xref: /freebsd/sys/net80211/ieee80211_output.c (revision 8b25e8410533a6e69cceff910546b2dc485a5059)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_wlan.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/malloc.h>
38 #include <sys/mbuf.h>
39 #include <sys/endian.h>
40 
41 #include <sys/socket.h>
42 
43 #include <net/bpf.h>
44 #include <net/ethernet.h>
45 #include <net/if.h>
46 #include <net/if_var.h>
47 #include <net/if_llc.h>
48 #include <net/if_media.h>
49 #include <net/if_vlan_var.h>
50 
51 #include <net80211/ieee80211_var.h>
52 #include <net80211/ieee80211_regdomain.h>
53 #ifdef IEEE80211_SUPPORT_SUPERG
54 #include <net80211/ieee80211_superg.h>
55 #endif
56 #ifdef IEEE80211_SUPPORT_TDMA
57 #include <net80211/ieee80211_tdma.h>
58 #endif
59 #include <net80211/ieee80211_wds.h>
60 #include <net80211/ieee80211_mesh.h>
61 #include <net80211/ieee80211_vht.h>
62 
63 #if defined(INET) || defined(INET6)
64 #include <netinet/in.h>
65 #endif
66 
67 #ifdef INET
68 #include <netinet/if_ether.h>
69 #include <netinet/in_systm.h>
70 #include <netinet/ip.h>
71 #endif
72 #ifdef INET6
73 #include <netinet/ip6.h>
74 #endif
75 
76 #include <security/mac/mac_framework.h>
77 
78 #define	ETHER_HEADER_COPY(dst, src) \
79 	memcpy(dst, src, sizeof(struct ether_header))
80 
81 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
82 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
83 static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
84 
85 #ifdef IEEE80211_DEBUG
86 /*
87  * Decide if an outbound management frame should be
88  * printed when debugging is enabled.  This filters some
89  * of the less interesting frames that come frequently
90  * (e.g. beacons).
91  */
92 static __inline int
93 doprint(struct ieee80211vap *vap, int subtype)
94 {
95 	switch (subtype) {
96 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
97 		return (vap->iv_opmode == IEEE80211_M_IBSS);
98 	}
99 	return 1;
100 }
101 #endif
102 
103 /*
104  * Transmit a frame to the given destination on the given VAP.
105  *
106  * It's up to the caller to figure out the details of who this
107  * is going to and resolving the node.
108  *
109  * This routine takes care of queuing it for power save,
110  * A-MPDU state stuff, fast-frames state stuff, encapsulation
111  * if required, then passing it up to the driver layer.
112  *
113  * This routine (for now) consumes the mbuf and frees the node
114  * reference; it ideally will return a TX status which reflects
115  * whether the mbuf was consumed or not, so the caller can
116  * free the mbuf (if appropriate) and the node reference (again,
117  * if appropriate.)
118  */
119 int
120 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
121     struct ieee80211_node *ni)
122 {
123 	struct ieee80211com *ic = vap->iv_ic;
124 	struct ifnet *ifp = vap->iv_ifp;
125 #ifdef IEEE80211_SUPPORT_SUPERG
126 	int mcast;
127 #endif
128 
129 	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
130 	    (m->m_flags & M_PWR_SAV) == 0) {
131 		/*
132 		 * Station in power save mode; pass the frame
133 		 * to the 802.11 layer and continue.  We'll get
134 		 * the frame back when the time is right.
135 		 * XXX lose WDS vap linkage?
136 		 */
137 		if (ieee80211_pwrsave(ni, m) != 0)
138 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
139 		ieee80211_free_node(ni);
140 
141 		/*
142 		 * We queued it fine, so tell the upper layer
143 		 * that we consumed it.
144 		 */
145 		return (0);
146 	}
147 	/* calculate priority so drivers can find the tx queue */
148 	if (ieee80211_classify(ni, m)) {
149 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
150 		    ni->ni_macaddr, NULL,
151 		    "%s", "classification failure");
152 		vap->iv_stats.is_tx_classify++;
153 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
154 		m_freem(m);
155 		ieee80211_free_node(ni);
156 
157 		/* XXX better status? */
158 		return (0);
159 	}
160 	/*
161 	 * Stash the node pointer.  Note that we do this after
162 	 * any call to ieee80211_dwds_mcast because that code
163 	 * uses any existing value for rcvif to identify the
164 	 * interface it (might have been) received on.
165 	 */
166 	m->m_pkthdr.rcvif = (void *)ni;
167 #ifdef IEEE80211_SUPPORT_SUPERG
168 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
169 #endif
170 
171 	BPF_MTAP(ifp, m);		/* 802.3 tx */
172 
173 	/*
174 	 * Check if A-MPDU tx aggregation is setup or if we
175 	 * should try to enable it.  The sta must be associated
176 	 * with HT and A-MPDU enabled for use.  When the policy
177 	 * routine decides we should enable A-MPDU we issue an
178 	 * ADDBA request and wait for a reply.  The frame being
179 	 * encapsulated will go out w/o using A-MPDU, or possibly
180 	 * it might be collected by the driver and held/retransmit.
181 	 * The default ic_ampdu_enable routine handles staggering
182 	 * ADDBA requests in case the receiver NAK's us or we are
183 	 * otherwise unable to establish a BA stream.
184 	 */
185 	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
186 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)) {
187 		if ((m->m_flags & M_EAPOL) == 0) {
188 			int tid = WME_AC_TO_TID(M_WME_GETAC(m));
189 			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
190 
191 			ieee80211_txampdu_count_packet(tap);
192 			if (IEEE80211_AMPDU_RUNNING(tap)) {
193 				/*
194 				 * Operational, mark frame for aggregation.
195 				 *
196 				 * XXX do tx aggregation here
197 				 */
198 				m->m_flags |= M_AMPDU_MPDU;
199 			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
200 			    ic->ic_ampdu_enable(ni, tap)) {
201 				/*
202 				 * Not negotiated yet, request service.
203 				 */
204 				ieee80211_ampdu_request(ni, tap);
205 				/* XXX hold frame for reply? */
206 			}
207 		}
208 	}
209 
210 #ifdef IEEE80211_SUPPORT_SUPERG
211 	/*
212 	 * Check for AMSDU/FF; queue for aggregation
213 	 *
214 	 * Note: we don't bother trying to do fast frames or
215 	 * A-MSDU encapsulation for 802.3 drivers.  Now, we
216 	 * likely could do it for FF (because it's a magic
217 	 * atheros tunnel LLC type) but I don't think we're going
218 	 * to really need to.  For A-MSDU we'd have to set the
219 	 * A-MSDU QoS bit in the wifi header, so we just plain
220 	 * can't do it.
221 	 *
222 	 * Strictly speaking, we could actually /do/ A-MSDU / FF
223 	 * with A-MPDU together which for certain circumstances
224 	 * is beneficial (eg A-MSDU of TCK ACKs.)  However,
225 	 * I'll ignore that for now so existing behaviour is maintained.
226 	 * Later on it would be good to make "amsdu + ampdu" configurable.
227 	 */
228 	else if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
229 		if ((! mcast) && ieee80211_amsdu_tx_ok(ni)) {
230 			m = ieee80211_amsdu_check(ni, m);
231 			if (m == NULL) {
232 				/* NB: any ni ref held on stageq */
233 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
234 				    "%s: amsdu_check queued frame\n",
235 				    __func__);
236 				return (0);
237 			}
238 		} else if ((! mcast) && IEEE80211_ATH_CAP(vap, ni,
239 		    IEEE80211_NODE_FF)) {
240 			m = ieee80211_ff_check(ni, m);
241 			if (m == NULL) {
242 				/* NB: any ni ref held on stageq */
243 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
244 				    "%s: ff_check queued frame\n",
245 				    __func__);
246 				return (0);
247 			}
248 		}
249 	}
250 #endif /* IEEE80211_SUPPORT_SUPERG */
251 
252 	/*
253 	 * Grab the TX lock - serialise the TX process from this
254 	 * point (where TX state is being checked/modified)
255 	 * through to driver queue.
256 	 */
257 	IEEE80211_TX_LOCK(ic);
258 
259 	/*
260 	 * XXX make the encap and transmit code a separate function
261 	 * so things like the FF (and later A-MSDU) path can just call
262 	 * it for flushed frames.
263 	 */
264 	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
265 		/*
266 		 * Encapsulate the packet in prep for transmission.
267 		 */
268 		m = ieee80211_encap(vap, ni, m);
269 		if (m == NULL) {
270 			/* NB: stat+msg handled in ieee80211_encap */
271 			IEEE80211_TX_UNLOCK(ic);
272 			ieee80211_free_node(ni);
273 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
274 			return (ENOBUFS);
275 		}
276 	}
277 	(void) ieee80211_parent_xmitpkt(ic, m);
278 
279 	/*
280 	 * Unlock at this point - no need to hold it across
281 	 * ieee80211_free_node() (ie, the comlock)
282 	 */
283 	IEEE80211_TX_UNLOCK(ic);
284 	ic->ic_lastdata = ticks;
285 
286 	return (0);
287 }
288 
289 
290 
291 /*
292  * Send the given mbuf through the given vap.
293  *
294  * This consumes the mbuf regardless of whether the transmit
295  * was successful or not.
296  *
297  * This does none of the initial checks that ieee80211_start()
298  * does (eg CAC timeout, interface wakeup) - the caller must
299  * do this first.
300  */
301 static int
302 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
303 {
304 #define	IS_DWDS(vap) \
305 	(vap->iv_opmode == IEEE80211_M_WDS && \
306 	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
307 	struct ieee80211com *ic = vap->iv_ic;
308 	struct ifnet *ifp = vap->iv_ifp;
309 	struct ieee80211_node *ni;
310 	struct ether_header *eh;
311 
312 	/*
313 	 * Cancel any background scan.
314 	 */
315 	if (ic->ic_flags & IEEE80211_F_SCAN)
316 		ieee80211_cancel_anyscan(vap);
317 	/*
318 	 * Find the node for the destination so we can do
319 	 * things like power save and fast frames aggregation.
320 	 *
321 	 * NB: past this point various code assumes the first
322 	 *     mbuf has the 802.3 header present (and contiguous).
323 	 */
324 	ni = NULL;
325 	if (m->m_len < sizeof(struct ether_header) &&
326 	   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
327 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
328 		    "discard frame, %s\n", "m_pullup failed");
329 		vap->iv_stats.is_tx_nobuf++;	/* XXX */
330 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
331 		return (ENOBUFS);
332 	}
333 	eh = mtod(m, struct ether_header *);
334 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
335 		if (IS_DWDS(vap)) {
336 			/*
337 			 * Only unicast frames from the above go out
338 			 * DWDS vaps; multicast frames are handled by
339 			 * dispatching the frame as it comes through
340 			 * the AP vap (see below).
341 			 */
342 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
343 			    eh->ether_dhost, "mcast", "%s", "on DWDS");
344 			vap->iv_stats.is_dwds_mcast++;
345 			m_freem(m);
346 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
347 			/* XXX better status? */
348 			return (ENOBUFS);
349 		}
350 		if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
351 			/*
352 			 * Spam DWDS vap's w/ multicast traffic.
353 			 */
354 			/* XXX only if dwds in use? */
355 			ieee80211_dwds_mcast(vap, m);
356 		}
357 	}
358 #ifdef IEEE80211_SUPPORT_MESH
359 	if (vap->iv_opmode != IEEE80211_M_MBSS) {
360 #endif
361 		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
362 		if (ni == NULL) {
363 			/* NB: ieee80211_find_txnode does stat+msg */
364 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
365 			m_freem(m);
366 			/* XXX better status? */
367 			return (ENOBUFS);
368 		}
369 		if (ni->ni_associd == 0 &&
370 		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
371 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
372 			    eh->ether_dhost, NULL,
373 			    "sta not associated (type 0x%04x)",
374 			    htons(eh->ether_type));
375 			vap->iv_stats.is_tx_notassoc++;
376 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
377 			m_freem(m);
378 			ieee80211_free_node(ni);
379 			/* XXX better status? */
380 			return (ENOBUFS);
381 		}
382 #ifdef IEEE80211_SUPPORT_MESH
383 	} else {
384 		if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
385 			/*
386 			 * Proxy station only if configured.
387 			 */
388 			if (!ieee80211_mesh_isproxyena(vap)) {
389 				IEEE80211_DISCARD_MAC(vap,
390 				    IEEE80211_MSG_OUTPUT |
391 				    IEEE80211_MSG_MESH,
392 				    eh->ether_dhost, NULL,
393 				    "%s", "proxy not enabled");
394 				vap->iv_stats.is_mesh_notproxy++;
395 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
396 				m_freem(m);
397 				/* XXX better status? */
398 				return (ENOBUFS);
399 			}
400 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
401 			    "forward frame from DS SA(%6D), DA(%6D)\n",
402 			    eh->ether_shost, ":",
403 			    eh->ether_dhost, ":");
404 			ieee80211_mesh_proxy_check(vap, eh->ether_shost);
405 		}
406 		ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
407 		if (ni == NULL) {
408 			/*
409 			 * NB: ieee80211_mesh_discover holds/disposes
410 			 * frame (e.g. queueing on path discovery).
411 			 */
412 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
413 			/* XXX better status? */
414 			return (ENOBUFS);
415 		}
416 	}
417 #endif
418 
419 	/*
420 	 * We've resolved the sender, so attempt to transmit it.
421 	 */
422 
423 	if (vap->iv_state == IEEE80211_S_SLEEP) {
424 		/*
425 		 * In power save; queue frame and then  wakeup device
426 		 * for transmit.
427 		 */
428 		ic->ic_lastdata = ticks;
429 		if (ieee80211_pwrsave(ni, m) != 0)
430 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
431 		ieee80211_free_node(ni);
432 		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
433 		return (0);
434 	}
435 
436 	if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
437 		return (ENOBUFS);
438 	return (0);
439 #undef	IS_DWDS
440 }
441 
442 /*
443  * Start method for vap's.  All packets from the stack come
444  * through here.  We handle common processing of the packets
445  * before dispatching them to the underlying device.
446  *
447  * if_transmit() requires that the mbuf be consumed by this call
448  * regardless of the return condition.
449  */
450 int
451 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
452 {
453 	struct ieee80211vap *vap = ifp->if_softc;
454 	struct ieee80211com *ic = vap->iv_ic;
455 
456 	/*
457 	 * No data frames go out unless we're running.
458 	 * Note in particular this covers CAC and CSA
459 	 * states (though maybe we should check muting
460 	 * for CSA).
461 	 */
462 	if (vap->iv_state != IEEE80211_S_RUN &&
463 	    vap->iv_state != IEEE80211_S_SLEEP) {
464 		IEEE80211_LOCK(ic);
465 		/* re-check under the com lock to avoid races */
466 		if (vap->iv_state != IEEE80211_S_RUN &&
467 		    vap->iv_state != IEEE80211_S_SLEEP) {
468 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
469 			    "%s: ignore queue, in %s state\n",
470 			    __func__, ieee80211_state_name[vap->iv_state]);
471 			vap->iv_stats.is_tx_badstate++;
472 			IEEE80211_UNLOCK(ic);
473 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
474 			m_freem(m);
475 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
476 			return (ENETDOWN);
477 		}
478 		IEEE80211_UNLOCK(ic);
479 	}
480 
481 	/*
482 	 * Sanitize mbuf flags for net80211 use.  We cannot
483 	 * clear M_PWR_SAV or M_MORE_DATA because these may
484 	 * be set for frames that are re-submitted from the
485 	 * power save queue.
486 	 *
487 	 * NB: This must be done before ieee80211_classify as
488 	 *     it marks EAPOL in frames with M_EAPOL.
489 	 */
490 	m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
491 
492 	/*
493 	 * Bump to the packet transmission path.
494 	 * The mbuf will be consumed here.
495 	 */
496 	return (ieee80211_start_pkt(vap, m));
497 }
498 
499 void
500 ieee80211_vap_qflush(struct ifnet *ifp)
501 {
502 
503 	/* Empty for now */
504 }
505 
506 /*
507  * 802.11 raw output routine.
