1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_inet.h" 31 #include "opt_inet6.h" 32 #include "opt_wlan.h" 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/mbuf.h> 37 #include <sys/kernel.h> 38 #include <sys/endian.h> 39 40 #include <sys/socket.h> 41 42 #include <net/bpf.h> 43 #include <net/ethernet.h> 44 #include <net/if.h> 45 #include <net/if_var.h> 46 #include <net/if_llc.h> 47 #include <net/if_media.h> 48 #include <net/if_vlan_var.h> 49 50 #include <net80211/ieee80211_var.h> 51 #include <net80211/ieee80211_regdomain.h> 52 #ifdef IEEE80211_SUPPORT_SUPERG 53 #include <net80211/ieee80211_superg.h> 54 #endif 55 #ifdef IEEE80211_SUPPORT_TDMA 56 #include <net80211/ieee80211_tdma.h> 57 #endif 58 #include <net80211/ieee80211_wds.h> 59 #include <net80211/ieee80211_mesh.h> 60 61 #if defined(INET) || defined(INET6) 62 #include <netinet/in.h> 63 #endif 64 65 #ifdef INET 66 #include <netinet/if_ether.h> 67 #include <netinet/in_systm.h> 68 #include <netinet/ip.h> 69 #endif 70 #ifdef INET6 71 #include <netinet/ip6.h> 72 #endif 73 74 #include <security/mac/mac_framework.h> 75 76 #define ETHER_HEADER_COPY(dst, src) \ 77 memcpy(dst, src, sizeof(struct ether_header)) 78 79 /* unalligned little endian access */ 80 #define LE_WRITE_2(p, v) do { \ 81 ((uint8_t *)(p))[0] = (v) & 0xff; \ 82 ((uint8_t *)(p))[1] = ((v) >> 8) & 0xff; \ 83 } while (0) 84 #define LE_WRITE_4(p, v) do { \ 85 ((uint8_t *)(p))[0] = (v) & 0xff; \ 86 ((uint8_t *)(p))[1] = ((v) >> 8) & 0xff; \ 87 ((uint8_t *)(p))[2] = ((v) >> 16) & 0xff; \ 88 ((uint8_t *)(p))[3] = ((v) >> 24) & 0xff; \ 89 } while (0) 90 91 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *, 92 u_int hdrsize, u_int ciphdrsize, u_int mtu); 93 static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int); 94 95 #ifdef IEEE80211_DEBUG 96 /* 97 * Decide if an outbound management frame should be 98 * printed when debugging is enabled. This filters some 99 * of the less interesting frames that come frequently 100 * (e.g. beacons). 101 */ 102 static __inline int 103 doprint(struct ieee80211vap *vap, int subtype) 104 { 105 switch (subtype) { 106 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 107 return (vap->iv_opmode == IEEE80211_M_IBSS); 108 } 109 return 1; 110 } 111 #endif 112 113 /* 114 * Transmit a frame to the given destination on the given VAP. 115 * 116 * It's up to the caller to figure out the details of who this 117 * is going to and resolving the node. 118 * 119 * This routine takes care of queuing it for power save, 120 * A-MPDU state stuff, fast-frames state stuff, encapsulation 121 * if required, then passing it up to the driver layer. 122 * 123 * This routine (for now) consumes the mbuf and frees the node 124 * reference; it ideally will return a TX status which reflects 125 * whether the mbuf was consumed or not, so the caller can 126 * free the mbuf (if appropriate) and the node reference (again, 127 * if appropriate.) 128 */ 129 int 130 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m, 131 struct ieee80211_node *ni) 132 { 133 struct ieee80211com *ic = vap->iv_ic; 134 struct ifnet *ifp = vap->iv_ifp; 135 int error; 136 137 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 138 (m->m_flags & M_PWR_SAV) == 0) { 139 /* 140 * Station in power save mode; pass the frame 141 * to the 802.11 layer and continue. We'll get 142 * the frame back when the time is right. 143 * XXX lose WDS vap linkage? 144 */ 145 (void) ieee80211_pwrsave(ni, m); 146 ieee80211_free_node(ni); 147 148 /* 149 * We queued it fine, so tell the upper layer 150 * that we consumed it. 151 */ 152 return (0); 153 } 154 /* calculate priority so drivers can find the tx queue */ 155 if (ieee80211_classify(ni, m)) { 156 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 157 ni->ni_macaddr, NULL, 158 "%s", "classification failure"); 159 vap->iv_stats.is_tx_classify++; 160 ifp->if_oerrors++; 161 m_freem(m); 162 ieee80211_free_node(ni); 163 164 /* XXX better status? */ 165 return (0); 166 } 167 /* 168 * Stash the node pointer. Note that we do this after 169 * any call to ieee80211_dwds_mcast because that code 170 * uses any existing value for rcvif to identify the 171 * interface it (might have been) received on. 172 */ 173 m->m_pkthdr.rcvif = (void *)ni; 174 175 BPF_MTAP(ifp, m); /* 802.3 tx */ 176 177 /* 178 * Check if A-MPDU tx aggregation is setup or if we 179 * should try to enable it. The sta must be associated 180 * with HT and A-MPDU enabled for use. When the policy 181 * routine decides we should enable A-MPDU we issue an 182 * ADDBA request and wait for a reply. The frame being 183 * encapsulated will go out w/o using A-MPDU, or possibly 184 * it might be collected by the driver and held/retransmit. 185 * The default ic_ampdu_enable routine handles staggering 186 * ADDBA requests in case the receiver NAK's us or we are 187 * otherwise unable to establish a BA stream. 188 */ 189 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) && 190 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) && 191 (m->m_flags & M_EAPOL) == 0) { 192 int tid = WME_AC_TO_TID(M_WME_GETAC(m)); 193 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; 194 195 ieee80211_txampdu_count_packet(tap); 196 if (IEEE80211_AMPDU_RUNNING(tap)) { 197 /* 198 * Operational, mark frame for aggregation. 199 * 200 * XXX do tx aggregation here 201 */ 202 m->m_flags |= M_AMPDU_MPDU; 203 } else if (!IEEE80211_AMPDU_REQUESTED(tap) && 204 ic->ic_ampdu_enable(ni, tap)) { 205 /* 206 * Not negotiated yet, request service. 207 */ 208 ieee80211_ampdu_request(ni, tap); 209 /* XXX hold frame for reply? */ 210 } 211 } 212 213 #ifdef IEEE80211_SUPPORT_SUPERG 214 else if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) { 215 m = ieee80211_ff_check(ni, m); 216 if (m == NULL) { 217 /* NB: any ni ref held on stageq */ 218 return (0); 219 } 220 } 221 #endif /* IEEE80211_SUPPORT_SUPERG */ 222 223 /* 224 * Grab the TX lock - serialise the TX process from this 225 * point (where TX state is being checked/modified) 226 * through to driver queue. 227 */ 228 IEEE80211_TX_LOCK(ic); 229 230 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 231 /* 232 * Encapsulate the packet in prep for transmission. 233 */ 234 m = ieee80211_encap(vap, ni, m); 235 if (m == NULL) { 236 /* NB: stat+msg handled in ieee80211_encap */ 237 IEEE80211_TX_UNLOCK(ic); 238 ieee80211_free_node(ni); 239 /* XXX better status? */ 240 return (ENOBUFS); 241 } 242 } 243 error = ieee80211_parent_xmitpkt(ic, m); 244 245 /* 246 * Unlock at this point - no need to hold it across 247 * ieee80211_free_node() (ie, the comlock) 248 */ 249 IEEE80211_TX_UNLOCK(ic); 250 if (error != 0) { 251 /* NB: IFQ_HANDOFF reclaims mbuf */ 252 ieee80211_free_node(ni); 253 } else { 254 ifp->if_opackets++; 255 } 256 ic->ic_lastdata = ticks; 257 258 return (0); 259 } 260 261 262 263 /* 264 * Send the given mbuf through the given vap. 265 * 266 * This consumes the mbuf regardless of whether the transmit 267 * was successful or not. 268 * 269 * This does none of the initial checks that ieee80211_start() 270 * does (eg CAC timeout, interface wakeup) - the caller must 271 * do this first. 272 */ 273 static int 274 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m) 275 { 276 #define IS_DWDS(vap) \ 277 (vap->iv_opmode == IEEE80211_M_WDS && \ 278 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0) 279 struct ieee80211com *ic = vap->iv_ic; 280 struct ifnet *ifp = vap->iv_ifp; 281 struct ieee80211_node *ni; 282 struct ether_header *eh; 283 284 /* 285 * Cancel any background scan. 286 */ 287 if (ic->ic_flags & IEEE80211_F_SCAN) 288 ieee80211_cancel_anyscan(vap); 289 /* 290 * Find the node for the destination so we can do 291 * things like power save and fast frames aggregation. 292 * 293 * NB: past this point various code assumes the first 294 * mbuf has the 802.3 header present (and contiguous). 295 */ 296 ni = NULL; 297 if (m->m_len < sizeof(struct ether_header) && 298 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 299 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 300 "discard frame, %s\n", "m_pullup failed"); 301 vap->iv_stats.is_tx_nobuf++; /* XXX */ 302 ifp->if_oerrors++; 303 return (ENOBUFS); 304 } 305 eh = mtod(m, struct ether_header *); 306 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 307 if (IS_DWDS(vap)) { 308 /* 309 * Only unicast frames from the above go out 310 * DWDS vaps; multicast frames are handled by 311 * dispatching the frame as it comes through 312 * the AP vap (see below). 313 */ 314 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS, 315 eh->ether_dhost, "mcast", "%s", "on DWDS"); 316 vap->iv_stats.is_dwds_mcast++; 317 m_freem(m); 318 /* XXX better status? */ 319 return (ENOBUFS); 320 } 321 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { 322 /* 323 * Spam DWDS vap's w/ multicast traffic. 324 */ 325 /* XXX only if dwds in use? */ 326 ieee80211_dwds_mcast(vap, m); 327 } 328 } 329 #ifdef IEEE80211_SUPPORT_MESH 330 if (vap->iv_opmode != IEEE80211_M_MBSS) { 331 #endif 332 ni = ieee80211_find_txnode(vap, eh->ether_dhost); 333 if (ni == NULL) { 334 /* NB: ieee80211_find_txnode does stat+msg */ 335 ifp->if_oerrors++; 336 m_freem(m); 337 /* XXX better status? */ 338 return (ENOBUFS); 339 } 340 if (ni->ni_associd == 0 && 341 (ni->ni_flags & IEEE80211_NODE_ASSOCID)) { 342 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 343 eh->ether_dhost, NULL, 344 "sta not associated (type 0x%04x)", 345 htons(eh->ether_type)); 346 vap->iv_stats.is_tx_notassoc++; 347 ifp->if_oerrors++; 348 m_freem(m); 349 ieee80211_free_node(ni); 350 /* XXX better status? */ 351 return (ENOBUFS); 352 } 353 #ifdef IEEE80211_SUPPORT_MESH 354 } else { 355 if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) { 356 /* 357 * Proxy station only if configured. 358 */ 359 if (!ieee80211_mesh_isproxyena(vap)) { 360 IEEE80211_DISCARD_MAC(vap, 361 IEEE80211_MSG_OUTPUT | 362 IEEE80211_MSG_MESH, 363 eh->ether_dhost, NULL, 364 "%s", "proxy not enabled"); 365 vap->iv_stats.is_mesh_notproxy++; 366 ifp->if_oerrors++; 367 m_freem(m); 368 /* XXX better status? */ 369 return (ENOBUFS); 370 } 371 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 372 "forward frame from DS SA(%6D), DA(%6D)\n", 373 eh->ether_shost, ":", 374 eh->ether_dhost, ":"); 375 ieee80211_mesh_proxy_check(vap, eh->ether_shost); 376 } 377 ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m); 378 if (ni == NULL) { 379 /* 380 * NB: ieee80211_mesh_discover holds/disposes 381 * frame (e.g. queueing on path discovery). 382 */ 383 ifp->if_oerrors++; 384 /* XXX better status? */ 385 return (ENOBUFS); 386 } 387 } 388 #endif 389 390 /* 391 * We've resolved the sender, so attempt to transmit it. 392 */ 393 if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0) 394 return (ENOBUFS); 395 return (0); 396 #undef IS_DWDS 397 } 398 399 /* 400 * Start method for vap's. All packets from the stack come 401 * through here. We handle common processing of the packets 402 * before dispatching them to the underlying device. 403 * 404 * if_transmit() requires that the mbuf be consumed by this call 405 * regardless of the return condition. 406 */ 407 int 408 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m) 409 { 410 struct ieee80211vap *vap = ifp->if_softc; 411 struct ieee80211com *ic = vap->iv_ic; 412 struct ifnet *parent = ic->ic_ifp; 413 414 /* NB: parent must be up and running */ 415 if (!IFNET_IS_UP_RUNNING(parent)) { 416 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 417 "%s: ignore queue, parent %s not up+running\n", 418 __func__, parent->if_xname); 419 /* XXX stat */ 420 m_freem(m); 421 return (EINVAL); 422 } 423 if (vap->iv_state == IEEE80211_S_SLEEP) { 424 /* 425 * In power save, wakeup device for transmit. 426 */ 427 ieee80211_new_state(vap, IEEE80211_S_RUN, 0); 428 m_freem(m); 429 return (0); 430 } 431 /* 432 * No data frames go out unless we're running. 433 * Note in particular this covers CAC and CSA 434 * states (though maybe we should check muting 435 * for CSA). 436 */ 437 if (vap->iv_state != IEEE80211_S_RUN) { 438 IEEE80211_LOCK(ic); 439 /* re-check under the com lock to avoid races */ 440 if (vap->iv_state != IEEE80211_S_RUN) { 441 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 442 "%s: ignore queue, in %s state\n", 443 __func__, ieee80211_state_name[vap->iv_state]); 444 vap->iv_stats.is_tx_badstate++; 445 IEEE80211_UNLOCK(ic); 446 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 447 m_freem(m); 448 return (EINVAL); 449 } 450 IEEE80211_UNLOCK(ic); 451 } 452 453 /* 454 * Sanitize mbuf flags for net80211 use. We cannot 455 * clear M_PWR_SAV or M_MORE_DATA because these may 456 * be set for frames that are re-submitted from the 457 * power save queue. 458 * 459 * NB: This must be done before ieee80211_classify as 460 * it marks EAPOL in frames with M_EAPOL. 461 */ 462 m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA); 463 464 /* 465 * Bump to the packet transmission path. 466 * The mbuf will be consumed here. 467 */ 468 return (ieee80211_start_pkt(vap, m)); 469 } 470 471 void 472 ieee80211_vap_qflush(struct ifnet *ifp) 473 { 474 475 /* Empty for now */ 476 } 477 478 /* 479 * 802.11 raw output routine. 480 */ 481 int 482 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni, 483 struct mbuf *m, const struct ieee80211_bpf_params *params) 484 { 485 struct ieee80211com *ic = vap->iv_ic; 486 487 return (ic->ic_raw_xmit(ni, m, params)); 488 } 489 490 /* 491 * 802.11 output routine. This is (currently) used only to 492 * connect bpf write calls to the 802.11 layer for injecting 493 * raw 802.11 frames. 