1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_inet.h" 31 #include "opt_inet6.h" 32 #include "opt_wlan.h" 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/mbuf.h> 37 #include <sys/kernel.h> 38 #include <sys/endian.h> 39 40 #include <sys/socket.h> 41 42 #include <net/bpf.h> 43 #include <net/ethernet.h> 44 #include <net/if.h> 45 #include <net/if_llc.h> 46 #include <net/if_media.h> 47 #include <net/if_vlan_var.h> 48 49 #include <net80211/ieee80211_var.h> 50 #include <net80211/ieee80211_regdomain.h> 51 #ifdef IEEE80211_SUPPORT_SUPERG 52 #include <net80211/ieee80211_superg.h> 53 #endif 54 #ifdef IEEE80211_SUPPORT_TDMA 55 #include <net80211/ieee80211_tdma.h> 56 #endif 57 #include <net80211/ieee80211_wds.h> 58 #include <net80211/ieee80211_mesh.h> 59 60 #ifdef INET 61 #include <netinet/in.h> 62 #include <netinet/if_ether.h> 63 #include <netinet/in_systm.h> 64 #include <netinet/ip.h> 65 #endif 66 #ifdef INET6 67 #include <netinet/ip6.h> 68 #endif 69 70 #include <security/mac/mac_framework.h> 71 72 #define ETHER_HEADER_COPY(dst, src) \ 73 memcpy(dst, src, sizeof(struct ether_header)) 74 75 /* unalligned little endian access */ 76 #define LE_WRITE_2(p, v) do { \ 77 ((uint8_t *)(p))[0] = (v) & 0xff; \ 78 ((uint8_t *)(p))[1] = ((v) >> 8) & 0xff; \ 79 } while (0) 80 #define LE_WRITE_4(p, v) do { \ 81 ((uint8_t *)(p))[0] = (v) & 0xff; \ 82 ((uint8_t *)(p))[1] = ((v) >> 8) & 0xff; \ 83 ((uint8_t *)(p))[2] = ((v) >> 16) & 0xff; \ 84 ((uint8_t *)(p))[3] = ((v) >> 24) & 0xff; \ 85 } while (0) 86 87 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *, 88 u_int hdrsize, u_int ciphdrsize, u_int mtu); 89 static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int); 90 91 #ifdef IEEE80211_DEBUG 92 /* 93 * Decide if an outbound management frame should be 94 * printed when debugging is enabled. This filters some 95 * of the less interesting frames that come frequently 96 * (e.g. beacons). 97 */ 98 static __inline int 99 doprint(struct ieee80211vap *vap, int subtype) 100 { 101 switch (subtype) { 102 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 103 return (vap->iv_opmode == IEEE80211_M_IBSS); 104 } 105 return 1; 106 } 107 #endif 108 109 /* 110 * Start method for vap's. All packets from the stack come 111 * through here. We handle common processing of the packets 112 * before dispatching them to the underlying device. 113 */ 114 void 115 ieee80211_start(struct ifnet *ifp) 116 { 117 #define IS_DWDS(vap) \ 118 (vap->iv_opmode == IEEE80211_M_WDS && \ 119 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0) 120 struct ieee80211vap *vap = ifp->if_softc; 121 struct ieee80211com *ic = vap->iv_ic; 122 struct ifnet *parent = ic->ic_ifp; 123 struct ieee80211_node *ni; 124 struct mbuf *m; 125 struct ether_header *eh; 126 int error; 127 128 /* NB: parent must be up and running */ 129 if (!IFNET_IS_UP_RUNNING(parent)) { 130 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 131 "%s: ignore queue, parent %s not up+running\n", 132 __func__, parent->if_xname); 133 /* XXX stat */ 134 return; 135 } 136 if (vap->iv_state == IEEE80211_S_SLEEP) { 137 /* 138 * In power save, wakeup device for transmit. 139 */ 140 ieee80211_new_state(vap, IEEE80211_S_RUN, 0); 141 return; 142 } 143 /* 144 * No data frames go out unless we're running. 145 * Note in particular this covers CAC and CSA 146 * states (though maybe we should check muting 147 * for CSA). 148 */ 149 if (vap->iv_state != IEEE80211_S_RUN) { 150 IEEE80211_LOCK(ic); 151 /* re-check under the com lock to avoid races */ 152 if (vap->iv_state != IEEE80211_S_RUN) { 153 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 154 "%s: ignore queue, in %s state\n", 155 __func__, ieee80211_state_name[vap->iv_state]); 156 vap->iv_stats.is_tx_badstate++; 157 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 158 IEEE80211_UNLOCK(ic); 159 return; 160 } 161 IEEE80211_UNLOCK(ic); 162 } 163 for (;;) { 164 IFQ_DEQUEUE(&ifp->if_snd, m); 165 if (m == NULL) 166 break; 167 /* 168 * Sanitize mbuf flags for net80211 use. We cannot 169 * clear M_PWR_SAV or M_MORE_DATA because these may 170 * be set for frames that are re-submitted from the 171 * power save queue. 172 * 173 * NB: This must be done before ieee80211_classify as 174 * it marks EAPOL in frames with M_EAPOL. 175 */ 176 m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA); 177 /* 178 * Cancel any background scan. 179 */ 180 if (ic->ic_flags & IEEE80211_F_SCAN) 181 ieee80211_cancel_anyscan(vap); 182 /* 183 * Find the node for the destination so we can do 184 * things like power save and fast frames aggregation. 185 * 186 * NB: past this point various code assumes the first 187 * mbuf has the 802.3 header present (and contiguous). 188 */ 189 ni = NULL; 190 if (m->m_len < sizeof(struct ether_header) && 191 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 192 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 193 "discard frame, %s\n", "m_pullup failed"); 194 vap->iv_stats.is_tx_nobuf++; /* XXX */ 195 ifp->if_oerrors++; 196 continue; 197 } 198 eh = mtod(m, struct ether_header *); 199 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 200 if (IS_DWDS(vap)) { 201 /* 202 * Only unicast frames from the above go out 203 * DWDS vaps; multicast frames are handled by 204 * dispatching the frame as it comes through 205 * the AP vap (see below). 206 */ 207 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS, 208 eh->ether_dhost, "mcast", "%s", "on DWDS"); 209 vap->iv_stats.is_dwds_mcast++; 210 m_freem(m); 211 continue; 212 } 213 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { 214 /* 215 * Spam DWDS vap's w/ multicast traffic. 216 */ 217 /* XXX only if dwds in use? */ 218 ieee80211_dwds_mcast(vap, m); 219 } 220 } 221 #ifdef IEEE80211_SUPPORT_MESH 222 if (vap->iv_opmode != IEEE80211_M_MBSS) { 223 #endif 224 ni = ieee80211_find_txnode(vap, eh->ether_dhost); 225 if (ni == NULL) { 226 /* NB: ieee80211_find_txnode does stat+msg */ 227 ifp->if_oerrors++; 228 m_freem(m); 229 continue; 230 } 231 if (ni->ni_associd == 0 && 232 (ni->ni_flags & IEEE80211_NODE_ASSOCID)) { 233 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 234 eh->ether_dhost, NULL, 235 "sta not associated (type 0x%04x)", 236 htons(eh->ether_type)); 237 vap->iv_stats.is_tx_notassoc++; 238 ifp->if_oerrors++; 239 m_freem(m); 240 ieee80211_free_node(ni); 241 continue; 242 } 243 #ifdef IEEE80211_SUPPORT_MESH 244 } else { 245 if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) { 246 /* 247 * Proxy station only if configured. 248 */ 249 if (!ieee80211_mesh_isproxyena(vap)) { 250 IEEE80211_DISCARD_MAC(vap, 251 IEEE80211_MSG_OUTPUT | 252 IEEE80211_MSG_MESH, 253 eh->ether_dhost, NULL, 254 "%s", "proxy not enabled"); 255 vap->iv_stats.is_mesh_notproxy++; 256 ifp->if_oerrors++; 257 m_freem(m); 258 continue; 259 } 260 ieee80211_mesh_proxy_check(vap, eh->ether_shost); 261 } 262 ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m); 263 if (ni == NULL) { 264 /* 265 * NB: ieee80211_mesh_discover holds/disposes 266 * frame (e.g. queueing on path discovery). 267 */ 268 ifp->if_oerrors++; 269 continue; 270 } 271 } 272 #endif 273 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 274 (m->m_flags & M_PWR_SAV) == 0) { 275 /* 276 * Station in power save mode; pass the frame 277 * to the 802.11 layer and continue. We'll get 278 * the frame back when the time is right. 279 * XXX lose WDS vap linkage? 280 */ 281 (void) ieee80211_pwrsave(ni, m); 282 ieee80211_free_node(ni); 283 continue; 284 } 285 /* calculate priority so drivers can find the tx queue */ 286 if (ieee80211_classify(ni, m)) { 287 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 288 eh->ether_dhost, NULL, 289 "%s", "classification failure"); 290 vap->iv_stats.is_tx_classify++; 291 ifp->if_oerrors++; 292 m_freem(m); 293 ieee80211_free_node(ni); 294 continue; 295 } 296 /* 297 * Stash the node pointer. Note that we do this after 298 * any call to ieee80211_dwds_mcast because that code 299 * uses any existing value for rcvif to identify the 300 * interface it (might have been) received on. 301 */ 302 m->m_pkthdr.rcvif = (void *)ni; 303 304 BPF_MTAP(ifp, m); /* 802.3 tx */ 305 306 /* 307 * Check if A-MPDU tx aggregation is setup or if we 308 * should try to enable it. The sta must be associated 309 * with HT and A-MPDU enabled for use. When the policy 310 * routine decides we should enable A-MPDU we issue an 311 * ADDBA request and wait for a reply. The frame being 312 * encapsulated will go out w/o using A-MPDU, or possibly 313 * it might be collected by the driver and held/retransmit. 314 * The default ic_ampdu_enable routine handles staggering 315 * ADDBA requests in case the receiver NAK's us or we are 316 * otherwise unable to establish a BA stream. 317 */ 318 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) && 319 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) && 320 (m->m_flags & M_EAPOL) == 0) { 321 const int ac = M_WME_GETAC(m); 322 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac]; 323 324 ieee80211_txampdu_count_packet(tap); 325 if (IEEE80211_AMPDU_RUNNING(tap)) { 326 /* 327 * Operational, mark frame for aggregation. 328 * 329 * XXX do tx aggregation here 330 */ 331 m->m_flags |= M_AMPDU_MPDU; 332 } else if (!IEEE80211_AMPDU_REQUESTED(tap) && 333 ic->ic_ampdu_enable(ni, tap)) { 334 /* 335 * Not negotiated yet, request service. 336 */ 337 ieee80211_ampdu_request(ni, tap); 338 /* XXX hold frame for reply? */ 339 } 340 } 341 #ifdef IEEE80211_SUPPORT_SUPERG 342 else if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) { 343 m = ieee80211_ff_check(ni, m); 344 if (m == NULL) { 345 /* NB: any ni ref held on stageq */ 346 continue; 347 } 348 } 349 #endif /* IEEE80211_SUPPORT_SUPERG */ 350 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 351 /* 352 * Encapsulate the packet in prep for transmission. 353 */ 354 m = ieee80211_encap(vap, ni, m); 355 if (m == NULL) { 356 /* NB: stat+msg handled in ieee80211_encap */ 357 ieee80211_free_node(ni); 358 continue; 359 } 360 } 361 362 error = parent->if_transmit(parent, m); 363 if (error != 0) { 364 /* NB: IFQ_HANDOFF reclaims mbuf */ 365 ieee80211_free_node(ni); 366 } else { 367 ifp->if_opackets++; 368 } 369 ic->ic_lastdata = ticks; 370 } 371 #undef IS_DWDS 372 } 373 374 /* 375 * 802.11 output routine. This is (currently) used only to 376 * connect bpf write calls to the 802.11 layer for injecting 377 * raw 802.11 frames. 378 */ 379 int 380 ieee80211_output(struct ifnet *ifp, struct mbuf *m, 381 struct sockaddr *dst, struct route *ro) 382 { 383 #define senderr(e) do { error = (e); goto bad;} while (0) 384 struct ieee80211_node *ni = NULL; 385 struct ieee80211vap *vap; 386 struct ieee80211_frame *wh; 387 int error; 388 389 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 390 /* 391 * Short-circuit requests if the vap is marked OACTIVE 392 * as this can happen because a packet came down through 393 * ieee80211_start before the vap entered RUN state in 394 * which case it's ok to just drop the frame. This 395 * should not be necessary but callers of if_output don't 396 * check OACTIVE. 397 */ 398 senderr(ENETDOWN); 399 } 400 vap = ifp->if_softc; 401 /* 402 * Hand to the 802.3 code if not tagged as 403 * a raw 802.11 frame. 404 */ 405 if (dst->sa_family != AF_IEEE80211) 406 return vap->iv_output(ifp, m, dst, ro); 407 #ifdef MAC 408 error = mac_ifnet_check_transmit(ifp, m); 409 if (error) 410 senderr(error); 411 #endif 412 if (ifp->if_flags & IFF_MONITOR) 413 senderr(ENETDOWN); 414 if (!IFNET_IS_UP_RUNNING(ifp)) 415 senderr(ENETDOWN); 416 if (vap->iv_state == IEEE80211_S_CAC) { 417 IEEE80211_DPRINTF(vap, 418 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 419 "block %s frame in CAC state\n", "raw data"); 420 vap->iv_stats.is_tx_badstate++; 421 senderr(EIO); /* XXX */ 422 } 423 /* XXX bypass bridge, pfil, carp, etc. */ 424 425 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack)) 426 senderr(EIO); /* XXX */ 427 wh = mtod(m, struct ieee80211_frame *); 428 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) != 429 IEEE80211_FC0_VERSION_0) 430 senderr(EIO); /* XXX */ 431 432 /* locate destination node */ 433 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 434 case IEEE80211_FC1_DIR_NODS: 435 case IEEE80211_FC1_DIR_FROMDS: 436 ni = ieee80211_find_txnode(vap, wh->i_addr1); 437 break; 438 case IEEE80211_FC1_DIR_TODS: 439 case IEEE80211_FC1_DIR_DSTODS: 440 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame)) 441 senderr(EIO); /* XXX */ 442 ni = ieee80211_find_txnode(vap, wh->i_addr3); 443 break; 444 default: 445 senderr(EIO); /* XXX */ 446 } 447 if (ni == NULL) { 448 /* 449 * Permit packets w/ bpf params through regardless 450 * (see below about sa_len). 