508  *
509  * XXX TODO: this (and other send routines) should correctly
510  * XXX keep the pwr mgmt bit set if it decides to call into the
511  * XXX driver to send a frame whilst the state is SLEEP.
512  *
513  * Otherwise the peer may decide that we're awake and flood us
514  * with traffic we are still too asleep to receive!
515  */
516 int
517 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
518     struct mbuf *m, const struct ieee80211_bpf_params *params)
519 {
520 	struct ieee80211com *ic = vap->iv_ic;
521 	int error;
522 
523 	/*
524 	 * Set node - the caller has taken a reference, so ensure
525 	 * that the mbuf has the same node value that
526 	 * it would if it were going via the normal path.
527 	 */
528 	m->m_pkthdr.rcvif = (void *)ni;
529 
530 	/*
531 	 * Attempt to add bpf transmit parameters.
532 	 *
533 	 * For now it's ok to fail; the raw_xmit api still takes
534 	 * them as an option.
535 	 *
536 	 * Later on when ic_raw_xmit() has params removed,
537 	 * they'll have to be added - so fail the transmit if
538 	 * they can't be.
539 	 */
540 	if (params)
541 		(void) ieee80211_add_xmit_params(m, params);
542 
543 	error = ic->ic_raw_xmit(ni, m, params);
544 	if (error) {
545 		if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
546 		ieee80211_free_node(ni);
547 	}
548 	return (error);
549 }
550 
551 /*
552  * 802.11 output routine. This is (currently) used only to
553  * connect bpf write calls to the 802.11 layer for injecting
554  * raw 802.11 frames.
555  */
556 int
557 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
558 	const struct sockaddr *dst, struct route *ro)
559 {
560 #define senderr(e) do { error = (e); goto bad;} while (0)
561 	struct ieee80211_node *ni = NULL;
562 	struct ieee80211vap *vap;
563 	struct ieee80211_frame *wh;
564 	struct ieee80211com *ic = NULL;
565 	int error;
566 	int ret;
567 
568 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
569 		/*
570 		 * Short-circuit requests if the vap is marked OACTIVE
571 		 * as this can happen because a packet came down through
572 		 * ieee80211_start before the vap entered RUN state in
573 		 * which case it's ok to just drop the frame.  This
574 		 * should not be necessary but callers of if_output don't
575 		 * check OACTIVE.
576 		 */
577 		senderr(ENETDOWN);
578 	}
579 	vap = ifp->if_softc;
580 	ic = vap->iv_ic;
581 	/*
582 	 * Hand to the 802.3 code if not tagged as
583 	 * a raw 802.11 frame.
584 	 */
585 	if (dst->sa_family != AF_IEEE80211)
586 		return vap->iv_output(ifp, m, dst, ro);
587 #ifdef MAC
588 	error = mac_ifnet_check_transmit(ifp, m);
589 	if (error)
590 		senderr(error);
591 #endif
592 	if (ifp->if_flags & IFF_MONITOR)
593 		senderr(ENETDOWN);
594 	if (!IFNET_IS_UP_RUNNING(ifp))
595 		senderr(ENETDOWN);
596 	if (vap->iv_state == IEEE80211_S_CAC) {
597 		IEEE80211_DPRINTF(vap,
598 		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
599 		    "block %s frame in CAC state\n", "raw data");
600 		vap->iv_stats.is_tx_badstate++;
601 		senderr(EIO);		/* XXX */
602 	} else if (vap->iv_state == IEEE80211_S_SCAN)
603 		senderr(EIO);
604 	/* XXX bypass bridge, pfil, carp, etc. */
605 
606 	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
607 		senderr(EIO);	/* XXX */
608 	wh = mtod(m, struct ieee80211_frame *);
609 	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
610 	    IEEE80211_FC0_VERSION_0)
611 		senderr(EIO);	/* XXX */
612 	if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh))
613 		senderr(EIO);	/* XXX */
614 
615 	/* locate destination node */
616 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
617 	case IEEE80211_FC1_DIR_NODS:
618 	case IEEE80211_FC1_DIR_FROMDS:
619 		ni = ieee80211_find_txnode(vap, wh->i_addr1);
620 		break;
621 	case IEEE80211_FC1_DIR_TODS:
622 	case IEEE80211_FC1_DIR_DSTODS:
623 		ni = ieee80211_find_txnode(vap, wh->i_addr3);
624 		break;
625 	default:
626 		senderr(EIO);	/* XXX */
627 	}
628 	if (ni == NULL) {
629 		/*
630 		 * Permit packets w/ bpf params through regardless
631 		 * (see below about sa_len).
632 		 */
633 		if (dst->sa_len == 0)
634 			senderr(EHOSTUNREACH);
635 		ni = ieee80211_ref_node(vap->iv_bss);
636 	}
637 
638 	/*
639 	 * Sanitize mbuf for net80211 flags leaked from above.
640 	 *
641 	 * NB: This must be done before ieee80211_classify as
642 	 *     it marks EAPOL in frames with M_EAPOL.
643 	 */
644 	m->m_flags &= ~M_80211_TX;
645 
646 	/* calculate priority so drivers can find the tx queue */
647 	/* XXX assumes an 802.3 frame */
648 	if (ieee80211_classify(ni, m))
649 		senderr(EIO);		/* XXX */
650 
651 	IEEE80211_NODE_STAT(ni, tx_data);
652 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
653 		IEEE80211_NODE_STAT(ni, tx_mcast);
654 		m->m_flags |= M_MCAST;
655 	} else
656 		IEEE80211_NODE_STAT(ni, tx_ucast);
657 	/* NB: ieee80211_encap does not include 802.11 header */
658 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len);
659 
660 	IEEE80211_TX_LOCK(ic);
661 
662 	/*
663 	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
664 	 * present by setting the sa_len field of the sockaddr (yes,
665 	 * this is a hack).
666 	 * NB: we assume sa_data is suitably aligned to cast.
667 	 */
668 	ret = ieee80211_raw_output(vap, ni, m,
669 	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
670 		dst->sa_data : NULL));
671 	IEEE80211_TX_UNLOCK(ic);
672 	return (ret);
673 bad:
674 	if (m != NULL)
675 		m_freem(m);
676 	if (ni != NULL)
677 		ieee80211_free_node(ni);
678 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
679 	return error;
680 #undef senderr
681 }
682 
683 /*
684  * Set the direction field and address fields of an outgoing
685  * frame.  Note this should be called early on in constructing
686  * a frame as it sets i_fc[1]; other bits can then be or'd in.
687  */
688 void
689 ieee80211_send_setup(
690 	struct ieee80211_node *ni,
691 	struct mbuf *m,
692 	int type, int tid,
693 	const uint8_t sa[IEEE80211_ADDR_LEN],
694 	const uint8_t da[IEEE80211_ADDR_LEN],
695 	const uint8_t bssid[IEEE80211_ADDR_LEN])
696 {
697 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
698 	struct ieee80211vap *vap = ni->ni_vap;
699 	struct ieee80211_tx_ampdu *tap;
700 	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
701 	ieee80211_seq seqno;
702 
703 	IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
704 
705 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
706 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
707 		switch (vap->iv_opmode) {
708 		case IEEE80211_M_STA:
709 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
710 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
711 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
712 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
713 			break;
714 		case IEEE80211_M_IBSS:
715 		case IEEE80211_M_AHDEMO:
716 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
717 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
718 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
719 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
720 			break;
721 		case IEEE80211_M_HOSTAP:
722 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
723 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
724 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
725 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
726 			break;
727 		case IEEE80211_M_WDS:
728 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
729 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
730 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
731 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
732 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
733 			break;
734 		case IEEE80211_M_MBSS:
735 #ifdef IEEE80211_SUPPORT_MESH
736 			if (IEEE80211_IS_MULTICAST(da)) {
737 				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
738 				/* XXX next hop */
739 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
740 				IEEE80211_ADDR_COPY(wh->i_addr2,
741 				    vap->iv_myaddr);
742 			} else {
743 				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
744 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
745 				IEEE80211_ADDR_COPY(wh->i_addr2,
746 				    vap->iv_myaddr);
747 				IEEE80211_ADDR_COPY(wh->i_addr3, da);
748 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
749 			}
750 #endif
751 			break;
752 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
753 			break;
754 		}
755 	} else {
756 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
757 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
758 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
759 #ifdef IEEE80211_SUPPORT_MESH
760 		if (vap->iv_opmode == IEEE80211_M_MBSS)
761 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
762 		else
763 #endif
764 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
765 	}
766 	*(uint16_t *)&wh->i_dur[0] = 0;
767 
768 	/*
769 	 * XXX TODO: this is what the TX lock is for.
770 	 * Here we're incrementing sequence numbers, and they
771 	 * need to be in lock-step with what the driver is doing
772 	 * both in TX ordering and crypto encap (IV increment.)
773 	 *
774 	 * If the driver does seqno itself, then we can skip
775 	 * assigning sequence numbers here, and we can avoid
776 	 * requiring the TX lock.
777 	 */
778 	tap = &ni->ni_tx_ampdu[tid];
779 	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap))
780 		m->m_flags |= M_AMPDU_MPDU;
781 	else {
782 		if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
783 				      type & IEEE80211_FC0_SUBTYPE_MASK))
784 			seqno = ni->ni_txseqs[tid]++;
785 		else
786 			seqno = 0;
787 
788 		*(uint16_t *)&wh->i_seq[0] =
789 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
790 		M_SEQNO_SET(m, seqno);
791 	}
792 
793 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
794 		m->m_flags |= M_MCAST;
795 #undef WH4
796 }
797 
798 /*
799  * Send a management frame to the specified node.  The node pointer
800  * must have a reference as the pointer will be passed to the driver
801  * and potentially held for a long time.  If the frame is successfully
802  * dispatched to the driver, then it is responsible for freeing the
803  * reference (and potentially free'ing up any associated storage);
804  * otherwise deal with reclaiming any reference (on error).
805  */
806 int
807 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
808 	struct ieee80211_bpf_params *params)
809 {
810 	struct ieee80211vap *vap = ni->ni_vap;
811 	struct ieee80211com *ic = ni->ni_ic;
812 	struct ieee80211_frame *wh;
813 	int ret;
814 
815 	KASSERT(ni != NULL, ("null node"));
816 
817 	if (vap->iv_state == IEEE80211_S_CAC) {
818 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
819 		    ni, "block %s frame in CAC state",
820 			ieee80211_mgt_subtype_name(type));
821 		vap->iv_stats.is_tx_badstate++;
822 		ieee80211_free_node(ni);
823 		m_freem(m);
824 		return EIO;		/* XXX */
825 	}
826 
827 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
828 	if (m == NULL) {
829 		ieee80211_free_node(ni);
830 		return ENOMEM;
831 	}
832 
833 	IEEE80211_TX_LOCK(ic);
834 
835 	wh = mtod(m, struct ieee80211_frame *);
836 	ieee80211_send_setup(ni, m,
837 	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
838 	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
839 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
840 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
841 		    "encrypting frame (%s)", __func__);
842 		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
843 	}
844 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
845 
846 	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
847 	M_WME_SETAC(m, params->ibp_pri);
848 
849 #ifdef IEEE80211_DEBUG
850 	/* avoid printing too many frames */
851 	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
852 	    ieee80211_msg_dumppkts(vap)) {
853 		printf("[%s] send %s on channel %u\n",
854 		    ether_sprintf(wh->i_addr1),
855 		    ieee80211_mgt_subtype_name(type),
856 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
857 	}
858 #endif
859 	IEEE80211_NODE_STAT(ni, tx_mgmt);
860 
861 	ret = ieee80211_raw_output(vap, ni, m, params);
862 	IEEE80211_TX_UNLOCK(ic);
863 	return (ret);
864 }
865 
866 static void
867 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg,
868     int status)
869 {
870 	struct ieee80211vap *vap = ni->ni_vap;
871 
872 	wakeup(vap);
873 }
874 
875 /*
876  * Send a null data frame to the specified node.  If the station
877  * is setup for QoS then a QoS Null Data frame is constructed.
878  * If this is a WDS station then a 4-address frame is constructed.
879  *
880  * NB: the caller is assumed to have setup a node reference
881  *     for use; this is necessary to deal with a race condition
882  *     when probing for inactive stations.  Like ieee80211_mgmt_output
883  *     we must cleanup any node reference on error;  however we
884  *     can safely just unref it as we know it will never be the
885  *     last reference to the node.
886  */
887 int
888 ieee80211_send_nulldata(struct ieee80211_node *ni)
889 {
890 	struct ieee80211vap *vap = ni->ni_vap;
891 	struct ieee80211com *ic = ni->ni_ic;
892 	struct mbuf *m;
893 	struct ieee80211_frame *wh;
894 	int hdrlen;
895 	uint8_t *frm;
896 	int ret;
897 
898 	if (vap->iv_state == IEEE80211_S_CAC) {
899 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
900 		    ni, "block %s frame in CAC state", "null data");
901 		ieee80211_unref_node(&ni);
902 		vap->iv_stats.is_tx_badstate++;
903 		return EIO;		/* XXX */
904 	}
905 
906 	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
907 		hdrlen = sizeof(struct ieee80211_qosframe);
908 	else
909 		hdrlen = sizeof(struct ieee80211_frame);
910 	/* NB: only WDS vap's get 4-address frames */
911 	if (vap->iv_opmode == IEEE80211_M_WDS)
912 		hdrlen += IEEE80211_ADDR_LEN;
913 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
914 		hdrlen = roundup(hdrlen, sizeof(uint32_t));
915 
916 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
917 	if (m == NULL) {
918 		/* XXX debug msg */
919 		ieee80211_unref_node(&ni);
920 		vap->iv_stats.is_tx_nobuf++;
921 		return ENOMEM;
922 	}
923 	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
924 	    ("leading space %zd", M_LEADINGSPACE(m)));
925 	M_PREPEND(m, hdrlen, M_NOWAIT);
926 	if (m == NULL) {
927 		/* NB: cannot happen */
928 		ieee80211_free_node(ni);
929 		return ENOMEM;
930 	}
931 
932 	IEEE80211_TX_LOCK(ic);
933 
934 	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
935 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
936 		const int tid = WME_AC_TO_TID(WME_AC_BE);
937 		uint8_t *qos;
938 
939 		ieee80211_send_setup(ni, m,
940 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
941 		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
942 
943 		if (vap->iv_opmode == IEEE80211_M_WDS)
944 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
945 		else
946 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
947 		qos[0] = tid & IEEE80211_QOS_TID;
948 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
949 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
950 		qos[1] = 0;
951 	} else {
952 		ieee80211_send_setup(ni, m,
953 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
954 		    IEEE80211_NONQOS_TID,
955 		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
956 	}
957 	if (vap->iv_opmode != IEEE80211_M_WDS) {
958 		/* NB: power management bit is never sent by an AP */
959 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
960 		    vap->iv_opmode != IEEE80211_M_HOSTAP)
961 			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
962 	}
963 	if ((ic->ic_flags & IEEE80211_F_SCAN) &&
964 	    (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) {
965 		ieee80211_add_callback(m, ieee80211_nulldata_transmitted,
966 		    NULL);
967 	}
968 	m->m_len = m->m_pkthdr.len = hdrlen;
969 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
970 
971 	M_WME_SETAC(m, WME_AC_BE);
972 
973 	IEEE80211_NODE_STAT(ni, tx_data);
974 
975 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
976 	    "send %snull data frame on channel %u, pwr mgt %s",
977 	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
978 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
979 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
980 
981 	ret = ieee80211_raw_output(vap, ni, m, NULL);
982 	IEEE80211_TX_UNLOCK(ic);
983 	return (ret);
984 }
985 
986 /*
987  * Assign priority to a frame based on any vlan tag assigned
988  * to the station and/or any Diffserv setting in an IP header.
989  * Finally, if an ACM policy is setup (in station mode) it's
990  * applied.
