_rsn_ie));
2411 	else {
2412 		/* XXX else complain? */
2413 		return (frm);
2414 	}
2415 }
2416 
2417 uint8_t *
2418 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
2419 {
2420 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
2421 		*frm++ = IEEE80211_ELEMID_QOS;
2422 		*frm++ = 1;
2423 		*frm++ = 0;
2424 	}
2425 
2426 	return (frm);
2427 }
2428 
2429 /*
2430  * ieee80211_send_probereq(): send a probe request frame with the specified ssid
2431  * and any optional information element data;  some helper functions as FW based
2432  * HW scans need some of that information passed too.
2433  */
2434 static uint32_t
2435 ieee80211_probereq_ie_len(struct ieee80211vap *vap, struct ieee80211com *ic)
2436 {
2437 	const struct ieee80211_rateset *rs;
2438 
2439 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2440 
2441 	/*
2442 	 * prreq frame format
2443 	 *	[tlv] ssid
2444 	 *	[tlv] supported rates
2445 	 *	[tlv] extended supported rates (if needed)
2446 	 *	[tlv] HT cap (optional)
2447 	 *	[tlv] VHT cap (optional)
2448 	 *	[tlv] WPA (optional)
2449 	 *	[tlv] user-specified ie's
2450 	 */
2451 	return ( 2 + IEEE80211_NWID_LEN
2452 	       + 2 + IEEE80211_RATE_SIZE
2453 	       + ((rs->rs_nrates > IEEE80211_RATE_SIZE) ?
2454 	           2 + (rs->rs_nrates - IEEE80211_RATE_SIZE) : 0)
2455 	       + (((vap->iv_opmode == IEEE80211_M_IBSS) &&
2456 		    (vap->iv_flags_ht & IEEE80211_FHT_HT)) ?
2457 	                sizeof(struct ieee80211_ie_htcap) : 0)
2458 #ifdef notyet
2459 	       + sizeof(struct ieee80211_ie_htinfo)	/* XXX not needed? */
2460 	       + sizeof(struct ieee80211_ie_vhtcap)
2461 #endif
2462 	       + ((vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) ?
2463 	           vap->iv_wpa_ie[1] : 0)
2464 	       + (vap->iv_appie_probereq != NULL ?
2465 		   vap->iv_appie_probereq->ie_len : 0)
2466 	);
2467 }
2468 
2469 int
2470 ieee80211_probereq_ie(struct ieee80211vap *vap, struct ieee80211com *ic,
2471     uint8_t **frmp, uint32_t *frmlen, const uint8_t *ssid, size_t ssidlen,
2472     bool alloc)
2473 {
2474 	const struct ieee80211_rateset *rs;
2475 	uint8_t	*frm;
2476 	uint32_t len;
2477 
2478 	if (!alloc && (frmp == NULL || frmlen == NULL))
2479 		return (EINVAL);
2480 
2481 	len = ieee80211_probereq_ie_len(vap, ic);
2482 	if (!alloc && len > *frmlen)
2483 		return (ENOBUFS);
2484 
2485 	/* For HW scans we usually do not pass in the SSID as IE. */
2486 	if (ssidlen == -1)
2487 		len -= (2 + IEEE80211_NWID_LEN);
2488 
2489 	if (alloc) {
2490 		frm = IEEE80211_MALLOC(len, M_80211_VAP,
2491 		    IEEE80211_M_WAITOK | IEEE80211_M_ZERO);
2492 		*frmp = frm;
2493 		*frmlen = len;
2494 	} else
2495 		frm = *frmp;
2496 
2497 	if (ssidlen != -1)
2498 		frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2499 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2500 	frm = ieee80211_add_rates(frm, rs);
2501 	frm = ieee80211_add_xrates(frm, rs);
2502 
2503 	/*
2504 	 * Note: we can't use bss; we don't have one yet.
2505 	 *
2506 	 * So, we should announce our capabilities
2507 	 * in this channel mode (2g/5g), not the
2508 	 * channel details itself.
2509 	 */
2510 	if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
2511 	    (vap->iv_flags_ht & IEEE80211_FHT_HT)) {
2512 		struct ieee80211_channel *c;
2513 
2514 		/*
2515 		 * Get the HT channel that we should try upgrading to.
2516 		 * If we can do 40MHz then this'll upgrade it appropriately.
2517 		 */
2518 		c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2519 		    vap->iv_flags_ht);
2520 		frm = ieee80211_add_htcap_ch(frm, vap, c);
2521 	}
2522 
2523 	/*
2524 	 * XXX TODO: need to figure out what/how to update the
2525 	 * VHT channel.
2526 	 */
2527 #ifdef notyet
2528 	if (vap->iv_flags_vht & IEEE80211_FVHT_VHT) {
2529 		struct ieee80211_channel *c;
2530 
2531 		c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2532 		    vap->iv_flags_ht);
2533 		c = ieee80211_vht_adjust_channel(ic, c, vap->iv_flags_vht);
2534 		frm = ieee80211_add_vhtcap_ch(frm, vap, c);
2535 	}
2536 #endif
2537 
2538 	frm = ieee80211_add_wpa(frm, vap);
2539 	if (vap->iv_appie_probereq != NULL)
2540 		frm = add_appie(frm, vap->iv_appie_probereq);
2541 
2542 	if (!alloc) {
2543 		*frmp = frm;
2544 		*frmlen = len;
2545 	}
2546 
2547 	return (0);
2548 }
2549 
2550 int
2551 ieee80211_send_probereq(struct ieee80211_node *ni,
2552 	const uint8_t sa[IEEE80211_ADDR_LEN],
2553 	const uint8_t da[IEEE80211_ADDR_LEN],
2554 	const uint8_t bssid[IEEE80211_ADDR_LEN],
2555 	const uint8_t *ssid, size_t ssidlen)
2556 {
2557 	struct ieee80211vap *vap = ni->ni_vap;
2558 	struct ieee80211com *ic = ni->ni_ic;
2559 	struct ieee80211_node *bss;
2560 	const struct ieee80211_txparam *tp;
2561 	struct ieee80211_bpf_params params;
2562 	struct mbuf *m;
2563 	uint8_t *frm;
2564 	uint32_t frmlen;
2565 	int ret;
2566 
2567 	bss = ieee80211_ref_node(vap->iv_bss);
2568 
2569 	if (vap->iv_state == IEEE80211_S_CAC) {
2570 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
2571 		    "block %s frame in CAC state", "probe request");
2572 		vap->iv_stats.is_tx_badstate++;
2573 		ieee80211_free_node(bss);
2574 		return EIO;		/* XXX */
2575 	}
2576 
2577 	/*
2578 	 * Hold a reference on the node so it doesn't go away until after
2579 	 * the xmit is complete all the way in the driver.  On error we
2580 	 * will remove our reference.
2581 	 */
2582 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2583 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2584 		__func__, __LINE__,
2585 		ni, ether_sprintf(ni->ni_macaddr),
2586 		ieee80211_node_refcnt(ni)+1);
2587 	ieee80211_ref_node(ni);
2588 
2589 	/* See comments above for entire frame format. */
2590 	frmlen = ieee80211_probereq_ie_len(vap, ic);
2591 	m = ieee80211_getmgtframe(&frm,
2592 	    ic->ic_headroom + sizeof(struct ieee80211_frame), frmlen);
2593 	if (m == NULL) {
2594 		vap->iv_stats.is_tx_nobuf++;
2595 		ieee80211_free_node(ni);
2596 		ieee80211_free_node(bss);
2597 		return ENOMEM;
2598 	}
2599 
2600 	ret = ieee80211_probereq_ie(vap, ic, &frm, &frmlen, ssid, ssidlen,
2601 	    false);
2602 	KASSERT(ret == 0,
2603 	    ("%s: ieee80211_probereq_ie failed: %d\n", __func__, ret));
2604 
2605 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2606 	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2607 	    ("leading space %zd", M_LEADINGSPACE(m)));
2608 	M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
2609 	if (m == NULL) {
2610 		/* NB: cannot happen */
2611 		ieee80211_free_node(ni);
2612 		ieee80211_free_node(bss);
2613 		return ENOMEM;
2614 	}
2615 
2616 	IEEE80211_TX_LOCK(ic);
2617 	ieee80211_send_setup(ni, m,
2618 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2619 	     IEEE80211_NONQOS_TID, sa, da, bssid);
2620 	/* XXX power management? */
2621 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2622 
2623 	M_WME_SETAC(m, WME_AC_BE);
2624 
2625 	IEEE80211_NODE_STAT(ni, tx_probereq);
2626 	IEEE80211_NODE_STAT(ni, tx_mgmt);
2627 
2628 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2629 	    "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n",
2630 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
2631 	    ether_sprintf(bssid),
2632 	    sa, ":",
2633 	    da, ":",
2634 	    ssidlen, ssid);
2635 
2636 	memset(&params, 0, sizeof(params));
2637 	params.ibp_pri = M_WME_GETAC(m);
2638 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2639 	params.ibp_rate0 = tp->mgmtrate;
2640 	if (IEEE80211_IS_MULTICAST(da)) {
2641 		params.ibp_flags |= IEEE80211_BPF_NOACK;
2642 		params.ibp_try0 = 1;
2643 	} else
2644 		params.ibp_try0 = tp->maxretry;
2645 	params.ibp_power = ni->ni_txpower;
2646 	ret = ieee80211_raw_output(vap, ni, m, &params);
2647 	IEEE80211_TX_UNLOCK(ic);
2648 	ieee80211_free_node(bss);
2649 	return (ret);
2650 }
2651 
2652 /*
2653  * Calculate capability information for mgt frames.
