xref: /freebsd/sys/net80211/ieee80211_output.c (revision 6ef6ba9950260f42b47499d17874d00ca9290955)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_wlan.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/endian.h>
39 
40 #include <sys/socket.h>
41 
42 #include <net/bpf.h>
43 #include <net/ethernet.h>
44 #include <net/if.h>
45 #include <net/if_var.h>
46 #include <net/if_llc.h>
47 #include <net/if_media.h>
48 #include <net/if_vlan_var.h>
49 
50 #include <net80211/ieee80211_var.h>
51 #include <net80211/ieee80211_regdomain.h>
52 #ifdef IEEE80211_SUPPORT_SUPERG
53 #include <net80211/ieee80211_superg.h>
54 #endif
55 #ifdef IEEE80211_SUPPORT_TDMA
56 #include <net80211/ieee80211_tdma.h>
57 #endif
58 #include <net80211/ieee80211_wds.h>
59 #include <net80211/ieee80211_mesh.h>
60 
61 #if defined(INET) || defined(INET6)
62 #include <netinet/in.h>
63 #endif
64 
65 #ifdef INET
66 #include <netinet/if_ether.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/ip.h>
69 #endif
70 #ifdef INET6
71 #include <netinet/ip6.h>
72 #endif
73 
74 #include <security/mac/mac_framework.h>
75 
76 #define	ETHER_HEADER_COPY(dst, src) \
77 	memcpy(dst, src, sizeof(struct ether_header))
78 
79 /* unalligned little endian access */
80 #define LE_WRITE_2(p, v) do {				\
81 	((uint8_t *)(p))[0] = (v) & 0xff;		\
82 	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
83 } while (0)
84 #define LE_WRITE_4(p, v) do {				\
85 	((uint8_t *)(p))[0] = (v) & 0xff;		\
86 	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
87 	((uint8_t *)(p))[2] = ((v) >> 16) & 0xff;	\
88 	((uint8_t *)(p))[3] = ((v) >> 24) & 0xff;	\
89 } while (0)
90 
91 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
92 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
93 static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
94 
95 #ifdef IEEE80211_DEBUG
96 /*
97  * Decide if an outbound management frame should be
98  * printed when debugging is enabled.  This filters some
99  * of the less interesting frames that come frequently
100  * (e.g. beacons).
101  */
102 static __inline int
103 doprint(struct ieee80211vap *vap, int subtype)
104 {
105 	switch (subtype) {
106 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
107 		return (vap->iv_opmode == IEEE80211_M_IBSS);
108 	}
109 	return 1;
110 }
111 #endif
112 
113 /*
114  * Transmit a frame to the given destination on the given VAP.
115  *
116  * It's up to the caller to figure out the details of who this
117  * is going to and resolving the node.
118  *
119  * This routine takes care of queuing it for power save,
120  * A-MPDU state stuff, fast-frames state stuff, encapsulation
121  * if required, then passing it up to the driver layer.
122  *
123  * This routine (for now) consumes the mbuf and frees the node
124  * reference; it ideally will return a TX status which reflects
125  * whether the mbuf was consumed or not, so the caller can
126  * free the mbuf (if appropriate) and the node reference (again,
127  * if appropriate.)
128  */
129 int
130 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
131     struct ieee80211_node *ni)
132 {
133 	struct ieee80211com *ic = vap->iv_ic;
134 	struct ifnet *ifp = vap->iv_ifp;
135 	int error;
136 
137 	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
138 	    (m->m_flags & M_PWR_SAV) == 0) {
139 		/*
140 		 * Station in power save mode; pass the frame
141 		 * to the 802.11 layer and continue.  We'll get
142 		 * the frame back when the time is right.
143 		 * XXX lose WDS vap linkage?
144 		 */
145 		(void) ieee80211_pwrsave(ni, m);
146 		ieee80211_free_node(ni);
147 
148 		/*
149 		 * We queued it fine, so tell the upper layer
150 		 * that we consumed it.
151 		 */
152 		return (0);
153 	}
154 	/* calculate priority so drivers can find the tx queue */
155 	if (ieee80211_classify(ni, m)) {
156 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
157 		    ni->ni_macaddr, NULL,
158 		    "%s", "classification failure");
159 		vap->iv_stats.is_tx_classify++;
160 		ifp->if_oerrors++;
161 		m_freem(m);
162 		ieee80211_free_node(ni);
163 
164 		/* XXX better status? */
165 		return (0);
166 	}
167 	/*
168 	 * Stash the node pointer.  Note that we do this after
169 	 * any call to ieee80211_dwds_mcast because that code
170 	 * uses any existing value for rcvif to identify the
171 	 * interface it (might have been) received on.
172 	 */
173 	m->m_pkthdr.rcvif = (void *)ni;
174 
175 	BPF_MTAP(ifp, m);		/* 802.3 tx */
176 
177 	/*
178 	 * Check if A-MPDU tx aggregation is setup or if we
179 	 * should try to enable it.  The sta must be associated
180 	 * with HT and A-MPDU enabled for use.  When the policy
181 	 * routine decides we should enable A-MPDU we issue an
182 	 * ADDBA request and wait for a reply.  The frame being
183 	 * encapsulated will go out w/o using A-MPDU, or possibly
184 	 * it might be collected by the driver and held/retransmit.
185 	 * The default ic_ampdu_enable routine handles staggering
186 	 * ADDBA requests in case the receiver NAK's us or we are
187 	 * otherwise unable to establish a BA stream.
188 	 */
189 	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
190 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) &&
191 	    (m->m_flags & M_EAPOL) == 0) {
192 		int tid = WME_AC_TO_TID(M_WME_GETAC(m));
193 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
194 
195 		ieee80211_txampdu_count_packet(tap);
196 		if (IEEE80211_AMPDU_RUNNING(tap)) {
197 			/*
198 			 * Operational, mark frame for aggregation.
199 			 *
200 			 * XXX do tx aggregation here
201 			 */
202 			m->m_flags |= M_AMPDU_MPDU;
203 		} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
204 		    ic->ic_ampdu_enable(ni, tap)) {
205 			/*
206 			 * Not negotiated yet, request service.
207 			 */
208 			ieee80211_ampdu_request(ni, tap);
209 			/* XXX hold frame for reply? */
210 		}
211 	}
212 
213 #ifdef IEEE80211_SUPPORT_SUPERG
214 	else if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) {
215 		m = ieee80211_ff_check(ni, m);
216 		if (m == NULL) {
217 			/* NB: any ni ref held on stageq */
218 			return (0);
219 		}
220 	}
221 #endif /* IEEE80211_SUPPORT_SUPERG */
222 
223 	/*
224 	 * Grab the TX lock - serialise the TX process from this
225 	 * point (where TX state is being checked/modified)
226 	 * through to driver queue.
227 	 */
228 	IEEE80211_TX_LOCK(ic);
229 
230 	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
231 		/*
232 		 * Encapsulate the packet in prep for transmission.
233 		 */
234 		m = ieee80211_encap(vap, ni, m);
235 		if (m == NULL) {
236 			/* NB: stat+msg handled in ieee80211_encap */
237 			IEEE80211_TX_UNLOCK(ic);
238 			ieee80211_free_node(ni);
239 			/* XXX better status? */
240 			return (ENOBUFS);
241 		}
242 	}
243 	error = ieee80211_parent_xmitpkt(ic, m);
244 
245 	/*
246 	 * Unlock at this point - no need to hold it across
247 	 * ieee80211_free_node() (ie, the comlock)
248 	 */
249 	IEEE80211_TX_UNLOCK(ic);
250 	if (error != 0) {
251 		/* NB: IFQ_HANDOFF reclaims mbuf */
252 		ieee80211_free_node(ni);
253 	} else {
254 		ifp->if_opackets++;
255 	}
256 	ic->ic_lastdata = ticks;
257 
258 	return (0);
259 }
260 
261 
262 
263 /*
264  * Send the given mbuf through the given vap.
265  *
266  * This consumes the mbuf regardless of whether the transmit
267  * was successful or not.
268  *
269  * This does none of the initial checks that ieee80211_start()
270  * does (eg CAC timeout, interface wakeup) - the caller must
271  * do this first.
272  */
273 static int
274 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
275 {
276 #define	IS_DWDS(vap) \
277 	(vap->iv_opmode == IEEE80211_M_WDS && \
278 	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
279 	struct ieee80211com *ic = vap->iv_ic;
280 	struct ifnet *ifp = vap->iv_ifp;
281 	struct ieee80211_node *ni;
282 	struct ether_header *eh;
283 
284 	/*
285 	 * Cancel any background scan.
286 	 */
287 	if (ic->ic_flags & IEEE80211_F_SCAN)
288 		ieee80211_cancel_anyscan(vap);
289 	/*
290 	 * Find the node for the destination so we can do
291 	 * things like power save and fast frames aggregation.
292 	 *
293 	 * NB: past this point various code assumes the first
294 	 *     mbuf has the 802.3 header present (and contiguous).
295 	 */
296 	ni = NULL;
297 	if (m->m_len < sizeof(struct ether_header) &&
298 	   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
299 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
300 		    "discard frame, %s\n", "m_pullup failed");
301 		vap->iv_stats.is_tx_nobuf++;	/* XXX */
302 		ifp->if_oerrors++;
303 		return (ENOBUFS);
304 	}
305 	eh = mtod(m, struct ether_header *);
306 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
307 		if (IS_DWDS(vap)) {
308 			/*
309 			 * Only unicast frames from the above go out
310 			 * DWDS vaps; multicast frames are handled by
311 			 * dispatching the frame as it comes through
312 			 * the AP vap (see below).
313 			 */
314 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
315 			    eh->ether_dhost, "mcast", "%s", "on DWDS");
316 			vap->iv_stats.is_dwds_mcast++;
317 			m_freem(m);
318 			/* XXX better status? */
319 			return (ENOBUFS);
320 		}
321 		if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
322 			/*
323 			 * Spam DWDS vap's w/ multicast traffic.
324 			 */
325 			/* XXX only if dwds in use? */
326 			ieee80211_dwds_mcast(vap, m);
327 		}
328 	}
329 #ifdef IEEE80211_SUPPORT_MESH
330 	if (vap->iv_opmode != IEEE80211_M_MBSS) {
331 #endif
332 		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
333 		if (ni == NULL) {
334 			/* NB: ieee80211_find_txnode does stat+msg */
335 			ifp->if_oerrors++;
336 			m_freem(m);
337 			/* XXX better status? */
338 			return (ENOBUFS);
339 		}
340 		if (ni->ni_associd == 0 &&
341 		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
342 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
343 			    eh->ether_dhost, NULL,
344 			    "sta not associated (type 0x%04x)",
345 			    htons(eh->ether_type));
346 			vap->iv_stats.is_tx_notassoc++;
347 			ifp->if_oerrors++;
348 			m_freem(m);
349 			ieee80211_free_node(ni);
350 			/* XXX better status? */
351 			return (ENOBUFS);
352 		}
353 #ifdef IEEE80211_SUPPORT_MESH
354 	} else {
355 		if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
356 			/*
357 			 * Proxy station only if configured.
358 			 */
359 			if (!ieee80211_mesh_isproxyena(vap)) {
360 				IEEE80211_DISCARD_MAC(vap,
361 				    IEEE80211_MSG_OUTPUT |
362 				    IEEE80211_MSG_MESH,
363 				    eh->ether_dhost, NULL,
364 				    "%s", "proxy not enabled");
365 				vap->iv_stats.is_mesh_notproxy++;
366 				ifp->if_oerrors++;
367 				m_freem(m);
368 				/* XXX better status? */
369 				return (ENOBUFS);
370 			}
371 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
372 			    "forward frame from DS SA(%6D), DA(%6D)\n",
373 			    eh->ether_shost, ":",
374 			    eh->ether_dhost, ":");
375 			ieee80211_mesh_proxy_check(vap, eh->ether_shost);
376 		}
377 		ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
378 		if (ni == NULL) {
379 			/*
380 			 * NB: ieee80211_mesh_discover holds/disposes
381 			 * frame (e.g. queueing on path discovery).
382 			 */
383 			ifp->if_oerrors++;
384 			/* XXX better status? */
385 			return (ENOBUFS);
386 		}
387 	}
388 #endif
389 
390 	/*
391 	 * We've resolved the sender, so attempt to transmit it.
392 	 */
393 	if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
394 		return (ENOBUFS);
395 	return (0);
396 #undef	IS_DWDS
397 }
398 
399 /*
400  * Start method for vap's.  All packets from the stack come
401  * through here.  We handle common processing of the packets
402  * before dispatching them to the underlying device.
403  *
404  * if_transmit() requires that the mbuf be consumed by this call
405  * regardless of the return condition.