451 */ 452 if (dst->sa_len == 0) 453 senderr(EHOSTUNREACH); 454 ni = ieee80211_ref_node(vap->iv_bss); 455 } 456 457 /* 458 * Sanitize mbuf for net80211 flags leaked from above. 459 * 460 * NB: This must be done before ieee80211_classify as 461 * it marks EAPOL in frames with M_EAPOL. 462 */ 463 m->m_flags &= ~M_80211_TX; 464 465 /* calculate priority so drivers can find the tx queue */ 466 /* XXX assumes an 802.3 frame */ 467 if (ieee80211_classify(ni, m)) 468 senderr(EIO); /* XXX */ 469 470 ifp->if_opackets++; 471 IEEE80211_NODE_STAT(ni, tx_data); 472 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 473 IEEE80211_NODE_STAT(ni, tx_mcast); 474 m->m_flags |= M_MCAST; 475 } else 476 IEEE80211_NODE_STAT(ni, tx_ucast); 477 /* NB: ieee80211_encap does not include 802.11 header */ 478 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len); 479 480 /* 481 * NB: DLT_IEEE802_11_RADIO identifies the parameters are 482 * present by setting the sa_len field of the sockaddr (yes, 483 * this is a hack). 484 * NB: we assume sa_data is suitably aligned to cast. 485 */ 486 return vap->iv_ic->ic_raw_xmit(ni, m, 487 (const struct ieee80211_bpf_params *)(dst->sa_len ? 488 dst->sa_data : NULL)); 489 bad: 490 if (m != NULL) 491 m_freem(m); 492 if (ni != NULL) 493 ieee80211_free_node(ni); 494 ifp->if_oerrors++; 495 return error; 496 #undef senderr 497 } 498 499 /* 500 * Set the direction field and address fields of an outgoing 501 * frame. Note this should be called early on in constructing 502 * a frame as it sets i_fc[1]; other bits can then be or'd in. 503 */ 504 void 505 ieee80211_send_setup( 506 struct ieee80211_node *ni, 507 struct mbuf *m, 508 int type, int tid, 509 const uint8_t sa[IEEE80211_ADDR_LEN], 510 const uint8_t da[IEEE80211_ADDR_LEN], 511 const uint8_t bssid[IEEE80211_ADDR_LEN]) 512 { 513 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 514 struct ieee80211vap *vap = ni->ni_vap; 515 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 516 ieee80211_seq seqno; 517 518 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 519 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 520 switch (vap->iv_opmode) { 521 case IEEE80211_M_STA: 522 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 523 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 524 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 525 IEEE80211_ADDR_COPY(wh->i_addr3, da); 526 break; 527 case IEEE80211_M_IBSS: 528 case IEEE80211_M_AHDEMO: 529 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 530 IEEE80211_ADDR_COPY(wh->i_addr1, da); 531 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 532 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 533 break; 534 case IEEE80211_M_HOSTAP: 535 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 536 IEEE80211_ADDR_COPY(wh->i_addr1, da); 537 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 538 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 539 break; 540 case IEEE80211_M_WDS: 541 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 542 IEEE80211_ADDR_COPY(wh->i_addr1, da); 543 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 544 IEEE80211_ADDR_COPY(wh->i_addr3, da); 545 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 546 break; 547 case IEEE80211_M_MBSS: 548 #ifdef IEEE80211_SUPPORT_MESH 549 /* XXX add support for proxied addresses */ 550 if (IEEE80211_IS_MULTICAST(da)) { 551 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 552 /* XXX next hop */ 553 IEEE80211_ADDR_COPY(wh->i_addr1, da); 554 IEEE80211_ADDR_COPY(wh->i_addr2, 555 vap->iv_myaddr); 556 } else { 557 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 558 IEEE80211_ADDR_COPY(wh->i_addr1, da); 559 IEEE80211_ADDR_COPY(wh->i_addr2, 560 vap->iv_myaddr); 561 IEEE80211_ADDR_COPY(wh->i_addr3, da); 562 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 563 } 564 #endif 565 break; 566 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 567 break; 568 } 569 } else { 570 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 571 IEEE80211_ADDR_COPY(wh->i_addr1, da); 572 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 573 #ifdef IEEE80211_SUPPORT_MESH 574 if (vap->iv_opmode == IEEE80211_M_MBSS) 575 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 576 else 577 #endif 578 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 579 } 580 *(uint16_t *)&wh->i_dur[0] = 0; 581 582 seqno = ni->ni_txseqs[tid]++; 583 *(uint16_t *)&wh->i_seq[0] = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 584 M_SEQNO_SET(m, seqno); 585 586 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 587 m->m_flags |= M_MCAST; 588 #undef WH4 589 } 590 591 /* 592 * Send a management frame to the specified node. The node pointer 593 * must have a reference as the pointer will be passed to the driver 594 * and potentially held for a long time. If the frame is successfully 595 * dispatched to the driver, then it is responsible for freeing the 596 * reference (and potentially free'ing up any associated storage); 597 * otherwise deal with reclaiming any reference (on error). 598 */ 599 int 600 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type, 601 struct ieee80211_bpf_params *params) 602 { 603 struct ieee80211vap *vap = ni->ni_vap; 604 struct ieee80211com *ic = ni->ni_ic; 605 struct ieee80211_frame *wh; 606 607 KASSERT(ni != NULL, ("null node")); 608 609 if (vap->iv_state == IEEE80211_S_CAC) { 610 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 611 ni, "block %s frame in CAC state", 612 ieee80211_mgt_subtype_name[ 613 (type & IEEE80211_FC0_SUBTYPE_MASK) >> 614 IEEE80211_FC0_SUBTYPE_SHIFT]); 615 vap->iv_stats.is_tx_badstate++; 616 ieee80211_free_node(ni); 617 m_freem(m); 618 return EIO; /* XXX */ 619 } 620 621 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT); 622 if (m == NULL) { 623 ieee80211_free_node(ni); 624 return ENOMEM; 625 } 626 627 wh = mtod(m, struct ieee80211_frame *); 628 ieee80211_send_setup(ni, m, 629 IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID, 630 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 631 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { 632 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1, 633 "encrypting frame (%s)", __func__); 634 wh->i_fc[1] |= IEEE80211_FC1_WEP; 635 } 636 m->m_flags |= M_ENCAP; /* mark encapsulated */ 637 638 KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?")); 639 M_WME_SETAC(m, params->ibp_pri); 640 641 #ifdef IEEE80211_DEBUG 642 /* avoid printing too many frames */ 643 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) || 644 ieee80211_msg_dumppkts(vap)) { 645 printf("[%s] send %s on channel %u\n", 646 ether_sprintf(wh->i_addr1), 647 ieee80211_mgt_subtype_name[ 648 (type & IEEE80211_FC0_SUBTYPE_MASK) >> 649 IEEE80211_FC0_SUBTYPE_SHIFT], 650 ieee80211_chan2ieee(ic, ic->ic_curchan)); 651 } 652 #endif 653 IEEE80211_NODE_STAT(ni, tx_mgmt); 654 655 return ic->ic_raw_xmit(ni, m, params); 656 } 657 658 /* 659 * Send a null data frame to the specified node. If the station 660 * is setup for QoS then a QoS Null Data frame is constructed. 661 * If this is a WDS station then a 4-address frame is constructed. 662 * 663 * NB: the caller is assumed to have setup a node reference 664 * for use; this is necessary to deal with a race condition 665 * when probing for inactive stations. Like ieee80211_mgmt_output 666 * we must cleanup any node reference on error; however we 667 * can safely just unref it as we know it will never be the 668 * last reference to the node. 669 */ 670 int 671 ieee80211_send_nulldata(struct ieee80211_node *ni) 672 { 673 struct ieee80211vap *vap = ni->ni_vap; 674 struct ieee80211com *ic = ni->ni_ic; 675 struct mbuf *m; 676 struct ieee80211_frame *wh; 677 int hdrlen; 678 uint8_t *frm; 679 680 if (vap->iv_state == IEEE80211_S_CAC) { 681 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 682 ni, "block %s frame in CAC state", "null data"); 683 ieee80211_unref_node(&ni); 684 vap->iv_stats.is_tx_badstate++; 685 return EIO; /* XXX */ 686 } 687 688 if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) 689 hdrlen = sizeof(struct ieee80211_qosframe); 690 else 691 hdrlen = sizeof(struct ieee80211_frame); 692 /* NB: only WDS vap's get 4-address frames */ 693 if (vap->iv_opmode == IEEE80211_M_WDS) 694 hdrlen += IEEE80211_ADDR_LEN; 695 if (ic->ic_flags & IEEE80211_F_DATAPAD) 696 hdrlen = roundup(hdrlen, sizeof(uint32_t)); 697 698 m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0); 699 if (m == NULL) { 700 /* XXX debug msg */ 701 ieee80211_unref_node(&ni); 702 vap->iv_stats.is_tx_nobuf++; 703 return ENOMEM; 704 } 705 KASSERT(M_LEADINGSPACE(m) >= hdrlen, 706 ("leading space %zd", M_LEADINGSPACE(m))); 707 M_PREPEND(m, hdrlen, M_DONTWAIT); 708 if (m == NULL) { 709 /* NB: cannot happen */ 710 ieee80211_free_node(ni); 711 return ENOMEM; 712 } 713 714 wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */ 715 if (ni->ni_flags & IEEE80211_NODE_QOS) { 716 const int tid = WME_AC_TO_TID(WME_AC_BE); 717 uint8_t *qos; 718 719 ieee80211_send_setup(ni, m, 720 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL, 721 tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 722 723 if (vap->iv_opmode == IEEE80211_M_WDS) 724 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 725 else 726 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 727 qos[0] = tid & IEEE80211_QOS_TID; 728 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy) 729 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 730 qos[1] = 0; 731 } else { 732 ieee80211_send_setup(ni, m, 733 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 734 IEEE80211_NONQOS_TID, 735 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 736 } 737 if (vap->iv_opmode != IEEE80211_M_WDS) { 738 /* NB: power management bit is never sent by an AP */ 739 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 740 vap->iv_opmode != IEEE80211_M_HOSTAP) 741 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 742 } 743 m->m_len = m->m_pkthdr.len = hdrlen; 744 m->m_flags |= M_ENCAP; /* mark encapsulated */ 745 746 M_WME_SETAC(m, WME_AC_BE); 747 748 IEEE80211_NODE_STAT(ni, tx_data); 749 750 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni, 751 "send %snull data frame on channel %u, pwr mgt %s", 752 ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "", 753 ieee80211_chan2ieee(ic, ic->ic_curchan), 754 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 755 756 return ic->ic_raw_xmit(ni, m, NULL); 757 } 758 759 /* 760 * Assign priority to a frame based on any vlan tag assigned 761 * to the station and/or any Diffserv setting in an IP header. 762 * Finally, if an ACM policy is setup (in station mode) it's 763 * applied. 764 */ 765 int 766 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m) 767 { 768 const struct ether_header *eh = mtod(m, struct ether_header *); 769 int v_wme_ac, d_wme_ac, ac; 770 771 /* 772 * Always promote PAE/EAPOL frames to high priority. 773 */ 774 if (eh->ether_type == htons(ETHERTYPE_PAE)) { 775 /* NB: mark so others don't need to check header */ 776 m->m_flags |= M_EAPOL; 777 ac = WME_AC_VO; 778 goto done; 779 } 780 /* 781 * Non-qos traffic goes to BE. 782 */ 783 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 784 ac = WME_AC_BE; 785 goto done; 786 } 787 788 /* 789 * If node has a vlan tag then all traffic 790 * to it must have a matching tag. 791 */ 792 v_wme_ac = 0; 793 if (ni->ni_vlan != 0) { 794 if ((m->m_flags & M_VLANTAG) == 0) { 795 IEEE80211_NODE_STAT(ni, tx_novlantag); 796 return 1; 797 } 798 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 799 EVL_VLANOFTAG(ni->ni_vlan)) { 800 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 801 return 1; 802 } 803 /* map vlan priority to AC */ 804 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan)); 805 } 806 807 /* XXX m_copydata may be too slow for fast path */ 808 #ifdef INET 809 if (eh->ether_type == htons(ETHERTYPE_IP)) { 810 uint8_t tos; 811 /* 812 * IP frame, map the DSCP bits from the TOS field. 813 */ 814 /* NB: ip header may not be in first mbuf */ 815 m_copydata(m, sizeof(struct ether_header) + 816 offsetof(struct ip, ip_tos), sizeof(tos), &tos); 817 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 818 d_wme_ac = TID_TO_WME_AC(tos); 819 } else { 820 #endif /* INET */ 821 #ifdef INET6 822 if (eh->ether_type == htons(ETHERTYPE_IPV6)) { 823 uint32_t flow; 824 uint8_t tos; 825 /* 826 * IPv6 frame, map the DSCP bits from the TOS field. 