1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_inet.h" 31 #include "opt_inet6.h" 32 #include "opt_wlan.h" 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/mbuf.h> 37 #include <sys/kernel.h> 38 #include <sys/endian.h> 39 40 #include <sys/socket.h> 41 42 #include <net/bpf.h> 43 #include <net/ethernet.h> 44 #include <net/if.h> 45 #include <net/if_var.h> 46 #include <net/if_llc.h> 47 #include <net/if_media.h> 48 #include <net/if_vlan_var.h> 49 50 #include <net80211/ieee80211_var.h> 51 #include <net80211/ieee80211_regdomain.h> 52 #ifdef IEEE80211_SUPPORT_SUPERG 53 #include <net80211/ieee80211_superg.h> 54 #endif 55 #ifdef IEEE80211_SUPPORT_TDMA 56 #include <net80211/ieee80211_tdma.h> 57 #endif 58 #include <net80211/ieee80211_wds.h> 59 #include <net80211/ieee80211_mesh.h> 60 61 #if defined(INET) || defined(INET6) 62 #include <netinet/in.h> 63 #endif 64 65 #ifdef INET 66 #include <netinet/if_ether.h> 67 #include <netinet/in_systm.h> 68 #include <netinet/ip.h> 69 #endif 70 #ifdef INET6 71 #include <netinet/ip6.h> 72 #endif 73 74 #include <security/mac/mac_framework.h> 75 76 #define ETHER_HEADER_COPY(dst, src) \ 77 memcpy(dst, src, sizeof(struct ether_header)) 78 79 /* unalligned little endian access */ 80 #define LE_WRITE_2(p, v) do { \ 81 ((uint8_t *)(p))[0] = (v) & 0xff; \ 82 ((uint8_t *)(p))[1] = ((v) >> 8) & 0xff; \ 83 } while (0) 84 #define LE_WRITE_4(p, v) do { \ 85 ((uint8_t *)(p))[0] = (v) & 0xff; \ 86 ((uint8_t *)(p))[1] = ((v) >> 8) & 0xff; \ 87 ((uint8_t *)(p))[2] = ((v) >> 16) & 0xff; \ 88 ((uint8_t *)(p))[3] = ((v) >> 24) & 0xff; \ 89 } while (0) 90 91 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *, 92 u_int hdrsize, u_int ciphdrsize, u_int mtu); 93 static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int); 94 95 #ifdef IEEE80211_DEBUG 96 /* 97 * Decide if an outbound management frame should be 98 * printed when debugging is enabled. This filters some 99 * of the less interesting frames that come frequently 100 * (e.g. beacons). 101 */ 102 static __inline int 103 doprint(struct ieee80211vap *vap, int subtype) 104 { 105 switch (subtype) { 106 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 107 return (vap->iv_opmode == IEEE80211_M_IBSS); 108 } 109 return 1; 110 } 111 #endif 112 113 /* 114 * Transmit a frame to the given destination on the given VAP. 115 * 116 * It's up to the caller to figure out the details of who this 117 * is going to and resolving the node. 118 * 119 * This routine takes care of queuing it for power save, 120 * A-MPDU state stuff, fast-frames state stuff, encapsulation 121 * if required, then passing it up to the driver layer. 122 * 123 * This routine (for now) consumes the mbuf and frees the node 124 * reference; it ideally will return a TX status which reflects 125 * whether the mbuf was consumed or not, so the caller can 126 * free the mbuf (if appropriate) and the node reference (again, 127 * if appropriate.) 128 */ 129 int 130 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m, 131 struct ieee80211_node *ni) 132 { 133 struct ieee80211com *ic = vap->iv_ic; 134 struct ifnet *ifp = vap->iv_ifp; 135 int error; 136 137 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 138 (m->m_flags & M_PWR_SAV) == 0) { 139 /* 140 * Station in power save mode; pass the frame 141 * to the 802.11 layer and continue. We'll get 142 * the frame back when the time is right. 143 * XXX lose WDS vap linkage? 144 */ 145 (void) ieee80211_pwrsave(ni, m); 146 ieee80211_free_node(ni); 147 148 /* 149 * We queued it fine, so tell the upper layer 150 * that we consumed it. 151 */ 152 return (0); 153 } 154 /* calculate priority so drivers can find the tx queue */ 155 if (ieee80211_classify(ni, m)) { 156 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 157 ni->ni_macaddr, NULL, 158 "%s", "classification failure"); 159 vap->iv_stats.is_tx_classify++; 160 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 161 m_freem(m); 162 ieee80211_free_node(ni); 163 164 /* XXX better status? */ 165 return (0); 166 } 167 /* 168 * Stash the node pointer. Note that we do this after 169 * any call to ieee80211_dwds_mcast because that code 170 * uses any existing value for rcvif to identify the 171 * interface it (might have been) received on. 172 */ 173 m->m_pkthdr.rcvif = (void *)ni; 174 175 BPF_MTAP(ifp, m); /* 802.3 tx */ 176 177 /* 178 * Check if A-MPDU tx aggregation is setup or if we 179 * should try to enable it. The sta must be associated 180 * with HT and A-MPDU enabled for use. When the policy 181 * routine decides we should enable A-MPDU we issue an 182 * ADDBA request and wait for a reply. The frame being 183 * encapsulated will go out w/o using A-MPDU, or possibly 184 * it might be collected by the driver and held/retransmit. 185 * The default ic_ampdu_enable routine handles staggering 186 * ADDBA requests in case the receiver NAK's us or we are 187 * otherwise unable to establish a BA stream. 188 */ 189 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) && 190 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) && 191 (m->m_flags & M_EAPOL) == 0) { 192 int tid = WME_AC_TO_TID(M_WME_GETAC(m)); 193 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; 194 195 ieee80211_txampdu_count_packet(tap); 196 if (IEEE80211_AMPDU_RUNNING(tap)) { 197 /* 198 * Operational, mark frame for aggregation. 199 * 200 * XXX do tx aggregation here 201 */ 202 m->m_flags |= M_AMPDU_MPDU; 203 } else if (!IEEE80211_AMPDU_REQUESTED(tap) && 204 ic->ic_ampdu_enable(ni, tap)) { 205 /* 206 * Not negotiated yet, request service. 207 */ 208 ieee80211_ampdu_request(ni, tap); 209 /* XXX hold frame for reply? */ 210 } 211 } 212 213 #ifdef IEEE80211_SUPPORT_SUPERG 214 else if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) { 215 m = ieee80211_ff_check(ni, m); 216 if (m == NULL) { 217 /* NB: any ni ref held on stageq */ 218 return (0); 219 } 220 } 221 #endif /* IEEE80211_SUPPORT_SUPERG */ 222 223 /* 224 * Grab the TX lock - serialise the TX process from this 225 * point (where TX state is being checked/modified) 226 * through to driver queue. 227 */ 228 IEEE80211_TX_LOCK(ic); 229 230 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 231 /* 232 * Encapsulate the packet in prep for transmission. 233 */ 234 m = ieee80211_encap(vap, ni, m); 235 if (m == NULL) { 236 /* NB: stat+msg handled in ieee80211_encap */ 237 IEEE80211_TX_UNLOCK(ic); 238 ieee80211_free_node(ni); 239 /* XXX better status? */ 240 return (ENOBUFS); 241 } 242 } 243 error = ieee80211_parent_xmitpkt(ic, m); 244 245 /* 246 * Unlock at this point - no need to hold it across 247 * ieee80211_free_node() (ie, the comlock) 248 */ 249 IEEE80211_TX_UNLOCK(ic); 250 if (error != 0) { 251 /* NB: IFQ_HANDOFF reclaims mbuf */ 252 ieee80211_free_node(ni); 253 } else { 254 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 255 } 256 ic->ic_lastdata = ticks; 257 258 return (0); 259 } 260 261 262 263 /* 264 * Send the given mbuf through the given vap. 265 * 266 * This consumes the mbuf regardless of whether the transmit 267 * was successful or not. 268 * 269 * This does none of the initial checks that ieee80211_start() 270 * does (eg CAC timeout, interface wakeup) - the caller must 271 * do this first. 272 */ 273 static int 274 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m) 275 { 276 #define IS_DWDS(vap) \ 277 (vap->iv_opmode == IEEE80211_M_WDS && \ 278 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0) 279 struct ieee80211com *ic = vap->iv_ic; 280 struct ifnet *ifp = vap->iv_ifp; 281 struct ieee80211_node *ni; 282 struct ether_header *eh; 283 284 /* 285 * Cancel any background scan. 286 */ 287 if (ic->ic_flags & IEEE80211_F_SCAN) 288 ieee80211_cancel_anyscan(vap); 289 /* 290 * Find the node for the destination so we can do 291 * things like power save and fast frames aggregation. 292 * 293 * NB: past this point various code assumes the first 294 * mbuf has the 802.3 header present (and contiguous). 295 */ 296 ni = NULL; 297 if (m->m_len < sizeof(struct ether_header) && 298 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 299 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 300 "discard frame, %s\n", "m_pullup failed"); 301 vap->iv_stats.is_tx_nobuf++; /* XXX */ 302 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 303 return (ENOBUFS); 304 } 305 eh = mtod(m, struct ether_header *); 306 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 307 if (IS_DWDS(vap)) { 308 /* 309 * Only unicast frames from the above go out 310 * DWDS vaps; multicast frames are handled by 311 * dispatching the frame as it comes through 312 * the AP vap (see below). 313 */ 314 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS, 315 eh->ether_dhost, "mcast", "%s", "on DWDS"); 316 vap->iv_stats.is_dwds_mcast++; 317 m_freem(m); 318 /* XXX better status? */ 319 return (ENOBUFS); 320 } 321 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { 322 /* 323 * Spam DWDS vap's w/ multicast traffic. 324 */ 325 /* XXX only if dwds in use? */ 326 ieee80211_dwds_mcast(vap, m); 327 } 328 } 329 #ifdef IEEE80211_SUPPORT_MESH 330 if (vap->iv_opmode != IEEE80211_M_MBSS) { 331 #endif 332 ni = ieee80211_find_txnode(vap, eh->ether_dhost); 333 if (ni == NULL) { 334 /* NB: ieee80211_find_txnode does stat+msg */ 335 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 336 m_freem(m); 337 /* XXX better status? */ 338 return (ENOBUFS); 339 } 340 if (ni->ni_associd == 0 && 341 (ni->ni_flags & IEEE80211_NODE_ASSOCID)) { 342 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 343 eh->ether_dhost, NULL, 344 "sta not associated (type 0x%04x)", 345 htons(eh->ether_type)); 346 vap->iv_stats.is_tx_notassoc++; 347 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 348 m_freem(m); 349 ieee80211_free_node(ni); 350 /* XXX better status? */ 351 return (ENOBUFS); 352 } 353 #ifdef IEEE80211_SUPPORT_MESH 354 } else { 355 if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) { 356 /* 357 * Proxy station only if configured. 358 */ 359 if (!ieee80211_mesh_isproxyena(vap)) { 360 IEEE80211_DISCARD_MAC(vap, 361 IEEE80211_MSG_OUTPUT | 362 IEEE80211_MSG_MESH, 363 eh->ether_dhost, NULL, 364 "%s", "proxy not enabled"); 365 vap->iv_stats.is_mesh_notproxy++; 366 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 367 m_freem(m); 368 /* XXX better status? */ 369 return (ENOBUFS); 370 } 371 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 372 "forward frame from DS SA(%6D), DA(%6D)\n", 373 eh->ether_shost, ":", 374 eh->ether_dhost, ":"); 375 ieee80211_mesh_proxy_check(vap, eh->ether_shost); 376 } 377 ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m); 378 if (ni == NULL) { 379 /* 380 * NB: ieee80211_mesh_discover holds/disposes 381 * frame (e.g. queueing on path discovery). 382 */ 383 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 384 /* XXX better status? */ 385 return (ENOBUFS); 386 } 387 } 388 #endif 389 390 /* 391 * We've resolved the sender, so attempt to transmit it. 392 */ 393 394 if (vap->iv_state == IEEE80211_S_SLEEP) { 395 /* 396 * In power save; queue frame and then wakeup device 397 * for transmit. 398 */ 399 ic->ic_lastdata = ticks; 400 (void) ieee80211_pwrsave(ni, m); 401 ieee80211_free_node(ni); 402 ieee80211_new_state(vap, IEEE80211_S_RUN, 0); 403 return (0); 404 } 405 406 if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0) 407 return (ENOBUFS); 408 return (0); 409 #undef IS_DWDS 410 } 411 412 /* 413 * Start method for vap's. All packets from the stack come 414 * through here. We handle common processing of the packets 415 * before dispatching them to the underlying device. 416 * 417 * if_transmit() requires that the mbuf be consumed by this call 418 * regardless of the return condition. 419 */ 420 int 421 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m) 422 { 423 struct ieee80211vap *vap = ifp->if_softc; 424 struct ieee80211com *ic = vap->iv_ic; 425 struct ifnet *parent = ic->ic_ifp; 426 427 /* NB: parent must be up and running */ 428 if (!IFNET_IS_UP_RUNNING(parent)) { 429 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 430 "%s: ignore queue, parent %s not up+running\n", 431 __func__, parent->if_xname); 432 /* XXX stat */ 433 m_freem(m); 434 return (EINVAL); 435 } 436 437 /* 438 * No data frames go out unless we're running. 439 * Note in particular this covers CAC and CSA 440 * states (though maybe we should check muting 441 * for CSA). 442 */ 443 if (vap->iv_state != IEEE80211_S_RUN && 444 vap->iv_state != IEEE80211_S_SLEEP) { 445 IEEE80211_LOCK(ic); 446 /* re-check under the com lock to avoid races */ 447 if (vap->iv_state != IEEE80211_S_RUN && 448 vap->iv_state != IEEE80211_S_SLEEP) { 449 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 450 "%s: ignore queue, in %s state\n", 451 __func__, ieee80211_state_name[vap->iv_state]); 452 vap->iv_stats.is_tx_badstate++; 453 IEEE80211_UNLOCK(ic); 454 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 455 m_freem(m); 456 return (EINVAL); 457 } 458 IEEE80211_UNLOCK(ic); 459 } 460 461 /* 462 * Sanitize mbuf flags for net80211 use. We cannot 463 * clear M_PWR_SAV or M_MORE_DATA because these may 464 * be set for frames that are re-submitted from the 465 * power save queue. 466 * 467 * NB: This must be done before ieee80211_classify as 468 * it marks EAPOL in frames with M_EAPOL. 469 */ 470 m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA); 471 472 /* 473 * Bump to the packet transmission path. 474 * The mbuf will be consumed here. 475 */ 476 return (ieee80211_start_pkt(vap, m)); 477 } 478 479 void 480 ieee80211_vap_qflush(struct ifnet *ifp) 481 { 482 483 /* Empty for now */ 484 } 485 486 /* 487 * 802.11 raw output routine. 488 * 489 * XXX TODO: this (and other send routines) should correctly 490 * XXX keep the pwr mgmt bit set if it decides to call into the 491 * XXX driver to send a frame whilst the state is SLEEP. 492 * 493 * Otherwise the peer may decide that we're awake and flood us 494 * with traffic we are still too asleep to receive! 