494 */ 495 #if __FreeBSD_version >= 1000031 496 int 497 ieee80211_output(struct ifnet *ifp, struct mbuf *m, 498 const struct sockaddr *dst, struct route *ro) 499 #else 500 int 501 ieee80211_output(struct ifnet *ifp, struct mbuf *m, 502 struct sockaddr *dst, struct route *ro) 503 #endif 504 { 505 #define senderr(e) do { error = (e); goto bad;} while (0) 506 struct ieee80211_node *ni = NULL; 507 struct ieee80211vap *vap; 508 struct ieee80211_frame *wh; 509 struct ieee80211com *ic = NULL; 510 int error; 511 int ret; 512 513 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 514 /* 515 * Short-circuit requests if the vap is marked OACTIVE 516 * as this can happen because a packet came down through 517 * ieee80211_start before the vap entered RUN state in 518 * which case it's ok to just drop the frame. This 519 * should not be necessary but callers of if_output don't 520 * check OACTIVE. 521 */ 522 senderr(ENETDOWN); 523 } 524 vap = ifp->if_softc; 525 ic = vap->iv_ic; 526 /* 527 * Hand to the 802.3 code if not tagged as 528 * a raw 802.11 frame. 529 */ 530 if (dst->sa_family != AF_IEEE80211) 531 return vap->iv_output(ifp, m, dst, ro); 532 #ifdef MAC 533 error = mac_ifnet_check_transmit(ifp, m); 534 if (error) 535 senderr(error); 536 #endif 537 if (ifp->if_flags & IFF_MONITOR) 538 senderr(ENETDOWN); 539 if (!IFNET_IS_UP_RUNNING(ifp)) 540 senderr(ENETDOWN); 541 if (vap->iv_state == IEEE80211_S_CAC) { 542 IEEE80211_DPRINTF(vap, 543 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 544 "block %s frame in CAC state\n", "raw data"); 545 vap->iv_stats.is_tx_badstate++; 546 senderr(EIO); /* XXX */ 547 } else if (vap->iv_state == IEEE80211_S_SCAN) 548 senderr(EIO); 549 /* XXX bypass bridge, pfil, carp, etc. */ 550 551 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack)) 552 senderr(EIO); /* XXX */ 553 wh = mtod(m, struct ieee80211_frame *); 554 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) != 555 IEEE80211_FC0_VERSION_0) 556 senderr(EIO); /* XXX */ 557 558 /* locate destination node */ 559 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 560 case IEEE80211_FC1_DIR_NODS: 561 case IEEE80211_FC1_DIR_FROMDS: 562 ni = ieee80211_find_txnode(vap, wh->i_addr1); 563 break; 564 case IEEE80211_FC1_DIR_TODS: 565 case IEEE80211_FC1_DIR_DSTODS: 566 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame)) 567 senderr(EIO); /* XXX */ 568 ni = ieee80211_find_txnode(vap, wh->i_addr3); 569 break; 570 default: 571 senderr(EIO); /* XXX */ 572 } 573 if (ni == NULL) { 574 /* 575 * Permit packets w/ bpf params through regardless 576 * (see below about sa_len). 577 */ 578 if (dst->sa_len == 0) 579 senderr(EHOSTUNREACH); 580 ni = ieee80211_ref_node(vap->iv_bss); 581 } 582 583 /* 584 * Sanitize mbuf for net80211 flags leaked from above. 585 * 586 * NB: This must be done before ieee80211_classify as 587 * it marks EAPOL in frames with M_EAPOL. 588 */ 589 m->m_flags &= ~M_80211_TX; 590 591 /* calculate priority so drivers can find the tx queue */ 592 /* XXX assumes an 802.3 frame */ 593 if (ieee80211_classify(ni, m)) 594 senderr(EIO); /* XXX */ 595 596 ifp->if_opackets++; 597 IEEE80211_NODE_STAT(ni, tx_data); 598 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 599 IEEE80211_NODE_STAT(ni, tx_mcast); 600 m->m_flags |= M_MCAST; 601 } else 602 IEEE80211_NODE_STAT(ni, tx_ucast); 603 /* NB: ieee80211_encap does not include 802.11 header */ 604 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len); 605 606 IEEE80211_TX_LOCK(ic); 607 608 /* 609 * NB: DLT_IEEE802_11_RADIO identifies the parameters are 610 * present by setting the sa_len field of the sockaddr (yes, 611 * this is a hack). 612 * NB: we assume sa_data is suitably aligned to cast. 613 */ 614 ret = ieee80211_raw_output(vap, ni, m, 615 (const struct ieee80211_bpf_params *)(dst->sa_len ? 616 dst->sa_data : NULL)); 617 IEEE80211_TX_UNLOCK(ic); 618 return (ret); 619 bad: 620 if (m != NULL) 621 m_freem(m); 622 if (ni != NULL) 623 ieee80211_free_node(ni); 624 ifp->if_oerrors++; 625 return error; 626 #undef senderr 627 } 628 629 /* 630 * Set the direction field and address fields of an outgoing 631 * frame. Note this should be called early on in constructing 632 * a frame as it sets i_fc[1]; other bits can then be or'd in. 633 */ 634 void 635 ieee80211_send_setup( 636 struct ieee80211_node *ni, 637 struct mbuf *m, 638 int type, int tid, 639 const uint8_t sa[IEEE80211_ADDR_LEN], 640 const uint8_t da[IEEE80211_ADDR_LEN], 641 const uint8_t bssid[IEEE80211_ADDR_LEN]) 642 { 643 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 644 struct ieee80211vap *vap = ni->ni_vap; 645 struct ieee80211_tx_ampdu *tap; 646 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 647 ieee80211_seq seqno; 648 649 IEEE80211_TX_LOCK_ASSERT(ni->ni_ic); 650 651 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 652 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 653 switch (vap->iv_opmode) { 654 case IEEE80211_M_STA: 655 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 656 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 657 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 658 IEEE80211_ADDR_COPY(wh->i_addr3, da); 659 break; 660 case IEEE80211_M_IBSS: 661 case IEEE80211_M_AHDEMO: 662 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 663 IEEE80211_ADDR_COPY(wh->i_addr1, da); 664 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 665 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 666 break; 667 case IEEE80211_M_HOSTAP: 668 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 669 IEEE80211_ADDR_COPY(wh->i_addr1, da); 670 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 671 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 672 break; 673 case IEEE80211_M_WDS: 674 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 675 IEEE80211_ADDR_COPY(wh->i_addr1, da); 676 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 677 IEEE80211_ADDR_COPY(wh->i_addr3, da); 678 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 679 break; 680 case IEEE80211_M_MBSS: 681 #ifdef IEEE80211_SUPPORT_MESH 682 if (IEEE80211_IS_MULTICAST(da)) { 683 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 684 /* XXX next hop */ 685 IEEE80211_ADDR_COPY(wh->i_addr1, da); 686 IEEE80211_ADDR_COPY(wh->i_addr2, 687 vap->iv_myaddr); 688 } else { 689 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 690 IEEE80211_ADDR_COPY(wh->i_addr1, da); 691 IEEE80211_ADDR_COPY(wh->i_addr2, 692 vap->iv_myaddr); 693 IEEE80211_ADDR_COPY(wh->i_addr3, da); 694 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 695 } 696 #endif 697 break; 698 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 699 break; 700 } 701 } else { 702 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 703 IEEE80211_ADDR_COPY(wh->i_addr1, da); 704 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 705 #ifdef IEEE80211_SUPPORT_MESH 706 if (vap->iv_opmode == IEEE80211_M_MBSS) 707 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 708 else 709 #endif 710 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 711 } 712 *(uint16_t *)&wh->i_dur[0] = 0; 713 714 tap = &ni->ni_tx_ampdu[tid]; 715 if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) 716 m->m_flags |= M_AMPDU_MPDU; 717 else { 718 seqno = ni->ni_txseqs[tid]++; 719 *(uint16_t *)&wh->i_seq[0] = 720 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 721 M_SEQNO_SET(m, seqno); 722 } 723 724 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 725 m->m_flags |= M_MCAST; 726 #undef WH4 727 } 728 729 /* 730 * Send a management frame to the specified node. The node pointer 731 * must have a reference as the pointer will be passed to the driver 732 * and potentially held for a long time. If the frame is successfully 733 * dispatched to the driver, then it is responsible for freeing the 734 * reference (and potentially free'ing up any associated storage); 735 * otherwise deal with reclaiming any reference (on error). 736 */ 737 int 738 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type, 739 struct ieee80211_bpf_params *params) 740 { 741 struct ieee80211vap *vap = ni->ni_vap; 742 struct ieee80211com *ic = ni->ni_ic; 743 struct ieee80211_frame *wh; 744 int ret; 745 746 KASSERT(ni != NULL, ("null node")); 747 748 if (vap->iv_state == IEEE80211_S_CAC) { 749 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 750 ni, "block %s frame in CAC state", 751 ieee80211_mgt_subtype_name[ 752 (type & IEEE80211_FC0_SUBTYPE_MASK) >> 753 IEEE80211_FC0_SUBTYPE_SHIFT]); 754 vap->iv_stats.is_tx_badstate++; 755 ieee80211_free_node(ni); 756 m_freem(m); 757 return EIO; /* XXX */ 758 } 759 760 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 761 if (m == NULL) { 762 ieee80211_free_node(ni); 763 return ENOMEM; 764 } 765 766 IEEE80211_TX_LOCK(ic); 767 768 wh = mtod(m, struct ieee80211_frame *); 769 ieee80211_send_setup(ni, m, 770 IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID, 771 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 772 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { 773 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1, 774 "encrypting frame (%s)", __func__); 775 wh->i_fc[1] |= IEEE80211_FC1_WEP; 776 } 777 m->m_flags |= M_ENCAP; /* mark encapsulated */ 778 779 KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?")); 780 M_WME_SETAC(m, params->ibp_pri); 781 782 #ifdef IEEE80211_DEBUG 783 /* avoid printing too many frames */ 784 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) || 785 ieee80211_msg_dumppkts(vap)) { 786 printf("[%s] send %s on channel %u\n", 787 ether_sprintf(wh->i_addr1), 788 ieee80211_mgt_subtype_name[ 789 (type & IEEE80211_FC0_SUBTYPE_MASK) >> 790 IEEE80211_FC0_SUBTYPE_SHIFT], 791 ieee80211_chan2ieee(ic, ic->ic_curchan)); 792 } 793 #endif 794 IEEE80211_NODE_STAT(ni, tx_mgmt); 795 796 ret = ieee80211_raw_output(vap, ni, m, params); 797 IEEE80211_TX_UNLOCK(ic); 798 return (ret); 799 } 800 801 /* 802 * Send a null data frame to the specified node. If the station 803 * is setup for QoS then a QoS Null Data frame is constructed. 804 * If this is a WDS station then a 4-address frame is constructed. 805 * 806 * NB: the caller is assumed to have setup a node reference 807 * for use; this is necessary to deal with a race condition 808 * when probing for inactive stations. Like ieee80211_mgmt_output 809 * we must cleanup any node reference on error; however we 810 * can safely just unref it as we know it will never be the 811 * last reference to the node. 812 */ 813 int 814 ieee80211_send_nulldata(struct ieee80211_node *ni) 815 { 816 struct ieee80211vap *vap = ni->ni_vap; 817 struct ieee80211com *ic = ni->ni_ic; 818 struct mbuf *m; 819 struct ieee80211_frame *wh; 820 int hdrlen; 821 uint8_t *frm; 822 int ret; 823 824 if (vap->iv_state == IEEE80211_S_CAC) { 825 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 826 ni, "block %s frame in CAC state", "null data"); 827 ieee80211_unref_node(&ni); 828 vap->iv_stats.is_tx_badstate++; 829 return EIO; /* XXX */ 830 } 831 832 if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) 833 hdrlen = sizeof(struct ieee80211_qosframe); 834 else 835 hdrlen = sizeof(struct ieee80211_frame); 836 /* NB: only WDS vap's get 4-address frames */ 837 if (vap->iv_opmode == IEEE80211_M_WDS) 838 hdrlen += IEEE80211_ADDR_LEN; 839 if (ic->ic_flags & IEEE80211_F_DATAPAD) 840 hdrlen = roundup(hdrlen, sizeof(uint32_t)); 841 842 m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0); 843 if (m == NULL) { 844 /* XXX debug msg */ 845 ieee80211_unref_node(&ni); 846 vap->iv_stats.is_tx_nobuf++; 847 return ENOMEM; 848 } 849 KASSERT(M_LEADINGSPACE(m) >= hdrlen, 850 ("leading space %zd", M_LEADINGSPACE(m))); 851 M_PREPEND(m, hdrlen, M_NOWAIT); 852 if (m == NULL) { 853 /* NB: cannot happen */ 854 ieee80211_free_node(ni); 855 return ENOMEM; 856 } 857 858 IEEE80211_TX_LOCK(ic); 859 860 wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */ 861 if (ni->ni_flags & IEEE80211_NODE_QOS) { 862 const int tid = WME_AC_TO_TID(WME_AC_BE); 863 uint8_t *qos; 864 865 ieee80211_send_setup(ni, m, 866 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL, 867 tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 868 869 if (vap->iv_opmode == IEEE80211_M_WDS) 870 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 871 else 872 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 873 qos[0] = tid & IEEE80211_QOS_TID; 874 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy) 875 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 876 qos[1] = 0; 877 } else { 878 ieee80211_send_setup(ni, m, 879 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 880 IEEE80211_NONQOS_TID, 881 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 882 } 883 if (vap->iv_opmode != IEEE80211_M_WDS) { 884 /* NB: power management bit is never sent by an AP */ 885 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 886 vap->iv_opmode != IEEE80211_M_HOSTAP) 887 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 888 } 889 m->m_len = m->m_pkthdr.len = hdrlen; 890 m->m_flags |= M_ENCAP; /* mark encapsulated */ 891 892 M_WME_SETAC(m, WME_AC_BE); 893 894 IEEE80211_NODE_STAT(ni, tx_data); 895 896 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni, 897 "send %snull data frame on channel %u, pwr mgt %s", 898 ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "", 899 ieee80211_chan2ieee(ic, ic->ic_curchan), 900 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 901 902 ret = ieee80211_raw_output(vap, ni, m, NULL); 903 IEEE80211_TX_UNLOCK(ic); 904 return (ret); 905 } 906 907 /* 908 * Assign priority to a frame based on any vlan tag assigned 909 * to the station and/or any Diffserv setting in an IP header. 910 * Finally, if an ACM policy is setup (in station mode) it's 911 * applied. 912 */ 913 int 914 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m) 915 { 916 const struct ether_header *eh = mtod(m, struct ether_header *); 917 int v_wme_ac, d_wme_ac, ac; 918 919 /* 920 * Always promote PAE/EAPOL frames to high priority. 