991  */
992 int
993 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
994 {
995 	const struct ether_header *eh = mtod(m, struct ether_header *);
996 	int v_wme_ac, d_wme_ac, ac;
997 
998 	/*
999 	 * Always promote PAE/EAPOL frames to high priority.
1000 	 */
1001 	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
1002 		/* NB: mark so others don't need to check header */
1003 		m->m_flags |= M_EAPOL;
1004 		ac = WME_AC_VO;
1005 		goto done;
1006 	}
1007 	/*
1008 	 * Non-qos traffic goes to BE.
1009 	 */
1010 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
1011 		ac = WME_AC_BE;
1012 		goto done;
1013 	}
1014 
1015 	/*
1016 	 * If node has a vlan tag then all traffic
1017 	 * to it must have a matching tag.
1018 	 */
1019 	v_wme_ac = 0;
1020 	if (ni->ni_vlan != 0) {
1021 		 if ((m->m_flags & M_VLANTAG) == 0) {
1022 			IEEE80211_NODE_STAT(ni, tx_novlantag);
1023 			return 1;
1024 		}
1025 		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
1026 		    EVL_VLANOFTAG(ni->ni_vlan)) {
1027 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
1028 			return 1;
1029 		}
1030 		/* map vlan priority to AC */
1031 		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
1032 	}
1033 
1034 	/* XXX m_copydata may be too slow for fast path */
1035 #ifdef INET
1036 	if (eh->ether_type == htons(ETHERTYPE_IP)) {
1037 		uint8_t tos;
1038 		/*
1039 		 * IP frame, map the DSCP bits from the TOS field.
1040 		 */
1041 		/* NB: ip header may not be in first mbuf */
1042 		m_copydata(m, sizeof(struct ether_header) +
1043 		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
1044 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1045 		d_wme_ac = TID_TO_WME_AC(tos);
1046 	} else {
1047 #endif /* INET */
1048 #ifdef INET6
1049 	if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
1050 		uint32_t flow;
1051 		uint8_t tos;
1052 		/*
1053 		 * IPv6 frame, map the DSCP bits from the traffic class field.
1054 		 */
1055 		m_copydata(m, sizeof(struct ether_header) +
1056 		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
1057 		    (caddr_t) &flow);
1058 		tos = (uint8_t)(ntohl(flow) >> 20);
1059 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1060 		d_wme_ac = TID_TO_WME_AC(tos);
1061 	} else {
1062 #endif /* INET6 */
1063 		d_wme_ac = WME_AC_BE;
1064 #ifdef INET6
1065 	}
1066 #endif
1067 #ifdef INET
1068 	}
1069 #endif
1070 	/*
1071 	 * Use highest priority AC.
1072 	 */
1073 	if (v_wme_ac > d_wme_ac)
1074 		ac = v_wme_ac;
1075 	else
1076 		ac = d_wme_ac;
1077 
1078 	/*
1079 	 * Apply ACM policy.
1080 	 */
1081 	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1082 		static const int acmap[4] = {
1083 			WME_AC_BK,	/* WME_AC_BE */
1084 			WME_AC_BK,	/* WME_AC_BK */
1085 			WME_AC_BE,	/* WME_AC_VI */
1086 			WME_AC_VI,	/* WME_AC_VO */
1087 		};
1088 		struct ieee80211com *ic = ni->ni_ic;
1089 
1090 		while (ac != WME_AC_BK &&
1091 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1092 			ac = acmap[ac];
1093 	}
1094 done:
1095 	M_WME_SETAC(m, ac);
1096 	return 0;
1097 }
1098 
1099 /*
1100  * Insure there is sufficient contiguous space to encapsulate the
1101  * 802.11 data frame.  If room isn't already there, arrange for it.
1102  * Drivers and cipher modules assume we have done the necessary work
1103  * and fail rudely if they don't find the space they need.
1104  */
1105 struct mbuf *
1106 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1107 	struct ieee80211_key *key, struct mbuf *m)
1108 {
1109 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
1110 	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1111 
1112 	if (key != NULL) {
1113 		/* XXX belongs in crypto code? */
1114 		needed_space += key->wk_cipher->ic_header;
1115 		/* XXX frags */
1116 		/*
1117 		 * When crypto is being done in the host we must insure
1118 		 * the data are writable for the cipher routines; clone
1119 		 * a writable mbuf chain.
1120 		 * XXX handle SWMIC specially
1121 		 */
1122 		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1123 			m = m_unshare(m, M_NOWAIT);
1124 			if (m == NULL) {
1125 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1126 				    "%s: cannot get writable mbuf\n", __func__);
1127 				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1128 				return NULL;
1129 			}
1130 		}
1131 	}
1132 	/*
1133 	 * We know we are called just before stripping an Ethernet
1134 	 * header and prepending an LLC header.  This means we know
1135 	 * there will be
1136 	 *	sizeof(struct ether_header) - sizeof(struct llc)
1137 	 * bytes recovered to which we need additional space for the
1138 	 * 802.11 header and any crypto header.
1139 	 */
1140 	/* XXX check trailing space and copy instead? */
1141 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1142 		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
1143 		if (n == NULL) {
1144 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1145 			    "%s: cannot expand storage\n", __func__);
1146 			vap->iv_stats.is_tx_nobuf++;
1147 			m_freem(m);
1148 			return NULL;
1149 		}
1150 		KASSERT(needed_space <= MHLEN,
1151 		    ("not enough room, need %u got %d\n", needed_space, MHLEN));
1152 		/*
1153 		 * Setup new mbuf to have leading space to prepend the
1154 		 * 802.11 header and any crypto header bits that are
1155 		 * required (the latter are added when the driver calls
1156 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
1157 		 */
1158 		/* NB: must be first 'cuz it clobbers m_data */
1159 		m_move_pkthdr(n, m);
1160 		n->m_len = 0;			/* NB: m_gethdr does not set */
1161 		n->m_data += needed_space;
1162 		/*
1163 		 * Pull up Ethernet header to create the expected layout.
1164 		 * We could use m_pullup but that's overkill (i.e. we don't
1165 		 * need the actual data) and it cannot fail so do it inline
1166 		 * for speed.
1167 		 */
1168 		/* NB: struct ether_header is known to be contiguous */
1169 		n->m_len += sizeof(struct ether_header);
1170 		m->m_len -= sizeof(struct ether_header);
1171 		m->m_data += sizeof(struct ether_header);
1172 		/*
1173 		 * Replace the head of the chain.
1174 		 */
1175 		n->m_next = m;
1176 		m = n;
1177 	}
1178 	return m;
1179 #undef TO_BE_RECLAIMED
1180 }
1181 
1182 /*
1183  * Return the transmit key to use in sending a unicast frame.
1184  * If a unicast key is set we use that.  When no unicast key is set
1185  * we fall back to the default transmit key.
1186  */
1187 static __inline struct ieee80211_key *
1188 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1189 	struct ieee80211_node *ni)
1190 {
1191 	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1192 		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1193 		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1194 			return NULL;
1195 		return &vap->iv_nw_keys[vap->iv_def_txkey];
1196 	} else {
1197 		return &ni->ni_ucastkey;
1198 	}
1199 }
1200 
1201 /*
1202  * Return the transmit key to use in sending a multicast frame.
1203  * Multicast traffic always uses the group key which is installed as
1204  * the default tx key.
1205  */
1206 static __inline struct ieee80211_key *
1207 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1208 	struct ieee80211_node *ni)
1209 {
1210 	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1211 	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1212 		return NULL;
1213 	return &vap->iv_nw_keys[vap->iv_def_txkey];
1214 }
1215 
1216 /*
1217  * Encapsulate an outbound data frame.  The mbuf chain is updated.
1218  * If an error is encountered NULL is returned.  The caller is required
1219  * to provide a node reference and pullup the ethernet header in the
1220  * first mbuf.
1221  *
1222  * NB: Packet is assumed to be processed by ieee80211_classify which
1223  *     marked EAPOL frames w/ M_EAPOL.
1224  */
1225 struct mbuf *
1226 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1227     struct mbuf *m)
1228 {
1229 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1230 #define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
1231 	struct ieee80211com *ic = ni->ni_ic;
1232 #ifdef IEEE80211_SUPPORT_MESH
1233 	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1234 	struct ieee80211_meshcntl_ae10 *mc;
1235 	struct ieee80211_mesh_route *rt = NULL;
1236 	int dir = -1;
1237 #endif
1238 	struct ether_header eh;
1239 	struct ieee80211_frame *wh;
1240 	struct ieee80211_key *key;
1241 	struct llc *llc;
1242 	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr;
1243 	ieee80211_seq seqno;
1244 	int meshhdrsize, meshae;
1245 	uint8_t *qos;
1246 	int is_amsdu = 0;
1247 
1248 	IEEE80211_TX_LOCK_ASSERT(ic);
1249 
1250 	/*
1251 	 * Copy existing Ethernet header to a safe place.  The
1252 	 * rest of the code assumes it's ok to strip it when
1253 	 * reorganizing state for the final encapsulation.
1254 	 */
1255 	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1256 	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1257 
1258 	/*
1259 	 * Insure space for additional headers.  First identify
1260 	 * transmit key to use in calculating any buffer adjustments
1261 	 * required.  This is also used below to do privacy
1262 	 * encapsulation work.  Then calculate the 802.11 header
1263 	 * size and any padding required by the driver.
1264 	 *
1265 	 * Note key may be NULL if we fall back to the default
1266 	 * transmit key and that is not set.  In that case the
1267 	 * buffer may not be expanded as needed by the cipher
1268 	 * routines, but they will/should discard it.
1269 	 */
1270 	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1271 		if (vap->iv_opmode == IEEE80211_M_STA ||
1272 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1273 		    (vap->iv_opmode == IEEE80211_M_WDS &&
1274 		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1275 			key = ieee80211_crypto_getucastkey(vap, ni);
1276 		else
1277 			key = ieee80211_crypto_getmcastkey(vap, ni);
1278 		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1279 			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1280 			    eh.ether_dhost,
1281 			    "no default transmit key (%s) deftxkey %u",
1282 			    __func__, vap->iv_def_txkey);
1283 			vap->iv_stats.is_tx_nodefkey++;
1284 			goto bad;
1285 		}
1286 	} else
1287 		key = NULL;
1288 	/*
1289 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1290 	 * frames so suppress use.  This may be an issue if other
1291 	 * ap's require all data frames to be QoS-encapsulated
1292 	 * once negotiated in which case we'll need to make this
1293 	 * configurable.
1294 	 * NB: mesh data frames are QoS.
1295 	 */
1296 	addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) ||
1297 	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1298 	    (m->m_flags & M_EAPOL) == 0;
1299 	if (addqos)
1300 		hdrsize = sizeof(struct ieee80211_qosframe);
1301 	else
1302 		hdrsize = sizeof(struct ieee80211_frame);
1303 #ifdef IEEE80211_SUPPORT_MESH
1304 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1305 		/*
1306 		 * Mesh data frames are encapsulated according to the
1307 		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1308 		 * o Group Addressed data (aka multicast) originating
1309 		 *   at the local sta are sent w/ 3-address format and
1310 		 *   address extension mode 00
1311 		 * o Individually Addressed data (aka unicast) originating
1312 		 *   at the local sta are sent w/ 4-address format and
1313 		 *   address extension mode 00
1314 		 * o Group Addressed data forwarded from a non-mesh sta are
1315 		 *   sent w/ 3-address format and address extension mode 01
1316 		 * o Individually Address data from another sta are sent
1317 		 *   w/ 4-address format and address extension mode 10
1318 		 */
1319 		is4addr = 0;		/* NB: don't use, disable */
1320 		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1321 			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1322 			KASSERT(rt != NULL, ("route is NULL"));
1323 			dir = IEEE80211_FC1_DIR_DSTODS;
1324 			hdrsize += IEEE80211_ADDR_LEN;
1325 			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1326 				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1327 				    vap->iv_myaddr)) {
1328 					IEEE80211_NOTE_MAC(vap,
1329 					    IEEE80211_MSG_MESH,
1330 					    eh.ether_dhost,
1331 					    "%s", "trying to send to ourself");
1332 					goto bad;
1333 				}
1334 				meshae = IEEE80211_MESH_AE_10;
1335 				meshhdrsize =
1336 				    sizeof(struct ieee80211_meshcntl_ae10);
1337 			} else {
1338 				meshae = IEEE80211_MESH_AE_00;
1339 				meshhdrsize =
1340 				    sizeof(struct ieee80211_meshcntl);
1341 			}
1342 		} else {
1343 			dir = IEEE80211_FC1_DIR_FROMDS;
1344 			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1345 				/* proxy group */
1346 				meshae = IEEE80211_MESH_AE_01;
1347 				meshhdrsize =
1348 				    sizeof(struct ieee80211_meshcntl_ae01);
1349 			} else {
1350 				/* group */
1351 				meshae = IEEE80211_MESH_AE_00;
1352 				meshhdrsize = sizeof(struct ieee80211_meshcntl);
1353 			}
1354 		}
1355 	} else {
1356 #endif
1357 		/*
1358 		 * 4-address frames need to be generated for:
1359 		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1360 		 * o packets sent through a vap marked for relaying
1361 		 *   (e.g. a station operating with dynamic WDS)
1362 		 */
1363 		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1364 		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1365 		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1366 		if (is4addr)
1367 			hdrsize += IEEE80211_ADDR_LEN;
1368 		meshhdrsize = meshae = 0;
1369 #ifdef IEEE80211_SUPPORT_MESH
1370 	}
1371 #endif
1372 	/*
1373 	 * Honor driver DATAPAD requirement.
1374 	 */
1375 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1376 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1377 	else
1378 		hdrspace = hdrsize;
1379 
1380 	if (__predict_true((m->m_flags & M_FF) == 0)) {
1381 		/*
1382 		 * Normal frame.
1383 		 */
1384 		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1385 		if (m == NULL) {
1386 			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1387 			goto bad;
1388 		}
1389 		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1390 		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1391 		llc = mtod(m, struct llc *);
1392 		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1393 		llc->llc_control = LLC_UI;
1394 		llc->llc_snap.org_code[0] = 0;
1395 		llc->llc_snap.org_code[1] = 0;
1396 		llc->llc_snap.org_code[2] = 0;
1397 		llc->llc_snap.ether_type = eh.ether_type;
1398 	} else {
1399 #ifdef IEEE80211_SUPPORT_SUPERG
1400 		/*
1401 		 * Aggregated frame.  Check if it's for AMSDU or FF.
1402 		 *
1403 		 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented
1404 		 * anywhere for some reason.  But, since 11n requires
1405 		 * AMSDU RX, we can just assume "11n" == "AMSDU".