406  */
407 int
408 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
409 {
410 	struct ieee80211vap *vap = ifp->if_softc;
411 	struct ieee80211com *ic = vap->iv_ic;
412 	struct ifnet *parent = ic->ic_ifp;
413 
414 	/* NB: parent must be up and running */
415 	if (!IFNET_IS_UP_RUNNING(parent)) {
416 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
417 		    "%s: ignore queue, parent %s not up+running\n",
418 		    __func__, parent->if_xname);
419 		/* XXX stat */
420 		m_freem(m);
421 		return (EINVAL);
422 	}
423 	if (vap->iv_state == IEEE80211_S_SLEEP) {
424 		/*
425 		 * In power save, wakeup device for transmit.
426 		 */
427 		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
428 		m_freem(m);
429 		return (0);
430 	}
431 	/*
432 	 * No data frames go out unless we're running.
433 	 * Note in particular this covers CAC and CSA
434 	 * states (though maybe we should check muting
435 	 * for CSA).
436 	 */
437 	if (vap->iv_state != IEEE80211_S_RUN) {
438 		IEEE80211_LOCK(ic);
439 		/* re-check under the com lock to avoid races */
440 		if (vap->iv_state != IEEE80211_S_RUN) {
441 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
442 			    "%s: ignore queue, in %s state\n",
443 			    __func__, ieee80211_state_name[vap->iv_state]);
444 			vap->iv_stats.is_tx_badstate++;
445 			IEEE80211_UNLOCK(ic);
446 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
447 			m_freem(m);
448 			return (EINVAL);
449 		}
450 		IEEE80211_UNLOCK(ic);
451 	}
452 
453 	/*
454 	 * Sanitize mbuf flags for net80211 use.  We cannot
455 	 * clear M_PWR_SAV or M_MORE_DATA because these may
456 	 * be set for frames that are re-submitted from the
457 	 * power save queue.
458 	 *
459 	 * NB: This must be done before ieee80211_classify as
460 	 *     it marks EAPOL in frames with M_EAPOL.
461 	 */
462 	m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
463 
464 	/*
465 	 * Bump to the packet transmission path.
466 	 * The mbuf will be consumed here.
467 	 */
468 	return (ieee80211_start_pkt(vap, m));
469 }
470 
471 void
472 ieee80211_vap_qflush(struct ifnet *ifp)
473 {
474 
475 	/* Empty for now */
476 }
477 
478 /*
479  * 802.11 raw output routine.
480  */
481 int
482 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
483     struct mbuf *m, const struct ieee80211_bpf_params *params)
484 {
485 	struct ieee80211com *ic = vap->iv_ic;
486 
487 	return (ic->ic_raw_xmit(ni, m, params));
488 }
489 
490 /*
491  * 802.11 output routine. This is (currently) used only to
492  * connect bpf write calls to the 802.11 layer for injecting
493  * raw 802.11 frames.
494  */
495 #if __FreeBSD_version >= 1000031
496 int
497 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
498 	const struct sockaddr *dst, struct route *ro)
499 #else
500 int
501 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
502 	struct sockaddr *dst, struct route *ro)
503 #endif
504 {
505 #define senderr(e) do { error = (e); goto bad;} while (0)
506 	struct ieee80211_node *ni = NULL;
507 	struct ieee80211vap *vap;
508 	struct ieee80211_frame *wh;
509 	struct ieee80211com *ic = NULL;
510 	int error;
511 	int ret;
512 
513 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
514 		/*
515 		 * Short-circuit requests if the vap is marked OACTIVE
516 		 * as this can happen because a packet came down through
517 		 * ieee80211_start before the vap entered RUN state in
518 		 * which case it's ok to just drop the frame.  This
519 		 * should not be necessary but callers of if_output don't
520 		 * check OACTIVE.
521 		 */
522 		senderr(ENETDOWN);
523 	}
524 	vap = ifp->if_softc;
525 	ic = vap->iv_ic;
526 	/*
527 	 * Hand to the 802.3 code if not tagged as
528 	 * a raw 802.11 frame.
529 	 */
530 	if (dst->sa_family != AF_IEEE80211)
531 		return vap->iv_output(ifp, m, dst, ro);
532 #ifdef MAC
533 	error = mac_ifnet_check_transmit(ifp, m);
534 	if (error)
535 		senderr(error);
536 #endif
537 	if (ifp->if_flags & IFF_MONITOR)
538 		senderr(ENETDOWN);
539 	if (!IFNET_IS_UP_RUNNING(ifp))
540 		senderr(ENETDOWN);
541 	if (vap->iv_state == IEEE80211_S_CAC) {
542 		IEEE80211_DPRINTF(vap,
543 		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
544 		    "block %s frame in CAC state\n", "raw data");
545 		vap->iv_stats.is_tx_badstate++;
546 		senderr(EIO);		/* XXX */
547 	} else if (vap->iv_state == IEEE80211_S_SCAN)
548 		senderr(EIO);
549 	/* XXX bypass bridge, pfil, carp, etc. */
550 
551 	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
552 		senderr(EIO);	/* XXX */
553 	wh = mtod(m, struct ieee80211_frame *);
554 	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
555 	    IEEE80211_FC0_VERSION_0)
556 		senderr(EIO);	/* XXX */
557 
558 	/* locate destination node */
559 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
560 	case IEEE80211_FC1_DIR_NODS:
561 	case IEEE80211_FC1_DIR_FROMDS:
562 		ni = ieee80211_find_txnode(vap, wh->i_addr1);
563 		break;
564 	case IEEE80211_FC1_DIR_TODS:
565 	case IEEE80211_FC1_DIR_DSTODS:
566 		if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
567 			senderr(EIO);	/* XXX */
568 		ni = ieee80211_find_txnode(vap, wh->i_addr3);
569 		break;
570 	default:
571 		senderr(EIO);	/* XXX */
572 	}
573 	if (ni == NULL) {
574 		/*
575 		 * Permit packets w/ bpf params through regardless
576 		 * (see below about sa_len).
577 		 */
578 		if (dst->sa_len == 0)
579 			senderr(EHOSTUNREACH);
580 		ni = ieee80211_ref_node(vap->iv_bss);
581 	}
582 
583 	/*
584 	 * Sanitize mbuf for net80211 flags leaked from above.
585 	 *
586 	 * NB: This must be done before ieee80211_classify as
587 	 *     it marks EAPOL in frames with M_EAPOL.
588 	 */
589 	m->m_flags &= ~M_80211_TX;
590 
591 	/* calculate priority so drivers can find the tx queue */
592 	/* XXX assumes an 802.3 frame */
593 	if (ieee80211_classify(ni, m))
594 		senderr(EIO);		/* XXX */
595 
596 	ifp->if_opackets++;
597 	IEEE80211_NODE_STAT(ni, tx_data);
598 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
599 		IEEE80211_NODE_STAT(ni, tx_mcast);
600 		m->m_flags |= M_MCAST;
601 	} else
602 		IEEE80211_NODE_STAT(ni, tx_ucast);
603 	/* NB: ieee80211_encap does not include 802.11 header */
604 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len);
605 
606 	IEEE80211_TX_LOCK(ic);
607 
608 	/*
609 	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
610 	 * present by setting the sa_len field of the sockaddr (yes,
611 	 * this is a hack).
612 	 * NB: we assume sa_data is suitably aligned to cast.
613 	 */
614 	ret = ieee80211_raw_output(vap, ni, m,
615 	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
616 		dst->sa_data : NULL));
617 	IEEE80211_TX_UNLOCK(ic);
618 	return (ret);
619 bad:
620 	if (m != NULL)
621 		m_freem(m);
622 	if (ni != NULL)
623 		ieee80211_free_node(ni);
624 	ifp->if_oerrors++;
625 	return error;
626 #undef senderr
627 }
628 
629 /*
630  * Set the direction field and address fields of an outgoing
631  * frame.  Note this should be called early on in constructing
632  * a frame as it sets i_fc[1]; other bits can then be or'd in.
633  */
634 void
635 ieee80211_send_setup(
636 	struct ieee80211_node *ni,
637 	struct mbuf *m,
638 	int type, int tid,
639 	const uint8_t sa[IEEE80211_ADDR_LEN],
640 	const uint8_t da[IEEE80211_ADDR_LEN],
641 	const uint8_t bssid[IEEE80211_ADDR_LEN])
642 {
643 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
644 	struct ieee80211vap *vap = ni->ni_vap;
645 	struct ieee80211_tx_ampdu *tap;
646 	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
647 	ieee80211_seq seqno;
648 
649 	IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
650 
651 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
652 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
653 		switch (vap->iv_opmode) {
654 		case IEEE80211_M_STA:
655 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
656 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
657 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
658 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
659 			break;
660 		case IEEE80211_M_IBSS:
661 		case IEEE80211_M_AHDEMO:
662 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
663 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
664 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
665 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
666 			break;
667 		case IEEE80211_M_HOSTAP:
668 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
669 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
670 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
671 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
672 			break;
673 		case IEEE80211_M_WDS:
674 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
675 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
676 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
677 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
678 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
679 			break;
680 		case IEEE80211_M_MBSS:
681 #ifdef IEEE80211_SUPPORT_MESH
682 			if (IEEE80211_IS_MULTICAST(da)) {
683 				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
684 				/* XXX next hop */
685 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
686 				IEEE80211_ADDR_COPY(wh->i_addr2,
687 				    vap->iv_myaddr);
688 			} else {
689 				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
690 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
691 				IEEE80211_ADDR_COPY(wh->i_addr2,
692 				    vap->iv_myaddr);
693 				IEEE80211_ADDR_COPY(wh->i_addr3, da);
694 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
695 			}
696 #endif
697 			break;
698 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
699 			break;
700 		}
701 	} else {
702 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
703 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
704 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
705 #ifdef IEEE80211_SUPPORT_MESH
706 		if (vap->iv_opmode == IEEE80211_M_MBSS)
707 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
708 		else
709 #endif
710 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
711 	}
712 	*(uint16_t *)&wh->i_dur[0] = 0;
713 
714 	tap = &ni->ni_tx_ampdu[tid];
715 	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap))
716 		m->m_flags |= M_AMPDU_MPDU;
717 	else {
718 		seqno = ni->ni_txseqs[tid]++;
719 		*(uint16_t *)&wh->i_seq[0] =
720 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
721 		M_SEQNO_SET(m, seqno);
722 	}
723 
724 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
725 		m->m_flags |= M_MCAST;
726 #undef WH4
727 }
728 
729 /*
730  * Send a management frame to the specified node.  The node pointer
731  * must have a reference as the pointer will be passed to the driver
732  * and potentially held for a long time.  If the frame is successfully
733  * dispatched to the driver, then it is responsible for freeing the
734  * reference (and potentially free'ing up any associated storage);
735  * otherwise deal with reclaiming any reference (on error).
736  */
737 int
738 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
739 	struct ieee80211_bpf_params *params)
740 {
741 	struct ieee80211vap *vap = ni->ni_vap;
742 	struct ieee80211com *ic = ni->ni_ic;
743 	struct ieee80211_frame *wh;
744 	int ret;
745 
746 	KASSERT(ni != NULL, ("null node"));
747 
748 	if (vap->iv_state == IEEE80211_S_CAC) {
749 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
750 		    ni, "block %s frame in CAC state",
751 			ieee80211_mgt_subtype_name[
752 			    (type & IEEE80211_FC0_SUBTYPE_MASK) >>
753 				IEEE80211_FC0_SUBTYPE_SHIFT]);
754 		vap->iv_stats.is_tx_badstate++;
755 		ieee80211_free_node(ni);
756 		m_freem(m);
757 		return EIO;		/* XXX */
758 	}
759 
760 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
761 	if (m == NULL) {
762 		ieee80211_free_node(ni);
763 		return ENOMEM;
764 	}
765 
766 	IEEE80211_TX_LOCK(ic);
767 
768 	wh = mtod(m, struct ieee80211_frame *);
769 	ieee80211_send_setup(ni, m,
770 	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
771 	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
772 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
773 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
774 		    "encrypting frame (%s)", __func__);
775 		wh->i_fc[1] |= IEEE80211_FC1_WEP;
776 	}
777 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
778 
779 	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
780 	M_WME_SETAC(m, params->ibp_pri);
781 
782 #ifdef IEEE80211_DEBUG
783 	/* avoid printing too many frames */
784 	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
785 	    ieee80211_msg_dumppkts(vap)) {
786 		printf("[%s] send %s on channel %u\n",
787 		    ether_sprintf(wh->i_addr1),
788 		    ieee80211_mgt_subtype_name[
789 			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
790 				IEEE80211_FC0_SUBTYPE_SHIFT],
791 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
792 	}
793 #endif
794 	IEEE80211_NODE_STAT(ni, tx_mgmt);
795 
796 	ret = ieee80211_raw_output(vap, ni, m, params);
797 	IEEE80211_TX_UNLOCK(ic);
798 	return (ret);
799 }
800 
801 /*
802  * Send a null data frame to the specified node.  If the station
803  * is setup for QoS then a QoS Null Data frame is constructed.
804  * If this is a WDS station then a 4-address frame is constructed.