921 */ 922 if (eh->ether_type == htons(ETHERTYPE_PAE)) { 923 /* NB: mark so others don't need to check header */ 924 m->m_flags |= M_EAPOL; 925 ac = WME_AC_VO; 926 goto done; 927 } 928 /* 929 * Non-qos traffic goes to BE. 930 */ 931 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 932 ac = WME_AC_BE; 933 goto done; 934 } 935 936 /* 937 * If node has a vlan tag then all traffic 938 * to it must have a matching tag. 939 */ 940 v_wme_ac = 0; 941 if (ni->ni_vlan != 0) { 942 if ((m->m_flags & M_VLANTAG) == 0) { 943 IEEE80211_NODE_STAT(ni, tx_novlantag); 944 return 1; 945 } 946 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 947 EVL_VLANOFTAG(ni->ni_vlan)) { 948 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 949 return 1; 950 } 951 /* map vlan priority to AC */ 952 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan)); 953 } 954 955 /* XXX m_copydata may be too slow for fast path */ 956 #ifdef INET 957 if (eh->ether_type == htons(ETHERTYPE_IP)) { 958 uint8_t tos; 959 /* 960 * IP frame, map the DSCP bits from the TOS field. 961 */ 962 /* NB: ip header may not be in first mbuf */ 963 m_copydata(m, sizeof(struct ether_header) + 964 offsetof(struct ip, ip_tos), sizeof(tos), &tos); 965 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 966 d_wme_ac = TID_TO_WME_AC(tos); 967 } else { 968 #endif /* INET */ 969 #ifdef INET6 970 if (eh->ether_type == htons(ETHERTYPE_IPV6)) { 971 uint32_t flow; 972 uint8_t tos; 973 /* 974 * IPv6 frame, map the DSCP bits from the traffic class field. 975 */ 976 m_copydata(m, sizeof(struct ether_header) + 977 offsetof(struct ip6_hdr, ip6_flow), sizeof(flow), 978 (caddr_t) &flow); 979 tos = (uint8_t)(ntohl(flow) >> 20); 980 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 981 d_wme_ac = TID_TO_WME_AC(tos); 982 } else { 983 #endif /* INET6 */ 984 d_wme_ac = WME_AC_BE; 985 #ifdef INET6 986 } 987 #endif 988 #ifdef INET 989 } 990 #endif 991 /* 992 * Use highest priority AC. 993 */ 994 if (v_wme_ac > d_wme_ac) 995 ac = v_wme_ac; 996 else 997 ac = d_wme_ac; 998 999 /* 1000 * Apply ACM policy. 1001 */ 1002 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) { 1003 static const int acmap[4] = { 1004 WME_AC_BK, /* WME_AC_BE */ 1005 WME_AC_BK, /* WME_AC_BK */ 1006 WME_AC_BE, /* WME_AC_VI */ 1007 WME_AC_VI, /* WME_AC_VO */ 1008 }; 1009 struct ieee80211com *ic = ni->ni_ic; 1010 1011 while (ac != WME_AC_BK && 1012 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 1013 ac = acmap[ac]; 1014 } 1015 done: 1016 M_WME_SETAC(m, ac); 1017 return 0; 1018 } 1019 1020 /* 1021 * Insure there is sufficient contiguous space to encapsulate the 1022 * 802.11 data frame. If room isn't already there, arrange for it. 1023 * Drivers and cipher modules assume we have done the necessary work 1024 * and fail rudely if they don't find the space they need. 1025 */ 1026 struct mbuf * 1027 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize, 1028 struct ieee80211_key *key, struct mbuf *m) 1029 { 1030 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 1031 int needed_space = vap->iv_ic->ic_headroom + hdrsize; 1032 1033 if (key != NULL) { 1034 /* XXX belongs in crypto code? */ 1035 needed_space += key->wk_cipher->ic_header; 1036 /* XXX frags */ 1037 /* 1038 * When crypto is being done in the host we must insure 1039 * the data are writable for the cipher routines; clone 1040 * a writable mbuf chain. 1041 * XXX handle SWMIC specially 1042 */ 1043 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) { 1044 m = m_unshare(m, M_NOWAIT); 1045 if (m == NULL) { 1046 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1047 "%s: cannot get writable mbuf\n", __func__); 1048 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */ 1049 return NULL; 1050 } 1051 } 1052 } 1053 /* 1054 * We know we are called just before stripping an Ethernet 1055 * header and prepending an LLC header. This means we know 1056 * there will be 1057 * sizeof(struct ether_header) - sizeof(struct llc) 1058 * bytes recovered to which we need additional space for the 1059 * 802.11 header and any crypto header. 1060 */ 1061 /* XXX check trailing space and copy instead? */ 1062 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 1063 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); 1064 if (n == NULL) { 1065 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1066 "%s: cannot expand storage\n", __func__); 1067 vap->iv_stats.is_tx_nobuf++; 1068 m_freem(m); 1069 return NULL; 1070 } 1071 KASSERT(needed_space <= MHLEN, 1072 ("not enough room, need %u got %d\n", needed_space, MHLEN)); 1073 /* 1074 * Setup new mbuf to have leading space to prepend the 1075 * 802.11 header and any crypto header bits that are 1076 * required (the latter are added when the driver calls 1077 * back to ieee80211_crypto_encap to do crypto encapsulation). 1078 */ 1079 /* NB: must be first 'cuz it clobbers m_data */ 1080 m_move_pkthdr(n, m); 1081 n->m_len = 0; /* NB: m_gethdr does not set */ 1082 n->m_data += needed_space; 1083 /* 1084 * Pull up Ethernet header to create the expected layout. 1085 * We could use m_pullup but that's overkill (i.e. we don't 1086 * need the actual data) and it cannot fail so do it inline 1087 * for speed. 1088 */ 1089 /* NB: struct ether_header is known to be contiguous */ 1090 n->m_len += sizeof(struct ether_header); 1091 m->m_len -= sizeof(struct ether_header); 1092 m->m_data += sizeof(struct ether_header); 1093 /* 1094 * Replace the head of the chain. 1095 */ 1096 n->m_next = m; 1097 m = n; 1098 } 1099 return m; 1100 #undef TO_BE_RECLAIMED 1101 } 1102 1103 /* 1104 * Return the transmit key to use in sending a unicast frame. 1105 * If a unicast key is set we use that. When no unicast key is set 1106 * we fall back to the default transmit key. 1107 */ 1108 static __inline struct ieee80211_key * 1109 ieee80211_crypto_getucastkey(struct ieee80211vap *vap, 1110 struct ieee80211_node *ni) 1111 { 1112 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) { 1113 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1114 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1115 return NULL; 1116 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1117 } else { 1118 return &ni->ni_ucastkey; 1119 } 1120 } 1121 1122 /* 1123 * Return the transmit key to use in sending a multicast frame. 1124 * Multicast traffic always uses the group key which is installed as 1125 * the default tx key. 1126 */ 1127 static __inline struct ieee80211_key * 1128 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap, 1129 struct ieee80211_node *ni) 1130 { 1131 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1132 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1133 return NULL; 1134 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1135 } 1136 1137 /* 1138 * Encapsulate an outbound data frame. The mbuf chain is updated. 1139 * If an error is encountered NULL is returned. The caller is required 1140 * to provide a node reference and pullup the ethernet header in the 1141 * first mbuf. 1142 * 1143 * NB: Packet is assumed to be processed by ieee80211_classify which 1144 * marked EAPOL frames w/ M_EAPOL. 1145 */ 1146 struct mbuf * 1147 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni, 1148 struct mbuf *m) 1149 { 1150 #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh)) 1151 #define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc) 1152 struct ieee80211com *ic = ni->ni_ic; 1153 #ifdef IEEE80211_SUPPORT_MESH 1154 struct ieee80211_mesh_state *ms = vap->iv_mesh; 1155 struct ieee80211_meshcntl_ae10 *mc; 1156 struct ieee80211_mesh_route *rt = NULL; 1157 int dir = -1; 1158 #endif 1159 struct ether_header eh; 1160 struct ieee80211_frame *wh; 1161 struct ieee80211_key *key; 1162 struct llc *llc; 1163 int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr; 1164 ieee80211_seq seqno; 1165 int meshhdrsize, meshae; 1166 uint8_t *qos; 1167 1168 IEEE80211_TX_LOCK_ASSERT(ic); 1169 1170 /* 1171 * Copy existing Ethernet header to a safe place. The 1172 * rest of the code assumes it's ok to strip it when 1173 * reorganizing state for the final encapsulation. 1174 */ 1175 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 1176 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t)); 1177 1178 /* 1179 * Insure space for additional headers. First identify 1180 * transmit key to use in calculating any buffer adjustments 1181 * required. This is also used below to do privacy 1182 * encapsulation work. Then calculate the 802.11 header 1183 * size and any padding required by the driver. 1184 * 1185 * Note key may be NULL if we fall back to the default 1186 * transmit key and that is not set. In that case the 1187 * buffer may not be expanded as needed by the cipher 1188 * routines, but they will/should discard it. 1189 */ 1190 if (vap->iv_flags & IEEE80211_F_PRIVACY) { 1191 if (vap->iv_opmode == IEEE80211_M_STA || 1192 !IEEE80211_IS_MULTICAST(eh.ether_dhost) || 1193 (vap->iv_opmode == IEEE80211_M_WDS && 1194 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) 1195 key = ieee80211_crypto_getucastkey(vap, ni); 1196 else 1197 key = ieee80211_crypto_getmcastkey(vap, ni); 1198 if (key == NULL && (m->m_flags & M_EAPOL) == 0) { 1199 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, 1200 eh.ether_dhost, 1201 "no default transmit key (%s) deftxkey %u", 1202 __func__, vap->iv_def_txkey); 1203 vap->iv_stats.is_tx_nodefkey++; 1204 goto bad; 1205 } 1206 } else 1207 key = NULL; 1208 /* 1209 * XXX Some ap's don't handle QoS-encapsulated EAPOL 1210 * frames so suppress use. This may be an issue if other 1211 * ap's require all data frames to be QoS-encapsulated 1212 * once negotiated in which case we'll need to make this 1213 * configurable. 1214 * NB: mesh data frames are QoS. 1215 */ 1216 addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) || 1217 (vap->iv_opmode == IEEE80211_M_MBSS)) && 1218 (m->m_flags & M_EAPOL) == 0; 1219 if (addqos) 1220 hdrsize = sizeof(struct ieee80211_qosframe); 1221 else 1222 hdrsize = sizeof(struct ieee80211_frame); 1223 #ifdef IEEE80211_SUPPORT_MESH 1224 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1225 /* 1226 * Mesh data frames are encapsulated according to the 1227 * rules of Section 11B.8.5 (p.139 of D3.0 spec). 1228 * o Group Addressed data (aka multicast) originating 1229 * at the local sta are sent w/ 3-address format and 1230 * address extension mode 00 1231 * o Individually Addressed data (aka unicast) originating 1232 * at the local sta are sent w/ 4-address format and 1233 * address extension mode 00 1234 * o Group Addressed data forwarded from a non-mesh sta are 1235 * sent w/ 3-address format and address extension mode 01 1236 * o Individually Address data from another sta are sent 1237 * w/ 4-address format and address extension mode 10 1238 */ 1239 is4addr = 0; /* NB: don't use, disable */ 1240 if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) { 1241 rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost); 1242 KASSERT(rt != NULL, ("route is NULL")); 1243 dir = IEEE80211_FC1_DIR_DSTODS; 1244 hdrsize += IEEE80211_ADDR_LEN; 1245 if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) { 1246 if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate, 1247 vap->iv_myaddr)) { 1248 IEEE80211_NOTE_MAC(vap, 1249 IEEE80211_MSG_MESH, 1250 eh.ether_dhost, 1251 "%s", "trying to send to ourself"); 1252 goto bad; 1253 } 1254 meshae = IEEE80211_MESH_AE_10; 1255 meshhdrsize = 1256 sizeof(struct ieee80211_meshcntl_ae10); 1257 } else { 1258 meshae = IEEE80211_MESH_AE_00; 1259 meshhdrsize = 1260 sizeof(struct ieee80211_meshcntl); 1261 } 1262 } else { 1263 dir = IEEE80211_FC1_DIR_FROMDS; 1264 if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) { 1265 /* proxy group */ 1266 meshae = IEEE80211_MESH_AE_01; 1267 meshhdrsize = 1268 sizeof(struct ieee80211_meshcntl_ae01); 1269 } else { 1270 /* group */ 1271 meshae = IEEE80211_MESH_AE_00; 1272 meshhdrsize = sizeof(struct ieee80211_meshcntl); 1273 } 1274 } 1275 } else { 1276 #endif 1277 /* 1278 * 4-address frames need to be generated for: 1279 * o packets sent through a WDS vap (IEEE80211_M_WDS) 1280 * o packets sent through a vap marked for relaying 1281 * (e.g. a station operating with dynamic WDS) 1282 */ 1283 is4addr = vap->iv_opmode == IEEE80211_M_WDS || 1284 ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) && 1285 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)); 1286 if (is4addr) 1287 hdrsize += IEEE80211_ADDR_LEN; 1288 meshhdrsize = meshae = 0; 1289 #ifdef IEEE80211_SUPPORT_MESH 1290 } 1291 #endif 1292 /* 1293 * Honor driver DATAPAD requirement. 1294 */ 1295 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1296 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1297 else 1298 hdrspace = hdrsize; 1299 1300 if (__predict_true((m->m_flags & M_FF) == 0)) { 1301 /* 1302 * Normal frame. 1303 */ 1304 m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m); 1305 if (m == NULL) { 1306 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 1307 goto bad; 1308 } 1309 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */ 1310 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 1311 llc = mtod(m, struct llc *); 1312 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 1313 llc->llc_control = LLC_UI; 1314 llc->llc_snap.org_code[0] = 0; 1315 llc->llc_snap.org_code[1] = 0; 1316 llc->llc_snap.org_code[2] = 0; 1317 llc->llc_snap.ether_type = eh.ether_type; 1318 } else { 1319 #ifdef IEEE80211_SUPPORT_SUPERG 1320 /* 1321 * Aggregated frame. 