495 */ 496 int 497 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni, 498 struct mbuf *m, const struct ieee80211_bpf_params *params) 499 { 500 struct ieee80211com *ic = vap->iv_ic; 501 502 return (ic->ic_raw_xmit(ni, m, params)); 503 } 504 505 /* 506 * 802.11 output routine. This is (currently) used only to 507 * connect bpf write calls to the 802.11 layer for injecting 508 * raw 802.11 frames. 509 */ 510 #if __FreeBSD_version >= 1000031 511 int 512 ieee80211_output(struct ifnet *ifp, struct mbuf *m, 513 const struct sockaddr *dst, struct route *ro) 514 #else 515 int 516 ieee80211_output(struct ifnet *ifp, struct mbuf *m, 517 struct sockaddr *dst, struct route *ro) 518 #endif 519 { 520 #define senderr(e) do { error = (e); goto bad;} while (0) 521 struct ieee80211_node *ni = NULL; 522 struct ieee80211vap *vap; 523 struct ieee80211_frame *wh; 524 struct ieee80211com *ic = NULL; 525 int error; 526 int ret; 527 528 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 529 /* 530 * Short-circuit requests if the vap is marked OACTIVE 531 * as this can happen because a packet came down through 532 * ieee80211_start before the vap entered RUN state in 533 * which case it's ok to just drop the frame. This 534 * should not be necessary but callers of if_output don't 535 * check OACTIVE. 536 */ 537 senderr(ENETDOWN); 538 } 539 vap = ifp->if_softc; 540 ic = vap->iv_ic; 541 /* 542 * Hand to the 802.3 code if not tagged as 543 * a raw 802.11 frame. 544 */ 545 if (dst->sa_family != AF_IEEE80211) 546 return vap->iv_output(ifp, m, dst, ro); 547 #ifdef MAC 548 error = mac_ifnet_check_transmit(ifp, m); 549 if (error) 550 senderr(error); 551 #endif 552 if (ifp->if_flags & IFF_MONITOR) 553 senderr(ENETDOWN); 554 if (!IFNET_IS_UP_RUNNING(ifp)) 555 senderr(ENETDOWN); 556 if (vap->iv_state == IEEE80211_S_CAC) { 557 IEEE80211_DPRINTF(vap, 558 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 559 "block %s frame in CAC state\n", "raw data"); 560 vap->iv_stats.is_tx_badstate++; 561 senderr(EIO); /* XXX */ 562 } else if (vap->iv_state == IEEE80211_S_SCAN) 563 senderr(EIO); 564 /* XXX bypass bridge, pfil, carp, etc. */ 565 566 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack)) 567 senderr(EIO); /* XXX */ 568 wh = mtod(m, struct ieee80211_frame *); 569 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) != 570 IEEE80211_FC0_VERSION_0) 571 senderr(EIO); /* XXX */ 572 573 /* locate destination node */ 574 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 575 case IEEE80211_FC1_DIR_NODS: 576 case IEEE80211_FC1_DIR_FROMDS: 577 ni = ieee80211_find_txnode(vap, wh->i_addr1); 578 break; 579 case IEEE80211_FC1_DIR_TODS: 580 case IEEE80211_FC1_DIR_DSTODS: 581 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame)) 582 senderr(EIO); /* XXX */ 583 ni = ieee80211_find_txnode(vap, wh->i_addr3); 584 break; 585 default: 586 senderr(EIO); /* XXX */ 587 } 588 if (ni == NULL) { 589 /* 590 * Permit packets w/ bpf params through regardless 591 * (see below about sa_len). 592 */ 593 if (dst->sa_len == 0) 594 senderr(EHOSTUNREACH); 595 ni = ieee80211_ref_node(vap->iv_bss); 596 } 597 598 /* 599 * Sanitize mbuf for net80211 flags leaked from above. 600 * 601 * NB: This must be done before ieee80211_classify as 602 * it marks EAPOL in frames with M_EAPOL. 603 */ 604 m->m_flags &= ~M_80211_TX; 605 606 /* calculate priority so drivers can find the tx queue */ 607 /* XXX assumes an 802.3 frame */ 608 if (ieee80211_classify(ni, m)) 609 senderr(EIO); /* XXX */ 610 611 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 612 IEEE80211_NODE_STAT(ni, tx_data); 613 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 614 IEEE80211_NODE_STAT(ni, tx_mcast); 615 m->m_flags |= M_MCAST; 616 } else 617 IEEE80211_NODE_STAT(ni, tx_ucast); 618 /* NB: ieee80211_encap does not include 802.11 header */ 619 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len); 620 621 IEEE80211_TX_LOCK(ic); 622 623 /* 624 * NB: DLT_IEEE802_11_RADIO identifies the parameters are 625 * present by setting the sa_len field of the sockaddr (yes, 626 * this is a hack). 627 * NB: we assume sa_data is suitably aligned to cast. 628 */ 629 ret = ieee80211_raw_output(vap, ni, m, 630 (const struct ieee80211_bpf_params *)(dst->sa_len ? 631 dst->sa_data : NULL)); 632 IEEE80211_TX_UNLOCK(ic); 633 return (ret); 634 bad: 635 if (m != NULL) 636 m_freem(m); 637 if (ni != NULL) 638 ieee80211_free_node(ni); 639 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 640 return error; 641 #undef senderr 642 } 643 644 /* 645 * Set the direction field and address fields of an outgoing 646 * frame. Note this should be called early on in constructing 647 * a frame as it sets i_fc[1]; other bits can then be or'd in. 648 */ 649 void 650 ieee80211_send_setup( 651 struct ieee80211_node *ni, 652 struct mbuf *m, 653 int type, int tid, 654 const uint8_t sa[IEEE80211_ADDR_LEN], 655 const uint8_t da[IEEE80211_ADDR_LEN], 656 const uint8_t bssid[IEEE80211_ADDR_LEN]) 657 { 658 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 659 struct ieee80211vap *vap = ni->ni_vap; 660 struct ieee80211_tx_ampdu *tap; 661 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 662 ieee80211_seq seqno; 663 664 IEEE80211_TX_LOCK_ASSERT(ni->ni_ic); 665 666 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 667 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 668 switch (vap->iv_opmode) { 669 case IEEE80211_M_STA: 670 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 671 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 672 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 673 IEEE80211_ADDR_COPY(wh->i_addr3, da); 674 break; 675 case IEEE80211_M_IBSS: 676 case IEEE80211_M_AHDEMO: 677 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 678 IEEE80211_ADDR_COPY(wh->i_addr1, da); 679 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 680 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 681 break; 682 case IEEE80211_M_HOSTAP: 683 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 684 IEEE80211_ADDR_COPY(wh->i_addr1, da); 685 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 686 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 687 break; 688 case IEEE80211_M_WDS: 689 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 690 IEEE80211_ADDR_COPY(wh->i_addr1, da); 691 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 692 IEEE80211_ADDR_COPY(wh->i_addr3, da); 693 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 694 break; 695 case IEEE80211_M_MBSS: 696 #ifdef IEEE80211_SUPPORT_MESH 697 if (IEEE80211_IS_MULTICAST(da)) { 698 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 699 /* XXX next hop */ 700 IEEE80211_ADDR_COPY(wh->i_addr1, da); 701 IEEE80211_ADDR_COPY(wh->i_addr2, 702 vap->iv_myaddr); 703 } else { 704 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 705 IEEE80211_ADDR_COPY(wh->i_addr1, da); 706 IEEE80211_ADDR_COPY(wh->i_addr2, 707 vap->iv_myaddr); 708 IEEE80211_ADDR_COPY(wh->i_addr3, da); 709 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 710 } 711 #endif 712 break; 713 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 714 break; 715 } 716 } else { 717 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 718 IEEE80211_ADDR_COPY(wh->i_addr1, da); 719 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 720 #ifdef IEEE80211_SUPPORT_MESH 721 if (vap->iv_opmode == IEEE80211_M_MBSS) 722 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 723 else 724 #endif 725 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 726 } 727 *(uint16_t *)&wh->i_dur[0] = 0; 728 729 tap = &ni->ni_tx_ampdu[tid]; 730 if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) 731 m->m_flags |= M_AMPDU_MPDU; 732 else { 733 seqno = ni->ni_txseqs[tid]++; 734 *(uint16_t *)&wh->i_seq[0] = 735 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 736 M_SEQNO_SET(m, seqno); 737 } 738 739 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 740 m->m_flags |= M_MCAST; 741 #undef WH4 742 } 743 744 /* 745 * Send a management frame to the specified node. The node pointer 746 * must have a reference as the pointer will be passed to the driver 747 * and potentially held for a long time. If the frame is successfully 748 * dispatched to the driver, then it is responsible for freeing the 749 * reference (and potentially free'ing up any associated storage); 750 * otherwise deal with reclaiming any reference (on error). 751 */ 752 int 753 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type, 754 struct ieee80211_bpf_params *params) 755 { 756 struct ieee80211vap *vap = ni->ni_vap; 757 struct ieee80211com *ic = ni->ni_ic; 758 struct ieee80211_frame *wh; 759 int ret; 760 761 KASSERT(ni != NULL, ("null node")); 762 763 if (vap->iv_state == IEEE80211_S_CAC) { 764 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 765 ni, "block %s frame in CAC state", 766 ieee80211_mgt_subtype_name[ 767 (type & IEEE80211_FC0_SUBTYPE_MASK) >> 768 IEEE80211_FC0_SUBTYPE_SHIFT]); 769 vap->iv_stats.is_tx_badstate++; 770 ieee80211_free_node(ni); 771 m_freem(m); 772 return EIO; /* XXX */ 773 } 774 775 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 776 if (m == NULL) { 777 ieee80211_free_node(ni); 778 return ENOMEM; 779 } 780 781 IEEE80211_TX_LOCK(ic); 782 783 wh = mtod(m, struct ieee80211_frame *); 784 ieee80211_send_setup(ni, m, 785 IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID, 786 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 787 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { 788 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1, 789 "encrypting frame (%s)", __func__); 790 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 791 } 792 m->m_flags |= M_ENCAP; /* mark encapsulated */ 793 794 KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?")); 795 M_WME_SETAC(m, params->ibp_pri); 796 797 #ifdef IEEE80211_DEBUG 798 /* avoid printing too many frames */ 799 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) || 800 ieee80211_msg_dumppkts(vap)) { 801 printf("[%s] send %s on channel %u\n", 802 ether_sprintf(wh->i_addr1), 803 ieee80211_mgt_subtype_name[ 804 (type & IEEE80211_FC0_SUBTYPE_MASK) >> 805 IEEE80211_FC0_SUBTYPE_SHIFT], 806 ieee80211_chan2ieee(ic, ic->ic_curchan)); 807 } 808 #endif 809 IEEE80211_NODE_STAT(ni, tx_mgmt); 810 811 ret = ieee80211_raw_output(vap, ni, m, params); 812 IEEE80211_TX_UNLOCK(ic); 813 return (ret); 814 } 815 816 /* 817 * Send a null data frame to the specified node. If the station 818 * is setup for QoS then a QoS Null Data frame is constructed. 819 * If this is a WDS station then a 4-address frame is constructed. 820 * 821 * NB: the caller is assumed to have setup a node reference 822 * for use; this is necessary to deal with a race condition 823 * when probing for inactive stations. Like ieee80211_mgmt_output 824 * we must cleanup any node reference on error; however we 825 * can safely just unref it as we know it will never be the 826 * last reference to the node. 827 */ 828 int 829 ieee80211_send_nulldata(struct ieee80211_node *ni) 830 { 831 struct ieee80211vap *vap = ni->ni_vap; 832 struct ieee80211com *ic = ni->ni_ic; 833 struct mbuf *m; 834 struct ieee80211_frame *wh; 835 int hdrlen; 836 uint8_t *frm; 837 int ret; 838 839 if (vap->iv_state == IEEE80211_S_CAC) { 840 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 841 ni, "block %s frame in CAC state", "null data"); 842 ieee80211_unref_node(&ni); 843 vap->iv_stats.is_tx_badstate++; 844 return EIO; /* XXX */ 845 } 846 847 if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) 848 hdrlen = sizeof(struct ieee80211_qosframe); 849 else 850 hdrlen = sizeof(struct ieee80211_frame); 851 /* NB: only WDS vap's get 4-address frames */ 852 if (vap->iv_opmode == IEEE80211_M_WDS) 853 hdrlen += IEEE80211_ADDR_LEN; 854 if (ic->ic_flags & IEEE80211_F_DATAPAD) 855 hdrlen = roundup(hdrlen, sizeof(uint32_t)); 856 857 m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0); 858 if (m == NULL) { 859 /* XXX debug msg */ 860 ieee80211_unref_node(&ni); 861 vap->iv_stats.is_tx_nobuf++; 862 return ENOMEM; 863 } 864 KASSERT(M_LEADINGSPACE(m) >= hdrlen, 865 ("leading space %zd", M_LEADINGSPACE(m))); 866 M_PREPEND(m, hdrlen, M_NOWAIT); 867 if (m == NULL) { 868 /* NB: cannot happen */ 869 ieee80211_free_node(ni); 870 return ENOMEM; 871 } 872 873 IEEE80211_TX_LOCK(ic); 874 875 wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */ 876 if (ni->ni_flags & IEEE80211_NODE_QOS) { 877 const int tid = WME_AC_TO_TID(WME_AC_BE); 878 uint8_t *qos; 879 880 ieee80211_send_setup(ni, m, 881 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL, 882 tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 883 884 if (vap->iv_opmode == IEEE80211_M_WDS) 885 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 886 else 887 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 888 qos[0] = tid & IEEE80211_QOS_TID; 889 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy) 890 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 891 qos[1] = 0; 892 } else { 893 ieee80211_send_setup(ni, m, 894 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 895 IEEE80211_NONQOS_TID, 896 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 897 } 898 if (vap->iv_opmode != IEEE80211_M_WDS) { 899 /* NB: power management bit is never sent by an AP */ 900 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 901 vap->iv_opmode != IEEE80211_M_HOSTAP) 902 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 903 } 904 m->m_len = m->m_pkthdr.len = hdrlen; 905 m->m_flags |= M_ENCAP; /* mark encapsulated */ 906 907 M_WME_SETAC(m, WME_AC_BE); 908 909 IEEE80211_NODE_STAT(ni, tx_data); 910 911 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni, 912 "send %snull data frame on channel %u, pwr mgt %s", 913 ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "", 914 ieee80211_chan2ieee(ic, ic->ic_curchan), 915 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 916 917 ret = ieee80211_raw_output(vap, ni, m, NULL); 918 IEEE80211_TX_UNLOCK(ic); 919 return (ret); 920 } 921 922 /* 923 * Assign priority to a frame based on any vlan tag assigned 924 * to the station and/or any Diffserv setting in an IP header. 925 * Finally, if an ACM policy is setup (in station mode) it's 926 * applied. 