805  *
806  * NB: the caller is assumed to have setup a node reference
807  *     for use; this is necessary to deal with a race condition
808  *     when probing for inactive stations.  Like ieee80211_mgmt_output
809  *     we must cleanup any node reference on error;  however we
810  *     can safely just unref it as we know it will never be the
811  *     last reference to the node.
812  */
813 int
814 ieee80211_send_nulldata(struct ieee80211_node *ni)
815 {
816 	struct ieee80211vap *vap = ni->ni_vap;
817 	struct ieee80211com *ic = ni->ni_ic;
818 	struct mbuf *m;
819 	struct ieee80211_frame *wh;
820 	int hdrlen;
821 	uint8_t *frm;
822 	int ret;
823 
824 	if (vap->iv_state == IEEE80211_S_CAC) {
825 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
826 		    ni, "block %s frame in CAC state", "null data");
827 		ieee80211_unref_node(&ni);
828 		vap->iv_stats.is_tx_badstate++;
829 		return EIO;		/* XXX */
830 	}
831 
832 	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
833 		hdrlen = sizeof(struct ieee80211_qosframe);
834 	else
835 		hdrlen = sizeof(struct ieee80211_frame);
836 	/* NB: only WDS vap's get 4-address frames */
837 	if (vap->iv_opmode == IEEE80211_M_WDS)
838 		hdrlen += IEEE80211_ADDR_LEN;
839 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
840 		hdrlen = roundup(hdrlen, sizeof(uint32_t));
841 
842 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
843 	if (m == NULL) {
844 		/* XXX debug msg */
845 		ieee80211_unref_node(&ni);
846 		vap->iv_stats.is_tx_nobuf++;
847 		return ENOMEM;
848 	}
849 	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
850 	    ("leading space %zd", M_LEADINGSPACE(m)));
851 	M_PREPEND(m, hdrlen, M_NOWAIT);
852 	if (m == NULL) {
853 		/* NB: cannot happen */
854 		ieee80211_free_node(ni);
855 		return ENOMEM;
856 	}
857 
858 	IEEE80211_TX_LOCK(ic);
859 
860 	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
861 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
862 		const int tid = WME_AC_TO_TID(WME_AC_BE);
863 		uint8_t *qos;
864 
865 		ieee80211_send_setup(ni, m,
866 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
867 		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
868 
869 		if (vap->iv_opmode == IEEE80211_M_WDS)
870 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
871 		else
872 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
873 		qos[0] = tid & IEEE80211_QOS_TID;
874 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
875 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
876 		qos[1] = 0;
877 	} else {
878 		ieee80211_send_setup(ni, m,
879 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
880 		    IEEE80211_NONQOS_TID,
881 		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
882 	}
883 	if (vap->iv_opmode != IEEE80211_M_WDS) {
884 		/* NB: power management bit is never sent by an AP */
885 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
886 		    vap->iv_opmode != IEEE80211_M_HOSTAP)
887 			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
888 	}
889 	m->m_len = m->m_pkthdr.len = hdrlen;
890 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
891 
892 	M_WME_SETAC(m, WME_AC_BE);
893 
894 	IEEE80211_NODE_STAT(ni, tx_data);
895 
896 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
897 	    "send %snull data frame on channel %u, pwr mgt %s",
898 	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
899 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
900 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
901 
902 	ret = ieee80211_raw_output(vap, ni, m, NULL);
903 	IEEE80211_TX_UNLOCK(ic);
904 	return (ret);
905 }
906 
907 /*
908  * Assign priority to a frame based on any vlan tag assigned
909  * to the station and/or any Diffserv setting in an IP header.
910  * Finally, if an ACM policy is setup (in station mode) it's
911  * applied.
912  */
913 int
914 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
915 {
916 	const struct ether_header *eh = mtod(m, struct ether_header *);
917 	int v_wme_ac, d_wme_ac, ac;
918 
919 	/*
920 	 * Always promote PAE/EAPOL frames to high priority.
921 	 */
922 	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
923 		/* NB: mark so others don't need to check header */
924 		m->m_flags |= M_EAPOL;
925 		ac = WME_AC_VO;
926 		goto done;
927 	}
928 	/*
929 	 * Non-qos traffic goes to BE.
930 	 */
931 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
932 		ac = WME_AC_BE;
933 		goto done;
934 	}
935 
936 	/*
937 	 * If node has a vlan tag then all traffic
938 	 * to it must have a matching tag.
939 	 */
940 	v_wme_ac = 0;
941 	if (ni->ni_vlan != 0) {
942 		 if ((m->m_flags & M_VLANTAG) == 0) {
943 			IEEE80211_NODE_STAT(ni, tx_novlantag);
944 			return 1;
945 		}
946 		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
947 		    EVL_VLANOFTAG(ni->ni_vlan)) {
948 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
949 			return 1;
950 		}
951 		/* map vlan priority to AC */
952 		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
953 	}
954 
955 	/* XXX m_copydata may be too slow for fast path */
956 #ifdef INET
957 	if (eh->ether_type == htons(ETHERTYPE_IP)) {
958 		uint8_t tos;
959 		/*
960 		 * IP frame, map the DSCP bits from the TOS field.
961 		 */
962 		/* NB: ip header may not be in first mbuf */
963 		m_copydata(m, sizeof(struct ether_header) +
964 		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
965 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
966 		d_wme_ac = TID_TO_WME_AC(tos);
967 	} else {
968 #endif /* INET */
969 #ifdef INET6
970 	if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
971 		uint32_t flow;
972 		uint8_t tos;
973 		/*
974 		 * IPv6 frame, map the DSCP bits from the traffic class field.
975 		 */
976 		m_copydata(m, sizeof(struct ether_header) +
977 		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
978 		    (caddr_t) &flow);
979 		tos = (uint8_t)(ntohl(flow) >> 20);
980 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
981 		d_wme_ac = TID_TO_WME_AC(tos);
982 	} else {
983 #endif /* INET6 */
984 		d_wme_ac = WME_AC_BE;
985 #ifdef INET6
986 	}
987 #endif
988 #ifdef INET
989 	}
990 #endif
991 	/*
992 	 * Use highest priority AC.
993 	 */
994 	if (v_wme_ac > d_wme_ac)
995 		ac = v_wme_ac;
996 	else
997 		ac = d_wme_ac;
998 
999 	/*
1000 	 * Apply ACM policy.
1001 	 */
1002 	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1003 		static const int acmap[4] = {
1004 			WME_AC_BK,	/* WME_AC_BE */
1005 			WME_AC_BK,	/* WME_AC_BK */
1006 			WME_AC_BE,	/* WME_AC_VI */
1007 			WME_AC_VI,	/* WME_AC_VO */
1008 		};
1009 		struct ieee80211com *ic = ni->ni_ic;
1010 
1011 		while (ac != WME_AC_BK &&
1012 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1013 			ac = acmap[ac];
1014 	}
1015 done:
1016 	M_WME_SETAC(m, ac);
1017 	return 0;
1018 }
1019 
1020 /*
1021  * Insure there is sufficient contiguous space to encapsulate the
1022  * 802.11 data frame.  If room isn't already there, arrange for it.
1023  * Drivers and cipher modules assume we have done the necessary work
1024  * and fail rudely if they don't find the space they need.
1025  */
1026 struct mbuf *
1027 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1028 	struct ieee80211_key *key, struct mbuf *m)
1029 {
1030 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
1031 	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1032 
1033 	if (key != NULL) {
1034 		/* XXX belongs in crypto code? */
1035 		needed_space += key->wk_cipher->ic_header;
1036 		/* XXX frags */
1037 		/*
1038 		 * When crypto is being done in the host we must insure
1039 		 * the data are writable for the cipher routines; clone
1040 		 * a writable mbuf chain.
1041 		 * XXX handle SWMIC specially
1042 		 */
1043 		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1044 			m = m_unshare(m, M_NOWAIT);
1045 			if (m == NULL) {
1046 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1047 				    "%s: cannot get writable mbuf\n", __func__);
1048 				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1049 				return NULL;
1050 			}
1051 		}
1052 	}
1053 	/*
1054 	 * We know we are called just before stripping an Ethernet
1055 	 * header and prepending an LLC header.  This means we know
1056 	 * there will be
1057 	 *	sizeof(struct ether_header) - sizeof(struct llc)
1058 	 * bytes recovered to which we need additional space for the
1059 	 * 802.11 header and any crypto header.
1060 	 */
1061 	/* XXX check trailing space and copy instead? */
1062 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1063 		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
1064 		if (n == NULL) {
1065 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1066 			    "%s: cannot expand storage\n", __func__);
1067 			vap->iv_stats.is_tx_nobuf++;
1068 			m_freem(m);
1069 			return NULL;
1070 		}
1071 		KASSERT(needed_space <= MHLEN,
1072 		    ("not enough room, need %u got %d\n", needed_space, MHLEN));
1073 		/*
1074 		 * Setup new mbuf to have leading space to prepend the
1075 		 * 802.11 header and any crypto header bits that are
1076 		 * required (the latter are added when the driver calls
1077 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
1078 		 */
1079 		/* NB: must be first 'cuz it clobbers m_data */
1080 		m_move_pkthdr(n, m);
1081 		n->m_len = 0;			/* NB: m_gethdr does not set */
1082 		n->m_data += needed_space;
1083 		/*
1084 		 * Pull up Ethernet header to create the expected layout.
1085 		 * We could use m_pullup but that's overkill (i.e. we don't
1086 		 * need the actual data) and it cannot fail so do it inline
1087 		 * for speed.
1088 		 */
1089 		/* NB: struct ether_header is known to be contiguous */
1090 		n->m_len += sizeof(struct ether_header);
1091 		m->m_len -= sizeof(struct ether_header);
1092 		m->m_data += sizeof(struct ether_header);
1093 		/*
1094 		 * Replace the head of the chain.
1095 		 */
1096 		n->m_next = m;
1097 		m = n;
1098 	}
1099 	return m;
1100 #undef TO_BE_RECLAIMED
1101 }
1102 
1103 /*
1104  * Return the transmit key to use in sending a unicast frame.
1105  * If a unicast key is set we use that.  When no unicast key is set
1106  * we fall back to the default transmit key.
1107  */
1108 static __inline struct ieee80211_key *
1109 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1110 	struct ieee80211_node *ni)
1111 {
1112 	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1113 		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1114 		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1115 			return NULL;
1116 		return &vap->iv_nw_keys[vap->iv_def_txkey];
1117 	} else {
1118 		return &ni->ni_ucastkey;
1119 	}
1120 }
1121 
1122 /*
1123  * Return the transmit key to use in sending a multicast frame.
1124  * Multicast traffic always uses the group key which is installed as
1125  * the default tx key.
1126  */
1127 static __inline struct ieee80211_key *
1128 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1129 	struct ieee80211_node *ni)
1130 {
1131 	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1132 	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1133 		return NULL;
1134 	return &vap->iv_nw_keys[vap->iv_def_txkey];
1135 }
1136 
1137 /*
1138  * Encapsulate an outbound data frame.  The mbuf chain is updated.
1139  * If an error is encountered NULL is returned.  The caller is required
1140  * to provide a node reference and pullup the ethernet header in the
1141  * first mbuf.
1142  *
1143  * NB: Packet is assumed to be processed by ieee80211_classify which
1144  *     marked EAPOL frames w/ M_EAPOL.
1145  */
1146 struct mbuf *
1147 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1148     struct mbuf *m)
1149 {
1150 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1151 #define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
1152 	struct ieee80211com *ic = ni->ni_ic;
1153 #ifdef IEEE80211_SUPPORT_MESH
1154 	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1155 	struct ieee80211_meshcntl_ae10 *mc;
1156 	struct ieee80211_mesh_route *rt = NULL;
1157 	int dir = -1;
1158 #endif
1159 	struct ether_header eh;
1160 	struct ieee80211_frame *wh;
1161 	struct ieee80211_key *key;
1162 	struct llc *llc;
1163 	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr;
1164 	ieee80211_seq seqno;
1165 	int meshhdrsize, meshae;
1166 	uint8_t *qos;
1167 
1168 	IEEE80211_TX_LOCK_ASSERT(ic);
1169 
1170 	/*
1171 	 * Copy existing Ethernet header to a safe place.  The
1172 	 * rest of the code assumes it's ok to strip it when
1173 	 * reorganizing state for the final encapsulation.
1174 	 */
1175 	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1176 	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1177 
1178 	/*
1179 	 * Insure space for additional headers.  First identify
1180 	 * transmit key to use in calculating any buffer adjustments
1181 	 * required.  This is also used below to do privacy
1182 	 * encapsulation work.  Then calculate the 802.11 header
1183 	 * size and any padding required by the driver.
1184 	 *
1185 	 * Note key may be NULL if we fall back to the default
1186 	 * transmit key and that is not set.  In that case the
1187 	 * buffer may not be expanded as needed by the cipher
1188 	 * routines, but they will/should discard it.