1322 */ 1323 m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key); 1324 if (m == NULL) 1325 #endif 1326 goto bad; 1327 } 1328 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 1329 1330 M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT); 1331 if (m == NULL) { 1332 vap->iv_stats.is_tx_nobuf++; 1333 goto bad; 1334 } 1335 wh = mtod(m, struct ieee80211_frame *); 1336 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 1337 *(uint16_t *)wh->i_dur = 0; 1338 qos = NULL; /* NB: quiet compiler */ 1339 if (is4addr) { 1340 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 1341 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); 1342 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1343 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1344 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); 1345 } else switch (vap->iv_opmode) { 1346 case IEEE80211_M_STA: 1347 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 1348 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 1349 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1350 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1351 break; 1352 case IEEE80211_M_IBSS: 1353 case IEEE80211_M_AHDEMO: 1354 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1355 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1356 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1357 /* 1358 * NB: always use the bssid from iv_bss as the 1359 * neighbor's may be stale after an ibss merge 1360 */ 1361 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid); 1362 break; 1363 case IEEE80211_M_HOSTAP: 1364 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1365 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1366 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 1367 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 1368 break; 1369 #ifdef IEEE80211_SUPPORT_MESH 1370 case IEEE80211_M_MBSS: 1371 /* NB: offset by hdrspace to deal with DATAPAD */ 1372 mc = (struct ieee80211_meshcntl_ae10 *) 1373 (mtod(m, uint8_t *) + hdrspace); 1374 wh->i_fc[1] = dir; 1375 switch (meshae) { 1376 case IEEE80211_MESH_AE_00: /* no proxy */ 1377 mc->mc_flags = 0; 1378 if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */ 1379 IEEE80211_ADDR_COPY(wh->i_addr1, 1380 ni->ni_macaddr); 1381 IEEE80211_ADDR_COPY(wh->i_addr2, 1382 vap->iv_myaddr); 1383 IEEE80211_ADDR_COPY(wh->i_addr3, 1384 eh.ether_dhost); 1385 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, 1386 eh.ether_shost); 1387 qos =((struct ieee80211_qosframe_addr4 *) 1388 wh)->i_qos; 1389 } else if (dir == IEEE80211_FC1_DIR_FROMDS) { 1390 /* mcast */ 1391 IEEE80211_ADDR_COPY(wh->i_addr1, 1392 eh.ether_dhost); 1393 IEEE80211_ADDR_COPY(wh->i_addr2, 1394 vap->iv_myaddr); 1395 IEEE80211_ADDR_COPY(wh->i_addr3, 1396 eh.ether_shost); 1397 qos = ((struct ieee80211_qosframe *) 1398 wh)->i_qos; 1399 } 1400 break; 1401 case IEEE80211_MESH_AE_01: /* mcast, proxy */ 1402 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1403 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1404 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1405 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr); 1406 mc->mc_flags = 1; 1407 IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4, 1408 eh.ether_shost); 1409 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1410 break; 1411 case IEEE80211_MESH_AE_10: /* ucast, proxy */ 1412 KASSERT(rt != NULL, ("route is NULL")); 1413 IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop); 1414 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1415 IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate); 1416 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr); 1417 mc->mc_flags = IEEE80211_MESH_AE_10; 1418 IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost); 1419 IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost); 1420 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1421 break; 1422 default: 1423 KASSERT(0, ("meshae %d", meshae)); 1424 break; 1425 } 1426 mc->mc_ttl = ms->ms_ttl; 1427 ms->ms_seq++; 1428 LE_WRITE_4(mc->mc_seq, ms->ms_seq); 1429 break; 1430 #endif 1431 case IEEE80211_M_WDS: /* NB: is4addr should always be true */ 1432 default: 1433 goto bad; 1434 } 1435 if (m->m_flags & M_MORE_DATA) 1436 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 1437 if (addqos) { 1438 int ac, tid; 1439 1440 if (is4addr) { 1441 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1442 /* NB: mesh case handled earlier */ 1443 } else if (vap->iv_opmode != IEEE80211_M_MBSS) 1444 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1445 ac = M_WME_GETAC(m); 1446 /* map from access class/queue to 11e header priorty value */ 1447 tid = WME_AC_TO_TID(ac); 1448 qos[0] = tid & IEEE80211_QOS_TID; 1449 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 1450 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1451 #ifdef IEEE80211_SUPPORT_MESH 1452 if (vap->iv_opmode == IEEE80211_M_MBSS) 1453 qos[1] = IEEE80211_QOS_MC; 1454 else 1455 #endif 1456 qos[1] = 0; 1457 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 1458 1459 if ((m->m_flags & M_AMPDU_MPDU) == 0) { 1460 /* 1461 * NB: don't assign a sequence # to potential 1462 * aggregates; we expect this happens at the 1463 * point the frame comes off any aggregation q 1464 * as otherwise we may introduce holes in the 1465 * BA sequence space and/or make window accouting 1466 * more difficult. 1467 * 1468 * XXX may want to control this with a driver 1469 * capability; this may also change when we pull 1470 * aggregation up into net80211 1471 */ 1472 seqno = ni->ni_txseqs[tid]++; 1473 *(uint16_t *)wh->i_seq = 1474 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1475 M_SEQNO_SET(m, seqno); 1476 } 1477 } else { 1478 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1479 *(uint16_t *)wh->i_seq = 1480 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1481 M_SEQNO_SET(m, seqno); 1482 } 1483 1484 1485 /* check if xmit fragmentation is required */ 1486 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold && 1487 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 1488 (vap->iv_caps & IEEE80211_C_TXFRAG) && 1489 (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0); 1490 if (key != NULL) { 1491 /* 1492 * IEEE 802.1X: send EAPOL frames always in the clear. 1493 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 1494 */ 1495 if ((m->m_flags & M_EAPOL) == 0 || 1496 ((vap->iv_flags & IEEE80211_F_WPA) && 1497 (vap->iv_opmode == IEEE80211_M_STA ? 1498 !IEEE80211_KEY_UNDEFINED(key) : 1499 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) { 1500 wh->i_fc[1] |= IEEE80211_FC1_WEP; 1501 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) { 1502 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT, 1503 eh.ether_dhost, 1504 "%s", "enmic failed, discard frame"); 1505 vap->iv_stats.is_crypto_enmicfail++; 1506 goto bad; 1507 } 1508 } 1509 } 1510 if (txfrag && !ieee80211_fragment(vap, m, hdrsize, 1511 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold)) 1512 goto bad; 1513 1514 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1515 1516 IEEE80211_NODE_STAT(ni, tx_data); 1517 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1518 IEEE80211_NODE_STAT(ni, tx_mcast); 1519 m->m_flags |= M_MCAST; 1520 } else 1521 IEEE80211_NODE_STAT(ni, tx_ucast); 1522 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 1523 1524 return m; 1525 bad: 1526 if (m != NULL) 1527 m_freem(m); 1528 return NULL; 1529 #undef WH4 1530 #undef MC01 1531 } 1532 1533 /* 1534 * Fragment the frame according to the specified mtu. 1535 * The size of the 802.11 header (w/o padding) is provided 1536 * so we don't need to recalculate it. We create a new 1537 * mbuf for each fragment and chain it through m_nextpkt; 1538 * we might be able to optimize this by reusing the original 1539 * packet's mbufs but that is significantly more complicated. 1540 */ 1541 static int 1542 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0, 1543 u_int hdrsize, u_int ciphdrsize, u_int mtu) 1544 { 1545 struct ieee80211com *ic = vap->iv_ic; 1546 struct ieee80211_frame *wh, *whf; 1547 struct mbuf *m, *prev, *next; 1548 u_int totalhdrsize, fragno, fragsize, off, remainder, payload; 1549 u_int hdrspace; 1550 1551 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); 1552 KASSERT(m0->m_pkthdr.len > mtu, 1553 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); 1554 1555 /* 1556 * Honor driver DATAPAD requirement. 1557 */ 1558 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1559 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1560 else 1561 hdrspace = hdrsize; 1562 1563 wh = mtod(m0, struct ieee80211_frame *); 1564 /* NB: mark the first frag; it will be propagated below */ 1565 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; 1566 totalhdrsize = hdrspace + ciphdrsize; 1567 fragno = 1; 1568 off = mtu - ciphdrsize; 1569 remainder = m0->m_pkthdr.len - off; 1570 prev = m0; 1571 do { 1572 fragsize = totalhdrsize + remainder; 1573 if (fragsize > mtu) 1574 fragsize = mtu; 1575 /* XXX fragsize can be >2048! */ 1576 KASSERT(fragsize < MCLBYTES, 1577 ("fragment size %u too big!", fragsize)); 1578 if (fragsize > MHLEN) 1579 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1580 else 1581 m = m_gethdr(M_NOWAIT, MT_DATA); 1582 if (m == NULL) 1583 goto bad; 1584 /* leave room to prepend any cipher header */ 1585 m_align(m, fragsize - ciphdrsize); 1586 1587 /* 1588 * Form the header in the fragment. Note that since 1589 * we mark the first fragment with the MORE_FRAG bit 1590 * it automatically is propagated to each fragment; we 1591 * need only clear it on the last fragment (done below). 1592 * NB: frag 1+ dont have Mesh Control field present. 1593 */ 1594 whf = mtod(m, struct ieee80211_frame *); 1595 memcpy(whf, wh, hdrsize); 1596 #ifdef IEEE80211_SUPPORT_MESH 1597 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1598 if (IEEE80211_IS_DSTODS(wh)) 1599 ((struct ieee80211_qosframe_addr4 *) 1600 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1601 else 1602 ((struct ieee80211_qosframe *) 1603 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1604 } 1605 #endif 1606 *(uint16_t *)&whf->i_seq[0] |= htole16( 1607 (fragno & IEEE80211_SEQ_FRAG_MASK) << 1608 IEEE80211_SEQ_FRAG_SHIFT); 1609 fragno++; 1610 1611 payload = fragsize - totalhdrsize; 1612 /* NB: destination is known to be contiguous */ 1613 1614 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace); 1615 m->m_len = hdrspace + payload; 1616 m->m_pkthdr.len = hdrspace + payload; 1617 m->m_flags |= M_FRAG; 1618 1619 /* chain up the fragment */ 1620 prev->m_nextpkt = m; 1621 prev = m; 1622 1623 /* deduct fragment just formed */ 1624 remainder -= payload; 1625 off += payload; 1626 } while (remainder != 0); 1627 1628 /* set the last fragment */ 1629 m->m_flags |= M_LASTFRAG; 1630 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; 1631 1632 /* strip first mbuf now that everything has been copied */ 1633 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); 1634 m0->m_flags |= M_FIRSTFRAG | M_FRAG; 1635 1636 vap->iv_stats.is_tx_fragframes++; 1637 vap->iv_stats.is_tx_frags += fragno-1; 1638 1639 return 1; 1640 bad: 1641 /* reclaim fragments but leave original frame for caller to free */ 1642 for (m = m0->m_nextpkt; m != NULL; m = next) { 1643 next = m->m_nextpkt; 1644 m->m_nextpkt = NULL; /* XXX paranoid */ 1645 m_freem(m); 1646 } 1647 m0->m_nextpkt = NULL; 1648 return 0; 1649 } 1650 1651 /* 1652 * Add a supported rates element id to a frame. 1653 */ 1654 uint8_t * 1655 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs) 1656 { 1657 int nrates; 1658 1659 *frm++ = IEEE80211_ELEMID_RATES; 1660 nrates = rs->rs_nrates; 1661 if (nrates > IEEE80211_RATE_SIZE) 1662 nrates = IEEE80211_RATE_SIZE; 1663 *frm++ = nrates; 1664 memcpy(frm, rs->rs_rates, nrates); 1665 return frm + nrates; 1666 } 1667 1668 /* 1669 * Add an extended supported rates element id to a frame. 1670 */ 1671 uint8_t * 1672 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs) 1673 { 1674 /* 1675 * Add an extended supported rates element if operating in 11g mode. 1676 */ 1677 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 1678 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 1679 *frm++ = IEEE80211_ELEMID_XRATES; 1680 *frm++ = nrates; 1681 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 1682 frm += nrates; 1683 } 1684 return frm; 1685 } 1686 1687 /* 1688 * Add an ssid element to a frame. 1689 */ 1690 static uint8_t * 1691 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) 1692 { 1693 *frm++ = IEEE80211_ELEMID_SSID; 1694 *frm++ = len; 1695 memcpy(frm, ssid, len); 1696 return frm + len; 1697 } 1698 1699 /* 1700 * Add an erp element to a frame. 1701 */ 1702 static uint8_t * 1703 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic) 1704 { 1705 uint8_t erp; 1706 1707 *frm++ = IEEE80211_ELEMID_ERP; 1708 *frm++ = 1; 1709 erp = 0; 1710 if (ic->ic_nonerpsta != 0) 1711 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 1712 if (ic->ic_flags & IEEE80211_F_USEPROT) 1713 erp |= IEEE80211_ERP_USE_PROTECTION; 1714 if (ic->ic_flags & IEEE80211_F_USEBARKER) 1715 erp |= IEEE80211_ERP_LONG_PREAMBLE; 1716 *frm++ = erp; 1717 return frm; 1718 } 1719 1720 /* 1721 * Add a CFParams element to a frame. 1722 */ 1723 static uint8_t * 1724 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic) 1725 { 1726 #define ADDSHORT(frm, v) do { \ 1727 LE_WRITE_2(frm, v); \ 1728 frm += 2; \ 1729 } while (0) 1730 *frm++ = IEEE80211_ELEMID_CFPARMS; 1731 *frm++ = 6; 1732 *frm++ = 0; /* CFP count */ 1733 *frm++ = 2; /* CFP period */ 1734 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */ 1735 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */ 1736 return frm; 1737 #undef ADDSHORT 1738 } 1739 1740 static __inline uint8_t * 1741 add_appie(uint8_t *frm, const struct ieee80211_appie *ie) 1742 { 1743 memcpy(frm, ie->ie_data, ie->ie_len); 1744 return frm + ie->ie_len; 1745 } 1746 1747 static __inline uint8_t * 1748 add_ie(uint8_t *frm, const uint8_t *ie) 1749 { 1750 memcpy(frm, ie, 2 + ie[1]); 1751 return frm + 2 + ie[1]; 1752 } 1753 1754 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 1755 /* 1756 * Add a WME information element to a frame. 1757 */ 1758 static uint8_t * 1759 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme) 1760 { 1761 static const struct ieee80211_wme_info info = { 1762 .wme_id = IEEE80211_ELEMID_VENDOR, 1763 .wme_len = sizeof(struct ieee80211_wme_info) - 2, 1764 .wme_oui = { WME_OUI_BYTES }, 1765 .wme_type = WME_OUI_TYPE, 1766 .wme_subtype = WME_INFO_OUI_SUBTYPE, 1767 .wme_version = WME_VERSION, 1768 .wme_info = 0, 1769 }; 1770 memcpy(frm, &info, sizeof(info)); 1771 return frm + sizeof(info); 1772 } 1773 1774 /* 1775 * Add a WME parameters element to a frame. 