827 */ 828 m_copydata(m, sizeof(struct ether_header) + 829 offsetof(struct ip6_hdr, ip6_flow), sizeof(flow), 830 (caddr_t) &flow); 831 tos = (uint8_t)(ntohl(flow) >> 20); 832 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 833 d_wme_ac = TID_TO_WME_AC(tos); 834 } else { 835 #endif /* INET6 */ 836 d_wme_ac = WME_AC_BE; 837 #ifdef INET6 838 } 839 #endif 840 #ifdef INET 841 } 842 #endif 843 /* 844 * Use highest priority AC. 845 */ 846 if (v_wme_ac > d_wme_ac) 847 ac = v_wme_ac; 848 else 849 ac = d_wme_ac; 850 851 /* 852 * Apply ACM policy. 853 */ 854 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) { 855 static const int acmap[4] = { 856 WME_AC_BK, /* WME_AC_BE */ 857 WME_AC_BK, /* WME_AC_BK */ 858 WME_AC_BE, /* WME_AC_VI */ 859 WME_AC_VI, /* WME_AC_VO */ 860 }; 861 struct ieee80211com *ic = ni->ni_ic; 862 863 while (ac != WME_AC_BK && 864 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 865 ac = acmap[ac]; 866 } 867 done: 868 M_WME_SETAC(m, ac); 869 return 0; 870 } 871 872 /* 873 * Insure there is sufficient contiguous space to encapsulate the 874 * 802.11 data frame. If room isn't already there, arrange for it. 875 * Drivers and cipher modules assume we have done the necessary work 876 * and fail rudely if they don't find the space they need. 877 */ 878 struct mbuf * 879 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize, 880 struct ieee80211_key *key, struct mbuf *m) 881 { 882 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 883 int needed_space = vap->iv_ic->ic_headroom + hdrsize; 884 885 if (key != NULL) { 886 /* XXX belongs in crypto code? */ 887 needed_space += key->wk_cipher->ic_header; 888 /* XXX frags */ 889 /* 890 * When crypto is being done in the host we must insure 891 * the data are writable for the cipher routines; clone 892 * a writable mbuf chain. 893 * XXX handle SWMIC specially 894 */ 895 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) { 896 m = m_unshare(m, M_NOWAIT); 897 if (m == NULL) { 898 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 899 "%s: cannot get writable mbuf\n", __func__); 900 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */ 901 return NULL; 902 } 903 } 904 } 905 /* 906 * We know we are called just before stripping an Ethernet 907 * header and prepending an LLC header. This means we know 908 * there will be 909 * sizeof(struct ether_header) - sizeof(struct llc) 910 * bytes recovered to which we need additional space for the 911 * 802.11 header and any crypto header. 912 */ 913 /* XXX check trailing space and copy instead? */ 914 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 915 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); 916 if (n == NULL) { 917 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 918 "%s: cannot expand storage\n", __func__); 919 vap->iv_stats.is_tx_nobuf++; 920 m_freem(m); 921 return NULL; 922 } 923 KASSERT(needed_space <= MHLEN, 924 ("not enough room, need %u got %zu\n", needed_space, MHLEN)); 925 /* 926 * Setup new mbuf to have leading space to prepend the 927 * 802.11 header and any crypto header bits that are 928 * required (the latter are added when the driver calls 929 * back to ieee80211_crypto_encap to do crypto encapsulation). 930 */ 931 /* NB: must be first 'cuz it clobbers m_data */ 932 m_move_pkthdr(n, m); 933 n->m_len = 0; /* NB: m_gethdr does not set */ 934 n->m_data += needed_space; 935 /* 936 * Pull up Ethernet header to create the expected layout. 937 * We could use m_pullup but that's overkill (i.e. we don't 938 * need the actual data) and it cannot fail so do it inline 939 * for speed. 940 */ 941 /* NB: struct ether_header is known to be contiguous */ 942 n->m_len += sizeof(struct ether_header); 943 m->m_len -= sizeof(struct ether_header); 944 m->m_data += sizeof(struct ether_header); 945 /* 946 * Replace the head of the chain. 947 */ 948 n->m_next = m; 949 m = n; 950 } 951 return m; 952 #undef TO_BE_RECLAIMED 953 } 954 955 /* 956 * Return the transmit key to use in sending a unicast frame. 957 * If a unicast key is set we use that. When no unicast key is set 958 * we fall back to the default transmit key. 959 */ 960 static __inline struct ieee80211_key * 961 ieee80211_crypto_getucastkey(struct ieee80211vap *vap, 962 struct ieee80211_node *ni) 963 { 964 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) { 965 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 966 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 967 return NULL; 968 return &vap->iv_nw_keys[vap->iv_def_txkey]; 969 } else { 970 return &ni->ni_ucastkey; 971 } 972 } 973 974 /* 975 * Return the transmit key to use in sending a multicast frame. 976 * Multicast traffic always uses the group key which is installed as 977 * the default tx key. 978 */ 979 static __inline struct ieee80211_key * 980 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap, 981 struct ieee80211_node *ni) 982 { 983 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 984 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 985 return NULL; 986 return &vap->iv_nw_keys[vap->iv_def_txkey]; 987 } 988 989 /* 990 * Encapsulate an outbound data frame. The mbuf chain is updated. 991 * If an error is encountered NULL is returned. The caller is required 992 * to provide a node reference and pullup the ethernet header in the 993 * first mbuf. 994 * 995 * NB: Packet is assumed to be processed by ieee80211_classify which 996 * marked EAPOL frames w/ M_EAPOL. 997 */ 998 struct mbuf * 999 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni, 1000 struct mbuf *m) 1001 { 1002 #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh)) 1003 struct ieee80211com *ic = ni->ni_ic; 1004 #ifdef IEEE80211_SUPPORT_MESH 1005 struct ieee80211_mesh_state *ms = vap->iv_mesh; 1006 struct ieee80211_meshcntl_ae10 *mc; 1007 #endif 1008 struct ether_header eh; 1009 struct ieee80211_frame *wh; 1010 struct ieee80211_key *key; 1011 struct llc *llc; 1012 int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr; 1013 ieee80211_seq seqno; 1014 int meshhdrsize, meshae; 1015 uint8_t *qos; 1016 1017 /* 1018 * Copy existing Ethernet header to a safe place. The 1019 * rest of the code assumes it's ok to strip it when 1020 * reorganizing state for the final encapsulation. 1021 */ 1022 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 1023 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t)); 1024 1025 /* 1026 * Insure space for additional headers. First identify 1027 * transmit key to use in calculating any buffer adjustments 1028 * required. This is also used below to do privacy 1029 * encapsulation work. Then calculate the 802.11 header 1030 * size and any padding required by the driver. 1031 * 1032 * Note key may be NULL if we fall back to the default 1033 * transmit key and that is not set. In that case the 1034 * buffer may not be expanded as needed by the cipher 1035 * routines, but they will/should discard it. 1036 */ 1037 if (vap->iv_flags & IEEE80211_F_PRIVACY) { 1038 if (vap->iv_opmode == IEEE80211_M_STA || 1039 !IEEE80211_IS_MULTICAST(eh.ether_dhost) || 1040 (vap->iv_opmode == IEEE80211_M_WDS && 1041 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) 1042 key = ieee80211_crypto_getucastkey(vap, ni); 1043 else 1044 key = ieee80211_crypto_getmcastkey(vap, ni); 1045 if (key == NULL && (m->m_flags & M_EAPOL) == 0) { 1046 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, 1047 eh.ether_dhost, 1048 "no default transmit key (%s) deftxkey %u", 1049 __func__, vap->iv_def_txkey); 1050 vap->iv_stats.is_tx_nodefkey++; 1051 goto bad; 1052 } 1053 } else 1054 key = NULL; 1055 /* 1056 * XXX Some ap's don't handle QoS-encapsulated EAPOL 1057 * frames so suppress use. This may be an issue if other 1058 * ap's require all data frames to be QoS-encapsulated 1059 * once negotiated in which case we'll need to make this 1060 * configurable. 1061 */ 1062 addqos = (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) && 1063 (m->m_flags & M_EAPOL) == 0; 1064 if (addqos) 1065 hdrsize = sizeof(struct ieee80211_qosframe); 1066 else 1067 hdrsize = sizeof(struct ieee80211_frame); 1068 #ifdef IEEE80211_SUPPORT_MESH 1069 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1070 /* 1071 * Mesh data frames are encapsulated according to the 1072 * rules of Section 11B.8.5 (p.139 of D3.0 spec). 1073 * o Group Addressed data (aka multicast) originating 1074 * at the local sta are sent w/ 3-address format and 1075 * address extension mode 00 1076 * o Individually Addressed data (aka unicast) originating 1077 * at the local sta are sent w/ 4-address format and 1078 * address extension mode 00 1079 * o Group Addressed data forwarded from a non-mesh sta are 1080 * sent w/ 3-address format and address extension mode 01 1081 * o Individually Address data from another sta are sent 1082 * w/ 4-address format and address extension mode 10 1083 */ 1084 is4addr = 0; /* NB: don't use, disable */ 1085 if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) 1086 hdrsize += IEEE80211_ADDR_LEN; /* unicast are 4-addr */ 1087 meshhdrsize = sizeof(struct ieee80211_meshcntl); 1088 /* XXX defines for AE modes */ 1089 if (IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) { 1090 if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) 1091 meshae = 0; 1092 else 1093 meshae = 4; /* NB: pseudo */ 1094 } else if (IEEE80211_IS_MULTICAST(eh.ether_dhost)) { 1095 meshae = 1; 1096 meshhdrsize += 1*IEEE80211_ADDR_LEN; 1097 } else { 1098 meshae = 2; 1099 meshhdrsize += 2*IEEE80211_ADDR_LEN; 1100 } 1101 } else { 1102 #endif 1103 /* 1104 * 4-address frames need to be generated for: 1105 * o packets sent through a WDS vap (IEEE80211_M_WDS) 1106 * o packets sent through a vap marked for relaying 1107 * (e.g. a station operating with dynamic WDS) 1108 */ 1109 is4addr = vap->iv_opmode == IEEE80211_M_WDS || 1110 ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) && 1111 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)); 1112 if (is4addr) 1113 hdrsize += IEEE80211_ADDR_LEN; 1114 meshhdrsize = meshae = 0; 1115 #ifdef IEEE80211_SUPPORT_MESH 1116 } 1117 #endif 1118 /* 1119 * Honor driver DATAPAD requirement. 1120 */ 1121 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1122 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1123 else 1124 hdrspace = hdrsize; 1125 1126 if (__predict_true((m->m_flags & M_FF) == 0)) { 1127 /* 1128 * Normal frame. 1129 */ 1130 m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m); 1131 if (m == NULL) { 1132 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 1133 goto bad; 1134 } 1135 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */ 1136 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 1137 llc = mtod(m, struct llc *); 1138 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 1139 llc->llc_control = LLC_UI; 1140 llc->llc_snap.org_code[0] = 0; 1141 llc->llc_snap.org_code[1] = 0; 1142 llc->llc_snap.org_code[2] = 0; 1143 llc->llc_snap.ether_type = eh.ether_type; 1144 } else { 1145 #ifdef IEEE80211_SUPPORT_SUPERG 1146 /* 1147 * Aggregated frame. 