1189 	 */
1190 	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1191 		if (vap->iv_opmode == IEEE80211_M_STA ||
1192 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1193 		    (vap->iv_opmode == IEEE80211_M_WDS &&
1194 		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1195 			key = ieee80211_crypto_getucastkey(vap, ni);
1196 		else
1197 			key = ieee80211_crypto_getmcastkey(vap, ni);
1198 		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1199 			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1200 			    eh.ether_dhost,
1201 			    "no default transmit key (%s) deftxkey %u",
1202 			    __func__, vap->iv_def_txkey);
1203 			vap->iv_stats.is_tx_nodefkey++;
1204 			goto bad;
1205 		}
1206 	} else
1207 		key = NULL;
1208 	/*
1209 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1210 	 * frames so suppress use.  This may be an issue if other
1211 	 * ap's require all data frames to be QoS-encapsulated
1212 	 * once negotiated in which case we'll need to make this
1213 	 * configurable.
1214 	 * NB: mesh data frames are QoS.
1215 	 */
1216 	addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) ||
1217 	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1218 	    (m->m_flags & M_EAPOL) == 0;
1219 	if (addqos)
1220 		hdrsize = sizeof(struct ieee80211_qosframe);
1221 	else
1222 		hdrsize = sizeof(struct ieee80211_frame);
1223 #ifdef IEEE80211_SUPPORT_MESH
1224 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1225 		/*
1226 		 * Mesh data frames are encapsulated according to the
1227 		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1228 		 * o Group Addressed data (aka multicast) originating
1229 		 *   at the local sta are sent w/ 3-address format and
1230 		 *   address extension mode 00
1231 		 * o Individually Addressed data (aka unicast) originating
1232 		 *   at the local sta are sent w/ 4-address format and
1233 		 *   address extension mode 00
1234 		 * o Group Addressed data forwarded from a non-mesh sta are
1235 		 *   sent w/ 3-address format and address extension mode 01
1236 		 * o Individually Address data from another sta are sent
1237 		 *   w/ 4-address format and address extension mode 10
1238 		 */
1239 		is4addr = 0;		/* NB: don't use, disable */
1240 		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1241 			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1242 			KASSERT(rt != NULL, ("route is NULL"));
1243 			dir = IEEE80211_FC1_DIR_DSTODS;
1244 			hdrsize += IEEE80211_ADDR_LEN;
1245 			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1246 				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1247 				    vap->iv_myaddr)) {
1248 					IEEE80211_NOTE_MAC(vap,
1249 					    IEEE80211_MSG_MESH,
1250 					    eh.ether_dhost,
1251 					    "%s", "trying to send to ourself");
1252 					goto bad;
1253 				}
1254 				meshae = IEEE80211_MESH_AE_10;
1255 				meshhdrsize =
1256 				    sizeof(struct ieee80211_meshcntl_ae10);
1257 			} else {
1258 				meshae = IEEE80211_MESH_AE_00;
1259 				meshhdrsize =
1260 				    sizeof(struct ieee80211_meshcntl);
1261 			}
1262 		} else {
1263 			dir = IEEE80211_FC1_DIR_FROMDS;
1264 			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1265 				/* proxy group */
1266 				meshae = IEEE80211_MESH_AE_01;
1267 				meshhdrsize =
1268 				    sizeof(struct ieee80211_meshcntl_ae01);
1269 			} else {
1270 				/* group */
1271 				meshae = IEEE80211_MESH_AE_00;
1272 				meshhdrsize = sizeof(struct ieee80211_meshcntl);
1273 			}
1274 		}
1275 	} else {
1276 #endif
1277 		/*
1278 		 * 4-address frames need to be generated for:
1279 		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1280 		 * o packets sent through a vap marked for relaying
1281 		 *   (e.g. a station operating with dynamic WDS)
1282 		 */
1283 		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1284 		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1285 		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1286 		if (is4addr)
1287 			hdrsize += IEEE80211_ADDR_LEN;
1288 		meshhdrsize = meshae = 0;
1289 #ifdef IEEE80211_SUPPORT_MESH
1290 	}
1291 #endif
1292 	/*
1293 	 * Honor driver DATAPAD requirement.
1294 	 */
1295 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1296 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1297 	else
1298 		hdrspace = hdrsize;
1299 
1300 	if (__predict_true((m->m_flags & M_FF) == 0)) {
1301 		/*
1302 		 * Normal frame.
1303 		 */
1304 		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1305 		if (m == NULL) {
1306 			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1307 			goto bad;
1308 		}
1309 		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1310 		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1311 		llc = mtod(m, struct llc *);
1312 		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1313 		llc->llc_control = LLC_UI;
1314 		llc->llc_snap.org_code[0] = 0;
1315 		llc->llc_snap.org_code[1] = 0;
1316 		llc->llc_snap.org_code[2] = 0;
1317 		llc->llc_snap.ether_type = eh.ether_type;
1318 	} else {
1319 #ifdef IEEE80211_SUPPORT_SUPERG
1320 		/*
1321 		 * Aggregated frame.
1322 		 */
1323 		m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1324 		if (m == NULL)
1325 #endif
1326 			goto bad;
1327 	}
1328 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1329 
1330 	M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT);
1331 	if (m == NULL) {
1332 		vap->iv_stats.is_tx_nobuf++;
1333 		goto bad;
1334 	}
1335 	wh = mtod(m, struct ieee80211_frame *);
1336 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1337 	*(uint16_t *)wh->i_dur = 0;
1338 	qos = NULL;	/* NB: quiet compiler */
1339 	if (is4addr) {
1340 		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1341 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1342 		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1343 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1344 		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1345 	} else switch (vap->iv_opmode) {
1346 	case IEEE80211_M_STA:
1347 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1348 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1349 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1350 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1351 		break;
1352 	case IEEE80211_M_IBSS:
1353 	case IEEE80211_M_AHDEMO:
1354 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1355 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1356 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1357 		/*
1358 		 * NB: always use the bssid from iv_bss as the
1359 		 *     neighbor's may be stale after an ibss merge
1360 		 */
1361 		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1362 		break;
1363 	case IEEE80211_M_HOSTAP:
1364 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1365 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1366 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1367 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1368 		break;
1369 #ifdef IEEE80211_SUPPORT_MESH
1370 	case IEEE80211_M_MBSS:
1371 		/* NB: offset by hdrspace to deal with DATAPAD */
1372 		mc = (struct ieee80211_meshcntl_ae10 *)
1373 		     (mtod(m, uint8_t *) + hdrspace);
1374 		wh->i_fc[1] = dir;
1375 		switch (meshae) {
1376 		case IEEE80211_MESH_AE_00:	/* no proxy */
1377 			mc->mc_flags = 0;
1378 			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1379 				IEEE80211_ADDR_COPY(wh->i_addr1,
1380 				    ni->ni_macaddr);
1381 				IEEE80211_ADDR_COPY(wh->i_addr2,
1382 				    vap->iv_myaddr);
1383 				IEEE80211_ADDR_COPY(wh->i_addr3,
1384 				    eh.ether_dhost);
1385 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1386 				    eh.ether_shost);
1387 				qos =((struct ieee80211_qosframe_addr4 *)
1388 				    wh)->i_qos;
1389 			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1390 				 /* mcast */
1391 				IEEE80211_ADDR_COPY(wh->i_addr1,
1392 				    eh.ether_dhost);
1393 				IEEE80211_ADDR_COPY(wh->i_addr2,
1394 				    vap->iv_myaddr);
1395 				IEEE80211_ADDR_COPY(wh->i_addr3,
1396 				    eh.ether_shost);
1397 				qos = ((struct ieee80211_qosframe *)
1398 				    wh)->i_qos;
1399 			}
1400 			break;
1401 		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
1402 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1403 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1404 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1405 			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1406 			mc->mc_flags = 1;
1407 			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1408 			    eh.ether_shost);
1409 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1410 			break;
1411 		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
1412 			KASSERT(rt != NULL, ("route is NULL"));
1413 			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1414 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1415 			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1416 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1417 			mc->mc_flags = IEEE80211_MESH_AE_10;
1418 			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1419 			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1420 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1421 			break;
1422 		default:
1423 			KASSERT(0, ("meshae %d", meshae));
1424 			break;
1425 		}
1426 		mc->mc_ttl = ms->ms_ttl;
1427 		ms->ms_seq++;
1428 		LE_WRITE_4(mc->mc_seq, ms->ms_seq);
1429 		break;
1430 #endif
1431 	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1432 	default:
1433 		goto bad;
1434 	}
1435 	if (m->m_flags & M_MORE_DATA)
1436 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1437 	if (addqos) {
1438 		int ac, tid;
1439 
1440 		if (is4addr) {
1441 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1442 		/* NB: mesh case handled earlier */
1443 		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1444 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1445 		ac = M_WME_GETAC(m);
1446 		/* map from access class/queue to 11e header priorty value */
1447 		tid = WME_AC_TO_TID(ac);
1448 		qos[0] = tid & IEEE80211_QOS_TID;
1449 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1450 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1451 #ifdef IEEE80211_SUPPORT_MESH
1452 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1453 			qos[1] = IEEE80211_QOS_MC;
1454 		else
1455 #endif
1456 			qos[1] = 0;
1457 		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1458 
1459 		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1460 			/*
1461 			 * NB: don't assign a sequence # to potential
1462 			 * aggregates; we expect this happens at the
1463 			 * point the frame comes off any aggregation q
1464 			 * as otherwise we may introduce holes in the
1465 			 * BA sequence space and/or make window accouting
1466 			 * more difficult.
1467 			 *
1468 			 * XXX may want to control this with a driver
1469 			 * capability; this may also change when we pull
1470 			 * aggregation up into net80211
1471 			 */
1472 			seqno = ni->ni_txseqs[tid]++;
1473 			*(uint16_t *)wh->i_seq =
1474 			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1475 			M_SEQNO_SET(m, seqno);
1476 		}
1477 	} else {
1478 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1479 		*(uint16_t *)wh->i_seq =
1480 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1481 		M_SEQNO_SET(m, seqno);
1482 	}
1483 
1484 
1485 	/* check if xmit fragmentation is required */
1486 	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1487 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1488 	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1489 	    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1490 	if (key != NULL) {
1491 		/*
1492 		 * IEEE 802.1X: send EAPOL frames always in the clear.
1493 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1494 		 */
1495 		if ((m->m_flags & M_EAPOL) == 0 ||
1496 		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1497 		     (vap->iv_opmode == IEEE80211_M_STA ?
1498 		      !IEEE80211_KEY_UNDEFINED(key) :
1499 		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1500 			wh->i_fc[1] |= IEEE80211_FC1_WEP;
1501 			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1502 				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1503 				    eh.ether_dhost,
1504 				    "%s", "enmic failed, discard frame");
1505 				vap->iv_stats.is_crypto_enmicfail++;
1506 				goto bad;
1507 			}
1508 		}
1509 	}
1510 	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1511 	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1512 		goto bad;
1513 
1514 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1515 
1516 	IEEE80211_NODE_STAT(ni, tx_data);
1517 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1518 		IEEE80211_NODE_STAT(ni, tx_mcast);
1519 		m->m_flags |= M_MCAST;
1520 	} else
1521 		IEEE80211_NODE_STAT(ni, tx_ucast);
1522 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1523 
1524 	return m;
1525 bad:
1526 	if (m != NULL)
1527 		m_freem(m);
1528 	return NULL;
1529 #undef WH4
1530 #undef MC01
1531 }
1532 
1533 /*
1534  * Fragment the frame according to the specified mtu.
1535  * The size of the 802.11 header (w/o padding) is provided
1536  * so we don't need to recalculate it.  We create a new
1537  * mbuf for each fragment and chain it through m_nextpkt;
1538  * we might be able to optimize this by reusing the original
1539  * packet's mbufs but that is significantly more complicated.
1540  */
1541 static int
1542 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1543 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1544 {
1545 	struct ieee80211com *ic = vap->iv_ic;
1546 	struct ieee80211_frame *wh, *whf;
1547 	struct mbuf *m, *prev, *next;
1548 	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1549 	u_int hdrspace;
1550 
1551 	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1552 	KASSERT(m0->m_pkthdr.len > mtu,
1553 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1554 
1555 	/*
1556 	 * Honor driver DATAPAD requirement.
1557 	 */
1558 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1559 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1560 	else
1561 		hdrspace = hdrsize;
1562 
1563 	wh = mtod(m0, struct ieee80211_frame *);
1564 	/* NB: mark the first frag; it will be propagated below */
1565 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1566 	totalhdrsize = hdrspace + ciphdrsize;
1567 	fragno = 1;
1568 	off = mtu - ciphdrsize;
1569 	remainder = m0->m_pkthdr.len - off;
1570 	prev = m0;
1571 	do {
1572 		fragsize = totalhdrsize + remainder;
1573 		if (fragsize > mtu)
1574 			fragsize = mtu;
1575 		/* XXX fragsize can be >2048! */
1576 		KASSERT(fragsize < MCLBYTES,
1577 			("fragment size %u too big!", fragsize));
1578 		if (fragsize > MHLEN)
1579 			m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1580 		else
1581 			m = m_gethdr(M_NOWAIT, MT_DATA);
1582 		if (m == NULL)
1583 			goto bad;
1584 		/* leave room to prepend any cipher header */
1585 		m_align(m, fragsize - ciphdrsize);
1586 
1587 		/*
1588 		 * Form the header in the fragment.  Note that since
1589 		 * we mark the first fragment with the MORE_FRAG bit
1590 		 * it automatically is propagated to each fragment; we
1591 		 * need only clear it on the last fragment (done below).