2654  */
2655 uint16_t
2656 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2657 {
2658 	uint16_t capinfo;
2659 
2660 	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2661 
2662 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2663 		capinfo = IEEE80211_CAPINFO_ESS;
2664 	else if (vap->iv_opmode == IEEE80211_M_IBSS)
2665 		capinfo = IEEE80211_CAPINFO_IBSS;
2666 	else
2667 		capinfo = 0;
2668 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2669 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2670 	if ((vap->iv_flags & IEEE80211_F_SHPREAMBLE) &&
2671 	    IEEE80211_IS_CHAN_2GHZ(chan))
2672 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2673 	if (vap->iv_flags & IEEE80211_F_SHSLOT)
2674 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2675 	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2676 		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2677 	return capinfo;
2678 }
2679 
2680 /*
2681  * Send a management frame.  The node is for the destination (or ic_bss
2682  * when in station mode).  Nodes other than ic_bss have their reference
2683  * count bumped to reflect our use for an indeterminant time.
2684  */
2685 int
2686 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2687 {
2688 #define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2689 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2690 	struct ieee80211vap *vap = ni->ni_vap;
2691 	struct ieee80211com *ic = ni->ni_ic;
2692 	struct ieee80211_node *bss = vap->iv_bss;
2693 	struct ieee80211_bpf_params params;
2694 	struct mbuf *m;
2695 	uint8_t *frm;
2696 	uint16_t capinfo;
2697 	int has_challenge, is_shared_key, ret, status;
2698 
2699 	KASSERT(ni != NULL, ("null node"));
2700 
2701 	/*
2702 	 * Hold a reference on the node so it doesn't go away until after
2703 	 * the xmit is complete all the way in the driver.  On error we
2704 	 * will remove our reference.
2705 	 */
2706 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2707 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2708 		__func__, __LINE__,
2709 		ni, ether_sprintf(ni->ni_macaddr),
2710 		ieee80211_node_refcnt(ni)+1);
2711 	ieee80211_ref_node(ni);
2712 
2713 	memset(&params, 0, sizeof(params));
2714 	switch (type) {
2715 	case IEEE80211_FC0_SUBTYPE_AUTH:
2716 		status = arg >> 16;
2717 		arg &= 0xffff;
2718 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2719 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2720 		    ni->ni_challenge != NULL);
2721 
2722 		/*
2723 		 * Deduce whether we're doing open authentication or
2724 		 * shared key authentication.  We do the latter if
2725 		 * we're in the middle of a shared key authentication
2726 		 * handshake or if we're initiating an authentication
2727 		 * request and configured to use shared key.
2728 		 */
2729 		is_shared_key = has_challenge ||
2730 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2731 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2732 		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
2733 
2734 		m = ieee80211_getmgtframe(&frm,
2735 			  ic->ic_headroom + sizeof(struct ieee80211_frame),
2736 			  3 * sizeof(uint16_t)
2737 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2738 				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0));
2739 		if (m == NULL)
2740 			senderr(ENOMEM, is_tx_nobuf);
2741 
2742 		((uint16_t *)frm)[0] =
2743 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2744 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
2745 		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
2746 		((uint16_t *)frm)[2] = htole16(status);/* status */
2747 
2748 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2749 			((uint16_t *)frm)[3] =
2750 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
2751 			    IEEE80211_ELEMID_CHALLENGE);
2752 			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2753 			    IEEE80211_CHALLENGE_LEN);
2754 			m->m_pkthdr.len = m->m_len =
2755 				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2756 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2757 				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2758 				    "request encrypt frame (%s)", __func__);
2759 				/* mark frame for encryption */
2760 				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2761 			}
2762 		} else
2763 			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2764 
2765 		/* XXX not right for shared key */
2766 		if (status == IEEE80211_STATUS_SUCCESS)
2767 			IEEE80211_NODE_STAT(ni, tx_auth);
2768 		else
2769 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
2770 
2771 		if (vap->iv_opmode == IEEE80211_M_STA)
2772 			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2773 				(void *) vap->iv_state);
2774 		break;
2775 
2776 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2777 		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2778 		    "send station deauthenticate (reason: %d (%s))", arg,
2779 		    ieee80211_reason_to_string(arg));
2780 		m = ieee80211_getmgtframe(&frm,
2781 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2782 			sizeof(uint16_t));
2783 		if (m == NULL)
2784 			senderr(ENOMEM, is_tx_nobuf);
2785 		*(uint16_t *)frm = htole16(arg);	/* reason */
2786 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2787 
2788 		IEEE80211_NODE_STAT(ni, tx_deauth);
2789 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2790 
2791 		ieee80211_node_unauthorize(ni);		/* port closed */
2792 		break;
2793 
2794 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2795 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2796 		/*
2797 		 * asreq frame format
2798 		 *	[2] capability information
2799 		 *	[2] listen interval
2800 		 *	[6*] current AP address (reassoc only)
2801 		 *	[tlv] ssid
2802 		 *	[tlv] supported rates
2803 		 *	[tlv] extended supported rates
2804 		 *	[4] power capability (optional)
2805 		 *	[28] supported channels (optional)
2806 		 *	[tlv] HT capabilities
2807 		 *	[tlv] VHT capabilities
2808 		 *	[tlv] WME (optional)
2809 		 *	[tlv] Vendor OUI HT capabilities (optional)
2810 		 *	[tlv] Atheros capabilities (if negotiated)
2811 		 *	[tlv] AppIE's (optional)
2812 		 */
2813 		m = ieee80211_getmgtframe(&frm,
2814 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2815 			 sizeof(uint16_t)
2816 		       + sizeof(uint16_t)
2817 		       + IEEE80211_ADDR_LEN
2818 		       + 2 + IEEE80211_NWID_LEN
2819 		       + 2 + IEEE80211_RATE_SIZE
2820 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2821 		       + 4
2822 		       + 2 + 26
2823 		       + sizeof(struct ieee80211_wme_info)
2824 		       + sizeof(struct ieee80211_ie_htcap)
2825 		       + sizeof(struct ieee80211_ie_vhtcap)
2826 		       + 4 + sizeof(struct ieee80211_ie_htcap)
2827 #ifdef IEEE80211_SUPPORT_SUPERG
2828 		       + sizeof(struct ieee80211_ath_ie)
2829 #endif
2830 		       + (vap->iv_appie_wpa != NULL ?
2831 				vap->iv_appie_wpa->ie_len : 0)
2832 		       + (vap->iv_appie_assocreq != NULL ?
2833 				vap->iv_appie_assocreq->ie_len : 0)
2834 		);
2835 		if (m == NULL)
2836 			senderr(ENOMEM, is_tx_nobuf);
2837 
2838 		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2839 		    ("wrong mode %u", vap->iv_opmode));
2840 		capinfo = IEEE80211_CAPINFO_ESS;
2841 		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2842 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2843 		/*
2844 		 * NB: Some 11a AP's reject the request when
2845 		 *     short preamble is set.
2846 		 */
2847 		if ((vap->iv_flags & IEEE80211_F_SHPREAMBLE) &&
2848 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2849 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2850 		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2851 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2852 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2853 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2854 		    (vap->iv_flags & IEEE80211_F_DOTH))
2855 			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2856 		*(uint16_t *)frm = htole16(capinfo);
2857 		frm += 2;
2858 
2859 		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2860 		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2861 						    bss->ni_intval));
2862 		frm += 2;
2863 
2864 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2865 			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2866 			frm += IEEE80211_ADDR_LEN;
2867 		}
2868 
2869 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2870 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2871 		frm = ieee80211_add_rsn(frm, vap);
2872 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2873 		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2874 			frm = ieee80211_add_powercapability(frm,
2875 			    ic->ic_curchan);
2876 			frm = ieee80211_add_supportedchannels(frm, ic);
2877 		}
2878 
2879 		/*
2880 		 * Check the channel - we may be using an 11n NIC with an
2881 		 * 11n capable station, but we're configured to be an 11b
2882 		 * channel.