1148 */ 1149 m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key); 1150 if (m == NULL) 1151 #endif 1152 goto bad; 1153 } 1154 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 1155 1156 M_PREPEND(m, hdrspace + meshhdrsize, M_DONTWAIT); 1157 if (m == NULL) { 1158 vap->iv_stats.is_tx_nobuf++; 1159 goto bad; 1160 } 1161 wh = mtod(m, struct ieee80211_frame *); 1162 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 1163 *(uint16_t *)wh->i_dur = 0; 1164 qos = NULL; /* NB: quiet compiler */ 1165 if (is4addr) { 1166 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 1167 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); 1168 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1169 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1170 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); 1171 } else switch (vap->iv_opmode) { 1172 case IEEE80211_M_STA: 1173 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 1174 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 1175 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1176 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1177 break; 1178 case IEEE80211_M_IBSS: 1179 case IEEE80211_M_AHDEMO: 1180 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1181 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1182 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1183 /* 1184 * NB: always use the bssid from iv_bss as the 1185 * neighbor's may be stale after an ibss merge 1186 */ 1187 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid); 1188 break; 1189 case IEEE80211_M_HOSTAP: 1190 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1191 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1192 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 1193 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 1194 break; 1195 #ifdef IEEE80211_SUPPORT_MESH 1196 case IEEE80211_M_MBSS: 1197 /* NB: offset by hdrspace to deal with DATAPAD */ 1198 mc = (struct ieee80211_meshcntl_ae10 *) 1199 (mtod(m, uint8_t *) + hdrspace); 1200 switch (meshae) { 1201 case 0: /* ucast, no proxy */ 1202 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 1203 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); 1204 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1205 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1206 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); 1207 mc->mc_flags = 0; 1208 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1209 break; 1210 case 4: /* mcast, no proxy */ 1211 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1212 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1213 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1214 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 1215 mc->mc_flags = 0; /* NB: AE is really 0 */ 1216 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1217 break; 1218 case 1: /* mcast, proxy */ 1219 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1220 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1221 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1222 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr); 1223 mc->mc_flags = 1; 1224 IEEE80211_ADDR_COPY(mc->mc_addr4, eh.ether_shost); 1225 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1226 break; 1227 case 2: /* ucast, proxy */ 1228 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 1229 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); 1230 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1231 /* XXX not right, need MeshDA */ 1232 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1233 /* XXX assume are MeshSA */ 1234 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr); 1235 mc->mc_flags = 2; 1236 IEEE80211_ADDR_COPY(mc->mc_addr4, eh.ether_dhost); 1237 IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_shost); 1238 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1239 break; 1240 default: 1241 KASSERT(0, ("meshae %d", meshae)); 1242 break; 1243 } 1244 mc->mc_ttl = ms->ms_ttl; 1245 ms->ms_seq++; 1246 LE_WRITE_4(mc->mc_seq, ms->ms_seq); 1247 break; 1248 #endif 1249 case IEEE80211_M_WDS: /* NB: is4addr should always be true */ 1250 default: 1251 goto bad; 1252 } 1253 if (m->m_flags & M_MORE_DATA) 1254 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 1255 if (addqos) { 1256 int ac, tid; 1257 1258 if (is4addr) { 1259 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1260 /* NB: mesh case handled earlier */ 1261 } else if (vap->iv_opmode != IEEE80211_M_MBSS) 1262 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1263 ac = M_WME_GETAC(m); 1264 /* map from access class/queue to 11e header priorty value */ 1265 tid = WME_AC_TO_TID(ac); 1266 qos[0] = tid & IEEE80211_QOS_TID; 1267 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 1268 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1269 qos[1] = 0; 1270 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 1271 1272 if ((m->m_flags & M_AMPDU_MPDU) == 0) { 1273 /* 1274 * NB: don't assign a sequence # to potential 1275 * aggregates; we expect this happens at the 1276 * point the frame comes off any aggregation q 1277 * as otherwise we may introduce holes in the 1278 * BA sequence space and/or make window accouting 1279 * more difficult. 1280 * 1281 * XXX may want to control this with a driver 1282 * capability; this may also change when we pull 1283 * aggregation up into net80211 1284 */ 1285 seqno = ni->ni_txseqs[tid]++; 1286 *(uint16_t *)wh->i_seq = 1287 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1288 M_SEQNO_SET(m, seqno); 1289 } 1290 } else { 1291 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1292 *(uint16_t *)wh->i_seq = 1293 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1294 M_SEQNO_SET(m, seqno); 1295 } 1296 1297 1298 /* check if xmit fragmentation is required */ 1299 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold && 1300 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 1301 (vap->iv_caps & IEEE80211_C_TXFRAG) && 1302 (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0); 1303 if (key != NULL) { 1304 /* 1305 * IEEE 802.1X: send EAPOL frames always in the clear. 1306 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 1307 */ 1308 if ((m->m_flags & M_EAPOL) == 0 || 1309 ((vap->iv_flags & IEEE80211_F_WPA) && 1310 (vap->iv_opmode == IEEE80211_M_STA ? 1311 !IEEE80211_KEY_UNDEFINED(key) : 1312 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) { 1313 wh->i_fc[1] |= IEEE80211_FC1_WEP; 1314 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) { 1315 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT, 1316 eh.ether_dhost, 1317 "%s", "enmic failed, discard frame"); 1318 vap->iv_stats.is_crypto_enmicfail++; 1319 goto bad; 1320 } 1321 } 1322 } 1323 if (txfrag && !ieee80211_fragment(vap, m, hdrsize, 1324 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold)) 1325 goto bad; 1326 1327 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1328 1329 IEEE80211_NODE_STAT(ni, tx_data); 1330 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1331 IEEE80211_NODE_STAT(ni, tx_mcast); 1332 m->m_flags |= M_MCAST; 1333 } else 1334 IEEE80211_NODE_STAT(ni, tx_ucast); 1335 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 1336 1337 return m; 1338 bad: 1339 if (m != NULL) 1340 m_freem(m); 1341 return NULL; 1342 #undef WH4 1343 } 1344 1345 /* 1346 * Fragment the frame according to the specified mtu. 1347 * The size of the 802.11 header (w/o padding) is provided 1348 * so we don't need to recalculate it. We create a new 1349 * mbuf for each fragment and chain it through m_nextpkt; 1350 * we might be able to optimize this by reusing the original 1351 * packet's mbufs but that is significantly more complicated. 1352 */ 1353 static int 1354 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0, 1355 u_int hdrsize, u_int ciphdrsize, u_int mtu) 1356 { 1357 struct ieee80211_frame *wh, *whf; 1358 struct mbuf *m, *prev, *next; 1359 u_int totalhdrsize, fragno, fragsize, off, remainder, payload; 1360 1361 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); 1362 KASSERT(m0->m_pkthdr.len > mtu, 1363 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); 1364 1365 wh = mtod(m0, struct ieee80211_frame *); 1366 /* NB: mark the first frag; it will be propagated below */ 1367 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; 1368 totalhdrsize = hdrsize + ciphdrsize; 1369 fragno = 1; 1370 off = mtu - ciphdrsize; 1371 remainder = m0->m_pkthdr.len - off; 1372 prev = m0; 1373 do { 1374 fragsize = totalhdrsize + remainder; 1375 if (fragsize > mtu) 1376 fragsize = mtu; 1377 /* XXX fragsize can be >2048! */ 1378 KASSERT(fragsize < MCLBYTES, 1379 ("fragment size %u too big!", fragsize)); 1380 if (fragsize > MHLEN) 1381 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 1382 else 1383 m = m_gethdr(M_DONTWAIT, MT_DATA); 1384 if (m == NULL) 1385 goto bad; 1386 /* leave room to prepend any cipher header */ 1387 m_align(m, fragsize - ciphdrsize); 1388 1389 /* 1390 * Form the header in the fragment. Note that since 1391 * we mark the first fragment with the MORE_FRAG bit 1392 * it automatically is propagated to each fragment; we 1393 * need only clear it on the last fragment (done below). 1394 */ 1395 whf = mtod(m, struct ieee80211_frame *); 1396 memcpy(whf, wh, hdrsize); 1397 *(uint16_t *)&whf->i_seq[0] |= htole16( 1398 (fragno & IEEE80211_SEQ_FRAG_MASK) << 1399 IEEE80211_SEQ_FRAG_SHIFT); 1400 fragno++; 1401 1402 payload = fragsize - totalhdrsize; 1403 /* NB: destination is known to be contiguous */ 1404 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrsize); 1405 m->m_len = hdrsize + payload; 1406 m->m_pkthdr.len = hdrsize + payload; 1407 m->m_flags |= M_FRAG; 1408 1409 /* chain up the fragment */ 1410 prev->m_nextpkt = m; 1411 prev = m; 1412 1413 /* deduct fragment just formed */ 1414 remainder -= payload; 1415 off += payload; 1416 } while (remainder != 0); 1417 1418 /* set the last fragment */ 1419 m->m_flags |= M_LASTFRAG; 1420 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; 1421 1422 /* strip first mbuf now that everything has been copied */ 1423 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); 1424 m0->m_flags |= M_FIRSTFRAG | M_FRAG; 1425 1426 vap->iv_stats.is_tx_fragframes++; 1427 vap->iv_stats.is_tx_frags += fragno-1; 1428 1429 return 1; 1430 bad: 1431 /* reclaim fragments but leave original frame for caller to free */ 1432 for (m = m0->m_nextpkt; m != NULL; m = next) { 1433 next = m->m_nextpkt; 1434 m->m_nextpkt = NULL; /* XXX paranoid */ 1435 m_freem(m); 1436 } 1437 m0->m_nextpkt = NULL; 1438 return 0; 1439 } 1440 1441 /* 1442 * Add a supported rates element id to a frame. 1443 */ 1444 uint8_t * 1445 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs) 1446 { 1447 int nrates; 1448 1449 *frm++ = IEEE80211_ELEMID_RATES; 1450 nrates = rs->rs_nrates; 1451 if (nrates > IEEE80211_RATE_SIZE) 1452 nrates = IEEE80211_RATE_SIZE; 1453 *frm++ = nrates; 1454 memcpy(frm, rs->rs_rates, nrates); 1455 return frm + nrates; 1456 } 1457 1458 /* 1459 * Add an extended supported rates element id to a frame. 1460 */ 1461 uint8_t * 1462 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs) 1463 { 1464 /* 1465 * Add an extended supported rates element if operating in 11g mode. 1466 */ 1467 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 1468 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 1469 *frm++ = IEEE80211_ELEMID_XRATES; 1470 *frm++ = nrates; 1471 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 1472 frm += nrates; 1473 } 1474 return frm; 1475 } 1476 1477 /* 1478 * Add an ssid element to a frame. 1479 */ 1480 static uint8_t * 1481 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) 1482 { 1483 *frm++ = IEEE80211_ELEMID_SSID; 1484 *frm++ = len; 1485 memcpy(frm, ssid, len); 1486 return frm + len; 1487 } 1488 1489 /* 1490 * Add an erp element to a frame. 1491 */ 1492 static uint8_t * 1493 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic) 1494 { 1495 uint8_t erp; 1496 1497 *frm++ = IEEE80211_ELEMID_ERP; 1498 *frm++ = 1; 1499 erp = 0; 1500 if (ic->ic_nonerpsta != 0) 1501 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 1502 if (ic->ic_flags & IEEE80211_F_USEPROT) 1503 erp |= IEEE80211_ERP_USE_PROTECTION; 1504 if (ic->ic_flags & IEEE80211_F_USEBARKER) 1505 erp |= IEEE80211_ERP_LONG_PREAMBLE; 1506 *frm++ = erp; 1507 return frm; 1508 } 1509 1510 /* 1511 * Add a CFParams element to a frame. 1512 */ 1513 static uint8_t * 1514 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic) 1515 { 1516 #define ADDSHORT(frm, v) do { \ 1517 LE_WRITE_2(frm, v); \ 1518 frm += 2; \ 1519 } while (0) 1520 *frm++ = IEEE80211_ELEMID_CFPARMS; 1521 *frm++ = 6; 1522 *frm++ = 0; /* CFP count */ 1523 *frm++ = 2; /* CFP period */ 1524 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */ 1525 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */ 1526 return frm; 1527 #undef ADDSHORT 1528 } 1529 1530 static __inline uint8_t * 1531 add_appie(uint8_t *frm, const struct ieee80211_appie *ie) 1532 { 1533 memcpy(frm, ie->ie_data, ie->ie_len); 1534 return frm + ie->ie_len; 1535 } 1536 1537 static __inline uint8_t * 1538 add_ie(uint8_t *frm, const uint8_t *ie) 1539 { 1540 memcpy(frm, ie, 2 + ie[1]); 1541 return frm + 2 + ie[1]; 1542 } 1543 1544 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 1545 /* 1546 * Add a WME information element to a frame. 1547 */ 1548 static uint8_t * 1549 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme) 1550 { 1551 static const struct ieee80211_wme_info info = { 1552 .wme_id = IEEE80211_ELEMID_VENDOR, 1553 .wme_len = sizeof(struct ieee80211_wme_info) - 2, 1554 .wme_oui = { WME_OUI_BYTES }, 1555 .wme_type = WME_OUI_TYPE, 1556 .wme_subtype = WME_INFO_OUI_SUBTYPE, 1557 .wme_version = WME_VERSION, 1558 .wme_info = 0, 1559 }; 1560 memcpy(frm, &info, sizeof(info)); 1561 return frm + sizeof(info); 1562 } 1563 1564 /* 1565 * Add a WME parameters element to a frame. 