927 */ 928 int 929 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m) 930 { 931 const struct ether_header *eh = mtod(m, struct ether_header *); 932 int v_wme_ac, d_wme_ac, ac; 933 934 /* 935 * Always promote PAE/EAPOL frames to high priority. 936 */ 937 if (eh->ether_type == htons(ETHERTYPE_PAE)) { 938 /* NB: mark so others don't need to check header */ 939 m->m_flags |= M_EAPOL; 940 ac = WME_AC_VO; 941 goto done; 942 } 943 /* 944 * Non-qos traffic goes to BE. 945 */ 946 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 947 ac = WME_AC_BE; 948 goto done; 949 } 950 951 /* 952 * If node has a vlan tag then all traffic 953 * to it must have a matching tag. 954 */ 955 v_wme_ac = 0; 956 if (ni->ni_vlan != 0) { 957 if ((m->m_flags & M_VLANTAG) == 0) { 958 IEEE80211_NODE_STAT(ni, tx_novlantag); 959 return 1; 960 } 961 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 962 EVL_VLANOFTAG(ni->ni_vlan)) { 963 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 964 return 1; 965 } 966 /* map vlan priority to AC */ 967 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan)); 968 } 969 970 /* XXX m_copydata may be too slow for fast path */ 971 #ifdef INET 972 if (eh->ether_type == htons(ETHERTYPE_IP)) { 973 uint8_t tos; 974 /* 975 * IP frame, map the DSCP bits from the TOS field. 976 */ 977 /* NB: ip header may not be in first mbuf */ 978 m_copydata(m, sizeof(struct ether_header) + 979 offsetof(struct ip, ip_tos), sizeof(tos), &tos); 980 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 981 d_wme_ac = TID_TO_WME_AC(tos); 982 } else { 983 #endif /* INET */ 984 #ifdef INET6 985 if (eh->ether_type == htons(ETHERTYPE_IPV6)) { 986 uint32_t flow; 987 uint8_t tos; 988 /* 989 * IPv6 frame, map the DSCP bits from the traffic class field. 990 */ 991 m_copydata(m, sizeof(struct ether_header) + 992 offsetof(struct ip6_hdr, ip6_flow), sizeof(flow), 993 (caddr_t) &flow); 994 tos = (uint8_t)(ntohl(flow) >> 20); 995 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 996 d_wme_ac = TID_TO_WME_AC(tos); 997 } else { 998 #endif /* INET6 */ 999 d_wme_ac = WME_AC_BE; 1000 #ifdef INET6 1001 } 1002 #endif 1003 #ifdef INET 1004 } 1005 #endif 1006 /* 1007 * Use highest priority AC. 1008 */ 1009 if (v_wme_ac > d_wme_ac) 1010 ac = v_wme_ac; 1011 else 1012 ac = d_wme_ac; 1013 1014 /* 1015 * Apply ACM policy. 1016 */ 1017 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) { 1018 static const int acmap[4] = { 1019 WME_AC_BK, /* WME_AC_BE */ 1020 WME_AC_BK, /* WME_AC_BK */ 1021 WME_AC_BE, /* WME_AC_VI */ 1022 WME_AC_VI, /* WME_AC_VO */ 1023 }; 1024 struct ieee80211com *ic = ni->ni_ic; 1025 1026 while (ac != WME_AC_BK && 1027 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 1028 ac = acmap[ac]; 1029 } 1030 done: 1031 M_WME_SETAC(m, ac); 1032 return 0; 1033 } 1034 1035 /* 1036 * Insure there is sufficient contiguous space to encapsulate the 1037 * 802.11 data frame. If room isn't already there, arrange for it. 1038 * Drivers and cipher modules assume we have done the necessary work 1039 * and fail rudely if they don't find the space they need. 1040 */ 1041 struct mbuf * 1042 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize, 1043 struct ieee80211_key *key, struct mbuf *m) 1044 { 1045 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 1046 int needed_space = vap->iv_ic->ic_headroom + hdrsize; 1047 1048 if (key != NULL) { 1049 /* XXX belongs in crypto code? */ 1050 needed_space += key->wk_cipher->ic_header; 1051 /* XXX frags */ 1052 /* 1053 * When crypto is being done in the host we must insure 1054 * the data are writable for the cipher routines; clone 1055 * a writable mbuf chain. 1056 * XXX handle SWMIC specially 1057 */ 1058 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) { 1059 m = m_unshare(m, M_NOWAIT); 1060 if (m == NULL) { 1061 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1062 "%s: cannot get writable mbuf\n", __func__); 1063 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */ 1064 return NULL; 1065 } 1066 } 1067 } 1068 /* 1069 * We know we are called just before stripping an Ethernet 1070 * header and prepending an LLC header. This means we know 1071 * there will be 1072 * sizeof(struct ether_header) - sizeof(struct llc) 1073 * bytes recovered to which we need additional space for the 1074 * 802.11 header and any crypto header. 1075 */ 1076 /* XXX check trailing space and copy instead? */ 1077 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 1078 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); 1079 if (n == NULL) { 1080 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1081 "%s: cannot expand storage\n", __func__); 1082 vap->iv_stats.is_tx_nobuf++; 1083 m_freem(m); 1084 return NULL; 1085 } 1086 KASSERT(needed_space <= MHLEN, 1087 ("not enough room, need %u got %d\n", needed_space, MHLEN)); 1088 /* 1089 * Setup new mbuf to have leading space to prepend the 1090 * 802.11 header and any crypto header bits that are 1091 * required (the latter are added when the driver calls 1092 * back to ieee80211_crypto_encap to do crypto encapsulation). 1093 */ 1094 /* NB: must be first 'cuz it clobbers m_data */ 1095 m_move_pkthdr(n, m); 1096 n->m_len = 0; /* NB: m_gethdr does not set */ 1097 n->m_data += needed_space; 1098 /* 1099 * Pull up Ethernet header to create the expected layout. 1100 * We could use m_pullup but that's overkill (i.e. we don't 1101 * need the actual data) and it cannot fail so do it inline 1102 * for speed. 1103 */ 1104 /* NB: struct ether_header is known to be contiguous */ 1105 n->m_len += sizeof(struct ether_header); 1106 m->m_len -= sizeof(struct ether_header); 1107 m->m_data += sizeof(struct ether_header); 1108 /* 1109 * Replace the head of the chain. 1110 */ 1111 n->m_next = m; 1112 m = n; 1113 } 1114 return m; 1115 #undef TO_BE_RECLAIMED 1116 } 1117 1118 /* 1119 * Return the transmit key to use in sending a unicast frame. 1120 * If a unicast key is set we use that. When no unicast key is set 1121 * we fall back to the default transmit key. 1122 */ 1123 static __inline struct ieee80211_key * 1124 ieee80211_crypto_getucastkey(struct ieee80211vap *vap, 1125 struct ieee80211_node *ni) 1126 { 1127 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) { 1128 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1129 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1130 return NULL; 1131 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1132 } else { 1133 return &ni->ni_ucastkey; 1134 } 1135 } 1136 1137 /* 1138 * Return the transmit key to use in sending a multicast frame. 1139 * Multicast traffic always uses the group key which is installed as 1140 * the default tx key. 1141 */ 1142 static __inline struct ieee80211_key * 1143 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap, 1144 struct ieee80211_node *ni) 1145 { 1146 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1147 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1148 return NULL; 1149 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1150 } 1151 1152 /* 1153 * Encapsulate an outbound data frame. The mbuf chain is updated. 1154 * If an error is encountered NULL is returned. The caller is required 1155 * to provide a node reference and pullup the ethernet header in the 1156 * first mbuf. 1157 * 1158 * NB: Packet is assumed to be processed by ieee80211_classify which 1159 * marked EAPOL frames w/ M_EAPOL. 1160 */ 1161 struct mbuf * 1162 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni, 1163 struct mbuf *m) 1164 { 1165 #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh)) 1166 #define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc) 1167 struct ieee80211com *ic = ni->ni_ic; 1168 #ifdef IEEE80211_SUPPORT_MESH 1169 struct ieee80211_mesh_state *ms = vap->iv_mesh; 1170 struct ieee80211_meshcntl_ae10 *mc; 1171 struct ieee80211_mesh_route *rt = NULL; 1172 int dir = -1; 1173 #endif 1174 struct ether_header eh; 1175 struct ieee80211_frame *wh; 1176 struct ieee80211_key *key; 1177 struct llc *llc; 1178 int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr; 1179 ieee80211_seq seqno; 1180 int meshhdrsize, meshae; 1181 uint8_t *qos; 1182 1183 IEEE80211_TX_LOCK_ASSERT(ic); 1184 1185 /* 1186 * Copy existing Ethernet header to a safe place. The 1187 * rest of the code assumes it's ok to strip it when 1188 * reorganizing state for the final encapsulation. 1189 */ 1190 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 1191 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t)); 1192 1193 /* 1194 * Insure space for additional headers. First identify 1195 * transmit key to use in calculating any buffer adjustments 1196 * required. This is also used below to do privacy 1197 * encapsulation work. Then calculate the 802.11 header 1198 * size and any padding required by the driver. 1199 * 1200 * Note key may be NULL if we fall back to the default 1201 * transmit key and that is not set. In that case the 1202 * buffer may not be expanded as needed by the cipher 1203 * routines, but they will/should discard it. 1204 */ 1205 if (vap->iv_flags & IEEE80211_F_PRIVACY) { 1206 if (vap->iv_opmode == IEEE80211_M_STA || 1207 !IEEE80211_IS_MULTICAST(eh.ether_dhost) || 1208 (vap->iv_opmode == IEEE80211_M_WDS && 1209 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) 1210 key = ieee80211_crypto_getucastkey(vap, ni); 1211 else 1212 key = ieee80211_crypto_getmcastkey(vap, ni); 1213 if (key == NULL && (m->m_flags & M_EAPOL) == 0) { 1214 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, 1215 eh.ether_dhost, 1216 "no default transmit key (%s) deftxkey %u", 1217 __func__, vap->iv_def_txkey); 1218 vap->iv_stats.is_tx_nodefkey++; 1219 goto bad; 1220 } 1221 } else 1222 key = NULL; 1223 /* 1224 * XXX Some ap's don't handle QoS-encapsulated EAPOL 1225 * frames so suppress use. This may be an issue if other 1226 * ap's require all data frames to be QoS-encapsulated 1227 * once negotiated in which case we'll need to make this 1228 * configurable. 1229 * NB: mesh data frames are QoS. 1230 */ 1231 addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) || 1232 (vap->iv_opmode == IEEE80211_M_MBSS)) && 1233 (m->m_flags & M_EAPOL) == 0; 1234 if (addqos) 1235 hdrsize = sizeof(struct ieee80211_qosframe); 1236 else 1237 hdrsize = sizeof(struct ieee80211_frame); 1238 #ifdef IEEE80211_SUPPORT_MESH 1239 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1240 /* 1241 * Mesh data frames are encapsulated according to the 1242 * rules of Section 11B.8.5 (p.139 of D3.0 spec). 1243 * o Group Addressed data (aka multicast) originating 1244 * at the local sta are sent w/ 3-address format and 1245 * address extension mode 00 1246 * o Individually Addressed data (aka unicast) originating 1247 * at the local sta are sent w/ 4-address format and 1248 * address extension mode 00 1249 * o Group Addressed data forwarded from a non-mesh sta are 1250 * sent w/ 3-address format and address extension mode 01 1251 * o Individually Address data from another sta are sent 1252 * w/ 4-address format and address extension mode 10 1253 */ 1254 is4addr = 0; /* NB: don't use, disable */ 1255 if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) { 1256 rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost); 1257 KASSERT(rt != NULL, ("route is NULL")); 1258 dir = IEEE80211_FC1_DIR_DSTODS; 1259 hdrsize += IEEE80211_ADDR_LEN; 1260 if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) { 1261 if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate, 1262 vap->iv_myaddr)) { 1263 IEEE80211_NOTE_MAC(vap, 1264 IEEE80211_MSG_MESH, 1265 eh.ether_dhost, 1266 "%s", "trying to send to ourself"); 1267 goto bad; 1268 } 1269 meshae = IEEE80211_MESH_AE_10; 1270 meshhdrsize = 1271 sizeof(struct ieee80211_meshcntl_ae10); 1272 } else { 1273 meshae = IEEE80211_MESH_AE_00; 1274 meshhdrsize = 1275 sizeof(struct ieee80211_meshcntl); 1276 } 1277 } else { 1278 dir = IEEE80211_FC1_DIR_FROMDS; 1279 if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) { 1280 /* proxy group */ 1281 meshae = IEEE80211_MESH_AE_01; 1282 meshhdrsize = 1283 sizeof(struct ieee80211_meshcntl_ae01); 1284 } else { 1285 /* group */ 1286 meshae = IEEE80211_MESH_AE_00; 1287 meshhdrsize = sizeof(struct ieee80211_meshcntl); 1288 } 1289 } 1290 } else { 1291 #endif 1292 /* 1293 * 4-address frames need to be generated for: 1294 * o packets sent through a WDS vap (IEEE80211_M_WDS) 1295 * o packets sent through a vap marked for relaying 1296 * (e.g. a station operating with dynamic WDS) 1297 */ 1298 is4addr = vap->iv_opmode == IEEE80211_M_WDS || 1299 ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) && 1300 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)); 1301 if (is4addr) 1302 hdrsize += IEEE80211_ADDR_LEN; 1303 meshhdrsize = meshae = 0; 1304 #ifdef IEEE80211_SUPPORT_MESH 1305 } 1306 #endif 1307 /* 1308 * Honor driver DATAPAD requirement. 1309 */ 1310 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1311 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1312 else 1313 hdrspace = hdrsize; 1314 1315 if (__predict_true((m->m_flags & M_FF) == 0)) { 1316 /* 1317 * Normal frame. 1318 */ 1319 m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m); 1320 if (m == NULL) { 1321 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 1322 goto bad; 1323 } 1324 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */ 1325 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 1326 llc = mtod(m, struct llc *); 1327 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 1328 llc->llc_control = LLC_UI; 1329 llc->llc_snap.org_code[0] = 0; 1330 llc->llc_snap.org_code[1] = 0; 1331 llc->llc_snap.org_code[2] = 0; 1332 llc->llc_snap.ether_type = eh.ether_type; 1333 } else { 1334 #ifdef IEEE80211_SUPPORT_SUPERG 1335 /* 1336 * Aggregated frame. 