1406 		 */
1407 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__);
1408 		if (ieee80211_amsdu_tx_ok(ni)) {
1409 			m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key);
1410 			is_amsdu = 1;
1411 		} else {
1412 			m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1413 		}
1414 		if (m == NULL)
1415 #endif
1416 			goto bad;
1417 	}
1418 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1419 
1420 	M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT);
1421 	if (m == NULL) {
1422 		vap->iv_stats.is_tx_nobuf++;
1423 		goto bad;
1424 	}
1425 	wh = mtod(m, struct ieee80211_frame *);
1426 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1427 	*(uint16_t *)wh->i_dur = 0;
1428 	qos = NULL;	/* NB: quiet compiler */
1429 	if (is4addr) {
1430 		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1431 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1432 		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1433 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1434 		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1435 	} else switch (vap->iv_opmode) {
1436 	case IEEE80211_M_STA:
1437 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1438 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1439 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1440 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1441 		break;
1442 	case IEEE80211_M_IBSS:
1443 	case IEEE80211_M_AHDEMO:
1444 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1445 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1446 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1447 		/*
1448 		 * NB: always use the bssid from iv_bss as the
1449 		 *     neighbor's may be stale after an ibss merge
1450 		 */
1451 		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1452 		break;
1453 	case IEEE80211_M_HOSTAP:
1454 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1455 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1456 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1457 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1458 		break;
1459 #ifdef IEEE80211_SUPPORT_MESH
1460 	case IEEE80211_M_MBSS:
1461 		/* NB: offset by hdrspace to deal with DATAPAD */
1462 		mc = (struct ieee80211_meshcntl_ae10 *)
1463 		     (mtod(m, uint8_t *) + hdrspace);
1464 		wh->i_fc[1] = dir;
1465 		switch (meshae) {
1466 		case IEEE80211_MESH_AE_00:	/* no proxy */
1467 			mc->mc_flags = 0;
1468 			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1469 				IEEE80211_ADDR_COPY(wh->i_addr1,
1470 				    ni->ni_macaddr);
1471 				IEEE80211_ADDR_COPY(wh->i_addr2,
1472 				    vap->iv_myaddr);
1473 				IEEE80211_ADDR_COPY(wh->i_addr3,
1474 				    eh.ether_dhost);
1475 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1476 				    eh.ether_shost);
1477 				qos =((struct ieee80211_qosframe_addr4 *)
1478 				    wh)->i_qos;
1479 			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1480 				 /* mcast */
1481 				IEEE80211_ADDR_COPY(wh->i_addr1,
1482 				    eh.ether_dhost);
1483 				IEEE80211_ADDR_COPY(wh->i_addr2,
1484 				    vap->iv_myaddr);
1485 				IEEE80211_ADDR_COPY(wh->i_addr3,
1486 				    eh.ether_shost);
1487 				qos = ((struct ieee80211_qosframe *)
1488 				    wh)->i_qos;
1489 			}
1490 			break;
1491 		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
1492 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1493 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1494 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1495 			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1496 			mc->mc_flags = 1;
1497 			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1498 			    eh.ether_shost);
1499 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1500 			break;
1501 		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
1502 			KASSERT(rt != NULL, ("route is NULL"));
1503 			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1504 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1505 			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1506 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1507 			mc->mc_flags = IEEE80211_MESH_AE_10;
1508 			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1509 			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1510 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1511 			break;
1512 		default:
1513 			KASSERT(0, ("meshae %d", meshae));
1514 			break;
1515 		}
1516 		mc->mc_ttl = ms->ms_ttl;
1517 		ms->ms_seq++;
1518 		le32enc(mc->mc_seq, ms->ms_seq);
1519 		break;
1520 #endif
1521 	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1522 	default:
1523 		goto bad;
1524 	}
1525 	if (m->m_flags & M_MORE_DATA)
1526 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1527 	if (addqos) {
1528 		int ac, tid;
1529 
1530 		if (is4addr) {
1531 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1532 		/* NB: mesh case handled earlier */
1533 		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1534 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1535 		ac = M_WME_GETAC(m);
1536 		/* map from access class/queue to 11e header priorty value */
1537 		tid = WME_AC_TO_TID(ac);
1538 		qos[0] = tid & IEEE80211_QOS_TID;
1539 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1540 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1541 #ifdef IEEE80211_SUPPORT_MESH
1542 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1543 			qos[1] = IEEE80211_QOS_MC;
1544 		else
1545 #endif
1546 			qos[1] = 0;
1547 		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1548 
1549 		/*
1550 		 * If this is an A-MSDU then ensure we set the
1551 		 * relevant field.
1552 		 */
1553 		if (is_amsdu)
1554 			qos[0] |= IEEE80211_QOS_AMSDU;
1555 
1556 		/*
1557 		 * XXX TODO TX lock is needed for atomic updates of sequence
1558 		 * numbers.  If the driver does it, then don't do it here;
1559 		 * and we don't need the TX lock held.
1560 		 */
1561 		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1562 			/*
1563 			 * NB: don't assign a sequence # to potential
1564 			 * aggregates; we expect this happens at the
1565 			 * point the frame comes off any aggregation q
1566 			 * as otherwise we may introduce holes in the
1567 			 * BA sequence space and/or make window accouting
1568 			 * more difficult.
1569 			 *
1570 			 * XXX may want to control this with a driver
1571 			 * capability; this may also change when we pull
1572 			 * aggregation up into net80211
1573 			 */
1574 			seqno = ni->ni_txseqs[tid]++;
1575 			*(uint16_t *)wh->i_seq =
1576 			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1577 			M_SEQNO_SET(m, seqno);
1578 		}
1579 	} else {
1580 		/*
1581 		 * XXX TODO TX lock is needed for atomic updates of sequence
1582 		 * numbers.  If the driver does it, then don't do it here;
1583 		 * and we don't need the TX lock held.
1584 		 */
1585 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1586 		*(uint16_t *)wh->i_seq =
1587 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1588 		M_SEQNO_SET(m, seqno);
1589 
1590 		/*
1591 		 * XXX TODO: we shouldn't allow EAPOL, etc that would
1592 		 * be forced to be non-QoS traffic to be A-MSDU encapsulated.
1593 		 */
1594 		if (is_amsdu)
1595 			printf("%s: XXX ERROR: is_amsdu set; not QoS!\n",
1596 			    __func__);
1597 	}
1598 
1599 
1600 	/* check if xmit fragmentation is required */
1601 	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1602 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1603 	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1604 	    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1605 	if (key != NULL) {
1606 		/*
1607 		 * IEEE 802.1X: send EAPOL frames always in the clear.
1608 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1609 		 */
1610 		if ((m->m_flags & M_EAPOL) == 0 ||
1611 		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1612 		     (vap->iv_opmode == IEEE80211_M_STA ?
1613 		      !IEEE80211_KEY_UNDEFINED(key) :
1614 		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1615 			wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1616 			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1617 				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1618 				    eh.ether_dhost,
1619 				    "%s", "enmic failed, discard frame");
1620 				vap->iv_stats.is_crypto_enmicfail++;
1621 				goto bad;
1622 			}
1623 		}
1624 	}
1625 	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1626 	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1627 		goto bad;
1628 
1629 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1630 
1631 	IEEE80211_NODE_STAT(ni, tx_data);
1632 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1633 		IEEE80211_NODE_STAT(ni, tx_mcast);
1634 		m->m_flags |= M_MCAST;
1635 	} else
1636 		IEEE80211_NODE_STAT(ni, tx_ucast);
1637 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1638 
1639 	return m;
1640 bad:
1641 	if (m != NULL)
1642 		m_freem(m);
1643 	return NULL;
1644 #undef WH4
1645 #undef MC01
1646 }
1647 
1648 void
1649 ieee80211_free_mbuf(struct mbuf *m)
1650 {
1651 	struct mbuf *next;
1652 
1653 	if (m == NULL)
1654 		return;
1655 
1656 	do {
1657 		next = m->m_nextpkt;
1658 		m->m_nextpkt = NULL;
1659 		m_freem(m);
1660 	} while ((m = next) != NULL);
1661 }
1662 
1663 /*
1664  * Fragment the frame according to the specified mtu.
1665  * The size of the 802.11 header (w/o padding) is provided
1666  * so we don't need to recalculate it.  We create a new
1667  * mbuf for each fragment and chain it through m_nextpkt;
1668  * we might be able to optimize this by reusing the original
1669  * packet's mbufs but that is significantly more complicated.
1670  */
1671 static int
1672 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1673 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1674 {
1675 	struct ieee80211com *ic = vap->iv_ic;
1676 	struct ieee80211_frame *wh, *whf;
1677 	struct mbuf *m, *prev;
1678 	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1679 	u_int hdrspace;
1680 
1681 	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1682 	KASSERT(m0->m_pkthdr.len > mtu,
1683 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1684 
1685 	/*
1686 	 * Honor driver DATAPAD requirement.
1687 	 */
1688 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1689 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1690 	else
1691 		hdrspace = hdrsize;
1692 
1693 	wh = mtod(m0, struct ieee80211_frame *);
1694 	/* NB: mark the first frag; it will be propagated below */
1695 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1696 	totalhdrsize = hdrspace + ciphdrsize;
1697 	fragno = 1;
1698 	off = mtu - ciphdrsize;
1699 	remainder = m0->m_pkthdr.len - off;
1700 	prev = m0;
1701 	do {
1702 		fragsize = MIN(totalhdrsize + remainder, mtu);
1703 		m = m_get2(fragsize, M_NOWAIT, MT_DATA, M_PKTHDR);
1704 		if (m == NULL)
1705 			goto bad;
1706 		/* leave room to prepend any cipher header */
1707 		m_align(m, fragsize - ciphdrsize);
1708 
1709 		/*
1710 		 * Form the header in the fragment.  Note that since
1711 		 * we mark the first fragment with the MORE_FRAG bit
1712 		 * it automatically is propagated to each fragment; we
1713 		 * need only clear it on the last fragment (done below).
1714 		 * NB: frag 1+ dont have Mesh Control field present.
1715 		 */
1716 		whf = mtod(m, struct ieee80211_frame *);
1717 		memcpy(whf, wh, hdrsize);
1718 #ifdef IEEE80211_SUPPORT_MESH
1719 		if (vap->iv_opmode == IEEE80211_M_MBSS) {
1720 			if (IEEE80211_IS_DSTODS(wh))
1721 				((struct ieee80211_qosframe_addr4 *)
1722 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1723 			else
1724 				((struct ieee80211_qosframe *)
1725 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1726 		}
1727 #endif
1728 		*(uint16_t *)&whf->i_seq[0] |= htole16(
1729 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1730 				IEEE80211_SEQ_FRAG_SHIFT);
1731 		fragno++;
1732 
1733 		payload = fragsize - totalhdrsize;
1734 		/* NB: destination is known to be contiguous */
1735 
1736 		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
1737 		m->m_len = hdrspace + payload;
1738 		m->m_pkthdr.len = hdrspace + payload;
1739 		m->m_flags |= M_FRAG;
1740 
1741 		/* chain up the fragment */
1742 		prev->m_nextpkt = m;
1743 		prev = m;
1744 
1745 		/* deduct fragment just formed */
1746 		remainder -= payload;
1747 		off += payload;
1748 	} while (remainder != 0);
1749 
1750 	/* set the last fragment */
1751 	m->m_flags |= M_LASTFRAG;
1752 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1753 
1754 	/* strip first mbuf now that everything has been copied */
1755 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1756 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1757 
1758 	vap->iv_stats.is_tx_fragframes++;
1759 	vap->iv_stats.is_tx_frags += fragno-1;
1760 
1761 	return 1;
1762 bad:
1763 	/* reclaim fragments but leave original frame for caller to free */
1764 	ieee80211_free_mbuf(m0->m_nextpkt);
1765 	m0->m_nextpkt = NULL;
1766 	return 0;
1767 }
1768 
1769 /*
1770  * Add a supported rates element id to a frame.
1771  */
1772 uint8_t *
1773 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1774 {
1775 	int nrates;
1776 
1777 	*frm++ = IEEE80211_ELEMID_RATES;
1778 	nrates = rs->rs_nrates;
1779 	if (nrates > IEEE80211_RATE_SIZE)
1780 		nrates = IEEE80211_RATE_SIZE;
1781 	*frm++ = nrates;
1782 	memcpy(frm, rs->rs_rates, nrates);
1783 	return frm + nrates;
1784 }
1785 
1786 /*
1787  * Add an extended supported rates element id to a frame.
1788  */
1789 uint8_t *
1790 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1791 {
1792 	/*
1793 	 * Add an extended supported rates element if operating in 11g mode.
1794 	 */
1795 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1796 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1797 		*frm++ = IEEE80211_ELEMID_XRATES;
1798 		*frm++ = nrates;
1799 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1800 		frm += nrates;
1801 	}
1802 	return frm;
1803 }
1804 
1805 /*
1806  * Add an ssid element to a frame.
1807  */
1808 uint8_t *
1809 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1810 {
1811 	*frm++ = IEEE80211_ELEMID_SSID;
1812 	*frm++ = len;
1813 	memcpy(frm, ssid, len);
1814 	return frm + len;
1815 }
1816 
1817 /*
1818  * Add an erp element to a frame.
1819  */
1820 static uint8_t *
1821 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1822 {
1823 	uint8_t erp;
1824 
1825 	*frm++ = IEEE80211_ELEMID_ERP;
1826 	*frm++ = 1;
1827 	erp = 0;
1828 	if (ic->ic_nonerpsta != 0)
1829 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1830 	if (ic->ic_flags & IEEE80211_F_USEPROT)
1831 		erp |= IEEE80211_ERP_USE_PROTECTION;
1832 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1833 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1834 	*frm++ = erp;
1835 	return frm;
1836 }
1837 
1838 /*
1839  * Add a CFParams element to a frame.
1840  */
1841 static uint8_t *
1842 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1843 {
1844 #define	ADDSHORT(frm, v) do {	\
1845 	le16enc(frm, v);	\
1846 	frm += 2;		\
1847 } while (0)
1848 	*frm++ = IEEE80211_ELEMID_CFPARMS;
1849 	*frm++ = 6;
1850 	*frm++ = 0;		/* CFP count */
1851 	*frm++ = 2;		/* CFP period */
1852 	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1853 	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1854 	return frm;
1855 #undef ADDSHORT
1856 }
1857 
1858 static __inline uint8_t *
1859 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1860 {
1861 	memcpy(frm, ie->ie_data, ie->ie_len);
1862 	return frm + ie->ie_len;
1863 }
1864 
1865 static __inline uint8_t *
1866 add_ie(uint8_t *frm, const uint8_t *ie)
1867 {
1868 	memcpy(frm, ie, 2 + ie[1]);
1869 	return frm + 2 + ie[1];
1870 }
1871 
1872 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1873 /*
1874  * Add a WME information element to a frame.
1875  */
1876 uint8_t *
1877 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1878 {
1879 	static const struct ieee80211_wme_info info = {
1880 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1881 		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1882 		.wme_oui	= { WME_OUI_BYTES },
1883 		.wme_type	= WME_OUI_TYPE,
1884 		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1885 		.wme_version	= WME_VERSION,
1886 		.wme_info	= 0,
1887 	};
1888 	memcpy(frm, &info, sizeof(info));
1889 	return frm + sizeof(info);
1890 }
1891 
1892 /*
1893  * Add a WME parameters element to a frame.
1894  */
1895 static uint8_t *
1896 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1897 {
1898 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1899 #define	ADDSHORT(frm, v) do {	\
1900 	le16enc(frm, v);	\
1901 	frm += 2;		\
1902 } while (0)
1903 	/* NB: this works 'cuz a param has an info at the front */
1904 	static const struct ieee80211_wme_info param = {
1905 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1906 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1907 		.wme_oui	= { WME_OUI_BYTES },
1908 		.wme_type	= WME_OUI_TYPE,
1909 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1910 		.wme_version	= WME_VERSION,
1911 	};
1912 	int i;
1913 
1914 	memcpy(frm, &param, sizeof(param));
1915 	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1916 	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1917 	*frm++ = 0;					/* reserved field */
1918 	for (i = 0; i < WME_NUM_AC; i++) {
1919 		const struct wmeParams *ac =
1920 		       &wme->wme_bssChanParams.cap_wmeParams[i];
1921 		*frm++ = SM(i, WME_PARAM_ACI)
1922 		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1923 		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1924 		       ;
1925 		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1926 		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1927 		       ;
1928 		ADDSHORT(frm, ac->wmep_txopLimit);
1929 	}
1930 	return frm;
1931 #undef SM
1932 #undef ADDSHORT
1933 }
1934 #undef WME_OUI_BYTES
1935 
1936 /*
1937  * Add an 11h Power Constraint element to a frame.
1938  */
1939 static uint8_t *
1940 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1941 {
1942 	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1943 	/* XXX per-vap tx power limit? */
1944 	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1945 
1946 	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1947 	frm[1] = 1;
1948 	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1949 	return frm + 3;
1950 }
1951 
1952 /*
1953  * Add an 11h Power Capability element to a frame.
1954  */
1955 static uint8_t *
1956 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1957 {
1958 	frm[0] = IEEE80211_ELEMID_PWRCAP;
1959 	frm[1] = 2;
1960 	frm[2] = c->ic_minpower;
1961 	frm[3] = c->ic_maxpower;
1962 	return frm + 4;
1963 }
1964 
1965 /*
1966  * Add an 11h Supported Channels element to a frame.