1592 		 * NB: frag 1+ dont have Mesh Control field present.
1593 		 */
1594 		whf = mtod(m, struct ieee80211_frame *);
1595 		memcpy(whf, wh, hdrsize);
1596 #ifdef IEEE80211_SUPPORT_MESH
1597 		if (vap->iv_opmode == IEEE80211_M_MBSS) {
1598 			if (IEEE80211_IS_DSTODS(wh))
1599 				((struct ieee80211_qosframe_addr4 *)
1600 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1601 			else
1602 				((struct ieee80211_qosframe *)
1603 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1604 		}
1605 #endif
1606 		*(uint16_t *)&whf->i_seq[0] |= htole16(
1607 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1608 				IEEE80211_SEQ_FRAG_SHIFT);
1609 		fragno++;
1610 
1611 		payload = fragsize - totalhdrsize;
1612 		/* NB: destination is known to be contiguous */
1613 
1614 		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
1615 		m->m_len = hdrspace + payload;
1616 		m->m_pkthdr.len = hdrspace + payload;
1617 		m->m_flags |= M_FRAG;
1618 
1619 		/* chain up the fragment */
1620 		prev->m_nextpkt = m;
1621 		prev = m;
1622 
1623 		/* deduct fragment just formed */
1624 		remainder -= payload;
1625 		off += payload;
1626 	} while (remainder != 0);
1627 
1628 	/* set the last fragment */
1629 	m->m_flags |= M_LASTFRAG;
1630 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1631 
1632 	/* strip first mbuf now that everything has been copied */
1633 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1634 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1635 
1636 	vap->iv_stats.is_tx_fragframes++;
1637 	vap->iv_stats.is_tx_frags += fragno-1;
1638 
1639 	return 1;
1640 bad:
1641 	/* reclaim fragments but leave original frame for caller to free */
1642 	for (m = m0->m_nextpkt; m != NULL; m = next) {
1643 		next = m->m_nextpkt;
1644 		m->m_nextpkt = NULL;		/* XXX paranoid */
1645 		m_freem(m);
1646 	}
1647 	m0->m_nextpkt = NULL;
1648 	return 0;
1649 }
1650 
1651 /*
1652  * Add a supported rates element id to a frame.
1653  */
1654 uint8_t *
1655 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1656 {
1657 	int nrates;
1658 
1659 	*frm++ = IEEE80211_ELEMID_RATES;
1660 	nrates = rs->rs_nrates;
1661 	if (nrates > IEEE80211_RATE_SIZE)
1662 		nrates = IEEE80211_RATE_SIZE;
1663 	*frm++ = nrates;
1664 	memcpy(frm, rs->rs_rates, nrates);
1665 	return frm + nrates;
1666 }
1667 
1668 /*
1669  * Add an extended supported rates element id to a frame.
1670  */
1671 uint8_t *
1672 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1673 {
1674 	/*
1675 	 * Add an extended supported rates element if operating in 11g mode.
1676 	 */
1677 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1678 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1679 		*frm++ = IEEE80211_ELEMID_XRATES;
1680 		*frm++ = nrates;
1681 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1682 		frm += nrates;
1683 	}
1684 	return frm;
1685 }
1686 
1687 /*
1688  * Add an ssid element to a frame.
1689  */
1690 static uint8_t *
1691 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1692 {
1693 	*frm++ = IEEE80211_ELEMID_SSID;
1694 	*frm++ = len;
1695 	memcpy(frm, ssid, len);
1696 	return frm + len;
1697 }
1698 
1699 /*
1700  * Add an erp element to a frame.
1701  */
1702 static uint8_t *
1703 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1704 {
1705 	uint8_t erp;
1706 
1707 	*frm++ = IEEE80211_ELEMID_ERP;
1708 	*frm++ = 1;
1709 	erp = 0;
1710 	if (ic->ic_nonerpsta != 0)
1711 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1712 	if (ic->ic_flags & IEEE80211_F_USEPROT)
1713 		erp |= IEEE80211_ERP_USE_PROTECTION;
1714 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1715 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1716 	*frm++ = erp;
1717 	return frm;
1718 }
1719 
1720 /*
1721  * Add a CFParams element to a frame.
1722  */
1723 static uint8_t *
1724 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1725 {
1726 #define	ADDSHORT(frm, v) do {	\
1727 	LE_WRITE_2(frm, v);	\
1728 	frm += 2;		\
1729 } while (0)
1730 	*frm++ = IEEE80211_ELEMID_CFPARMS;
1731 	*frm++ = 6;
1732 	*frm++ = 0;		/* CFP count */
1733 	*frm++ = 2;		/* CFP period */
1734 	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1735 	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1736 	return frm;
1737 #undef ADDSHORT
1738 }
1739 
1740 static __inline uint8_t *
1741 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1742 {
1743 	memcpy(frm, ie->ie_data, ie->ie_len);
1744 	return frm + ie->ie_len;
1745 }
1746 
1747 static __inline uint8_t *
1748 add_ie(uint8_t *frm, const uint8_t *ie)
1749 {
1750 	memcpy(frm, ie, 2 + ie[1]);
1751 	return frm + 2 + ie[1];
1752 }
1753 
1754 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1755 /*
1756  * Add a WME information element to a frame.
1757  */
1758 static uint8_t *
1759 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1760 {
1761 	static const struct ieee80211_wme_info info = {
1762 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1763 		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1764 		.wme_oui	= { WME_OUI_BYTES },
1765 		.wme_type	= WME_OUI_TYPE,
1766 		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1767 		.wme_version	= WME_VERSION,
1768 		.wme_info	= 0,
1769 	};
1770 	memcpy(frm, &info, sizeof(info));
1771 	return frm + sizeof(info);
1772 }
1773 
1774 /*
1775  * Add a WME parameters element to a frame.
1776  */
1777 static uint8_t *
1778 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1779 {
1780 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1781 #define	ADDSHORT(frm, v) do {	\
1782 	LE_WRITE_2(frm, v);	\
1783 	frm += 2;		\
1784 } while (0)
1785 	/* NB: this works 'cuz a param has an info at the front */
1786 	static const struct ieee80211_wme_info param = {
1787 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1788 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1789 		.wme_oui	= { WME_OUI_BYTES },
1790 		.wme_type	= WME_OUI_TYPE,
1791 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1792 		.wme_version	= WME_VERSION,
1793 	};
1794 	int i;
1795 
1796 	memcpy(frm, &param, sizeof(param));
1797 	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1798 	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1799 	*frm++ = 0;					/* reserved field */
1800 	for (i = 0; i < WME_NUM_AC; i++) {
1801 		const struct wmeParams *ac =
1802 		       &wme->wme_bssChanParams.cap_wmeParams[i];
1803 		*frm++ = SM(i, WME_PARAM_ACI)
1804 		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1805 		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1806 		       ;
1807 		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1808 		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1809 		       ;
1810 		ADDSHORT(frm, ac->wmep_txopLimit);
1811 	}
1812 	return frm;
1813 #undef SM
1814 #undef ADDSHORT
1815 }
1816 #undef WME_OUI_BYTES
1817 
1818 /*
1819  * Add an 11h Power Constraint element to a frame.
1820  */
1821 static uint8_t *
1822 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1823 {
1824 	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1825 	/* XXX per-vap tx power limit? */
1826 	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1827 
1828 	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1829 	frm[1] = 1;
1830 	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1831 	return frm + 3;
1832 }
1833 
1834 /*
1835  * Add an 11h Power Capability element to a frame.
1836  */
1837 static uint8_t *
1838 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1839 {
1840 	frm[0] = IEEE80211_ELEMID_PWRCAP;
1841 	frm[1] = 2;
1842 	frm[2] = c->ic_minpower;
1843 	frm[3] = c->ic_maxpower;
1844 	return frm + 4;
1845 }
1846 
1847 /*
1848  * Add an 11h Supported Channels element to a frame.
1849  */
1850 static uint8_t *
1851 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1852 {
1853 	static const int ielen = 26;
1854 
1855 	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1856 	frm[1] = ielen;
1857 	/* XXX not correct */
1858 	memcpy(frm+2, ic->ic_chan_avail, ielen);
1859 	return frm + 2 + ielen;
1860 }
1861 
1862 /*
1863  * Add an 11h Quiet time element to a frame.
1864  */
1865 static uint8_t *
1866 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap)
1867 {
1868 	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
1869 
1870 	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
1871 	quiet->len = 6;
1872 	if (vap->iv_quiet_count_value == 1)
1873 		vap->iv_quiet_count_value = vap->iv_quiet_count;
1874 	else if (vap->iv_quiet_count_value > 1)
1875 		vap->iv_quiet_count_value--;
1876 
1877 	if (vap->iv_quiet_count_value == 0) {
1878 		/* value 0 is reserved as per 802.11h standerd */
1879 		vap->iv_quiet_count_value = 1;
1880 	}
1881 
1882 	quiet->tbttcount = vap->iv_quiet_count_value;
1883 	quiet->period = vap->iv_quiet_period;
1884 	quiet->duration = htole16(vap->iv_quiet_duration);
1885 	quiet->offset = htole16(vap->iv_quiet_offset);
1886 	return frm + sizeof(*quiet);
1887 }
1888 
1889 /*
1890  * Add an 11h Channel Switch Announcement element to a frame.
1891  * Note that we use the per-vap CSA count to adjust the global
1892  * counter so we can use this routine to form probe response
1893  * frames and get the current count.
1894  */
1895 static uint8_t *
1896 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
1897 {
1898 	struct ieee80211com *ic = vap->iv_ic;
1899 	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
1900 
1901 	csa->csa_ie = IEEE80211_ELEMID_CSA;
1902 	csa->csa_len = 3;
1903 	csa->csa_mode = 1;		/* XXX force quiet on channel */
1904 	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
1905 	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
1906 	return frm + sizeof(*csa);
1907 }
1908 
1909 /*
1910  * Add an 11h country information element to a frame.
1911  */
1912 static uint8_t *
1913 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
1914 {
1915 
1916 	if (ic->ic_countryie == NULL ||
1917 	    ic->ic_countryie_chan != ic->ic_bsschan) {
1918 		/*
1919 		 * Handle lazy construction of ie.  This is done on
1920 		 * first use and after a channel change that requires
1921 		 * re-calculation.
1922 		 */
1923 		if (ic->ic_countryie != NULL)
1924 			free(ic->ic_countryie, M_80211_NODE_IE);
1925 		ic->ic_countryie = ieee80211_alloc_countryie(ic);
1926 		if (ic->ic_countryie == NULL)
1927 			return frm;
1928 		ic->ic_countryie_chan = ic->ic_bsschan;
1929 	}
1930 	return add_appie(frm, ic->ic_countryie);
1931 }
1932 
1933 uint8_t *
1934 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
1935 {
1936 	if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
1937 		return (add_ie(frm, vap->iv_wpa_ie));
1938 	else {
1939 		/* XXX else complain? */
1940 		return (frm);
1941 	}
1942 }
1943 
1944 uint8_t *
1945 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
1946 {
1947 	if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
1948 		return (add_ie(frm, vap->iv_rsn_ie));
1949 	else {
1950 		/* XXX else complain? */
1951 		return (frm);
1952 	}
1953 }
1954 
1955 uint8_t *
1956 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
1957 {
1958 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
1959 		*frm++ = IEEE80211_ELEMID_QOS;
1960 		*frm++ = 1;
1961 		*frm++ = 0;
1962 	}
1963 
1964 	return (frm);
1965 }
1966 
1967 /*
1968  * Send a probe request frame with the specified ssid
1969  * and any optional information element data.
1970  */
1971 int
1972 ieee80211_send_probereq(struct ieee80211_node *ni,
1973 	const uint8_t sa[IEEE80211_ADDR_LEN],
1974 	const uint8_t da[IEEE80211_ADDR_LEN],
1975 	const uint8_t bssid[IEEE80211_ADDR_LEN],
1976 	const uint8_t *ssid, size_t ssidlen)
1977 {
1978 	struct ieee80211vap *vap = ni->ni_vap;
1979 	struct ieee80211com *ic = ni->ni_ic;
1980 	const struct ieee80211_txparam *tp;
1981 	struct ieee80211_bpf_params params;
1982 	struct ieee80211_frame *wh;
1983 	const struct ieee80211_rateset *rs;
1984 	struct mbuf *m;
1985 	uint8_t *frm;
1986 	int ret;
1987 
1988 	if (vap->iv_state == IEEE80211_S_CAC) {
1989 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
1990 		    "block %s frame in CAC state", "probe request");
1991 		vap->iv_stats.is_tx_badstate++;
1992 		return EIO;		/* XXX */
1993 	}
1994 
1995 	/*
1996 	 * Hold a reference on the node so it doesn't go away until after
1997 	 * the xmit is complete all the way in the driver.  On error we
1998 	 * will remove our reference.