1566 */ 1567 static uint8_t * 1568 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme) 1569 { 1570 #define SM(_v, _f) (((_v) << _f##_S) & _f) 1571 #define ADDSHORT(frm, v) do { \ 1572 LE_WRITE_2(frm, v); \ 1573 frm += 2; \ 1574 } while (0) 1575 /* NB: this works 'cuz a param has an info at the front */ 1576 static const struct ieee80211_wme_info param = { 1577 .wme_id = IEEE80211_ELEMID_VENDOR, 1578 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 1579 .wme_oui = { WME_OUI_BYTES }, 1580 .wme_type = WME_OUI_TYPE, 1581 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 1582 .wme_version = WME_VERSION, 1583 }; 1584 int i; 1585 1586 memcpy(frm, ¶m, sizeof(param)); 1587 frm += __offsetof(struct ieee80211_wme_info, wme_info); 1588 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ 1589 *frm++ = 0; /* reserved field */ 1590 for (i = 0; i < WME_NUM_AC; i++) { 1591 const struct wmeParams *ac = 1592 &wme->wme_bssChanParams.cap_wmeParams[i]; 1593 *frm++ = SM(i, WME_PARAM_ACI) 1594 | SM(ac->wmep_acm, WME_PARAM_ACM) 1595 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) 1596 ; 1597 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) 1598 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) 1599 ; 1600 ADDSHORT(frm, ac->wmep_txopLimit); 1601 } 1602 return frm; 1603 #undef SM 1604 #undef ADDSHORT 1605 } 1606 #undef WME_OUI_BYTES 1607 1608 /* 1609 * Add an 11h Power Constraint element to a frame. 1610 */ 1611 static uint8_t * 1612 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap) 1613 { 1614 const struct ieee80211_channel *c = vap->iv_bss->ni_chan; 1615 /* XXX per-vap tx power limit? */ 1616 int8_t limit = vap->iv_ic->ic_txpowlimit / 2; 1617 1618 frm[0] = IEEE80211_ELEMID_PWRCNSTR; 1619 frm[1] = 1; 1620 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0; 1621 return frm + 3; 1622 } 1623 1624 /* 1625 * Add an 11h Power Capability element to a frame. 1626 */ 1627 static uint8_t * 1628 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c) 1629 { 1630 frm[0] = IEEE80211_ELEMID_PWRCAP; 1631 frm[1] = 2; 1632 frm[2] = c->ic_minpower; 1633 frm[3] = c->ic_maxpower; 1634 return frm + 4; 1635 } 1636 1637 /* 1638 * Add an 11h Supported Channels element to a frame. 1639 */ 1640 static uint8_t * 1641 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic) 1642 { 1643 static const int ielen = 26; 1644 1645 frm[0] = IEEE80211_ELEMID_SUPPCHAN; 1646 frm[1] = ielen; 1647 /* XXX not correct */ 1648 memcpy(frm+2, ic->ic_chan_avail, ielen); 1649 return frm + 2 + ielen; 1650 } 1651 1652 /* 1653 * Add an 11h Channel Switch Announcement element to a frame. 1654 * Note that we use the per-vap CSA count to adjust the global 1655 * counter so we can use this routine to form probe response 1656 * frames and get the current count. 1657 */ 1658 static uint8_t * 1659 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap) 1660 { 1661 struct ieee80211com *ic = vap->iv_ic; 1662 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm; 1663 1664 csa->csa_ie = IEEE80211_ELEMID_CSA; 1665 csa->csa_len = 3; 1666 csa->csa_mode = 1; /* XXX force quiet on channel */ 1667 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan); 1668 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count; 1669 return frm + sizeof(*csa); 1670 } 1671 1672 /* 1673 * Add an 11h country information element to a frame. 1674 */ 1675 static uint8_t * 1676 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic) 1677 { 1678 1679 if (ic->ic_countryie == NULL || 1680 ic->ic_countryie_chan != ic->ic_bsschan) { 1681 /* 1682 * Handle lazy construction of ie. This is done on 1683 * first use and after a channel change that requires 1684 * re-calculation. 1685 */ 1686 if (ic->ic_countryie != NULL) 1687 free(ic->ic_countryie, M_80211_NODE_IE); 1688 ic->ic_countryie = ieee80211_alloc_countryie(ic); 1689 if (ic->ic_countryie == NULL) 1690 return frm; 1691 ic->ic_countryie_chan = ic->ic_bsschan; 1692 } 1693 return add_appie(frm, ic->ic_countryie); 1694 } 1695 1696 /* 1697 * Send a probe request frame with the specified ssid 1698 * and any optional information element data. 1699 */ 1700 int 1701 ieee80211_send_probereq(struct ieee80211_node *ni, 1702 const uint8_t sa[IEEE80211_ADDR_LEN], 1703 const uint8_t da[IEEE80211_ADDR_LEN], 1704 const uint8_t bssid[IEEE80211_ADDR_LEN], 1705 const uint8_t *ssid, size_t ssidlen) 1706 { 1707 struct ieee80211vap *vap = ni->ni_vap; 1708 struct ieee80211com *ic = ni->ni_ic; 1709 const struct ieee80211_txparam *tp; 1710 struct ieee80211_bpf_params params; 1711 struct ieee80211_frame *wh; 1712 const struct ieee80211_rateset *rs; 1713 struct mbuf *m; 1714 uint8_t *frm; 1715 1716 if (vap->iv_state == IEEE80211_S_CAC) { 1717 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni, 1718 "block %s frame in CAC state", "probe request"); 1719 vap->iv_stats.is_tx_badstate++; 1720 return EIO; /* XXX */ 1721 } 1722 1723 /* 1724 * Hold a reference on the node so it doesn't go away until after 1725 * the xmit is complete all the way in the driver. On error we 1726 * will remove our reference. 1727 */ 1728 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 1729 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 1730 __func__, __LINE__, 1731 ni, ether_sprintf(ni->ni_macaddr), 1732 ieee80211_node_refcnt(ni)+1); 1733 ieee80211_ref_node(ni); 1734 1735 /* 1736 * prreq frame format 1737 * [tlv] ssid 1738 * [tlv] supported rates 1739 * [tlv] RSN (optional) 1740 * [tlv] extended supported rates 1741 * [tlv] WPA (optional) 1742 * [tlv] user-specified ie's 1743 */ 1744 m = ieee80211_getmgtframe(&frm, 1745 ic->ic_headroom + sizeof(struct ieee80211_frame), 1746 2 + IEEE80211_NWID_LEN 1747 + 2 + IEEE80211_RATE_SIZE 1748 + sizeof(struct ieee80211_ie_wpa) 1749 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1750 + sizeof(struct ieee80211_ie_wpa) 1751 + (vap->iv_appie_probereq != NULL ? 1752 vap->iv_appie_probereq->ie_len : 0) 1753 ); 1754 if (m == NULL) { 1755 vap->iv_stats.is_tx_nobuf++; 1756 ieee80211_free_node(ni); 1757 return ENOMEM; 1758 } 1759 1760 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 1761 rs = ieee80211_get_suprates(ic, ic->ic_curchan); 1762 frm = ieee80211_add_rates(frm, rs); 1763 if (vap->iv_flags & IEEE80211_F_WPA2) { 1764 if (vap->iv_rsn_ie != NULL) 1765 frm = add_ie(frm, vap->iv_rsn_ie); 1766 /* XXX else complain? */ 1767 } 1768 frm = ieee80211_add_xrates(frm, rs); 1769 if (vap->iv_flags & IEEE80211_F_WPA1) { 1770 if (vap->iv_wpa_ie != NULL) 1771 frm = add_ie(frm, vap->iv_wpa_ie); 1772 /* XXX else complain? */ 1773 } 1774 if (vap->iv_appie_probereq != NULL) 1775 frm = add_appie(frm, vap->iv_appie_probereq); 1776 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 1777 1778 KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame), 1779 ("leading space %zd", M_LEADINGSPACE(m))); 1780 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT); 1781 if (m == NULL) { 1782 /* NB: cannot happen */ 1783 ieee80211_free_node(ni); 1784 return ENOMEM; 1785 } 1786 1787 wh = mtod(m, struct ieee80211_frame *); 1788 ieee80211_send_setup(ni, m, 1789 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 1790 IEEE80211_NONQOS_TID, sa, da, bssid); 1791 /* XXX power management? */ 1792 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1793 1794 M_WME_SETAC(m, WME_AC_BE); 1795 1796 IEEE80211_NODE_STAT(ni, tx_probereq); 1797 IEEE80211_NODE_STAT(ni, tx_mgmt); 1798 1799 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 1800 "send probe req on channel %u bssid %s ssid \"%.*s\"\n", 1801 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid), 1802 ssidlen, ssid); 1803 1804 memset(¶ms, 0, sizeof(params)); 1805 params.ibp_pri = M_WME_GETAC(m); 1806 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 1807 params.ibp_rate0 = tp->mgmtrate; 1808 if (IEEE80211_IS_MULTICAST(da)) { 1809 params.ibp_flags |= IEEE80211_BPF_NOACK; 1810 params.ibp_try0 = 1; 1811 } else 1812 params.ibp_try0 = tp->maxretry; 1813 params.ibp_power = ni->ni_txpower; 1814 return ic->ic_raw_xmit(ni, m, ¶ms); 1815 } 1816 1817 /* 1818 * Calculate capability information for mgt frames. 1819 */ 1820 uint16_t 1821 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan) 1822 { 1823 struct ieee80211com *ic = vap->iv_ic; 1824 uint16_t capinfo; 1825 1826 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode")); 1827 1828 if (vap->iv_opmode == IEEE80211_M_HOSTAP) 1829 capinfo = IEEE80211_CAPINFO_ESS; 1830 else if (vap->iv_opmode == IEEE80211_M_IBSS) 1831 capinfo = IEEE80211_CAPINFO_IBSS; 1832 else 1833 capinfo = 0; 1834 if (vap->iv_flags & IEEE80211_F_PRIVACY) 1835 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1836 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1837 IEEE80211_IS_CHAN_2GHZ(chan)) 1838 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1839 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1840 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1841 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH)) 1842 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 1843 return capinfo; 1844 } 1845 1846 /* 1847 * Send a management frame. The node is for the destination (or ic_bss 1848 * when in station mode). Nodes other than ic_bss have their reference 1849 * count bumped to reflect our use for an indeterminant time. 1850 */ 1851 int 1852 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg) 1853 { 1854 #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT) 1855 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 1856 struct ieee80211vap *vap = ni->ni_vap; 1857 struct ieee80211com *ic = ni->ni_ic; 1858 struct ieee80211_node *bss = vap->iv_bss; 1859 struct ieee80211_bpf_params params; 1860 struct mbuf *m; 1861 uint8_t *frm; 1862 uint16_t capinfo; 1863 int has_challenge, is_shared_key, ret, status; 1864 1865 KASSERT(ni != NULL, ("null node")); 1866 1867 /* 1868 * Hold a reference on the node so it doesn't go away until after 1869 * the xmit is complete all the way in the driver. On error we 1870 * will remove our reference. 1871 */ 1872 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 1873 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 1874 __func__, __LINE__, 1875 ni, ether_sprintf(ni->ni_macaddr), 1876 ieee80211_node_refcnt(ni)+1); 1877 ieee80211_ref_node(ni); 1878 1879 memset(¶ms, 0, sizeof(params)); 1880 switch (type) { 1881 1882 case IEEE80211_FC0_SUBTYPE_AUTH: 1883 status = arg >> 16; 1884 arg &= 0xffff; 1885 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || 1886 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 1887 ni->ni_challenge != NULL); 1888 1889 /* 1890 * Deduce whether we're doing open authentication or 1891 * shared key authentication. We do the latter if 1892 * we're in the middle of a shared key authentication 1893 * handshake or if we're initiating an authentication 1894 * request and configured to use shared key. 1895 */ 1896 is_shared_key = has_challenge || 1897 arg >= IEEE80211_AUTH_SHARED_RESPONSE || 1898 (arg == IEEE80211_AUTH_SHARED_REQUEST && 1899 bss->ni_authmode == IEEE80211_AUTH_SHARED); 1900 1901 m = ieee80211_getmgtframe(&frm, 1902 ic->ic_headroom + sizeof(struct ieee80211_frame), 1903 3 * sizeof(uint16_t) 1904 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? 1905 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0) 1906 ); 1907 if (m == NULL) 1908 senderr(ENOMEM, is_tx_nobuf); 1909 1910 ((uint16_t *)frm)[0] = 1911 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) 1912 : htole16(IEEE80211_AUTH_ALG_OPEN); 1913 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */ 1914 ((uint16_t *)frm)[2] = htole16(status);/* status */ 1915 1916 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { 1917 ((uint16_t *)frm)[3] = 1918 htole16((IEEE80211_CHALLENGE_LEN << 8) | 1919 IEEE80211_ELEMID_CHALLENGE); 1920 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge, 1921 IEEE80211_CHALLENGE_LEN); 1922 m->m_pkthdr.len = m->m_len = 1923 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN; 1924 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 1925 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 1926 "request encrypt frame (%s)", __func__); 1927 /* mark frame for encryption */ 1928 params.ibp_flags |= IEEE80211_BPF_CRYPTO; 1929 } 1930 } else 1931 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t); 1932 1933 /* XXX not right for shared key */ 1934 if (status == IEEE80211_STATUS_SUCCESS) 1935 IEEE80211_NODE_STAT(ni, tx_auth); 1936 else 1937 IEEE80211_NODE_STAT(ni, tx_auth_fail); 1938 1939 if (vap->iv_opmode == IEEE80211_M_STA) 1940 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 1941 (void *) vap->iv_state); 1942 break; 1943 1944 case IEEE80211_FC0_SUBTYPE_DEAUTH: 1945 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 1946 "send station deauthenticate (reason %d)", arg); 1947 m = ieee80211_getmgtframe(&frm, 1948 ic->ic_headroom + sizeof(struct ieee80211_frame), 1949 sizeof(uint16_t)); 1950 if (m == NULL) 1951 senderr(ENOMEM, is_tx_nobuf); 1952 *(uint16_t *)frm = htole16(arg); /* reason */ 1953 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 1954 1955 IEEE80211_NODE_STAT(ni, tx_deauth); 1956 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 1957 1958 ieee80211_node_unauthorize(ni); /* port closed */ 1959 break; 1960 1961 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 1962 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 1963 /* 1964 * asreq frame format 1965 * [2] capability information 1966 * [2] listen interval 1967 * [6*] current AP address (reassoc only) 1968 * [tlv] ssid 1969 * [tlv] supported rates 1970 * [tlv] extended supported rates 1971 * [4] power capability (optional) 1972 * [28] supported channels (optional) 1973 * [tlv] HT capabilities 1974 * [tlv] WME (optional) 1975 * [tlv] Vendor OUI HT capabilities (optional) 1976 * [tlv] Atheros capabilities (if negotiated) 1977 * [tlv] AppIE's (optional) 1978 */ 1979 m = ieee80211_getmgtframe(&frm, 1980 ic->ic_headroom + sizeof(struct ieee80211_frame), 1981 sizeof(uint16_t) 1982 + sizeof(uint16_t) 1983 + IEEE80211_ADDR_LEN 1984 + 2 + IEEE80211_NWID_LEN 1985 + 2 + IEEE80211_RATE_SIZE 1986 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1987 + 4 1988 + 2 + 26 1989 + sizeof(struct ieee80211_wme_info) 1990 + sizeof(struct ieee80211_ie_htcap) 1991 + 4 + sizeof(struct ieee80211_ie_htcap) 1992 #ifdef IEEE80211_SUPPORT_SUPERG 1993 + sizeof(struct ieee80211_ath_ie) 1994 #endif 1995 + (vap->iv_appie_wpa != NULL ? 