1776 */ 1777 static uint8_t * 1778 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme) 1779 { 1780 #define SM(_v, _f) (((_v) << _f##_S) & _f) 1781 #define ADDSHORT(frm, v) do { \ 1782 LE_WRITE_2(frm, v); \ 1783 frm += 2; \ 1784 } while (0) 1785 /* NB: this works 'cuz a param has an info at the front */ 1786 static const struct ieee80211_wme_info param = { 1787 .wme_id = IEEE80211_ELEMID_VENDOR, 1788 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 1789 .wme_oui = { WME_OUI_BYTES }, 1790 .wme_type = WME_OUI_TYPE, 1791 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 1792 .wme_version = WME_VERSION, 1793 }; 1794 int i; 1795 1796 memcpy(frm, ¶m, sizeof(param)); 1797 frm += __offsetof(struct ieee80211_wme_info, wme_info); 1798 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ 1799 *frm++ = 0; /* reserved field */ 1800 for (i = 0; i < WME_NUM_AC; i++) { 1801 const struct wmeParams *ac = 1802 &wme->wme_bssChanParams.cap_wmeParams[i]; 1803 *frm++ = SM(i, WME_PARAM_ACI) 1804 | SM(ac->wmep_acm, WME_PARAM_ACM) 1805 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) 1806 ; 1807 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) 1808 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) 1809 ; 1810 ADDSHORT(frm, ac->wmep_txopLimit); 1811 } 1812 return frm; 1813 #undef SM 1814 #undef ADDSHORT 1815 } 1816 #undef WME_OUI_BYTES 1817 1818 /* 1819 * Add an 11h Power Constraint element to a frame. 1820 */ 1821 static uint8_t * 1822 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap) 1823 { 1824 const struct ieee80211_channel *c = vap->iv_bss->ni_chan; 1825 /* XXX per-vap tx power limit? */ 1826 int8_t limit = vap->iv_ic->ic_txpowlimit / 2; 1827 1828 frm[0] = IEEE80211_ELEMID_PWRCNSTR; 1829 frm[1] = 1; 1830 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0; 1831 return frm + 3; 1832 } 1833 1834 /* 1835 * Add an 11h Power Capability element to a frame. 1836 */ 1837 static uint8_t * 1838 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c) 1839 { 1840 frm[0] = IEEE80211_ELEMID_PWRCAP; 1841 frm[1] = 2; 1842 frm[2] = c->ic_minpower; 1843 frm[3] = c->ic_maxpower; 1844 return frm + 4; 1845 } 1846 1847 /* 1848 * Add an 11h Supported Channels element to a frame. 1849 */ 1850 static uint8_t * 1851 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic) 1852 { 1853 static const int ielen = 26; 1854 1855 frm[0] = IEEE80211_ELEMID_SUPPCHAN; 1856 frm[1] = ielen; 1857 /* XXX not correct */ 1858 memcpy(frm+2, ic->ic_chan_avail, ielen); 1859 return frm + 2 + ielen; 1860 } 1861 1862 /* 1863 * Add an 11h Quiet time element to a frame. 1864 */ 1865 static uint8_t * 1866 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap) 1867 { 1868 struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm; 1869 1870 quiet->quiet_ie = IEEE80211_ELEMID_QUIET; 1871 quiet->len = 6; 1872 if (vap->iv_quiet_count_value == 1) 1873 vap->iv_quiet_count_value = vap->iv_quiet_count; 1874 else if (vap->iv_quiet_count_value > 1) 1875 vap->iv_quiet_count_value--; 1876 1877 if (vap->iv_quiet_count_value == 0) { 1878 /* value 0 is reserved as per 802.11h standerd */ 1879 vap->iv_quiet_count_value = 1; 1880 } 1881 1882 quiet->tbttcount = vap->iv_quiet_count_value; 1883 quiet->period = vap->iv_quiet_period; 1884 quiet->duration = htole16(vap->iv_quiet_duration); 1885 quiet->offset = htole16(vap->iv_quiet_offset); 1886 return frm + sizeof(*quiet); 1887 } 1888 1889 /* 1890 * Add an 11h Channel Switch Announcement element to a frame. 1891 * Note that we use the per-vap CSA count to adjust the global 1892 * counter so we can use this routine to form probe response 1893 * frames and get the current count. 1894 */ 1895 static uint8_t * 1896 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap) 1897 { 1898 struct ieee80211com *ic = vap->iv_ic; 1899 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm; 1900 1901 csa->csa_ie = IEEE80211_ELEMID_CSA; 1902 csa->csa_len = 3; 1903 csa->csa_mode = 1; /* XXX force quiet on channel */ 1904 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan); 1905 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count; 1906 return frm + sizeof(*csa); 1907 } 1908 1909 /* 1910 * Add an 11h country information element to a frame. 1911 */ 1912 static uint8_t * 1913 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic) 1914 { 1915 1916 if (ic->ic_countryie == NULL || 1917 ic->ic_countryie_chan != ic->ic_bsschan) { 1918 /* 1919 * Handle lazy construction of ie. This is done on 1920 * first use and after a channel change that requires 1921 * re-calculation. 1922 */ 1923 if (ic->ic_countryie != NULL) 1924 free(ic->ic_countryie, M_80211_NODE_IE); 1925 ic->ic_countryie = ieee80211_alloc_countryie(ic); 1926 if (ic->ic_countryie == NULL) 1927 return frm; 1928 ic->ic_countryie_chan = ic->ic_bsschan; 1929 } 1930 return add_appie(frm, ic->ic_countryie); 1931 } 1932 1933 uint8_t * 1934 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap) 1935 { 1936 if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) 1937 return (add_ie(frm, vap->iv_wpa_ie)); 1938 else { 1939 /* XXX else complain? */ 1940 return (frm); 1941 } 1942 } 1943 1944 uint8_t * 1945 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap) 1946 { 1947 if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL) 1948 return (add_ie(frm, vap->iv_rsn_ie)); 1949 else { 1950 /* XXX else complain? */ 1951 return (frm); 1952 } 1953 } 1954 1955 uint8_t * 1956 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni) 1957 { 1958 if (ni->ni_flags & IEEE80211_NODE_QOS) { 1959 *frm++ = IEEE80211_ELEMID_QOS; 1960 *frm++ = 1; 1961 *frm++ = 0; 1962 } 1963 1964 return (frm); 1965 } 1966 1967 /* 1968 * Send a probe request frame with the specified ssid 1969 * and any optional information element data. 1970 */ 1971 int 1972 ieee80211_send_probereq(struct ieee80211_node *ni, 1973 const uint8_t sa[IEEE80211_ADDR_LEN], 1974 const uint8_t da[IEEE80211_ADDR_LEN], 1975 const uint8_t bssid[IEEE80211_ADDR_LEN], 1976 const uint8_t *ssid, size_t ssidlen) 1977 { 1978 struct ieee80211vap *vap = ni->ni_vap; 1979 struct ieee80211com *ic = ni->ni_ic; 1980 const struct ieee80211_txparam *tp; 1981 struct ieee80211_bpf_params params; 1982 struct ieee80211_frame *wh; 1983 const struct ieee80211_rateset *rs; 1984 struct mbuf *m; 1985 uint8_t *frm; 1986 int ret; 1987 1988 if (vap->iv_state == IEEE80211_S_CAC) { 1989 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni, 1990 "block %s frame in CAC state", "probe request"); 1991 vap->iv_stats.is_tx_badstate++; 1992 return EIO; /* XXX */ 1993 } 1994 1995 /* 1996 * Hold a reference on the node so it doesn't go away until after 1997 * the xmit is complete all the way in the driver. On error we 1998 * will remove our reference. 1999 */ 2000 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2001 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2002 __func__, __LINE__, 2003 ni, ether_sprintf(ni->ni_macaddr), 2004 ieee80211_node_refcnt(ni)+1); 2005 ieee80211_ref_node(ni); 2006 2007 /* 2008 * prreq frame format 2009 * [tlv] ssid 2010 * [tlv] supported rates 2011 * [tlv] RSN (optional) 2012 * [tlv] extended supported rates 2013 * [tlv] WPA (optional) 2014 * [tlv] user-specified ie's 2015 */ 2016 m = ieee80211_getmgtframe(&frm, 2017 ic->ic_headroom + sizeof(struct ieee80211_frame), 2018 2 + IEEE80211_NWID_LEN 2019 + 2 + IEEE80211_RATE_SIZE 2020 + sizeof(struct ieee80211_ie_wpa) 2021 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2022 + sizeof(struct ieee80211_ie_wpa) 2023 + (vap->iv_appie_probereq != NULL ? 2024 vap->iv_appie_probereq->ie_len : 0) 2025 ); 2026 if (m == NULL) { 2027 vap->iv_stats.is_tx_nobuf++; 2028 ieee80211_free_node(ni); 2029 return ENOMEM; 2030 } 2031 2032 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 2033 rs = ieee80211_get_suprates(ic, ic->ic_curchan); 2034 frm = ieee80211_add_rates(frm, rs); 2035 frm = ieee80211_add_rsn(frm, vap); 2036 frm = ieee80211_add_xrates(frm, rs); 2037 frm = ieee80211_add_wpa(frm, vap); 2038 if (vap->iv_appie_probereq != NULL) 2039 frm = add_appie(frm, vap->iv_appie_probereq); 2040 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2041 2042 KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame), 2043 ("leading space %zd", M_LEADINGSPACE(m))); 2044 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2045 if (m == NULL) { 2046 /* NB: cannot happen */ 2047 ieee80211_free_node(ni); 2048 return ENOMEM; 2049 } 2050 2051 IEEE80211_TX_LOCK(ic); 2052 wh = mtod(m, struct ieee80211_frame *); 2053 ieee80211_send_setup(ni, m, 2054 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 2055 IEEE80211_NONQOS_TID, sa, da, bssid); 2056 /* XXX power management? */ 2057 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2058 2059 M_WME_SETAC(m, WME_AC_BE); 2060 2061 IEEE80211_NODE_STAT(ni, tx_probereq); 2062 IEEE80211_NODE_STAT(ni, tx_mgmt); 2063 2064 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2065 "send probe req on channel %u bssid %s ssid \"%.*s\"\n", 2066 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid), 2067 ssidlen, ssid); 2068 2069 memset(¶ms, 0, sizeof(params)); 2070 params.ibp_pri = M_WME_GETAC(m); 2071 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 2072 params.ibp_rate0 = tp->mgmtrate; 2073 if (IEEE80211_IS_MULTICAST(da)) { 2074 params.ibp_flags |= IEEE80211_BPF_NOACK; 2075 params.ibp_try0 = 1; 2076 } else 2077 params.ibp_try0 = tp->maxretry; 2078 params.ibp_power = ni->ni_txpower; 2079 ret = ieee80211_raw_output(vap, ni, m, ¶ms); 2080 IEEE80211_TX_UNLOCK(ic); 2081 return (ret); 2082 } 2083 2084 /* 2085 * Calculate capability information for mgt frames. 2086 */ 2087 uint16_t 2088 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan) 2089 { 2090 struct ieee80211com *ic = vap->iv_ic; 2091 uint16_t capinfo; 2092 2093 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode")); 2094 2095 if (vap->iv_opmode == IEEE80211_M_HOSTAP) 2096 capinfo = IEEE80211_CAPINFO_ESS; 2097 else if (vap->iv_opmode == IEEE80211_M_IBSS) 2098 capinfo = IEEE80211_CAPINFO_IBSS; 2099 else 2100 capinfo = 0; 2101 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2102 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2103 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2104 IEEE80211_IS_CHAN_2GHZ(chan)) 2105 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2106 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2107 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2108 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH)) 2109 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2110 return capinfo; 2111 } 2112 2113 /* 2114 * Send a management frame. The node is for the destination (or ic_bss 2115 * when in station mode). Nodes other than ic_bss have their reference 2116 * count bumped to reflect our use for an indeterminant time. 2117 */ 2118 int 2119 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg) 2120 { 2121 #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT) 2122 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2123 struct ieee80211vap *vap = ni->ni_vap; 2124 struct ieee80211com *ic = ni->ni_ic; 2125 struct ieee80211_node *bss = vap->iv_bss; 2126 struct ieee80211_bpf_params params; 2127 struct mbuf *m; 2128 uint8_t *frm; 2129 uint16_t capinfo; 2130 int has_challenge, is_shared_key, ret, status; 2131 2132 KASSERT(ni != NULL, ("null node")); 2133 2134 /* 2135 * Hold a reference on the node so it doesn't go away until after 2136 * the xmit is complete all the way in the driver. On error we 2137 * will remove our reference. 2138 */ 2139 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2140 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2141 __func__, __LINE__, 2142 ni, ether_sprintf(ni->ni_macaddr), 2143 ieee80211_node_refcnt(ni)+1); 2144 ieee80211_ref_node(ni); 2145 2146 memset(¶ms, 0, sizeof(params)); 2147 switch (type) { 2148 2149 case IEEE80211_FC0_SUBTYPE_AUTH: 2150 status = arg >> 16; 2151 arg &= 0xffff; 2152 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || 2153 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 2154 ni->ni_challenge != NULL); 2155 2156 /* 2157 * Deduce whether we're doing open authentication or 2158 * shared key authentication. We do the latter if 2159 * we're in the middle of a shared key authentication 2160 * handshake or if we're initiating an authentication 2161 * request and configured to use shared key. 2162 */ 2163 is_shared_key = has_challenge || 2164 arg >= IEEE80211_AUTH_SHARED_RESPONSE || 2165 (arg == IEEE80211_AUTH_SHARED_REQUEST && 2166 bss->ni_authmode == IEEE80211_AUTH_SHARED); 2167 2168 m = ieee80211_getmgtframe(&frm, 2169 ic->ic_headroom + sizeof(struct ieee80211_frame), 2170 3 * sizeof(uint16_t) 2171 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? 