1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_inet.h" 33 #include "opt_inet6.h" 34 #include "opt_wlan.h" 35 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/kernel.h> 39 #include <sys/malloc.h> 40 #include <sys/mbuf.h> 41 #include <sys/endian.h> 42 43 #include <sys/socket.h> 44 45 #include <net/bpf.h> 46 #include <net/ethernet.h> 47 #include <net/if.h> 48 #include <net/if_var.h> 49 #include <net/if_llc.h> 50 #include <net/if_media.h> 51 #include <net/if_vlan_var.h> 52 53 #include <net80211/ieee80211_var.h> 54 #include <net80211/ieee80211_regdomain.h> 55 #ifdef IEEE80211_SUPPORT_SUPERG 56 #include <net80211/ieee80211_superg.h> 57 #endif 58 #ifdef IEEE80211_SUPPORT_TDMA 59 #include <net80211/ieee80211_tdma.h> 60 #endif 61 #include <net80211/ieee80211_wds.h> 62 #include <net80211/ieee80211_mesh.h> 63 #include <net80211/ieee80211_vht.h> 64 65 #if defined(INET) || defined(INET6) 66 #include <netinet/in.h> 67 #endif 68 69 #ifdef INET 70 #include <netinet/if_ether.h> 71 #include <netinet/in_systm.h> 72 #include <netinet/ip.h> 73 #endif 74 #ifdef INET6 75 #include <netinet/ip6.h> 76 #endif 77 78 #include <security/mac/mac_framework.h> 79 80 #define ETHER_HEADER_COPY(dst, src) \ 81 memcpy(dst, src, sizeof(struct ether_header)) 82 83 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *, 84 u_int hdrsize, u_int ciphdrsize, u_int mtu); 85 static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int); 86 87 #ifdef IEEE80211_DEBUG 88 /* 89 * Decide if an outbound management frame should be 90 * printed when debugging is enabled. This filters some 91 * of the less interesting frames that come frequently 92 * (e.g. beacons). 93 */ 94 static __inline int 95 doprint(struct ieee80211vap *vap, int subtype) 96 { 97 switch (subtype) { 98 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 99 return (vap->iv_opmode == IEEE80211_M_IBSS); 100 } 101 return 1; 102 } 103 #endif 104 105 /* 106 * Transmit a frame to the given destination on the given VAP. 107 * 108 * It's up to the caller to figure out the details of who this 109 * is going to and resolving the node. 110 * 111 * This routine takes care of queuing it for power save, 112 * A-MPDU state stuff, fast-frames state stuff, encapsulation 113 * if required, then passing it up to the driver layer. 114 * 115 * This routine (for now) consumes the mbuf and frees the node 116 * reference; it ideally will return a TX status which reflects 117 * whether the mbuf was consumed or not, so the caller can 118 * free the mbuf (if appropriate) and the node reference (again, 119 * if appropriate.) 120 */ 121 int 122 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m, 123 struct ieee80211_node *ni) 124 { 125 struct ieee80211com *ic = vap->iv_ic; 126 struct ifnet *ifp = vap->iv_ifp; 127 int mcast; 128 129 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 130 (m->m_flags & M_PWR_SAV) == 0) { 131 /* 132 * Station in power save mode; pass the frame 133 * to the 802.11 layer and continue. We'll get 134 * the frame back when the time is right. 135 * XXX lose WDS vap linkage? 136 */ 137 if (ieee80211_pwrsave(ni, m) != 0) 138 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 139 ieee80211_free_node(ni); 140 141 /* 142 * We queued it fine, so tell the upper layer 143 * that we consumed it. 144 */ 145 return (0); 146 } 147 /* calculate priority so drivers can find the tx queue */ 148 if (ieee80211_classify(ni, m)) { 149 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 150 ni->ni_macaddr, NULL, 151 "%s", "classification failure"); 152 vap->iv_stats.is_tx_classify++; 153 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 154 m_freem(m); 155 ieee80211_free_node(ni); 156 157 /* XXX better status? */ 158 return (0); 159 } 160 /* 161 * Stash the node pointer. Note that we do this after 162 * any call to ieee80211_dwds_mcast because that code 163 * uses any existing value for rcvif to identify the 164 * interface it (might have been) received on. 165 */ 166 m->m_pkthdr.rcvif = (void *)ni; 167 mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0; 168 169 BPF_MTAP(ifp, m); /* 802.3 tx */ 170 171 /* 172 * Check if A-MPDU tx aggregation is setup or if we 173 * should try to enable it. The sta must be associated 174 * with HT and A-MPDU enabled for use. When the policy 175 * routine decides we should enable A-MPDU we issue an 176 * ADDBA request and wait for a reply. The frame being 177 * encapsulated will go out w/o using A-MPDU, or possibly 178 * it might be collected by the driver and held/retransmit. 179 * The default ic_ampdu_enable routine handles staggering 180 * ADDBA requests in case the receiver NAK's us or we are 181 * otherwise unable to establish a BA stream. 182 * 183 * Don't treat group-addressed frames as candidates for aggregation; 184 * net80211 doesn't support 802.11aa-2012 and so group addressed 185 * frames will always have sequence numbers allocated from the NON_QOS 186 * TID. 187 */ 188 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) && 189 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)) { 190 if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) { 191 int tid = WME_AC_TO_TID(M_WME_GETAC(m)); 192 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; 193 194 ieee80211_txampdu_count_packet(tap); 195 if (IEEE80211_AMPDU_RUNNING(tap)) { 196 /* 197 * Operational, mark frame for aggregation. 198 * 199 * XXX do tx aggregation here 200 */ 201 m->m_flags |= M_AMPDU_MPDU; 202 } else if (!IEEE80211_AMPDU_REQUESTED(tap) && 203 ic->ic_ampdu_enable(ni, tap)) { 204 /* 205 * Not negotiated yet, request service. 206 */ 207 ieee80211_ampdu_request(ni, tap); 208 /* XXX hold frame for reply? */ 209 } 210 } 211 } 212 213 #ifdef IEEE80211_SUPPORT_SUPERG 214 /* 215 * Check for AMSDU/FF; queue for aggregation 216 * 217 * Note: we don't bother trying to do fast frames or 218 * A-MSDU encapsulation for 802.3 drivers. Now, we 219 * likely could do it for FF (because it's a magic 220 * atheros tunnel LLC type) but I don't think we're going 221 * to really need to. For A-MSDU we'd have to set the 222 * A-MSDU QoS bit in the wifi header, so we just plain 223 * can't do it. 224 * 225 * Strictly speaking, we could actually /do/ A-MSDU / FF 226 * with A-MPDU together which for certain circumstances 227 * is beneficial (eg A-MSDU of TCK ACKs.) However, 228 * I'll ignore that for now so existing behaviour is maintained. 229 * Later on it would be good to make "amsdu + ampdu" configurable. 230 */ 231 else if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 232 if ((! mcast) && ieee80211_amsdu_tx_ok(ni)) { 233 m = ieee80211_amsdu_check(ni, m); 234 if (m == NULL) { 235 /* NB: any ni ref held on stageq */ 236 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 237 "%s: amsdu_check queued frame\n", 238 __func__); 239 return (0); 240 } 241 } else if ((! mcast) && IEEE80211_ATH_CAP(vap, ni, 242 IEEE80211_NODE_FF)) { 243 m = ieee80211_ff_check(ni, m); 244 if (m == NULL) { 245 /* NB: any ni ref held on stageq */ 246 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 247 "%s: ff_check queued frame\n", 248 __func__); 249 return (0); 250 } 251 } 252 } 253 #endif /* IEEE80211_SUPPORT_SUPERG */ 254 255 /* 256 * Grab the TX lock - serialise the TX process from this 257 * point (where TX state is being checked/modified) 258 * through to driver queue. 259 */ 260 IEEE80211_TX_LOCK(ic); 261 262 /* 263 * XXX make the encap and transmit code a separate function 264 * so things like the FF (and later A-MSDU) path can just call 265 * it for flushed frames. 266 */ 267 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 268 /* 269 * Encapsulate the packet in prep for transmission. 270 */ 271 m = ieee80211_encap(vap, ni, m); 272 if (m == NULL) { 273 /* NB: stat+msg handled in ieee80211_encap */ 274 IEEE80211_TX_UNLOCK(ic); 275 ieee80211_free_node(ni); 276 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 277 return (ENOBUFS); 278 } 279 } 280 (void) ieee80211_parent_xmitpkt(ic, m); 281 282 /* 283 * Unlock at this point - no need to hold it across 284 * ieee80211_free_node() (ie, the comlock) 285 */ 286 IEEE80211_TX_UNLOCK(ic); 287 ic->ic_lastdata = ticks; 288 289 return (0); 290 } 291 292 293 294 /* 295 * Send the given mbuf through the given vap. 296 * 297 * This consumes the mbuf regardless of whether the transmit 298 * was successful or not. 299 * 300 * This does none of the initial checks that ieee80211_start() 301 * does (eg CAC timeout, interface wakeup) - the caller must 302 * do this first. 303 */ 304 static int 305 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m) 306 { 307 #define IS_DWDS(vap) \ 308 (vap->iv_opmode == IEEE80211_M_WDS && \ 309 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0) 310 struct ieee80211com *ic = vap->iv_ic; 311 struct ifnet *ifp = vap->iv_ifp; 312 struct ieee80211_node *ni; 313 struct ether_header *eh; 314 315 /* 316 * Cancel any background scan. 317 */ 318 if (ic->ic_flags & IEEE80211_F_SCAN) 319 ieee80211_cancel_anyscan(vap); 320 /* 321 * Find the node for the destination so we can do 322 * things like power save and fast frames aggregation. 323 * 324 * NB: past this point various code assumes the first 325 * mbuf has the 802.3 header present (and contiguous). 326 */ 327 ni = NULL; 328 if (m->m_len < sizeof(struct ether_header) && 329 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 330 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 331 "discard frame, %s\n", "m_pullup failed"); 332 vap->iv_stats.is_tx_nobuf++; /* XXX */ 333 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 334 return (ENOBUFS); 335 } 336 eh = mtod(m, struct ether_header *); 337 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 338 if (IS_DWDS(vap)) { 339 /* 340 * Only unicast frames from the above go out 341 * DWDS vaps; multicast frames are handled by 342 * dispatching the frame as it comes through 343 * the AP vap (see below). 344 */ 345 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS, 346 eh->ether_dhost, "mcast", "%s", "on DWDS"); 347 vap->iv_stats.is_dwds_mcast++; 348 m_freem(m); 349 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 350 /* XXX better status? */ 351 return (ENOBUFS); 352 } 353 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { 354 /* 355 * Spam DWDS vap's w/ multicast traffic. 356 */ 357 /* XXX only if dwds in use? */ 358 ieee80211_dwds_mcast(vap, m); 359 } 360 } 361 #ifdef IEEE80211_SUPPORT_MESH 362 if (vap->iv_opmode != IEEE80211_M_MBSS) { 363 #endif 364 ni = ieee80211_find_txnode(vap, eh->ether_dhost); 365 if (ni == NULL) { 366 /* NB: ieee80211_find_txnode does stat+msg */ 367 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 368 m_freem(m); 369 /* XXX better status? */ 370 return (ENOBUFS); 371 } 372 if (ni->ni_associd == 0 && 373 (ni->ni_flags & IEEE80211_NODE_ASSOCID)) { 374 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 375 eh->ether_dhost, NULL, 376 "sta not associated (type 0x%04x)", 377 htons(eh->ether_type)); 378 vap->iv_stats.is_tx_notassoc++; 379 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 380 m_freem(m); 381 ieee80211_free_node(ni); 382 /* XXX better status? */ 383 return (ENOBUFS); 384 } 385 #ifdef IEEE80211_SUPPORT_MESH 386 } else { 387 if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) { 388 /* 389 * Proxy station only if configured. 390 */ 391 if (!ieee80211_mesh_isproxyena(vap)) { 392 IEEE80211_DISCARD_MAC(vap, 393 IEEE80211_MSG_OUTPUT | 394 IEEE80211_MSG_MESH, 395 eh->ether_dhost, NULL, 396 "%s", "proxy not enabled"); 397 vap->iv_stats.is_mesh_notproxy++; 398 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 399 m_freem(m); 400 /* XXX better status? */ 401 return (ENOBUFS); 402 } 403 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 404 "forward frame from DS SA(%6D), DA(%6D)\n", 405 eh->ether_shost, ":", 406 eh->ether_dhost, ":"); 407 ieee80211_mesh_proxy_check(vap, eh->ether_shost); 408 } 409 ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m); 410 if (ni == NULL) { 411 /* 412 * NB: ieee80211_mesh_discover holds/disposes 413 * frame (e.g. queueing on path discovery). 414 */ 415 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 416 /* XXX better status? */ 417 return (ENOBUFS); 418 } 419 } 420 #endif 421 422 /* 423 * We've resolved the sender, so attempt to transmit it. 424 */ 425 426 if (vap->iv_state == IEEE80211_S_SLEEP) { 427 /* 428 * In power save; queue frame and then wakeup device 429 * for transmit. 430 */ 431 ic->ic_lastdata = ticks; 432 if (ieee80211_pwrsave(ni, m) != 0) 433 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 434 ieee80211_free_node(ni); 435 ieee80211_new_state(vap, IEEE80211_S_RUN, 0); 436 return (0); 437 } 438 439 if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0) 440 return (ENOBUFS); 441 return (0); 442 #undef IS_DWDS 443 } 444 445 /* 446 * Start method for vap's. All packets from the stack come 447 * through here. We handle common processing of the packets 448 * before dispatching them to the underlying device. 449 * 450 * if_transmit() requires that the mbuf be consumed by this call 451 * regardless of the return condition. 452 */ 453 int 454 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m) 455 { 456 struct ieee80211vap *vap = ifp->if_softc; 457 struct ieee80211com *ic = vap->iv_ic; 458 459 /* 460 * No data frames go out unless we're running. 461 * Note in particular this covers CAC and CSA 462 * states (though maybe we should check muting 463 * for CSA). 464 */ 465 if (vap->iv_state != IEEE80211_S_RUN && 466 vap->iv_state != IEEE80211_S_SLEEP) { 467 IEEE80211_LOCK(ic); 468 /* re-check under the com lock to avoid races */ 469 if (vap->iv_state != IEEE80211_S_RUN && 470 vap->iv_state != IEEE80211_S_SLEEP) { 471 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 472 "%s: ignore queue, in %s state\n", 473 __func__, ieee80211_state_name[vap->iv_state]); 474 vap->iv_stats.is_tx_badstate++; 475 IEEE80211_UNLOCK(ic); 476 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 477 m_freem(m); 478 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 479 return (ENETDOWN); 480 } 481 IEEE80211_UNLOCK(ic); 482 } 483 484 /* 485 * Sanitize mbuf flags for net80211 use. We cannot 486 * clear M_PWR_SAV or M_MORE_DATA because these may 487 * be set for frames that are re-submitted from the 488 * power save queue. 489 * 490 * NB: This must be done before ieee80211_classify as 491 * it marks EAPOL in frames with M_EAPOL. 492 */ 493 m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA); 494 495 /* 496 * Bump to the packet transmission path. 497 * The mbuf will be consumed here. 498 */ 499 return (ieee80211_start_pkt(vap, m)); 500 } 501 502 void 503 ieee80211_vap_qflush(struct ifnet *ifp) 504 { 505 506 /* Empty for now */ 507 } 508 509 /* 510 * 802.11 raw output routine. 511 * 512 * XXX TODO: this (and other send routines) should correctly 513 * XXX keep the pwr mgmt bit set if it decides to call into the 514 * XXX driver to send a frame whilst the state is SLEEP. 515 * 516 * Otherwise the peer may decide that we're awake and flood us 517 * with traffic we are still too asleep to receive! 518 */ 519 int 520 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni, 521 struct mbuf *m, const struct ieee80211_bpf_params *params) 522 { 523 struct ieee80211com *ic = vap->iv_ic; 524 int error; 525 526 /* 527 * Set node - the caller has taken a reference, so ensure 528 * that the mbuf has the same node value that 529 * it would if it were going via the normal path. 530 */ 531 m->m_pkthdr.rcvif = (void *)ni; 532 533 /* 534 * Attempt to add bpf transmit parameters. 535 * 536 * For now it's ok to fail; the raw_xmit api still takes 537 * them as an option. 538 * 539 * Later on when ic_raw_xmit() has params removed, 540 * they'll have to be added - so fail the transmit if 541 * they can't be. 542 */ 543 if (params) 544 (void) ieee80211_add_xmit_params(m, params); 545 546 error = ic->ic_raw_xmit(ni, m, params); 547 if (error) { 548 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1); 549 ieee80211_free_node(ni); 550 } 551 return (error); 552 } 553 554 static int 555 ieee80211_validate_frame(struct mbuf *m, 556 const struct ieee80211_bpf_params *params) 557 { 558 struct ieee80211_frame *wh; 559 int type; 560 561 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack)) 562 return (EINVAL); 563 564 wh = mtod(m, struct ieee80211_frame *); 565 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) != 566 IEEE80211_FC0_VERSION_0) 567 return (EINVAL); 568 569 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 570 if (type != IEEE80211_FC0_TYPE_DATA) { 571 if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != 572 IEEE80211_FC1_DIR_NODS) 573 return (EINVAL); 574 575 if (type != IEEE80211_FC0_TYPE_MGT && 576 (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) != 0) 577 return (EINVAL); 578 579 /* XXX skip other field checks? */ 580 } 581 582 if ((params && (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0) || 583 (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) != 0) { 584 int subtype; 585 586 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 587 588 /* 589 * See IEEE Std 802.11-2012, 590 * 8.2.4.1.9 'Protected Frame field' 591 */ 592 /* XXX no support for robust management frames yet. */ 593 if (!(type == IEEE80211_FC0_TYPE_DATA || 594 (type == IEEE80211_FC0_TYPE_MGT && 595 subtype == IEEE80211_FC0_SUBTYPE_AUTH))) 596 return (EINVAL); 597 598 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 599 } 600 601 if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh)) 602 return (EINVAL); 603 604 return (0); 605 } 606 607 static int 608 ieee80211_validate_rate(struct ieee80211_node *ni, uint8_t rate) 609 { 610 struct ieee80211com *ic = ni->ni_ic; 611 612 if (IEEE80211_IS_HT_RATE(rate)) { 613 if ((ic->ic_htcaps & IEEE80211_HTC_HT) == 0) 614 return (EINVAL); 615 616 rate = IEEE80211_RV(rate); 617 if (rate <= 31) { 618 if (rate > ic->ic_txstream * 8 - 1) 619 return (EINVAL); 620 621 return (0); 622 } 623 624 if (rate == 32) { 625 if ((ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0) 626 return (EINVAL); 627 628 return (0); 629 } 630 631 if ((ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) == 0) 632 return (EINVAL); 633 634 switch (ic->ic_txstream) { 635 case 0: 636 case 1: 637 return (EINVAL); 638 case 2: 639 if (rate > 38) 640 return (EINVAL); 641 642 return (0); 643 case 3: 644 if (rate > 52) 645 return (EINVAL); 646 647 return (0); 648 case 4: 649 default: 650 if (rate > 76) 651 return (EINVAL); 652 653 return (0); 654 } 655 } 656 657 if (!ieee80211_isratevalid(ic->ic_rt, rate)) 658 return (EINVAL); 659 660 return (0); 661 } 662 663 static int 664 ieee80211_sanitize_rates(struct ieee80211_node *ni, struct mbuf *m, 665 const struct ieee80211_bpf_params *params) 666 { 667 int error; 668 669 if (!params) 670 return (0); /* nothing to do */ 671 672 /* NB: most drivers assume that ibp_rate0 is set (!= 0). */ 673 if (params->ibp_rate0 != 0) { 674 error = ieee80211_validate_rate(ni, params->ibp_rate0); 675 if (error != 0) 676 return (error); 677 } else { 678 /* XXX pre-setup some default (e.g., mgmt / mcast) rate */ 679 /* XXX __DECONST? */ 680 (void) m; 681 } 682 683 if (params->ibp_rate1 != 0 && 684 (error = ieee80211_validate_rate(ni, params->ibp_rate1)) != 0) 685 return (error); 686 687 if (params->ibp_rate2 != 0 && 688 (error = ieee80211_validate_rate(ni, params->ibp_rate2)) != 0) 689 return (error); 690 691 if (params->ibp_rate3 != 0 && 692 (error = ieee80211_validate_rate(ni, params->ibp_rate3)) != 0) 693 return (error); 694 695 return (0); 696 } 697 698 /* 699 * 802.11 output routine. This is (currently) used only to 700 * connect bpf write calls to the 802.11 layer for injecting 701 * raw 802.11 frames. 702 */ 703 int 704 ieee80211_output(struct ifnet *ifp, struct mbuf *m, 705 const struct sockaddr *dst, struct route *ro) 706 { 707 #define senderr(e) do { error = (e); goto bad;} while (0) 708 const struct ieee80211_bpf_params *params = NULL; 709 struct ieee80211_node *ni = NULL; 710 struct ieee80211vap *vap; 711 struct ieee80211_frame *wh; 712 struct ieee80211com *ic = NULL; 713 int error; 714 int ret; 715 716 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 717 /* 718 * Short-circuit requests if the vap is marked OACTIVE 719 * as this can happen because a packet came down through 720 * ieee80211_start before the vap entered RUN state in 721 * which case it's ok to just drop the frame. This 722 * should not be necessary but callers of if_output don't 723 * check OACTIVE. 724 */ 725 senderr(ENETDOWN); 726 } 727 vap = ifp->if_softc; 728 ic = vap->iv_ic; 729 /* 730 * Hand to the 802.3 code if not tagged as 731 * a raw 802.11 frame. 732 */ 733 if (dst->sa_family != AF_IEEE80211) 734 return vap->iv_output(ifp, m, dst, ro); 735 #ifdef MAC 736 error = mac_ifnet_check_transmit(ifp, m); 737 if (error) 738 senderr(error); 739 #endif 740 if (ifp->if_flags & IFF_MONITOR) 741 senderr(ENETDOWN); 742 if (!IFNET_IS_UP_RUNNING(ifp)) 743 senderr(ENETDOWN); 744 if (vap->iv_state == IEEE80211_S_CAC) { 745 IEEE80211_DPRINTF(vap, 746 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 747 "block %s frame in CAC state\n", "raw data"); 748 vap->iv_stats.is_tx_badstate++; 749 senderr(EIO); /* XXX */ 750 } else if (vap->iv_state == IEEE80211_S_SCAN) 751 senderr(EIO); 752 /* XXX bypass bridge, pfil, carp, etc. */ 753 754 /* 755 * NB: DLT_IEEE802_11_RADIO identifies the parameters are 756 * present by setting the sa_len field of the sockaddr (yes, 757 * this is a hack). 758 * NB: we assume sa_data is suitably aligned to cast. 759 */ 760 if (dst->sa_len != 0) 761 params = (const struct ieee80211_bpf_params *)dst->sa_data; 762 763 error = ieee80211_validate_frame(m, params); 764 if (error != 0) 765 senderr(error); 766 767 wh = mtod(m, struct ieee80211_frame *); 768 769 /* locate destination node */ 770 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 771 case IEEE80211_FC1_DIR_NODS: 772 case IEEE80211_FC1_DIR_FROMDS: 773 ni = ieee80211_find_txnode(vap, wh->i_addr1); 774 break; 775 case IEEE80211_FC1_DIR_TODS: 776 case IEEE80211_FC1_DIR_DSTODS: 777 ni = ieee80211_find_txnode(vap, wh->i_addr3); 778 break; 779 default: 780 senderr(EDOOFUS); 781 } 782 if (ni == NULL) { 783 /* 784 * Permit packets w/ bpf params through regardless 785 * (see below about sa_len). 786 */ 787 if (dst->sa_len == 0) 788 senderr(EHOSTUNREACH); 789 ni = ieee80211_ref_node(vap->iv_bss); 790 } 791 792 /* 793 * Sanitize mbuf for net80211 flags leaked from above. 794 * 795 * NB: This must be done before ieee80211_classify as 796 * it marks EAPOL in frames with M_EAPOL. 797 */ 798 m->m_flags &= ~M_80211_TX; 799 m->m_flags |= M_ENCAP; /* mark encapsulated */ 800 801 if (IEEE80211_IS_DATA(wh)) { 802 /* calculate priority so drivers can find the tx queue */ 803 if (ieee80211_classify(ni, m)) 804 senderr(EIO); /* XXX */ 805 806 /* NB: ieee80211_encap does not include 802.11 header */ 807 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, 808 m->m_pkthdr.len - ieee80211_hdrsize(wh)); 809 } else 810 M_WME_SETAC(m, WME_AC_BE); 811 812 error = ieee80211_sanitize_rates(ni, m, params); 813 if (error != 0) 814 senderr(error); 815 816 IEEE80211_NODE_STAT(ni, tx_data); 817 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 818 IEEE80211_NODE_STAT(ni, tx_mcast); 819 m->m_flags |= M_MCAST; 820 } else 821 IEEE80211_NODE_STAT(ni, tx_ucast); 822 823 IEEE80211_TX_LOCK(ic); 824 ret = ieee80211_raw_output(vap, ni, m, params); 825 IEEE80211_TX_UNLOCK(ic); 826 return (ret); 827 bad: 828 if (m != NULL) 829 m_freem(m); 830 if (ni != NULL) 831 ieee80211_free_node(ni); 832 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 833 return error; 834 #undef senderr 835 } 836 837 /* 838 * Set the direction field and address fields of an outgoing 839 * frame. Note this should be called early on in constructing 840 * a frame as it sets i_fc[1]; other bits can then be or'd in. 841 */ 842 void 843 ieee80211_send_setup( 844 struct ieee80211_node *ni, 845 struct mbuf *m, 846 int type, int tid, 847 const uint8_t sa[IEEE80211_ADDR_LEN], 848 const uint8_t da[IEEE80211_ADDR_LEN], 849 const uint8_t bssid[IEEE80211_ADDR_LEN]) 850 { 851 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 852 struct ieee80211vap *vap = ni->ni_vap; 853 struct ieee80211_tx_ampdu *tap; 854 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 855 ieee80211_seq seqno; 856 857 IEEE80211_TX_LOCK_ASSERT(ni->ni_ic); 858 859 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 860 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 861 switch (vap->iv_opmode) { 862 case IEEE80211_M_STA: 863 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 864 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 865 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 866 IEEE80211_ADDR_COPY(wh->i_addr3, da); 867 break; 868 case IEEE80211_M_IBSS: 869 case IEEE80211_M_AHDEMO: 870 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 871 IEEE80211_ADDR_COPY(wh->i_addr1, da); 872 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 873 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 874 break; 875 case IEEE80211_M_HOSTAP: 876 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 877 IEEE80211_ADDR_COPY(wh->i_addr1, da); 878 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 879 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 880 break; 881 case IEEE80211_M_WDS: 882 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 883 IEEE80211_ADDR_COPY(wh->i_addr1, da); 884 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 885 IEEE80211_ADDR_COPY(wh->i_addr3, da); 886 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 887 break; 888 case IEEE80211_M_MBSS: 889 #ifdef IEEE80211_SUPPORT_MESH 890 if (IEEE80211_IS_MULTICAST(da)) { 891 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 892 /* XXX next hop */ 893 IEEE80211_ADDR_COPY(wh->i_addr1, da); 894 IEEE80211_ADDR_COPY(wh->i_addr2, 895 vap->iv_myaddr); 896 } else { 897 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 898 IEEE80211_ADDR_COPY(wh->i_addr1, da); 899 IEEE80211_ADDR_COPY(wh->i_addr2, 900 vap->iv_myaddr); 901 IEEE80211_ADDR_COPY(wh->i_addr3, da); 902 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 903 } 904 #endif 905 break; 906 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 907 break; 908 } 909 } else { 910 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 911 IEEE80211_ADDR_COPY(wh->i_addr1, da); 912 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 913 #ifdef IEEE80211_SUPPORT_MESH 914 if (vap->iv_opmode == IEEE80211_M_MBSS) 915 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 916 else 917 #endif 918 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 919 } 920 *(uint16_t *)&wh->i_dur[0] = 0; 921 922 /* 923 * XXX TODO: this is what the TX lock is for. 924 * Here we're incrementing sequence numbers, and they 925 * need to be in lock-step with what the driver is doing 926 * both in TX ordering and crypto encap (IV increment.) 927 * 928 * If the driver does seqno itself, then we can skip 929 * assigning sequence numbers here, and we can avoid 930 * requiring the TX lock. 931 */ 932 tap = &ni->ni_tx_ampdu[tid]; 933 if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) { 934 m->m_flags |= M_AMPDU_MPDU; 935 936 /* NB: zero out i_seq field (for s/w encryption etc) */ 937 *(uint16_t *)&wh->i_seq[0] = 0; 938 } else { 939 if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK, 940 type & IEEE80211_FC0_SUBTYPE_MASK)) 941 /* 942 * 802.11-2012 9.3.2.10 - QoS multicast frames 943 * come out of a different seqno space. 944 */ 945 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 946 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 947 } else { 948 seqno = ni->ni_txseqs[tid]++; 949 } 950 else 951 seqno = 0; 952 953 *(uint16_t *)&wh->i_seq[0] = 954 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 955 M_SEQNO_SET(m, seqno); 956 } 957 958 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 959 m->m_flags |= M_MCAST; 960 #undef WH4 961 } 962 963 /* 964 * Send a management frame to the specified node. The node pointer 965 * must have a reference as the pointer will be passed to the driver 966 * and potentially held for a long time. If the frame is successfully 967 * dispatched to the driver, then it is responsible for freeing the 968 * reference (and potentially free'ing up any associated storage); 969 * otherwise deal with reclaiming any reference (on error). 970 */ 971 int 972 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type, 973 struct ieee80211_bpf_params *params) 974 { 975 struct ieee80211vap *vap = ni->ni_vap; 976 struct ieee80211com *ic = ni->ni_ic; 977 struct ieee80211_frame *wh; 978 int ret; 979 980 KASSERT(ni != NULL, ("null node")); 981 982 if (vap->iv_state == IEEE80211_S_CAC) { 983 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 984 ni, "block %s frame in CAC state", 985 ieee80211_mgt_subtype_name(type)); 986 vap->iv_stats.is_tx_badstate++; 987 ieee80211_free_node(ni); 988 m_freem(m); 989 return EIO; /* XXX */ 990 } 991 992 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 993 if (m == NULL) { 994 ieee80211_free_node(ni); 995 return ENOMEM; 996 } 997 998 IEEE80211_TX_LOCK(ic); 999 1000 wh = mtod(m, struct ieee80211_frame *); 1001 ieee80211_send_setup(ni, m, 1002 IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID, 1003 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 1004 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { 1005 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1, 1006 "encrypting frame (%s)", __func__); 1007 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 1008 } 1009 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1010 1011 KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?")); 1012 M_WME_SETAC(m, params->ibp_pri); 1013 1014 #ifdef IEEE80211_DEBUG 1015 /* avoid printing too many frames */ 1016 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) || 1017 ieee80211_msg_dumppkts(vap)) { 1018 printf("[%s] send %s on channel %u\n", 1019 ether_sprintf(wh->i_addr1), 1020 ieee80211_mgt_subtype_name(type), 1021 ieee80211_chan2ieee(ic, ic->ic_curchan)); 1022 } 1023 #endif 1024 IEEE80211_NODE_STAT(ni, tx_mgmt); 1025 1026 ret = ieee80211_raw_output(vap, ni, m, params); 1027 IEEE80211_TX_UNLOCK(ic); 1028 return (ret); 1029 } 1030 1031 static void 1032 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg, 1033 int status) 1034 { 1035 struct ieee80211vap *vap = ni->ni_vap; 1036 1037 wakeup(vap); 1038 } 1039 1040 /* 1041 * Send a null data frame to the specified node. If the station 1042 * is setup for QoS then a QoS Null Data frame is constructed. 1043 * If this is a WDS station then a 4-address frame is constructed. 