1996 vap->iv_appie_wpa->ie_len : 0) 1997 + (vap->iv_appie_assocreq != NULL ? 1998 vap->iv_appie_assocreq->ie_len : 0) 1999 ); 2000 if (m == NULL) 2001 senderr(ENOMEM, is_tx_nobuf); 2002 2003 KASSERT(vap->iv_opmode == IEEE80211_M_STA, 2004 ("wrong mode %u", vap->iv_opmode)); 2005 capinfo = IEEE80211_CAPINFO_ESS; 2006 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2007 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2008 /* 2009 * NB: Some 11a AP's reject the request when 2010 * short premable is set. 2011 */ 2012 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2013 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2014 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2015 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 2016 (ic->ic_caps & IEEE80211_C_SHSLOT)) 2017 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2018 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) && 2019 (vap->iv_flags & IEEE80211_F_DOTH)) 2020 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2021 *(uint16_t *)frm = htole16(capinfo); 2022 frm += 2; 2023 2024 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!")); 2025 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval, 2026 bss->ni_intval)); 2027 frm += 2; 2028 2029 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 2030 IEEE80211_ADDR_COPY(frm, bss->ni_bssid); 2031 frm += IEEE80211_ADDR_LEN; 2032 } 2033 2034 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 2035 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2036 if (vap->iv_flags & IEEE80211_F_WPA2) { 2037 if (vap->iv_rsn_ie != NULL) 2038 frm = add_ie(frm, vap->iv_rsn_ie); 2039 /* XXX else complain? */ 2040 } 2041 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2042 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) { 2043 frm = ieee80211_add_powercapability(frm, 2044 ic->ic_curchan); 2045 frm = ieee80211_add_supportedchannels(frm, ic); 2046 } 2047 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2048 ni->ni_ies.htcap_ie != NULL && 2049 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) 2050 frm = ieee80211_add_htcap(frm, ni); 2051 if (vap->iv_flags & IEEE80211_F_WPA1) { 2052 if (vap->iv_wpa_ie != NULL) 2053 frm = add_ie(frm, vap->iv_wpa_ie); 2054 /* XXX else complain */ 2055 } 2056 if ((ic->ic_flags & IEEE80211_F_WME) && 2057 ni->ni_ies.wme_ie != NULL) 2058 frm = ieee80211_add_wme_info(frm, &ic->ic_wme); 2059 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2060 ni->ni_ies.htcap_ie != NULL && 2061 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) 2062 frm = ieee80211_add_htcap_vendor(frm, ni); 2063 #ifdef IEEE80211_SUPPORT_SUPERG 2064 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) { 2065 frm = ieee80211_add_ath(frm, 2066 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2067 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2068 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2069 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2070 } 2071 #endif /* IEEE80211_SUPPORT_SUPERG */ 2072 if (vap->iv_appie_assocreq != NULL) 2073 frm = add_appie(frm, vap->iv_appie_assocreq); 2074 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2075 2076 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2077 (void *) vap->iv_state); 2078 break; 2079 2080 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 2081 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 2082 /* 2083 * asresp frame format 2084 * [2] capability information 2085 * [2] status 2086 * [2] association ID 2087 * [tlv] supported rates 2088 * [tlv] extended supported rates 2089 * [tlv] HT capabilities (standard, if STA enabled) 2090 * [tlv] HT information (standard, if STA enabled) 2091 * [tlv] WME (if configured and STA enabled) 2092 * [tlv] HT capabilities (vendor OUI, if STA enabled) 2093 * [tlv] HT information (vendor OUI, if STA enabled) 2094 * [tlv] Atheros capabilities (if STA enabled) 2095 * [tlv] AppIE's (optional) 2096 */ 2097 m = ieee80211_getmgtframe(&frm, 2098 ic->ic_headroom + sizeof(struct ieee80211_frame), 2099 sizeof(uint16_t) 2100 + sizeof(uint16_t) 2101 + sizeof(uint16_t) 2102 + 2 + IEEE80211_RATE_SIZE 2103 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2104 + sizeof(struct ieee80211_ie_htcap) + 4 2105 + sizeof(struct ieee80211_ie_htinfo) + 4 2106 + sizeof(struct ieee80211_wme_param) 2107 #ifdef IEEE80211_SUPPORT_SUPERG 2108 + sizeof(struct ieee80211_ath_ie) 2109 #endif 2110 + (vap->iv_appie_assocresp != NULL ? 2111 vap->iv_appie_assocresp->ie_len : 0) 2112 ); 2113 if (m == NULL) 2114 senderr(ENOMEM, is_tx_nobuf); 2115 2116 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2117 *(uint16_t *)frm = htole16(capinfo); 2118 frm += 2; 2119 2120 *(uint16_t *)frm = htole16(arg); /* status */ 2121 frm += 2; 2122 2123 if (arg == IEEE80211_STATUS_SUCCESS) { 2124 *(uint16_t *)frm = htole16(ni->ni_associd); 2125 IEEE80211_NODE_STAT(ni, tx_assoc); 2126 } else 2127 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 2128 frm += 2; 2129 2130 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2131 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2132 /* NB: respond according to what we received */ 2133 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) { 2134 frm = ieee80211_add_htcap(frm, ni); 2135 frm = ieee80211_add_htinfo(frm, ni); 2136 } 2137 if ((vap->iv_flags & IEEE80211_F_WME) && 2138 ni->ni_ies.wme_ie != NULL) 2139 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2140 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) { 2141 frm = ieee80211_add_htcap_vendor(frm, ni); 2142 frm = ieee80211_add_htinfo_vendor(frm, ni); 2143 } 2144 #ifdef IEEE80211_SUPPORT_SUPERG 2145 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) 2146 frm = ieee80211_add_ath(frm, 2147 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2148 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2149 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2150 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2151 #endif /* IEEE80211_SUPPORT_SUPERG */ 2152 if (vap->iv_appie_assocresp != NULL) 2153 frm = add_appie(frm, vap->iv_appie_assocresp); 2154 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2155 break; 2156 2157 case IEEE80211_FC0_SUBTYPE_DISASSOC: 2158 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, 2159 "send station disassociate (reason %d)", arg); 2160 m = ieee80211_getmgtframe(&frm, 2161 ic->ic_headroom + sizeof(struct ieee80211_frame), 2162 sizeof(uint16_t)); 2163 if (m == NULL) 2164 senderr(ENOMEM, is_tx_nobuf); 2165 *(uint16_t *)frm = htole16(arg); /* reason */ 2166 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2167 2168 IEEE80211_NODE_STAT(ni, tx_disassoc); 2169 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 2170 break; 2171 2172 default: 2173 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni, 2174 "invalid mgmt frame type %u", type); 2175 senderr(EINVAL, is_tx_unknownmgt); 2176 /* NOTREACHED */ 2177 } 2178 2179 /* NB: force non-ProbeResp frames to the highest queue */ 2180 params.ibp_pri = WME_AC_VO; 2181 params.ibp_rate0 = bss->ni_txparms->mgmtrate; 2182 /* NB: we know all frames are unicast */ 2183 params.ibp_try0 = bss->ni_txparms->maxretry; 2184 params.ibp_power = bss->ni_txpower; 2185 return ieee80211_mgmt_output(ni, m, type, ¶ms); 2186 bad: 2187 ieee80211_free_node(ni); 2188 return ret; 2189 #undef senderr 2190 #undef HTFLAGS 2191 } 2192 2193 /* 2194 * Return an mbuf with a probe response frame in it. 2195 * Space is left to prepend and 802.11 header at the 2196 * front but it's left to the caller to fill in. 2197 */ 2198 struct mbuf * 2199 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy) 2200 { 2201 struct ieee80211vap *vap = bss->ni_vap; 2202 struct ieee80211com *ic = bss->ni_ic; 2203 const struct ieee80211_rateset *rs; 2204 struct mbuf *m; 2205 uint16_t capinfo; 2206 uint8_t *frm; 2207 2208 /* 2209 * probe response frame format 2210 * [8] time stamp 2211 * [2] beacon interval 2212 * [2] cabability information 2213 * [tlv] ssid 2214 * [tlv] supported rates 2215 * [tlv] parameter set (FH/DS) 2216 * [tlv] parameter set (IBSS) 2217 * [tlv] country (optional) 2218 * [3] power control (optional) 2219 * [5] channel switch announcement (CSA) (optional) 2220 * [tlv] extended rate phy (ERP) 2221 * [tlv] extended supported rates 2222 * [tlv] RSN (optional) 2223 * [tlv] HT capabilities 2224 * [tlv] HT information 2225 * [tlv] WPA (optional) 2226 * [tlv] WME (optional) 2227 * [tlv] Vendor OUI HT capabilities (optional) 2228 * [tlv] Vendor OUI HT information (optional) 2229 * [tlv] Atheros capabilities 2230 * [tlv] AppIE's (optional) 2231 * [tlv] Mesh ID (MBSS) 2232 * [tlv] Mesh Conf (MBSS) 2233 */ 2234 m = ieee80211_getmgtframe(&frm, 2235 ic->ic_headroom + sizeof(struct ieee80211_frame), 2236 8 2237 + sizeof(uint16_t) 2238 + sizeof(uint16_t) 2239 + 2 + IEEE80211_NWID_LEN 2240 + 2 + IEEE80211_RATE_SIZE 2241 + 7 /* max(7,3) */ 2242 + IEEE80211_COUNTRY_MAX_SIZE 2243 + 3 2244 + sizeof(struct ieee80211_csa_ie) 2245 + 3 2246 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2247 + sizeof(struct ieee80211_ie_wpa) 2248 + sizeof(struct ieee80211_ie_htcap) 2249 + sizeof(struct ieee80211_ie_htinfo) 2250 + sizeof(struct ieee80211_ie_wpa) 2251 + sizeof(struct ieee80211_wme_param) 2252 + 4 + sizeof(struct ieee80211_ie_htcap) 2253 + 4 + sizeof(struct ieee80211_ie_htinfo) 2254 #ifdef IEEE80211_SUPPORT_SUPERG 2255 + sizeof(struct ieee80211_ath_ie) 2256 #endif 2257 #ifdef IEEE80211_SUPPORT_MESH 2258 + 2 + IEEE80211_MESHID_LEN 2259 + sizeof(struct ieee80211_meshconf_ie) 2260 #endif 2261 + (vap->iv_appie_proberesp != NULL ? 