2172 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0) 2173 ); 2174 if (m == NULL) 2175 senderr(ENOMEM, is_tx_nobuf); 2176 2177 ((uint16_t *)frm)[0] = 2178 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) 2179 : htole16(IEEE80211_AUTH_ALG_OPEN); 2180 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */ 2181 ((uint16_t *)frm)[2] = htole16(status);/* status */ 2182 2183 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { 2184 ((uint16_t *)frm)[3] = 2185 htole16((IEEE80211_CHALLENGE_LEN << 8) | 2186 IEEE80211_ELEMID_CHALLENGE); 2187 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge, 2188 IEEE80211_CHALLENGE_LEN); 2189 m->m_pkthdr.len = m->m_len = 2190 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN; 2191 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 2192 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2193 "request encrypt frame (%s)", __func__); 2194 /* mark frame for encryption */ 2195 params.ibp_flags |= IEEE80211_BPF_CRYPTO; 2196 } 2197 } else 2198 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t); 2199 2200 /* XXX not right for shared key */ 2201 if (status == IEEE80211_STATUS_SUCCESS) 2202 IEEE80211_NODE_STAT(ni, tx_auth); 2203 else 2204 IEEE80211_NODE_STAT(ni, tx_auth_fail); 2205 2206 if (vap->iv_opmode == IEEE80211_M_STA) 2207 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2208 (void *) vap->iv_state); 2209 break; 2210 2211 case IEEE80211_FC0_SUBTYPE_DEAUTH: 2212 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2213 "send station deauthenticate (reason %d)", arg); 2214 m = ieee80211_getmgtframe(&frm, 2215 ic->ic_headroom + sizeof(struct ieee80211_frame), 2216 sizeof(uint16_t)); 2217 if (m == NULL) 2218 senderr(ENOMEM, is_tx_nobuf); 2219 *(uint16_t *)frm = htole16(arg); /* reason */ 2220 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2221 2222 IEEE80211_NODE_STAT(ni, tx_deauth); 2223 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 2224 2225 ieee80211_node_unauthorize(ni); /* port closed */ 2226 break; 2227 2228 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 2229 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 2230 /* 2231 * asreq frame format 2232 * [2] capability information 2233 * [2] listen interval 2234 * [6*] current AP address (reassoc only) 2235 * [tlv] ssid 2236 * [tlv] supported rates 2237 * [tlv] extended supported rates 2238 * [4] power capability (optional) 2239 * [28] supported channels (optional) 2240 * [tlv] HT capabilities 2241 * [tlv] WME (optional) 2242 * [tlv] Vendor OUI HT capabilities (optional) 2243 * [tlv] Atheros capabilities (if negotiated) 2244 * [tlv] AppIE's (optional) 2245 */ 2246 m = ieee80211_getmgtframe(&frm, 2247 ic->ic_headroom + sizeof(struct ieee80211_frame), 2248 sizeof(uint16_t) 2249 + sizeof(uint16_t) 2250 + IEEE80211_ADDR_LEN 2251 + 2 + IEEE80211_NWID_LEN 2252 + 2 + IEEE80211_RATE_SIZE 2253 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2254 + 4 2255 + 2 + 26 2256 + sizeof(struct ieee80211_wme_info) 2257 + sizeof(struct ieee80211_ie_htcap) 2258 + 4 + sizeof(struct ieee80211_ie_htcap) 2259 #ifdef IEEE80211_SUPPORT_SUPERG 2260 + sizeof(struct ieee80211_ath_ie) 2261 #endif 2262 + (vap->iv_appie_wpa != NULL ? 2263 vap->iv_appie_wpa->ie_len : 0) 2264 + (vap->iv_appie_assocreq != NULL ? 2265 vap->iv_appie_assocreq->ie_len : 0) 2266 ); 2267 if (m == NULL) 2268 senderr(ENOMEM, is_tx_nobuf); 2269 2270 KASSERT(vap->iv_opmode == IEEE80211_M_STA, 2271 ("wrong mode %u", vap->iv_opmode)); 2272 capinfo = IEEE80211_CAPINFO_ESS; 2273 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2274 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2275 /* 2276 * NB: Some 11a AP's reject the request when 2277 * short premable is set. 2278 */ 2279 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2280 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2281 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2282 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 2283 (ic->ic_caps & IEEE80211_C_SHSLOT)) 2284 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2285 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) && 2286 (vap->iv_flags & IEEE80211_F_DOTH)) 2287 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2288 *(uint16_t *)frm = htole16(capinfo); 2289 frm += 2; 2290 2291 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!")); 2292 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval, 2293 bss->ni_intval)); 2294 frm += 2; 2295 2296 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 2297 IEEE80211_ADDR_COPY(frm, bss->ni_bssid); 2298 frm += IEEE80211_ADDR_LEN; 2299 } 2300 2301 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 2302 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2303 frm = ieee80211_add_rsn(frm, vap); 2304 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2305 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) { 2306 frm = ieee80211_add_powercapability(frm, 2307 ic->ic_curchan); 2308 frm = ieee80211_add_supportedchannels(frm, ic); 2309 } 2310 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2311 ni->ni_ies.htcap_ie != NULL && 2312 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) 2313 frm = ieee80211_add_htcap(frm, ni); 2314 frm = ieee80211_add_wpa(frm, vap); 2315 if ((ic->ic_flags & IEEE80211_F_WME) && 2316 ni->ni_ies.wme_ie != NULL) 2317 frm = ieee80211_add_wme_info(frm, &ic->ic_wme); 2318 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2319 ni->ni_ies.htcap_ie != NULL && 2320 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) 2321 frm = ieee80211_add_htcap_vendor(frm, ni); 2322 #ifdef IEEE80211_SUPPORT_SUPERG 2323 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) { 2324 frm = ieee80211_add_ath(frm, 2325 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2326 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2327 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2328 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2329 } 2330 #endif /* IEEE80211_SUPPORT_SUPERG */ 2331 if (vap->iv_appie_assocreq != NULL) 2332 frm = add_appie(frm, vap->iv_appie_assocreq); 2333 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2334 2335 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2336 (void *) vap->iv_state); 2337 break; 2338 2339 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 2340 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 2341 /* 2342 * asresp frame format 2343 * [2] capability information 2344 * [2] status 2345 * [2] association ID 2346 * [tlv] supported rates 2347 * [tlv] extended supported rates 2348 * [tlv] HT capabilities (standard, if STA enabled) 2349 * [tlv] HT information (standard, if STA enabled) 2350 * [tlv] WME (if configured and STA enabled) 2351 * [tlv] HT capabilities (vendor OUI, if STA enabled) 2352 * [tlv] HT information (vendor OUI, if STA enabled) 2353 * [tlv] Atheros capabilities (if STA enabled) 2354 * [tlv] AppIE's (optional) 2355 */ 2356 m = ieee80211_getmgtframe(&frm, 2357 ic->ic_headroom + sizeof(struct ieee80211_frame), 2358 sizeof(uint16_t) 2359 + sizeof(uint16_t) 2360 + sizeof(uint16_t) 2361 + 2 + IEEE80211_RATE_SIZE 2362 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2363 + sizeof(struct ieee80211_ie_htcap) + 4 2364 + sizeof(struct ieee80211_ie_htinfo) + 4 2365 + sizeof(struct ieee80211_wme_param) 2366 #ifdef IEEE80211_SUPPORT_SUPERG 2367 + sizeof(struct ieee80211_ath_ie) 2368 #endif 2369 + (vap->iv_appie_assocresp != NULL ? 2370 vap->iv_appie_assocresp->ie_len : 0) 2371 ); 2372 if (m == NULL) 2373 senderr(ENOMEM, is_tx_nobuf); 2374 2375 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2376 *(uint16_t *)frm = htole16(capinfo); 2377 frm += 2; 2378 2379 *(uint16_t *)frm = htole16(arg); /* status */ 2380 frm += 2; 2381 2382 if (arg == IEEE80211_STATUS_SUCCESS) { 2383 *(uint16_t *)frm = htole16(ni->ni_associd); 2384 IEEE80211_NODE_STAT(ni, tx_assoc); 2385 } else 2386 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 2387 frm += 2; 2388 2389 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2390 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2391 /* NB: respond according to what we received */ 2392 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) { 2393 frm = ieee80211_add_htcap(frm, ni); 2394 frm = ieee80211_add_htinfo(frm, ni); 2395 } 2396 if ((vap->iv_flags & IEEE80211_F_WME) && 2397 ni->ni_ies.wme_ie != NULL) 2398 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2399 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) { 2400 frm = ieee80211_add_htcap_vendor(frm, ni); 2401 frm = ieee80211_add_htinfo_vendor(frm, ni); 2402 } 2403 #ifdef IEEE80211_SUPPORT_SUPERG 2404 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) 2405 frm = ieee80211_add_ath(frm, 2406 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2407 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2408 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2409 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2410 #endif /* IEEE80211_SUPPORT_SUPERG */ 2411 if (vap->iv_appie_assocresp != NULL) 2412 frm = add_appie(frm, vap->iv_appie_assocresp); 2413 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2414 break; 2415 2416 case IEEE80211_FC0_SUBTYPE_DISASSOC: 2417 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, 2418 "send station disassociate (reason %d)", arg); 2419 m = ieee80211_getmgtframe(&frm, 2420 ic->ic_headroom + sizeof(struct ieee80211_frame), 2421 sizeof(uint16_t)); 2422 if (m == NULL) 2423 senderr(ENOMEM, is_tx_nobuf); 2424 *(uint16_t *)frm = htole16(arg); /* reason */ 2425 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2426 2427 IEEE80211_NODE_STAT(ni, tx_disassoc); 2428 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 2429 break; 2430 2431 default: 2432 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni, 2433 "invalid mgmt frame type %u", type); 2434 senderr(EINVAL, is_tx_unknownmgt); 2435 /* NOTREACHED */ 2436 } 2437 2438 /* NB: force non-ProbeResp frames to the highest queue */ 2439 params.ibp_pri = WME_AC_VO; 2440 params.ibp_rate0 = bss->ni_txparms->mgmtrate; 2441 /* NB: we know all frames are unicast */ 2442 params.ibp_try0 = bss->ni_txparms->maxretry; 2443 params.ibp_power = bss->ni_txpower; 2444 return ieee80211_mgmt_output(ni, m, type, ¶ms); 2445 bad: 2446 ieee80211_free_node(ni); 2447 return ret; 2448 #undef senderr 2449 #undef HTFLAGS 2450 } 2451 2452 /* 2453 * Return an mbuf with a probe response frame in it. 2454 * Space is left to prepend and 802.11 header at the 2455 * front but it's left to the caller to fill in. 2456 */ 2457 struct mbuf * 2458 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy) 2459 { 2460 struct ieee80211vap *vap = bss->ni_vap; 2461 struct ieee80211com *ic = bss->ni_ic; 2462 const struct ieee80211_rateset *rs; 2463 struct mbuf *m; 2464 uint16_t capinfo; 2465 uint8_t *frm; 2466 2467 /* 2468 * probe response frame format 2469 * [8] time stamp 2470 * [2] beacon interval 2471 * [2] cabability information 2472 * [tlv] ssid 2473 * [tlv] supported rates 2474 * [tlv] parameter set (FH/DS) 2475 * [tlv] parameter set (IBSS) 2476 * [tlv] country (optional) 2477 * [3] power control (optional) 2478 * [5] channel switch announcement (CSA) (optional) 2479 * [tlv] extended rate phy (ERP) 2480 * [tlv] extended supported rates 2481 * [tlv] RSN (optional) 2482 * [tlv] HT capabilities 2483 * [tlv] HT information 2484 * [tlv] WPA (optional) 2485 * [tlv] WME (optional) 2486 * [tlv] Vendor OUI HT capabilities (optional) 2487 * [tlv] Vendor OUI HT information (optional) 2488 * [tlv] Atheros capabilities 2489 * [tlv] AppIE's (optional) 2490 * [tlv] Mesh ID (MBSS) 2491 * [tlv] Mesh Conf (MBSS) 2492 */ 2493 m = ieee80211_getmgtframe(&frm, 2494 ic->ic_headroom + sizeof(struct ieee80211_frame), 2495 8 2496 + sizeof(uint16_t) 2497 + sizeof(uint16_t) 2498 + 2 + IEEE80211_NWID_LEN 2499 + 2 + IEEE80211_RATE_SIZE 2500 + 7 /* max(7,3) */ 2501 + IEEE80211_COUNTRY_MAX_SIZE 2502 + 3 2503 + sizeof(struct ieee80211_csa_ie) 2504 + sizeof(struct ieee80211_quiet_ie) 2505 + 3 2506 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2507 + sizeof(struct ieee80211_ie_wpa) 2508 + sizeof(struct ieee80211_ie_htcap) 2509 + sizeof(struct ieee80211_ie_htinfo) 2510 + sizeof(struct ieee80211_ie_wpa) 2511 + sizeof(struct ieee80211_wme_param) 2512 + 4 + sizeof(struct ieee80211_ie_htcap) 2513 + 4 + sizeof(struct ieee80211_ie_htinfo) 2514 #ifdef IEEE80211_SUPPORT_SUPERG 2515 + sizeof(struct ieee80211_ath_ie) 2516 #endif 2517 #ifdef IEEE80211_SUPPORT_MESH 2518 + 2 + IEEE80211_MESHID_LEN 2519 + sizeof(struct ieee80211_meshconf_ie) 2520 #endif 2521 + (vap->iv_appie_proberesp != NULL ? 2522 vap->iv_appie_proberesp->ie_len : 0) 2523 ); 2524 if (m == NULL) { 2525 vap->iv_stats.is_tx_nobuf++; 2526 return NULL; 2527 } 2528 2529 memset(frm, 0, 8); /* timestamp should be filled later */ 2530 frm += 8; 2531 *(uint16_t *)frm = htole16(bss->ni_intval); 2532 frm += 2; 2533 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2534 *(uint16_t *)frm = htole16(capinfo); 2535 frm += 2; 2536 2537 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen); 2538 rs = ieee80211_get_suprates(ic, bss->ni_chan); 2539 frm = ieee80211_add_rates(frm, rs); 2540 2541 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) { 2542 *frm++ = IEEE80211_ELEMID_FHPARMS; 2543 *frm++ = 5; 2544 *frm++ = bss->ni_fhdwell & 0x00ff; 2545 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff; 2546 *frm++ = IEEE80211_FH_CHANSET( 2547 ieee80211_chan2ieee(ic, bss->ni_chan)); 2548 *frm++ = IEEE80211_FH_CHANPAT( 2549 ieee80211_chan2ieee(ic, bss->ni_chan)); 2550 *frm++ = bss->ni_fhindex; 2551 } else { 2552 *frm++ = IEEE80211_ELEMID_DSPARMS; 2553 *frm++ = 1; 2554 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan); 2555 } 2556 2557 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2558 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2559 *frm++ = 2; 2560 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2561 } 2562 if ((vap->iv_flags & IEEE80211_F_DOTH) || 2563 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 2564 frm = ieee80211_add_countryie(frm, ic); 2565 if (vap->iv_flags & IEEE80211_F_DOTH) { 2566 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan)) 2567 frm = ieee80211_add_powerconstraint(frm, vap); 2568 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 2569 frm = ieee80211_add_csa(frm, vap); 2570 } 2571 if (vap->iv_flags & IEEE80211_F_DOTH) { 2572 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2573 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 2574 if (vap->iv_quiet) 2575 frm = ieee80211_add_quiet(frm, vap); 2576 } 2577 } 2578 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan)) 2579 frm = ieee80211_add_erp(frm, ic); 2580 frm = ieee80211_add_xrates(frm, rs); 2581 frm = ieee80211_add_rsn(frm, vap); 2582 /* 2583 * NB: legacy 11b clients do not get certain ie's. 2584 * The caller identifies such clients by passing 2585 * a token in legacy to us. Could expand this to be 2586 * any legacy client for stuff like HT ie's. 2587 */ 2588 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2589 legacy != IEEE80211_SEND_LEGACY_11B) { 2590 frm = ieee80211_add_htcap(frm, bss); 2591 frm = ieee80211_add_htinfo(frm, bss); 2592 } 2593 frm = ieee80211_add_wpa(frm, vap); 2594 if (vap->iv_flags & IEEE80211_F_WME) 2595 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2596 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2597 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) && 2598 legacy != IEEE80211_SEND_LEGACY_11B) { 2599 frm = ieee80211_add_htcap_vendor(frm, bss); 2600 frm = ieee80211_add_htinfo_vendor(frm, bss); 2601 } 2602 #ifdef IEEE80211_SUPPORT_SUPERG 2603 if ((vap->iv_flags & IEEE80211_F_ATHEROS) && 2604 legacy != IEEE80211_SEND_LEGACY_11B) 2605 frm = ieee80211_add_athcaps(frm, bss); 2606 #endif 2607 if (vap->iv_appie_proberesp != NULL) 2608 frm = add_appie(frm, vap->iv_appie_proberesp); 2609 #ifdef IEEE80211_SUPPORT_MESH 2610 if (vap->iv_opmode == IEEE80211_M_MBSS) { 2611 frm = ieee80211_add_meshid(frm, vap); 2612 frm = ieee80211_add_meshconf(frm, vap); 2613 } 2614 #endif 2615 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2616 2617 return m; 2618 } 2619 2620 /* 2621 * Send a probe response frame to the specified mac address. 