2883 		 */
2884 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2885 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2886 		    ni->ni_ies.htcap_ie != NULL &&
2887 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
2888 			frm = ieee80211_add_htcap(frm, ni);
2889 		}
2890 
2891 		if ((vap->iv_flags_vht & IEEE80211_FVHT_VHT) &&
2892 		    IEEE80211_IS_CHAN_VHT(ni->ni_chan) &&
2893 		    ni->ni_ies.vhtcap_ie != NULL &&
2894 		    ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) {
2895 			frm = ieee80211_add_vhtcap(frm, ni);
2896 		}
2897 
2898 		frm = ieee80211_add_wpa(frm, vap);
2899 		if ((vap->iv_flags & IEEE80211_F_WME) &&
2900 		    ni->ni_ies.wme_ie != NULL)
2901 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme, ni);
2902 
2903 		/*
2904 		 * Same deal - only send HT info if we're on an 11n
2905 		 * capable channel.
2906 		 */
2907 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2908 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2909 		    ni->ni_ies.htcap_ie != NULL &&
2910 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
2911 			frm = ieee80211_add_htcap_vendor(frm, ni);
2912 		}
2913 #ifdef IEEE80211_SUPPORT_SUPERG
2914 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2915 			frm = ieee80211_add_ath(frm,
2916 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2917 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2918 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2919 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2920 		}
2921 #endif /* IEEE80211_SUPPORT_SUPERG */
2922 		if (vap->iv_appie_assocreq != NULL)
2923 			frm = add_appie(frm, vap->iv_appie_assocreq);
2924 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2925 
2926 		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2927 			(void *) vap->iv_state);
2928 		break;
2929 
2930 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2931 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2932 		/*
2933 		 * asresp frame format
2934 		 *	[2] capability information
2935 		 *	[2] status
2936 		 *	[2] association ID
2937 		 *	[tlv] supported rates
2938 		 *	[tlv] extended supported rates
2939 		 *	[tlv] HT capabilities (standard, if STA enabled)
2940 		 *	[tlv] HT information (standard, if STA enabled)
2941 		 *	[tlv] VHT capabilities (standard, if STA enabled)
2942 		 *	[tlv] VHT information (standard, if STA enabled)
2943 		 *	[tlv] WME (if configured and STA enabled)
2944 		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2945 		 *	[tlv] HT information (vendor OUI, if STA enabled)
2946 		 *	[tlv] Atheros capabilities (if STA enabled)
2947 		 *	[tlv] AppIE's (optional)
2948 		 */
2949 		m = ieee80211_getmgtframe(&frm,
2950 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2951 			 sizeof(uint16_t)
2952 		       + sizeof(uint16_t)
2953 		       + sizeof(uint16_t)
2954 		       + 2 + IEEE80211_RATE_SIZE
2955 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2956 		       + sizeof(struct ieee80211_ie_htcap) + 4
2957 		       + sizeof(struct ieee80211_ie_htinfo) + 4
2958 		       + sizeof(struct ieee80211_ie_vhtcap)
2959 		       + sizeof(struct ieee80211_ie_vht_operation)
2960 		       + sizeof(struct ieee80211_wme_param)
2961 #ifdef IEEE80211_SUPPORT_SUPERG
2962 		       + sizeof(struct ieee80211_ath_ie)
2963 #endif
2964 		       + (vap->iv_appie_assocresp != NULL ?
2965 				vap->iv_appie_assocresp->ie_len : 0)
2966 		);
2967 		if (m == NULL)
2968 			senderr(ENOMEM, is_tx_nobuf);
2969 
2970 		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2971 		*(uint16_t *)frm = htole16(capinfo);
2972 		frm += 2;
2973 
2974 		*(uint16_t *)frm = htole16(arg);	/* status */
2975 		frm += 2;
2976 
2977 		if (arg == IEEE80211_STATUS_SUCCESS) {
2978 			*(uint16_t *)frm = htole16(ni->ni_associd);
2979 			IEEE80211_NODE_STAT(ni, tx_assoc);
2980 		} else
2981 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2982 		frm += 2;
2983 
2984 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2985 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2986 		/* NB: respond according to what we received */
2987 		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2988 			frm = ieee80211_add_htcap(frm, ni);
2989 			frm = ieee80211_add_htinfo(frm, ni);
2990 		}
2991 		if ((vap->iv_flags & IEEE80211_F_WME) &&
2992 		    ni->ni_ies.wme_ie != NULL)
2993 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme,
2994 			    !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD));
2995 		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2996 			frm = ieee80211_add_htcap_vendor(frm, ni);
2997 			frm = ieee80211_add_htinfo_vendor(frm, ni);
2998 		}
2999 		if (ni->ni_flags & IEEE80211_NODE_VHT) {
3000 			frm = ieee80211_add_vhtcap(frm, ni);
3001 			frm = ieee80211_add_vhtinfo(frm, ni);
3002 		}
3003 #ifdef IEEE80211_SUPPORT_SUPERG
3004 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
3005 			frm = ieee80211_add_ath(frm,
3006 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
3007 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
3008 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
3009 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
3010 #endif /* IEEE80211_SUPPORT_SUPERG */
3011 		if (vap->iv_appie_assocresp != NULL)
3012 			frm = add_appie(frm, vap->iv_appie_assocresp);
3013 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3014 		break;
3015 
3016 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
3017 		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
3018 		    "send station disassociate (reason: %d (%s))", arg,
3019 		    ieee80211_reason_to_string(arg));
3020 		m = ieee80211_getmgtframe(&frm,
3021 			ic->ic_headroom + sizeof(struct ieee80211_frame),
3022 			sizeof(uint16_t));
3023 		if (m == NULL)
3024 			senderr(ENOMEM, is_tx_nobuf);
3025 		*(uint16_t *)frm = htole16(arg);	/* reason */
3026 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
3027 
3028 		IEEE80211_NODE_STAT(ni, tx_disassoc);
3029 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
3030 		break;
3031 
3032 	default:
3033 		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
3034 		    "invalid mgmt frame type %u", type);
3035 		senderr(EINVAL, is_tx_unknownmgt);
3036 		/* NOTREACHED */
3037 	}
3038 
3039 	/* NB: force non-ProbeResp frames to the highest queue */
3040 	params.ibp_pri = WME_AC_VO;
3041 	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
3042 	/* NB: we know all frames are unicast */
3043 	params.ibp_try0 = bss->ni_txparms->maxretry;
3044 	params.ibp_power = bss->ni_txpower;
3045 	return ieee80211_mgmt_output(ni, m, type, &params);
3046 bad:
3047 	ieee80211_free_node(ni);
3048 	return ret;
3049 #undef senderr
3050 #undef HTFLAGS
3051 }
3052 
3053 /*
3054  * Return an mbuf with a probe response frame in it.
3055  * Space is left to prepend and 802.11 header at the
3056  * front but it's left to the caller to fill in.
3057  */
3058 struct mbuf *
3059 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
3060 {
3061 	struct ieee80211vap *vap = bss->ni_vap;
3062 	struct ieee80211com *ic = bss->ni_ic;
3063 	const struct ieee80211_rateset *rs;
3064 	struct mbuf *m;
3065 	uint16_t capinfo;
3066 	uint8_t *frm;
3067 
3068 	/*
3069 	 * probe response frame format
3070 	 *	[8] time stamp
3071 	 *	[2] beacon interval
3072 	 *	[2] cabability information
3073 	 *	[tlv] ssid
3074 	 *	[tlv] supported rates
3075 	 *	[tlv] parameter set (FH/DS)
3076 	 *	[tlv] parameter set (IBSS)
3077 	 *	[tlv] country (optional)
3078 	 *	[3] power control (optional)
3079 	 *	[5] channel switch announcement (CSA) (optional)
3080 	 *	[tlv] extended rate phy (ERP)
3081 	 *	[tlv] extended supported rates
3082 	 *	[tlv] RSN (optional)
3083 	 *	[tlv] HT capabilities
3084 	 *	[tlv] HT information
3085 	 *	[tlv] VHT capabilities
3086 	 *	[tlv] VHT information
3087 	 *	[tlv] WPA (optional)
3088 	 *	[tlv] WME (optional)
3089 	 *	[tlv] Vendor OUI HT capabilities (optional)
3090 	 *	[tlv] Vendor OUI HT information (optional)
3091 	 *	[tlv] Atheros capabilities
3092 	 *	[tlv] AppIE's (optional)
3093 	 *	[tlv] Mesh ID (MBSS)
3094 	 *	[tlv] Mesh Conf (MBSS)
3095 	 */
3096 	m = ieee80211_getmgtframe(&frm,
3097 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
3098 		 8
3099 	       + sizeof(uint16_t)
3100 	       + sizeof(uint16_t)
3101 	       + 2 + IEEE80211_NWID_LEN
3102 	       + 2 + IEEE80211_RATE_SIZE
3103 	       + 7	/* max(7,3) */
3104 	       + IEEE80211_COUNTRY_MAX_SIZE
3105 	       + 3
3106 	       + sizeof(struct ieee80211_csa_ie)
3107 	       + sizeof(struct ieee80211_quiet_ie)
3108 	       + 3
3109 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3110 	       + sizeof(struct ieee80211_ie_wpa)
3111 	       + sizeof(struct ieee80211_ie_htcap)
3112 	       + sizeof(struct ieee80211_ie_htinfo)
3113 	       + sizeof(struct ieee80211_ie_wpa)
3114 	       + sizeof(struct ieee80211_wme_param)
3115 	       + 4 + sizeof(struct ieee80211_ie_htcap)
3116 	       + 4 + sizeof(struct ieee80211_ie_htinfo)
3117 	       +  sizeof(struct ieee80211_ie_vhtcap)
3118 	       +  sizeof(struct ieee80211_ie_vht_operation)
3119 #ifdef IEEE80211_SUPPORT_SUPERG
3120 	       + sizeof(struct ieee80211_ath_ie)
3121 #endif
3122 #ifdef IEEE80211_SUPPORT_MESH
3123 	       + 2 + IEEE80211_MESHID_LEN
3124 	       + sizeof(struct ieee80211_meshconf_ie)
3125 #endif
3126 	       + (vap->iv_appie_proberesp != NULL ?