2262 vap->iv_appie_proberesp->ie_len : 0) 2263 ); 2264 if (m == NULL) { 2265 vap->iv_stats.is_tx_nobuf++; 2266 return NULL; 2267 } 2268 2269 memset(frm, 0, 8); /* timestamp should be filled later */ 2270 frm += 8; 2271 *(uint16_t *)frm = htole16(bss->ni_intval); 2272 frm += 2; 2273 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2274 *(uint16_t *)frm = htole16(capinfo); 2275 frm += 2; 2276 2277 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen); 2278 rs = ieee80211_get_suprates(ic, bss->ni_chan); 2279 frm = ieee80211_add_rates(frm, rs); 2280 2281 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) { 2282 *frm++ = IEEE80211_ELEMID_FHPARMS; 2283 *frm++ = 5; 2284 *frm++ = bss->ni_fhdwell & 0x00ff; 2285 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff; 2286 *frm++ = IEEE80211_FH_CHANSET( 2287 ieee80211_chan2ieee(ic, bss->ni_chan)); 2288 *frm++ = IEEE80211_FH_CHANPAT( 2289 ieee80211_chan2ieee(ic, bss->ni_chan)); 2290 *frm++ = bss->ni_fhindex; 2291 } else { 2292 *frm++ = IEEE80211_ELEMID_DSPARMS; 2293 *frm++ = 1; 2294 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan); 2295 } 2296 2297 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2298 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2299 *frm++ = 2; 2300 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2301 } 2302 if ((vap->iv_flags & IEEE80211_F_DOTH) || 2303 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 2304 frm = ieee80211_add_countryie(frm, ic); 2305 if (vap->iv_flags & IEEE80211_F_DOTH) { 2306 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan)) 2307 frm = ieee80211_add_powerconstraint(frm, vap); 2308 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 2309 frm = ieee80211_add_csa(frm, vap); 2310 } 2311 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan)) 2312 frm = ieee80211_add_erp(frm, ic); 2313 frm = ieee80211_add_xrates(frm, rs); 2314 if (vap->iv_flags & IEEE80211_F_WPA2) { 2315 if (vap->iv_rsn_ie != NULL) 2316 frm = add_ie(frm, vap->iv_rsn_ie); 2317 /* XXX else complain? */ 2318 } 2319 /* 2320 * NB: legacy 11b clients do not get certain ie's. 2321 * The caller identifies such clients by passing 2322 * a token in legacy to us. Could expand this to be 2323 * any legacy client for stuff like HT ie's. 2324 */ 2325 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2326 legacy != IEEE80211_SEND_LEGACY_11B) { 2327 frm = ieee80211_add_htcap(frm, bss); 2328 frm = ieee80211_add_htinfo(frm, bss); 2329 } 2330 if (vap->iv_flags & IEEE80211_F_WPA1) { 2331 if (vap->iv_wpa_ie != NULL) 2332 frm = add_ie(frm, vap->iv_wpa_ie); 2333 /* XXX else complain? */ 2334 } 2335 if (vap->iv_flags & IEEE80211_F_WME) 2336 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2337 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2338 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) && 2339 legacy != IEEE80211_SEND_LEGACY_11B) { 2340 frm = ieee80211_add_htcap_vendor(frm, bss); 2341 frm = ieee80211_add_htinfo_vendor(frm, bss); 2342 } 2343 #ifdef IEEE80211_SUPPORT_SUPERG 2344 if ((vap->iv_flags & IEEE80211_F_ATHEROS) && 2345 legacy != IEEE80211_SEND_LEGACY_11B) 2346 frm = ieee80211_add_athcaps(frm, bss); 2347 #endif 2348 if (vap->iv_appie_proberesp != NULL) 2349 frm = add_appie(frm, vap->iv_appie_proberesp); 2350 #ifdef IEEE80211_SUPPORT_MESH 2351 if (vap->iv_opmode == IEEE80211_M_MBSS) { 2352 frm = ieee80211_add_meshid(frm, vap); 2353 frm = ieee80211_add_meshconf(frm, vap); 2354 } 2355 #endif 2356 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2357 2358 return m; 2359 } 2360 2361 /* 2362 * Send a probe response frame to the specified mac address. 2363 * This does not go through the normal mgt frame api so we 2364 * can specify the destination address and re-use the bss node 2365 * for the sta reference. 2366 */ 2367 int 2368 ieee80211_send_proberesp(struct ieee80211vap *vap, 2369 const uint8_t da[IEEE80211_ADDR_LEN], int legacy) 2370 { 2371 struct ieee80211_node *bss = vap->iv_bss; 2372 struct ieee80211com *ic = vap->iv_ic; 2373 struct ieee80211_frame *wh; 2374 struct mbuf *m; 2375 2376 if (vap->iv_state == IEEE80211_S_CAC) { 2377 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss, 2378 "block %s frame in CAC state", "probe response"); 2379 vap->iv_stats.is_tx_badstate++; 2380 return EIO; /* XXX */ 2381 } 2382 2383 /* 2384 * Hold a reference on the node so it doesn't go away until after 2385 * the xmit is complete all the way in the driver. On error we 2386 * will remove our reference. 2387 */ 2388 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2389 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2390 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr), 2391 ieee80211_node_refcnt(bss)+1); 2392 ieee80211_ref_node(bss); 2393 2394 m = ieee80211_alloc_proberesp(bss, legacy); 2395 if (m == NULL) { 2396 ieee80211_free_node(bss); 2397 return ENOMEM; 2398 } 2399 2400 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT); 2401 KASSERT(m != NULL, ("no room for header")); 2402 2403 wh = mtod(m, struct ieee80211_frame *); 2404 ieee80211_send_setup(bss, m, 2405 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP, 2406 IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid); 2407 /* XXX power management? */ 2408 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2409 2410 M_WME_SETAC(m, WME_AC_BE); 2411 2412 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2413 "send probe resp on channel %u to %s%s\n", 2414 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da), 2415 legacy ? " <legacy>" : ""); 2416 IEEE80211_NODE_STAT(bss, tx_mgmt); 2417 2418 return ic->ic_raw_xmit(bss, m, NULL); 2419 } 2420 2421 /* 2422 * Allocate and build a RTS (Request To Send) control frame. 2423 */ 2424 struct mbuf * 2425 ieee80211_alloc_rts(struct ieee80211com *ic, 2426 const uint8_t ra[IEEE80211_ADDR_LEN], 2427 const uint8_t ta[IEEE80211_ADDR_LEN], 2428 uint16_t dur) 2429 { 2430 struct ieee80211_frame_rts *rts; 2431 struct mbuf *m; 2432 2433 /* XXX honor ic_headroom */ 2434 m = m_gethdr(M_DONTWAIT, MT_DATA); 2435 if (m != NULL) { 2436 rts = mtod(m, struct ieee80211_frame_rts *); 2437 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2438 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS; 2439 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2440 *(u_int16_t *)rts->i_dur = htole16(dur); 2441 IEEE80211_ADDR_COPY(rts->i_ra, ra); 2442 IEEE80211_ADDR_COPY(rts->i_ta, ta); 2443 2444 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); 2445 } 2446 return m; 2447 } 2448 2449 /* 2450 * Allocate and build a CTS (Clear To Send) control frame. 2451 */ 2452 struct mbuf * 2453 ieee80211_alloc_cts(struct ieee80211com *ic, 2454 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur) 2455 { 2456 struct ieee80211_frame_cts *cts; 2457 struct mbuf *m; 2458 2459 /* XXX honor ic_headroom */ 2460 m = m_gethdr(M_DONTWAIT, MT_DATA); 2461 if (m != NULL) { 2462 cts = mtod(m, struct ieee80211_frame_cts *); 2463 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2464 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS; 2465 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2466 *(u_int16_t *)cts->i_dur = htole16(dur); 2467 IEEE80211_ADDR_COPY(cts->i_ra, ra); 2468 2469 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts); 2470 } 2471 return m; 2472 } 2473 2474 static void 2475 ieee80211_tx_mgt_timeout(void *arg) 2476 { 2477 struct ieee80211_node *ni = arg; 2478 struct ieee80211vap *vap = ni->ni_vap; 2479 2480 if (vap->iv_state != IEEE80211_S_INIT && 2481 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) { 2482 /* 2483 * NB: it's safe to specify a timeout as the reason here; 2484 * it'll only be used in the right state. 2485 */ 2486 ieee80211_new_state(vap, IEEE80211_S_SCAN, 2487 IEEE80211_SCAN_FAIL_TIMEOUT); 2488 } 2489 } 2490 2491 static void 2492 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status) 2493 { 2494 struct ieee80211vap *vap = ni->ni_vap; 2495 enum ieee80211_state ostate = (enum ieee80211_state) arg; 2496 2497 /* 2498 * Frame transmit completed; arrange timer callback. If 2499 * transmit was successfuly we wait for response. Otherwise 2500 * we arrange an immediate callback instead of doing the 2501 * callback directly since we don't know what state the driver 2502 * is in (e.g. what locks it is holding). This work should 2503 * not be too time-critical and not happen too often so the 2504 * added overhead is acceptable. 2505 * 2506 * XXX what happens if !acked but response shows up before callback? 2507 */ 2508 if (vap->iv_state == ostate) 2509 callout_reset(&vap->iv_mgtsend, 2510 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0, 2511 ieee80211_tx_mgt_timeout, ni); 2512 } 2513 2514 static void 2515 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm, 2516 struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni) 2517 { 2518 struct ieee80211vap *vap = ni->ni_vap; 2519 struct ieee80211com *ic = ni->ni_ic; 2520 struct ieee80211_rateset *rs = &ni->ni_rates; 2521 uint16_t capinfo; 2522 2523 /* 2524 * beacon frame format 2525 * [8] time stamp 2526 * [2] beacon interval 2527 * [2] cabability information 2528 * [tlv] ssid 2529 * [tlv] supported rates 2530 * [3] parameter set (DS) 2531 * [8] CF parameter set (optional) 2532 * [tlv] parameter set (IBSS/TIM) 2533 * [tlv] country (optional) 2534 * [3] power control (optional) 2535 * [5] channel switch announcement (CSA) (optional) 2536 * [tlv] extended rate phy (ERP) 2537 * [tlv] extended supported rates 2538 * [tlv] RSN parameters 2539 * [tlv] HT capabilities 2540 * [tlv] HT information 2541 * XXX Vendor-specific OIDs (e.g. Atheros) 2542 * [tlv] WPA parameters 2543 * [tlv] WME parameters 2544 * [tlv] Vendor OUI HT capabilities (optional) 2545 * [tlv] Vendor OUI HT information (optional) 2546 * [tlv] Atheros capabilities (optional) 2547 * [tlv] TDMA parameters (optional) 2548 * [tlv] Mesh ID (MBSS) 2549 * [tlv] Mesh Conf (MBSS) 2550 * [tlv] application data (optional) 2551 */ 2552 2553 memset(bo, 0, sizeof(*bo)); 2554 2555 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 2556 frm += 8; 2557 *(uint16_t *)frm = htole16(ni->ni_intval); 2558 frm += 2; 2559 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 2560 bo->bo_caps = (uint16_t *)frm; 2561 *(uint16_t *)frm = htole16(capinfo); 2562 frm += 2; 2563 *frm++ = IEEE80211_ELEMID_SSID; 2564 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) { 2565 *frm++ = ni->ni_esslen; 2566 memcpy(frm, ni->ni_essid, ni->ni_esslen); 2567 frm += ni->ni_esslen; 2568 } else 2569 *frm++ = 0; 2570 frm = ieee80211_add_rates(frm, rs); 2571 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) { 2572 *frm++ = IEEE80211_ELEMID_DSPARMS; 2573 *frm++ = 1; 2574 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 2575 } 2576 if (ic->ic_flags & IEEE80211_F_PCF) { 2577 bo->bo_cfp = frm; 2578 frm = ieee80211_add_cfparms(frm, ic); 2579 } 2580 bo->bo_tim = frm; 2581 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2582 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2583 *frm++ = 2; 2584 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2585 bo->bo_tim_len = 0; 2586 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 2587 vap->iv_opmode == IEEE80211_M_MBSS) { 2588 /* TIM IE is the same for Mesh and Hostap */ 2589 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; 2590 2591 tie->tim_ie = IEEE80211_ELEMID_TIM; 2592 tie->tim_len = 4; /* length */ 2593 tie->tim_count = 0; /* DTIM count */ 2594 tie->tim_period = vap->iv_dtim_period; /* DTIM period */ 2595 tie->tim_bitctl = 0; /* bitmap control */ 2596 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 2597 frm += sizeof(struct ieee80211_tim_ie); 2598 bo->bo_tim_len = 1; 2599 } 2600 bo->bo_tim_trailer = frm; 2601 if ((vap->iv_flags & IEEE80211_F_DOTH) || 2602 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 2603 frm = ieee80211_add_countryie(frm, ic); 2604 if (vap->iv_flags & IEEE80211_F_DOTH) { 2605 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) 2606 frm = ieee80211_add_powerconstraint(frm, vap); 2607 bo->bo_csa = frm; 2608 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 2609 frm = ieee80211_add_csa(frm, vap); 2610 } else 2611 bo->bo_csa = frm; 2612 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) { 2613 bo->bo_erp = frm; 2614 frm = ieee80211_add_erp(frm, ic); 2615 } 2616 frm = ieee80211_add_xrates(frm, rs); 2617 if (vap->iv_flags & IEEE80211_F_WPA2) { 2618 if (vap->iv_rsn_ie != NULL) 2619 frm = add_ie(frm, vap->iv_rsn_ie); 2620 /* XXX else complain */ 2621 } 2622 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 2623 frm = ieee80211_add_htcap(frm, ni); 2624 bo->bo_htinfo = frm; 2625 frm = ieee80211_add_htinfo(frm, ni); 2626 } 2627 if (vap->iv_flags & IEEE80211_F_WPA1) { 2628 if (vap->iv_wpa_ie != NULL) 2629 frm = add_ie(frm, vap->iv_wpa_ie); 2630 /* XXX else complain */ 2631 } 2632 if (vap->iv_flags & IEEE80211_F_WME) { 2633 bo->bo_wme = frm; 2634 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2635 } 2636 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2637 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) { 2638 frm = ieee80211_add_htcap_vendor(frm, ni); 2639 frm = ieee80211_add_htinfo_vendor(frm, ni); 2640 } 2641 #ifdef IEEE80211_SUPPORT_SUPERG 2642 if (vap->iv_flags & IEEE80211_F_ATHEROS) { 2643 bo->bo_ath = frm; 2644 frm = ieee80211_add_athcaps(frm, ni); 2645 } 2646 #endif 2647 #ifdef IEEE80211_SUPPORT_TDMA 2648 if (vap->iv_caps & IEEE80211_C_TDMA) { 2649 bo->bo_tdma = frm; 2650 frm = ieee80211_add_tdma(frm, vap); 2651 } 2652 #endif 2653 if (vap->iv_appie_beacon != NULL) { 2654 bo->bo_appie = frm; 2655 bo->bo_appie_len = vap->iv_appie_beacon->ie_len; 2656 frm = add_appie(frm, vap->iv_appie_beacon); 2657 } 2658 #ifdef IEEE80211_SUPPORT_MESH 2659 if (vap->iv_opmode == IEEE80211_M_MBSS) { 2660 frm = ieee80211_add_meshid(frm, vap); 2661 bo->bo_meshconf = frm; 2662 frm = ieee80211_add_meshconf(frm, vap); 2663 } 2664 #endif 2665 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer; 2666 bo->bo_csa_trailer_len = frm - bo->bo_csa; 2667 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2668 } 2669 2670 /* 2671 * Allocate a beacon frame and fillin the appropriate bits. 2672 */ 2673 struct mbuf * 2674 ieee80211_beacon_alloc(struct ieee80211_node *ni, 2675 struct ieee80211_beacon_offsets *bo) 2676 { 2677 struct ieee80211vap *vap = ni->ni_vap; 2678 struct ieee80211com *ic = ni->ni_ic; 2679 struct ifnet *ifp = vap->iv_ifp; 2680 struct ieee80211_frame *wh; 2681 struct mbuf *m; 2682 int pktlen; 2683 uint8_t *frm; 2684 2685 /* 2686 * beacon frame format 2687 * [8] time stamp 2688 * [2] beacon interval 2689 * [2] cabability information 2690 * [tlv] ssid 2691 * [tlv] supported rates 2692 * [3] parameter set (DS) 2693 * [8] CF parameter set (optional) 2694 * [tlv] parameter set (IBSS/TIM) 2695 * [tlv] country (optional) 2696 * [3] power control (optional) 2697 * [5] channel switch announcement (CSA) (optional) 2698 * [tlv] extended rate phy (ERP) 2699 * [tlv] extended supported rates 2700 * [tlv] RSN parameters 2701 * [tlv] HT capabilities 2702 * [tlv] HT information 2703 * [tlv] Vendor OUI HT capabilities (optional) 2704 * [tlv] Vendor OUI HT information (optional) 2705 * XXX Vendor-specific OIDs (e.g. Atheros) 2706 * [tlv] WPA parameters 2707 * [tlv] WME parameters 2708 * [tlv] TDMA parameters (optional) 2709 * [tlv] Mesh ID (MBSS) 2710 * [tlv] Mesh Conf (MBSS) 2711 * [tlv] application data (optional) 2712 * NB: we allocate the max space required for the TIM bitmap. 