2622 * This does not go through the normal mgt frame api so we 2623 * can specify the destination address and re-use the bss node 2624 * for the sta reference. 2625 */ 2626 int 2627 ieee80211_send_proberesp(struct ieee80211vap *vap, 2628 const uint8_t da[IEEE80211_ADDR_LEN], int legacy) 2629 { 2630 struct ieee80211_node *bss = vap->iv_bss; 2631 struct ieee80211com *ic = vap->iv_ic; 2632 struct ieee80211_frame *wh; 2633 struct mbuf *m; 2634 int ret; 2635 2636 if (vap->iv_state == IEEE80211_S_CAC) { 2637 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss, 2638 "block %s frame in CAC state", "probe response"); 2639 vap->iv_stats.is_tx_badstate++; 2640 return EIO; /* XXX */ 2641 } 2642 2643 /* 2644 * Hold a reference on the node so it doesn't go away until after 2645 * the xmit is complete all the way in the driver. On error we 2646 * will remove our reference. 2647 */ 2648 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2649 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2650 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr), 2651 ieee80211_node_refcnt(bss)+1); 2652 ieee80211_ref_node(bss); 2653 2654 m = ieee80211_alloc_proberesp(bss, legacy); 2655 if (m == NULL) { 2656 ieee80211_free_node(bss); 2657 return ENOMEM; 2658 } 2659 2660 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2661 KASSERT(m != NULL, ("no room for header")); 2662 2663 IEEE80211_TX_LOCK(ic); 2664 wh = mtod(m, struct ieee80211_frame *); 2665 ieee80211_send_setup(bss, m, 2666 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP, 2667 IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid); 2668 /* XXX power management? */ 2669 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2670 2671 M_WME_SETAC(m, WME_AC_BE); 2672 2673 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2674 "send probe resp on channel %u to %s%s\n", 2675 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da), 2676 legacy ? " <legacy>" : ""); 2677 IEEE80211_NODE_STAT(bss, tx_mgmt); 2678 2679 ret = ieee80211_raw_output(vap, bss, m, NULL); 2680 IEEE80211_TX_UNLOCK(ic); 2681 return (ret); 2682 } 2683 2684 /* 2685 * Allocate and build a RTS (Request To Send) control frame. 2686 */ 2687 struct mbuf * 2688 ieee80211_alloc_rts(struct ieee80211com *ic, 2689 const uint8_t ra[IEEE80211_ADDR_LEN], 2690 const uint8_t ta[IEEE80211_ADDR_LEN], 2691 uint16_t dur) 2692 { 2693 struct ieee80211_frame_rts *rts; 2694 struct mbuf *m; 2695 2696 /* XXX honor ic_headroom */ 2697 m = m_gethdr(M_NOWAIT, MT_DATA); 2698 if (m != NULL) { 2699 rts = mtod(m, struct ieee80211_frame_rts *); 2700 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2701 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS; 2702 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2703 *(u_int16_t *)rts->i_dur = htole16(dur); 2704 IEEE80211_ADDR_COPY(rts->i_ra, ra); 2705 IEEE80211_ADDR_COPY(rts->i_ta, ta); 2706 2707 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); 2708 } 2709 return m; 2710 } 2711 2712 /* 2713 * Allocate and build a CTS (Clear To Send) control frame. 2714 */ 2715 struct mbuf * 2716 ieee80211_alloc_cts(struct ieee80211com *ic, 2717 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur) 2718 { 2719 struct ieee80211_frame_cts *cts; 2720 struct mbuf *m; 2721 2722 /* XXX honor ic_headroom */ 2723 m = m_gethdr(M_NOWAIT, MT_DATA); 2724 if (m != NULL) { 2725 cts = mtod(m, struct ieee80211_frame_cts *); 2726 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2727 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS; 2728 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2729 *(u_int16_t *)cts->i_dur = htole16(dur); 2730 IEEE80211_ADDR_COPY(cts->i_ra, ra); 2731 2732 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts); 2733 } 2734 return m; 2735 } 2736 2737 static void 2738 ieee80211_tx_mgt_timeout(void *arg) 2739 { 2740 struct ieee80211vap *vap = arg; 2741 2742 IEEE80211_LOCK(vap->iv_ic); 2743 if (vap->iv_state != IEEE80211_S_INIT && 2744 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) { 2745 /* 2746 * NB: it's safe to specify a timeout as the reason here; 2747 * it'll only be used in the right state. 2748 */ 2749 ieee80211_new_state_locked(vap, IEEE80211_S_SCAN, 2750 IEEE80211_SCAN_FAIL_TIMEOUT); 2751 } 2752 IEEE80211_UNLOCK(vap->iv_ic); 2753 } 2754 2755 /* 2756 * This is the callback set on net80211-sourced transmitted 2757 * authentication request frames. 2758 * 2759 * This does a couple of things: 2760 * 2761 * + If the frame transmitted was a success, it schedules a future 2762 * event which will transition the interface to scan. 2763 * If a state transition _then_ occurs before that event occurs, 2764 * said state transition will cancel this callout. 2765 * 2766 * + If the frame transmit was a failure, it immediately schedules 2767 * the transition back to scan. 2768 */ 2769 static void 2770 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status) 2771 { 2772 struct ieee80211vap *vap = ni->ni_vap; 2773 enum ieee80211_state ostate = (enum ieee80211_state) arg; 2774 2775 /* 2776 * Frame transmit completed; arrange timer callback. If 2777 * transmit was successfuly we wait for response. Otherwise 2778 * we arrange an immediate callback instead of doing the 2779 * callback directly since we don't know what state the driver 2780 * is in (e.g. what locks it is holding). This work should 2781 * not be too time-critical and not happen too often so the 2782 * added overhead is acceptable. 2783 * 2784 * XXX what happens if !acked but response shows up before callback? 2785 */ 2786 if (vap->iv_state == ostate) { 2787 callout_reset(&vap->iv_mgtsend, 2788 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0, 2789 ieee80211_tx_mgt_timeout, vap); 2790 } 2791 } 2792 2793 static void 2794 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm, 2795 struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni) 2796 { 2797 struct ieee80211vap *vap = ni->ni_vap; 2798 struct ieee80211com *ic = ni->ni_ic; 2799 struct ieee80211_rateset *rs = &ni->ni_rates; 2800 uint16_t capinfo; 2801 2802 /* 2803 * beacon frame format 2804 * [8] time stamp 2805 * [2] beacon interval 2806 * [2] cabability information 2807 * [tlv] ssid 2808 * [tlv] supported rates 2809 * [3] parameter set (DS) 2810 * [8] CF parameter set (optional) 2811 * [tlv] parameter set (IBSS/TIM) 2812 * [tlv] country (optional) 2813 * [3] power control (optional) 2814 * [5] channel switch announcement (CSA) (optional) 2815 * [tlv] extended rate phy (ERP) 2816 * [tlv] extended supported rates 2817 * [tlv] RSN parameters 2818 * [tlv] HT capabilities 2819 * [tlv] HT information 2820 * XXX Vendor-specific OIDs (e.g. Atheros) 2821 * [tlv] WPA parameters 2822 * [tlv] WME parameters 2823 * [tlv] Vendor OUI HT capabilities (optional) 2824 * [tlv] Vendor OUI HT information (optional) 2825 * [tlv] Atheros capabilities (optional) 2826 * [tlv] TDMA parameters (optional) 2827 * [tlv] Mesh ID (MBSS) 2828 * [tlv] Mesh Conf (MBSS) 2829 * [tlv] application data (optional) 2830 */ 2831 2832 memset(bo, 0, sizeof(*bo)); 2833 2834 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 2835 frm += 8; 2836 *(uint16_t *)frm = htole16(ni->ni_intval); 2837 frm += 2; 2838 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 2839 bo->bo_caps = (uint16_t *)frm; 2840 *(uint16_t *)frm = htole16(capinfo); 2841 frm += 2; 2842 *frm++ = IEEE80211_ELEMID_SSID; 2843 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) { 2844 *frm++ = ni->ni_esslen; 2845 memcpy(frm, ni->ni_essid, ni->ni_esslen); 2846 frm += ni->ni_esslen; 2847 } else 2848 *frm++ = 0; 2849 frm = ieee80211_add_rates(frm, rs); 2850 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) { 2851 *frm++ = IEEE80211_ELEMID_DSPARMS; 2852 *frm++ = 1; 2853 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 2854 } 2855 if (ic->ic_flags & IEEE80211_F_PCF) { 2856 bo->bo_cfp = frm; 2857 frm = ieee80211_add_cfparms(frm, ic); 2858 } 2859 bo->bo_tim = frm; 2860 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2861 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2862 *frm++ = 2; 2863 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2864 bo->bo_tim_len = 0; 2865 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 2866 vap->iv_opmode == IEEE80211_M_MBSS) { 2867 /* TIM IE is the same for Mesh and Hostap */ 2868 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; 2869 2870 tie->tim_ie = IEEE80211_ELEMID_TIM; 2871 tie->tim_len = 4; /* length */ 2872 tie->tim_count = 0; /* DTIM count */ 2873 tie->tim_period = vap->iv_dtim_period; /* DTIM period */ 2874 tie->tim_bitctl = 0; /* bitmap control */ 2875 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 2876 frm += sizeof(struct ieee80211_tim_ie); 2877 bo->bo_tim_len = 1; 2878 } 2879 bo->bo_tim_trailer = frm; 2880 if ((vap->iv_flags & IEEE80211_F_DOTH) || 2881 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 2882 frm = ieee80211_add_countryie(frm, ic); 2883 if (vap->iv_flags & IEEE80211_F_DOTH) { 2884 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) 2885 frm = ieee80211_add_powerconstraint(frm, vap); 2886 bo->bo_csa = frm; 2887 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 2888 frm = ieee80211_add_csa(frm, vap); 2889 } else 2890 bo->bo_csa = frm; 2891 2892 if (vap->iv_flags & IEEE80211_F_DOTH) { 2893 bo->bo_quiet = frm; 2894 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2895 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 2896 if (vap->iv_quiet) 2897 frm = ieee80211_add_quiet(frm,vap); 2898 } 2899 } else 2900 bo->bo_quiet = frm; 2901 2902 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) { 2903 bo->bo_erp = frm; 2904 frm = ieee80211_add_erp(frm, ic); 2905 } 2906 frm = ieee80211_add_xrates(frm, rs); 2907 frm = ieee80211_add_rsn(frm, vap); 2908 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 2909 frm = ieee80211_add_htcap(frm, ni); 2910 bo->bo_htinfo = frm; 2911 frm = ieee80211_add_htinfo(frm, ni); 2912 } 2913 frm = ieee80211_add_wpa(frm, vap); 2914 if (vap->iv_flags & IEEE80211_F_WME) { 2915 bo->bo_wme = frm; 2916 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2917 } 2918 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2919 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) { 2920 frm = ieee80211_add_htcap_vendor(frm, ni); 2921 frm = ieee80211_add_htinfo_vendor(frm, ni); 2922 } 2923 #ifdef IEEE80211_SUPPORT_SUPERG 2924 if (vap->iv_flags & IEEE80211_F_ATHEROS) { 2925 bo->bo_ath = frm; 2926 frm = ieee80211_add_athcaps(frm, ni); 2927 } 2928 #endif 2929 #ifdef IEEE80211_SUPPORT_TDMA 2930 if (vap->iv_caps & IEEE80211_C_TDMA) { 2931 bo->bo_tdma = frm; 2932 frm = ieee80211_add_tdma(frm, vap); 2933 } 2934 #endif 2935 if (vap->iv_appie_beacon != NULL) { 2936 bo->bo_appie = frm; 2937 bo->bo_appie_len = vap->iv_appie_beacon->ie_len; 2938 frm = add_appie(frm, vap->iv_appie_beacon); 2939 } 2940 #ifdef IEEE80211_SUPPORT_MESH 2941 if (vap->iv_opmode == IEEE80211_M_MBSS) { 2942 frm = ieee80211_add_meshid(frm, vap); 2943 bo->bo_meshconf = frm; 2944 frm = ieee80211_add_meshconf(frm, vap); 2945 } 2946 #endif 2947 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer; 2948 bo->bo_csa_trailer_len = frm - bo->bo_csa; 2949 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2950 } 2951 2952 /* 2953 * Allocate a beacon frame and fillin the appropriate bits. 2954 */ 2955 struct mbuf * 2956 ieee80211_beacon_alloc(struct ieee80211_node *ni, 2957 struct ieee80211_beacon_offsets *bo) 2958 { 2959 struct ieee80211vap *vap = ni->ni_vap; 2960 struct ieee80211com *ic = ni->ni_ic; 2961 struct ifnet *ifp = vap->iv_ifp; 2962 struct ieee80211_frame *wh; 2963 struct mbuf *m; 2964 int pktlen; 2965 uint8_t *frm; 2966 2967 /* 2968 * beacon frame format 2969 * [8] time stamp 2970 * [2] beacon interval 2971 * [2] cabability information 2972 * [tlv] ssid 2973 * [tlv] supported rates 2974 * [3] parameter set (DS) 2975 * [8] CF parameter set (optional) 2976 * [tlv] parameter set (IBSS/TIM) 2977 * [tlv] country (optional) 2978 * [3] power control (optional) 2979 * [5] channel switch announcement (CSA) (optional) 2980 * [tlv] extended rate phy (ERP) 2981 * [tlv] extended supported rates 2982 * [tlv] RSN parameters 2983 * [tlv] HT capabilities 2984 * [tlv] HT information 2985 * [tlv] Vendor OUI HT capabilities (optional) 2986 * [tlv] Vendor OUI HT information (optional) 2987 * XXX Vendor-specific OIDs (e.g. Atheros) 2988 * [tlv] WPA parameters 2989 * [tlv] WME parameters 2990 * [tlv] TDMA parameters (optional) 2991 * [tlv] Mesh ID (MBSS) 2992 * [tlv] Mesh Conf (MBSS) 2993 * [tlv] application data (optional) 2994 * NB: we allocate the max space required for the TIM bitmap. 