1967  */
1968 static uint8_t *
1969 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1970 {
1971 	static const int ielen = 26;
1972 
1973 	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1974 	frm[1] = ielen;
1975 	/* XXX not correct */
1976 	memcpy(frm+2, ic->ic_chan_avail, ielen);
1977 	return frm + 2 + ielen;
1978 }
1979 
1980 /*
1981  * Add an 11h Quiet time element to a frame.
1982  */
1983 static uint8_t *
1984 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap)
1985 {
1986 	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
1987 
1988 	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
1989 	quiet->len = 6;
1990 	if (vap->iv_quiet_count_value == 1)
1991 		vap->iv_quiet_count_value = vap->iv_quiet_count;
1992 	else if (vap->iv_quiet_count_value > 1)
1993 		vap->iv_quiet_count_value--;
1994 
1995 	if (vap->iv_quiet_count_value == 0) {
1996 		/* value 0 is reserved as per 802.11h standerd */
1997 		vap->iv_quiet_count_value = 1;
1998 	}
1999 
2000 	quiet->tbttcount = vap->iv_quiet_count_value;
2001 	quiet->period = vap->iv_quiet_period;
2002 	quiet->duration = htole16(vap->iv_quiet_duration);
2003 	quiet->offset = htole16(vap->iv_quiet_offset);
2004 	return frm + sizeof(*quiet);
2005 }
2006 
2007 /*
2008  * Add an 11h Channel Switch Announcement element to a frame.
2009  * Note that we use the per-vap CSA count to adjust the global
2010  * counter so we can use this routine to form probe response
2011  * frames and get the current count.
2012  */
2013 static uint8_t *
2014 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
2015 {
2016 	struct ieee80211com *ic = vap->iv_ic;
2017 	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
2018 
2019 	csa->csa_ie = IEEE80211_ELEMID_CSA;
2020 	csa->csa_len = 3;
2021 	csa->csa_mode = 1;		/* XXX force quiet on channel */
2022 	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
2023 	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
2024 	return frm + sizeof(*csa);
2025 }
2026 
2027 /*
2028  * Add an 11h country information element to a frame.
2029  */
2030 static uint8_t *
2031 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
2032 {
2033 
2034 	if (ic->ic_countryie == NULL ||
2035 	    ic->ic_countryie_chan != ic->ic_bsschan) {
2036 		/*
2037 		 * Handle lazy construction of ie.  This is done on
2038 		 * first use and after a channel change that requires
2039 		 * re-calculation.
2040 		 */
2041 		if (ic->ic_countryie != NULL)
2042 			IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
2043 		ic->ic_countryie = ieee80211_alloc_countryie(ic);
2044 		if (ic->ic_countryie == NULL)
2045 			return frm;
2046 		ic->ic_countryie_chan = ic->ic_bsschan;
2047 	}
2048 	return add_appie(frm, ic->ic_countryie);
2049 }
2050 
2051 uint8_t *
2052 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
2053 {
2054 	if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
2055 		return (add_ie(frm, vap->iv_wpa_ie));
2056 	else {
2057 		/* XXX else complain? */
2058 		return (frm);
2059 	}
2060 }
2061 
2062 uint8_t *
2063 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
2064 {
2065 	if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
2066 		return (add_ie(frm, vap->iv_rsn_ie));
2067 	else {
2068 		/* XXX else complain? */
2069 		return (frm);
2070 	}
2071 }
2072 
2073 uint8_t *
2074 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
2075 {
2076 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
2077 		*frm++ = IEEE80211_ELEMID_QOS;
2078 		*frm++ = 1;
2079 		*frm++ = 0;
2080 	}
2081 
2082 	return (frm);
2083 }
2084 
2085 /*
2086  * Send a probe request frame with the specified ssid
2087  * and any optional information element data.
2088  */
2089 /* XXX VHT? */
2090 int
2091 ieee80211_send_probereq(struct ieee80211_node *ni,
2092 	const uint8_t sa[IEEE80211_ADDR_LEN],
2093 	const uint8_t da[IEEE80211_ADDR_LEN],
2094 	const uint8_t bssid[IEEE80211_ADDR_LEN],
2095 	const uint8_t *ssid, size_t ssidlen)
2096 {
2097 	struct ieee80211vap *vap = ni->ni_vap;
2098 	struct ieee80211com *ic = ni->ni_ic;
2099 	struct ieee80211_node *bss;
2100 	const struct ieee80211_txparam *tp;
2101 	struct ieee80211_bpf_params params;
2102 	const struct ieee80211_rateset *rs;
2103 	struct mbuf *m;
2104 	uint8_t *frm;
2105 	int ret;
2106 
2107 	bss = ieee80211_ref_node(vap->iv_bss);
2108 
2109 	if (vap->iv_state == IEEE80211_S_CAC) {
2110 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
2111 		    "block %s frame in CAC state", "probe request");
2112 		vap->iv_stats.is_tx_badstate++;
2113 		ieee80211_free_node(bss);
2114 		return EIO;		/* XXX */
2115 	}
2116 
2117 	/*
2118 	 * Hold a reference on the node so it doesn't go away until after
2119 	 * the xmit is complete all the way in the driver.  On error we
2120 	 * will remove our reference.
2121 	 */
2122 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2123 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2124 		__func__, __LINE__,
2125 		ni, ether_sprintf(ni->ni_macaddr),
2126 		ieee80211_node_refcnt(ni)+1);
2127 	ieee80211_ref_node(ni);
2128 
2129 	/*
2130 	 * prreq frame format
2131 	 *	[tlv] ssid
2132 	 *	[tlv] supported rates
2133 	 *	[tlv] RSN (optional)
2134 	 *	[tlv] extended supported rates
2135 	 *	[tlv] HT cap (optional)
2136 	 *	[tlv] VHT cap (optional)
2137 	 *	[tlv] WPA (optional)
2138 	 *	[tlv] user-specified ie's
2139 	 */
2140 	m = ieee80211_getmgtframe(&frm,
2141 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2142 	       	 2 + IEEE80211_NWID_LEN
2143 	       + 2 + IEEE80211_RATE_SIZE
2144 	       + sizeof(struct ieee80211_ie_htcap)
2145 	       + sizeof(struct ieee80211_ie_vhtcap)
2146 	       + sizeof(struct ieee80211_ie_htinfo)	/* XXX not needed? */
2147 	       + sizeof(struct ieee80211_ie_wpa)
2148 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2149 	       + sizeof(struct ieee80211_ie_wpa)
2150 	       + (vap->iv_appie_probereq != NULL ?
2151 		   vap->iv_appie_probereq->ie_len : 0)
2152 	);
2153 	if (m == NULL) {
2154 		vap->iv_stats.is_tx_nobuf++;
2155 		ieee80211_free_node(ni);
2156 		ieee80211_free_node(bss);
2157 		return ENOMEM;
2158 	}
2159 
2160 	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2161 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2162 	frm = ieee80211_add_rates(frm, rs);
2163 	frm = ieee80211_add_rsn(frm, vap);
2164 	frm = ieee80211_add_xrates(frm, rs);
2165 
2166 	/*
2167 	 * Note: we can't use bss; we don't have one yet.
2168 	 *
2169 	 * So, we should announce our capabilities
2170 	 * in this channel mode (2g/5g), not the
2171 	 * channel details itself.
2172 	 */
2173 	if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
2174 	    (vap->iv_flags_ht & IEEE80211_FHT_HT)) {
2175 		struct ieee80211_channel *c;
2176 
2177 		/*
2178 		 * Get the HT channel that we should try upgrading to.
2179 		 * If we can do 40MHz then this'll upgrade it appropriately.
2180 		 */
2181 		c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2182 		    vap->iv_flags_ht);
2183 		frm = ieee80211_add_htcap_ch(frm, vap, c);
2184 	}
2185 
2186 	/*
2187 	 * XXX TODO: need to figure out what/how to update the
2188 	 * VHT channel.
2189 	 */
2190 #if 0
2191 	(vap->iv_flags_vht & IEEE80211_FVHT_VHT) {
2192 		struct ieee80211_channel *c;
2193 
2194 		c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2195 		    vap->iv_flags_ht);
2196 		c = ieee80211_vht_adjust_channel(ic, c, vap->iv_flags_vht);
2197 		frm = ieee80211_add_vhtcap_ch(frm, vap, c);
2198 	}
2199 #endif
2200 
2201 	frm = ieee80211_add_wpa(frm, vap);
2202 	if (vap->iv_appie_probereq != NULL)
2203 		frm = add_appie(frm, vap->iv_appie_probereq);
2204 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2205 
2206 	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2207 	    ("leading space %zd", M_LEADINGSPACE(m)));
2208 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2209 	if (m == NULL) {
2210 		/* NB: cannot happen */
2211 		ieee80211_free_node(ni);
2212 		ieee80211_free_node(bss);
2213 		return ENOMEM;
2214 	}
2215 
2216 	IEEE80211_TX_LOCK(ic);
2217 	ieee80211_send_setup(ni, m,
2218 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2219 	     IEEE80211_NONQOS_TID, sa, da, bssid);
2220 	/* XXX power management? */
2221 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2222 
2223 	M_WME_SETAC(m, WME_AC_BE);
2224 
2225 	IEEE80211_NODE_STAT(ni, tx_probereq);
2226 	IEEE80211_NODE_STAT(ni, tx_mgmt);
2227 
2228 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2229 	    "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n",
2230 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
2231 	    ether_sprintf(bssid),
2232 	    sa, ":",
2233 	    da, ":",
2234 	    ssidlen, ssid);
2235 
2236 	memset(&params, 0, sizeof(params));
2237 	params.ibp_pri = M_WME_GETAC(m);
2238 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2239 	params.ibp_rate0 = tp->mgmtrate;
2240 	if (IEEE80211_IS_MULTICAST(da)) {
2241 		params.ibp_flags |= IEEE80211_BPF_NOACK;
2242 		params.ibp_try0 = 1;
2243 	} else
2244 		params.ibp_try0 = tp->maxretry;
2245 	params.ibp_power = ni->ni_txpower;
2246 	ret = ieee80211_raw_output(vap, ni, m, &params);
2247 	IEEE80211_TX_UNLOCK(ic);
2248 	ieee80211_free_node(bss);
2249 	return (ret);
2250 }
2251 
2252 /*
2253  * Calculate capability information for mgt frames.
2254  */
2255 uint16_t
2256 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2257 {
2258 	struct ieee80211com *ic = vap->iv_ic;
2259 	uint16_t capinfo;
2260 
2261 	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2262 
2263 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2264 		capinfo = IEEE80211_CAPINFO_ESS;
2265 	else if (vap->iv_opmode == IEEE80211_M_IBSS)
2266 		capinfo = IEEE80211_CAPINFO_IBSS;
2267 	else
2268 		capinfo = 0;
2269 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2270 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2271 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2272 	    IEEE80211_IS_CHAN_2GHZ(chan))
2273 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2274 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2275 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2276 	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2277 		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2278 	return capinfo;
2279 }
2280 
2281 /*
2282  * Send a management frame.  The node is for the destination (or ic_bss
2283  * when in station mode).  Nodes other than ic_bss have their reference
2284  * count bumped to reflect our use for an indeterminant time.
2285  */
2286 int
2287 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2288 {
2289 #define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2290 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2291 	struct ieee80211vap *vap = ni->ni_vap;
2292 	struct ieee80211com *ic = ni->ni_ic;
2293 	struct ieee80211_node *bss = vap->iv_bss;
2294 	struct ieee80211_bpf_params params;
2295 	struct mbuf *m;
2296 	uint8_t *frm;
2297 	uint16_t capinfo;
2298 	int has_challenge, is_shared_key, ret, status;
2299 
2300 	KASSERT(ni != NULL, ("null node"));
2301 
2302 	/*
2303 	 * Hold a reference on the node so it doesn't go away until after
2304 	 * the xmit is complete all the way in the driver.  On error we
2305 	 * will remove our reference.
2306 	 */
2307 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2308 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2309 		__func__, __LINE__,
2310 		ni, ether_sprintf(ni->ni_macaddr),
2311 		ieee80211_node_refcnt(ni)+1);
2312 	ieee80211_ref_node(ni);
2313 
2314 	memset(&params, 0, sizeof(params));
2315 	switch (type) {
2316 
2317 	case IEEE80211_FC0_SUBTYPE_AUTH:
2318 		status = arg >> 16;
2319 		arg &= 0xffff;
2320 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2321 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2322 		    ni->ni_challenge != NULL);
2323 
2324 		/*
2325 		 * Deduce whether we're doing open authentication or
2326 		 * shared key authentication.  We do the latter if
2327 		 * we're in the middle of a shared key authentication
2328 		 * handshake or if we're initiating an authentication
2329 		 * request and configured to use shared key.
2330 		 */
2331 		is_shared_key = has_challenge ||
2332 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2333 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2334 		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
2335 
2336 		m = ieee80211_getmgtframe(&frm,
2337 			  ic->ic_headroom + sizeof(struct ieee80211_frame),
2338 			  3 * sizeof(uint16_t)
2339 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2340 				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
2341 		);
2342 		if (m == NULL)
2343 			senderr(ENOMEM, is_tx_nobuf);
2344 
2345 		((uint16_t *)frm)[0] =
2346 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2347 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
2348 		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
2349 		((uint16_t *)frm)[2] = htole16(status);/* status */
2350 
2351 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2352 			((uint16_t *)frm)[3] =
2353 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
2354 			    IEEE80211_ELEMID_CHALLENGE);
2355 			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2356 			    IEEE80211_CHALLENGE_LEN);
2357 			m->m_pkthdr.len = m->m_len =
2358 				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2359 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2360 				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2361 				    "request encrypt frame (%s)", __func__);
2362 				/* mark frame for encryption */
2363 				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2364 			}
2365 		} else
2366 			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2367 
2368 		/* XXX not right for shared key */
2369 		if (status == IEEE80211_STATUS_SUCCESS)
2370 			IEEE80211_NODE_STAT(ni, tx_auth);
2371 		else
2372 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
2373 
2374 		if (vap->iv_opmode == IEEE80211_M_STA)
2375 			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2376 				(void *) vap->iv_state);
2377 		break;
2378 
2379 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2380 		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2381 		    "send station deauthenticate (reason: %d (%s))", arg,
2382 		    ieee80211_reason_to_string(arg));
2383 		m = ieee80211_getmgtframe(&frm,
2384 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2385 			sizeof(uint16_t));
2386 		if (m == NULL)
2387 			senderr(ENOMEM, is_tx_nobuf);
2388 		*(uint16_t *)frm = htole16(arg);	/* reason */
2389 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2390 
2391 		IEEE80211_NODE_STAT(ni, tx_deauth);
2392 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2393 
2394 		ieee80211_node_unauthorize(ni);		/* port closed */
2395 		break;
2396 
2397 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2398 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2399 		/* XXX VHT? */
2400 		/*
2401 		 * asreq frame format
2402 		 *	[2] capability information
2403 		 *	[2] listen interval
2404 		 *	[6*] current AP address (reassoc only)
2405 		 *	[tlv] ssid
2406 		 *	[tlv] supported rates
2407 		 *	[tlv] extended supported rates
2408 		 *	[4] power capability (optional)
2409 		 *	[28] supported channels (optional)
2410 		 *	[tlv] HT capabilities
2411 		 *	[tlv] VHT capabilities
2412 		 *	[tlv] WME (optional)
2413 		 *	[tlv] Vendor OUI HT capabilities (optional)
2414 		 *	[tlv] Atheros capabilities (if negotiated)
2415 		 *	[tlv] AppIE's (optional)
2416 		 */
2417 		m = ieee80211_getmgtframe(&frm,
2418 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2419 			 sizeof(uint16_t)
2420 		       + sizeof(uint16_t)
2421 		       + IEEE80211_ADDR_LEN
2422 		       + 2 + IEEE80211_NWID_LEN
2423 		       + 2 + IEEE80211_RATE_SIZE
2424 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2425 		       + 4
2426 		       + 2 + 26
2427 		       + sizeof(struct ieee80211_wme_info)
2428 		       + sizeof(struct ieee80211_ie_htcap)
2429 		       + sizeof(struct ieee80211_ie_vhtcap)
2430 		       + 4 + sizeof(struct ieee80211_ie_htcap)
2431 #ifdef IEEE80211_SUPPORT_SUPERG
2432 		       + sizeof(struct ieee80211_ath_ie)
2433 #endif
2434 		       + (vap->iv_appie_wpa != NULL ?