2713 * XXX how big is this? 2714 */ 2715 pktlen = 8 /* time stamp */ 2716 + sizeof(uint16_t) /* beacon interval */ 2717 + sizeof(uint16_t) /* capabilities */ 2718 + 2 + ni->ni_esslen /* ssid */ 2719 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 2720 + 2 + 1 /* DS parameters */ 2721 + 2 + 6 /* CF parameters */ 2722 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */ 2723 + IEEE80211_COUNTRY_MAX_SIZE /* country */ 2724 + 2 + 1 /* power control */ 2725 + sizeof(struct ieee80211_csa_ie) /* CSA */ 2726 + 2 + 1 /* ERP */ 2727 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2728 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 2729 2*sizeof(struct ieee80211_ie_wpa) : 0) 2730 /* XXX conditional? */ 2731 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */ 2732 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */ 2733 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */ 2734 sizeof(struct ieee80211_wme_param) : 0) 2735 #ifdef IEEE80211_SUPPORT_SUPERG 2736 + sizeof(struct ieee80211_ath_ie) /* ATH */ 2737 #endif 2738 #ifdef IEEE80211_SUPPORT_TDMA 2739 + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */ 2740 sizeof(struct ieee80211_tdma_param) : 0) 2741 #endif 2742 #ifdef IEEE80211_SUPPORT_MESH 2743 + 2 + ni->ni_meshidlen 2744 + sizeof(struct ieee80211_meshconf_ie) 2745 #endif 2746 + IEEE80211_MAX_APPIE 2747 ; 2748 m = ieee80211_getmgtframe(&frm, 2749 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen); 2750 if (m == NULL) { 2751 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, 2752 "%s: cannot get buf; size %u\n", __func__, pktlen); 2753 vap->iv_stats.is_tx_nobuf++; 2754 return NULL; 2755 } 2756 ieee80211_beacon_construct(m, frm, bo, ni); 2757 2758 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT); 2759 KASSERT(m != NULL, ("no space for 802.11 header?")); 2760 wh = mtod(m, struct ieee80211_frame *); 2761 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 2762 IEEE80211_FC0_SUBTYPE_BEACON; 2763 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2764 *(uint16_t *)wh->i_dur = 0; 2765 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 2766 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 2767 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 2768 *(uint16_t *)wh->i_seq = 0; 2769 2770 return m; 2771 } 2772 2773 /* 2774 * Update the dynamic parts of a beacon frame based on the current state. 2775 */ 2776 int 2777 ieee80211_beacon_update(struct ieee80211_node *ni, 2778 struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast) 2779 { 2780 struct ieee80211vap *vap = ni->ni_vap; 2781 struct ieee80211com *ic = ni->ni_ic; 2782 int len_changed = 0; 2783 uint16_t capinfo; 2784 2785 IEEE80211_LOCK(ic); 2786 /* 2787 * Handle 11h channel change when we've reached the count. 2788 * We must recalculate the beacon frame contents to account 2789 * for the new channel. Note we do this only for the first 2790 * vap that reaches this point; subsequent vaps just update 2791 * their beacon state to reflect the recalculated channel. 2792 */ 2793 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) && 2794 vap->iv_csa_count == ic->ic_csa_count) { 2795 vap->iv_csa_count = 0; 2796 /* 2797 * Effect channel change before reconstructing the beacon 2798 * frame contents as many places reference ni_chan. 2799 */ 2800 if (ic->ic_csa_newchan != NULL) 2801 ieee80211_csa_completeswitch(ic); 2802 /* 2803 * NB: ieee80211_beacon_construct clears all pending 2804 * updates in bo_flags so we don't need to explicitly 2805 * clear IEEE80211_BEACON_CSA. 2806 */ 2807 ieee80211_beacon_construct(m, 2808 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni); 2809 2810 /* XXX do WME aggressive mode processing? */ 2811 IEEE80211_UNLOCK(ic); 2812 return 1; /* just assume length changed */ 2813 } 2814 2815 /* XXX faster to recalculate entirely or just changes? */ 2816 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 2817 *bo->bo_caps = htole16(capinfo); 2818 2819 if (vap->iv_flags & IEEE80211_F_WME) { 2820 struct ieee80211_wme_state *wme = &ic->ic_wme; 2821 2822 /* 2823 * Check for agressive mode change. When there is 2824 * significant high priority traffic in the BSS 2825 * throttle back BE traffic by using conservative 2826 * parameters. Otherwise BE uses agressive params 2827 * to optimize performance of legacy/non-QoS traffic. 2828 */ 2829 if (wme->wme_flags & WME_F_AGGRMODE) { 2830 if (wme->wme_hipri_traffic > 2831 wme->wme_hipri_switch_thresh) { 2832 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 2833 "%s: traffic %u, disable aggressive mode\n", 2834 __func__, wme->wme_hipri_traffic); 2835 wme->wme_flags &= ~WME_F_AGGRMODE; 2836 ieee80211_wme_updateparams_locked(vap); 2837 wme->wme_hipri_traffic = 2838 wme->wme_hipri_switch_hysteresis; 2839 } else 2840 wme->wme_hipri_traffic = 0; 2841 } else { 2842 if (wme->wme_hipri_traffic <= 2843 wme->wme_hipri_switch_thresh) { 2844 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 2845 "%s: traffic %u, enable aggressive mode\n", 2846 __func__, wme->wme_hipri_traffic); 2847 wme->wme_flags |= WME_F_AGGRMODE; 2848 ieee80211_wme_updateparams_locked(vap); 2849 wme->wme_hipri_traffic = 0; 2850 } else 2851 wme->wme_hipri_traffic = 2852 wme->wme_hipri_switch_hysteresis; 2853 } 2854 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) { 2855 (void) ieee80211_add_wme_param(bo->bo_wme, wme); 2856 clrbit(bo->bo_flags, IEEE80211_BEACON_WME); 2857 } 2858 } 2859 2860 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) { 2861 ieee80211_ht_update_beacon(vap, bo); 2862 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO); 2863 } 2864 #ifdef IEEE80211_SUPPORT_TDMA 2865 if (vap->iv_caps & IEEE80211_C_TDMA) { 2866 /* 2867 * NB: the beacon is potentially updated every TBTT. 2868 */ 2869 ieee80211_tdma_update_beacon(vap, bo); 2870 } 2871 #endif 2872 #ifdef IEEE80211_SUPPORT_MESH 2873 if (vap->iv_opmode == IEEE80211_M_MBSS) 2874 ieee80211_mesh_update_beacon(vap, bo); 2875 #endif 2876 2877 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 2878 vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/ 2879 struct ieee80211_tim_ie *tie = 2880 (struct ieee80211_tim_ie *) bo->bo_tim; 2881 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) { 2882 u_int timlen, timoff, i; 2883 /* 2884 * ATIM/DTIM needs updating. If it fits in the 2885 * current space allocated then just copy in the 2886 * new bits. Otherwise we need to move any trailing 2887 * data to make room. Note that we know there is 2888 * contiguous space because ieee80211_beacon_allocate 2889 * insures there is space in the mbuf to write a 2890 * maximal-size virtual bitmap (based on iv_max_aid). 2891 */ 2892 /* 2893 * Calculate the bitmap size and offset, copy any 2894 * trailer out of the way, and then copy in the 2895 * new bitmap and update the information element. 2896 * Note that the tim bitmap must contain at least 2897 * one byte and any offset must be even. 2898 */ 2899 if (vap->iv_ps_pending != 0) { 2900 timoff = 128; /* impossibly large */ 2901 for (i = 0; i < vap->iv_tim_len; i++) 2902 if (vap->iv_tim_bitmap[i]) { 2903 timoff = i &~ 1; 2904 break; 2905 } 2906 KASSERT(timoff != 128, ("tim bitmap empty!")); 2907 for (i = vap->iv_tim_len-1; i >= timoff; i--) 2908 if (vap->iv_tim_bitmap[i]) 2909 break; 2910 timlen = 1 + (i - timoff); 2911 } else { 2912 timoff = 0; 2913 timlen = 1; 2914 } 2915 if (timlen != bo->bo_tim_len) { 2916 /* copy up/down trailer */ 2917 int adjust = tie->tim_bitmap+timlen 2918 - bo->bo_tim_trailer; 2919 ovbcopy(bo->bo_tim_trailer, 2920 bo->bo_tim_trailer+adjust, 2921 bo->bo_tim_trailer_len); 2922 bo->bo_tim_trailer += adjust; 2923 bo->bo_erp += adjust; 2924 bo->bo_htinfo += adjust; 2925 #ifdef IEEE80211_SUPERG_SUPPORT 2926 bo->bo_ath += adjust; 2927 #endif 2928 #ifdef IEEE80211_TDMA_SUPPORT 2929 bo->bo_tdma += adjust; 2930 #endif 2931 #ifdef IEEE80211_MESH_SUPPORT 2932 bo->bo_meshconf += adjust; 2933 #endif 2934 bo->bo_appie += adjust; 2935 bo->bo_wme += adjust; 2936 bo->bo_csa += adjust; 2937 bo->bo_tim_len = timlen; 2938 2939 /* update information element */ 2940 tie->tim_len = 3 + timlen; 2941 tie->tim_bitctl = timoff; 2942 len_changed = 1; 2943 } 2944 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff, 2945 bo->bo_tim_len); 2946 2947 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM); 2948 2949 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER, 2950 "%s: TIM updated, pending %u, off %u, len %u\n", 2951 __func__, vap->iv_ps_pending, timoff, timlen); 2952 } 2953 /* count down DTIM period */ 2954 if (tie->tim_count == 0) 2955 tie->tim_count = tie->tim_period - 1; 2956 else 2957 tie->tim_count--; 2958 /* update state for buffered multicast frames on DTIM */ 2959 if (mcast && tie->tim_count == 0) 2960 tie->tim_bitctl |= 1; 2961 else 2962 tie->tim_bitctl &= ~1; 2963 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) { 2964 struct ieee80211_csa_ie *csa = 2965 (struct ieee80211_csa_ie *) bo->bo_csa; 2966 2967 /* 2968 * Insert or update CSA ie. If we're just starting 2969 * to count down to the channel switch then we need 2970 * to insert the CSA ie. Otherwise we just need to 2971 * drop the count. The actual change happens above 2972 * when the vap's count reaches the target count. 2973 */ 2974 if (vap->iv_csa_count == 0) { 2975 memmove(&csa[1], csa, bo->bo_csa_trailer_len); 2976 bo->bo_erp += sizeof(*csa); 2977 bo->bo_htinfo += sizeof(*csa); 2978 bo->bo_wme += sizeof(*csa); 2979 #ifdef IEEE80211_SUPERG_SUPPORT 2980 bo->bo_ath += sizeof(*csa); 2981 #endif 2982 #ifdef IEEE80211_TDMA_SUPPORT 2983 bo->bo_tdma += sizeof(*csa); 2984 #endif 2985 #ifdef IEEE80211_MESH_SUPPORT 2986 bo->bo_meshconf += sizeof(*csa); 2987 #endif 2988 bo->bo_appie += sizeof(*csa); 2989 bo->bo_csa_trailer_len += sizeof(*csa); 2990 bo->bo_tim_trailer_len += sizeof(*csa); 2991 m->m_len += sizeof(*csa); 2992 m->m_pkthdr.len += sizeof(*csa); 2993 2994 ieee80211_add_csa(bo->bo_csa, vap); 2995 } else 2996 csa->csa_count--; 2997 vap->iv_csa_count++; 2998 /* NB: don't clear IEEE80211_BEACON_CSA */ 2999 } 3000 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) { 3001 /* 3002 * ERP element needs updating. 3003 */ 3004 (void) ieee80211_add_erp(bo->bo_erp, ic); 3005 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP); 3006 } 3007 #ifdef IEEE80211_SUPPORT_SUPERG 3008 if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) { 3009 ieee80211_add_athcaps(bo->bo_ath, ni); 3010 clrbit(bo->bo_flags, IEEE80211_BEACON_ATH); 3011 } 3012 #endif 3013 } 3014 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) { 3015 const struct ieee80211_appie *aie = vap->iv_appie_beacon; 3016 int aielen; 3017 uint8_t *frm; 3018 3019 aielen = 0; 3020 if (aie != NULL) 3021 aielen += aie->ie_len; 3022 if (aielen != bo->bo_appie_len) { 3023 /* copy up/down trailer */ 3024 int adjust = aielen - bo->bo_appie_len; 3025 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust, 3026 bo->bo_tim_trailer_len); 3027 bo->bo_tim_trailer += adjust; 3028 bo->bo_appie += adjust; 3029 bo->bo_appie_len = aielen; 3030 3031 len_changed = 1; 3032 } 3033 frm = bo->bo_appie; 3034 if (aie != NULL) 3035 frm = add_appie(frm, aie); 3036 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE); 3037 } 3038 IEEE80211_UNLOCK(ic); 3039 3040 return len_changed; 3041 } 3042