1044 * 1045 * NB: the caller is assumed to have setup a node reference 1046 * for use; this is necessary to deal with a race condition 1047 * when probing for inactive stations. Like ieee80211_mgmt_output 1048 * we must cleanup any node reference on error; however we 1049 * can safely just unref it as we know it will never be the 1050 * last reference to the node. 1051 */ 1052 int 1053 ieee80211_send_nulldata(struct ieee80211_node *ni) 1054 { 1055 struct ieee80211vap *vap = ni->ni_vap; 1056 struct ieee80211com *ic = ni->ni_ic; 1057 struct mbuf *m; 1058 struct ieee80211_frame *wh; 1059 int hdrlen; 1060 uint8_t *frm; 1061 int ret; 1062 1063 if (vap->iv_state == IEEE80211_S_CAC) { 1064 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 1065 ni, "block %s frame in CAC state", "null data"); 1066 ieee80211_unref_node(&ni); 1067 vap->iv_stats.is_tx_badstate++; 1068 return EIO; /* XXX */ 1069 } 1070 1071 if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) 1072 hdrlen = sizeof(struct ieee80211_qosframe); 1073 else 1074 hdrlen = sizeof(struct ieee80211_frame); 1075 /* NB: only WDS vap's get 4-address frames */ 1076 if (vap->iv_opmode == IEEE80211_M_WDS) 1077 hdrlen += IEEE80211_ADDR_LEN; 1078 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1079 hdrlen = roundup(hdrlen, sizeof(uint32_t)); 1080 1081 m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0); 1082 if (m == NULL) { 1083 /* XXX debug msg */ 1084 ieee80211_unref_node(&ni); 1085 vap->iv_stats.is_tx_nobuf++; 1086 return ENOMEM; 1087 } 1088 KASSERT(M_LEADINGSPACE(m) >= hdrlen, 1089 ("leading space %zd", M_LEADINGSPACE(m))); 1090 M_PREPEND(m, hdrlen, M_NOWAIT); 1091 if (m == NULL) { 1092 /* NB: cannot happen */ 1093 ieee80211_free_node(ni); 1094 return ENOMEM; 1095 } 1096 1097 IEEE80211_TX_LOCK(ic); 1098 1099 wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */ 1100 if (ni->ni_flags & IEEE80211_NODE_QOS) { 1101 const int tid = WME_AC_TO_TID(WME_AC_BE); 1102 uint8_t *qos; 1103 1104 ieee80211_send_setup(ni, m, 1105 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL, 1106 tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 1107 1108 if (vap->iv_opmode == IEEE80211_M_WDS) 1109 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1110 else 1111 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1112 qos[0] = tid & IEEE80211_QOS_TID; 1113 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy) 1114 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1115 qos[1] = 0; 1116 } else { 1117 ieee80211_send_setup(ni, m, 1118 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 1119 IEEE80211_NONQOS_TID, 1120 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 1121 } 1122 if (vap->iv_opmode != IEEE80211_M_WDS) { 1123 /* NB: power management bit is never sent by an AP */ 1124 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 1125 vap->iv_opmode != IEEE80211_M_HOSTAP) 1126 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 1127 } 1128 if ((ic->ic_flags & IEEE80211_F_SCAN) && 1129 (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) { 1130 ieee80211_add_callback(m, ieee80211_nulldata_transmitted, 1131 NULL); 1132 } 1133 m->m_len = m->m_pkthdr.len = hdrlen; 1134 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1135 1136 M_WME_SETAC(m, WME_AC_BE); 1137 1138 IEEE80211_NODE_STAT(ni, tx_data); 1139 1140 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni, 1141 "send %snull data frame on channel %u, pwr mgt %s", 1142 ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "", 1143 ieee80211_chan2ieee(ic, ic->ic_curchan), 1144 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 1145 1146 ret = ieee80211_raw_output(vap, ni, m, NULL); 1147 IEEE80211_TX_UNLOCK(ic); 1148 return (ret); 1149 } 1150 1151 /* 1152 * Assign priority to a frame based on any vlan tag assigned 1153 * to the station and/or any Diffserv setting in an IP header. 1154 * Finally, if an ACM policy is setup (in station mode) it's 1155 * applied. 1156 */ 1157 int 1158 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m) 1159 { 1160 const struct ether_header *eh = NULL; 1161 uint16_t ether_type; 1162 int v_wme_ac, d_wme_ac, ac; 1163 1164 if (__predict_false(m->m_flags & M_ENCAP)) { 1165 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 1166 struct llc *llc; 1167 int hdrlen, subtype; 1168 1169 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1170 if (subtype & IEEE80211_FC0_SUBTYPE_NODATA) { 1171 ac = WME_AC_BE; 1172 goto done; 1173 } 1174 1175 hdrlen = ieee80211_hdrsize(wh); 1176 if (m->m_pkthdr.len < hdrlen + sizeof(*llc)) 1177 return 1; 1178 1179 llc = (struct llc *)mtodo(m, hdrlen); 1180 if (llc->llc_dsap != LLC_SNAP_LSAP || 1181 llc->llc_ssap != LLC_SNAP_LSAP || 1182 llc->llc_control != LLC_UI || 1183 llc->llc_snap.org_code[0] != 0 || 1184 llc->llc_snap.org_code[1] != 0 || 1185 llc->llc_snap.org_code[2] != 0) 1186 return 1; 1187 1188 ether_type = llc->llc_snap.ether_type; 1189 } else { 1190 eh = mtod(m, struct ether_header *); 1191 ether_type = eh->ether_type; 1192 } 1193 1194 /* 1195 * Always promote PAE/EAPOL frames to high priority. 1196 */ 1197 if (ether_type == htons(ETHERTYPE_PAE)) { 1198 /* NB: mark so others don't need to check header */ 1199 m->m_flags |= M_EAPOL; 1200 ac = WME_AC_VO; 1201 goto done; 1202 } 1203 /* 1204 * Non-qos traffic goes to BE. 1205 */ 1206 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 1207 ac = WME_AC_BE; 1208 goto done; 1209 } 1210 1211 /* 1212 * If node has a vlan tag then all traffic 1213 * to it must have a matching tag. 1214 */ 1215 v_wme_ac = 0; 1216 if (ni->ni_vlan != 0) { 1217 if ((m->m_flags & M_VLANTAG) == 0) { 1218 IEEE80211_NODE_STAT(ni, tx_novlantag); 1219 return 1; 1220 } 1221 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 1222 EVL_VLANOFTAG(ni->ni_vlan)) { 1223 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 1224 return 1; 1225 } 1226 /* map vlan priority to AC */ 1227 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan)); 1228 } 1229 1230 /* XXX m_copydata may be too slow for fast path */ 1231 #ifdef INET 1232 if (eh && eh->ether_type == htons(ETHERTYPE_IP)) { 1233 uint8_t tos; 1234 /* 1235 * IP frame, map the DSCP bits from the TOS field. 1236 */ 1237 /* NB: ip header may not be in first mbuf */ 1238 m_copydata(m, sizeof(struct ether_header) + 1239 offsetof(struct ip, ip_tos), sizeof(tos), &tos); 1240 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1241 d_wme_ac = TID_TO_WME_AC(tos); 1242 } else { 1243 #endif /* INET */ 1244 #ifdef INET6 1245 if (eh && eh->ether_type == htons(ETHERTYPE_IPV6)) { 1246 uint32_t flow; 1247 uint8_t tos; 1248 /* 1249 * IPv6 frame, map the DSCP bits from the traffic class field. 1250 */ 1251 m_copydata(m, sizeof(struct ether_header) + 1252 offsetof(struct ip6_hdr, ip6_flow), sizeof(flow), 1253 (caddr_t) &flow); 1254 tos = (uint8_t)(ntohl(flow) >> 20); 1255 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1256 d_wme_ac = TID_TO_WME_AC(tos); 1257 } else { 1258 #endif /* INET6 */ 1259 d_wme_ac = WME_AC_BE; 1260 #ifdef INET6 1261 } 1262 #endif 1263 #ifdef INET 1264 } 1265 #endif 1266 /* 1267 * Use highest priority AC. 1268 */ 1269 if (v_wme_ac > d_wme_ac) 1270 ac = v_wme_ac; 1271 else 1272 ac = d_wme_ac; 1273 1274 /* 1275 * Apply ACM policy. 1276 */ 1277 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) { 1278 static const int acmap[4] = { 1279 WME_AC_BK, /* WME_AC_BE */ 1280 WME_AC_BK, /* WME_AC_BK */ 1281 WME_AC_BE, /* WME_AC_VI */ 1282 WME_AC_VI, /* WME_AC_VO */ 1283 }; 1284 struct ieee80211com *ic = ni->ni_ic; 1285 1286 while (ac != WME_AC_BK && 1287 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 1288 ac = acmap[ac]; 1289 } 1290 done: 1291 M_WME_SETAC(m, ac); 1292 return 0; 1293 } 1294 1295 /* 1296 * Insure there is sufficient contiguous space to encapsulate the 1297 * 802.11 data frame. If room isn't already there, arrange for it. 1298 * Drivers and cipher modules assume we have done the necessary work 1299 * and fail rudely if they don't find the space they need. 1300 */ 1301 struct mbuf * 1302 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize, 1303 struct ieee80211_key *key, struct mbuf *m) 1304 { 1305 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 1306 int needed_space = vap->iv_ic->ic_headroom + hdrsize; 1307 1308 if (key != NULL) { 1309 /* XXX belongs in crypto code? */ 1310 needed_space += key->wk_cipher->ic_header; 1311 /* XXX frags */ 1312 /* 1313 * When crypto is being done in the host we must insure 1314 * the data are writable for the cipher routines; clone 1315 * a writable mbuf chain. 1316 * XXX handle SWMIC specially 1317 */ 1318 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) { 1319 m = m_unshare(m, M_NOWAIT); 1320 if (m == NULL) { 1321 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1322 "%s: cannot get writable mbuf\n", __func__); 1323 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */ 1324 return NULL; 1325 } 1326 } 1327 } 1328 /* 1329 * We know we are called just before stripping an Ethernet 1330 * header and prepending an LLC header. This means we know 1331 * there will be 1332 * sizeof(struct ether_header) - sizeof(struct llc) 1333 * bytes recovered to which we need additional space for the 1334 * 802.11 header and any crypto header. 1335 */ 1336 /* XXX check trailing space and copy instead? */ 1337 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 1338 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); 1339 if (n == NULL) { 1340 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1341 "%s: cannot expand storage\n", __func__); 1342 vap->iv_stats.is_tx_nobuf++; 1343 m_freem(m); 1344 return NULL; 1345 } 1346 KASSERT(needed_space <= MHLEN, 1347 ("not enough room, need %u got %d\n", needed_space, MHLEN)); 1348 /* 1349 * Setup new mbuf to have leading space to prepend the 1350 * 802.11 header and any crypto header bits that are 1351 * required (the latter are added when the driver calls 1352 * back to ieee80211_crypto_encap to do crypto encapsulation). 1353 */ 1354 /* NB: must be first 'cuz it clobbers m_data */ 1355 m_move_pkthdr(n, m); 1356 n->m_len = 0; /* NB: m_gethdr does not set */ 1357 n->m_data += needed_space; 1358 /* 1359 * Pull up Ethernet header to create the expected layout. 1360 * We could use m_pullup but that's overkill (i.e. we don't 1361 * need the actual data) and it cannot fail so do it inline 1362 * for speed. 1363 */ 1364 /* NB: struct ether_header is known to be contiguous */ 1365 n->m_len += sizeof(struct ether_header); 1366 m->m_len -= sizeof(struct ether_header); 1367 m->m_data += sizeof(struct ether_header); 1368 /* 1369 * Replace the head of the chain. 1370 */ 1371 n->m_next = m; 1372 m = n; 1373 } 1374 return m; 1375 #undef TO_BE_RECLAIMED 1376 } 1377 1378 /* 1379 * Return the transmit key to use in sending a unicast frame. 1380 * If a unicast key is set we use that. When no unicast key is set 1381 * we fall back to the default transmit key. 1382 */ 1383 static __inline struct ieee80211_key * 1384 ieee80211_crypto_getucastkey(struct ieee80211vap *vap, 1385 struct ieee80211_node *ni) 1386 { 1387 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) { 1388 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1389 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1390 return NULL; 1391 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1392 } else { 1393 return &ni->ni_ucastkey; 1394 } 1395 } 1396 1397 /* 1398 * Return the transmit key to use in sending a multicast frame. 1399 * Multicast traffic always uses the group key which is installed as 1400 * the default tx key. 1401 */ 1402 static __inline struct ieee80211_key * 1403 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap, 1404 struct ieee80211_node *ni) 1405 { 1406 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1407 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1408 return NULL; 1409 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1410 } 1411 1412 /* 1413 * Encapsulate an outbound data frame. The mbuf chain is updated. 1414 * If an error is encountered NULL is returned. The caller is required 1415 * to provide a node reference and pullup the ethernet header in the 1416 * first mbuf. 1417 * 1418 * NB: Packet is assumed to be processed by ieee80211_classify which 1419 * marked EAPOL frames w/ M_EAPOL. 1420 */ 1421 struct mbuf * 1422 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni, 1423 struct mbuf *m) 1424 { 1425 #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh)) 1426 #define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc) 1427 struct ieee80211com *ic = ni->ni_ic; 1428 #ifdef IEEE80211_SUPPORT_MESH 1429 struct ieee80211_mesh_state *ms = vap->iv_mesh; 1430 struct ieee80211_meshcntl_ae10 *mc; 1431 struct ieee80211_mesh_route *rt = NULL; 1432 int dir = -1; 1433 #endif 1434 struct ether_header eh; 1435 struct ieee80211_frame *wh; 1436 struct ieee80211_key *key; 1437 struct llc *llc; 1438 int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast; 1439 ieee80211_seq seqno; 1440 int meshhdrsize, meshae; 1441 uint8_t *qos; 1442 int is_amsdu = 0; 1443 1444 IEEE80211_TX_LOCK_ASSERT(ic); 1445 1446 is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST)); 1447 1448 /* 1449 * Copy existing Ethernet header to a safe place. The 1450 * rest of the code assumes it's ok to strip it when 1451 * reorganizing state for the final encapsulation. 1452 */ 1453 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 1454 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t)); 1455 1456 /* 1457 * Insure space for additional headers. First identify 1458 * transmit key to use in calculating any buffer adjustments 1459 * required. This is also used below to do privacy 1460 * encapsulation work. Then calculate the 802.11 header 1461 * size and any padding required by the driver. 1462 * 1463 * Note key may be NULL if we fall back to the default 1464 * transmit key and that is not set. In that case the 1465 * buffer may not be expanded as needed by the cipher 1466 * routines, but they will/should discard it. 1467 */ 1468 if (vap->iv_flags & IEEE80211_F_PRIVACY) { 1469 if (vap->iv_opmode == IEEE80211_M_STA || 1470 !IEEE80211_IS_MULTICAST(eh.ether_dhost) || 1471 (vap->iv_opmode == IEEE80211_M_WDS && 1472 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) 1473 key = ieee80211_crypto_getucastkey(vap, ni); 1474 else 1475 key = ieee80211_crypto_getmcastkey(vap, ni); 1476 if (key == NULL && (m->m_flags & M_EAPOL) == 0) { 1477 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, 1478 eh.ether_dhost, 1479 "no default transmit key (%s) deftxkey %u", 1480 __func__, vap->iv_def_txkey); 1481 vap->iv_stats.is_tx_nodefkey++; 1482 goto bad; 1483 } 1484 } else 1485 key = NULL; 1486 /* 1487 * XXX Some ap's don't handle QoS-encapsulated EAPOL 1488 * frames so suppress use. This may be an issue if other 1489 * ap's require all data frames to be QoS-encapsulated 1490 * once negotiated in which case we'll need to make this 1491 * configurable. 1492 * 1493 * Don't send multicast QoS frames. 1494 * Technically multicast frames can be QoS if all stations in the 1495 * BSS are also QoS. 1496 * 1497 * NB: mesh data frames are QoS, including multicast frames. 1498 */ 1499 addqos = 1500 (((is_mcast == 0) && (ni->ni_flags & 1501 (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) || 1502 (vap->iv_opmode == IEEE80211_M_MBSS)) && 1503 (m->m_flags & M_EAPOL) == 0; 1504 1505 if (addqos) 1506 hdrsize = sizeof(struct ieee80211_qosframe); 1507 else 1508 hdrsize = sizeof(struct ieee80211_frame); 1509 #ifdef IEEE80211_SUPPORT_MESH 1510 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1511 /* 1512 * Mesh data frames are encapsulated according to the 1513 * rules of Section 11B.8.5 (p.139 of D3.0 spec). 1514 * o Group Addressed data (aka multicast) originating 1515 * at the local sta are sent w/ 3-address format and 1516 * address extension mode 00 1517 * o Individually Addressed data (aka unicast) originating 1518 * at the local sta are sent w/ 4-address format and 1519 * address extension mode 00 1520 * o Group Addressed data forwarded from a non-mesh sta are 1521 * sent w/ 3-address format and address extension mode 01 1522 * o Individually Address data from another sta are sent 1523 * w/ 4-address format and address extension mode 10 1524 */ 1525 is4addr = 0; /* NB: don't use, disable */ 1526 if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) { 1527 rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost); 1528 KASSERT(rt != NULL, ("route is NULL")); 1529 dir = IEEE80211_FC1_DIR_DSTODS; 1530 hdrsize += IEEE80211_ADDR_LEN; 1531 if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) { 1532 if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate, 1533 vap->iv_myaddr)) { 1534 IEEE80211_NOTE_MAC(vap, 1535 IEEE80211_MSG_MESH, 1536 eh.ether_dhost, 1537 "%s", "trying to send to ourself"); 1538 goto bad; 1539 } 1540 meshae = IEEE80211_MESH_AE_10; 1541 meshhdrsize = 1542 sizeof(struct ieee80211_meshcntl_ae10); 1543 } else { 1544 meshae = IEEE80211_MESH_AE_00; 1545 meshhdrsize = 1546 sizeof(struct ieee80211_meshcntl); 1547 } 1548 } else { 1549 dir = IEEE80211_FC1_DIR_FROMDS; 1550 if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) { 1551 /* proxy group */ 1552 meshae = IEEE80211_MESH_AE_01; 1553 meshhdrsize = 1554 sizeof(struct ieee80211_meshcntl_ae01); 1555 } else { 1556 /* group */ 1557 meshae = IEEE80211_MESH_AE_00; 1558 meshhdrsize = sizeof(struct ieee80211_meshcntl); 1559 } 1560 } 1561 } else { 1562 #endif 1563 /* 1564 * 4-address frames need to be generated for: 1565 * o packets sent through a WDS vap (IEEE80211_M_WDS) 1566 * o packets sent through a vap marked for relaying 1567 * (e.g. a station operating with dynamic WDS) 1568 */ 1569 is4addr = vap->iv_opmode == IEEE80211_M_WDS || 1570 ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) && 1571 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)); 1572 if (is4addr) 1573 hdrsize += IEEE80211_ADDR_LEN; 1574 meshhdrsize = meshae = 0; 1575 #ifdef IEEE80211_SUPPORT_MESH 1576 } 1577 #endif 1578 /* 1579 * Honor driver DATAPAD requirement. 