2995 * XXX how big is this? 2996 */ 2997 pktlen = 8 /* time stamp */ 2998 + sizeof(uint16_t) /* beacon interval */ 2999 + sizeof(uint16_t) /* capabilities */ 3000 + 2 + ni->ni_esslen /* ssid */ 3001 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 3002 + 2 + 1 /* DS parameters */ 3003 + 2 + 6 /* CF parameters */ 3004 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */ 3005 + IEEE80211_COUNTRY_MAX_SIZE /* country */ 3006 + 2 + 1 /* power control */ 3007 + sizeof(struct ieee80211_csa_ie) /* CSA */ 3008 + sizeof(struct ieee80211_quiet_ie) /* Quiet */ 3009 + 2 + 1 /* ERP */ 3010 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 3011 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 3012 2*sizeof(struct ieee80211_ie_wpa) : 0) 3013 /* XXX conditional? */ 3014 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */ 3015 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */ 3016 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */ 3017 sizeof(struct ieee80211_wme_param) : 0) 3018 #ifdef IEEE80211_SUPPORT_SUPERG 3019 + sizeof(struct ieee80211_ath_ie) /* ATH */ 3020 #endif 3021 #ifdef IEEE80211_SUPPORT_TDMA 3022 + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */ 3023 sizeof(struct ieee80211_tdma_param) : 0) 3024 #endif 3025 #ifdef IEEE80211_SUPPORT_MESH 3026 + 2 + ni->ni_meshidlen 3027 + sizeof(struct ieee80211_meshconf_ie) 3028 #endif 3029 + IEEE80211_MAX_APPIE 3030 ; 3031 m = ieee80211_getmgtframe(&frm, 3032 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen); 3033 if (m == NULL) { 3034 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, 3035 "%s: cannot get buf; size %u\n", __func__, pktlen); 3036 vap->iv_stats.is_tx_nobuf++; 3037 return NULL; 3038 } 3039 ieee80211_beacon_construct(m, frm, bo, ni); 3040 3041 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 3042 KASSERT(m != NULL, ("no space for 802.11 header?")); 3043 wh = mtod(m, struct ieee80211_frame *); 3044 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 3045 IEEE80211_FC0_SUBTYPE_BEACON; 3046 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3047 *(uint16_t *)wh->i_dur = 0; 3048 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 3049 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 3050 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 3051 *(uint16_t *)wh->i_seq = 0; 3052 3053 return m; 3054 } 3055 3056 /* 3057 * Update the dynamic parts of a beacon frame based on the current state. 3058 */ 3059 int 3060 ieee80211_beacon_update(struct ieee80211_node *ni, 3061 struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast) 3062 { 3063 struct ieee80211vap *vap = ni->ni_vap; 3064 struct ieee80211com *ic = ni->ni_ic; 3065 int len_changed = 0; 3066 uint16_t capinfo; 3067 struct ieee80211_frame *wh; 3068 ieee80211_seq seqno; 3069 3070 IEEE80211_LOCK(ic); 3071 /* 3072 * Handle 11h channel change when we've reached the count. 3073 * We must recalculate the beacon frame contents to account 3074 * for the new channel. Note we do this only for the first 3075 * vap that reaches this point; subsequent vaps just update 3076 * their beacon state to reflect the recalculated channel. 3077 */ 3078 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) && 3079 vap->iv_csa_count == ic->ic_csa_count) { 3080 vap->iv_csa_count = 0; 3081 /* 3082 * Effect channel change before reconstructing the beacon 3083 * frame contents as many places reference ni_chan. 3084 */ 3085 if (ic->ic_csa_newchan != NULL) 3086 ieee80211_csa_completeswitch(ic); 3087 /* 3088 * NB: ieee80211_beacon_construct clears all pending 3089 * updates in bo_flags so we don't need to explicitly 3090 * clear IEEE80211_BEACON_CSA. 3091 */ 3092 ieee80211_beacon_construct(m, 3093 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni); 3094 3095 /* XXX do WME aggressive mode processing? */ 3096 IEEE80211_UNLOCK(ic); 3097 return 1; /* just assume length changed */ 3098 } 3099 3100 wh = mtod(m, struct ieee80211_frame *); 3101 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 3102 *(uint16_t *)&wh->i_seq[0] = 3103 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 3104 M_SEQNO_SET(m, seqno); 3105 3106 /* XXX faster to recalculate entirely or just changes? */ 3107 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3108 *bo->bo_caps = htole16(capinfo); 3109 3110 if (vap->iv_flags & IEEE80211_F_WME) { 3111 struct ieee80211_wme_state *wme = &ic->ic_wme; 3112 3113 /* 3114 * Check for agressive mode change. When there is 3115 * significant high priority traffic in the BSS 3116 * throttle back BE traffic by using conservative 3117 * parameters. Otherwise BE uses agressive params 3118 * to optimize performance of legacy/non-QoS traffic. 3119 */ 3120 if (wme->wme_flags & WME_F_AGGRMODE) { 3121 if (wme->wme_hipri_traffic > 3122 wme->wme_hipri_switch_thresh) { 3123 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3124 "%s: traffic %u, disable aggressive mode\n", 3125 __func__, wme->wme_hipri_traffic); 3126 wme->wme_flags &= ~WME_F_AGGRMODE; 3127 ieee80211_wme_updateparams_locked(vap); 3128 wme->wme_hipri_traffic = 3129 wme->wme_hipri_switch_hysteresis; 3130 } else 3131 wme->wme_hipri_traffic = 0; 3132 } else { 3133 if (wme->wme_hipri_traffic <= 3134 wme->wme_hipri_switch_thresh) { 3135 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3136 "%s: traffic %u, enable aggressive mode\n", 3137 __func__, wme->wme_hipri_traffic); 3138 wme->wme_flags |= WME_F_AGGRMODE; 3139 ieee80211_wme_updateparams_locked(vap); 3140 wme->wme_hipri_traffic = 0; 3141 } else 3142 wme->wme_hipri_traffic = 3143 wme->wme_hipri_switch_hysteresis; 3144 } 3145 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) { 3146 (void) ieee80211_add_wme_param(bo->bo_wme, wme); 3147 clrbit(bo->bo_flags, IEEE80211_BEACON_WME); 3148 } 3149 } 3150 3151 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) { 3152 ieee80211_ht_update_beacon(vap, bo); 3153 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO); 3154 } 3155 #ifdef IEEE80211_SUPPORT_TDMA 3156 if (vap->iv_caps & IEEE80211_C_TDMA) { 3157 /* 3158 * NB: the beacon is potentially updated every TBTT. 3159 */ 3160 ieee80211_tdma_update_beacon(vap, bo); 3161 } 3162 #endif 3163 #ifdef IEEE80211_SUPPORT_MESH 3164 if (vap->iv_opmode == IEEE80211_M_MBSS) 3165 ieee80211_mesh_update_beacon(vap, bo); 3166 #endif 3167 3168 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3169 vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/ 3170 struct ieee80211_tim_ie *tie = 3171 (struct ieee80211_tim_ie *) bo->bo_tim; 3172 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) { 3173 u_int timlen, timoff, i; 3174 /* 3175 * ATIM/DTIM needs updating. If it fits in the 3176 * current space allocated then just copy in the 3177 * new bits. Otherwise we need to move any trailing 3178 * data to make room. Note that we know there is 3179 * contiguous space because ieee80211_beacon_allocate 3180 * insures there is space in the mbuf to write a 3181 * maximal-size virtual bitmap (based on iv_max_aid). 3182 */ 3183 /* 3184 * Calculate the bitmap size and offset, copy any 3185 * trailer out of the way, and then copy in the 3186 * new bitmap and update the information element. 3187 * Note that the tim bitmap must contain at least 3188 * one byte and any offset must be even. 3189 */ 3190 if (vap->iv_ps_pending != 0) { 3191 timoff = 128; /* impossibly large */ 3192 for (i = 0; i < vap->iv_tim_len; i++) 3193 if (vap->iv_tim_bitmap[i]) { 3194 timoff = i &~ 1; 3195 break; 3196 } 3197 KASSERT(timoff != 128, ("tim bitmap empty!")); 3198 for (i = vap->iv_tim_len-1; i >= timoff; i--) 3199 if (vap->iv_tim_bitmap[i]) 3200 break; 3201 timlen = 1 + (i - timoff); 3202 } else { 3203 timoff = 0; 3204 timlen = 1; 3205 } 3206 if (timlen != bo->bo_tim_len) { 3207 /* copy up/down trailer */ 3208 int adjust = tie->tim_bitmap+timlen 3209 - bo->bo_tim_trailer; 3210 ovbcopy(bo->bo_tim_trailer, 3211 bo->bo_tim_trailer+adjust, 3212 bo->bo_tim_trailer_len); 3213 bo->bo_tim_trailer += adjust; 3214 bo->bo_erp += adjust; 3215 bo->bo_htinfo += adjust; 3216 #ifdef IEEE80211_SUPPORT_SUPERG 3217 bo->bo_ath += adjust; 3218 #endif 3219 #ifdef IEEE80211_SUPPORT_TDMA 3220 bo->bo_tdma += adjust; 3221 #endif 3222 #ifdef IEEE80211_SUPPORT_MESH 3223 bo->bo_meshconf += adjust; 3224 #endif 3225 bo->bo_appie += adjust; 3226 bo->bo_wme += adjust; 3227 bo->bo_csa += adjust; 3228 bo->bo_quiet += adjust; 3229 bo->bo_tim_len = timlen; 3230 3231 /* update information element */ 3232 tie->tim_len = 3 + timlen; 3233 tie->tim_bitctl = timoff; 3234 len_changed = 1; 3235 } 3236 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff, 3237 bo->bo_tim_len); 3238 3239 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM); 3240 3241 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER, 3242 "%s: TIM updated, pending %u, off %u, len %u\n", 3243 __func__, vap->iv_ps_pending, timoff, timlen); 3244 } 3245 /* count down DTIM period */ 3246 if (tie->tim_count == 0) 3247 tie->tim_count = tie->tim_period - 1; 3248 else 3249 tie->tim_count--; 3250 /* update state for buffered multicast frames on DTIM */ 3251 if (mcast && tie->tim_count == 0) 3252 tie->tim_bitctl |= 1; 3253 else 3254 tie->tim_bitctl &= ~1; 3255 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) { 3256 struct ieee80211_csa_ie *csa = 3257 (struct ieee80211_csa_ie *) bo->bo_csa; 3258 3259 /* 3260 * Insert or update CSA ie. If we're just starting 3261 * to count down to the channel switch then we need 3262 * to insert the CSA ie. Otherwise we just need to 3263 * drop the count. The actual change happens above 3264 * when the vap's count reaches the target count. 3265 */ 3266 if (vap->iv_csa_count == 0) { 3267 memmove(&csa[1], csa, bo->bo_csa_trailer_len); 3268 bo->bo_erp += sizeof(*csa); 3269 bo->bo_htinfo += sizeof(*csa); 3270 bo->bo_wme += sizeof(*csa); 3271 #ifdef IEEE80211_SUPPORT_SUPERG 3272 bo->bo_ath += sizeof(*csa); 3273 #endif 3274 #ifdef IEEE80211_SUPPORT_TDMA 3275 bo->bo_tdma += sizeof(*csa); 3276 #endif 3277 #ifdef IEEE80211_SUPPORT_MESH 3278 bo->bo_meshconf += sizeof(*csa); 3279 #endif 3280 bo->bo_appie += sizeof(*csa); 3281 bo->bo_csa_trailer_len += sizeof(*csa); 3282 bo->bo_quiet += sizeof(*csa); 3283 bo->bo_tim_trailer_len += sizeof(*csa); 3284 m->m_len += sizeof(*csa); 3285 m->m_pkthdr.len += sizeof(*csa); 3286 3287 ieee80211_add_csa(bo->bo_csa, vap); 3288 } else 3289 csa->csa_count--; 3290 vap->iv_csa_count++; 3291 /* NB: don't clear IEEE80211_BEACON_CSA */ 3292 } 3293 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3294 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){ 3295 if (vap->iv_quiet) 3296 ieee80211_add_quiet(bo->bo_quiet, vap); 3297 } 3298 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) { 3299 /* 3300 * ERP element needs updating. 3301 */ 3302 (void) ieee80211_add_erp(bo->bo_erp, ic); 3303 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP); 3304 } 3305 #ifdef IEEE80211_SUPPORT_SUPERG 3306 if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) { 3307 ieee80211_add_athcaps(bo->bo_ath, ni); 3308 clrbit(bo->bo_flags, IEEE80211_BEACON_ATH); 3309 } 3310 #endif 3311 } 3312 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) { 3313 const struct ieee80211_appie *aie = vap->iv_appie_beacon; 3314 int aielen; 3315 uint8_t *frm; 3316 3317 aielen = 0; 3318 if (aie != NULL) 3319 aielen += aie->ie_len; 3320 if (aielen != bo->bo_appie_len) { 3321 /* copy up/down trailer */ 3322 int adjust = aielen - bo->bo_appie_len; 3323 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust, 3324 bo->bo_tim_trailer_len); 3325 bo->bo_tim_trailer += adjust; 3326 bo->bo_appie += adjust; 3327 bo->bo_appie_len = aielen; 3328 3329 len_changed = 1; 3330 } 3331 frm = bo->bo_appie; 3332 if (aie != NULL) 3333 frm = add_appie(frm, aie); 3334 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE); 3335 } 3336 IEEE80211_UNLOCK(ic); 3337 3338 return len_changed; 3339 } 3340 3341 /* 3342 * Do Ethernet-LLC encapsulation for each payload in a fast frame 3343 * tunnel encapsulation. The frame is assumed to have an Ethernet 3344 * header at the front that must be stripped before prepending the 3345 * LLC followed by the Ethernet header passed in (with an Ethernet 3346 * type that specifies the payload size). 3347 */ 3348 struct mbuf * 3349 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m, 3350 const struct ether_header *eh) 3351 { 3352 struct llc *llc; 3353 uint16_t payload; 3354 3355 /* XXX optimize by combining m_adj+M_PREPEND */ 3356 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 3357 llc = mtod(m, struct llc *); 3358 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 3359 llc->llc_control = LLC_UI; 3360 llc->llc_snap.org_code[0] = 0; 3361 llc->llc_snap.org_code[1] = 0; 3362 llc->llc_snap.org_code[2] = 0; 3363 llc->llc_snap.ether_type = eh->ether_type; 3364 payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */ 3365 3366 M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT); 3367 if (m == NULL) { /* XXX cannot happen */ 3368 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 3369 "%s: no space for ether_header\n", __func__); 3370 vap->iv_stats.is_tx_nobuf++; 3371 return NULL; 3372 } 3373 ETHER_HEADER_COPY(mtod(m, void *), eh); 3374 mtod(m, struct ether_header *)->ether_type = htons(payload); 3375 return m; 3376 } 3377 3378 /* 3379 * Complete an mbuf transmission. 3380 * 3381 * For now, this simply processes a completed frame after the 3382 * driver has completed it's transmission and/or retransmission. 3383 * It assumes the frame is an 802.11 encapsulated frame. 3384 * 3385 * Later on it will grow to become the exit path for a given frame 3386 * from the driver and, depending upon how it's been encapsulated 3387 * and already transmitted, it may end up doing A-MPDU retransmission, 3388 * power save requeuing, etc. 3389 * 3390 * In order for the above to work, the driver entry point to this 3391 * must not hold any driver locks. Thus, the driver needs to delay 3392 * any actual mbuf completion until it can release said locks. 3393 * 3394 * This frees the mbuf and if the mbuf has a node reference, 3395 * the node reference will be freed. 3396 */ 3397 void 3398 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status) 3399 { 3400 3401 if (ni != NULL) { 3402 if (m->m_flags & M_TXCB) 3403 ieee80211_process_callback(ni, m, status); 3404 ieee80211_free_node(ni); 3405 } 3406 m_freem(m); 3407 } 3408