3127 			vap->iv_appie_proberesp->ie_len : 0)
3128 	);
3129 	if (m == NULL) {
3130 		vap->iv_stats.is_tx_nobuf++;
3131 		return NULL;
3132 	}
3133 
3134 	memset(frm, 0, 8);	/* timestamp should be filled later */
3135 	frm += 8;
3136 	*(uint16_t *)frm = htole16(bss->ni_intval);
3137 	frm += 2;
3138 	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
3139 	*(uint16_t *)frm = htole16(capinfo);
3140 	frm += 2;
3141 
3142 	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
3143 	rs = ieee80211_get_suprates(ic, bss->ni_chan);
3144 	frm = ieee80211_add_rates(frm, rs);
3145 
3146 	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
3147 		*frm++ = IEEE80211_ELEMID_FHPARMS;
3148 		*frm++ = 5;
3149 		*frm++ = bss->ni_fhdwell & 0x00ff;
3150 		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
3151 		*frm++ = IEEE80211_FH_CHANSET(
3152 		    ieee80211_chan2ieee(ic, bss->ni_chan));
3153 		*frm++ = IEEE80211_FH_CHANPAT(
3154 		    ieee80211_chan2ieee(ic, bss->ni_chan));
3155 		*frm++ = bss->ni_fhindex;
3156 	} else {
3157 		*frm++ = IEEE80211_ELEMID_DSPARMS;
3158 		*frm++ = 1;
3159 		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
3160 	}
3161 
3162 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
3163 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
3164 		*frm++ = 2;
3165 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
3166 	}
3167 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3168 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3169 		frm = ieee80211_add_countryie(frm, ic);
3170 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3171 		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
3172 			frm = ieee80211_add_powerconstraint(frm, vap);
3173 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3174 			frm = ieee80211_add_csa(frm, vap);
3175 	}
3176 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3177 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3178 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
3179 			if (vap->iv_quiet)
3180 				frm = ieee80211_add_quiet(frm, vap, 0);
3181 		}
3182 	}
3183 	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
3184 		frm = ieee80211_add_erp(frm, vap);
3185 	frm = ieee80211_add_xrates(frm, rs);
3186 	frm = ieee80211_add_rsn(frm, vap);
3187 	/*
3188 	 * NB: legacy 11b clients do not get certain ie's.
3189 	 *     The caller identifies such clients by passing
3190 	 *     a token in legacy to us.  Could expand this to be
3191 	 *     any legacy client for stuff like HT ie's.
3192 	 */
3193 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
3194 	    legacy != IEEE80211_SEND_LEGACY_11B) {
3195 		frm = ieee80211_add_htcap(frm, bss);
3196 		frm = ieee80211_add_htinfo(frm, bss);
3197 	}
3198 	if (IEEE80211_IS_CHAN_VHT(bss->ni_chan) &&
3199 	    legacy != IEEE80211_SEND_LEGACY_11B) {
3200 		frm = ieee80211_add_vhtcap(frm, bss);
3201 		frm = ieee80211_add_vhtinfo(frm, bss);
3202 	}
3203 	frm = ieee80211_add_wpa(frm, vap);
3204 	if (vap->iv_flags & IEEE80211_F_WME)
3205 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme,
3206 		    !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD));
3207 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
3208 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
3209 	    legacy != IEEE80211_SEND_LEGACY_11B) {
3210 		frm = ieee80211_add_htcap_vendor(frm, bss);
3211 		frm = ieee80211_add_htinfo_vendor(frm, bss);
3212 	}
3213 #ifdef IEEE80211_SUPPORT_SUPERG
3214 	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
3215 	    legacy != IEEE80211_SEND_LEGACY_11B)
3216 		frm = ieee80211_add_athcaps(frm, bss);
3217 #endif
3218 	if (vap->iv_appie_proberesp != NULL)
3219 		frm = add_appie(frm, vap->iv_appie_proberesp);
3220 #ifdef IEEE80211_SUPPORT_MESH
3221 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3222 		frm = ieee80211_add_meshid(frm, vap);
3223 		frm = ieee80211_add_meshconf(frm, vap);
3224 	}
3225 #endif
3226 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3227 
3228 	return m;
3229 }
3230 
3231 /*
3232  * Send a probe response frame to the specified mac address.
3233  * This does not go through the normal mgt frame api so we
3234  * can specify the destination address and re-use the bss node
3235  * for the sta reference.
3236  */
3237 int
3238 ieee80211_send_proberesp(struct ieee80211vap *vap,
3239 	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
3240 {
3241 	struct ieee80211_node *bss = vap->iv_bss;
3242 	struct ieee80211com *ic = vap->iv_ic;
3243 	struct mbuf *m;
3244 	int ret;
3245 
3246 	if (vap->iv_state == IEEE80211_S_CAC) {
3247 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
3248 		    "block %s frame in CAC state", "probe response");
3249 		vap->iv_stats.is_tx_badstate++;
3250 		return EIO;		/* XXX */
3251 	}
3252 
3253 	/*
3254 	 * Hold a reference on the node so it doesn't go away until after
3255 	 * the xmit is complete all the way in the driver.  On error we
3256 	 * will remove our reference.
3257 	 */
3258 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
3259 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
3260 	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
3261 	    ieee80211_node_refcnt(bss)+1);
3262 	ieee80211_ref_node(bss);
3263 
3264 	m = ieee80211_alloc_proberesp(bss, legacy);
3265 	if (m == NULL) {
3266 		ieee80211_free_node(bss);
3267 		return ENOMEM;
3268 	}
3269 
3270 	M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
3271 	KASSERT(m != NULL, ("no room for header"));
3272 
3273 	IEEE80211_TX_LOCK(ic);
3274 	ieee80211_send_setup(bss, m,
3275 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
3276 	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
3277 	/* XXX power management? */
3278 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
3279 
3280 	M_WME_SETAC(m, WME_AC_BE);
3281 
3282 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
3283 	    "send probe resp on channel %u to %s%s\n",
3284 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
3285 	    legacy ? " <legacy>" : "");
3286 	IEEE80211_NODE_STAT(bss, tx_mgmt);
3287 
3288 	ret = ieee80211_raw_output(vap, bss, m, NULL);
3289 	IEEE80211_TX_UNLOCK(ic);
3290 	return (ret);
3291 }
3292 
3293 /*
3294  * Allocate and build a RTS (Request To Send) control frame.
3295  */
3296 struct mbuf *
3297 ieee80211_alloc_rts(struct ieee80211com *ic,
3298 	const uint8_t ra[IEEE80211_ADDR_LEN],
3299 	const uint8_t ta[IEEE80211_ADDR_LEN],
3300 	uint16_t dur)
3301 {
3302 	struct ieee80211_frame_rts *rts;
3303 	struct mbuf *m;
3304 
3305 	/* XXX honor ic_headroom */
3306 	m = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA);
3307 	if (m != NULL) {
3308 		rts = mtod(m, struct ieee80211_frame_rts *);
3309 		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
3310 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
3311 		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3312 		*(u_int16_t *)rts->i_dur = htole16(dur);
3313 		IEEE80211_ADDR_COPY(rts->i_ra, ra);
3314 		IEEE80211_ADDR_COPY(rts->i_ta, ta);
3315 
3316 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
3317 	}
3318 	return m;
3319 }
3320 
3321 /*
3322  * Allocate and build a CTS (Clear To Send) control frame.