1580 */ 1581 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1582 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1583 else 1584 hdrspace = hdrsize; 1585 1586 if (__predict_true((m->m_flags & M_FF) == 0)) { 1587 /* 1588 * Normal frame. 1589 */ 1590 m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m); 1591 if (m == NULL) { 1592 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 1593 goto bad; 1594 } 1595 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */ 1596 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 1597 llc = mtod(m, struct llc *); 1598 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 1599 llc->llc_control = LLC_UI; 1600 llc->llc_snap.org_code[0] = 0; 1601 llc->llc_snap.org_code[1] = 0; 1602 llc->llc_snap.org_code[2] = 0; 1603 llc->llc_snap.ether_type = eh.ether_type; 1604 } else { 1605 #ifdef IEEE80211_SUPPORT_SUPERG 1606 /* 1607 * Aggregated frame. Check if it's for AMSDU or FF. 1608 * 1609 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented 1610 * anywhere for some reason. But, since 11n requires 1611 * AMSDU RX, we can just assume "11n" == "AMSDU". 1612 */ 1613 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__); 1614 if (ieee80211_amsdu_tx_ok(ni)) { 1615 m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key); 1616 is_amsdu = 1; 1617 } else { 1618 m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key); 1619 } 1620 if (m == NULL) 1621 #endif 1622 goto bad; 1623 } 1624 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 1625 1626 M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT); 1627 if (m == NULL) { 1628 vap->iv_stats.is_tx_nobuf++; 1629 goto bad; 1630 } 1631 wh = mtod(m, struct ieee80211_frame *); 1632 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 1633 *(uint16_t *)wh->i_dur = 0; 1634 qos = NULL; /* NB: quiet compiler */ 1635 if (is4addr) { 1636 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 1637 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); 1638 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1639 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1640 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); 1641 } else switch (vap->iv_opmode) { 1642 case IEEE80211_M_STA: 1643 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 1644 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 1645 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1646 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1647 break; 1648 case IEEE80211_M_IBSS: 1649 case IEEE80211_M_AHDEMO: 1650 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1651 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1652 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1653 /* 1654 * NB: always use the bssid from iv_bss as the 1655 * neighbor's may be stale after an ibss merge 1656 */ 1657 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid); 1658 break; 1659 case IEEE80211_M_HOSTAP: 1660 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1661 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1662 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 1663 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 1664 break; 1665 #ifdef IEEE80211_SUPPORT_MESH 1666 case IEEE80211_M_MBSS: 1667 /* NB: offset by hdrspace to deal with DATAPAD */ 1668 mc = (struct ieee80211_meshcntl_ae10 *) 1669 (mtod(m, uint8_t *) + hdrspace); 1670 wh->i_fc[1] = dir; 1671 switch (meshae) { 1672 case IEEE80211_MESH_AE_00: /* no proxy */ 1673 mc->mc_flags = 0; 1674 if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */ 1675 IEEE80211_ADDR_COPY(wh->i_addr1, 1676 ni->ni_macaddr); 1677 IEEE80211_ADDR_COPY(wh->i_addr2, 1678 vap->iv_myaddr); 1679 IEEE80211_ADDR_COPY(wh->i_addr3, 1680 eh.ether_dhost); 1681 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, 1682 eh.ether_shost); 1683 qos =((struct ieee80211_qosframe_addr4 *) 1684 wh)->i_qos; 1685 } else if (dir == IEEE80211_FC1_DIR_FROMDS) { 1686 /* mcast */ 1687 IEEE80211_ADDR_COPY(wh->i_addr1, 1688 eh.ether_dhost); 1689 IEEE80211_ADDR_COPY(wh->i_addr2, 1690 vap->iv_myaddr); 1691 IEEE80211_ADDR_COPY(wh->i_addr3, 1692 eh.ether_shost); 1693 qos = ((struct ieee80211_qosframe *) 1694 wh)->i_qos; 1695 } 1696 break; 1697 case IEEE80211_MESH_AE_01: /* mcast, proxy */ 1698 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1699 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1700 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1701 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr); 1702 mc->mc_flags = 1; 1703 IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4, 1704 eh.ether_shost); 1705 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1706 break; 1707 case IEEE80211_MESH_AE_10: /* ucast, proxy */ 1708 KASSERT(rt != NULL, ("route is NULL")); 1709 IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop); 1710 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1711 IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate); 1712 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr); 1713 mc->mc_flags = IEEE80211_MESH_AE_10; 1714 IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost); 1715 IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost); 1716 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1717 break; 1718 default: 1719 KASSERT(0, ("meshae %d", meshae)); 1720 break; 1721 } 1722 mc->mc_ttl = ms->ms_ttl; 1723 ms->ms_seq++; 1724 le32enc(mc->mc_seq, ms->ms_seq); 1725 break; 1726 #endif 1727 case IEEE80211_M_WDS: /* NB: is4addr should always be true */ 1728 default: 1729 goto bad; 1730 } 1731 if (m->m_flags & M_MORE_DATA) 1732 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 1733 if (addqos) { 1734 int ac, tid; 1735 1736 if (is4addr) { 1737 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1738 /* NB: mesh case handled earlier */ 1739 } else if (vap->iv_opmode != IEEE80211_M_MBSS) 1740 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1741 ac = M_WME_GETAC(m); 1742 /* map from access class/queue to 11e header priorty value */ 1743 tid = WME_AC_TO_TID(ac); 1744 qos[0] = tid & IEEE80211_QOS_TID; 1745 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 1746 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1747 #ifdef IEEE80211_SUPPORT_MESH 1748 if (vap->iv_opmode == IEEE80211_M_MBSS) 1749 qos[1] = IEEE80211_QOS_MC; 1750 else 1751 #endif 1752 qos[1] = 0; 1753 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 1754 1755 /* 1756 * If this is an A-MSDU then ensure we set the 1757 * relevant field. 1758 */ 1759 if (is_amsdu) 1760 qos[0] |= IEEE80211_QOS_AMSDU; 1761 1762 /* 1763 * XXX TODO TX lock is needed for atomic updates of sequence 1764 * numbers. If the driver does it, then don't do it here; 1765 * and we don't need the TX lock held. 1766 */ 1767 if ((m->m_flags & M_AMPDU_MPDU) == 0) { 1768 /* 1769 * 802.11-2012 9.3.2.10 - 1770 * 1771 * If this is a multicast frame then we need 1772 * to ensure that the sequence number comes from 1773 * a separate seqno space and not the TID space. 1774 * 1775 * Otherwise multicast frames may actually cause 1776 * holes in the TX blockack window space and 1777 * upset various things. 1778 */ 1779 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1780 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1781 else 1782 seqno = ni->ni_txseqs[tid]++; 1783 1784 /* 1785 * NB: don't assign a sequence # to potential 1786 * aggregates; we expect this happens at the 1787 * point the frame comes off any aggregation q 1788 * as otherwise we may introduce holes in the 1789 * BA sequence space and/or make window accouting 1790 * more difficult. 1791 * 1792 * XXX may want to control this with a driver 1793 * capability; this may also change when we pull 1794 * aggregation up into net80211 1795 */ 1796 *(uint16_t *)wh->i_seq = 1797 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1798 M_SEQNO_SET(m, seqno); 1799 } else { 1800 /* NB: zero out i_seq field (for s/w encryption etc) */ 1801 *(uint16_t *)wh->i_seq = 0; 1802 } 1803 } else { 1804 /* 1805 * XXX TODO TX lock is needed for atomic updates of sequence 1806 * numbers. If the driver does it, then don't do it here; 1807 * and we don't need the TX lock held. 1808 */ 1809 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1810 *(uint16_t *)wh->i_seq = 1811 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1812 M_SEQNO_SET(m, seqno); 1813 1814 /* 1815 * XXX TODO: we shouldn't allow EAPOL, etc that would 1816 * be forced to be non-QoS traffic to be A-MSDU encapsulated. 1817 */ 1818 if (is_amsdu) 1819 printf("%s: XXX ERROR: is_amsdu set; not QoS!\n", 1820 __func__); 1821 } 1822 1823 /* 1824 * Check if xmit fragmentation is required. 1825 * 1826 * If the hardware does fragmentation offload, then don't bother 1827 * doing it here. 1828 */ 1829 if (IEEE80211_CONF_FRAG_OFFLOAD(ic)) 1830 txfrag = 0; 1831 else 1832 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold && 1833 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 1834 (vap->iv_caps & IEEE80211_C_TXFRAG) && 1835 (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0); 1836 1837 if (key != NULL) { 1838 /* 1839 * IEEE 802.1X: send EAPOL frames always in the clear. 1840 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 1841 */ 1842 if ((m->m_flags & M_EAPOL) == 0 || 1843 ((vap->iv_flags & IEEE80211_F_WPA) && 1844 (vap->iv_opmode == IEEE80211_M_STA ? 1845 !IEEE80211_KEY_UNDEFINED(key) : 1846 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) { 1847 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 1848 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) { 1849 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT, 1850 eh.ether_dhost, 1851 "%s", "enmic failed, discard frame"); 1852 vap->iv_stats.is_crypto_enmicfail++; 1853 goto bad; 1854 } 1855 } 1856 } 1857 if (txfrag && !ieee80211_fragment(vap, m, hdrsize, 1858 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold)) 1859 goto bad; 1860 1861 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1862 1863 IEEE80211_NODE_STAT(ni, tx_data); 1864 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1865 IEEE80211_NODE_STAT(ni, tx_mcast); 1866 m->m_flags |= M_MCAST; 1867 } else 1868 IEEE80211_NODE_STAT(ni, tx_ucast); 1869 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 1870 1871 return m; 1872 bad: 1873 if (m != NULL) 1874 m_freem(m); 1875 return NULL; 1876 #undef WH4 1877 #undef MC01 1878 } 1879 1880 void 1881 ieee80211_free_mbuf(struct mbuf *m) 1882 { 1883 struct mbuf *next; 1884 1885 if (m == NULL) 1886 return; 1887 1888 do { 1889 next = m->m_nextpkt; 1890 m->m_nextpkt = NULL; 1891 m_freem(m); 1892 } while ((m = next) != NULL); 1893 } 1894 1895 /* 1896 * Fragment the frame according to the specified mtu. 1897 * The size of the 802.11 header (w/o padding) is provided 1898 * so we don't need to recalculate it. We create a new 1899 * mbuf for each fragment and chain it through m_nextpkt; 1900 * we might be able to optimize this by reusing the original 1901 * packet's mbufs but that is significantly more complicated. 1902 */ 1903 static int 1904 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0, 1905 u_int hdrsize, u_int ciphdrsize, u_int mtu) 1906 { 1907 struct ieee80211com *ic = vap->iv_ic; 1908 struct ieee80211_frame *wh, *whf; 1909 struct mbuf *m, *prev; 1910 u_int totalhdrsize, fragno, fragsize, off, remainder, payload; 1911 u_int hdrspace; 1912 1913 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); 1914 KASSERT(m0->m_pkthdr.len > mtu, 1915 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); 1916 1917 /* 1918 * Honor driver DATAPAD requirement. 1919 */ 1920 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1921 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1922 else 1923 hdrspace = hdrsize; 1924 1925 wh = mtod(m0, struct ieee80211_frame *); 1926 /* NB: mark the first frag; it will be propagated below */ 1927 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; 1928 totalhdrsize = hdrspace + ciphdrsize; 1929 fragno = 1; 1930 off = mtu - ciphdrsize; 1931 remainder = m0->m_pkthdr.len - off; 1932 prev = m0; 1933 do { 1934 fragsize = MIN(totalhdrsize + remainder, mtu); 1935 m = m_get2(fragsize, M_NOWAIT, MT_DATA, M_PKTHDR); 1936 if (m == NULL) 1937 goto bad; 1938 /* leave room to prepend any cipher header */ 1939 m_align(m, fragsize - ciphdrsize); 1940 1941 /* 1942 * Form the header in the fragment. Note that since 1943 * we mark the first fragment with the MORE_FRAG bit 1944 * it automatically is propagated to each fragment; we 1945 * need only clear it on the last fragment (done below). 1946 * NB: frag 1+ dont have Mesh Control field present. 1947 */ 1948 whf = mtod(m, struct ieee80211_frame *); 1949 memcpy(whf, wh, hdrsize); 1950 #ifdef IEEE80211_SUPPORT_MESH 1951 if (vap->iv_opmode == IEEE80211_M_MBSS) 1952 ieee80211_getqos(wh)[1] &= ~IEEE80211_QOS_MC; 1953 #endif 1954 *(uint16_t *)&whf->i_seq[0] |= htole16( 1955 (fragno & IEEE80211_SEQ_FRAG_MASK) << 1956 IEEE80211_SEQ_FRAG_SHIFT); 1957 fragno++; 1958 1959 payload = fragsize - totalhdrsize; 1960 /* NB: destination is known to be contiguous */ 1961 1962 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace); 1963 m->m_len = hdrspace + payload; 1964 m->m_pkthdr.len = hdrspace + payload; 1965 m->m_flags |= M_FRAG; 1966 1967 /* chain up the fragment */ 1968 prev->m_nextpkt = m; 1969 prev = m; 1970 1971 /* deduct fragment just formed */ 1972 remainder -= payload; 1973 off += payload; 1974 } while (remainder != 0); 1975 1976 /* set the last fragment */ 1977 m->m_flags |= M_LASTFRAG; 1978 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; 1979 1980 /* strip first mbuf now that everything has been copied */ 1981 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); 1982 m0->m_flags |= M_FIRSTFRAG | M_FRAG; 1983 1984 vap->iv_stats.is_tx_fragframes++; 1985 vap->iv_stats.is_tx_frags += fragno-1; 1986 1987 return 1; 1988 bad: 1989 /* reclaim fragments but leave original frame for caller to free */ 1990 ieee80211_free_mbuf(m0->m_nextpkt); 1991 m0->m_nextpkt = NULL; 1992 return 0; 1993 } 1994 1995 /* 1996 * Add a supported rates element id to a frame. 1997 */ 1998 uint8_t * 1999 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs) 2000 { 2001 int nrates; 2002 2003 *frm++ = IEEE80211_ELEMID_RATES; 2004 nrates = rs->rs_nrates; 2005 if (nrates > IEEE80211_RATE_SIZE) 2006 nrates = IEEE80211_RATE_SIZE; 2007 *frm++ = nrates; 2008 memcpy(frm, rs->rs_rates, nrates); 2009 return frm + nrates; 2010 } 2011 2012 /* 2013 * Add an extended supported rates element id to a frame. 2014 */ 2015 uint8_t * 2016 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs) 2017 { 2018 /* 2019 * Add an extended supported rates element if operating in 11g mode. 2020 */ 2021 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 2022 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 2023 *frm++ = IEEE80211_ELEMID_XRATES; 2024 *frm++ = nrates; 2025 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 2026 frm += nrates; 2027 } 2028 return frm; 2029 } 2030 2031 /* 2032 * Add an ssid element to a frame. 2033 */ 2034 uint8_t * 2035 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) 2036 { 2037 *frm++ = IEEE80211_ELEMID_SSID; 2038 *frm++ = len; 2039 memcpy(frm, ssid, len); 2040 return frm + len; 2041 } 2042 2043 /* 2044 * Add an erp element to a frame. 2045 */ 2046 static uint8_t * 2047 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic) 2048 { 2049 uint8_t erp; 2050 2051 *frm++ = IEEE80211_ELEMID_ERP; 2052 *frm++ = 1; 2053 erp = 0; 2054 if (ic->ic_nonerpsta != 0) 2055 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 2056 if (ic->ic_flags & IEEE80211_F_USEPROT) 2057 erp |= IEEE80211_ERP_USE_PROTECTION; 2058 if (ic->ic_flags & IEEE80211_F_USEBARKER) 2059 erp |= IEEE80211_ERP_LONG_PREAMBLE; 2060 *frm++ = erp; 2061 return frm; 2062 } 2063 2064 /* 2065 * Add a CFParams element to a frame. 2066 */ 2067 static uint8_t * 2068 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic) 2069 { 2070 #define ADDSHORT(frm, v) do { \ 2071 le16enc(frm, v); \ 2072 frm += 2; \ 2073 } while (0) 2074 *frm++ = IEEE80211_ELEMID_CFPARMS; 2075 *frm++ = 6; 2076 *frm++ = 0; /* CFP count */ 2077 *frm++ = 2; /* CFP period */ 2078 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */ 2079 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */ 2080 return frm; 2081 #undef ADDSHORT 2082 } 2083 2084 static __inline uint8_t * 2085 add_appie(uint8_t *frm, const struct ieee80211_appie *ie) 2086 { 2087 memcpy(frm, ie->ie_data, ie->ie_len); 2088 return frm + ie->ie_len; 2089 } 2090 2091 static __inline uint8_t * 2092 add_ie(uint8_t *frm, const uint8_t *ie) 2093 { 2094 memcpy(frm, ie, 2 + ie[1]); 2095 return frm + 2 + ie[1]; 2096 } 2097 2098 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 2099 /* 2100 * Add a WME information element to a frame. 