2435 				vap->iv_appie_wpa->ie_len : 0)
2436 		       + (vap->iv_appie_assocreq != NULL ?
2437 				vap->iv_appie_assocreq->ie_len : 0)
2438 		);
2439 		if (m == NULL)
2440 			senderr(ENOMEM, is_tx_nobuf);
2441 
2442 		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2443 		    ("wrong mode %u", vap->iv_opmode));
2444 		capinfo = IEEE80211_CAPINFO_ESS;
2445 		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2446 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2447 		/*
2448 		 * NB: Some 11a AP's reject the request when
2449 		 *     short premable is set.
2450 		 */
2451 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2452 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2453 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2454 		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2455 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2456 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2457 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2458 		    (vap->iv_flags & IEEE80211_F_DOTH))
2459 			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2460 		*(uint16_t *)frm = htole16(capinfo);
2461 		frm += 2;
2462 
2463 		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2464 		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2465 						    bss->ni_intval));
2466 		frm += 2;
2467 
2468 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2469 			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2470 			frm += IEEE80211_ADDR_LEN;
2471 		}
2472 
2473 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2474 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2475 		frm = ieee80211_add_rsn(frm, vap);
2476 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2477 		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2478 			frm = ieee80211_add_powercapability(frm,
2479 			    ic->ic_curchan);
2480 			frm = ieee80211_add_supportedchannels(frm, ic);
2481 		}
2482 
2483 		/*
2484 		 * Check the channel - we may be using an 11n NIC with an
2485 		 * 11n capable station, but we're configured to be an 11b
2486 		 * channel.
2487 		 */
2488 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2489 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2490 		    ni->ni_ies.htcap_ie != NULL &&
2491 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
2492 			frm = ieee80211_add_htcap(frm, ni);
2493 		}
2494 
2495 		if ((vap->iv_flags_vht & IEEE80211_FVHT_VHT) &&
2496 		    IEEE80211_IS_CHAN_VHT(ni->ni_chan) &&
2497 		    ni->ni_ies.vhtcap_ie != NULL &&
2498 		    ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) {
2499 			frm = ieee80211_add_vhtcap(frm, ni);
2500 		}
2501 
2502 		frm = ieee80211_add_wpa(frm, vap);
2503 		if ((ic->ic_flags & IEEE80211_F_WME) &&
2504 		    ni->ni_ies.wme_ie != NULL)
2505 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2506 
2507 		/*
2508 		 * Same deal - only send HT info if we're on an 11n
2509 		 * capable channel.
2510 		 */
2511 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2512 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2513 		    ni->ni_ies.htcap_ie != NULL &&
2514 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
2515 			frm = ieee80211_add_htcap_vendor(frm, ni);
2516 		}
2517 #ifdef IEEE80211_SUPPORT_SUPERG
2518 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2519 			frm = ieee80211_add_ath(frm,
2520 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2521 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2522 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2523 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2524 		}
2525 #endif /* IEEE80211_SUPPORT_SUPERG */
2526 		if (vap->iv_appie_assocreq != NULL)
2527 			frm = add_appie(frm, vap->iv_appie_assocreq);
2528 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2529 
2530 		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2531 			(void *) vap->iv_state);
2532 		break;
2533 
2534 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2535 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2536 		/*
2537 		 * asresp frame format
2538 		 *	[2] capability information
2539 		 *	[2] status
2540 		 *	[2] association ID
2541 		 *	[tlv] supported rates
2542 		 *	[tlv] extended supported rates
2543 		 *	[tlv] HT capabilities (standard, if STA enabled)
2544 		 *	[tlv] HT information (standard, if STA enabled)
2545 		 *	[tlv] VHT capabilities (standard, if STA enabled)
2546 		 *	[tlv] VHT information (standard, if STA enabled)
2547 		 *	[tlv] WME (if configured and STA enabled)
2548 		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2549 		 *	[tlv] HT information (vendor OUI, if STA enabled)
2550 		 *	[tlv] Atheros capabilities (if STA enabled)
2551 		 *	[tlv] AppIE's (optional)
2552 		 */
2553 		m = ieee80211_getmgtframe(&frm,
2554 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2555 			 sizeof(uint16_t)
2556 		       + sizeof(uint16_t)
2557 		       + sizeof(uint16_t)
2558 		       + 2 + IEEE80211_RATE_SIZE
2559 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2560 		       + sizeof(struct ieee80211_ie_htcap) + 4
2561 		       + sizeof(struct ieee80211_ie_htinfo) + 4
2562 		       + sizeof(struct ieee80211_ie_vhtcap)
2563 		       + sizeof(struct ieee80211_ie_vht_operation)
2564 		       + sizeof(struct ieee80211_wme_param)
2565 #ifdef IEEE80211_SUPPORT_SUPERG
2566 		       + sizeof(struct ieee80211_ath_ie)
2567 #endif
2568 		       + (vap->iv_appie_assocresp != NULL ?
2569 				vap->iv_appie_assocresp->ie_len : 0)
2570 		);
2571 		if (m == NULL)
2572 			senderr(ENOMEM, is_tx_nobuf);
2573 
2574 		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2575 		*(uint16_t *)frm = htole16(capinfo);
2576 		frm += 2;
2577 
2578 		*(uint16_t *)frm = htole16(arg);	/* status */
2579 		frm += 2;
2580 
2581 		if (arg == IEEE80211_STATUS_SUCCESS) {
2582 			*(uint16_t *)frm = htole16(ni->ni_associd);
2583 			IEEE80211_NODE_STAT(ni, tx_assoc);
2584 		} else
2585 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2586 		frm += 2;
2587 
2588 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2589 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2590 		/* NB: respond according to what we received */
2591 		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2592 			frm = ieee80211_add_htcap(frm, ni);
2593 			frm = ieee80211_add_htinfo(frm, ni);
2594 		}
2595 		if ((vap->iv_flags & IEEE80211_F_WME) &&
2596 		    ni->ni_ies.wme_ie != NULL)
2597 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2598 		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2599 			frm = ieee80211_add_htcap_vendor(frm, ni);
2600 			frm = ieee80211_add_htinfo_vendor(frm, ni);
2601 		}
2602 		if (ni->ni_flags & IEEE80211_NODE_VHT) {
2603 			frm = ieee80211_add_vhtcap(frm, ni);
2604 			frm = ieee80211_add_vhtinfo(frm, ni);
2605 		}
2606 #ifdef IEEE80211_SUPPORT_SUPERG
2607 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2608 			frm = ieee80211_add_ath(frm,
2609 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2610 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2611 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2612 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2613 #endif /* IEEE80211_SUPPORT_SUPERG */
2614 		if (vap->iv_appie_assocresp != NULL)
2615 			frm = add_appie(frm, vap->iv_appie_assocresp);
2616 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2617 		break;
2618 
2619 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2620 		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2621 		    "send station disassociate (reason: %d (%s))", arg,
2622 		    ieee80211_reason_to_string(arg));
2623 		m = ieee80211_getmgtframe(&frm,
2624 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2625 			sizeof(uint16_t));
2626 		if (m == NULL)
2627 			senderr(ENOMEM, is_tx_nobuf);
2628 		*(uint16_t *)frm = htole16(arg);	/* reason */
2629 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2630 
2631 		IEEE80211_NODE_STAT(ni, tx_disassoc);
2632 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2633 		break;
2634 
2635 	default:
2636 		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2637 		    "invalid mgmt frame type %u", type);
2638 		senderr(EINVAL, is_tx_unknownmgt);
2639 		/* NOTREACHED */
2640 	}
2641 
2642 	/* NB: force non-ProbeResp frames to the highest queue */
2643 	params.ibp_pri = WME_AC_VO;
2644 	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2645 	/* NB: we know all frames are unicast */
2646 	params.ibp_try0 = bss->ni_txparms->maxretry;
2647 	params.ibp_power = bss->ni_txpower;
2648 	return ieee80211_mgmt_output(ni, m, type, &params);
2649 bad:
2650 	ieee80211_free_node(ni);
2651 	return ret;
2652 #undef senderr
2653 #undef HTFLAGS
2654 }
2655 
2656 /*
2657  * Return an mbuf with a probe response frame in it.
2658  * Space is left to prepend and 802.11 header at the
2659  * front but it's left to the caller to fill in.
2660  */
2661 /* XXX VHT? */
2662 struct mbuf *
2663 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2664 {
2665 	struct ieee80211vap *vap = bss->ni_vap;
2666 	struct ieee80211com *ic = bss->ni_ic;
2667 	const struct ieee80211_rateset *rs;
2668 	struct mbuf *m;
2669 	uint16_t capinfo;
2670 	uint8_t *frm;
2671 
2672 	/*
2673 	 * probe response frame format
2674 	 *	[8] time stamp
2675 	 *	[2] beacon interval
2676 	 *	[2] cabability information
2677 	 *	[tlv] ssid
2678 	 *	[tlv] supported rates
2679 	 *	[tlv] parameter set (FH/DS)
2680 	 *	[tlv] parameter set (IBSS)
2681 	 *	[tlv] country (optional)
2682 	 *	[3] power control (optional)
2683 	 *	[5] channel switch announcement (CSA) (optional)
2684 	 *	[tlv] extended rate phy (ERP)
2685 	 *	[tlv] extended supported rates
2686 	 *	[tlv] RSN (optional)
2687 	 *	[tlv] HT capabilities
2688 	 *	[tlv] HT information
2689 	 *	[tlv] WPA (optional)
2690 	 *	[tlv] WME (optional)
2691 	 *	[tlv] Vendor OUI HT capabilities (optional)
2692 	 *	[tlv] Vendor OUI HT information (optional)
2693 	 *	[tlv] Atheros capabilities
2694 	 *	[tlv] AppIE's (optional)
2695 	 *	[tlv] Mesh ID (MBSS)
2696 	 *	[tlv] Mesh Conf (MBSS)
2697 	 */
2698 	m = ieee80211_getmgtframe(&frm,
2699 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2700 		 8
2701 	       + sizeof(uint16_t)
2702 	       + sizeof(uint16_t)
2703 	       + 2 + IEEE80211_NWID_LEN
2704 	       + 2 + IEEE80211_RATE_SIZE
2705 	       + 7	/* max(7,3) */
2706 	       + IEEE80211_COUNTRY_MAX_SIZE
2707 	       + 3
2708 	       + sizeof(struct ieee80211_csa_ie)
2709 	       + sizeof(struct ieee80211_quiet_ie)
2710 	       + 3
2711 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2712 	       + sizeof(struct ieee80211_ie_wpa)
2713 	       + sizeof(struct ieee80211_ie_htcap)
2714 	       + sizeof(struct ieee80211_ie_htinfo)
2715 	       + sizeof(struct ieee80211_ie_wpa)
2716 	       + sizeof(struct ieee80211_wme_param)
2717 	       + 4 + sizeof(struct ieee80211_ie_htcap)
2718 	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2719 #ifdef IEEE80211_SUPPORT_SUPERG
2720 	       + sizeof(struct ieee80211_ath_ie)
2721 #endif
2722 #ifdef IEEE80211_SUPPORT_MESH
2723 	       + 2 + IEEE80211_MESHID_LEN
2724 	       + sizeof(struct ieee80211_meshconf_ie)
2725 #endif
2726 	       + (vap->iv_appie_proberesp != NULL ?
2727 			vap->iv_appie_proberesp->ie_len : 0)
2728 	);
2729 	if (m == NULL) {
2730 		vap->iv_stats.is_tx_nobuf++;
2731 		return NULL;
2732 	}
2733 
2734 	memset(frm, 0, 8);	/* timestamp should be filled later */
2735 	frm += 8;
2736 	*(uint16_t *)frm = htole16(bss->ni_intval);
2737 	frm += 2;
2738 	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2739 	*(uint16_t *)frm = htole16(capinfo);
2740 	frm += 2;
2741 
2742 	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2743 	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2744 	frm = ieee80211_add_rates(frm, rs);
2745 
2746 	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2747 		*frm++ = IEEE80211_ELEMID_FHPARMS;
2748 		*frm++ = 5;
2749 		*frm++ = bss->ni_fhdwell & 0x00ff;
2750 		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2751 		*frm++ = IEEE80211_FH_CHANSET(
2752 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2753 		*frm++ = IEEE80211_FH_CHANPAT(
2754 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2755 		*frm++ = bss->ni_fhindex;
2756 	} else {
2757 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2758 		*frm++ = 1;
2759 		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2760 	}
2761 
2762 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2763 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2764 		*frm++ = 2;
2765 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2766 	}
2767 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2768 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2769 		frm = ieee80211_add_countryie(frm, ic);
2770 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2771 		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2772 			frm = ieee80211_add_powerconstraint(frm, vap);
2773 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2774 			frm = ieee80211_add_csa(frm, vap);
2775 	}
2776 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2777 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2778 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2779 			if (vap->iv_quiet)
2780 				frm = ieee80211_add_quiet(frm, vap);
2781 		}
2782 	}
2783 	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2784 		frm = ieee80211_add_erp(frm, ic);
2785 	frm = ieee80211_add_xrates(frm, rs);
2786 	frm = ieee80211_add_rsn(frm, vap);
2787 	/*
2788 	 * NB: legacy 11b clients do not get certain ie's.
2789 	 *     The caller identifies such clients by passing
2790 	 *     a token in legacy to us.  Could expand this to be
2791 	 *     any legacy client for stuff like HT ie's.
2792 	 */
2793 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2794 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2795 		frm = ieee80211_add_htcap(frm, bss);
2796 		frm = ieee80211_add_htinfo(frm, bss);
2797 	}
2798 	frm = ieee80211_add_wpa(frm, vap);
2799 	if (vap->iv_flags & IEEE80211_F_WME)
2800 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2801 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2802 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
2803 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2804 		frm = ieee80211_add_htcap_vendor(frm, bss);
2805 		frm = ieee80211_add_htinfo_vendor(frm, bss);
2806 	}
2807 #ifdef IEEE80211_SUPPORT_SUPERG
2808 	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
2809 	    legacy != IEEE80211_SEND_LEGACY_11B)
2810 		frm = ieee80211_add_athcaps(frm, bss);
2811 #endif
2812 	if (vap->iv_appie_proberesp != NULL)
2813 		frm = add_appie(frm, vap->iv_appie_proberesp);
2814 #ifdef IEEE80211_SUPPORT_MESH
2815 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2816 		frm = ieee80211_add_meshid(frm, vap);
2817 		frm = ieee80211_add_meshconf(frm, vap);
2818 	}
2819 #endif
2820 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2821 
2822 	return m;
2823 }
2824 
2825 /*
2826  * Send a probe response frame to the specified mac address.
2827  * This does not go through the normal mgt frame api so we
2828  * can specify the destination address and re-use the bss node
2829  * for the sta reference.
2830  */
2831 int
2832 ieee80211_send_proberesp(struct ieee80211vap *vap,
2833 	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2834 {
2835 	struct ieee80211_node *bss = vap->iv_bss;
2836 	struct ieee80211com *ic = vap->iv_ic;
2837 	struct mbuf *m;
2838 	int ret;
2839 
2840 	if (vap->iv_state == IEEE80211_S_CAC) {
2841 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2842 		    "block %s frame in CAC state", "probe response");
2843 		vap->iv_stats.is_tx_badstate++;
2844 		return EIO;		/* XXX */
2845 	}
2846 
2847 	/*
2848 	 * Hold a reference on the node so it doesn't go away until after
2849 	 * the xmit is complete all the way in the driver.  On error we
2850 	 * will remove our reference.