3323  */
3324 struct mbuf *
3325 ieee80211_alloc_cts(struct ieee80211com *ic,
3326 	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
3327 {
3328 	struct ieee80211_frame_cts *cts;
3329 	struct mbuf *m;
3330 
3331 	/* XXX honor ic_headroom */
3332 	m = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA);
3333 	if (m != NULL) {
3334 		cts = mtod(m, struct ieee80211_frame_cts *);
3335 		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
3336 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
3337 		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3338 		*(u_int16_t *)cts->i_dur = htole16(dur);
3339 		IEEE80211_ADDR_COPY(cts->i_ra, ra);
3340 
3341 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
3342 	}
3343 	return m;
3344 }
3345 
3346 /*
3347  * Wrapper for CTS/RTS frame allocation.
3348  */
3349 struct mbuf *
3350 ieee80211_alloc_prot(struct ieee80211_node *ni, const struct mbuf *m,
3351     uint8_t rate, int prot)
3352 {
3353 	struct ieee80211com *ic = ni->ni_ic;
3354 	struct ieee80211vap *vap = ni->ni_vap;
3355 	const struct ieee80211_frame *wh;
3356 	struct mbuf *mprot;
3357 	uint16_t dur;
3358 	int pktlen, isshort;
3359 
3360 	KASSERT(prot == IEEE80211_PROT_RTSCTS ||
3361 	    prot == IEEE80211_PROT_CTSONLY,
3362 	    ("wrong protection type %d", prot));
3363 
3364 	wh = mtod(m, const struct ieee80211_frame *);
3365 	pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3366 	isshort = (vap->iv_flags & IEEE80211_F_SHPREAMBLE) != 0;
3367 	dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
3368 	    + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3369 
3370 	if (prot == IEEE80211_PROT_RTSCTS) {
3371 		/* NB: CTS is the same size as an ACK */
3372 		dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3373 		mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
3374 	} else
3375 		mprot = ieee80211_alloc_cts(ic, vap->iv_myaddr, dur);
3376 
3377 	return (mprot);
3378 }
3379 
3380 static void
3381 ieee80211_tx_mgt_timeout(void *arg)
3382 {
3383 	struct ieee80211vap *vap = arg;
3384 
3385 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
3386 	    "vap %p mode %s state %s flags %#x & %#x\n", vap,
3387 	    ieee80211_opmode_name[vap->iv_opmode],
3388 	    ieee80211_state_name[vap->iv_state],
3389 	    vap->iv_ic->ic_flags, IEEE80211_F_SCAN);
3390 
3391 	IEEE80211_LOCK(vap->iv_ic);
3392 	if (vap->iv_state != IEEE80211_S_INIT &&
3393 	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3394 		/*
3395 		 * NB: it's safe to specify a timeout as the reason here;
3396 		 *     it'll only be used in the right state.
3397 		 */
3398 		ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
3399 			IEEE80211_SCAN_FAIL_TIMEOUT);
3400 	}
3401 	IEEE80211_UNLOCK(vap->iv_ic);
3402 }
3403 
3404 /*
3405  * This is the callback set on net80211-sourced transmitted
3406  * authentication request frames.
3407  *
3408  * This does a couple of things:
3409  *
3410  * + If the frame transmitted was a success, it schedules a future
3411  *   event which will transition the interface to scan.
3412  *   If a state transition _then_ occurs before that event occurs,
3413  *   said state transition will cancel this callout.
3414  *
3415  * + If the frame transmit was a failure, it immediately schedules
3416  *   the transition back to scan.
3417  */
3418 static void
3419 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
3420 {
3421 	struct ieee80211vap *vap = ni->ni_vap;
3422 	enum ieee80211_state ostate = (enum ieee80211_state)(uintptr_t)arg;
3423 
3424 	/*
3425 	 * Frame transmit completed; arrange timer callback.  If
3426 	 * transmit was successfully we wait for response.  Otherwise
3427 	 * we arrange an immediate callback instead of doing the
3428 	 * callback directly since we don't know what state the driver
3429 	 * is in (e.g. what locks it is holding).  This work should
3430 	 * not be too time-critical and not happen too often so the
3431 	 * added overhead is acceptable.
3432 	 *
3433 	 * XXX what happens if !acked but response shows up before callback?
3434 	 */
3435 	if (vap->iv_state == ostate) {
3436 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
3437 		    "ni %p mode %s state %s arg %p status %d\n", ni,
3438 		    ieee80211_opmode_name[vap->iv_opmode],
3439 		    ieee80211_state_name[vap->iv_state], arg, status);
3440 
3441 		callout_reset(&vap->iv_mgtsend,
3442 			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
3443 			ieee80211_tx_mgt_timeout, vap);
3444 	}
3445 }
3446 
3447 static void
3448 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
3449 	struct ieee80211_node *ni)
3450 {
3451 	struct ieee80211vap *vap = ni->ni_vap;
3452 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3453 	struct ieee80211com *ic = ni->ni_ic;
3454 	struct ieee80211_rateset *rs = &ni->ni_rates;
3455 	uint16_t capinfo;
3456 
3457 	/*
3458 	 * beacon frame format
3459 	 *
3460 	 * TODO: update to 802.11-2012; a lot of stuff has changed;
3461 	 * vendor extensions should be at the end, etc.
3462 	 *
3463 	 *	[8] time stamp
3464 	 *	[2] beacon interval
3465 	 *	[2] cabability information
3466 	 *	[tlv] ssid
3467 	 *	[tlv] supported rates
3468 	 *	[3] parameter set (DS)
3469 	 *	[8] CF parameter set (optional)
3470 	 *	[tlv] parameter set (IBSS/TIM)
3471 	 *	[tlv] country (optional)
3472 	 *	[3] power control (optional)
3473 	 *	[5] channel switch announcement (CSA) (optional)
3474 	 * XXX TODO: Quiet
3475 	 * XXX TODO: IBSS DFS
3476 	 * XXX TODO: TPC report
3477 	 *	[tlv] extended rate phy (ERP)
3478 	 *	[tlv] extended supported rates
3479 	 *	[tlv] RSN parameters
3480 	 * XXX TODO: BSSLOAD
3481 	 * (XXX EDCA parameter set, QoS capability?)
3482 	 * XXX TODO: AP channel report
3483 	 *
3484 	 *	[tlv] HT capabilities
3485 	 *	[tlv] HT information
3486 	 *	XXX TODO: 20/40 BSS coexistence
3487 	 * Mesh:
3488 	 * XXX TODO: Meshid
3489 	 * XXX TODO: mesh config
3490 	 * XXX TODO: mesh awake window
3491 	 * XXX TODO: beacon timing (mesh, etc)
3492 	 * XXX TODO: MCCAOP Advertisement Overview
3493 	 * XXX TODO: MCCAOP Advertisement
3494 	 * XXX TODO: Mesh channel switch parameters
3495 	 * VHT:
3496 	 * XXX TODO: VHT capabilities
3497 	 * XXX TODO: VHT operation
3498 	 * XXX TODO: VHT transmit power envelope
3499 	 * XXX TODO: channel switch wrapper element
3500 	 * XXX TODO: extended BSS load element
3501 	 *
3502 	 * XXX Vendor-specific OIDs (e.g. Atheros)
3503 	 *	[tlv] WPA parameters
3504 	 *	[tlv] WME parameters
3505 	 *	[tlv] Vendor OUI HT capabilities (optional)
3506 	 *	[tlv] Vendor OUI HT information (optional)
3507 	 *	[tlv] Atheros capabilities (optional)
3508 	 *	[tlv] TDMA parameters (optional)
3509 	 *	[tlv] Mesh ID (MBSS)
3510 	 *	[tlv] Mesh Conf (MBSS)
3511 	 *	[tlv] application data (optional)
3512 	 */
3513 
3514 	memset(bo, 0, sizeof(*bo));
3515 
3516 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
3517 	frm += 8;
3518 	*(uint16_t *)frm = htole16(ni->ni_intval);
3519 	frm += 2;
3520 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3521 	bo->bo_caps = (uint16_t *)frm;
3522 	*(uint16_t *)frm = htole16(capinfo);
3523 	frm += 2;
3524 	*frm++ = IEEE80211_ELEMID_SSID;
3525 	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
3526 		*frm++ = ni->ni_esslen;
3527 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
3528 		frm += ni->ni_esslen;
3529 	} else
3530 		*frm++ = 0;
3531 	frm = ieee80211_add_rates(frm, rs);
3532 	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
3533 		*frm++ = IEEE80211_ELEMID_DSPARMS;
3534 		*frm++ = 1;
3535 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
3536 	}
3537 	if (ic->ic_flags & IEEE80211_F_PCF) {
3538 		bo->bo_cfp = frm;
3539 		frm = ieee80211_add_cfparms(frm, ic);
3540 	}
3541 	bo->bo_tim = frm;
3542 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
3543 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
3544 		*frm++ = 2;
3545 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
3546 		bo->bo_tim_len = 0;
3547 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3548 	    vap->iv_opmode == IEEE80211_M_MBSS) {
3549 		/* TIM IE is the same for Mesh and Hostap */
3550 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
3551 
3552 		tie->tim_ie = IEEE80211_ELEMID_TIM;
3553 		tie->tim_len = 4;	/* length */
3554 		tie->tim_count = 0;	/* DTIM count */
3555 		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
3556 		tie->tim_bitctl = 0;	/* bitmap control */
3557 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
3558 		frm += sizeof(struct ieee80211_tim_ie);
3559 		bo->bo_tim_len = 1;
3560 	}
3561 	bo->bo_tim_trailer = frm;
3562 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3563 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3564 		frm = ieee80211_add_countryie(frm, ic);
3565 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3566 		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
3567 			frm = ieee80211_add_powerconstraint(frm, vap);
3568 		bo->bo_csa = frm;
3569 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3570 			frm = ieee80211_add_csa(frm, vap);
3571 	} else
3572 		bo->bo_csa = frm;
3573 
3574 	bo->bo_quiet = NULL;
3575 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3576 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3577 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
3578 		    (vap->iv_quiet == 1)) {
3579 			/*
3580 			 * We only insert the quiet IE offset if
3581 			 * the quiet IE is enabled.  Otherwise don't
3582 			 * put it here or we'll just overwrite
3583 			 * some other beacon contents.