1999 	 */
2000 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2001 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2002 		__func__, __LINE__,
2003 		ni, ether_sprintf(ni->ni_macaddr),
2004 		ieee80211_node_refcnt(ni)+1);
2005 	ieee80211_ref_node(ni);
2006 
2007 	/*
2008 	 * prreq frame format
2009 	 *	[tlv] ssid
2010 	 *	[tlv] supported rates
2011 	 *	[tlv] RSN (optional)
2012 	 *	[tlv] extended supported rates
2013 	 *	[tlv] WPA (optional)
2014 	 *	[tlv] user-specified ie's
2015 	 */
2016 	m = ieee80211_getmgtframe(&frm,
2017 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2018 	       	 2 + IEEE80211_NWID_LEN
2019 	       + 2 + IEEE80211_RATE_SIZE
2020 	       + sizeof(struct ieee80211_ie_wpa)
2021 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2022 	       + sizeof(struct ieee80211_ie_wpa)
2023 	       + (vap->iv_appie_probereq != NULL ?
2024 		   vap->iv_appie_probereq->ie_len : 0)
2025 	);
2026 	if (m == NULL) {
2027 		vap->iv_stats.is_tx_nobuf++;
2028 		ieee80211_free_node(ni);
2029 		return ENOMEM;
2030 	}
2031 
2032 	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2033 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2034 	frm = ieee80211_add_rates(frm, rs);
2035 	frm = ieee80211_add_rsn(frm, vap);
2036 	frm = ieee80211_add_xrates(frm, rs);
2037 	frm = ieee80211_add_wpa(frm, vap);
2038 	if (vap->iv_appie_probereq != NULL)
2039 		frm = add_appie(frm, vap->iv_appie_probereq);
2040 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2041 
2042 	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2043 	    ("leading space %zd", M_LEADINGSPACE(m)));
2044 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2045 	if (m == NULL) {
2046 		/* NB: cannot happen */
2047 		ieee80211_free_node(ni);
2048 		return ENOMEM;
2049 	}
2050 
2051 	IEEE80211_TX_LOCK(ic);
2052 	wh = mtod(m, struct ieee80211_frame *);
2053 	ieee80211_send_setup(ni, m,
2054 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2055 	     IEEE80211_NONQOS_TID, sa, da, bssid);
2056 	/* XXX power management? */
2057 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2058 
2059 	M_WME_SETAC(m, WME_AC_BE);
2060 
2061 	IEEE80211_NODE_STAT(ni, tx_probereq);
2062 	IEEE80211_NODE_STAT(ni, tx_mgmt);
2063 
2064 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2065 	    "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
2066 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
2067 	    ssidlen, ssid);
2068 
2069 	memset(&params, 0, sizeof(params));
2070 	params.ibp_pri = M_WME_GETAC(m);
2071 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2072 	params.ibp_rate0 = tp->mgmtrate;
2073 	if (IEEE80211_IS_MULTICAST(da)) {
2074 		params.ibp_flags |= IEEE80211_BPF_NOACK;
2075 		params.ibp_try0 = 1;
2076 	} else
2077 		params.ibp_try0 = tp->maxretry;
2078 	params.ibp_power = ni->ni_txpower;
2079 	ret = ieee80211_raw_output(vap, ni, m, &params);
2080 	IEEE80211_TX_UNLOCK(ic);
2081 	return (ret);
2082 }
2083 
2084 /*
2085  * Calculate capability information for mgt frames.
2086  */
2087 uint16_t
2088 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2089 {
2090 	struct ieee80211com *ic = vap->iv_ic;
2091 	uint16_t capinfo;
2092 
2093 	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2094 
2095 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2096 		capinfo = IEEE80211_CAPINFO_ESS;
2097 	else if (vap->iv_opmode == IEEE80211_M_IBSS)
2098 		capinfo = IEEE80211_CAPINFO_IBSS;
2099 	else
2100 		capinfo = 0;
2101 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2102 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2103 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2104 	    IEEE80211_IS_CHAN_2GHZ(chan))
2105 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2106 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2107 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2108 	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2109 		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2110 	return capinfo;
2111 }
2112 
2113 /*
2114  * Send a management frame.  The node is for the destination (or ic_bss
2115  * when in station mode).  Nodes other than ic_bss have their reference
2116  * count bumped to reflect our use for an indeterminant time.
2117  */
2118 int
2119 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2120 {
2121 #define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2122 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2123 	struct ieee80211vap *vap = ni->ni_vap;
2124 	struct ieee80211com *ic = ni->ni_ic;
2125 	struct ieee80211_node *bss = vap->iv_bss;
2126 	struct ieee80211_bpf_params params;
2127 	struct mbuf *m;
2128 	uint8_t *frm;
2129 	uint16_t capinfo;
2130 	int has_challenge, is_shared_key, ret, status;
2131 
2132 	KASSERT(ni != NULL, ("null node"));
2133 
2134 	/*
2135 	 * Hold a reference on the node so it doesn't go away until after
2136 	 * the xmit is complete all the way in the driver.  On error we
2137 	 * will remove our reference.
2138 	 */
2139 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2140 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2141 		__func__, __LINE__,
2142 		ni, ether_sprintf(ni->ni_macaddr),
2143 		ieee80211_node_refcnt(ni)+1);
2144 	ieee80211_ref_node(ni);
2145 
2146 	memset(&params, 0, sizeof(params));
2147 	switch (type) {
2148 
2149 	case IEEE80211_FC0_SUBTYPE_AUTH:
2150 		status = arg >> 16;
2151 		arg &= 0xffff;
2152 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2153 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2154 		    ni->ni_challenge != NULL);
2155 
2156 		/*
2157 		 * Deduce whether we're doing open authentication or
2158 		 * shared key authentication.  We do the latter if
2159 		 * we're in the middle of a shared key authentication
2160 		 * handshake or if we're initiating an authentication
2161 		 * request and configured to use shared key.
2162 		 */
2163 		is_shared_key = has_challenge ||
2164 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2165 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2166 		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
2167 
2168 		m = ieee80211_getmgtframe(&frm,
2169 			  ic->ic_headroom + sizeof(struct ieee80211_frame),
2170 			  3 * sizeof(uint16_t)
2171 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2172 				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
2173 		);
2174 		if (m == NULL)
2175 			senderr(ENOMEM, is_tx_nobuf);
2176 
2177 		((uint16_t *)frm)[0] =
2178 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2179 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
2180 		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
2181 		((uint16_t *)frm)[2] = htole16(status);/* status */
2182 
2183 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2184 			((uint16_t *)frm)[3] =
2185 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
2186 			    IEEE80211_ELEMID_CHALLENGE);
2187 			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2188 			    IEEE80211_CHALLENGE_LEN);
2189 			m->m_pkthdr.len = m->m_len =
2190 				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2191 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2192 				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2193 				    "request encrypt frame (%s)", __func__);
2194 				/* mark frame for encryption */
2195 				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2196 			}
2197 		} else
2198 			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2199 
2200 		/* XXX not right for shared key */
2201 		if (status == IEEE80211_STATUS_SUCCESS)
2202 			IEEE80211_NODE_STAT(ni, tx_auth);
2203 		else
2204 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
2205 
2206 		if (vap->iv_opmode == IEEE80211_M_STA)
2207 			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2208 				(void *) vap->iv_state);
2209 		break;
2210 
2211 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2212 		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2213 		    "send station deauthenticate (reason %d)", arg);
2214 		m = ieee80211_getmgtframe(&frm,
2215 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2216 			sizeof(uint16_t));
2217 		if (m == NULL)
2218 			senderr(ENOMEM, is_tx_nobuf);
2219 		*(uint16_t *)frm = htole16(arg);	/* reason */
2220 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2221 
2222 		IEEE80211_NODE_STAT(ni, tx_deauth);
2223 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2224 
2225 		ieee80211_node_unauthorize(ni);		/* port closed */
2226 		break;
2227 
2228 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2229 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2230 		/*
2231 		 * asreq frame format
2232 		 *	[2] capability information
2233 		 *	[2] listen interval
2234 		 *	[6*] current AP address (reassoc only)
2235 		 *	[tlv] ssid
2236 		 *	[tlv] supported rates
2237 		 *	[tlv] extended supported rates
2238 		 *	[4] power capability (optional)
2239 		 *	[28] supported channels (optional)
2240 		 *	[tlv] HT capabilities
2241 		 *	[tlv] WME (optional)
2242 		 *	[tlv] Vendor OUI HT capabilities (optional)
2243 		 *	[tlv] Atheros capabilities (if negotiated)
2244 		 *	[tlv] AppIE's (optional)
2245 		 */
2246 		m = ieee80211_getmgtframe(&frm,
2247 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2248 			 sizeof(uint16_t)
2249 		       + sizeof(uint16_t)
2250 		       + IEEE80211_ADDR_LEN
2251 		       + 2 + IEEE80211_NWID_LEN
2252 		       + 2 + IEEE80211_RATE_SIZE
2253 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2254 		       + 4
2255 		       + 2 + 26
2256 		       + sizeof(struct ieee80211_wme_info)
2257 		       + sizeof(struct ieee80211_ie_htcap)
2258 		       + 4 + sizeof(struct ieee80211_ie_htcap)
2259 #ifdef IEEE80211_SUPPORT_SUPERG
2260 		       + sizeof(struct ieee80211_ath_ie)
2261 #endif
2262 		       + (vap->iv_appie_wpa != NULL ?
2263 				vap->iv_appie_wpa->ie_len : 0)
2264 		       + (vap->iv_appie_assocreq != NULL ?
2265 				vap->iv_appie_assocreq->ie_len : 0)
2266 		);
2267 		if (m == NULL)
2268 			senderr(ENOMEM, is_tx_nobuf);
2269 
2270 		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2271 		    ("wrong mode %u", vap->iv_opmode));
2272 		capinfo = IEEE80211_CAPINFO_ESS;
2273 		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2274 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2275 		/*
2276 		 * NB: Some 11a AP's reject the request when
2277 		 *     short premable is set.
2278 		 */
2279 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2280 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2281 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2282 		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2283 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2284 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2285 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2286 		    (vap->iv_flags & IEEE80211_F_DOTH))
2287 			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2288 		*(uint16_t *)frm = htole16(capinfo);
2289 		frm += 2;
2290 
2291 		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2292 		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2293 						    bss->ni_intval));
2294 		frm += 2;
2295 
2296 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2297 			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2298 			frm += IEEE80211_ADDR_LEN;
2299 		}
2300 
2301 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2302 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2303 		frm = ieee80211_add_rsn(frm, vap);
2304 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2305 		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2306 			frm = ieee80211_add_powercapability(frm,
2307 			    ic->ic_curchan);
2308 			frm = ieee80211_add_supportedchannels(frm, ic);
2309 		}
2310 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2311 		    ni->ni_ies.htcap_ie != NULL &&
2312 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP)
2313 			frm = ieee80211_add_htcap(frm, ni);
2314 		frm = ieee80211_add_wpa(frm, vap);
2315 		if ((ic->ic_flags & IEEE80211_F_WME) &&
2316 		    ni->ni_ies.wme_ie != NULL)
2317 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2318 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2319 		    ni->ni_ies.htcap_ie != NULL &&
2320 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR)
2321 			frm = ieee80211_add_htcap_vendor(frm, ni);
2322 #ifdef IEEE80211_SUPPORT_SUPERG
2323 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2324 			frm = ieee80211_add_ath(frm,
2325 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2326 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2327 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2328 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2329 		}
2330 #endif /* IEEE80211_SUPPORT_SUPERG */
2331 		if (vap->iv_appie_assocreq != NULL)
2332 			frm = add_appie(frm, vap->iv_appie_assocreq);
2333 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2334 
2335 		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2336 			(void *) vap->iv_state);
2337 		break;
2338 
2339 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2340 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2341 		/*
2342 		 * asresp frame format
2343 		 *	[2] capability information
2344 		 *	[2] status
2345 		 *	[2] association ID
2346 		 *	[tlv] supported rates
2347 		 *	[tlv] extended supported rates
2348 		 *	[tlv] HT capabilities (standard, if STA enabled)
2349 		 *	[tlv] HT information (standard, if STA enabled)
2350 		 *	[tlv] WME (if configured and STA enabled)
2351 		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2352 		 *	[tlv] HT information (vendor OUI, if STA enabled)
2353 		 *	[tlv] Atheros capabilities (if STA enabled)
2354 		 *	[tlv] AppIE's (optional)
2355 		 */
2356 		m = ieee80211_getmgtframe(&frm,
2357 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2358 			 sizeof(uint16_t)
2359 		       + sizeof(uint16_t)
2360 		       + sizeof(uint16_t)
2361 		       + 2 + IEEE80211_RATE_SIZE
2362 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2363 		       + sizeof(struct ieee80211_ie_htcap) + 4
2364 		       + sizeof(struct ieee80211_ie_htinfo) + 4
2365 		       + sizeof(struct ieee80211_wme_param)
2366 #ifdef IEEE80211_SUPPORT_SUPERG
2367 		       + sizeof(struct ieee80211_ath_ie)
2368 #endif
2369 		       + (vap->iv_appie_assocresp != NULL ?