1337 */ 1338 m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key); 1339 if (m == NULL) 1340 #endif 1341 goto bad; 1342 } 1343 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 1344 1345 M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT); 1346 if (m == NULL) { 1347 vap->iv_stats.is_tx_nobuf++; 1348 goto bad; 1349 } 1350 wh = mtod(m, struct ieee80211_frame *); 1351 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 1352 *(uint16_t *)wh->i_dur = 0; 1353 qos = NULL; /* NB: quiet compiler */ 1354 if (is4addr) { 1355 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 1356 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); 1357 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1358 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1359 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); 1360 } else switch (vap->iv_opmode) { 1361 case IEEE80211_M_STA: 1362 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 1363 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 1364 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1365 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1366 break; 1367 case IEEE80211_M_IBSS: 1368 case IEEE80211_M_AHDEMO: 1369 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1370 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1371 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1372 /* 1373 * NB: always use the bssid from iv_bss as the 1374 * neighbor's may be stale after an ibss merge 1375 */ 1376 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid); 1377 break; 1378 case IEEE80211_M_HOSTAP: 1379 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1380 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1381 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 1382 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 1383 break; 1384 #ifdef IEEE80211_SUPPORT_MESH 1385 case IEEE80211_M_MBSS: 1386 /* NB: offset by hdrspace to deal with DATAPAD */ 1387 mc = (struct ieee80211_meshcntl_ae10 *) 1388 (mtod(m, uint8_t *) + hdrspace); 1389 wh->i_fc[1] = dir; 1390 switch (meshae) { 1391 case IEEE80211_MESH_AE_00: /* no proxy */ 1392 mc->mc_flags = 0; 1393 if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */ 1394 IEEE80211_ADDR_COPY(wh->i_addr1, 1395 ni->ni_macaddr); 1396 IEEE80211_ADDR_COPY(wh->i_addr2, 1397 vap->iv_myaddr); 1398 IEEE80211_ADDR_COPY(wh->i_addr3, 1399 eh.ether_dhost); 1400 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, 1401 eh.ether_shost); 1402 qos =((struct ieee80211_qosframe_addr4 *) 1403 wh)->i_qos; 1404 } else if (dir == IEEE80211_FC1_DIR_FROMDS) { 1405 /* mcast */ 1406 IEEE80211_ADDR_COPY(wh->i_addr1, 1407 eh.ether_dhost); 1408 IEEE80211_ADDR_COPY(wh->i_addr2, 1409 vap->iv_myaddr); 1410 IEEE80211_ADDR_COPY(wh->i_addr3, 1411 eh.ether_shost); 1412 qos = ((struct ieee80211_qosframe *) 1413 wh)->i_qos; 1414 } 1415 break; 1416 case IEEE80211_MESH_AE_01: /* mcast, proxy */ 1417 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1418 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1419 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1420 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr); 1421 mc->mc_flags = 1; 1422 IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4, 1423 eh.ether_shost); 1424 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1425 break; 1426 case IEEE80211_MESH_AE_10: /* ucast, proxy */ 1427 KASSERT(rt != NULL, ("route is NULL")); 1428 IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop); 1429 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1430 IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate); 1431 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr); 1432 mc->mc_flags = IEEE80211_MESH_AE_10; 1433 IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost); 1434 IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost); 1435 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1436 break; 1437 default: 1438 KASSERT(0, ("meshae %d", meshae)); 1439 break; 1440 } 1441 mc->mc_ttl = ms->ms_ttl; 1442 ms->ms_seq++; 1443 LE_WRITE_4(mc->mc_seq, ms->ms_seq); 1444 break; 1445 #endif 1446 case IEEE80211_M_WDS: /* NB: is4addr should always be true */ 1447 default: 1448 goto bad; 1449 } 1450 if (m->m_flags & M_MORE_DATA) 1451 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 1452 if (addqos) { 1453 int ac, tid; 1454 1455 if (is4addr) { 1456 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1457 /* NB: mesh case handled earlier */ 1458 } else if (vap->iv_opmode != IEEE80211_M_MBSS) 1459 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1460 ac = M_WME_GETAC(m); 1461 /* map from access class/queue to 11e header priorty value */ 1462 tid = WME_AC_TO_TID(ac); 1463 qos[0] = tid & IEEE80211_QOS_TID; 1464 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 1465 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1466 #ifdef IEEE80211_SUPPORT_MESH 1467 if (vap->iv_opmode == IEEE80211_M_MBSS) 1468 qos[1] = IEEE80211_QOS_MC; 1469 else 1470 #endif 1471 qos[1] = 0; 1472 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 1473 1474 if ((m->m_flags & M_AMPDU_MPDU) == 0) { 1475 /* 1476 * NB: don't assign a sequence # to potential 1477 * aggregates; we expect this happens at the 1478 * point the frame comes off any aggregation q 1479 * as otherwise we may introduce holes in the 1480 * BA sequence space and/or make window accouting 1481 * more difficult. 1482 * 1483 * XXX may want to control this with a driver 1484 * capability; this may also change when we pull 1485 * aggregation up into net80211 1486 */ 1487 seqno = ni->ni_txseqs[tid]++; 1488 *(uint16_t *)wh->i_seq = 1489 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1490 M_SEQNO_SET(m, seqno); 1491 } 1492 } else { 1493 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1494 *(uint16_t *)wh->i_seq = 1495 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1496 M_SEQNO_SET(m, seqno); 1497 } 1498 1499 1500 /* check if xmit fragmentation is required */ 1501 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold && 1502 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 1503 (vap->iv_caps & IEEE80211_C_TXFRAG) && 1504 (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0); 1505 if (key != NULL) { 1506 /* 1507 * IEEE 802.1X: send EAPOL frames always in the clear. 1508 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 1509 */ 1510 if ((m->m_flags & M_EAPOL) == 0 || 1511 ((vap->iv_flags & IEEE80211_F_WPA) && 1512 (vap->iv_opmode == IEEE80211_M_STA ? 1513 !IEEE80211_KEY_UNDEFINED(key) : 1514 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) { 1515 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 1516 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) { 1517 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT, 1518 eh.ether_dhost, 1519 "%s", "enmic failed, discard frame"); 1520 vap->iv_stats.is_crypto_enmicfail++; 1521 goto bad; 1522 } 1523 } 1524 } 1525 if (txfrag && !ieee80211_fragment(vap, m, hdrsize, 1526 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold)) 1527 goto bad; 1528 1529 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1530 1531 IEEE80211_NODE_STAT(ni, tx_data); 1532 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1533 IEEE80211_NODE_STAT(ni, tx_mcast); 1534 m->m_flags |= M_MCAST; 1535 } else 1536 IEEE80211_NODE_STAT(ni, tx_ucast); 1537 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 1538 1539 return m; 1540 bad: 1541 if (m != NULL) 1542 m_freem(m); 1543 return NULL; 1544 #undef WH4 1545 #undef MC01 1546 } 1547 1548 /* 1549 * Fragment the frame according to the specified mtu. 1550 * The size of the 802.11 header (w/o padding) is provided 1551 * so we don't need to recalculate it. We create a new 1552 * mbuf for each fragment and chain it through m_nextpkt; 1553 * we might be able to optimize this by reusing the original 1554 * packet's mbufs but that is significantly more complicated. 1555 */ 1556 static int 1557 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0, 1558 u_int hdrsize, u_int ciphdrsize, u_int mtu) 1559 { 1560 struct ieee80211com *ic = vap->iv_ic; 1561 struct ieee80211_frame *wh, *whf; 1562 struct mbuf *m, *prev, *next; 1563 u_int totalhdrsize, fragno, fragsize, off, remainder, payload; 1564 u_int hdrspace; 1565 1566 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); 1567 KASSERT(m0->m_pkthdr.len > mtu, 1568 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); 1569 1570 /* 1571 * Honor driver DATAPAD requirement. 1572 */ 1573 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1574 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1575 else 1576 hdrspace = hdrsize; 1577 1578 wh = mtod(m0, struct ieee80211_frame *); 1579 /* NB: mark the first frag; it will be propagated below */ 1580 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; 1581 totalhdrsize = hdrspace + ciphdrsize; 1582 fragno = 1; 1583 off = mtu - ciphdrsize; 1584 remainder = m0->m_pkthdr.len - off; 1585 prev = m0; 1586 do { 1587 fragsize = totalhdrsize + remainder; 1588 if (fragsize > mtu) 1589 fragsize = mtu; 1590 /* XXX fragsize can be >2048! */ 1591 KASSERT(fragsize < MCLBYTES, 1592 ("fragment size %u too big!", fragsize)); 1593 if (fragsize > MHLEN) 1594 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1595 else 1596 m = m_gethdr(M_NOWAIT, MT_DATA); 1597 if (m == NULL) 1598 goto bad; 1599 /* leave room to prepend any cipher header */ 1600 m_align(m, fragsize - ciphdrsize); 1601 1602 /* 1603 * Form the header in the fragment. Note that since 1604 * we mark the first fragment with the MORE_FRAG bit 1605 * it automatically is propagated to each fragment; we 1606 * need only clear it on the last fragment (done below). 1607 * NB: frag 1+ dont have Mesh Control field present. 1608 */ 1609 whf = mtod(m, struct ieee80211_frame *); 1610 memcpy(whf, wh, hdrsize); 1611 #ifdef IEEE80211_SUPPORT_MESH 1612 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1613 if (IEEE80211_IS_DSTODS(wh)) 1614 ((struct ieee80211_qosframe_addr4 *) 1615 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1616 else 1617 ((struct ieee80211_qosframe *) 1618 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1619 } 1620 #endif 1621 *(uint16_t *)&whf->i_seq[0] |= htole16( 1622 (fragno & IEEE80211_SEQ_FRAG_MASK) << 1623 IEEE80211_SEQ_FRAG_SHIFT); 1624 fragno++; 1625 1626 payload = fragsize - totalhdrsize; 1627 /* NB: destination is known to be contiguous */ 1628 1629 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace); 1630 m->m_len = hdrspace + payload; 1631 m->m_pkthdr.len = hdrspace + payload; 1632 m->m_flags |= M_FRAG; 1633 1634 /* chain up the fragment */ 1635 prev->m_nextpkt = m; 1636 prev = m; 1637 1638 /* deduct fragment just formed */ 1639 remainder -= payload; 1640 off += payload; 1641 } while (remainder != 0); 1642 1643 /* set the last fragment */ 1644 m->m_flags |= M_LASTFRAG; 1645 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; 1646 1647 /* strip first mbuf now that everything has been copied */ 1648 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); 1649 m0->m_flags |= M_FIRSTFRAG | M_FRAG; 1650 1651 vap->iv_stats.is_tx_fragframes++; 1652 vap->iv_stats.is_tx_frags += fragno-1; 1653 1654 return 1; 1655 bad: 1656 /* reclaim fragments but leave original frame for caller to free */ 1657 for (m = m0->m_nextpkt; m != NULL; m = next) { 1658 next = m->m_nextpkt; 1659 m->m_nextpkt = NULL; /* XXX paranoid */ 1660 m_freem(m); 1661 } 1662 m0->m_nextpkt = NULL; 1663 return 0; 1664 } 1665 1666 /* 1667 * Add a supported rates element id to a frame. 1668 */ 1669 uint8_t * 1670 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs) 1671 { 1672 int nrates; 1673 1674 *frm++ = IEEE80211_ELEMID_RATES; 1675 nrates = rs->rs_nrates; 1676 if (nrates > IEEE80211_RATE_SIZE) 1677 nrates = IEEE80211_RATE_SIZE; 1678 *frm++ = nrates; 1679 memcpy(frm, rs->rs_rates, nrates); 1680 return frm + nrates; 1681 } 1682 1683 /* 1684 * Add an extended supported rates element id to a frame. 1685 */ 1686 uint8_t * 1687 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs) 1688 { 1689 /* 1690 * Add an extended supported rates element if operating in 11g mode. 1691 */ 1692 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 1693 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 1694 *frm++ = IEEE80211_ELEMID_XRATES; 1695 *frm++ = nrates; 1696 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 1697 frm += nrates; 1698 } 1699 return frm; 1700 } 1701 1702 /* 1703 * Add an ssid element to a frame. 1704 */ 1705 static uint8_t * 1706 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) 1707 { 1708 *frm++ = IEEE80211_ELEMID_SSID; 1709 *frm++ = len; 1710 memcpy(frm, ssid, len); 1711 return frm + len; 1712 } 1713 1714 /* 1715 * Add an erp element to a frame. 1716 */ 1717 static uint8_t * 1718 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic) 1719 { 1720 uint8_t erp; 1721 1722 *frm++ = IEEE80211_ELEMID_ERP; 1723 *frm++ = 1; 1724 erp = 0; 1725 if (ic->ic_nonerpsta != 0) 1726 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 1727 if (ic->ic_flags & IEEE80211_F_USEPROT) 1728 erp |= IEEE80211_ERP_USE_PROTECTION; 1729 if (ic->ic_flags & IEEE80211_F_USEBARKER) 1730 erp |= IEEE80211_ERP_LONG_PREAMBLE; 1731 *frm++ = erp; 1732 return frm; 1733 } 1734 1735 /* 1736 * Add a CFParams element to a frame. 1737 */ 1738 static uint8_t * 1739 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic) 1740 { 1741 #define ADDSHORT(frm, v) do { \ 1742 LE_WRITE_2(frm, v); \ 1743 frm += 2; \ 1744 } while (0) 1745 *frm++ = IEEE80211_ELEMID_CFPARMS; 1746 *frm++ = 6; 1747 *frm++ = 0; /* CFP count */ 1748 *frm++ = 2; /* CFP period */ 1749 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */ 1750 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */ 1751 return frm; 1752 #undef ADDSHORT 1753 } 1754 1755 static __inline uint8_t * 1756 add_appie(uint8_t *frm, const struct ieee80211_appie *ie) 1757 { 1758 memcpy(frm, ie->ie_data, ie->ie_len); 1759 return frm + ie->ie_len; 1760 } 1761 1762 static __inline uint8_t * 1763 add_ie(uint8_t *frm, const uint8_t *ie) 1764 { 1765 memcpy(frm, ie, 2 + ie[1]); 1766 return frm + 2 + ie[1]; 1767 } 1768 1769 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 1770 /* 1771 * Add a WME information element to a frame. 