3584 			 */
3585 			if (vap->iv_quiet) {
3586 				bo->bo_quiet = frm;
3587 				frm = ieee80211_add_quiet(frm,vap, 0);
3588 			}
3589 		}
3590 	}
3591 
3592 	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
3593 		bo->bo_erp = frm;
3594 		frm = ieee80211_add_erp(frm, vap);
3595 	}
3596 	frm = ieee80211_add_xrates(frm, rs);
3597 	frm = ieee80211_add_rsn(frm, vap);
3598 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
3599 		frm = ieee80211_add_htcap(frm, ni);
3600 		bo->bo_htinfo = frm;
3601 		frm = ieee80211_add_htinfo(frm, ni);
3602 	}
3603 
3604 	if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) {
3605 		frm = ieee80211_add_vhtcap(frm, ni);
3606 		bo->bo_vhtinfo = frm;
3607 		frm = ieee80211_add_vhtinfo(frm, ni);
3608 		/* Transmit power envelope */
3609 		/* Channel switch wrapper element */
3610 		/* Extended bss load element */
3611 	}
3612 
3613 	frm = ieee80211_add_wpa(frm, vap);
3614 	if (vap->iv_flags & IEEE80211_F_WME) {
3615 		bo->bo_wme = frm;
3616 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme,
3617 		    !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD));
3618 	}
3619 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
3620 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
3621 		frm = ieee80211_add_htcap_vendor(frm, ni);
3622 		frm = ieee80211_add_htinfo_vendor(frm, ni);
3623 	}
3624 
3625 #ifdef IEEE80211_SUPPORT_SUPERG
3626 	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
3627 		bo->bo_ath = frm;
3628 		frm = ieee80211_add_athcaps(frm, ni);
3629 	}
3630 #endif
3631 #ifdef IEEE80211_SUPPORT_TDMA
3632 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3633 		bo->bo_tdma = frm;
3634 		frm = ieee80211_add_tdma(frm, vap);
3635 	}
3636 #endif
3637 	if (vap->iv_appie_beacon != NULL) {
3638 		bo->bo_appie = frm;
3639 		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
3640 		frm = add_appie(frm, vap->iv_appie_beacon);
3641 	}
3642 
3643 	/* XXX TODO: move meshid/meshconf up to before vendor extensions? */
3644 #ifdef IEEE80211_SUPPORT_MESH
3645 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3646 		frm = ieee80211_add_meshid(frm, vap);
3647 		bo->bo_meshconf = frm;
3648 		frm = ieee80211_add_meshconf(frm, vap);
3649 	}
3650 #endif
3651 	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
3652 	bo->bo_csa_trailer_len = frm - bo->bo_csa;
3653 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3654 }
3655 
3656 /*
3657  * Allocate a beacon frame and fillin the appropriate bits.
3658  */
3659 struct mbuf *
3660 ieee80211_beacon_alloc(struct ieee80211_node *ni)
3661 {
3662 	struct ieee80211vap *vap = ni->ni_vap;
3663 	struct ieee80211com *ic = ni->ni_ic;
3664 	struct ifnet *ifp = vap->iv_ifp;
3665 	struct ieee80211_frame *wh;
3666 	struct mbuf *m;
3667 	int pktlen;
3668 	uint8_t *frm;
3669 
3670 	/*
3671 	 * Update the "We're putting the quiet IE in the beacon" state.
3672 	 */
3673 	if (vap->iv_quiet == 1)
3674 		vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
3675 	else if (vap->iv_quiet == 0)
3676 		vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
3677 
3678 	/*
3679 	 * beacon frame format
3680 	 *
3681 	 * Note: This needs updating for 802.11-2012.
3682 	 *
3683 	 *	[8] time stamp
3684 	 *	[2] beacon interval
3685 	 *	[2] cabability information
3686 	 *	[tlv] ssid
3687 	 *	[tlv] supported rates
3688 	 *	[3] parameter set (DS)
3689 	 *	[8] CF parameter set (optional)
3690 	 *	[tlv] parameter set (IBSS/TIM)
3691 	 *	[tlv] country (optional)
3692 	 *	[3] power control (optional)
3693 	 *	[5] channel switch announcement (CSA) (optional)
3694 	 *	[tlv] extended rate phy (ERP)
3695 	 *	[tlv] extended supported rates
3696 	 *	[tlv] RSN parameters
3697 	 *	[tlv] HT capabilities
3698 	 *	[tlv] HT information
3699 	 *	[tlv] VHT capabilities
3700 	 *	[tlv] VHT operation
3701 	 *	[tlv] Vendor OUI HT capabilities (optional)
3702 	 *	[tlv] Vendor OUI HT information (optional)
3703 	 * XXX Vendor-specific OIDs (e.g. Atheros)
3704 	 *	[tlv] WPA parameters
3705 	 *	[tlv] WME parameters
3706 	 *	[tlv] TDMA parameters (optional)
3707 	 *	[tlv] Mesh ID (MBSS)
3708 	 *	[tlv] Mesh Conf (MBSS)
3709 	 *	[tlv] application data (optional)
3710 	 * NB: we allocate the max space required for the TIM bitmap.
3711 	 * XXX how big is this?
3712 	 */
3713 	pktlen =   8					/* time stamp */
3714 		 + sizeof(uint16_t)			/* beacon interval */
3715 		 + sizeof(uint16_t)			/* capabilities */
3716 		 + 2 + ni->ni_esslen			/* ssid */
3717 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
3718 	         + 2 + 1				/* DS parameters */
3719 		 + 2 + 6				/* CF parameters */
3720 		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
3721 		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
3722 		 + 2 + 1				/* power control */
3723 		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
3724 		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
3725 		 + 2 + 1				/* ERP */
3726 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3727 		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
3728 			2*sizeof(struct ieee80211_ie_wpa) : 0)
3729 		 /* XXX conditional? */
3730 		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3731 		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3732 		 + sizeof(struct ieee80211_ie_vhtcap)/* VHT caps */
3733 		 + sizeof(struct ieee80211_ie_vht_operation)/* VHT info */
3734 		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
3735 			sizeof(struct ieee80211_wme_param) : 0)
3736 #ifdef IEEE80211_SUPPORT_SUPERG
3737 		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
3738 #endif
3739 #ifdef IEEE80211_SUPPORT_TDMA
3740 		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
3741 			sizeof(struct ieee80211_tdma_param) : 0)
3742 #endif
3743 #ifdef IEEE80211_SUPPORT_MESH
3744 		 + 2 + ni->ni_meshidlen
3745 		 + sizeof(struct ieee80211_meshconf_ie)
3746 #endif
3747 		 + IEEE80211_MAX_APPIE
3748 		 ;
3749 	m = ieee80211_getmgtframe(&frm,
3750 		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3751 	if (m == NULL) {
3752 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3753 			"%s: cannot get buf; size %u\n", __func__, pktlen);
3754 		vap->iv_stats.is_tx_nobuf++;
3755 		return NULL;
3756 	}
3757 	ieee80211_beacon_construct(m, frm, ni);
3758 
3759 	M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
3760 	KASSERT(m != NULL, ("no space for 802.11 header?"));
3761 	wh = mtod(m, struct ieee80211_frame *);
3762 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3763 	    IEEE80211_FC0_SUBTYPE_BEACON;
3764 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3765 	*(uint16_t *)wh->i_dur = 0;
3766 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3767 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3768 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3769 	*(uint16_t *)wh->i_seq = 0;
3770 
3771 	return m;
3772 }
3773 
3774 /*
3775  * Update the dynamic parts of a beacon frame based on the current state.