2851 	 */
2852 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2853 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2854 	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2855 	    ieee80211_node_refcnt(bss)+1);
2856 	ieee80211_ref_node(bss);
2857 
2858 	m = ieee80211_alloc_proberesp(bss, legacy);
2859 	if (m == NULL) {
2860 		ieee80211_free_node(bss);
2861 		return ENOMEM;
2862 	}
2863 
2864 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2865 	KASSERT(m != NULL, ("no room for header"));
2866 
2867 	IEEE80211_TX_LOCK(ic);
2868 	ieee80211_send_setup(bss, m,
2869 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2870 	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2871 	/* XXX power management? */
2872 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2873 
2874 	M_WME_SETAC(m, WME_AC_BE);
2875 
2876 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2877 	    "send probe resp on channel %u to %s%s\n",
2878 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2879 	    legacy ? " <legacy>" : "");
2880 	IEEE80211_NODE_STAT(bss, tx_mgmt);
2881 
2882 	ret = ieee80211_raw_output(vap, bss, m, NULL);
2883 	IEEE80211_TX_UNLOCK(ic);
2884 	return (ret);
2885 }
2886 
2887 /*
2888  * Allocate and build a RTS (Request To Send) control frame.
2889  */
2890 struct mbuf *
2891 ieee80211_alloc_rts(struct ieee80211com *ic,
2892 	const uint8_t ra[IEEE80211_ADDR_LEN],
2893 	const uint8_t ta[IEEE80211_ADDR_LEN],
2894 	uint16_t dur)
2895 {
2896 	struct ieee80211_frame_rts *rts;
2897 	struct mbuf *m;
2898 
2899 	/* XXX honor ic_headroom */
2900 	m = m_gethdr(M_NOWAIT, MT_DATA);
2901 	if (m != NULL) {
2902 		rts = mtod(m, struct ieee80211_frame_rts *);
2903 		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2904 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2905 		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2906 		*(u_int16_t *)rts->i_dur = htole16(dur);
2907 		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2908 		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2909 
2910 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2911 	}
2912 	return m;
2913 }
2914 
2915 /*
2916  * Allocate and build a CTS (Clear To Send) control frame.
2917  */
2918 struct mbuf *
2919 ieee80211_alloc_cts(struct ieee80211com *ic,
2920 	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2921 {
2922 	struct ieee80211_frame_cts *cts;
2923 	struct mbuf *m;
2924 
2925 	/* XXX honor ic_headroom */
2926 	m = m_gethdr(M_NOWAIT, MT_DATA);
2927 	if (m != NULL) {
2928 		cts = mtod(m, struct ieee80211_frame_cts *);
2929 		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2930 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2931 		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2932 		*(u_int16_t *)cts->i_dur = htole16(dur);
2933 		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2934 
2935 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2936 	}
2937 	return m;
2938 }
2939 
2940 static void
2941 ieee80211_tx_mgt_timeout(void *arg)
2942 {
2943 	struct ieee80211vap *vap = arg;
2944 
2945 	IEEE80211_LOCK(vap->iv_ic);
2946 	if (vap->iv_state != IEEE80211_S_INIT &&
2947 	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2948 		/*
2949 		 * NB: it's safe to specify a timeout as the reason here;
2950 		 *     it'll only be used in the right state.
2951 		 */
2952 		ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
2953 			IEEE80211_SCAN_FAIL_TIMEOUT);
2954 	}
2955 	IEEE80211_UNLOCK(vap->iv_ic);
2956 }
2957 
2958 /*
2959  * This is the callback set on net80211-sourced transmitted
2960  * authentication request frames.
2961  *
2962  * This does a couple of things:
2963  *
2964  * + If the frame transmitted was a success, it schedules a future
2965  *   event which will transition the interface to scan.
2966  *   If a state transition _then_ occurs before that event occurs,
2967  *   said state transition will cancel this callout.
2968  *
2969  * + If the frame transmit was a failure, it immediately schedules
2970  *   the transition back to scan.
2971  */
2972 static void
2973 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2974 {
2975 	struct ieee80211vap *vap = ni->ni_vap;
2976 	enum ieee80211_state ostate = (enum ieee80211_state) arg;
2977 
2978 	/*
2979 	 * Frame transmit completed; arrange timer callback.  If
2980 	 * transmit was successfully we wait for response.  Otherwise
2981 	 * we arrange an immediate callback instead of doing the
2982 	 * callback directly since we don't know what state the driver
2983 	 * is in (e.g. what locks it is holding).  This work should
2984 	 * not be too time-critical and not happen too often so the
2985 	 * added overhead is acceptable.
2986 	 *
2987 	 * XXX what happens if !acked but response shows up before callback?
2988 	 */
2989 	if (vap->iv_state == ostate) {
2990 		callout_reset(&vap->iv_mgtsend,
2991 			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2992 			ieee80211_tx_mgt_timeout, vap);
2993 	}
2994 }
2995 
2996 /* XXX VHT? */
2997 static void
2998 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2999 	struct ieee80211_node *ni)
3000 {
3001 	struct ieee80211vap *vap = ni->ni_vap;
3002 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3003 	struct ieee80211com *ic = ni->ni_ic;
3004 	struct ieee80211_rateset *rs = &ni->ni_rates;
3005 	uint16_t capinfo;
3006 
3007 	/*
3008 	 * beacon frame format
3009 	 *
3010 	 * TODO: update to 802.11-2012; a lot of stuff has changed;
3011 	 * vendor extensions should be at the end, etc.
3012 	 *
3013 	 *	[8] time stamp
3014 	 *	[2] beacon interval
3015 	 *	[2] cabability information
3016 	 *	[tlv] ssid
3017 	 *	[tlv] supported rates
3018 	 *	[3] parameter set (DS)
3019 	 *	[8] CF parameter set (optional)
3020 	 *	[tlv] parameter set (IBSS/TIM)
3021 	 *	[tlv] country (optional)
3022 	 *	[3] power control (optional)
3023 	 *	[5] channel switch announcement (CSA) (optional)
3024 	 * XXX TODO: Quiet
3025 	 * XXX TODO: IBSS DFS
3026 	 * XXX TODO: TPC report
3027 	 *	[tlv] extended rate phy (ERP)
3028 	 *	[tlv] extended supported rates
3029 	 *	[tlv] RSN parameters
3030 	 * XXX TODO: BSSLOAD
3031 	 * (XXX EDCA parameter set, QoS capability?)
3032 	 * XXX TODO: AP channel report
3033 	 *
3034 	 *	[tlv] HT capabilities
3035 	 *	[tlv] HT information
3036 	 *	XXX TODO: 20/40 BSS coexistence
3037 	 * Mesh:
3038 	 * XXX TODO: Meshid
3039 	 * XXX TODO: mesh config
3040 	 * XXX TODO: mesh awake window
3041 	 * XXX TODO: beacon timing (mesh, etc)
3042 	 * XXX TODO: MCCAOP Advertisement Overview
3043 	 * XXX TODO: MCCAOP Advertisement
3044 	 * XXX TODO: Mesh channel switch parameters
3045 	 * VHT:
3046 	 * XXX TODO: VHT capabilities
3047 	 * XXX TODO: VHT operation
3048 	 * XXX TODO: VHT transmit power envelope
3049 	 * XXX TODO: channel switch wrapper element
3050 	 * XXX TODO: extended BSS load element
3051 	 *
3052 	 * XXX Vendor-specific OIDs (e.g. Atheros)
3053 	 *	[tlv] WPA parameters
3054 	 *	[tlv] WME parameters
3055 	 *	[tlv] Vendor OUI HT capabilities (optional)
3056 	 *	[tlv] Vendor OUI HT information (optional)
3057 	 *	[tlv] Atheros capabilities (optional)
3058 	 *	[tlv] TDMA parameters (optional)
3059 	 *	[tlv] Mesh ID (MBSS)
3060 	 *	[tlv] Mesh Conf (MBSS)
3061 	 *	[tlv] application data (optional)
3062 	 */
3063 
3064 	memset(bo, 0, sizeof(*bo));
3065 
3066 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
3067 	frm += 8;
3068 	*(uint16_t *)frm = htole16(ni->ni_intval);
3069 	frm += 2;
3070 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3071 	bo->bo_caps = (uint16_t *)frm;
3072 	*(uint16_t *)frm = htole16(capinfo);
3073 	frm += 2;
3074 	*frm++ = IEEE80211_ELEMID_SSID;
3075 	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
3076 		*frm++ = ni->ni_esslen;
3077 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
3078 		frm += ni->ni_esslen;
3079 	} else
3080 		*frm++ = 0;
3081 	frm = ieee80211_add_rates(frm, rs);
3082 	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
3083 		*frm++ = IEEE80211_ELEMID_DSPARMS;
3084 		*frm++ = 1;
3085 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
3086 	}
3087 	if (ic->ic_flags & IEEE80211_F_PCF) {
3088 		bo->bo_cfp = frm;
3089 		frm = ieee80211_add_cfparms(frm, ic);
3090 	}
3091 	bo->bo_tim = frm;
3092 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
3093 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
3094 		*frm++ = 2;
3095 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
3096 		bo->bo_tim_len = 0;
3097 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3098 	    vap->iv_opmode == IEEE80211_M_MBSS) {
3099 		/* TIM IE is the same for Mesh and Hostap */
3100 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
3101 
3102 		tie->tim_ie = IEEE80211_ELEMID_TIM;
3103 		tie->tim_len = 4;	/* length */
3104 		tie->tim_count = 0;	/* DTIM count */
3105 		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
3106 		tie->tim_bitctl = 0;	/* bitmap control */
3107 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
3108 		frm += sizeof(struct ieee80211_tim_ie);
3109 		bo->bo_tim_len = 1;
3110 	}
3111 	bo->bo_tim_trailer = frm;
3112 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3113 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3114 		frm = ieee80211_add_countryie(frm, ic);
3115 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3116 		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
3117 			frm = ieee80211_add_powerconstraint(frm, vap);
3118 		bo->bo_csa = frm;
3119 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3120 			frm = ieee80211_add_csa(frm, vap);
3121 	} else
3122 		bo->bo_csa = frm;
3123 
3124 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3125 		bo->bo_quiet = frm;
3126 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3127 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
3128 			if (vap->iv_quiet)
3129 				frm = ieee80211_add_quiet(frm,vap);
3130 		}
3131 	} else
3132 		bo->bo_quiet = frm;
3133 
3134 	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
3135 		bo->bo_erp = frm;
3136 		frm = ieee80211_add_erp(frm, ic);
3137 	}
3138 	frm = ieee80211_add_xrates(frm, rs);
3139 	frm = ieee80211_add_rsn(frm, vap);
3140 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
3141 		frm = ieee80211_add_htcap(frm, ni);
3142 		bo->bo_htinfo = frm;
3143 		frm = ieee80211_add_htinfo(frm, ni);
3144 	}
3145 
3146 	if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) {
3147 		frm = ieee80211_add_vhtcap(frm, ni);
3148 		bo->bo_vhtinfo = frm;
3149 		frm = ieee80211_add_vhtinfo(frm, ni);
3150 		/* Transmit power envelope */
3151 		/* Channel switch wrapper element */
3152 		/* Extended bss load element */
3153 	}
3154 
3155 	frm = ieee80211_add_wpa(frm, vap);
3156 	if (vap->iv_flags & IEEE80211_F_WME) {
3157 		bo->bo_wme = frm;
3158 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
3159 	}
3160 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
3161 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
3162 		frm = ieee80211_add_htcap_vendor(frm, ni);
3163 		frm = ieee80211_add_htinfo_vendor(frm, ni);
3164 	}
3165 
3166 #ifdef IEEE80211_SUPPORT_SUPERG
3167 	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
3168 		bo->bo_ath = frm;
3169 		frm = ieee80211_add_athcaps(frm, ni);
3170 	}
3171 #endif
3172 #ifdef IEEE80211_SUPPORT_TDMA
3173 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3174 		bo->bo_tdma = frm;
3175 		frm = ieee80211_add_tdma(frm, vap);
3176 	}
3177 #endif
3178 	if (vap->iv_appie_beacon != NULL) {
3179 		bo->bo_appie = frm;
3180 		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
3181 		frm = add_appie(frm, vap->iv_appie_beacon);
3182 	}
3183 
3184 	/* XXX TODO: move meshid/meshconf up to before vendor extensions? */
3185 #ifdef IEEE80211_SUPPORT_MESH
3186 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3187 		frm = ieee80211_add_meshid(frm, vap);
3188 		bo->bo_meshconf = frm;
3189 		frm = ieee80211_add_meshconf(frm, vap);
3190 	}
3191 #endif
3192 	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
3193 	bo->bo_csa_trailer_len = frm - bo->bo_csa;
3194 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3195 }
3196 
3197 /*
3198  * Allocate a beacon frame and fillin the appropriate bits.
3199  */
3200 /* XXX VHT? */
3201 struct mbuf *
3202 ieee80211_beacon_alloc(struct ieee80211_node *ni)
3203 {
3204 	struct ieee80211vap *vap = ni->ni_vap;
3205 	struct ieee80211com *ic = ni->ni_ic;
3206 	struct ifnet *ifp = vap->iv_ifp;
3207 	struct ieee80211_frame *wh;
3208 	struct mbuf *m;
3209 	int pktlen;
3210 	uint8_t *frm;
3211 
3212 	/*
3213 	 * beacon frame format
3214 	 *
3215 	 * Note: This needs updating for 802.11-2012.
3216 	 *
3217 	 *	[8] time stamp
3218 	 *	[2] beacon interval
3219 	 *	[2] cabability information
3220 	 *	[tlv] ssid
3221 	 *	[tlv] supported rates
3222 	 *	[3] parameter set (DS)
3223 	 *	[8] CF parameter set (optional)
3224 	 *	[tlv] parameter set (IBSS/TIM)
3225 	 *	[tlv] country (optional)
3226 	 *	[3] power control (optional)
3227 	 *	[5] channel switch announcement (CSA) (optional)
3228 	 *	[tlv] extended rate phy (ERP)
3229 	 *	[tlv] extended supported rates
3230 	 *	[tlv] RSN parameters
3231 	 *	[tlv] HT capabilities
3232 	 *	[tlv] HT information
3233 	 *	[tlv] VHT capabilities
3234 	 *	[tlv] VHT operation
3235 	 *	[tlv] Vendor OUI HT capabilities (optional)
3236 	 *	[tlv] Vendor OUI HT information (optional)
3237 	 * XXX Vendor-specific OIDs (e.g. Atheros)
3238 	 *	[tlv] WPA parameters
3239 	 *	[tlv] WME parameters
3240 	 *	[tlv] TDMA parameters (optional)
3241 	 *	[tlv] Mesh ID (MBSS)
3242 	 *	[tlv] Mesh Conf (MBSS)
3243 	 *	[tlv] application data (optional)
3244 	 * NB: we allocate the max space required for the TIM bitmap.
3245 	 * XXX how big is this?