1772 */ 1773 static uint8_t * 1774 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme) 1775 { 1776 static const struct ieee80211_wme_info info = { 1777 .wme_id = IEEE80211_ELEMID_VENDOR, 1778 .wme_len = sizeof(struct ieee80211_wme_info) - 2, 1779 .wme_oui = { WME_OUI_BYTES }, 1780 .wme_type = WME_OUI_TYPE, 1781 .wme_subtype = WME_INFO_OUI_SUBTYPE, 1782 .wme_version = WME_VERSION, 1783 .wme_info = 0, 1784 }; 1785 memcpy(frm, &info, sizeof(info)); 1786 return frm + sizeof(info); 1787 } 1788 1789 /* 1790 * Add a WME parameters element to a frame. 1791 */ 1792 static uint8_t * 1793 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme) 1794 { 1795 #define SM(_v, _f) (((_v) << _f##_S) & _f) 1796 #define ADDSHORT(frm, v) do { \ 1797 LE_WRITE_2(frm, v); \ 1798 frm += 2; \ 1799 } while (0) 1800 /* NB: this works 'cuz a param has an info at the front */ 1801 static const struct ieee80211_wme_info param = { 1802 .wme_id = IEEE80211_ELEMID_VENDOR, 1803 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 1804 .wme_oui = { WME_OUI_BYTES }, 1805 .wme_type = WME_OUI_TYPE, 1806 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 1807 .wme_version = WME_VERSION, 1808 }; 1809 int i; 1810 1811 memcpy(frm, ¶m, sizeof(param)); 1812 frm += __offsetof(struct ieee80211_wme_info, wme_info); 1813 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ 1814 *frm++ = 0; /* reserved field */ 1815 for (i = 0; i < WME_NUM_AC; i++) { 1816 const struct wmeParams *ac = 1817 &wme->wme_bssChanParams.cap_wmeParams[i]; 1818 *frm++ = SM(i, WME_PARAM_ACI) 1819 | SM(ac->wmep_acm, WME_PARAM_ACM) 1820 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) 1821 ; 1822 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) 1823 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) 1824 ; 1825 ADDSHORT(frm, ac->wmep_txopLimit); 1826 } 1827 return frm; 1828 #undef SM 1829 #undef ADDSHORT 1830 } 1831 #undef WME_OUI_BYTES 1832 1833 /* 1834 * Add an 11h Power Constraint element to a frame. 1835 */ 1836 static uint8_t * 1837 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap) 1838 { 1839 const struct ieee80211_channel *c = vap->iv_bss->ni_chan; 1840 /* XXX per-vap tx power limit? */ 1841 int8_t limit = vap->iv_ic->ic_txpowlimit / 2; 1842 1843 frm[0] = IEEE80211_ELEMID_PWRCNSTR; 1844 frm[1] = 1; 1845 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0; 1846 return frm + 3; 1847 } 1848 1849 /* 1850 * Add an 11h Power Capability element to a frame. 1851 */ 1852 static uint8_t * 1853 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c) 1854 { 1855 frm[0] = IEEE80211_ELEMID_PWRCAP; 1856 frm[1] = 2; 1857 frm[2] = c->ic_minpower; 1858 frm[3] = c->ic_maxpower; 1859 return frm + 4; 1860 } 1861 1862 /* 1863 * Add an 11h Supported Channels element to a frame. 1864 */ 1865 static uint8_t * 1866 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic) 1867 { 1868 static const int ielen = 26; 1869 1870 frm[0] = IEEE80211_ELEMID_SUPPCHAN; 1871 frm[1] = ielen; 1872 /* XXX not correct */ 1873 memcpy(frm+2, ic->ic_chan_avail, ielen); 1874 return frm + 2 + ielen; 1875 } 1876 1877 /* 1878 * Add an 11h Quiet time element to a frame. 1879 */ 1880 static uint8_t * 1881 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap) 1882 { 1883 struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm; 1884 1885 quiet->quiet_ie = IEEE80211_ELEMID_QUIET; 1886 quiet->len = 6; 1887 if (vap->iv_quiet_count_value == 1) 1888 vap->iv_quiet_count_value = vap->iv_quiet_count; 1889 else if (vap->iv_quiet_count_value > 1) 1890 vap->iv_quiet_count_value--; 1891 1892 if (vap->iv_quiet_count_value == 0) { 1893 /* value 0 is reserved as per 802.11h standerd */ 1894 vap->iv_quiet_count_value = 1; 1895 } 1896 1897 quiet->tbttcount = vap->iv_quiet_count_value; 1898 quiet->period = vap->iv_quiet_period; 1899 quiet->duration = htole16(vap->iv_quiet_duration); 1900 quiet->offset = htole16(vap->iv_quiet_offset); 1901 return frm + sizeof(*quiet); 1902 } 1903 1904 /* 1905 * Add an 11h Channel Switch Announcement element to a frame. 1906 * Note that we use the per-vap CSA count to adjust the global 1907 * counter so we can use this routine to form probe response 1908 * frames and get the current count. 1909 */ 1910 static uint8_t * 1911 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap) 1912 { 1913 struct ieee80211com *ic = vap->iv_ic; 1914 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm; 1915 1916 csa->csa_ie = IEEE80211_ELEMID_CSA; 1917 csa->csa_len = 3; 1918 csa->csa_mode = 1; /* XXX force quiet on channel */ 1919 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan); 1920 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count; 1921 return frm + sizeof(*csa); 1922 } 1923 1924 /* 1925 * Add an 11h country information element to a frame. 1926 */ 1927 static uint8_t * 1928 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic) 1929 { 1930 1931 if (ic->ic_countryie == NULL || 1932 ic->ic_countryie_chan != ic->ic_bsschan) { 1933 /* 1934 * Handle lazy construction of ie. This is done on 1935 * first use and after a channel change that requires 1936 * re-calculation. 1937 */ 1938 if (ic->ic_countryie != NULL) 1939 free(ic->ic_countryie, M_80211_NODE_IE); 1940 ic->ic_countryie = ieee80211_alloc_countryie(ic); 1941 if (ic->ic_countryie == NULL) 1942 return frm; 1943 ic->ic_countryie_chan = ic->ic_bsschan; 1944 } 1945 return add_appie(frm, ic->ic_countryie); 1946 } 1947 1948 uint8_t * 1949 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap) 1950 { 1951 if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) 1952 return (add_ie(frm, vap->iv_wpa_ie)); 1953 else { 1954 /* XXX else complain? */ 1955 return (frm); 1956 } 1957 } 1958 1959 uint8_t * 1960 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap) 1961 { 1962 if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL) 1963 return (add_ie(frm, vap->iv_rsn_ie)); 1964 else { 1965 /* XXX else complain? */ 1966 return (frm); 1967 } 1968 } 1969 1970 uint8_t * 1971 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni) 1972 { 1973 if (ni->ni_flags & IEEE80211_NODE_QOS) { 1974 *frm++ = IEEE80211_ELEMID_QOS; 1975 *frm++ = 1; 1976 *frm++ = 0; 1977 } 1978 1979 return (frm); 1980 } 1981 1982 /* 1983 * Send a probe request frame with the specified ssid 1984 * and any optional information element data. 1985 */ 1986 int 1987 ieee80211_send_probereq(struct ieee80211_node *ni, 1988 const uint8_t sa[IEEE80211_ADDR_LEN], 1989 const uint8_t da[IEEE80211_ADDR_LEN], 1990 const uint8_t bssid[IEEE80211_ADDR_LEN], 1991 const uint8_t *ssid, size_t ssidlen) 1992 { 1993 struct ieee80211vap *vap = ni->ni_vap; 1994 struct ieee80211com *ic = ni->ni_ic; 1995 const struct ieee80211_txparam *tp; 1996 struct ieee80211_bpf_params params; 1997 struct ieee80211_frame *wh; 1998 const struct ieee80211_rateset *rs; 1999 struct mbuf *m; 2000 uint8_t *frm; 2001 int ret; 2002 2003 if (vap->iv_state == IEEE80211_S_CAC) { 2004 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni, 2005 "block %s frame in CAC state", "probe request"); 2006 vap->iv_stats.is_tx_badstate++; 2007 return EIO; /* XXX */ 2008 } 2009 2010 /* 2011 * Hold a reference on the node so it doesn't go away until after 2012 * the xmit is complete all the way in the driver. On error we 2013 * will remove our reference. 2014 */ 2015 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2016 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2017 __func__, __LINE__, 2018 ni, ether_sprintf(ni->ni_macaddr), 2019 ieee80211_node_refcnt(ni)+1); 2020 ieee80211_ref_node(ni); 2021 2022 /* 2023 * prreq frame format 2024 * [tlv] ssid 2025 * [tlv] supported rates 2026 * [tlv] RSN (optional) 2027 * [tlv] extended supported rates 2028 * [tlv] WPA (optional) 2029 * [tlv] user-specified ie's 2030 */ 2031 m = ieee80211_getmgtframe(&frm, 2032 ic->ic_headroom + sizeof(struct ieee80211_frame), 2033 2 + IEEE80211_NWID_LEN 2034 + 2 + IEEE80211_RATE_SIZE 2035 + sizeof(struct ieee80211_ie_wpa) 2036 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2037 + sizeof(struct ieee80211_ie_wpa) 2038 + (vap->iv_appie_probereq != NULL ? 2039 vap->iv_appie_probereq->ie_len : 0) 2040 ); 2041 if (m == NULL) { 2042 vap->iv_stats.is_tx_nobuf++; 2043 ieee80211_free_node(ni); 2044 return ENOMEM; 2045 } 2046 2047 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 2048 rs = ieee80211_get_suprates(ic, ic->ic_curchan); 2049 frm = ieee80211_add_rates(frm, rs); 2050 frm = ieee80211_add_rsn(frm, vap); 2051 frm = ieee80211_add_xrates(frm, rs); 2052 frm = ieee80211_add_wpa(frm, vap); 2053 if (vap->iv_appie_probereq != NULL) 2054 frm = add_appie(frm, vap->iv_appie_probereq); 2055 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2056 2057 KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame), 2058 ("leading space %zd", M_LEADINGSPACE(m))); 2059 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2060 if (m == NULL) { 2061 /* NB: cannot happen */ 2062 ieee80211_free_node(ni); 2063 return ENOMEM; 2064 } 2065 2066 IEEE80211_TX_LOCK(ic); 2067 wh = mtod(m, struct ieee80211_frame *); 2068 ieee80211_send_setup(ni, m, 2069 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 2070 IEEE80211_NONQOS_TID, sa, da, bssid); 2071 /* XXX power management? */ 2072 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2073 2074 M_WME_SETAC(m, WME_AC_BE); 2075 2076 IEEE80211_NODE_STAT(ni, tx_probereq); 2077 IEEE80211_NODE_STAT(ni, tx_mgmt); 2078 2079 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2080 "send probe req on channel %u bssid %s ssid \"%.*s\"\n", 2081 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid), 2082 ssidlen, ssid); 2083 2084 memset(¶ms, 0, sizeof(params)); 2085 params.ibp_pri = M_WME_GETAC(m); 2086 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 2087 params.ibp_rate0 = tp->mgmtrate; 2088 if (IEEE80211_IS_MULTICAST(da)) { 2089 params.ibp_flags |= IEEE80211_BPF_NOACK; 2090 params.ibp_try0 = 1; 2091 } else 2092 params.ibp_try0 = tp->maxretry; 2093 params.ibp_power = ni->ni_txpower; 2094 ret = ieee80211_raw_output(vap, ni, m, ¶ms); 2095 IEEE80211_TX_UNLOCK(ic); 2096 return (ret); 2097 } 2098 2099 /* 2100 * Calculate capability information for mgt frames. 2101 */ 2102 uint16_t 2103 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan) 2104 { 2105 struct ieee80211com *ic = vap->iv_ic; 2106 uint16_t capinfo; 2107 2108 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode")); 2109 2110 if (vap->iv_opmode == IEEE80211_M_HOSTAP) 2111 capinfo = IEEE80211_CAPINFO_ESS; 2112 else if (vap->iv_opmode == IEEE80211_M_IBSS) 2113 capinfo = IEEE80211_CAPINFO_IBSS; 2114 else 2115 capinfo = 0; 2116 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2117 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2118 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2119 IEEE80211_IS_CHAN_2GHZ(chan)) 2120 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2121 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2122 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2123 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH)) 2124 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2125 return capinfo; 2126 } 2127 2128 /* 2129 * Send a management frame. The node is for the destination (or ic_bss 2130 * when in station mode). Nodes other than ic_bss have their reference 2131 * count bumped to reflect our use for an indeterminant time. 2132 */ 2133 int 2134 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg) 2135 { 2136 #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT) 2137 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2138 struct ieee80211vap *vap = ni->ni_vap; 2139 struct ieee80211com *ic = ni->ni_ic; 2140 struct ieee80211_node *bss = vap->iv_bss; 2141 struct ieee80211_bpf_params params; 2142 struct mbuf *m; 2143 uint8_t *frm; 2144 uint16_t capinfo; 2145 int has_challenge, is_shared_key, ret, status; 2146 2147 KASSERT(ni != NULL, ("null node")); 2148 2149 /* 2150 * Hold a reference on the node so it doesn't go away until after 2151 * the xmit is complete all the way in the driver. On error we 2152 * will remove our reference. 2153 */ 2154 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2155 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2156 __func__, __LINE__, 2157 ni, ether_sprintf(ni->ni_macaddr), 2158 ieee80211_node_refcnt(ni)+1); 2159 ieee80211_ref_node(ni); 2160 2161 memset(¶ms, 0, sizeof(params)); 2162 switch (type) { 2163 2164 case IEEE80211_FC0_SUBTYPE_AUTH: 2165 status = arg >> 16; 2166 arg &= 0xffff; 2167 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || 2168 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 2169 ni->ni_challenge != NULL); 2170 2171 /* 2172 * Deduce whether we're doing open authentication or 2173 * shared key authentication. We do the latter if 2174 * we're in the middle of a shared key authentication 2175 * handshake or if we're initiating an authentication 2176 * request and configured to use shared key. 2177 */ 2178 is_shared_key = has_challenge || 2179 arg >= IEEE80211_AUTH_SHARED_RESPONSE || 2180 (arg == IEEE80211_AUTH_SHARED_REQUEST && 2181 bss->ni_authmode == IEEE80211_AUTH_SHARED); 2182 2183 m = ieee80211_getmgtframe(&frm, 2184 ic->ic_headroom + sizeof(struct ieee80211_frame), 2185 3 * sizeof(uint16_t) 2186 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? 