3776  */
3777 int
3778 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast)
3779 {
3780 	struct ieee80211vap *vap = ni->ni_vap;
3781 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3782 	struct ieee80211com *ic = ni->ni_ic;
3783 	int len_changed = 0;
3784 	uint16_t capinfo;
3785 	struct ieee80211_frame *wh;
3786 	ieee80211_seq seqno;
3787 
3788 	IEEE80211_LOCK(ic);
3789 	/*
3790 	 * Handle 11h channel change when we've reached the count.
3791 	 * We must recalculate the beacon frame contents to account
3792 	 * for the new channel.  Note we do this only for the first
3793 	 * vap that reaches this point; subsequent vaps just update
3794 	 * their beacon state to reflect the recalculated channel.
3795 	 */
3796 	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3797 	    vap->iv_csa_count == ic->ic_csa_count) {
3798 		vap->iv_csa_count = 0;
3799 		/*
3800 		 * Effect channel change before reconstructing the beacon
3801 		 * frame contents as many places reference ni_chan.
3802 		 */
3803 		if (ic->ic_csa_newchan != NULL)
3804 			ieee80211_csa_completeswitch(ic);
3805 		/*
3806 		 * NB: ieee80211_beacon_construct clears all pending
3807 		 * updates in bo_flags so we don't need to explicitly
3808 		 * clear IEEE80211_BEACON_CSA.
3809 		 */
3810 		ieee80211_beacon_construct(m,
3811 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3812 
3813 		/* XXX do WME aggressive mode processing? */
3814 		IEEE80211_UNLOCK(ic);
3815 		return 1;		/* just assume length changed */
3816 	}
3817 
3818 	/*
3819 	 * Handle the quiet time element being added and removed.
3820 	 * Again, for now we just cheat and reconstruct the whole
3821 	 * beacon - that way the gap is provided as appropriate.
3822 	 *
3823 	 * So, track whether we have already added the IE versus
3824 	 * whether we want to be adding the IE.
3825 	 */
3826 	if ((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) &&
3827 	    (vap->iv_quiet == 0)) {
3828 		/*
3829 		 * Quiet time beacon IE enabled, but it's disabled;
3830 		 * recalc
3831 		 */
3832 		vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
3833 		ieee80211_beacon_construct(m,
3834 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3835 		/* XXX do WME aggressive mode processing? */
3836 		IEEE80211_UNLOCK(ic);
3837 		return 1;		/* just assume length changed */
3838 	}
3839 
3840 	if (((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) == 0) &&
3841 	    (vap->iv_quiet == 1)) {
3842 		/*
3843 		 * Quiet time beacon IE disabled, but it's now enabled;
3844 		 * recalc
3845 		 */
3846 		vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
3847 		ieee80211_beacon_construct(m,
3848 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3849 		/* XXX do WME aggressive mode processing? */
3850 		IEEE80211_UNLOCK(ic);
3851 		return 1;		/* just assume length changed */
3852 	}
3853 
3854 	wh = mtod(m, struct ieee80211_frame *);
3855 
3856 	/*
3857 	 * XXX TODO Strictly speaking this should be incremented with the TX
3858 	 * lock held so as to serialise access to the non-qos TID sequence
3859 	 * number space.
3860 	 *
3861 	 * If the driver identifies it does its own TX seqno management then
3862 	 * we can skip this (and still not do the TX seqno.)
3863 	 */
3864 	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3865 	*(uint16_t *)&wh->i_seq[0] =
3866 		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3867 	M_SEQNO_SET(m, seqno);
3868 
3869 	/* XXX faster to recalculate entirely or just changes? */
3870 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3871 	*bo->bo_caps = htole16(capinfo);
3872 
3873 	if (vap->iv_flags & IEEE80211_F_WME) {
3874 		struct ieee80211_wme_state *wme = &ic->ic_wme;
3875 
3876 		/*
3877 		 * Check for aggressive mode change.  When there is
3878 		 * significant high priority traffic in the BSS
3879 		 * throttle back BE traffic by using conservative
3880 		 * parameters.  Otherwise BE uses aggressive params
3881 		 * to optimize performance of legacy/non-QoS traffic.
3882 		 */
3883 		if (wme->wme_flags & WME_F_AGGRMODE) {
3884 			if (wme->wme_hipri_traffic >
3885 			    wme->wme_hipri_switch_thresh) {
3886 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3887 				    "%s: traffic %u, disable aggressive mode\n",
3888 				    __func__, wme->wme_hipri_traffic);
3889 				wme->wme_flags &= ~WME_F_AGGRMODE;
3890 				ieee80211_wme_updateparams_locked(vap);
3891 				wme->wme_hipri_traffic =
3892 					wme->wme_hipri_switch_hysteresis;
3893 			} else
3894 				wme->wme_hipri_traffic = 0;
3895 		} else {
3896 			if (wme->wme_hipri_traffic <=
3897 			    wme->wme_hipri_switch_thresh) {
3898 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3899 				    "%s: traffic %u, enable aggressive mode\n",
3900 				    __func__, wme->wme_hipri_traffic);
3901 				wme->wme_flags |= WME_F_AGGRMODE;
3902 				ieee80211_wme_updateparams_locked(vap);
3903 				wme->wme_hipri_traffic = 0;
3904 			} else
3905 				wme->wme_hipri_traffic =
3906 					wme->wme_hipri_switch_hysteresis;
3907 		}
3908 		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3909 			(void) ieee80211_add_wme_param(bo->bo_wme, wme,
3910 			  vap->iv_flags_ext & IEEE80211_FEXT_UAPSD);
3911 			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3912 		}
3913 	}
3914 
3915 	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
3916 		ieee80211_ht_update_beacon(vap, bo);
3917 		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3918 	}
3919 #ifdef IEEE80211_SUPPORT_TDMA
3920 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3921 		/*
3922 		 * NB: the beacon is potentially updated every TBTT.
3923 		 */
3924 		ieee80211_tdma_update_beacon(vap, bo);
3925 	}
3926 #endif
3927 #ifdef IEEE80211_SUPPORT_MESH
3928 	if (vap->iv_opmode == IEEE80211_M_MBSS)
3929 		ieee80211_mesh_update_beacon(vap, bo);
3930 #endif
3931 
3932 	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3933 	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
3934 		struct ieee80211_tim_ie *tie =
3935 			(struct ieee80211_tim_ie *) bo->bo_tim;
3936 		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3937 			u_int timlen, timoff, i;
3938 			/*
3939 			 * ATIM/DTIM needs updating.  If it fits in the
3940 			 * current space allocated then just copy in the
3941 			 * new bits.  Otherwise we need to move any trailing
3942 			 * data to make room.  Note that we know there is
3943 			 * contiguous space because ieee80211_beacon_allocate
3944 			 * insures there is space in the mbuf to write a
3945 			 * maximal-size virtual bitmap (based on iv_max_aid).
3946 			 */
3947 			/*
3948 			 * Calculate the bitmap size and offset, copy any
3949 			 * trailer out of the way, and then copy in the
3950 			 * new bitmap and update the information element.
3951 			 * Note that the tim bitmap must contain at least
3952 			 * one byte and any offset must be even.
3953 			 */
3954 			if (vap->iv_ps_pending != 0) {
3955 				timoff = 128;		/* impossibly large */
3956 				for (i = 0; i < vap->iv_tim_len; i++)
3957 					if (vap->iv_tim_bitmap[i]) {
3958 						timoff = i &~ 1;
3959 						break;
3960 					}
3961 				KASSERT(timoff != 128, ("tim bitmap empty!"));
3962 				for (i = vap->iv_tim_len-1; i >= timoff; i--)
3963 					if (vap->iv_tim_bitmap[i])
3964 						break;
3965 				timlen = 1 + (i - timoff);
3966 			} else {
3967 				timoff = 0;
3968 				timlen = 1;
3969 			}
3970 
3971 			/*
3972 			 * TODO: validate this!