3246 	 */
3247 	/* XXX VHT? */
3248 	pktlen =   8					/* time stamp */
3249 		 + sizeof(uint16_t)			/* beacon interval */
3250 		 + sizeof(uint16_t)			/* capabilities */
3251 		 + 2 + ni->ni_esslen			/* ssid */
3252 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
3253 	         + 2 + 1				/* DS parameters */
3254 		 + 2 + 6				/* CF parameters */
3255 		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
3256 		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
3257 		 + 2 + 1				/* power control */
3258 		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
3259 		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
3260 		 + 2 + 1				/* ERP */
3261 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3262 		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
3263 			2*sizeof(struct ieee80211_ie_wpa) : 0)
3264 		 /* XXX conditional? */
3265 		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3266 		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3267 		 + sizeof(struct ieee80211_ie_vhtcap)/* VHT caps */
3268 		 + sizeof(struct ieee80211_ie_vht_operation)/* VHT info */
3269 		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
3270 			sizeof(struct ieee80211_wme_param) : 0)
3271 #ifdef IEEE80211_SUPPORT_SUPERG
3272 		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
3273 #endif
3274 #ifdef IEEE80211_SUPPORT_TDMA
3275 		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
3276 			sizeof(struct ieee80211_tdma_param) : 0)
3277 #endif
3278 #ifdef IEEE80211_SUPPORT_MESH
3279 		 + 2 + ni->ni_meshidlen
3280 		 + sizeof(struct ieee80211_meshconf_ie)
3281 #endif
3282 		 + IEEE80211_MAX_APPIE
3283 		 ;
3284 	m = ieee80211_getmgtframe(&frm,
3285 		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3286 	if (m == NULL) {
3287 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3288 			"%s: cannot get buf; size %u\n", __func__, pktlen);
3289 		vap->iv_stats.is_tx_nobuf++;
3290 		return NULL;
3291 	}
3292 	ieee80211_beacon_construct(m, frm, ni);
3293 
3294 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
3295 	KASSERT(m != NULL, ("no space for 802.11 header?"));
3296 	wh = mtod(m, struct ieee80211_frame *);
3297 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3298 	    IEEE80211_FC0_SUBTYPE_BEACON;
3299 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3300 	*(uint16_t *)wh->i_dur = 0;
3301 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3302 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3303 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3304 	*(uint16_t *)wh->i_seq = 0;
3305 
3306 	return m;
3307 }
3308 
3309 /*
3310  * Update the dynamic parts of a beacon frame based on the current state.
3311  */
3312 int
3313 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast)
3314 {
3315 	struct ieee80211vap *vap = ni->ni_vap;
3316 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3317 	struct ieee80211com *ic = ni->ni_ic;
3318 	int len_changed = 0;
3319 	uint16_t capinfo;
3320 	struct ieee80211_frame *wh;
3321 	ieee80211_seq seqno;
3322 
3323 	IEEE80211_LOCK(ic);
3324 	/*
3325 	 * Handle 11h channel change when we've reached the count.
3326 	 * We must recalculate the beacon frame contents to account
3327 	 * for the new channel.  Note we do this only for the first
3328 	 * vap that reaches this point; subsequent vaps just update
3329 	 * their beacon state to reflect the recalculated channel.
3330 	 */
3331 	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3332 	    vap->iv_csa_count == ic->ic_csa_count) {
3333 		vap->iv_csa_count = 0;
3334 		/*
3335 		 * Effect channel change before reconstructing the beacon
3336 		 * frame contents as many places reference ni_chan.
3337 		 */
3338 		if (ic->ic_csa_newchan != NULL)
3339 			ieee80211_csa_completeswitch(ic);
3340 		/*
3341 		 * NB: ieee80211_beacon_construct clears all pending
3342 		 * updates in bo_flags so we don't need to explicitly
3343 		 * clear IEEE80211_BEACON_CSA.
3344 		 */
3345 		ieee80211_beacon_construct(m,
3346 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3347 
3348 		/* XXX do WME aggressive mode processing? */
3349 		IEEE80211_UNLOCK(ic);
3350 		return 1;		/* just assume length changed */
3351 	}
3352 
3353 	wh = mtod(m, struct ieee80211_frame *);
3354 
3355 	/*
3356 	 * XXX TODO Strictly speaking this should be incremented with the TX
3357 	 * lock held so as to serialise access to the non-qos TID sequence
3358 	 * number space.
3359 	 *
3360 	 * If the driver identifies it does its own TX seqno management then
3361 	 * we can skip this (and still not do the TX seqno.)
3362 	 */
3363 	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3364 	*(uint16_t *)&wh->i_seq[0] =
3365 		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3366 	M_SEQNO_SET(m, seqno);
3367 
3368 	/* XXX faster to recalculate entirely or just changes? */
3369 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3370 	*bo->bo_caps = htole16(capinfo);
3371 
3372 	if (vap->iv_flags & IEEE80211_F_WME) {
3373 		struct ieee80211_wme_state *wme = &ic->ic_wme;
3374 
3375 		/*
3376 		 * Check for aggressive mode change.  When there is
3377 		 * significant high priority traffic in the BSS
3378 		 * throttle back BE traffic by using conservative
3379 		 * parameters.  Otherwise BE uses aggressive params
3380 		 * to optimize performance of legacy/non-QoS traffic.
3381 		 */
3382 		if (wme->wme_flags & WME_F_AGGRMODE) {
3383 			if (wme->wme_hipri_traffic >
3384 			    wme->wme_hipri_switch_thresh) {
3385 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3386 				    "%s: traffic %u, disable aggressive mode\n",
3387 				    __func__, wme->wme_hipri_traffic);
3388 				wme->wme_flags &= ~WME_F_AGGRMODE;
3389 				ieee80211_wme_updateparams_locked(vap);
3390 				wme->wme_hipri_traffic =
3391 					wme->wme_hipri_switch_hysteresis;
3392 			} else
3393 				wme->wme_hipri_traffic = 0;
3394 		} else {
3395 			if (wme->wme_hipri_traffic <=
3396 			    wme->wme_hipri_switch_thresh) {
3397 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3398 				    "%s: traffic %u, enable aggressive mode\n",
3399 				    __func__, wme->wme_hipri_traffic);
3400 				wme->wme_flags |= WME_F_AGGRMODE;
3401 				ieee80211_wme_updateparams_locked(vap);
3402 				wme->wme_hipri_traffic = 0;
3403 			} else
3404 				wme->wme_hipri_traffic =
3405 					wme->wme_hipri_switch_hysteresis;
3406 		}
3407 		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3408 			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
3409 			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3410 		}
3411 	}
3412 
3413 	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
3414 		ieee80211_ht_update_beacon(vap, bo);
3415 		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3416 	}
3417 #ifdef IEEE80211_SUPPORT_TDMA
3418 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3419 		/*
3420 		 * NB: the beacon is potentially updated every TBTT.
3421 		 */
3422 		ieee80211_tdma_update_beacon(vap, bo);
3423 	}
3424 #endif
3425 #ifdef IEEE80211_SUPPORT_MESH
3426 	if (vap->iv_opmode == IEEE80211_M_MBSS)
3427 		ieee80211_mesh_update_beacon(vap, bo);
3428 #endif
3429 
3430 	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3431 	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
3432 		struct ieee80211_tim_ie *tie =
3433 			(struct ieee80211_tim_ie *) bo->bo_tim;
3434 		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3435 			u_int timlen, timoff, i;
3436 			/*
3437 			 * ATIM/DTIM needs updating.  If it fits in the
3438 			 * current space allocated then just copy in the
3439 			 * new bits.  Otherwise we need to move any trailing
3440 			 * data to make room.  Note that we know there is
3441 			 * contiguous space because ieee80211_beacon_allocate
3442 			 * insures there is space in the mbuf to write a
3443 			 * maximal-size virtual bitmap (based on iv_max_aid).
3444 			 */
3445 			/*
3446 			 * Calculate the bitmap size and offset, copy any
3447 			 * trailer out of the way, and then copy in the
3448 			 * new bitmap and update the information element.
3449 			 * Note that the tim bitmap must contain at least
3450 			 * one byte and any offset must be even.
3451 			 */
3452 			if (vap->iv_ps_pending != 0) {
3453 				timoff = 128;		/* impossibly large */
3454 				for (i = 0; i < vap->iv_tim_len; i++)
3455 					if (vap->iv_tim_bitmap[i]) {
3456 						timoff = i &~ 1;
3457 						break;
3458 					}
3459 				KASSERT(timoff != 128, ("tim bitmap empty!"));
3460 				for (i = vap->iv_tim_len-1; i >= timoff; i--)
3461 					if (vap->iv_tim_bitmap[i])
3462 						break;
3463 				timlen = 1 + (i - timoff);
3464 			} else {
3465 				timoff = 0;
3466 				timlen = 1;
3467 			}
3468 
3469 			/*
3470 			 * TODO: validate this!
3471 			 */
3472 			if (timlen != bo->bo_tim_len) {
3473 				/* copy up/down trailer */
3474 				int adjust = tie->tim_bitmap+timlen
3475 					   - bo->bo_tim_trailer;
3476 				ovbcopy(bo->bo_tim_trailer,
3477 				    bo->bo_tim_trailer+adjust,
3478 				    bo->bo_tim_trailer_len);
3479 				bo->bo_tim_trailer += adjust;
3480 				bo->bo_erp += adjust;
3481 				bo->bo_htinfo += adjust;
3482 				bo->bo_vhtinfo += adjust;
3483 #ifdef IEEE80211_SUPPORT_SUPERG
3484 				bo->bo_ath += adjust;
3485 #endif
3486 #ifdef IEEE80211_SUPPORT_TDMA
3487 				bo->bo_tdma += adjust;
3488 #endif
3489 #ifdef IEEE80211_SUPPORT_MESH
3490 				bo->bo_meshconf += adjust;
3491 #endif
3492 				bo->bo_appie += adjust;
3493 				bo->bo_wme += adjust;
3494 				bo->bo_csa += adjust;
3495 				bo->bo_quiet += adjust;
3496 				bo->bo_tim_len = timlen;
3497 
3498 				/* update information element */
3499 				tie->tim_len = 3 + timlen;
3500 				tie->tim_bitctl = timoff;
3501 				len_changed = 1;
3502 			}
3503 			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
3504 				bo->bo_tim_len);
3505 
3506 			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
3507 
3508 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
3509 				"%s: TIM updated, pending %u, off %u, len %u\n",
3510 				__func__, vap->iv_ps_pending, timoff, timlen);
3511 		}
3512 		/* count down DTIM period */
3513 		if (tie->tim_count == 0)
3514 			tie->tim_count = tie->tim_period - 1;
3515 		else
3516 			tie->tim_count--;
3517 		/* update state for buffered multicast frames on DTIM */
3518 		if (mcast && tie->tim_count == 0)
3519 			tie->tim_bitctl |= 1;
3520 		else
3521 			tie->tim_bitctl &= ~1;
3522 		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
3523 			struct ieee80211_csa_ie *csa =
3524 			    (struct ieee80211_csa_ie *) bo->bo_csa;
3525 
3526 			/*
3527 			 * Insert or update CSA ie.  If we're just starting
3528 			 * to count down to the channel switch then we need
3529 			 * to insert the CSA ie.  Otherwise we just need to
3530 			 * drop the count.  The actual change happens above
3531 			 * when the vap's count reaches the target count.
3532 			 */
3533 			if (vap->iv_csa_count == 0) {
3534 				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
3535 				bo->bo_erp += sizeof(*csa);
3536 				bo->bo_htinfo += sizeof(*csa);
3537 				bo->bo_vhtinfo += sizeof(*csa);
3538 				bo->bo_wme += sizeof(*csa);
3539 #ifdef IEEE80211_SUPPORT_SUPERG
3540 				bo->bo_ath += sizeof(*csa);
3541 #endif
3542 #ifdef IEEE80211_SUPPORT_TDMA
3543 				bo->bo_tdma += sizeof(*csa);
3544 #endif
3545 #ifdef IEEE80211_SUPPORT_MESH
3546 				bo->bo_meshconf += sizeof(*csa);
3547 #endif
3548 				bo->bo_appie += sizeof(*csa);
3549 				bo->bo_csa_trailer_len += sizeof(*csa);
3550 				bo->bo_quiet += sizeof(*csa);
3551 				bo->bo_tim_trailer_len += sizeof(*csa);
3552 				m->m_len += sizeof(*csa);
3553 				m->m_pkthdr.len += sizeof(*csa);
3554 
3555 				ieee80211_add_csa(bo->bo_csa, vap);
3556 			} else
3557 				csa->csa_count--;
3558 			vap->iv_csa_count++;
3559 			/* NB: don't clear IEEE80211_BEACON_CSA */
3560 		}
3561 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3562 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){
3563 			if (vap->iv_quiet)
3564 				ieee80211_add_quiet(bo->bo_quiet, vap);
3565 		}
3566 		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3567 			/*
3568 			 * ERP element needs updating.
3569 			 */
3570 			(void) ieee80211_add_erp(bo->bo_erp, ic);
3571 			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3572 		}
3573 #ifdef IEEE80211_SUPPORT_SUPERG
3574 		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
3575 			ieee80211_add_athcaps(bo->bo_ath, ni);
3576 			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3577 		}
3578 #endif
3579 	}
3580 	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3581 		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3582 		int aielen;
3583 		uint8_t *frm;
3584 
3585 		aielen = 0;
3586 		if (aie != NULL)
3587 			aielen += aie->ie_len;
3588 		if (aielen != bo->bo_appie_len) {
3589 			/* copy up/down trailer */
3590 			int adjust = aielen - bo->bo_appie_len;
3591 			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3592 				bo->bo_tim_trailer_len);
3593 			bo->bo_tim_trailer += adjust;
3594 			bo->bo_appie += adjust;
3595 			bo->bo_appie_len = aielen;
3596 
3597 			len_changed = 1;
3598 		}
3599 		frm = bo->bo_appie;
3600 		if (aie != NULL)
3601 			frm  = add_appie(frm, aie);
3602 		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3603 	}
3604 	IEEE80211_UNLOCK(ic);
3605 
3606 	return len_changed;
3607 }
3608 
3609 /*
3610  * Do Ethernet-LLC encapsulation for each payload in a fast frame
3611  * tunnel encapsulation.  The frame is assumed to have an Ethernet
3612  * header at the front that must be stripped before prepending the
3613  * LLC followed by the Ethernet header passed in (with an Ethernet
3614  * type that specifies the payload size).
3615  */
3616 struct mbuf *
3617 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
3618 	const struct ether_header *eh)
3619 {
3620 	struct llc *llc;
3621 	uint16_t payload;
3622 
3623 	/* XXX optimize by combining m_adj+M_PREPEND */
3624 	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
3625 	llc = mtod(m, struct llc *);
3626 	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
3627 	llc->llc_control = LLC_UI;
3628 	llc->llc_snap.org_code[0] = 0;
3629 	llc->llc_snap.org_code[1] = 0;
3630 	llc->llc_snap.org_code[2] = 0;
3631 	llc->llc_snap.ether_type = eh->ether_type;
3632 	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
3633 
3634 	M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
3635 	if (m == NULL) {		/* XXX cannot happen */
3636 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
3637 			"%s: no space for ether_header\n", __func__);
3638 		vap->iv_stats.is_tx_nobuf++;
3639 		return NULL;
3640 	}
3641 	ETHER_HEADER_COPY(mtod(m, void *), eh);
3642 	mtod(m, struct ether_header *)->ether_type = htons(payload);
3643 	return m;
3644 }
3645 
3646 /*
3647  * Complete an mbuf transmission.
3648  *
3649  * For now, this simply processes a completed frame after the
3650  * driver has completed it's transmission and/or retransmission.
3651  * It assumes the frame is an 802.11 encapsulated frame.
3652  *
3653  * Later on it will grow to become the exit path for a given frame
3654  * from the driver and, depending upon how it's been encapsulated
3655  * and already transmitted, it may end up doing A-MPDU retransmission,
3656  * power save requeuing, etc.
3657  *
3658  * In order for the above to work, the driver entry point to this
3659  * must not hold any driver locks.  Thus, the driver needs to delay
3660  * any actual mbuf completion until it can release said locks.
3661  *
3662  * This frees the mbuf and if the mbuf has a node reference,
3663  * the node reference will be freed.
3664  */
3665 void
3666 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
3667 {
3668 
3669 	if (ni != NULL) {
3670 		struct ifnet *ifp = ni->ni_vap->iv_ifp;
3671 
3672 		if (status == 0) {
3673 			if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
3674 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3675 			if (m->m_flags & M_MCAST)
3676 				if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
3677 		} else
3678 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3679 		if (m->m_flags & M_TXCB)
3680 			ieee80211_process_callback(ni, m, status);
3681 		ieee80211_free_node(ni);
3682 	}
3683 	m_freem(m);
3684 }
3685