2187 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0) 2188 ); 2189 if (m == NULL) 2190 senderr(ENOMEM, is_tx_nobuf); 2191 2192 ((uint16_t *)frm)[0] = 2193 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) 2194 : htole16(IEEE80211_AUTH_ALG_OPEN); 2195 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */ 2196 ((uint16_t *)frm)[2] = htole16(status);/* status */ 2197 2198 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { 2199 ((uint16_t *)frm)[3] = 2200 htole16((IEEE80211_CHALLENGE_LEN << 8) | 2201 IEEE80211_ELEMID_CHALLENGE); 2202 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge, 2203 IEEE80211_CHALLENGE_LEN); 2204 m->m_pkthdr.len = m->m_len = 2205 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN; 2206 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 2207 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2208 "request encrypt frame (%s)", __func__); 2209 /* mark frame for encryption */ 2210 params.ibp_flags |= IEEE80211_BPF_CRYPTO; 2211 } 2212 } else 2213 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t); 2214 2215 /* XXX not right for shared key */ 2216 if (status == IEEE80211_STATUS_SUCCESS) 2217 IEEE80211_NODE_STAT(ni, tx_auth); 2218 else 2219 IEEE80211_NODE_STAT(ni, tx_auth_fail); 2220 2221 if (vap->iv_opmode == IEEE80211_M_STA) 2222 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2223 (void *) vap->iv_state); 2224 break; 2225 2226 case IEEE80211_FC0_SUBTYPE_DEAUTH: 2227 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2228 "send station deauthenticate (reason %d)", arg); 2229 m = ieee80211_getmgtframe(&frm, 2230 ic->ic_headroom + sizeof(struct ieee80211_frame), 2231 sizeof(uint16_t)); 2232 if (m == NULL) 2233 senderr(ENOMEM, is_tx_nobuf); 2234 *(uint16_t *)frm = htole16(arg); /* reason */ 2235 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2236 2237 IEEE80211_NODE_STAT(ni, tx_deauth); 2238 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 2239 2240 ieee80211_node_unauthorize(ni); /* port closed */ 2241 break; 2242 2243 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 2244 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 2245 /* 2246 * asreq frame format 2247 * [2] capability information 2248 * [2] listen interval 2249 * [6*] current AP address (reassoc only) 2250 * [tlv] ssid 2251 * [tlv] supported rates 2252 * [tlv] extended supported rates 2253 * [4] power capability (optional) 2254 * [28] supported channels (optional) 2255 * [tlv] HT capabilities 2256 * [tlv] WME (optional) 2257 * [tlv] Vendor OUI HT capabilities (optional) 2258 * [tlv] Atheros capabilities (if negotiated) 2259 * [tlv] AppIE's (optional) 2260 */ 2261 m = ieee80211_getmgtframe(&frm, 2262 ic->ic_headroom + sizeof(struct ieee80211_frame), 2263 sizeof(uint16_t) 2264 + sizeof(uint16_t) 2265 + IEEE80211_ADDR_LEN 2266 + 2 + IEEE80211_NWID_LEN 2267 + 2 + IEEE80211_RATE_SIZE 2268 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2269 + 4 2270 + 2 + 26 2271 + sizeof(struct ieee80211_wme_info) 2272 + sizeof(struct ieee80211_ie_htcap) 2273 + 4 + sizeof(struct ieee80211_ie_htcap) 2274 #ifdef IEEE80211_SUPPORT_SUPERG 2275 + sizeof(struct ieee80211_ath_ie) 2276 #endif 2277 + (vap->iv_appie_wpa != NULL ? 2278 vap->iv_appie_wpa->ie_len : 0) 2279 + (vap->iv_appie_assocreq != NULL ? 2280 vap->iv_appie_assocreq->ie_len : 0) 2281 ); 2282 if (m == NULL) 2283 senderr(ENOMEM, is_tx_nobuf); 2284 2285 KASSERT(vap->iv_opmode == IEEE80211_M_STA, 2286 ("wrong mode %u", vap->iv_opmode)); 2287 capinfo = IEEE80211_CAPINFO_ESS; 2288 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2289 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2290 /* 2291 * NB: Some 11a AP's reject the request when 2292 * short premable is set. 2293 */ 2294 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2295 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2296 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2297 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 2298 (ic->ic_caps & IEEE80211_C_SHSLOT)) 2299 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2300 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) && 2301 (vap->iv_flags & IEEE80211_F_DOTH)) 2302 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2303 *(uint16_t *)frm = htole16(capinfo); 2304 frm += 2; 2305 2306 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!")); 2307 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval, 2308 bss->ni_intval)); 2309 frm += 2; 2310 2311 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 2312 IEEE80211_ADDR_COPY(frm, bss->ni_bssid); 2313 frm += IEEE80211_ADDR_LEN; 2314 } 2315 2316 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 2317 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2318 frm = ieee80211_add_rsn(frm, vap); 2319 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2320 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) { 2321 frm = ieee80211_add_powercapability(frm, 2322 ic->ic_curchan); 2323 frm = ieee80211_add_supportedchannels(frm, ic); 2324 } 2325 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2326 ni->ni_ies.htcap_ie != NULL && 2327 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) 2328 frm = ieee80211_add_htcap(frm, ni); 2329 frm = ieee80211_add_wpa(frm, vap); 2330 if ((ic->ic_flags & IEEE80211_F_WME) && 2331 ni->ni_ies.wme_ie != NULL) 2332 frm = ieee80211_add_wme_info(frm, &ic->ic_wme); 2333 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2334 ni->ni_ies.htcap_ie != NULL && 2335 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) 2336 frm = ieee80211_add_htcap_vendor(frm, ni); 2337 #ifdef IEEE80211_SUPPORT_SUPERG 2338 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) { 2339 frm = ieee80211_add_ath(frm, 2340 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2341 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2342 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2343 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2344 } 2345 #endif /* IEEE80211_SUPPORT_SUPERG */ 2346 if (vap->iv_appie_assocreq != NULL) 2347 frm = add_appie(frm, vap->iv_appie_assocreq); 2348 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2349 2350 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2351 (void *) vap->iv_state); 2352 break; 2353 2354 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 2355 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 2356 /* 2357 * asresp frame format 2358 * [2] capability information 2359 * [2] status 2360 * [2] association ID 2361 * [tlv] supported rates 2362 * [tlv] extended supported rates 2363 * [tlv] HT capabilities (standard, if STA enabled) 2364 * [tlv] HT information (standard, if STA enabled) 2365 * [tlv] WME (if configured and STA enabled) 2366 * [tlv] HT capabilities (vendor OUI, if STA enabled) 2367 * [tlv] HT information (vendor OUI, if STA enabled) 2368 * [tlv] Atheros capabilities (if STA enabled) 2369 * [tlv] AppIE's (optional) 2370 */ 2371 m = ieee80211_getmgtframe(&frm, 2372 ic->ic_headroom + sizeof(struct ieee80211_frame), 2373 sizeof(uint16_t) 2374 + sizeof(uint16_t) 2375 + sizeof(uint16_t) 2376 + 2 + IEEE80211_RATE_SIZE 2377 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2378 + sizeof(struct ieee80211_ie_htcap) + 4 2379 + sizeof(struct ieee80211_ie_htinfo) + 4 2380 + sizeof(struct ieee80211_wme_param) 2381 #ifdef IEEE80211_SUPPORT_SUPERG 2382 + sizeof(struct ieee80211_ath_ie) 2383 #endif 2384 + (vap->iv_appie_assocresp != NULL ? 2385 vap->iv_appie_assocresp->ie_len : 0) 2386 ); 2387 if (m == NULL) 2388 senderr(ENOMEM, is_tx_nobuf); 2389 2390 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2391 *(uint16_t *)frm = htole16(capinfo); 2392 frm += 2; 2393 2394 *(uint16_t *)frm = htole16(arg); /* status */ 2395 frm += 2; 2396 2397 if (arg == IEEE80211_STATUS_SUCCESS) { 2398 *(uint16_t *)frm = htole16(ni->ni_associd); 2399 IEEE80211_NODE_STAT(ni, tx_assoc); 2400 } else 2401 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 2402 frm += 2; 2403 2404 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2405 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2406 /* NB: respond according to what we received */ 2407 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) { 2408 frm = ieee80211_add_htcap(frm, ni); 2409 frm = ieee80211_add_htinfo(frm, ni); 2410 } 2411 if ((vap->iv_flags & IEEE80211_F_WME) && 2412 ni->ni_ies.wme_ie != NULL) 2413 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2414 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) { 2415 frm = ieee80211_add_htcap_vendor(frm, ni); 2416 frm = ieee80211_add_htinfo_vendor(frm, ni); 2417 } 2418 #ifdef IEEE80211_SUPPORT_SUPERG 2419 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) 2420 frm = ieee80211_add_ath(frm, 2421 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2422 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2423 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2424 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2425 #endif /* IEEE80211_SUPPORT_SUPERG */ 2426 if (vap->iv_appie_assocresp != NULL) 2427 frm = add_appie(frm, vap->iv_appie_assocresp); 2428 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2429 break; 2430 2431 case IEEE80211_FC0_SUBTYPE_DISASSOC: 2432 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, 2433 "send station disassociate (reason %d)", arg); 2434 m = ieee80211_getmgtframe(&frm, 2435 ic->ic_headroom + sizeof(struct ieee80211_frame), 2436 sizeof(uint16_t)); 2437 if (m == NULL) 2438 senderr(ENOMEM, is_tx_nobuf); 2439 *(uint16_t *)frm = htole16(arg); /* reason */ 2440 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2441 2442 IEEE80211_NODE_STAT(ni, tx_disassoc); 2443 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 2444 break; 2445 2446 default: 2447 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni, 2448 "invalid mgmt frame type %u", type); 2449 senderr(EINVAL, is_tx_unknownmgt); 2450 /* NOTREACHED */ 2451 } 2452 2453 /* NB: force non-ProbeResp frames to the highest queue */ 2454 params.ibp_pri = WME_AC_VO; 2455 params.ibp_rate0 = bss->ni_txparms->mgmtrate; 2456 /* NB: we know all frames are unicast */ 2457 params.ibp_try0 = bss->ni_txparms->maxretry; 2458 params.ibp_power = bss->ni_txpower; 2459 return ieee80211_mgmt_output(ni, m, type, ¶ms); 2460 bad: 2461 ieee80211_free_node(ni); 2462 return ret; 2463 #undef senderr 2464 #undef HTFLAGS 2465 } 2466 2467 /* 2468 * Return an mbuf with a probe response frame in it. 2469 * Space is left to prepend and 802.11 header at the 2470 * front but it's left to the caller to fill in. 2471 */ 2472 struct mbuf * 2473 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy) 2474 { 2475 struct ieee80211vap *vap = bss->ni_vap; 2476 struct ieee80211com *ic = bss->ni_ic; 2477 const struct ieee80211_rateset *rs; 2478 struct mbuf *m; 2479 uint16_t capinfo; 2480 uint8_t *frm; 2481 2482 /* 2483 * probe response frame format 2484 * [8] time stamp 2485 * [2] beacon interval 2486 * [2] cabability information 2487 * [tlv] ssid 2488 * [tlv] supported rates 2489 * [tlv] parameter set (FH/DS) 2490 * [tlv] parameter set (IBSS) 2491 * [tlv] country (optional) 2492 * [3] power control (optional) 2493 * [5] channel switch announcement (CSA) (optional) 2494 * [tlv] extended rate phy (ERP) 2495 * [tlv] extended supported rates 2496 * [tlv] RSN (optional) 2497 * [tlv] HT capabilities 2498 * [tlv] HT information 2499 * [tlv] WPA (optional) 2500 * [tlv] WME (optional) 2501 * [tlv] Vendor OUI HT capabilities (optional) 2502 * [tlv] Vendor OUI HT information (optional) 2503 * [tlv] Atheros capabilities 2504 * [tlv] AppIE's (optional) 2505 * [tlv] Mesh ID (MBSS) 2506 * [tlv] Mesh Conf (MBSS) 2507 */ 2508 m = ieee80211_getmgtframe(&frm, 2509 ic->ic_headroom + sizeof(struct ieee80211_frame), 2510 8 2511 + sizeof(uint16_t) 2512 + sizeof(uint16_t) 2513 + 2 + IEEE80211_NWID_LEN 2514 + 2 + IEEE80211_RATE_SIZE 2515 + 7 /* max(7,3) */ 2516 + IEEE80211_COUNTRY_MAX_SIZE 2517 + 3 2518 + sizeof(struct ieee80211_csa_ie) 2519 + sizeof(struct ieee80211_quiet_ie) 2520 + 3 2521 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2522 + sizeof(struct ieee80211_ie_wpa) 2523 + sizeof(struct ieee80211_ie_htcap) 2524 + sizeof(struct ieee80211_ie_htinfo) 2525 + sizeof(struct ieee80211_ie_wpa) 2526 + sizeof(struct ieee80211_wme_param) 2527 + 4 + sizeof(struct ieee80211_ie_htcap) 2528 + 4 + sizeof(struct ieee80211_ie_htinfo) 2529 #ifdef IEEE80211_SUPPORT_SUPERG 2530 + sizeof(struct ieee80211_ath_ie) 2531 #endif 2532 #ifdef IEEE80211_SUPPORT_MESH 2533 + 2 + IEEE80211_MESHID_LEN 2534 + sizeof(struct ieee80211_meshconf_ie) 2535 #endif 2536 + (vap->iv_appie_proberesp != NULL ? 2537 vap->iv_appie_proberesp->ie_len : 0) 2538 ); 2539 if (m == NULL) { 2540 vap->iv_stats.is_tx_nobuf++; 2541 return NULL; 2542 } 2543 2544 memset(frm, 0, 8); /* timestamp should be filled later */ 2545 frm += 8; 2546 *(uint16_t *)frm = htole16(bss->ni_intval); 2547 frm += 2; 2548 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2549 *(uint16_t *)frm = htole16(capinfo); 2550 frm += 2; 2551 2552 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen); 2553 rs = ieee80211_get_suprates(ic, bss->ni_chan); 2554 frm = ieee80211_add_rates(frm, rs); 2555 2556 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) { 2557 *frm++ = IEEE80211_ELEMID_FHPARMS; 2558 *frm++ = 5; 2559 *frm++ = bss->ni_fhdwell & 0x00ff; 2560 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff; 2561 *frm++ = IEEE80211_FH_CHANSET( 2562 ieee80211_chan2ieee(ic, bss->ni_chan)); 2563 *frm++ = IEEE80211_FH_CHANPAT( 2564 ieee80211_chan2ieee(ic, bss->ni_chan)); 2565 *frm++ = bss->ni_fhindex; 2566 } else { 2567 *frm++ = IEEE80211_ELEMID_DSPARMS; 2568 *frm++ = 1; 2569 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan); 2570 } 2571 2572 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2573 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2574 *frm++ = 2; 2575 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2576 } 2577 if ((vap->iv_flags & IEEE80211_F_DOTH) || 2578 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 2579 frm = ieee80211_add_countryie(frm, ic); 2580 if (vap->iv_flags & IEEE80211_F_DOTH) { 2581 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan)) 2582 frm = ieee80211_add_powerconstraint(frm, vap); 2583 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 2584 frm = ieee80211_add_csa(frm, vap); 2585 } 2586 if (vap->iv_flags & IEEE80211_F_DOTH) { 2587 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2588 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 2589 if (vap->iv_quiet) 2590 frm = ieee80211_add_quiet(frm, vap); 2591 } 2592 } 2593 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan)) 2594 frm = ieee80211_add_erp(frm, ic); 2595 frm = ieee80211_add_xrates(frm, rs); 2596 frm = ieee80211_add_rsn(frm, vap); 2597 /* 2598 * NB: legacy 11b clients do not get certain ie's. 2599 * The caller identifies such clients by passing 2600 * a token in legacy to us. Could expand this to be 2601 * any legacy client for stuff like HT ie's. 2602 */ 2603 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2604 legacy != IEEE80211_SEND_LEGACY_11B) { 2605 frm = ieee80211_add_htcap(frm, bss); 2606 frm = ieee80211_add_htinfo(frm, bss); 2607 } 2608 frm = ieee80211_add_wpa(frm, vap); 2609 if (vap->iv_flags & IEEE80211_F_WME) 2610 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2611 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2612 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) && 2613 legacy != IEEE80211_SEND_LEGACY_11B) { 2614 frm = ieee80211_add_htcap_vendor(frm, bss); 2615 frm = ieee80211_add_htinfo_vendor(frm, bss); 2616 } 2617 #ifdef IEEE80211_SUPPORT_SUPERG 2618 if ((vap->iv_flags & IEEE80211_F_ATHEROS) && 2619 legacy != IEEE80211_SEND_LEGACY_11B) 2620 frm = ieee80211_add_athcaps(frm, bss); 2621 #endif 2622 if (vap->iv_appie_proberesp != NULL) 2623 frm = add_appie(frm, vap->iv_appie_proberesp); 2624 #ifdef IEEE80211_SUPPORT_MESH 2625 if (vap->iv_opmode == IEEE80211_M_MBSS) { 2626 frm = ieee80211_add_meshid(frm, vap); 2627 frm = ieee80211_add_meshconf(frm, vap); 2628 } 2629 #endif 2630 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2631 2632 return m; 2633 } 2634 2635 /* 2636 * Send a probe response frame to the specified mac address. 