2101 */ 2102 uint8_t * 2103 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme) 2104 { 2105 static const struct ieee80211_wme_info info = { 2106 .wme_id = IEEE80211_ELEMID_VENDOR, 2107 .wme_len = sizeof(struct ieee80211_wme_info) - 2, 2108 .wme_oui = { WME_OUI_BYTES }, 2109 .wme_type = WME_OUI_TYPE, 2110 .wme_subtype = WME_INFO_OUI_SUBTYPE, 2111 .wme_version = WME_VERSION, 2112 .wme_info = 0, 2113 }; 2114 memcpy(frm, &info, sizeof(info)); 2115 return frm + sizeof(info); 2116 } 2117 2118 /* 2119 * Add a WME parameters element to a frame. 2120 */ 2121 static uint8_t * 2122 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme) 2123 { 2124 #define SM(_v, _f) (((_v) << _f##_S) & _f) 2125 #define ADDSHORT(frm, v) do { \ 2126 le16enc(frm, v); \ 2127 frm += 2; \ 2128 } while (0) 2129 /* NB: this works 'cuz a param has an info at the front */ 2130 static const struct ieee80211_wme_info param = { 2131 .wme_id = IEEE80211_ELEMID_VENDOR, 2132 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 2133 .wme_oui = { WME_OUI_BYTES }, 2134 .wme_type = WME_OUI_TYPE, 2135 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 2136 .wme_version = WME_VERSION, 2137 }; 2138 int i; 2139 2140 memcpy(frm, ¶m, sizeof(param)); 2141 frm += __offsetof(struct ieee80211_wme_info, wme_info); 2142 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ 2143 *frm++ = 0; /* reserved field */ 2144 for (i = 0; i < WME_NUM_AC; i++) { 2145 const struct wmeParams *ac = 2146 &wme->wme_bssChanParams.cap_wmeParams[i]; 2147 *frm++ = SM(i, WME_PARAM_ACI) 2148 | SM(ac->wmep_acm, WME_PARAM_ACM) 2149 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) 2150 ; 2151 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) 2152 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) 2153 ; 2154 ADDSHORT(frm, ac->wmep_txopLimit); 2155 } 2156 return frm; 2157 #undef SM 2158 #undef ADDSHORT 2159 } 2160 #undef WME_OUI_BYTES 2161 2162 /* 2163 * Add an 11h Power Constraint element to a frame. 2164 */ 2165 static uint8_t * 2166 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap) 2167 { 2168 const struct ieee80211_channel *c = vap->iv_bss->ni_chan; 2169 /* XXX per-vap tx power limit? */ 2170 int8_t limit = vap->iv_ic->ic_txpowlimit / 2; 2171 2172 frm[0] = IEEE80211_ELEMID_PWRCNSTR; 2173 frm[1] = 1; 2174 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0; 2175 return frm + 3; 2176 } 2177 2178 /* 2179 * Add an 11h Power Capability element to a frame. 2180 */ 2181 static uint8_t * 2182 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c) 2183 { 2184 frm[0] = IEEE80211_ELEMID_PWRCAP; 2185 frm[1] = 2; 2186 frm[2] = c->ic_minpower; 2187 frm[3] = c->ic_maxpower; 2188 return frm + 4; 2189 } 2190 2191 /* 2192 * Add an 11h Supported Channels element to a frame. 2193 */ 2194 static uint8_t * 2195 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic) 2196 { 2197 static const int ielen = 26; 2198 2199 frm[0] = IEEE80211_ELEMID_SUPPCHAN; 2200 frm[1] = ielen; 2201 /* XXX not correct */ 2202 memcpy(frm+2, ic->ic_chan_avail, ielen); 2203 return frm + 2 + ielen; 2204 } 2205 2206 /* 2207 * Add an 11h Quiet time element to a frame. 2208 */ 2209 static uint8_t * 2210 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap, int update) 2211 { 2212 struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm; 2213 2214 quiet->quiet_ie = IEEE80211_ELEMID_QUIET; 2215 quiet->len = 6; 2216 2217 /* 2218 * Only update every beacon interval - otherwise probe responses 2219 * would update the quiet count value. 2220 */ 2221 if (update) { 2222 if (vap->iv_quiet_count_value == 1) 2223 vap->iv_quiet_count_value = vap->iv_quiet_count; 2224 else if (vap->iv_quiet_count_value > 1) 2225 vap->iv_quiet_count_value--; 2226 } 2227 2228 if (vap->iv_quiet_count_value == 0) { 2229 /* value 0 is reserved as per 802.11h standerd */ 2230 vap->iv_quiet_count_value = 1; 2231 } 2232 2233 quiet->tbttcount = vap->iv_quiet_count_value; 2234 quiet->period = vap->iv_quiet_period; 2235 quiet->duration = htole16(vap->iv_quiet_duration); 2236 quiet->offset = htole16(vap->iv_quiet_offset); 2237 return frm + sizeof(*quiet); 2238 } 2239 2240 /* 2241 * Add an 11h Channel Switch Announcement element to a frame. 2242 * Note that we use the per-vap CSA count to adjust the global 2243 * counter so we can use this routine to form probe response 2244 * frames and get the current count. 2245 */ 2246 static uint8_t * 2247 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap) 2248 { 2249 struct ieee80211com *ic = vap->iv_ic; 2250 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm; 2251 2252 csa->csa_ie = IEEE80211_ELEMID_CSA; 2253 csa->csa_len = 3; 2254 csa->csa_mode = 1; /* XXX force quiet on channel */ 2255 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan); 2256 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count; 2257 return frm + sizeof(*csa); 2258 } 2259 2260 /* 2261 * Add an 11h country information element to a frame. 2262 */ 2263 static uint8_t * 2264 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic) 2265 { 2266 2267 if (ic->ic_countryie == NULL || 2268 ic->ic_countryie_chan != ic->ic_bsschan) { 2269 /* 2270 * Handle lazy construction of ie. This is done on 2271 * first use and after a channel change that requires 2272 * re-calculation. 2273 */ 2274 if (ic->ic_countryie != NULL) 2275 IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE); 2276 ic->ic_countryie = ieee80211_alloc_countryie(ic); 2277 if (ic->ic_countryie == NULL) 2278 return frm; 2279 ic->ic_countryie_chan = ic->ic_bsschan; 2280 } 2281 return add_appie(frm, ic->ic_countryie); 2282 } 2283 2284 uint8_t * 2285 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap) 2286 { 2287 if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) 2288 return (add_ie(frm, vap->iv_wpa_ie)); 2289 else { 2290 /* XXX else complain? */ 2291 return (frm); 2292 } 2293 } 2294 2295 uint8_t * 2296 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap) 2297 { 2298 if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL) 2299 return (add_ie(frm, vap->iv_rsn_ie)); 2300 else { 2301 /* XXX else complain? */ 2302 return (frm); 2303 } 2304 } 2305 2306 uint8_t * 2307 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni) 2308 { 2309 if (ni->ni_flags & IEEE80211_NODE_QOS) { 2310 *frm++ = IEEE80211_ELEMID_QOS; 2311 *frm++ = 1; 2312 *frm++ = 0; 2313 } 2314 2315 return (frm); 2316 } 2317 2318 /* 2319 * Send a probe request frame with the specified ssid 2320 * and any optional information element data. 2321 */ 2322 int 2323 ieee80211_send_probereq(struct ieee80211_node *ni, 2324 const uint8_t sa[IEEE80211_ADDR_LEN], 2325 const uint8_t da[IEEE80211_ADDR_LEN], 2326 const uint8_t bssid[IEEE80211_ADDR_LEN], 2327 const uint8_t *ssid, size_t ssidlen) 2328 { 2329 struct ieee80211vap *vap = ni->ni_vap; 2330 struct ieee80211com *ic = ni->ni_ic; 2331 struct ieee80211_node *bss; 2332 const struct ieee80211_txparam *tp; 2333 struct ieee80211_bpf_params params; 2334 const struct ieee80211_rateset *rs; 2335 struct mbuf *m; 2336 uint8_t *frm; 2337 int ret; 2338 2339 bss = ieee80211_ref_node(vap->iv_bss); 2340 2341 if (vap->iv_state == IEEE80211_S_CAC) { 2342 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni, 2343 "block %s frame in CAC state", "probe request"); 2344 vap->iv_stats.is_tx_badstate++; 2345 ieee80211_free_node(bss); 2346 return EIO; /* XXX */ 2347 } 2348 2349 /* 2350 * Hold a reference on the node so it doesn't go away until after 2351 * the xmit is complete all the way in the driver. On error we 2352 * will remove our reference. 2353 */ 2354 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2355 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2356 __func__, __LINE__, 2357 ni, ether_sprintf(ni->ni_macaddr), 2358 ieee80211_node_refcnt(ni)+1); 2359 ieee80211_ref_node(ni); 2360 2361 /* 2362 * prreq frame format 2363 * [tlv] ssid 2364 * [tlv] supported rates 2365 * [tlv] RSN (optional) 2366 * [tlv] extended supported rates 2367 * [tlv] HT cap (optional) 2368 * [tlv] VHT cap (optional) 2369 * [tlv] WPA (optional) 2370 * [tlv] user-specified ie's 2371 */ 2372 m = ieee80211_getmgtframe(&frm, 2373 ic->ic_headroom + sizeof(struct ieee80211_frame), 2374 2 + IEEE80211_NWID_LEN 2375 + 2 + IEEE80211_RATE_SIZE 2376 + sizeof(struct ieee80211_ie_htcap) 2377 + sizeof(struct ieee80211_ie_vhtcap) 2378 + sizeof(struct ieee80211_ie_htinfo) /* XXX not needed? */ 2379 + sizeof(struct ieee80211_ie_wpa) 2380 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2381 + sizeof(struct ieee80211_ie_wpa) 2382 + (vap->iv_appie_probereq != NULL ? 2383 vap->iv_appie_probereq->ie_len : 0) 2384 ); 2385 if (m == NULL) { 2386 vap->iv_stats.is_tx_nobuf++; 2387 ieee80211_free_node(ni); 2388 ieee80211_free_node(bss); 2389 return ENOMEM; 2390 } 2391 2392 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 2393 rs = ieee80211_get_suprates(ic, ic->ic_curchan); 2394 frm = ieee80211_add_rates(frm, rs); 2395 frm = ieee80211_add_rsn(frm, vap); 2396 frm = ieee80211_add_xrates(frm, rs); 2397 2398 /* 2399 * Note: we can't use bss; we don't have one yet. 2400 * 2401 * So, we should announce our capabilities 2402 * in this channel mode (2g/5g), not the 2403 * channel details itself. 2404 */ 2405 if ((vap->iv_opmode == IEEE80211_M_IBSS) && 2406 (vap->iv_flags_ht & IEEE80211_FHT_HT)) { 2407 struct ieee80211_channel *c; 2408 2409 /* 2410 * Get the HT channel that we should try upgrading to. 2411 * If we can do 40MHz then this'll upgrade it appropriately. 2412 */ 2413 c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan, 2414 vap->iv_flags_ht); 2415 frm = ieee80211_add_htcap_ch(frm, vap, c); 2416 } 2417 2418 /* 2419 * XXX TODO: need to figure out what/how to update the 2420 * VHT channel. 2421 */ 2422 #if 0 2423 (vap->iv_flags_vht & IEEE80211_FVHT_VHT) { 2424 struct ieee80211_channel *c; 2425 2426 c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan, 2427 vap->iv_flags_ht); 2428 c = ieee80211_vht_adjust_channel(ic, c, vap->iv_flags_vht); 2429 frm = ieee80211_add_vhtcap_ch(frm, vap, c); 2430 } 2431 #endif 2432 2433 frm = ieee80211_add_wpa(frm, vap); 2434 if (vap->iv_appie_probereq != NULL) 2435 frm = add_appie(frm, vap->iv_appie_probereq); 2436 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2437 2438 KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame), 2439 ("leading space %zd", M_LEADINGSPACE(m))); 2440 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2441 if (m == NULL) { 2442 /* NB: cannot happen */ 2443 ieee80211_free_node(ni); 2444 ieee80211_free_node(bss); 2445 return ENOMEM; 2446 } 2447 2448 IEEE80211_TX_LOCK(ic); 2449 ieee80211_send_setup(ni, m, 2450 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 2451 IEEE80211_NONQOS_TID, sa, da, bssid); 2452 /* XXX power management? */ 2453 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2454 2455 M_WME_SETAC(m, WME_AC_BE); 2456 2457 IEEE80211_NODE_STAT(ni, tx_probereq); 2458 IEEE80211_NODE_STAT(ni, tx_mgmt); 2459 2460 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2461 "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n", 2462 ieee80211_chan2ieee(ic, ic->ic_curchan), 2463 ether_sprintf(bssid), 2464 sa, ":", 2465 da, ":", 2466 ssidlen, ssid); 2467 2468 memset(¶ms, 0, sizeof(params)); 2469 params.ibp_pri = M_WME_GETAC(m); 2470 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 2471 params.ibp_rate0 = tp->mgmtrate; 2472 if (IEEE80211_IS_MULTICAST(da)) { 2473 params.ibp_flags |= IEEE80211_BPF_NOACK; 2474 params.ibp_try0 = 1; 2475 } else 2476 params.ibp_try0 = tp->maxretry; 2477 params.ibp_power = ni->ni_txpower; 2478 ret = ieee80211_raw_output(vap, ni, m, ¶ms); 2479 IEEE80211_TX_UNLOCK(ic); 2480 ieee80211_free_node(bss); 2481 return (ret); 2482 } 2483 2484 /* 2485 * Calculate capability information for mgt frames. 2486 */ 2487 uint16_t 2488 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan) 2489 { 2490 struct ieee80211com *ic = vap->iv_ic; 2491 uint16_t capinfo; 2492 2493 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode")); 2494 2495 if (vap->iv_opmode == IEEE80211_M_HOSTAP) 2496 capinfo = IEEE80211_CAPINFO_ESS; 2497 else if (vap->iv_opmode == IEEE80211_M_IBSS) 2498 capinfo = IEEE80211_CAPINFO_IBSS; 2499 else 2500 capinfo = 0; 2501 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2502 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2503 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2504 IEEE80211_IS_CHAN_2GHZ(chan)) 2505 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2506 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2507 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2508 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH)) 2509 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2510 return capinfo; 2511 } 2512 2513 /* 2514 * Send a management frame. The node is for the destination (or ic_bss 2515 * when in station mode). Nodes other than ic_bss have their reference 2516 * count bumped to reflect our use for an indeterminant time. 2517 */ 2518 int 2519 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg) 2520 { 2521 #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT) 2522 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2523 struct ieee80211vap *vap = ni->ni_vap; 2524 struct ieee80211com *ic = ni->ni_ic; 2525 struct ieee80211_node *bss = vap->iv_bss; 2526 struct ieee80211_bpf_params params; 2527 struct mbuf *m; 2528 uint8_t *frm; 2529 uint16_t capinfo; 2530 int has_challenge, is_shared_key, ret, status; 2531 2532 KASSERT(ni != NULL, ("null node")); 2533 2534 /* 2535 * Hold a reference on the node so it doesn't go away until after 2536 * the xmit is complete all the way in the driver. On error we 2537 * will remove our reference. 2538 */ 2539 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2540 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2541 __func__, __LINE__, 2542 ni, ether_sprintf(ni->ni_macaddr), 2543 ieee80211_node_refcnt(ni)+1); 2544 ieee80211_ref_node(ni); 2545 2546 memset(¶ms, 0, sizeof(params)); 2547 switch (type) { 2548 2549 case IEEE80211_FC0_SUBTYPE_AUTH: 2550 status = arg >> 16; 2551 arg &= 0xffff; 2552 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || 2553 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 2554 ni->ni_challenge != NULL); 2555 2556 /* 2557 * Deduce whether we're doing open authentication or 2558 * shared key authentication. We do the latter if 2559 * we're in the middle of a shared key authentication 2560 * handshake or if we're initiating an authentication 2561 * request and configured to use shared key. 2562 */ 2563 is_shared_key = has_challenge || 2564 arg >= IEEE80211_AUTH_SHARED_RESPONSE || 2565 (arg == IEEE80211_AUTH_SHARED_REQUEST && 2566 bss->ni_authmode == IEEE80211_AUTH_SHARED); 2567 2568 m = ieee80211_getmgtframe(&frm, 2569 ic->ic_headroom + sizeof(struct ieee80211_frame), 2570 3 * sizeof(uint16_t) 2571 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? 