3973 			 */
3974 			if (timlen != bo->bo_tim_len) {
3975 				/* copy up/down trailer */
3976 				int adjust = tie->tim_bitmap+timlen
3977 					   - bo->bo_tim_trailer;
3978 				ovbcopy(bo->bo_tim_trailer,
3979 				    bo->bo_tim_trailer+adjust,
3980 				    bo->bo_tim_trailer_len);
3981 				bo->bo_tim_trailer += adjust;
3982 				bo->bo_erp += adjust;
3983 				bo->bo_htinfo += adjust;
3984 				bo->bo_vhtinfo += adjust;
3985 #ifdef IEEE80211_SUPPORT_SUPERG
3986 				bo->bo_ath += adjust;
3987 #endif
3988 #ifdef IEEE80211_SUPPORT_TDMA
3989 				bo->bo_tdma += adjust;
3990 #endif
3991 #ifdef IEEE80211_SUPPORT_MESH
3992 				bo->bo_meshconf += adjust;
3993 #endif
3994 				bo->bo_appie += adjust;
3995 				bo->bo_wme += adjust;
3996 				bo->bo_csa += adjust;
3997 				bo->bo_quiet += adjust;
3998 				bo->bo_tim_len = timlen;
3999 
4000 				/* update information element */
4001 				tie->tim_len = 3 + timlen;
4002 				tie->tim_bitctl = timoff;
4003 				len_changed = 1;
4004 			}
4005 			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
4006 				bo->bo_tim_len);
4007 
4008 			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
4009 
4010 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
4011 				"%s: TIM updated, pending %u, off %u, len %u\n",
4012 				__func__, vap->iv_ps_pending, timoff, timlen);
4013 		}
4014 		/* count down DTIM period */
4015 		if (tie->tim_count == 0)
4016 			tie->tim_count = tie->tim_period - 1;
4017 		else
4018 			tie->tim_count--;
4019 		/* update state for buffered multicast frames on DTIM */
4020 		if (mcast && tie->tim_count == 0)
4021 			tie->tim_bitctl |= 1;
4022 		else
4023 			tie->tim_bitctl &= ~1;
4024 		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
4025 			struct ieee80211_csa_ie *csa =
4026 			    (struct ieee80211_csa_ie *) bo->bo_csa;
4027 
4028 			/*
4029 			 * Insert or update CSA ie.  If we're just starting
4030 			 * to count down to the channel switch then we need
4031 			 * to insert the CSA ie.  Otherwise we just need to
4032 			 * drop the count.  The actual change happens above
4033 			 * when the vap's count reaches the target count.
4034 			 */
4035 			if (vap->iv_csa_count == 0) {
4036 				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
4037 				bo->bo_erp += sizeof(*csa);
4038 				bo->bo_htinfo += sizeof(*csa);
4039 				bo->bo_vhtinfo += sizeof(*csa);
4040 				bo->bo_wme += sizeof(*csa);
4041 #ifdef IEEE80211_SUPPORT_SUPERG
4042 				bo->bo_ath += sizeof(*csa);
4043 #endif
4044 #ifdef IEEE80211_SUPPORT_TDMA
4045 				bo->bo_tdma += sizeof(*csa);
4046 #endif
4047 #ifdef IEEE80211_SUPPORT_MESH
4048 				bo->bo_meshconf += sizeof(*csa);
4049 #endif
4050 				bo->bo_appie += sizeof(*csa);
4051 				bo->bo_csa_trailer_len += sizeof(*csa);
4052 				bo->bo_quiet += sizeof(*csa);
4053 				bo->bo_tim_trailer_len += sizeof(*csa);
4054 				m->m_len += sizeof(*csa);
4055 				m->m_pkthdr.len += sizeof(*csa);
4056 
4057 				ieee80211_add_csa(bo->bo_csa, vap);
4058 			} else
4059 				csa->csa_count--;
4060 			vap->iv_csa_count++;
4061 			/* NB: don't clear IEEE80211_BEACON_CSA */
4062 		}
4063 
4064 		/*
4065 		 * Only add the quiet time IE if we've enabled it
4066 		 * as appropriate.
4067 		 */
4068 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
4069 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
4070 			if (vap->iv_quiet &&
4071 			    (vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE)) {
4072 				ieee80211_add_quiet(bo->bo_quiet, vap, 1);
4073 			}
4074 		}
4075 		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
4076 			/*
4077 			 * ERP element needs updating.
4078 			 */
4079 			(void) ieee80211_add_erp(bo->bo_erp, vap);
4080 			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
4081 		}
4082 #ifdef IEEE80211_SUPPORT_SUPERG
4083 		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
4084 			ieee80211_add_athcaps(bo->bo_ath, ni);
4085 			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
4086 		}
4087 #endif
4088 	}
4089 	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
4090 		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
4091 		int aielen;
4092 		uint8_t *frm;
4093 
4094 		aielen = 0;
4095 		if (aie != NULL)
4096 			aielen += aie->ie_len;
4097 		if (aielen != bo->bo_appie_len) {
4098 			/* copy up/down trailer */
4099 			int adjust = aielen - bo->bo_appie_len;
4100 			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
4101 				bo->bo_tim_trailer_len);
4102 			bo->bo_tim_trailer += adjust;
4103 			bo->bo_appie += adjust;
4104 			bo->bo_appie_len = aielen;
4105 
4106 			len_changed = 1;
4107 		}
4108 		frm = bo->bo_appie;
4109 		if (aie != NULL)
4110 			frm  = add_appie(frm, aie);
4111 		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
4112 	}
4113 	IEEE80211_UNLOCK(ic);
4114 
4115 	return len_changed;
4116 }
4117 
4118 /*
4119  * Do Ethernet-LLC encapsulation for each payload in a fast frame
4120  * tunnel encapsulation.  The frame is assumed to have an Ethernet
4121  * header at the front that must be stripped before prepending the
4122  * LLC followed by the Ethernet header passed in (with an Ethernet
4123  * type that specifies the payload size).
4124  */
4125 struct mbuf *
4126 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
4127 	const struct ether_header *eh)
4128 {
4129 	struct llc *llc;
4130 	uint16_t payload;
4131 
4132 	/* XXX optimize by combining m_adj+M_PREPEND */
4133 	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
4134 	llc = mtod(m, struct llc *);
4135 	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
4136 	llc->llc_control = LLC_UI;
4137 	llc->llc_snap.org_code[0] = 0;
4138 	llc->llc_snap.org_code[1] = 0;
4139 	llc->llc_snap.org_code[2] = 0;
4140 	llc->llc_snap.ether_type = eh->ether_type;
4141 	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
4142 
4143 	M_PREPEND(m, sizeof(struct ether_header), IEEE80211_M_NOWAIT);
4144 	if (m == NULL) {		/* XXX cannot happen */
4145 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
4146 			"%s: no space for ether_header\n", __func__);
4147 		vap->iv_stats.is_tx_nobuf++;
4148 		return NULL;
4149 	}
4150 	ETHER_HEADER_COPY(mtod(m, void *), eh);
4151 	mtod(m, struct ether_header *)->ether_type = htons(payload);
4152 	return m;
4153 }
4154 
4155 /*
4156  * Complete an mbuf transmission.
4157  *
4158  * For now, this simply processes a completed frame after the
4159  * driver has completed it's transmission and/or retransmission.
4160  * It assumes the frame is an 802.11 encapsulated frame.
4161  *
4162  * Later on it will grow to become the exit path for a given frame
4163  * from the driver and, depending upon how it's been encapsulated
4164  * and already transmitted, it may end up doing A-MPDU retransmission,
4165  * power save requeuing, etc.
4166  *
4167  * In order for the above to work, the driver entry point to this
4168  * must not hold any driver locks.  Thus, the driver needs to delay
4169  * any actual mbuf completion until it can release said locks.
4170  *
4171  * This frees the mbuf and if the mbuf has a node reference,
4172  * the node reference will be freed.
4173  */
4174 void
4175 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
4176 {
4177 
4178 	if (ni != NULL) {
4179 		struct ifnet *ifp = ni->ni_vap->iv_ifp;
4180 
4181 		if (status == 0) {
4182 			if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
4183 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
4184 			if (m->m_flags & M_MCAST)
4185 				if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
4186 		} else
4187 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
4188 		if (m->m_flags & M_TXCB) {
4189 			IEEE80211_DPRINTF(ni->ni_vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
4190 			   "ni %p vap %p mode %s state %s m %p status %d\n", ni, ni->ni_vap,
4191 			   ieee80211_opmode_name[ni->ni_vap->iv_opmode],
4192 			   ieee80211_state_name[ni->ni_vap->iv_state], m, status);
4193 			ieee80211_process_callback(ni, m, status);
4194 		}
4195 		ieee80211_free_node(ni);
4196 	}
4197 	m_freem(m);
4198 }
4199