2637 * This does not go through the normal mgt frame api so we 2638 * can specify the destination address and re-use the bss node 2639 * for the sta reference. 2640 */ 2641 int 2642 ieee80211_send_proberesp(struct ieee80211vap *vap, 2643 const uint8_t da[IEEE80211_ADDR_LEN], int legacy) 2644 { 2645 struct ieee80211_node *bss = vap->iv_bss; 2646 struct ieee80211com *ic = vap->iv_ic; 2647 struct ieee80211_frame *wh; 2648 struct mbuf *m; 2649 int ret; 2650 2651 if (vap->iv_state == IEEE80211_S_CAC) { 2652 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss, 2653 "block %s frame in CAC state", "probe response"); 2654 vap->iv_stats.is_tx_badstate++; 2655 return EIO; /* XXX */ 2656 } 2657 2658 /* 2659 * Hold a reference on the node so it doesn't go away until after 2660 * the xmit is complete all the way in the driver. On error we 2661 * will remove our reference. 2662 */ 2663 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2664 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2665 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr), 2666 ieee80211_node_refcnt(bss)+1); 2667 ieee80211_ref_node(bss); 2668 2669 m = ieee80211_alloc_proberesp(bss, legacy); 2670 if (m == NULL) { 2671 ieee80211_free_node(bss); 2672 return ENOMEM; 2673 } 2674 2675 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2676 KASSERT(m != NULL, ("no room for header")); 2677 2678 IEEE80211_TX_LOCK(ic); 2679 wh = mtod(m, struct ieee80211_frame *); 2680 ieee80211_send_setup(bss, m, 2681 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP, 2682 IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid); 2683 /* XXX power management? */ 2684 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2685 2686 M_WME_SETAC(m, WME_AC_BE); 2687 2688 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2689 "send probe resp on channel %u to %s%s\n", 2690 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da), 2691 legacy ? " <legacy>" : ""); 2692 IEEE80211_NODE_STAT(bss, tx_mgmt); 2693 2694 ret = ieee80211_raw_output(vap, bss, m, NULL); 2695 IEEE80211_TX_UNLOCK(ic); 2696 return (ret); 2697 } 2698 2699 /* 2700 * Allocate and build a RTS (Request To Send) control frame. 2701 */ 2702 struct mbuf * 2703 ieee80211_alloc_rts(struct ieee80211com *ic, 2704 const uint8_t ra[IEEE80211_ADDR_LEN], 2705 const uint8_t ta[IEEE80211_ADDR_LEN], 2706 uint16_t dur) 2707 { 2708 struct ieee80211_frame_rts *rts; 2709 struct mbuf *m; 2710 2711 /* XXX honor ic_headroom */ 2712 m = m_gethdr(M_NOWAIT, MT_DATA); 2713 if (m != NULL) { 2714 rts = mtod(m, struct ieee80211_frame_rts *); 2715 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2716 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS; 2717 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2718 *(u_int16_t *)rts->i_dur = htole16(dur); 2719 IEEE80211_ADDR_COPY(rts->i_ra, ra); 2720 IEEE80211_ADDR_COPY(rts->i_ta, ta); 2721 2722 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); 2723 } 2724 return m; 2725 } 2726 2727 /* 2728 * Allocate and build a CTS (Clear To Send) control frame. 2729 */ 2730 struct mbuf * 2731 ieee80211_alloc_cts(struct ieee80211com *ic, 2732 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur) 2733 { 2734 struct ieee80211_frame_cts *cts; 2735 struct mbuf *m; 2736 2737 /* XXX honor ic_headroom */ 2738 m = m_gethdr(M_NOWAIT, MT_DATA); 2739 if (m != NULL) { 2740 cts = mtod(m, struct ieee80211_frame_cts *); 2741 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2742 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS; 2743 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2744 *(u_int16_t *)cts->i_dur = htole16(dur); 2745 IEEE80211_ADDR_COPY(cts->i_ra, ra); 2746 2747 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts); 2748 } 2749 return m; 2750 } 2751 2752 static void 2753 ieee80211_tx_mgt_timeout(void *arg) 2754 { 2755 struct ieee80211vap *vap = arg; 2756 2757 IEEE80211_LOCK(vap->iv_ic); 2758 if (vap->iv_state != IEEE80211_S_INIT && 2759 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) { 2760 /* 2761 * NB: it's safe to specify a timeout as the reason here; 2762 * it'll only be used in the right state. 2763 */ 2764 ieee80211_new_state_locked(vap, IEEE80211_S_SCAN, 2765 IEEE80211_SCAN_FAIL_TIMEOUT); 2766 } 2767 IEEE80211_UNLOCK(vap->iv_ic); 2768 } 2769 2770 /* 2771 * This is the callback set on net80211-sourced transmitted 2772 * authentication request frames. 2773 * 2774 * This does a couple of things: 2775 * 2776 * + If the frame transmitted was a success, it schedules a future 2777 * event which will transition the interface to scan. 2778 * If a state transition _then_ occurs before that event occurs, 2779 * said state transition will cancel this callout. 2780 * 2781 * + If the frame transmit was a failure, it immediately schedules 2782 * the transition back to scan. 2783 */ 2784 static void 2785 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status) 2786 { 2787 struct ieee80211vap *vap = ni->ni_vap; 2788 enum ieee80211_state ostate = (enum ieee80211_state) arg; 2789 2790 /* 2791 * Frame transmit completed; arrange timer callback. If 2792 * transmit was successfuly we wait for response. Otherwise 2793 * we arrange an immediate callback instead of doing the 2794 * callback directly since we don't know what state the driver 2795 * is in (e.g. what locks it is holding). This work should 2796 * not be too time-critical and not happen too often so the 2797 * added overhead is acceptable. 2798 * 2799 * XXX what happens if !acked but response shows up before callback? 2800 */ 2801 if (vap->iv_state == ostate) { 2802 callout_reset(&vap->iv_mgtsend, 2803 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0, 2804 ieee80211_tx_mgt_timeout, vap); 2805 } 2806 } 2807 2808 static void 2809 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm, 2810 struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni) 2811 { 2812 struct ieee80211vap *vap = ni->ni_vap; 2813 struct ieee80211com *ic = ni->ni_ic; 2814 struct ieee80211_rateset *rs = &ni->ni_rates; 2815 uint16_t capinfo; 2816 2817 /* 2818 * beacon frame format 2819 * [8] time stamp 2820 * [2] beacon interval 2821 * [2] cabability information 2822 * [tlv] ssid 2823 * [tlv] supported rates 2824 * [3] parameter set (DS) 2825 * [8] CF parameter set (optional) 2826 * [tlv] parameter set (IBSS/TIM) 2827 * [tlv] country (optional) 2828 * [3] power control (optional) 2829 * [5] channel switch announcement (CSA) (optional) 2830 * [tlv] extended rate phy (ERP) 2831 * [tlv] extended supported rates 2832 * [tlv] RSN parameters 2833 * [tlv] HT capabilities 2834 * [tlv] HT information 2835 * XXX Vendor-specific OIDs (e.g. Atheros) 2836 * [tlv] WPA parameters 2837 * [tlv] WME parameters 2838 * [tlv] Vendor OUI HT capabilities (optional) 2839 * [tlv] Vendor OUI HT information (optional) 2840 * [tlv] Atheros capabilities (optional) 2841 * [tlv] TDMA parameters (optional) 2842 * [tlv] Mesh ID (MBSS) 2843 * [tlv] Mesh Conf (MBSS) 2844 * [tlv] application data (optional) 2845 */ 2846 2847 memset(bo, 0, sizeof(*bo)); 2848 2849 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 2850 frm += 8; 2851 *(uint16_t *)frm = htole16(ni->ni_intval); 2852 frm += 2; 2853 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 2854 bo->bo_caps = (uint16_t *)frm; 2855 *(uint16_t *)frm = htole16(capinfo); 2856 frm += 2; 2857 *frm++ = IEEE80211_ELEMID_SSID; 2858 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) { 2859 *frm++ = ni->ni_esslen; 2860 memcpy(frm, ni->ni_essid, ni->ni_esslen); 2861 frm += ni->ni_esslen; 2862 } else 2863 *frm++ = 0; 2864 frm = ieee80211_add_rates(frm, rs); 2865 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) { 2866 *frm++ = IEEE80211_ELEMID_DSPARMS; 2867 *frm++ = 1; 2868 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 2869 } 2870 if (ic->ic_flags & IEEE80211_F_PCF) { 2871 bo->bo_cfp = frm; 2872 frm = ieee80211_add_cfparms(frm, ic); 2873 } 2874 bo->bo_tim = frm; 2875 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2876 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2877 *frm++ = 2; 2878 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2879 bo->bo_tim_len = 0; 2880 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 2881 vap->iv_opmode == IEEE80211_M_MBSS) { 2882 /* TIM IE is the same for Mesh and Hostap */ 2883 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; 2884 2885 tie->tim_ie = IEEE80211_ELEMID_TIM; 2886 tie->tim_len = 4; /* length */ 2887 tie->tim_count = 0; /* DTIM count */ 2888 tie->tim_period = vap->iv_dtim_period; /* DTIM period */ 2889 tie->tim_bitctl = 0; /* bitmap control */ 2890 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 2891 frm += sizeof(struct ieee80211_tim_ie); 2892 bo->bo_tim_len = 1; 2893 } 2894 bo->bo_tim_trailer = frm; 2895 if ((vap->iv_flags & IEEE80211_F_DOTH) || 2896 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 2897 frm = ieee80211_add_countryie(frm, ic); 2898 if (vap->iv_flags & IEEE80211_F_DOTH) { 2899 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) 2900 frm = ieee80211_add_powerconstraint(frm, vap); 2901 bo->bo_csa = frm; 2902 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 2903 frm = ieee80211_add_csa(frm, vap); 2904 } else 2905 bo->bo_csa = frm; 2906 2907 if (vap->iv_flags & IEEE80211_F_DOTH) { 2908 bo->bo_quiet = frm; 2909 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2910 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 2911 if (vap->iv_quiet) 2912 frm = ieee80211_add_quiet(frm,vap); 2913 } 2914 } else 2915 bo->bo_quiet = frm; 2916 2917 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) { 2918 bo->bo_erp = frm; 2919 frm = ieee80211_add_erp(frm, ic); 2920 } 2921 frm = ieee80211_add_xrates(frm, rs); 2922 frm = ieee80211_add_rsn(frm, vap); 2923 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 2924 frm = ieee80211_add_htcap(frm, ni); 2925 bo->bo_htinfo = frm; 2926 frm = ieee80211_add_htinfo(frm, ni); 2927 } 2928 frm = ieee80211_add_wpa(frm, vap); 2929 if (vap->iv_flags & IEEE80211_F_WME) { 2930 bo->bo_wme = frm; 2931 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2932 } 2933 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2934 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) { 2935 frm = ieee80211_add_htcap_vendor(frm, ni); 2936 frm = ieee80211_add_htinfo_vendor(frm, ni); 2937 } 2938 #ifdef IEEE80211_SUPPORT_SUPERG 2939 if (vap->iv_flags & IEEE80211_F_ATHEROS) { 2940 bo->bo_ath = frm; 2941 frm = ieee80211_add_athcaps(frm, ni); 2942 } 2943 #endif 2944 #ifdef IEEE80211_SUPPORT_TDMA 2945 if (vap->iv_caps & IEEE80211_C_TDMA) { 2946 bo->bo_tdma = frm; 2947 frm = ieee80211_add_tdma(frm, vap); 2948 } 2949 #endif 2950 if (vap->iv_appie_beacon != NULL) { 2951 bo->bo_appie = frm; 2952 bo->bo_appie_len = vap->iv_appie_beacon->ie_len; 2953 frm = add_appie(frm, vap->iv_appie_beacon); 2954 } 2955 #ifdef IEEE80211_SUPPORT_MESH 2956 if (vap->iv_opmode == IEEE80211_M_MBSS) { 2957 frm = ieee80211_add_meshid(frm, vap); 2958 bo->bo_meshconf = frm; 2959 frm = ieee80211_add_meshconf(frm, vap); 2960 } 2961 #endif 2962 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer; 2963 bo->bo_csa_trailer_len = frm - bo->bo_csa; 2964 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2965 } 2966 2967 /* 2968 * Allocate a beacon frame and fillin the appropriate bits. 2969 */ 2970 struct mbuf * 2971 ieee80211_beacon_alloc(struct ieee80211_node *ni, 2972 struct ieee80211_beacon_offsets *bo) 2973 { 2974 struct ieee80211vap *vap = ni->ni_vap; 2975 struct ieee80211com *ic = ni->ni_ic; 2976 struct ifnet *ifp = vap->iv_ifp; 2977 struct ieee80211_frame *wh; 2978 struct mbuf *m; 2979 int pktlen; 2980 uint8_t *frm; 2981 2982 /* 2983 * beacon frame format 2984 * [8] time stamp 2985 * [2] beacon interval 2986 * [2] cabability information 2987 * [tlv] ssid 2988 * [tlv] supported rates 2989 * [3] parameter set (DS) 2990 * [8] CF parameter set (optional) 2991 * [tlv] parameter set (IBSS/TIM) 2992 * [tlv] country (optional) 2993 * [3] power control (optional) 2994 * [5] channel switch announcement (CSA) (optional) 2995 * [tlv] extended rate phy (ERP) 2996 * [tlv] extended supported rates 2997 * [tlv] RSN parameters 2998 * [tlv] HT capabilities 2999 * [tlv] HT information 3000 * [tlv] Vendor OUI HT capabilities (optional) 3001 * [tlv] Vendor OUI HT information (optional) 3002 * XXX Vendor-specific OIDs (e.g. Atheros) 3003 * [tlv] WPA parameters 3004 * [tlv] WME parameters 3005 * [tlv] TDMA parameters (optional) 3006 * [tlv] Mesh ID (MBSS) 3007 * [tlv] Mesh Conf (MBSS) 3008 * [tlv] application data (optional) 3009 * NB: we allocate the max space required for the TIM bitmap. 