2370 				vap->iv_appie_assocresp->ie_len : 0)
2371 		);
2372 		if (m == NULL)
2373 			senderr(ENOMEM, is_tx_nobuf);
2374 
2375 		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2376 		*(uint16_t *)frm = htole16(capinfo);
2377 		frm += 2;
2378 
2379 		*(uint16_t *)frm = htole16(arg);	/* status */
2380 		frm += 2;
2381 
2382 		if (arg == IEEE80211_STATUS_SUCCESS) {
2383 			*(uint16_t *)frm = htole16(ni->ni_associd);
2384 			IEEE80211_NODE_STAT(ni, tx_assoc);
2385 		} else
2386 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2387 		frm += 2;
2388 
2389 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2390 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2391 		/* NB: respond according to what we received */
2392 		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2393 			frm = ieee80211_add_htcap(frm, ni);
2394 			frm = ieee80211_add_htinfo(frm, ni);
2395 		}
2396 		if ((vap->iv_flags & IEEE80211_F_WME) &&
2397 		    ni->ni_ies.wme_ie != NULL)
2398 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2399 		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2400 			frm = ieee80211_add_htcap_vendor(frm, ni);
2401 			frm = ieee80211_add_htinfo_vendor(frm, ni);
2402 		}
2403 #ifdef IEEE80211_SUPPORT_SUPERG
2404 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2405 			frm = ieee80211_add_ath(frm,
2406 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2407 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2408 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2409 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2410 #endif /* IEEE80211_SUPPORT_SUPERG */
2411 		if (vap->iv_appie_assocresp != NULL)
2412 			frm = add_appie(frm, vap->iv_appie_assocresp);
2413 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2414 		break;
2415 
2416 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2417 		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2418 		    "send station disassociate (reason %d)", arg);
2419 		m = ieee80211_getmgtframe(&frm,
2420 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2421 			sizeof(uint16_t));
2422 		if (m == NULL)
2423 			senderr(ENOMEM, is_tx_nobuf);
2424 		*(uint16_t *)frm = htole16(arg);	/* reason */
2425 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2426 
2427 		IEEE80211_NODE_STAT(ni, tx_disassoc);
2428 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2429 		break;
2430 
2431 	default:
2432 		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2433 		    "invalid mgmt frame type %u", type);
2434 		senderr(EINVAL, is_tx_unknownmgt);
2435 		/* NOTREACHED */
2436 	}
2437 
2438 	/* NB: force non-ProbeResp frames to the highest queue */
2439 	params.ibp_pri = WME_AC_VO;
2440 	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2441 	/* NB: we know all frames are unicast */
2442 	params.ibp_try0 = bss->ni_txparms->maxretry;
2443 	params.ibp_power = bss->ni_txpower;
2444 	return ieee80211_mgmt_output(ni, m, type, &params);
2445 bad:
2446 	ieee80211_free_node(ni);
2447 	return ret;
2448 #undef senderr
2449 #undef HTFLAGS
2450 }
2451 
2452 /*
2453  * Return an mbuf with a probe response frame in it.
2454  * Space is left to prepend and 802.11 header at the
2455  * front but it's left to the caller to fill in.
2456  */
2457 struct mbuf *
2458 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2459 {
2460 	struct ieee80211vap *vap = bss->ni_vap;
2461 	struct ieee80211com *ic = bss->ni_ic;
2462 	const struct ieee80211_rateset *rs;
2463 	struct mbuf *m;
2464 	uint16_t capinfo;
2465 	uint8_t *frm;
2466 
2467 	/*
2468 	 * probe response frame format
2469 	 *	[8] time stamp
2470 	 *	[2] beacon interval
2471 	 *	[2] cabability information
2472 	 *	[tlv] ssid
2473 	 *	[tlv] supported rates
2474 	 *	[tlv] parameter set (FH/DS)
2475 	 *	[tlv] parameter set (IBSS)
2476 	 *	[tlv] country (optional)
2477 	 *	[3] power control (optional)
2478 	 *	[5] channel switch announcement (CSA) (optional)
2479 	 *	[tlv] extended rate phy (ERP)
2480 	 *	[tlv] extended supported rates
2481 	 *	[tlv] RSN (optional)
2482 	 *	[tlv] HT capabilities
2483 	 *	[tlv] HT information
2484 	 *	[tlv] WPA (optional)
2485 	 *	[tlv] WME (optional)
2486 	 *	[tlv] Vendor OUI HT capabilities (optional)
2487 	 *	[tlv] Vendor OUI HT information (optional)
2488 	 *	[tlv] Atheros capabilities
2489 	 *	[tlv] AppIE's (optional)
2490 	 *	[tlv] Mesh ID (MBSS)
2491 	 *	[tlv] Mesh Conf (MBSS)
2492 	 */
2493 	m = ieee80211_getmgtframe(&frm,
2494 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2495 		 8
2496 	       + sizeof(uint16_t)
2497 	       + sizeof(uint16_t)
2498 	       + 2 + IEEE80211_NWID_LEN
2499 	       + 2 + IEEE80211_RATE_SIZE
2500 	       + 7	/* max(7,3) */
2501 	       + IEEE80211_COUNTRY_MAX_SIZE
2502 	       + 3
2503 	       + sizeof(struct ieee80211_csa_ie)
2504 	       + sizeof(struct ieee80211_quiet_ie)
2505 	       + 3
2506 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2507 	       + sizeof(struct ieee80211_ie_wpa)
2508 	       + sizeof(struct ieee80211_ie_htcap)
2509 	       + sizeof(struct ieee80211_ie_htinfo)
2510 	       + sizeof(struct ieee80211_ie_wpa)
2511 	       + sizeof(struct ieee80211_wme_param)
2512 	       + 4 + sizeof(struct ieee80211_ie_htcap)
2513 	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2514 #ifdef IEEE80211_SUPPORT_SUPERG
2515 	       + sizeof(struct ieee80211_ath_ie)
2516 #endif
2517 #ifdef IEEE80211_SUPPORT_MESH
2518 	       + 2 + IEEE80211_MESHID_LEN
2519 	       + sizeof(struct ieee80211_meshconf_ie)
2520 #endif
2521 	       + (vap->iv_appie_proberesp != NULL ?
2522 			vap->iv_appie_proberesp->ie_len : 0)
2523 	);
2524 	if (m == NULL) {
2525 		vap->iv_stats.is_tx_nobuf++;
2526 		return NULL;
2527 	}
2528 
2529 	memset(frm, 0, 8);	/* timestamp should be filled later */
2530 	frm += 8;
2531 	*(uint16_t *)frm = htole16(bss->ni_intval);
2532 	frm += 2;
2533 	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2534 	*(uint16_t *)frm = htole16(capinfo);
2535 	frm += 2;
2536 
2537 	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2538 	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2539 	frm = ieee80211_add_rates(frm, rs);
2540 
2541 	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2542 		*frm++ = IEEE80211_ELEMID_FHPARMS;
2543 		*frm++ = 5;
2544 		*frm++ = bss->ni_fhdwell & 0x00ff;
2545 		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2546 		*frm++ = IEEE80211_FH_CHANSET(
2547 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2548 		*frm++ = IEEE80211_FH_CHANPAT(
2549 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2550 		*frm++ = bss->ni_fhindex;
2551 	} else {
2552 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2553 		*frm++ = 1;
2554 		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2555 	}
2556 
2557 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2558 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2559 		*frm++ = 2;
2560 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2561 	}
2562 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2563 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2564 		frm = ieee80211_add_countryie(frm, ic);
2565 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2566 		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2567 			frm = ieee80211_add_powerconstraint(frm, vap);
2568 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2569 			frm = ieee80211_add_csa(frm, vap);
2570 	}
2571 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2572 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2573 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2574 			if (vap->iv_quiet)
2575 				frm = ieee80211_add_quiet(frm, vap);
2576 		}
2577 	}
2578 	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2579 		frm = ieee80211_add_erp(frm, ic);
2580 	frm = ieee80211_add_xrates(frm, rs);
2581 	frm = ieee80211_add_rsn(frm, vap);
2582 	/*
2583 	 * NB: legacy 11b clients do not get certain ie's.
2584 	 *     The caller identifies such clients by passing
2585 	 *     a token in legacy to us.  Could expand this to be
2586 	 *     any legacy client for stuff like HT ie's.
2587 	 */
2588 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2589 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2590 		frm = ieee80211_add_htcap(frm, bss);
2591 		frm = ieee80211_add_htinfo(frm, bss);
2592 	}
2593 	frm = ieee80211_add_wpa(frm, vap);
2594 	if (vap->iv_flags & IEEE80211_F_WME)
2595 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2596 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2597 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
2598 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2599 		frm = ieee80211_add_htcap_vendor(frm, bss);
2600 		frm = ieee80211_add_htinfo_vendor(frm, bss);
2601 	}
2602 #ifdef IEEE80211_SUPPORT_SUPERG
2603 	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
2604 	    legacy != IEEE80211_SEND_LEGACY_11B)
2605 		frm = ieee80211_add_athcaps(frm, bss);
2606 #endif
2607 	if (vap->iv_appie_proberesp != NULL)
2608 		frm = add_appie(frm, vap->iv_appie_proberesp);
2609 #ifdef IEEE80211_SUPPORT_MESH
2610 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2611 		frm = ieee80211_add_meshid(frm, vap);
2612 		frm = ieee80211_add_meshconf(frm, vap);
2613 	}
2614 #endif
2615 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2616 
2617 	return m;
2618 }
2619 
2620 /*
2621  * Send a probe response frame to the specified mac address.
2622  * This does not go through the normal mgt frame api so we
2623  * can specify the destination address and re-use the bss node
2624  * for the sta reference.
2625  */
2626 int
2627 ieee80211_send_proberesp(struct ieee80211vap *vap,
2628 	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2629 {
2630 	struct ieee80211_node *bss = vap->iv_bss;
2631 	struct ieee80211com *ic = vap->iv_ic;
2632 	struct ieee80211_frame *wh;
2633 	struct mbuf *m;
2634 	int ret;
2635 
2636 	if (vap->iv_state == IEEE80211_S_CAC) {
2637 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2638 		    "block %s frame in CAC state", "probe response");
2639 		vap->iv_stats.is_tx_badstate++;
2640 		return EIO;		/* XXX */
2641 	}
2642 
2643 	/*
2644 	 * Hold a reference on the node so it doesn't go away until after
2645 	 * the xmit is complete all the way in the driver.  On error we
2646 	 * will remove our reference.
2647 	 */
2648 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2649 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2650 	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2651 	    ieee80211_node_refcnt(bss)+1);
2652 	ieee80211_ref_node(bss);
2653 
2654 	m = ieee80211_alloc_proberesp(bss, legacy);
2655 	if (m == NULL) {
2656 		ieee80211_free_node(bss);
2657 		return ENOMEM;
2658 	}
2659 
2660 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2661 	KASSERT(m != NULL, ("no room for header"));
2662 
2663 	IEEE80211_TX_LOCK(ic);
2664 	wh = mtod(m, struct ieee80211_frame *);
2665 	ieee80211_send_setup(bss, m,
2666 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2667 	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2668 	/* XXX power management? */
2669 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2670 
2671 	M_WME_SETAC(m, WME_AC_BE);
2672 
2673 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2674 	    "send probe resp on channel %u to %s%s\n",
2675 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2676 	    legacy ? " <legacy>" : "");
2677 	IEEE80211_NODE_STAT(bss, tx_mgmt);
2678 
2679 	ret = ieee80211_raw_output(vap, bss, m, NULL);
2680 	IEEE80211_TX_UNLOCK(ic);
2681 	return (ret);
2682 }
2683 
2684 /*
2685  * Allocate and build a RTS (Request To Send) control frame.
2686  */
2687 struct mbuf *
2688 ieee80211_alloc_rts(struct ieee80211com *ic,
2689 	const uint8_t ra[IEEE80211_ADDR_LEN],
2690 	const uint8_t ta[IEEE80211_ADDR_LEN],
2691 	uint16_t dur)
2692 {
2693 	struct ieee80211_frame_rts *rts;
2694 	struct mbuf *m;
2695 
2696 	/* XXX honor ic_headroom */
2697 	m = m_gethdr(M_NOWAIT, MT_DATA);
2698 	if (m != NULL) {
2699 		rts = mtod(m, struct ieee80211_frame_rts *);
2700 		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2701 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2702 		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2703 		*(u_int16_t *)rts->i_dur = htole16(dur);
2704 		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2705 		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2706 
2707 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2708 	}
2709 	return m;
2710 }
2711 
2712 /*
2713  * Allocate and build a CTS (Clear To Send) control frame.