2572 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0) 2573 ); 2574 if (m == NULL) 2575 senderr(ENOMEM, is_tx_nobuf); 2576 2577 ((uint16_t *)frm)[0] = 2578 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) 2579 : htole16(IEEE80211_AUTH_ALG_OPEN); 2580 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */ 2581 ((uint16_t *)frm)[2] = htole16(status);/* status */ 2582 2583 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { 2584 ((uint16_t *)frm)[3] = 2585 htole16((IEEE80211_CHALLENGE_LEN << 8) | 2586 IEEE80211_ELEMID_CHALLENGE); 2587 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge, 2588 IEEE80211_CHALLENGE_LEN); 2589 m->m_pkthdr.len = m->m_len = 2590 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN; 2591 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 2592 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2593 "request encrypt frame (%s)", __func__); 2594 /* mark frame for encryption */ 2595 params.ibp_flags |= IEEE80211_BPF_CRYPTO; 2596 } 2597 } else 2598 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t); 2599 2600 /* XXX not right for shared key */ 2601 if (status == IEEE80211_STATUS_SUCCESS) 2602 IEEE80211_NODE_STAT(ni, tx_auth); 2603 else 2604 IEEE80211_NODE_STAT(ni, tx_auth_fail); 2605 2606 if (vap->iv_opmode == IEEE80211_M_STA) 2607 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2608 (void *) vap->iv_state); 2609 break; 2610 2611 case IEEE80211_FC0_SUBTYPE_DEAUTH: 2612 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2613 "send station deauthenticate (reason: %d (%s))", arg, 2614 ieee80211_reason_to_string(arg)); 2615 m = ieee80211_getmgtframe(&frm, 2616 ic->ic_headroom + sizeof(struct ieee80211_frame), 2617 sizeof(uint16_t)); 2618 if (m == NULL) 2619 senderr(ENOMEM, is_tx_nobuf); 2620 *(uint16_t *)frm = htole16(arg); /* reason */ 2621 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2622 2623 IEEE80211_NODE_STAT(ni, tx_deauth); 2624 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 2625 2626 ieee80211_node_unauthorize(ni); /* port closed */ 2627 break; 2628 2629 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 2630 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 2631 /* 2632 * asreq frame format 2633 * [2] capability information 2634 * [2] listen interval 2635 * [6*] current AP address (reassoc only) 2636 * [tlv] ssid 2637 * [tlv] supported rates 2638 * [tlv] extended supported rates 2639 * [4] power capability (optional) 2640 * [28] supported channels (optional) 2641 * [tlv] HT capabilities 2642 * [tlv] VHT capabilities 2643 * [tlv] WME (optional) 2644 * [tlv] Vendor OUI HT capabilities (optional) 2645 * [tlv] Atheros capabilities (if negotiated) 2646 * [tlv] AppIE's (optional) 2647 */ 2648 m = ieee80211_getmgtframe(&frm, 2649 ic->ic_headroom + sizeof(struct ieee80211_frame), 2650 sizeof(uint16_t) 2651 + sizeof(uint16_t) 2652 + IEEE80211_ADDR_LEN 2653 + 2 + IEEE80211_NWID_LEN 2654 + 2 + IEEE80211_RATE_SIZE 2655 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2656 + 4 2657 + 2 + 26 2658 + sizeof(struct ieee80211_wme_info) 2659 + sizeof(struct ieee80211_ie_htcap) 2660 + sizeof(struct ieee80211_ie_vhtcap) 2661 + 4 + sizeof(struct ieee80211_ie_htcap) 2662 #ifdef IEEE80211_SUPPORT_SUPERG 2663 + sizeof(struct ieee80211_ath_ie) 2664 #endif 2665 + (vap->iv_appie_wpa != NULL ? 2666 vap->iv_appie_wpa->ie_len : 0) 2667 + (vap->iv_appie_assocreq != NULL ? 2668 vap->iv_appie_assocreq->ie_len : 0) 2669 ); 2670 if (m == NULL) 2671 senderr(ENOMEM, is_tx_nobuf); 2672 2673 KASSERT(vap->iv_opmode == IEEE80211_M_STA, 2674 ("wrong mode %u", vap->iv_opmode)); 2675 capinfo = IEEE80211_CAPINFO_ESS; 2676 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2677 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2678 /* 2679 * NB: Some 11a AP's reject the request when 2680 * short preamble is set. 2681 */ 2682 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2683 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2684 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2685 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 2686 (ic->ic_caps & IEEE80211_C_SHSLOT)) 2687 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2688 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) && 2689 (vap->iv_flags & IEEE80211_F_DOTH)) 2690 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2691 *(uint16_t *)frm = htole16(capinfo); 2692 frm += 2; 2693 2694 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!")); 2695 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval, 2696 bss->ni_intval)); 2697 frm += 2; 2698 2699 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 2700 IEEE80211_ADDR_COPY(frm, bss->ni_bssid); 2701 frm += IEEE80211_ADDR_LEN; 2702 } 2703 2704 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 2705 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2706 frm = ieee80211_add_rsn(frm, vap); 2707 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2708 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) { 2709 frm = ieee80211_add_powercapability(frm, 2710 ic->ic_curchan); 2711 frm = ieee80211_add_supportedchannels(frm, ic); 2712 } 2713 2714 /* 2715 * Check the channel - we may be using an 11n NIC with an 2716 * 11n capable station, but we're configured to be an 11b 2717 * channel. 2718 */ 2719 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2720 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2721 ni->ni_ies.htcap_ie != NULL && 2722 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) { 2723 frm = ieee80211_add_htcap(frm, ni); 2724 } 2725 2726 if ((vap->iv_flags_vht & IEEE80211_FVHT_VHT) && 2727 IEEE80211_IS_CHAN_VHT(ni->ni_chan) && 2728 ni->ni_ies.vhtcap_ie != NULL && 2729 ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) { 2730 frm = ieee80211_add_vhtcap(frm, ni); 2731 } 2732 2733 frm = ieee80211_add_wpa(frm, vap); 2734 if ((ic->ic_flags & IEEE80211_F_WME) && 2735 ni->ni_ies.wme_ie != NULL) 2736 frm = ieee80211_add_wme_info(frm, &ic->ic_wme); 2737 2738 /* 2739 * Same deal - only send HT info if we're on an 11n 2740 * capable channel. 2741 */ 2742 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2743 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2744 ni->ni_ies.htcap_ie != NULL && 2745 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) { 2746 frm = ieee80211_add_htcap_vendor(frm, ni); 2747 } 2748 #ifdef IEEE80211_SUPPORT_SUPERG 2749 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) { 2750 frm = ieee80211_add_ath(frm, 2751 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2752 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2753 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2754 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2755 } 2756 #endif /* IEEE80211_SUPPORT_SUPERG */ 2757 if (vap->iv_appie_assocreq != NULL) 2758 frm = add_appie(frm, vap->iv_appie_assocreq); 2759 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2760 2761 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2762 (void *) vap->iv_state); 2763 break; 2764 2765 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 2766 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 2767 /* 2768 * asresp frame format 2769 * [2] capability information 2770 * [2] status 2771 * [2] association ID 2772 * [tlv] supported rates 2773 * [tlv] extended supported rates 2774 * [tlv] HT capabilities (standard, if STA enabled) 2775 * [tlv] HT information (standard, if STA enabled) 2776 * [tlv] VHT capabilities (standard, if STA enabled) 2777 * [tlv] VHT information (standard, if STA enabled) 2778 * [tlv] WME (if configured and STA enabled) 2779 * [tlv] HT capabilities (vendor OUI, if STA enabled) 2780 * [tlv] HT information (vendor OUI, if STA enabled) 2781 * [tlv] Atheros capabilities (if STA enabled) 2782 * [tlv] AppIE's (optional) 2783 */ 2784 m = ieee80211_getmgtframe(&frm, 2785 ic->ic_headroom + sizeof(struct ieee80211_frame), 2786 sizeof(uint16_t) 2787 + sizeof(uint16_t) 2788 + sizeof(uint16_t) 2789 + 2 + IEEE80211_RATE_SIZE 2790 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2791 + sizeof(struct ieee80211_ie_htcap) + 4 2792 + sizeof(struct ieee80211_ie_htinfo) + 4 2793 + sizeof(struct ieee80211_ie_vhtcap) 2794 + sizeof(struct ieee80211_ie_vht_operation) 2795 + sizeof(struct ieee80211_wme_param) 2796 #ifdef IEEE80211_SUPPORT_SUPERG 2797 + sizeof(struct ieee80211_ath_ie) 2798 #endif 2799 + (vap->iv_appie_assocresp != NULL ? 2800 vap->iv_appie_assocresp->ie_len : 0) 2801 ); 2802 if (m == NULL) 2803 senderr(ENOMEM, is_tx_nobuf); 2804 2805 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2806 *(uint16_t *)frm = htole16(capinfo); 2807 frm += 2; 2808 2809 *(uint16_t *)frm = htole16(arg); /* status */ 2810 frm += 2; 2811 2812 if (arg == IEEE80211_STATUS_SUCCESS) { 2813 *(uint16_t *)frm = htole16(ni->ni_associd); 2814 IEEE80211_NODE_STAT(ni, tx_assoc); 2815 } else 2816 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 2817 frm += 2; 2818 2819 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2820 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2821 /* NB: respond according to what we received */ 2822 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) { 2823 frm = ieee80211_add_htcap(frm, ni); 2824 frm = ieee80211_add_htinfo(frm, ni); 2825 } 2826 if ((vap->iv_flags & IEEE80211_F_WME) && 2827 ni->ni_ies.wme_ie != NULL) 2828 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2829 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) { 2830 frm = ieee80211_add_htcap_vendor(frm, ni); 2831 frm = ieee80211_add_htinfo_vendor(frm, ni); 2832 } 2833 if (ni->ni_flags & IEEE80211_NODE_VHT) { 2834 frm = ieee80211_add_vhtcap(frm, ni); 2835 frm = ieee80211_add_vhtinfo(frm, ni); 2836 } 2837 #ifdef IEEE80211_SUPPORT_SUPERG 2838 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) 2839 frm = ieee80211_add_ath(frm, 2840 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2841 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2842 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2843 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2844 #endif /* IEEE80211_SUPPORT_SUPERG */ 2845 if (vap->iv_appie_assocresp != NULL) 2846 frm = add_appie(frm, vap->iv_appie_assocresp); 2847 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2848 break; 2849 2850 case IEEE80211_FC0_SUBTYPE_DISASSOC: 2851 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, 2852 "send station disassociate (reason: %d (%s))", arg, 2853 ieee80211_reason_to_string(arg)); 2854 m = ieee80211_getmgtframe(&frm, 2855 ic->ic_headroom + sizeof(struct ieee80211_frame), 2856 sizeof(uint16_t)); 2857 if (m == NULL) 2858 senderr(ENOMEM, is_tx_nobuf); 2859 *(uint16_t *)frm = htole16(arg); /* reason */ 2860 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2861 2862 IEEE80211_NODE_STAT(ni, tx_disassoc); 2863 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 2864 break; 2865 2866 default: 2867 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni, 2868 "invalid mgmt frame type %u", type); 2869 senderr(EINVAL, is_tx_unknownmgt); 2870 /* NOTREACHED */ 2871 } 2872 2873 /* NB: force non-ProbeResp frames to the highest queue */ 2874 params.ibp_pri = WME_AC_VO; 2875 params.ibp_rate0 = bss->ni_txparms->mgmtrate; 2876 /* NB: we know all frames are unicast */ 2877 params.ibp_try0 = bss->ni_txparms->maxretry; 2878 params.ibp_power = bss->ni_txpower; 2879 return ieee80211_mgmt_output(ni, m, type, ¶ms); 2880 bad: 2881 ieee80211_free_node(ni); 2882 return ret; 2883 #undef senderr 2884 #undef HTFLAGS 2885 } 2886 2887 /* 2888 * Return an mbuf with a probe response frame in it. 2889 * Space is left to prepend and 802.11 header at the 2890 * front but it's left to the caller to fill in. 2891 */ 2892 struct mbuf * 2893 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy) 2894 { 2895 struct ieee80211vap *vap = bss->ni_vap; 2896 struct ieee80211com *ic = bss->ni_ic; 2897 const struct ieee80211_rateset *rs; 2898 struct mbuf *m; 2899 uint16_t capinfo; 2900 uint8_t *frm; 2901 2902 /* 2903 * probe response frame format 2904 * [8] time stamp 2905 * [2] beacon interval 2906 * [2] cabability information 2907 * [tlv] ssid 2908 * [tlv] supported rates 2909 * [tlv] parameter set (FH/DS) 2910 * [tlv] parameter set (IBSS) 2911 * [tlv] country (optional) 2912 * [3] power control (optional) 2913 * [5] channel switch announcement (CSA) (optional) 2914 * [tlv] extended rate phy (ERP) 2915 * [tlv] extended supported rates 2916 * [tlv] RSN (optional) 2917 * [tlv] HT capabilities 2918 * [tlv] HT information 2919 * [tlv] VHT capabilities 2920 * [tlv] VHT information 2921 * [tlv] WPA (optional) 2922 * [tlv] WME (optional) 2923 * [tlv] Vendor OUI HT capabilities (optional) 2924 * [tlv] Vendor OUI HT information (optional) 2925 * [tlv] Atheros capabilities 2926 * [tlv] AppIE's (optional) 2927 * [tlv] Mesh ID (MBSS) 2928 * [tlv] Mesh Conf (MBSS) 2929 */ 2930 m = ieee80211_getmgtframe(&frm, 2931 ic->ic_headroom + sizeof(struct ieee80211_frame), 2932 8 2933 + sizeof(uint16_t) 2934 + sizeof(uint16_t) 2935 + 2 + IEEE80211_NWID_LEN 2936 + 2 + IEEE80211_RATE_SIZE 2937 + 7 /* max(7,3) */ 2938 + IEEE80211_COUNTRY_MAX_SIZE 2939 + 3 2940 + sizeof(struct ieee80211_csa_ie) 2941 + sizeof(struct ieee80211_quiet_ie) 2942 + 3 2943 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2944 + sizeof(struct ieee80211_ie_wpa) 2945 + sizeof(struct ieee80211_ie_htcap) 2946 + sizeof(struct ieee80211_ie_htinfo) 2947 + sizeof(struct ieee80211_ie_wpa) 2948 + sizeof(struct ieee80211_wme_param) 2949 + 4 + sizeof(struct ieee80211_ie_htcap) 2950 + 4 + sizeof(struct ieee80211_ie_htinfo) 2951 + sizeof(struct ieee80211_ie_vhtcap) 2952 + sizeof(struct ieee80211_ie_vht_operation) 2953 #ifdef IEEE80211_SUPPORT_SUPERG 2954 + sizeof(struct ieee80211_ath_ie) 2955 #endif 2956 #ifdef IEEE80211_SUPPORT_MESH 2957 + 2 + IEEE80211_MESHID_LEN 2958 + sizeof(struct ieee80211_meshconf_ie) 2959 #endif 2960 + (vap->iv_appie_proberesp != NULL ? 2961 vap->iv_appie_proberesp->ie_len : 0) 2962 ); 2963 if (m == NULL) { 2964 vap->iv_stats.is_tx_nobuf++; 2965 return NULL; 2966 } 2967 2968 memset(frm, 0, 8); /* timestamp should be filled later */ 2969 frm += 8; 2970 *(uint16_t *)frm = htole16(bss->ni_intval); 2971 frm += 2; 2972 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2973 *(uint16_t *)frm = htole16(capinfo); 2974 frm += 2; 2975 2976 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen); 2977 rs = ieee80211_get_suprates(ic, bss->ni_chan); 2978 frm = ieee80211_add_rates(frm, rs); 2979 2980 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) { 2981 *frm++ = IEEE80211_ELEMID_FHPARMS; 2982 *frm++ = 5; 2983 *frm++ = bss->ni_fhdwell & 0x00ff; 2984 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff; 2985 *frm++ = IEEE80211_FH_CHANSET( 2986 ieee80211_chan2ieee(ic, bss->ni_chan)); 2987 *frm++ = IEEE80211_FH_CHANPAT( 2988 ieee80211_chan2ieee(ic, bss->ni_chan)); 2989 *frm++ = bss->ni_fhindex; 2990 } else { 2991 *frm++ = IEEE80211_ELEMID_DSPARMS; 2992 *frm++ = 1; 2993 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan); 2994 } 2995 2996 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2997 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2998 *frm++ = 2; 2999 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 3000 } 3001 if ((vap->iv_flags & IEEE80211_F_DOTH) || 3002 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 3003 frm = ieee80211_add_countryie(frm, ic); 3004 if (vap->iv_flags & IEEE80211_F_DOTH) { 3005 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan)) 3006 frm = ieee80211_add_powerconstraint(frm, vap); 3007 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 3008 frm = ieee80211_add_csa(frm, vap); 3009 } 3010 if (vap->iv_flags & IEEE80211_F_DOTH) { 3011 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3012 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 3013 if (vap->iv_quiet) 3014 frm = ieee80211_add_quiet(frm, vap, 0); 3015 } 3016 } 3017 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan)) 3018 frm = ieee80211_add_erp(frm, ic); 3019 frm = ieee80211_add_xrates(frm, rs); 3020 frm = ieee80211_add_rsn(frm, vap); 3021 /* 3022 * NB: legacy 11b clients do not get certain ie's. 3023 * The caller identifies such clients by passing 3024 * a token in legacy to us. Could expand this to be 3025 * any legacy client for stuff like HT ie's. 3026 */ 3027 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 3028 legacy != IEEE80211_SEND_LEGACY_11B) { 3029 frm = ieee80211_add_htcap(frm, bss); 3030 frm = ieee80211_add_htinfo(frm, bss); 3031 } 3032 if (IEEE80211_IS_CHAN_VHT(bss->ni_chan) && 3033 legacy != IEEE80211_SEND_LEGACY_11B) { 3034 frm = ieee80211_add_vhtcap(frm, bss); 3035 frm = ieee80211_add_vhtinfo(frm, bss); 3036 } 3037 frm = ieee80211_add_wpa(frm, vap); 3038 if (vap->iv_flags & IEEE80211_F_WME) 3039 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 3040 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 3041 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) && 3042 legacy != IEEE80211_SEND_LEGACY_11B) { 3043 frm = ieee80211_add_htcap_vendor(frm, bss); 3044 frm = ieee80211_add_htinfo_vendor(frm, bss); 3045 } 3046 #ifdef IEEE80211_SUPPORT_SUPERG 3047 if ((vap->iv_flags & IEEE80211_F_ATHEROS) && 3048 legacy != IEEE80211_SEND_LEGACY_11B) 3049 frm = ieee80211_add_athcaps(frm, bss); 3050 #endif 3051 if (vap->iv_appie_proberesp != NULL) 3052 frm = add_appie(frm, vap->iv_appie_proberesp); 3053 #ifdef IEEE80211_SUPPORT_MESH 3054 if (vap->iv_opmode == IEEE80211_M_MBSS) { 3055 frm = ieee80211_add_meshid(frm, vap); 3056 frm = ieee80211_add_meshconf(frm, vap); 3057 } 3058 #endif 3059 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3060 3061 return m; 3062 } 3063 3064 /* 3065 * Send a probe response frame to the specified mac address. 