3010 * XXX how big is this? 3011 */ 3012 pktlen = 8 /* time stamp */ 3013 + sizeof(uint16_t) /* beacon interval */ 3014 + sizeof(uint16_t) /* capabilities */ 3015 + 2 + ni->ni_esslen /* ssid */ 3016 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 3017 + 2 + 1 /* DS parameters */ 3018 + 2 + 6 /* CF parameters */ 3019 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */ 3020 + IEEE80211_COUNTRY_MAX_SIZE /* country */ 3021 + 2 + 1 /* power control */ 3022 + sizeof(struct ieee80211_csa_ie) /* CSA */ 3023 + sizeof(struct ieee80211_quiet_ie) /* Quiet */ 3024 + 2 + 1 /* ERP */ 3025 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 3026 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 3027 2*sizeof(struct ieee80211_ie_wpa) : 0) 3028 /* XXX conditional? */ 3029 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */ 3030 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */ 3031 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */ 3032 sizeof(struct ieee80211_wme_param) : 0) 3033 #ifdef IEEE80211_SUPPORT_SUPERG 3034 + sizeof(struct ieee80211_ath_ie) /* ATH */ 3035 #endif 3036 #ifdef IEEE80211_SUPPORT_TDMA 3037 + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */ 3038 sizeof(struct ieee80211_tdma_param) : 0) 3039 #endif 3040 #ifdef IEEE80211_SUPPORT_MESH 3041 + 2 + ni->ni_meshidlen 3042 + sizeof(struct ieee80211_meshconf_ie) 3043 #endif 3044 + IEEE80211_MAX_APPIE 3045 ; 3046 m = ieee80211_getmgtframe(&frm, 3047 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen); 3048 if (m == NULL) { 3049 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, 3050 "%s: cannot get buf; size %u\n", __func__, pktlen); 3051 vap->iv_stats.is_tx_nobuf++; 3052 return NULL; 3053 } 3054 ieee80211_beacon_construct(m, frm, bo, ni); 3055 3056 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 3057 KASSERT(m != NULL, ("no space for 802.11 header?")); 3058 wh = mtod(m, struct ieee80211_frame *); 3059 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 3060 IEEE80211_FC0_SUBTYPE_BEACON; 3061 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3062 *(uint16_t *)wh->i_dur = 0; 3063 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 3064 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 3065 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 3066 *(uint16_t *)wh->i_seq = 0; 3067 3068 return m; 3069 } 3070 3071 /* 3072 * Update the dynamic parts of a beacon frame based on the current state. 3073 */ 3074 int 3075 ieee80211_beacon_update(struct ieee80211_node *ni, 3076 struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast) 3077 { 3078 struct ieee80211vap *vap = ni->ni_vap; 3079 struct ieee80211com *ic = ni->ni_ic; 3080 int len_changed = 0; 3081 uint16_t capinfo; 3082 struct ieee80211_frame *wh; 3083 ieee80211_seq seqno; 3084 3085 IEEE80211_LOCK(ic); 3086 /* 3087 * Handle 11h channel change when we've reached the count. 3088 * We must recalculate the beacon frame contents to account 3089 * for the new channel. Note we do this only for the first 3090 * vap that reaches this point; subsequent vaps just update 3091 * their beacon state to reflect the recalculated channel. 3092 */ 3093 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) && 3094 vap->iv_csa_count == ic->ic_csa_count) { 3095 vap->iv_csa_count = 0; 3096 /* 3097 * Effect channel change before reconstructing the beacon 3098 * frame contents as many places reference ni_chan. 3099 */ 3100 if (ic->ic_csa_newchan != NULL) 3101 ieee80211_csa_completeswitch(ic); 3102 /* 3103 * NB: ieee80211_beacon_construct clears all pending 3104 * updates in bo_flags so we don't need to explicitly 3105 * clear IEEE80211_BEACON_CSA. 3106 */ 3107 ieee80211_beacon_construct(m, 3108 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni); 3109 3110 /* XXX do WME aggressive mode processing? */ 3111 IEEE80211_UNLOCK(ic); 3112 return 1; /* just assume length changed */ 3113 } 3114 3115 wh = mtod(m, struct ieee80211_frame *); 3116 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 3117 *(uint16_t *)&wh->i_seq[0] = 3118 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 3119 M_SEQNO_SET(m, seqno); 3120 3121 /* XXX faster to recalculate entirely or just changes? */ 3122 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3123 *bo->bo_caps = htole16(capinfo); 3124 3125 if (vap->iv_flags & IEEE80211_F_WME) { 3126 struct ieee80211_wme_state *wme = &ic->ic_wme; 3127 3128 /* 3129 * Check for agressive mode change. When there is 3130 * significant high priority traffic in the BSS 3131 * throttle back BE traffic by using conservative 3132 * parameters. Otherwise BE uses agressive params 3133 * to optimize performance of legacy/non-QoS traffic. 3134 */ 3135 if (wme->wme_flags & WME_F_AGGRMODE) { 3136 if (wme->wme_hipri_traffic > 3137 wme->wme_hipri_switch_thresh) { 3138 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3139 "%s: traffic %u, disable aggressive mode\n", 3140 __func__, wme->wme_hipri_traffic); 3141 wme->wme_flags &= ~WME_F_AGGRMODE; 3142 ieee80211_wme_updateparams_locked(vap); 3143 wme->wme_hipri_traffic = 3144 wme->wme_hipri_switch_hysteresis; 3145 } else 3146 wme->wme_hipri_traffic = 0; 3147 } else { 3148 if (wme->wme_hipri_traffic <= 3149 wme->wme_hipri_switch_thresh) { 3150 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3151 "%s: traffic %u, enable aggressive mode\n", 3152 __func__, wme->wme_hipri_traffic); 3153 wme->wme_flags |= WME_F_AGGRMODE; 3154 ieee80211_wme_updateparams_locked(vap); 3155 wme->wme_hipri_traffic = 0; 3156 } else 3157 wme->wme_hipri_traffic = 3158 wme->wme_hipri_switch_hysteresis; 3159 } 3160 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) { 3161 (void) ieee80211_add_wme_param(bo->bo_wme, wme); 3162 clrbit(bo->bo_flags, IEEE80211_BEACON_WME); 3163 } 3164 } 3165 3166 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) { 3167 ieee80211_ht_update_beacon(vap, bo); 3168 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO); 3169 } 3170 #ifdef IEEE80211_SUPPORT_TDMA 3171 if (vap->iv_caps & IEEE80211_C_TDMA) { 3172 /* 3173 * NB: the beacon is potentially updated every TBTT. 3174 */ 3175 ieee80211_tdma_update_beacon(vap, bo); 3176 } 3177 #endif 3178 #ifdef IEEE80211_SUPPORT_MESH 3179 if (vap->iv_opmode == IEEE80211_M_MBSS) 3180 ieee80211_mesh_update_beacon(vap, bo); 3181 #endif 3182 3183 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3184 vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/ 3185 struct ieee80211_tim_ie *tie = 3186 (struct ieee80211_tim_ie *) bo->bo_tim; 3187 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) { 3188 u_int timlen, timoff, i; 3189 /* 3190 * ATIM/DTIM needs updating. If it fits in the 3191 * current space allocated then just copy in the 3192 * new bits. Otherwise we need to move any trailing 3193 * data to make room. Note that we know there is 3194 * contiguous space because ieee80211_beacon_allocate 3195 * insures there is space in the mbuf to write a 3196 * maximal-size virtual bitmap (based on iv_max_aid). 3197 */ 3198 /* 3199 * Calculate the bitmap size and offset, copy any 3200 * trailer out of the way, and then copy in the 3201 * new bitmap and update the information element. 3202 * Note that the tim bitmap must contain at least 3203 * one byte and any offset must be even. 3204 */ 3205 if (vap->iv_ps_pending != 0) { 3206 timoff = 128; /* impossibly large */ 3207 for (i = 0; i < vap->iv_tim_len; i++) 3208 if (vap->iv_tim_bitmap[i]) { 3209 timoff = i &~ 1; 3210 break; 3211 } 3212 KASSERT(timoff != 128, ("tim bitmap empty!")); 3213 for (i = vap->iv_tim_len-1; i >= timoff; i--) 3214 if (vap->iv_tim_bitmap[i]) 3215 break; 3216 timlen = 1 + (i - timoff); 3217 } else { 3218 timoff = 0; 3219 timlen = 1; 3220 } 3221 if (timlen != bo->bo_tim_len) { 3222 /* copy up/down trailer */ 3223 int adjust = tie->tim_bitmap+timlen 3224 - bo->bo_tim_trailer; 3225 ovbcopy(bo->bo_tim_trailer, 3226 bo->bo_tim_trailer+adjust, 3227 bo->bo_tim_trailer_len); 3228 bo->bo_tim_trailer += adjust; 3229 bo->bo_erp += adjust; 3230 bo->bo_htinfo += adjust; 3231 #ifdef IEEE80211_SUPPORT_SUPERG 3232 bo->bo_ath += adjust; 3233 #endif 3234 #ifdef IEEE80211_SUPPORT_TDMA 3235 bo->bo_tdma += adjust; 3236 #endif 3237 #ifdef IEEE80211_SUPPORT_MESH 3238 bo->bo_meshconf += adjust; 3239 #endif 3240 bo->bo_appie += adjust; 3241 bo->bo_wme += adjust; 3242 bo->bo_csa += adjust; 3243 bo->bo_quiet += adjust; 3244 bo->bo_tim_len = timlen; 3245 3246 /* update information element */ 3247 tie->tim_len = 3 + timlen; 3248 tie->tim_bitctl = timoff; 3249 len_changed = 1; 3250 } 3251 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff, 3252 bo->bo_tim_len); 3253 3254 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM); 3255 3256 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER, 3257 "%s: TIM updated, pending %u, off %u, len %u\n", 3258 __func__, vap->iv_ps_pending, timoff, timlen); 3259 } 3260 /* count down DTIM period */ 3261 if (tie->tim_count == 0) 3262 tie->tim_count = tie->tim_period - 1; 3263 else 3264 tie->tim_count--; 3265 /* update state for buffered multicast frames on DTIM */ 3266 if (mcast && tie->tim_count == 0) 3267 tie->tim_bitctl |= 1; 3268 else 3269 tie->tim_bitctl &= ~1; 3270 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) { 3271 struct ieee80211_csa_ie *csa = 3272 (struct ieee80211_csa_ie *) bo->bo_csa; 3273 3274 /* 3275 * Insert or update CSA ie. If we're just starting 3276 * to count down to the channel switch then we need 3277 * to insert the CSA ie. Otherwise we just need to 3278 * drop the count. The actual change happens above 3279 * when the vap's count reaches the target count. 3280 */ 3281 if (vap->iv_csa_count == 0) { 3282 memmove(&csa[1], csa, bo->bo_csa_trailer_len); 3283 bo->bo_erp += sizeof(*csa); 3284 bo->bo_htinfo += sizeof(*csa); 3285 bo->bo_wme += sizeof(*csa); 3286 #ifdef IEEE80211_SUPPORT_SUPERG 3287 bo->bo_ath += sizeof(*csa); 3288 #endif 3289 #ifdef IEEE80211_SUPPORT_TDMA 3290 bo->bo_tdma += sizeof(*csa); 3291 #endif 3292 #ifdef IEEE80211_SUPPORT_MESH 3293 bo->bo_meshconf += sizeof(*csa); 3294 #endif 3295 bo->bo_appie += sizeof(*csa); 3296 bo->bo_csa_trailer_len += sizeof(*csa); 3297 bo->bo_quiet += sizeof(*csa); 3298 bo->bo_tim_trailer_len += sizeof(*csa); 3299 m->m_len += sizeof(*csa); 3300 m->m_pkthdr.len += sizeof(*csa); 3301 3302 ieee80211_add_csa(bo->bo_csa, vap); 3303 } else 3304 csa->csa_count--; 3305 vap->iv_csa_count++; 3306 /* NB: don't clear IEEE80211_BEACON_CSA */ 3307 } 3308 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3309 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){ 3310 if (vap->iv_quiet) 3311 ieee80211_add_quiet(bo->bo_quiet, vap); 3312 } 3313 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) { 3314 /* 3315 * ERP element needs updating. 3316 */ 3317 (void) ieee80211_add_erp(bo->bo_erp, ic); 3318 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP); 3319 } 3320 #ifdef IEEE80211_SUPPORT_SUPERG 3321 if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) { 3322 ieee80211_add_athcaps(bo->bo_ath, ni); 3323 clrbit(bo->bo_flags, IEEE80211_BEACON_ATH); 3324 } 3325 #endif 3326 } 3327 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) { 3328 const struct ieee80211_appie *aie = vap->iv_appie_beacon; 3329 int aielen; 3330 uint8_t *frm; 3331 3332 aielen = 0; 3333 if (aie != NULL) 3334 aielen += aie->ie_len; 3335 if (aielen != bo->bo_appie_len) { 3336 /* copy up/down trailer */ 3337 int adjust = aielen - bo->bo_appie_len; 3338 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust, 3339 bo->bo_tim_trailer_len); 3340 bo->bo_tim_trailer += adjust; 3341 bo->bo_appie += adjust; 3342 bo->bo_appie_len = aielen; 3343 3344 len_changed = 1; 3345 } 3346 frm = bo->bo_appie; 3347 if (aie != NULL) 3348 frm = add_appie(frm, aie); 3349 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE); 3350 } 3351 IEEE80211_UNLOCK(ic); 3352 3353 return len_changed; 3354 } 3355 3356 /* 3357 * Do Ethernet-LLC encapsulation for each payload in a fast frame 3358 * tunnel encapsulation. The frame is assumed to have an Ethernet 3359 * header at the front that must be stripped before prepending the 3360 * LLC followed by the Ethernet header passed in (with an Ethernet 3361 * type that specifies the payload size). 3362 */ 3363 struct mbuf * 3364 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m, 3365 const struct ether_header *eh) 3366 { 3367 struct llc *llc; 3368 uint16_t payload; 3369 3370 /* XXX optimize by combining m_adj+M_PREPEND */ 3371 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 3372 llc = mtod(m, struct llc *); 3373 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 3374 llc->llc_control = LLC_UI; 3375 llc->llc_snap.org_code[0] = 0; 3376 llc->llc_snap.org_code[1] = 0; 3377 llc->llc_snap.org_code[2] = 0; 3378 llc->llc_snap.ether_type = eh->ether_type; 3379 payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */ 3380 3381 M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT); 3382 if (m == NULL) { /* XXX cannot happen */ 3383 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 3384 "%s: no space for ether_header\n", __func__); 3385 vap->iv_stats.is_tx_nobuf++; 3386 return NULL; 3387 } 3388 ETHER_HEADER_COPY(mtod(m, void *), eh); 3389 mtod(m, struct ether_header *)->ether_type = htons(payload); 3390 return m; 3391 } 3392 3393 /* 3394 * Complete an mbuf transmission. 3395 * 3396 * For now, this simply processes a completed frame after the 3397 * driver has completed it's transmission and/or retransmission. 3398 * It assumes the frame is an 802.11 encapsulated frame. 3399 * 3400 * Later on it will grow to become the exit path for a given frame 3401 * from the driver and, depending upon how it's been encapsulated 3402 * and already transmitted, it may end up doing A-MPDU retransmission, 3403 * power save requeuing, etc. 3404 * 3405 * In order for the above to work, the driver entry point to this 3406 * must not hold any driver locks. Thus, the driver needs to delay 3407 * any actual mbuf completion until it can release said locks. 3408 * 3409 * This frees the mbuf and if the mbuf has a node reference, 3410 * the node reference will be freed. 3411 */ 3412 void 3413 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status) 3414 { 3415 3416 if (ni != NULL) { 3417 if (m->m_flags & M_TXCB) 3418 ieee80211_process_callback(ni, m, status); 3419 ieee80211_free_node(ni); 3420 } 3421 m_freem(m); 3422 } 3423