3066 * This does not go through the normal mgt frame api so we 3067 * can specify the destination address and re-use the bss node 3068 * for the sta reference. 3069 */ 3070 int 3071 ieee80211_send_proberesp(struct ieee80211vap *vap, 3072 const uint8_t da[IEEE80211_ADDR_LEN], int legacy) 3073 { 3074 struct ieee80211_node *bss = vap->iv_bss; 3075 struct ieee80211com *ic = vap->iv_ic; 3076 struct mbuf *m; 3077 int ret; 3078 3079 if (vap->iv_state == IEEE80211_S_CAC) { 3080 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss, 3081 "block %s frame in CAC state", "probe response"); 3082 vap->iv_stats.is_tx_badstate++; 3083 return EIO; /* XXX */ 3084 } 3085 3086 /* 3087 * Hold a reference on the node so it doesn't go away until after 3088 * the xmit is complete all the way in the driver. On error we 3089 * will remove our reference. 3090 */ 3091 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 3092 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 3093 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr), 3094 ieee80211_node_refcnt(bss)+1); 3095 ieee80211_ref_node(bss); 3096 3097 m = ieee80211_alloc_proberesp(bss, legacy); 3098 if (m == NULL) { 3099 ieee80211_free_node(bss); 3100 return ENOMEM; 3101 } 3102 3103 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 3104 KASSERT(m != NULL, ("no room for header")); 3105 3106 IEEE80211_TX_LOCK(ic); 3107 ieee80211_send_setup(bss, m, 3108 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP, 3109 IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid); 3110 /* XXX power management? */ 3111 m->m_flags |= M_ENCAP; /* mark encapsulated */ 3112 3113 M_WME_SETAC(m, WME_AC_BE); 3114 3115 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 3116 "send probe resp on channel %u to %s%s\n", 3117 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da), 3118 legacy ? " <legacy>" : ""); 3119 IEEE80211_NODE_STAT(bss, tx_mgmt); 3120 3121 ret = ieee80211_raw_output(vap, bss, m, NULL); 3122 IEEE80211_TX_UNLOCK(ic); 3123 return (ret); 3124 } 3125 3126 /* 3127 * Allocate and build a RTS (Request To Send) control frame. 3128 */ 3129 struct mbuf * 3130 ieee80211_alloc_rts(struct ieee80211com *ic, 3131 const uint8_t ra[IEEE80211_ADDR_LEN], 3132 const uint8_t ta[IEEE80211_ADDR_LEN], 3133 uint16_t dur) 3134 { 3135 struct ieee80211_frame_rts *rts; 3136 struct mbuf *m; 3137 3138 /* XXX honor ic_headroom */ 3139 m = m_gethdr(M_NOWAIT, MT_DATA); 3140 if (m != NULL) { 3141 rts = mtod(m, struct ieee80211_frame_rts *); 3142 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 3143 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS; 3144 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3145 *(u_int16_t *)rts->i_dur = htole16(dur); 3146 IEEE80211_ADDR_COPY(rts->i_ra, ra); 3147 IEEE80211_ADDR_COPY(rts->i_ta, ta); 3148 3149 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); 3150 } 3151 return m; 3152 } 3153 3154 /* 3155 * Allocate and build a CTS (Clear To Send) control frame. 3156 */ 3157 struct mbuf * 3158 ieee80211_alloc_cts(struct ieee80211com *ic, 3159 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur) 3160 { 3161 struct ieee80211_frame_cts *cts; 3162 struct mbuf *m; 3163 3164 /* XXX honor ic_headroom */ 3165 m = m_gethdr(M_NOWAIT, MT_DATA); 3166 if (m != NULL) { 3167 cts = mtod(m, struct ieee80211_frame_cts *); 3168 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 3169 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS; 3170 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3171 *(u_int16_t *)cts->i_dur = htole16(dur); 3172 IEEE80211_ADDR_COPY(cts->i_ra, ra); 3173 3174 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts); 3175 } 3176 return m; 3177 } 3178 3179 /* 3180 * Wrapper for CTS/RTS frame allocation. 3181 */ 3182 struct mbuf * 3183 ieee80211_alloc_prot(struct ieee80211_node *ni, const struct mbuf *m, 3184 uint8_t rate, int prot) 3185 { 3186 struct ieee80211com *ic = ni->ni_ic; 3187 const struct ieee80211_frame *wh; 3188 struct mbuf *mprot; 3189 uint16_t dur; 3190 int pktlen, isshort; 3191 3192 KASSERT(prot == IEEE80211_PROT_RTSCTS || 3193 prot == IEEE80211_PROT_CTSONLY, 3194 ("wrong protection type %d", prot)); 3195 3196 wh = mtod(m, const struct ieee80211_frame *); 3197 pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; 3198 isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0; 3199 dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort) 3200 + ieee80211_ack_duration(ic->ic_rt, rate, isshort); 3201 3202 if (prot == IEEE80211_PROT_RTSCTS) { 3203 /* NB: CTS is the same size as an ACK */ 3204 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); 3205 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); 3206 } else 3207 mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur); 3208 3209 return (mprot); 3210 } 3211 3212 static void 3213 ieee80211_tx_mgt_timeout(void *arg) 3214 { 3215 struct ieee80211vap *vap = arg; 3216 3217 IEEE80211_LOCK(vap->iv_ic); 3218 if (vap->iv_state != IEEE80211_S_INIT && 3219 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) { 3220 /* 3221 * NB: it's safe to specify a timeout as the reason here; 3222 * it'll only be used in the right state. 3223 */ 3224 ieee80211_new_state_locked(vap, IEEE80211_S_SCAN, 3225 IEEE80211_SCAN_FAIL_TIMEOUT); 3226 } 3227 IEEE80211_UNLOCK(vap->iv_ic); 3228 } 3229 3230 /* 3231 * This is the callback set on net80211-sourced transmitted 3232 * authentication request frames. 3233 * 3234 * This does a couple of things: 3235 * 3236 * + If the frame transmitted was a success, it schedules a future 3237 * event which will transition the interface to scan. 3238 * If a state transition _then_ occurs before that event occurs, 3239 * said state transition will cancel this callout. 3240 * 3241 * + If the frame transmit was a failure, it immediately schedules 3242 * the transition back to scan. 3243 */ 3244 static void 3245 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status) 3246 { 3247 struct ieee80211vap *vap = ni->ni_vap; 3248 enum ieee80211_state ostate = (enum ieee80211_state) arg; 3249 3250 /* 3251 * Frame transmit completed; arrange timer callback. If 3252 * transmit was successfully we wait for response. Otherwise 3253 * we arrange an immediate callback instead of doing the 3254 * callback directly since we don't know what state the driver 3255 * is in (e.g. what locks it is holding). This work should 3256 * not be too time-critical and not happen too often so the 3257 * added overhead is acceptable. 3258 * 3259 * XXX what happens if !acked but response shows up before callback? 3260 */ 3261 if (vap->iv_state == ostate) { 3262 callout_reset(&vap->iv_mgtsend, 3263 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0, 3264 ieee80211_tx_mgt_timeout, vap); 3265 } 3266 } 3267 3268 static void 3269 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm, 3270 struct ieee80211_node *ni) 3271 { 3272 struct ieee80211vap *vap = ni->ni_vap; 3273 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 3274 struct ieee80211com *ic = ni->ni_ic; 3275 struct ieee80211_rateset *rs = &ni->ni_rates; 3276 uint16_t capinfo; 3277 3278 /* 3279 * beacon frame format 3280 * 3281 * TODO: update to 802.11-2012; a lot of stuff has changed; 3282 * vendor extensions should be at the end, etc. 3283 * 3284 * [8] time stamp 3285 * [2] beacon interval 3286 * [2] cabability information 3287 * [tlv] ssid 3288 * [tlv] supported rates 3289 * [3] parameter set (DS) 3290 * [8] CF parameter set (optional) 3291 * [tlv] parameter set (IBSS/TIM) 3292 * [tlv] country (optional) 3293 * [3] power control (optional) 3294 * [5] channel switch announcement (CSA) (optional) 3295 * XXX TODO: Quiet 3296 * XXX TODO: IBSS DFS 3297 * XXX TODO: TPC report 3298 * [tlv] extended rate phy (ERP) 3299 * [tlv] extended supported rates 3300 * [tlv] RSN parameters 3301 * XXX TODO: BSSLOAD 3302 * (XXX EDCA parameter set, QoS capability?) 3303 * XXX TODO: AP channel report 3304 * 3305 * [tlv] HT capabilities 3306 * [tlv] HT information 3307 * XXX TODO: 20/40 BSS coexistence 3308 * Mesh: 3309 * XXX TODO: Meshid 3310 * XXX TODO: mesh config 3311 * XXX TODO: mesh awake window 3312 * XXX TODO: beacon timing (mesh, etc) 3313 * XXX TODO: MCCAOP Advertisement Overview 3314 * XXX TODO: MCCAOP Advertisement 3315 * XXX TODO: Mesh channel switch parameters 3316 * VHT: 3317 * XXX TODO: VHT capabilities 3318 * XXX TODO: VHT operation 3319 * XXX TODO: VHT transmit power envelope 3320 * XXX TODO: channel switch wrapper element 3321 * XXX TODO: extended BSS load element 3322 * 3323 * XXX Vendor-specific OIDs (e.g. Atheros) 3324 * [tlv] WPA parameters 3325 * [tlv] WME parameters 3326 * [tlv] Vendor OUI HT capabilities (optional) 3327 * [tlv] Vendor OUI HT information (optional) 3328 * [tlv] Atheros capabilities (optional) 3329 * [tlv] TDMA parameters (optional) 3330 * [tlv] Mesh ID (MBSS) 3331 * [tlv] Mesh Conf (MBSS) 3332 * [tlv] application data (optional) 3333 */ 3334 3335 memset(bo, 0, sizeof(*bo)); 3336 3337 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 3338 frm += 8; 3339 *(uint16_t *)frm = htole16(ni->ni_intval); 3340 frm += 2; 3341 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3342 bo->bo_caps = (uint16_t *)frm; 3343 *(uint16_t *)frm = htole16(capinfo); 3344 frm += 2; 3345 *frm++ = IEEE80211_ELEMID_SSID; 3346 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) { 3347 *frm++ = ni->ni_esslen; 3348 memcpy(frm, ni->ni_essid, ni->ni_esslen); 3349 frm += ni->ni_esslen; 3350 } else 3351 *frm++ = 0; 3352 frm = ieee80211_add_rates(frm, rs); 3353 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) { 3354 *frm++ = IEEE80211_ELEMID_DSPARMS; 3355 *frm++ = 1; 3356 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 3357 } 3358 if (ic->ic_flags & IEEE80211_F_PCF) { 3359 bo->bo_cfp = frm; 3360 frm = ieee80211_add_cfparms(frm, ic); 3361 } 3362 bo->bo_tim = frm; 3363 if (vap->iv_opmode == IEEE80211_M_IBSS) { 3364 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 3365 *frm++ = 2; 3366 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 3367 bo->bo_tim_len = 0; 3368 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3369 vap->iv_opmode == IEEE80211_M_MBSS) { 3370 /* TIM IE is the same for Mesh and Hostap */ 3371 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; 3372 3373 tie->tim_ie = IEEE80211_ELEMID_TIM; 3374 tie->tim_len = 4; /* length */ 3375 tie->tim_count = 0; /* DTIM count */ 3376 tie->tim_period = vap->iv_dtim_period; /* DTIM period */ 3377 tie->tim_bitctl = 0; /* bitmap control */ 3378 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 3379 frm += sizeof(struct ieee80211_tim_ie); 3380 bo->bo_tim_len = 1; 3381 } 3382 bo->bo_tim_trailer = frm; 3383 if ((vap->iv_flags & IEEE80211_F_DOTH) || 3384 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 3385 frm = ieee80211_add_countryie(frm, ic); 3386 if (vap->iv_flags & IEEE80211_F_DOTH) { 3387 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) 3388 frm = ieee80211_add_powerconstraint(frm, vap); 3389 bo->bo_csa = frm; 3390 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 3391 frm = ieee80211_add_csa(frm, vap); 3392 } else 3393 bo->bo_csa = frm; 3394 3395 bo->bo_quiet = NULL; 3396 if (vap->iv_flags & IEEE80211_F_DOTH) { 3397 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3398 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && 3399 (vap->iv_quiet == 1)) { 3400 /* 3401 * We only insert the quiet IE offset if 3402 * the quiet IE is enabled. Otherwise don't 3403 * put it here or we'll just overwrite 3404 * some other beacon contents. 3405 */ 3406 if (vap->iv_quiet) { 3407 bo->bo_quiet = frm; 3408 frm = ieee80211_add_quiet(frm,vap, 0); 3409 } 3410 } 3411 } 3412 3413 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) { 3414 bo->bo_erp = frm; 3415 frm = ieee80211_add_erp(frm, ic); 3416 } 3417 frm = ieee80211_add_xrates(frm, rs); 3418 frm = ieee80211_add_rsn(frm, vap); 3419 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 3420 frm = ieee80211_add_htcap(frm, ni); 3421 bo->bo_htinfo = frm; 3422 frm = ieee80211_add_htinfo(frm, ni); 3423 } 3424 3425 if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) { 3426 frm = ieee80211_add_vhtcap(frm, ni); 3427 bo->bo_vhtinfo = frm; 3428 frm = ieee80211_add_vhtinfo(frm, ni); 3429 /* Transmit power envelope */ 3430 /* Channel switch wrapper element */ 3431 /* Extended bss load element */ 3432 } 3433 3434 frm = ieee80211_add_wpa(frm, vap); 3435 if (vap->iv_flags & IEEE80211_F_WME) { 3436 bo->bo_wme = frm; 3437 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 3438 } 3439 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && 3440 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) { 3441 frm = ieee80211_add_htcap_vendor(frm, ni); 3442 frm = ieee80211_add_htinfo_vendor(frm, ni); 3443 } 3444 3445 #ifdef IEEE80211_SUPPORT_SUPERG 3446 if (vap->iv_flags & IEEE80211_F_ATHEROS) { 3447 bo->bo_ath = frm; 3448 frm = ieee80211_add_athcaps(frm, ni); 3449 } 3450 #endif 3451 #ifdef IEEE80211_SUPPORT_TDMA 3452 if (vap->iv_caps & IEEE80211_C_TDMA) { 3453 bo->bo_tdma = frm; 3454 frm = ieee80211_add_tdma(frm, vap); 3455 } 3456 #endif 3457 if (vap->iv_appie_beacon != NULL) { 3458 bo->bo_appie = frm; 3459 bo->bo_appie_len = vap->iv_appie_beacon->ie_len; 3460 frm = add_appie(frm, vap->iv_appie_beacon); 3461 } 3462 3463 /* XXX TODO: move meshid/meshconf up to before vendor extensions? */ 3464 #ifdef IEEE80211_SUPPORT_MESH 3465 if (vap->iv_opmode == IEEE80211_M_MBSS) { 3466 frm = ieee80211_add_meshid(frm, vap); 3467 bo->bo_meshconf = frm; 3468 frm = ieee80211_add_meshconf(frm, vap); 3469 } 3470 #endif 3471 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer; 3472 bo->bo_csa_trailer_len = frm - bo->bo_csa; 3473 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3474 } 3475 3476 /* 3477 * Allocate a beacon frame and fillin the appropriate bits. 3478 */ 3479 struct mbuf * 3480 ieee80211_beacon_alloc(struct ieee80211_node *ni) 3481 { 3482 struct ieee80211vap *vap = ni->ni_vap; 3483 struct ieee80211com *ic = ni->ni_ic; 3484 struct ifnet *ifp = vap->iv_ifp; 3485 struct ieee80211_frame *wh; 3486 struct mbuf *m; 3487 int pktlen; 3488 uint8_t *frm; 3489 3490 /* 3491 * Update the "We're putting the quiet IE in the beacon" state. 3492 */ 3493 if (vap->iv_quiet == 1) 3494 vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE; 3495 else if (vap->iv_quiet == 0) 3496 vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE; 3497 3498 /* 3499 * beacon frame format 3500 * 3501 * Note: This needs updating for 802.11-2012. 3502 * 3503 * [8] time stamp 3504 * [2] beacon interval 3505 * [2] cabability information 3506 * [tlv] ssid 3507 * [tlv] supported rates 3508 * [3] parameter set (DS) 3509 * [8] CF parameter set (optional) 3510 * [tlv] parameter set (IBSS/TIM) 3511 * [tlv] country (optional) 3512 * [3] power control (optional) 3513 * [5] channel switch announcement (CSA) (optional) 3514 * [tlv] extended rate phy (ERP) 3515 * [tlv] extended supported rates 3516 * [tlv] RSN parameters 3517 * [tlv] HT capabilities 3518 * [tlv] HT information 3519 * [tlv] VHT capabilities 3520 * [tlv] VHT operation 3521 * [tlv] Vendor OUI HT capabilities (optional) 3522 * [tlv] Vendor OUI HT information (optional) 3523 * XXX Vendor-specific OIDs (e.g. Atheros) 3524 * [tlv] WPA parameters 3525 * [tlv] WME parameters 3526 * [tlv] TDMA parameters (optional) 3527 * [tlv] Mesh ID (MBSS) 3528 * [tlv] Mesh Conf (MBSS) 3529 * [tlv] application data (optional) 3530 * NB: we allocate the max space required for the TIM bitmap. 3531 * XXX how big is this? 3532 */ 3533 pktlen = 8 /* time stamp */ 3534 + sizeof(uint16_t) /* beacon interval */ 3535 + sizeof(uint16_t) /* capabilities */ 3536 + 2 + ni->ni_esslen /* ssid */ 3537 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 3538 + 2 + 1 /* DS parameters */ 3539 + 2 + 6 /* CF parameters */ 3540 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */ 3541 + IEEE80211_COUNTRY_MAX_SIZE /* country */ 3542 + 2 + 1 /* power control */ 3543 + sizeof(struct ieee80211_csa_ie) /* CSA */ 3544 + sizeof(struct ieee80211_quiet_ie) /* Quiet */ 3545 + 2 + 1 /* ERP */ 3546 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 3547 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 3548 2*sizeof(struct ieee80211_ie_wpa) : 0) 3549 /* XXX conditional? */ 3550 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */ 3551 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */ 3552 + sizeof(struct ieee80211_ie_vhtcap)/* VHT caps */ 3553 + sizeof(struct ieee80211_ie_vht_operation)/* VHT info */ 3554 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */ 3555 sizeof(struct ieee80211_wme_param) : 0) 3556 #ifdef IEEE80211_SUPPORT_SUPERG 3557 + sizeof(struct ieee80211_ath_ie) /* ATH */ 3558 #endif 3559 #ifdef IEEE80211_SUPPORT_TDMA 3560 + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */ 3561 sizeof(struct ieee80211_tdma_param) : 0) 3562 #endif 3563 #ifdef IEEE80211_SUPPORT_MESH 3564 + 2 + ni->ni_meshidlen 3565 + sizeof(struct ieee80211_meshconf_ie) 3566 #endif 3567 + IEEE80211_MAX_APPIE 3568 ; 3569 m = ieee80211_getmgtframe(&frm, 3570 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen); 3571 if (m == NULL) { 3572 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, 3573 "%s: cannot get buf; size %u\n", __func__, pktlen); 3574 vap->iv_stats.is_tx_nobuf++; 3575 return NULL; 3576 } 3577 ieee80211_beacon_construct(m, frm, ni); 3578 3579 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 3580 KASSERT(m != NULL, ("no space for 802.11 header?")); 3581 wh = mtod(m, struct ieee80211_frame *); 3582 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 3583 IEEE80211_FC0_SUBTYPE_BEACON; 3584 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3585 *(uint16_t *)wh->i_dur = 0; 3586 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 3587 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 3588 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 3589 *(uint16_t *)wh->i_seq = 0; 3590 3591 return m; 3592 } 3593 3594 /* 3595 * Update the dynamic parts of a beacon frame based on the current state. 3596 */ 3597 int 3598 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast) 3599 { 3600 struct ieee80211vap *vap = ni->ni_vap; 3601 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 3602 struct ieee80211com *ic = ni->ni_ic; 3603 int len_changed = 0; 3604 uint16_t capinfo; 3605 struct ieee80211_frame *wh; 3606 ieee80211_seq seqno; 3607 3608 IEEE80211_LOCK(ic); 3609 /* 3610 * Handle 11h channel change when we've reached the count. 3611 * We must recalculate the beacon frame contents to account 3612 * for the new channel. Note we do this only for the first 3613 * vap that reaches this point; subsequent vaps just update 3614 * their beacon state to reflect the recalculated channel. 3615 */ 3616 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) && 3617 vap->iv_csa_count == ic->ic_csa_count) { 3618 vap->iv_csa_count = 0; 3619 /* 3620 * Effect channel change before reconstructing the beacon 3621 * frame contents as many places reference ni_chan. 3622 */ 3623 if (ic->ic_csa_newchan != NULL) 3624 ieee80211_csa_completeswitch(ic); 3625 /* 3626 * NB: ieee80211_beacon_construct clears all pending 3627 * updates in bo_flags so we don't need to explicitly 3628 * clear IEEE80211_BEACON_CSA. 3629 */ 3630 ieee80211_beacon_construct(m, 3631 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3632 3633 /* XXX do WME aggressive mode processing? */ 3634 IEEE80211_UNLOCK(ic); 3635 return 1; /* just assume length changed */ 3636 } 3637 3638 /* 3639 * Handle the quiet time element being added and removed. 3640 * Again, for now we just cheat and reconstruct the whole 3641 * beacon - that way the gap is provided as appropriate. 3642 * 3643 * So, track whether we have already added the IE versus 3644 * whether we want to be adding the IE. 3645 */ 3646 if ((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) && 3647 (vap->iv_quiet == 0)) { 3648 /* 3649 * Quiet time beacon IE enabled, but it's disabled; 3650 * recalc 3651 */ 3652 vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE; 3653 ieee80211_beacon_construct(m, 3654 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3655 /* XXX do WME aggressive mode processing? */ 3656 IEEE80211_UNLOCK(ic); 3657 return 1; /* just assume length changed */ 3658 } 3659 3660 if (((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) == 0) && 3661 (vap->iv_quiet == 1)) { 3662 /* 3663 * Quiet time beacon IE disabled, but it's now enabled; 3664 * recalc 3665 */ 3666 vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE; 3667 ieee80211_beacon_construct(m, 3668 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3669 /* XXX do WME aggressive mode processing? */ 3670 IEEE80211_UNLOCK(ic); 3671 return 1; /* just assume length changed */ 3672 } 3673 3674 wh = mtod(m, struct ieee80211_frame *); 3675 3676 /* 3677 * XXX TODO Strictly speaking this should be incremented with the TX 3678 * lock held so as to serialise access to the non-qos TID sequence 3679 * number space. 3680 * 3681 * If the driver identifies it does its own TX seqno management then 3682 * we can skip this (and still not do the TX seqno.) 3683 */ 3684 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 3685 *(uint16_t *)&wh->i_seq[0] = 3686 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 3687 M_SEQNO_SET(m, seqno); 3688 3689 /* XXX faster to recalculate entirely or just changes? */ 3690 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3691 *bo->bo_caps = htole16(capinfo); 3692 3693 if (vap->iv_flags & IEEE80211_F_WME) { 3694 struct ieee80211_wme_state *wme = &ic->ic_wme; 3695 3696 /* 3697 * Check for aggressive mode change. When there is 3698 * significant high priority traffic in the BSS 3699 * throttle back BE traffic by using conservative 3700 * parameters. Otherwise BE uses aggressive params 3701 * to optimize performance of legacy/non-QoS traffic. 3702 */ 3703 if (wme->wme_flags & WME_F_AGGRMODE) { 3704 if (wme->wme_hipri_traffic > 3705 wme->wme_hipri_switch_thresh) { 3706 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3707 "%s: traffic %u, disable aggressive mode\n", 3708 __func__, wme->wme_hipri_traffic); 3709 wme->wme_flags &= ~WME_F_AGGRMODE; 3710 ieee80211_wme_updateparams_locked(vap); 3711 wme->wme_hipri_traffic = 3712 wme->wme_hipri_switch_hysteresis; 3713 } else 3714 wme->wme_hipri_traffic = 0; 3715 } else { 3716 if (wme->wme_hipri_traffic <= 3717 wme->wme_hipri_switch_thresh) { 3718 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3719 "%s: traffic %u, enable aggressive mode\n", 3720 __func__, wme->wme_hipri_traffic); 3721 wme->wme_flags |= WME_F_AGGRMODE; 3722 ieee80211_wme_updateparams_locked(vap); 3723 wme->wme_hipri_traffic = 0; 3724 } else 3725 wme->wme_hipri_traffic = 3726 wme->wme_hipri_switch_hysteresis; 3727 } 3728 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) { 3729 (void) ieee80211_add_wme_param(bo->bo_wme, wme); 3730 clrbit(bo->bo_flags, IEEE80211_BEACON_WME); 3731 } 3732 } 3733 3734 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) { 3735 ieee80211_ht_update_beacon(vap, bo); 3736 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO); 3737 } 3738 #ifdef IEEE80211_SUPPORT_TDMA 3739 if (vap->iv_caps & IEEE80211_C_TDMA) { 3740 /* 3741 * NB: the beacon is potentially updated every TBTT. 3742 */ 3743 ieee80211_tdma_update_beacon(vap, bo); 3744 } 3745 #endif 3746 #ifdef IEEE80211_SUPPORT_MESH 3747 if (vap->iv_opmode == IEEE80211_M_MBSS) 3748 ieee80211_mesh_update_beacon(vap, bo); 3749 #endif 3750 3751 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3752 vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/ 3753 struct ieee80211_tim_ie *tie = 3754 (struct ieee80211_tim_ie *) bo->bo_tim; 3755 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) { 3756 u_int timlen, timoff, i; 3757 /* 3758 * ATIM/DTIM needs updating. If it fits in the 3759 * current space allocated then just copy in the 3760 * new bits. Otherwise we need to move any trailing 3761 * data to make room. Note that we know there is 3762 * contiguous space because ieee80211_beacon_allocate 3763 * insures there is space in the mbuf to write a 3764 * maximal-size virtual bitmap (based on iv_max_aid). 3765 */ 3766 /* 3767 * Calculate the bitmap size and offset, copy any 3768 * trailer out of the way, and then copy in the 3769 * new bitmap and update the information element. 3770 * Note that the tim bitmap must contain at least 3771 * one byte and any offset must be even. 3772 */ 3773 if (vap->iv_ps_pending != 0) { 3774 timoff = 128; /* impossibly large */ 3775 for (i = 0; i < vap->iv_tim_len; i++) 3776 if (vap->iv_tim_bitmap[i]) { 3777 timoff = i &~ 1; 3778 break; 3779 } 3780 KASSERT(timoff != 128, ("tim bitmap empty!")); 3781 for (i = vap->iv_tim_len-1; i >= timoff; i--) 3782 if (vap->iv_tim_bitmap[i]) 3783 break; 3784 timlen = 1 + (i - timoff); 3785 } else { 3786 timoff = 0; 3787 timlen = 1; 3788 } 3789 3790 /* 3791 * TODO: validate this! 3792 */ 3793 if (timlen != bo->bo_tim_len) { 3794 /* copy up/down trailer */ 3795 int adjust = tie->tim_bitmap+timlen 3796 - bo->bo_tim_trailer; 3797 ovbcopy(bo->bo_tim_trailer, 3798 bo->bo_tim_trailer+adjust, 3799 bo->bo_tim_trailer_len); 3800 bo->bo_tim_trailer += adjust; 3801 bo->bo_erp += adjust; 3802 bo->bo_htinfo += adjust; 3803 bo->bo_vhtinfo += adjust; 3804 #ifdef IEEE80211_SUPPORT_SUPERG 3805 bo->bo_ath += adjust; 3806 #endif 3807 #ifdef IEEE80211_SUPPORT_TDMA 3808 bo->bo_tdma += adjust; 3809 #endif 3810 #ifdef IEEE80211_SUPPORT_MESH 3811 bo->bo_meshconf += adjust; 3812 #endif 3813 bo->bo_appie += adjust; 3814 bo->bo_wme += adjust; 3815 bo->bo_csa += adjust; 3816 bo->bo_quiet += adjust; 3817 bo->bo_tim_len = timlen; 3818 3819 /* update information element */ 3820 tie->tim_len = 3 + timlen; 3821 tie->tim_bitctl = timoff; 3822 len_changed = 1; 3823 } 3824 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff, 3825 bo->bo_tim_len); 3826 3827 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM); 3828 3829 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER, 3830 "%s: TIM updated, pending %u, off %u, len %u\n", 3831 __func__, vap->iv_ps_pending, timoff, timlen); 3832 } 3833 /* count down DTIM period */ 3834 if (tie->tim_count == 0) 3835 tie->tim_count = tie->tim_period - 1; 3836 else 3837 tie->tim_count--; 3838 /* update state for buffered multicast frames on DTIM */ 3839 if (mcast && tie->tim_count == 0) 3840 tie->tim_bitctl |= 1; 3841 else 3842 tie->tim_bitctl &= ~1; 3843 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) { 3844 struct ieee80211_csa_ie *csa = 3845 (struct ieee80211_csa_ie *) bo->bo_csa; 3846 3847 /* 3848 * Insert or update CSA ie. If we're just starting 3849 * to count down to the channel switch then we need 3850 * to insert the CSA ie. Otherwise we just need to 3851 * drop the count. The actual change happens above 3852 * when the vap's count reaches the target count. 3853 */ 3854 if (vap->iv_csa_count == 0) { 3855 memmove(&csa[1], csa, bo->bo_csa_trailer_len); 3856 bo->bo_erp += sizeof(*csa); 3857 bo->bo_htinfo += sizeof(*csa); 3858 bo->bo_vhtinfo += sizeof(*csa); 3859 bo->bo_wme += sizeof(*csa); 3860 #ifdef IEEE80211_SUPPORT_SUPERG 3861 bo->bo_ath += sizeof(*csa); 3862 #endif 3863 #ifdef IEEE80211_SUPPORT_TDMA 3864 bo->bo_tdma += sizeof(*csa); 3865 #endif 3866 #ifdef IEEE80211_SUPPORT_MESH 3867 bo->bo_meshconf += sizeof(*csa); 3868 #endif 3869 bo->bo_appie += sizeof(*csa); 3870 bo->bo_csa_trailer_len += sizeof(*csa); 3871 bo->bo_quiet += sizeof(*csa); 3872 bo->bo_tim_trailer_len += sizeof(*csa); 3873 m->m_len += sizeof(*csa); 3874 m->m_pkthdr.len += sizeof(*csa); 3875 3876 ieee80211_add_csa(bo->bo_csa, vap); 3877 } else 3878 csa->csa_count--; 3879 vap->iv_csa_count++; 3880 /* NB: don't clear IEEE80211_BEACON_CSA */ 3881 } 3882 3883 /* 3884 * Only add the quiet time IE if we've enabled it 3885 * as appropriate. 3886 */ 3887 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3888 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 3889 if (vap->iv_quiet && 3890 (vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE)) { 3891 ieee80211_add_quiet(bo->bo_quiet, vap, 1); 3892 } 3893 } 3894 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) { 3895 /* 3896 * ERP element needs updating. 3897 */ 3898 (void) ieee80211_add_erp(bo->bo_erp, ic); 3899 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP); 3900 } 3901 #ifdef IEEE80211_SUPPORT_SUPERG 3902 if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) { 3903 ieee80211_add_athcaps(bo->bo_ath, ni); 3904 clrbit(bo->bo_flags, IEEE80211_BEACON_ATH); 3905 } 3906 #endif 3907 } 3908 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) { 3909 const struct ieee80211_appie *aie = vap->iv_appie_beacon; 3910 int aielen; 3911 uint8_t *frm; 3912 3913 aielen = 0; 3914 if (aie != NULL) 3915 aielen += aie->ie_len; 3916 if (aielen != bo->bo_appie_len) { 3917 /* copy up/down trailer */ 3918 int adjust = aielen - bo->bo_appie_len; 3919 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust, 3920 bo->bo_tim_trailer_len); 3921 bo->bo_tim_trailer += adjust; 3922 bo->bo_appie += adjust; 3923 bo->bo_appie_len = aielen; 3924 3925 len_changed = 1; 3926 } 3927 frm = bo->bo_appie; 3928 if (aie != NULL) 3929 frm = add_appie(frm, aie); 3930 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE); 3931 } 3932 IEEE80211_UNLOCK(ic); 3933 3934 return len_changed; 3935 } 3936 3937 /* 3938 * Do Ethernet-LLC encapsulation for each payload in a fast frame 3939 * tunnel encapsulation. The frame is assumed to have an Ethernet 3940 * header at the front that must be stripped before prepending the 3941 * LLC followed by the Ethernet header passed in (with an Ethernet 3942 * type that specifies the payload size). 3943 */ 3944 struct mbuf * 3945 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m, 3946 const struct ether_header *eh) 3947 { 3948 struct llc *llc; 3949 uint16_t payload; 3950 3951 /* XXX optimize by combining m_adj+M_PREPEND */ 3952 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 3953 llc = mtod(m, struct llc *); 3954 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 3955 llc->llc_control = LLC_UI; 3956 llc->llc_snap.org_code[0] = 0; 3957 llc->llc_snap.org_code[1] = 0; 3958 llc->llc_snap.org_code[2] = 0; 3959 llc->llc_snap.ether_type = eh->ether_type; 3960 payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */ 3961 3962 M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT); 3963 if (m == NULL) { /* XXX cannot happen */ 3964 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 3965 "%s: no space for ether_header\n", __func__); 3966 vap->iv_stats.is_tx_nobuf++; 3967 return NULL; 3968 } 3969 ETHER_HEADER_COPY(mtod(m, void *), eh); 3970 mtod(m, struct ether_header *)->ether_type = htons(payload); 3971 return m; 3972 } 3973 3974 /* 3975 * Complete an mbuf transmission. 3976 * 3977 * For now, this simply processes a completed frame after the 3978 * driver has completed it's transmission and/or retransmission. 3979 * It assumes the frame is an 802.11 encapsulated frame. 3980 * 3981 * Later on it will grow to become the exit path for a given frame 3982 * from the driver and, depending upon how it's been encapsulated 3983 * and already transmitted, it may end up doing A-MPDU retransmission, 3984 * power save requeuing, etc. 3985 * 3986 * In order for the above to work, the driver entry point to this 3987 * must not hold any driver locks. Thus, the driver needs to delay 3988 * any actual mbuf completion until it can release said locks. 3989 * 3990 * This frees the mbuf and if the mbuf has a node reference, 3991 * the node reference will be freed. 3992 */ 3993 void 3994 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status) 3995 { 3996 3997 if (ni != NULL) { 3998 struct ifnet *ifp = ni->ni_vap->iv_ifp; 3999 4000 if (status == 0) { 4001 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len); 4002 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 4003 if (m->m_flags & M_MCAST) 4004 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 4005 } else 4006 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 4007 if (m->m_flags & M_TXCB) 4008 ieee80211_process_callback(ni, m, status); 4009 ieee80211_free_node(ni); 4010 } 4011 m_freem(m); 4012 } 4013