2714  */
2715 struct mbuf *
2716 ieee80211_alloc_cts(struct ieee80211com *ic,
2717 	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2718 {
2719 	struct ieee80211_frame_cts *cts;
2720 	struct mbuf *m;
2721 
2722 	/* XXX honor ic_headroom */
2723 	m = m_gethdr(M_NOWAIT, MT_DATA);
2724 	if (m != NULL) {
2725 		cts = mtod(m, struct ieee80211_frame_cts *);
2726 		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2727 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2728 		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2729 		*(u_int16_t *)cts->i_dur = htole16(dur);
2730 		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2731 
2732 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2733 	}
2734 	return m;
2735 }
2736 
2737 static void
2738 ieee80211_tx_mgt_timeout(void *arg)
2739 {
2740 	struct ieee80211vap *vap = arg;
2741 
2742 	IEEE80211_LOCK(vap->iv_ic);
2743 	if (vap->iv_state != IEEE80211_S_INIT &&
2744 	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2745 		/*
2746 		 * NB: it's safe to specify a timeout as the reason here;
2747 		 *     it'll only be used in the right state.
2748 		 */
2749 		ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
2750 			IEEE80211_SCAN_FAIL_TIMEOUT);
2751 	}
2752 	IEEE80211_UNLOCK(vap->iv_ic);
2753 }
2754 
2755 /*
2756  * This is the callback set on net80211-sourced transmitted
2757  * authentication request frames.
2758  *
2759  * This does a couple of things:
2760  *
2761  * + If the frame transmitted was a success, it schedules a future
2762  *   event which will transition the interface to scan.
2763  *   If a state transition _then_ occurs before that event occurs,
2764  *   said state transition will cancel this callout.
2765  *
2766  * + If the frame transmit was a failure, it immediately schedules
2767  *   the transition back to scan.
2768  */
2769 static void
2770 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2771 {
2772 	struct ieee80211vap *vap = ni->ni_vap;
2773 	enum ieee80211_state ostate = (enum ieee80211_state) arg;
2774 
2775 	/*
2776 	 * Frame transmit completed; arrange timer callback.  If
2777 	 * transmit was successfuly we wait for response.  Otherwise
2778 	 * we arrange an immediate callback instead of doing the
2779 	 * callback directly since we don't know what state the driver
2780 	 * is in (e.g. what locks it is holding).  This work should
2781 	 * not be too time-critical and not happen too often so the
2782 	 * added overhead is acceptable.
2783 	 *
2784 	 * XXX what happens if !acked but response shows up before callback?
2785 	 */
2786 	if (vap->iv_state == ostate) {
2787 		callout_reset(&vap->iv_mgtsend,
2788 			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2789 			ieee80211_tx_mgt_timeout, vap);
2790 	}
2791 }
2792 
2793 static void
2794 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2795 	struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni)
2796 {
2797 	struct ieee80211vap *vap = ni->ni_vap;
2798 	struct ieee80211com *ic = ni->ni_ic;
2799 	struct ieee80211_rateset *rs = &ni->ni_rates;
2800 	uint16_t capinfo;
2801 
2802 	/*
2803 	 * beacon frame format
2804 	 *	[8] time stamp
2805 	 *	[2] beacon interval
2806 	 *	[2] cabability information
2807 	 *	[tlv] ssid
2808 	 *	[tlv] supported rates
2809 	 *	[3] parameter set (DS)
2810 	 *	[8] CF parameter set (optional)
2811 	 *	[tlv] parameter set (IBSS/TIM)
2812 	 *	[tlv] country (optional)
2813 	 *	[3] power control (optional)
2814 	 *	[5] channel switch announcement (CSA) (optional)
2815 	 *	[tlv] extended rate phy (ERP)
2816 	 *	[tlv] extended supported rates
2817 	 *	[tlv] RSN parameters
2818 	 *	[tlv] HT capabilities
2819 	 *	[tlv] HT information
2820 	 * XXX Vendor-specific OIDs (e.g. Atheros)
2821 	 *	[tlv] WPA parameters
2822 	 *	[tlv] WME parameters
2823 	 *	[tlv] Vendor OUI HT capabilities (optional)
2824 	 *	[tlv] Vendor OUI HT information (optional)
2825 	 *	[tlv] Atheros capabilities (optional)
2826 	 *	[tlv] TDMA parameters (optional)
2827 	 *	[tlv] Mesh ID (MBSS)
2828 	 *	[tlv] Mesh Conf (MBSS)
2829 	 *	[tlv] application data (optional)
2830 	 */
2831 
2832 	memset(bo, 0, sizeof(*bo));
2833 
2834 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
2835 	frm += 8;
2836 	*(uint16_t *)frm = htole16(ni->ni_intval);
2837 	frm += 2;
2838 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
2839 	bo->bo_caps = (uint16_t *)frm;
2840 	*(uint16_t *)frm = htole16(capinfo);
2841 	frm += 2;
2842 	*frm++ = IEEE80211_ELEMID_SSID;
2843 	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2844 		*frm++ = ni->ni_esslen;
2845 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
2846 		frm += ni->ni_esslen;
2847 	} else
2848 		*frm++ = 0;
2849 	frm = ieee80211_add_rates(frm, rs);
2850 	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2851 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2852 		*frm++ = 1;
2853 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2854 	}
2855 	if (ic->ic_flags & IEEE80211_F_PCF) {
2856 		bo->bo_cfp = frm;
2857 		frm = ieee80211_add_cfparms(frm, ic);
2858 	}
2859 	bo->bo_tim = frm;
2860 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2861 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2862 		*frm++ = 2;
2863 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2864 		bo->bo_tim_len = 0;
2865 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2866 	    vap->iv_opmode == IEEE80211_M_MBSS) {
2867 		/* TIM IE is the same for Mesh and Hostap */
2868 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2869 
2870 		tie->tim_ie = IEEE80211_ELEMID_TIM;
2871 		tie->tim_len = 4;	/* length */
2872 		tie->tim_count = 0;	/* DTIM count */
2873 		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
2874 		tie->tim_bitctl = 0;	/* bitmap control */
2875 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
2876 		frm += sizeof(struct ieee80211_tim_ie);
2877 		bo->bo_tim_len = 1;
2878 	}
2879 	bo->bo_tim_trailer = frm;
2880 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2881 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2882 		frm = ieee80211_add_countryie(frm, ic);
2883 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2884 		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
2885 			frm = ieee80211_add_powerconstraint(frm, vap);
2886 		bo->bo_csa = frm;
2887 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2888 			frm = ieee80211_add_csa(frm, vap);
2889 	} else
2890 		bo->bo_csa = frm;
2891 
2892 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2893 		bo->bo_quiet = frm;
2894 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2895 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2896 			if (vap->iv_quiet)
2897 				frm = ieee80211_add_quiet(frm,vap);
2898 		}
2899 	} else
2900 		bo->bo_quiet = frm;
2901 
2902 	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
2903 		bo->bo_erp = frm;
2904 		frm = ieee80211_add_erp(frm, ic);
2905 	}
2906 	frm = ieee80211_add_xrates(frm, rs);
2907 	frm = ieee80211_add_rsn(frm, vap);
2908 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2909 		frm = ieee80211_add_htcap(frm, ni);
2910 		bo->bo_htinfo = frm;
2911 		frm = ieee80211_add_htinfo(frm, ni);
2912 	}
2913 	frm = ieee80211_add_wpa(frm, vap);
2914 	if (vap->iv_flags & IEEE80211_F_WME) {
2915 		bo->bo_wme = frm;
2916 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2917 	}
2918 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2919 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
2920 		frm = ieee80211_add_htcap_vendor(frm, ni);
2921 		frm = ieee80211_add_htinfo_vendor(frm, ni);
2922 	}
2923 #ifdef IEEE80211_SUPPORT_SUPERG
2924 	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
2925 		bo->bo_ath = frm;
2926 		frm = ieee80211_add_athcaps(frm, ni);
2927 	}
2928 #endif
2929 #ifdef IEEE80211_SUPPORT_TDMA
2930 	if (vap->iv_caps & IEEE80211_C_TDMA) {
2931 		bo->bo_tdma = frm;
2932 		frm = ieee80211_add_tdma(frm, vap);
2933 	}
2934 #endif
2935 	if (vap->iv_appie_beacon != NULL) {
2936 		bo->bo_appie = frm;
2937 		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
2938 		frm = add_appie(frm, vap->iv_appie_beacon);
2939 	}
2940 #ifdef IEEE80211_SUPPORT_MESH
2941 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2942 		frm = ieee80211_add_meshid(frm, vap);
2943 		bo->bo_meshconf = frm;
2944 		frm = ieee80211_add_meshconf(frm, vap);
2945 	}
2946 #endif
2947 	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
2948 	bo->bo_csa_trailer_len = frm - bo->bo_csa;
2949 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2950 }
2951 
2952 /*
2953  * Allocate a beacon frame and fillin the appropriate bits.
2954  */
2955 struct mbuf *
2956 ieee80211_beacon_alloc(struct ieee80211_node *ni,
2957 	struct ieee80211_beacon_offsets *bo)
2958 {
2959 	struct ieee80211vap *vap = ni->ni_vap;
2960 	struct ieee80211com *ic = ni->ni_ic;
2961 	struct ifnet *ifp = vap->iv_ifp;
2962 	struct ieee80211_frame *wh;
2963 	struct mbuf *m;
2964 	int pktlen;
2965 	uint8_t *frm;
2966 
2967 	/*
2968 	 * beacon frame format
2969 	 *	[8] time stamp
2970 	 *	[2] beacon interval
2971 	 *	[2] cabability information
2972 	 *	[tlv] ssid
2973 	 *	[tlv] supported rates
2974 	 *	[3] parameter set (DS)
2975 	 *	[8] CF parameter set (optional)
2976 	 *	[tlv] parameter set (IBSS/TIM)
2977 	 *	[tlv] country (optional)
2978 	 *	[3] power control (optional)
2979 	 *	[5] channel switch announcement (CSA) (optional)
2980 	 *	[tlv] extended rate phy (ERP)
2981 	 *	[tlv] extended supported rates
2982 	 *	[tlv] RSN parameters
2983 	 *	[tlv] HT capabilities
2984 	 *	[tlv] HT information
2985 	 *	[tlv] Vendor OUI HT capabilities (optional)
2986 	 *	[tlv] Vendor OUI HT information (optional)
2987 	 * XXX Vendor-specific OIDs (e.g. Atheros)
2988 	 *	[tlv] WPA parameters
2989 	 *	[tlv] WME parameters
2990 	 *	[tlv] TDMA parameters (optional)
2991 	 *	[tlv] Mesh ID (MBSS)
2992 	 *	[tlv] Mesh Conf (MBSS)
2993 	 *	[tlv] application data (optional)
2994 	 * NB: we allocate the max space required for the TIM bitmap.
2995 	 * XXX how big is this?
2996 	 */
2997 	pktlen =   8					/* time stamp */
2998 		 + sizeof(uint16_t)			/* beacon interval */
2999 		 + sizeof(uint16_t)			/* capabilities */
3000 		 + 2 + ni->ni_esslen			/* ssid */
3001 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
3002 	         + 2 + 1				/* DS parameters */
3003 		 + 2 + 6				/* CF parameters */
3004 		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
3005 		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
3006 		 + 2 + 1				/* power control */
3007 		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
3008 		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
3009 		 + 2 + 1				/* ERP */
3010 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3011 		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
3012 			2*sizeof(struct ieee80211_ie_wpa) : 0)
3013 		 /* XXX conditional? */
3014 		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3015 		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3016 		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
3017 			sizeof(struct ieee80211_wme_param) : 0)
3018 #ifdef IEEE80211_SUPPORT_SUPERG
3019 		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
3020 #endif
3021 #ifdef IEEE80211_SUPPORT_TDMA
3022 		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
3023 			sizeof(struct ieee80211_tdma_param) : 0)
3024 #endif
3025 #ifdef IEEE80211_SUPPORT_MESH
3026 		 + 2 + ni->ni_meshidlen
3027 		 + sizeof(struct ieee80211_meshconf_ie)
3028 #endif
3029 		 + IEEE80211_MAX_APPIE
3030 		 ;
3031 	m = ieee80211_getmgtframe(&frm,
3032 		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3033 	if (m == NULL) {
3034 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3035 			"%s: cannot get buf; size %u\n", __func__, pktlen);
3036 		vap->iv_stats.is_tx_nobuf++;
3037 		return NULL;
3038 	}
3039 	ieee80211_beacon_construct(m, frm, bo, ni);
3040 
3041 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
3042 	KASSERT(m != NULL, ("no space for 802.11 header?"));
3043 	wh = mtod(m, struct ieee80211_frame *);
3044 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3045 	    IEEE80211_FC0_SUBTYPE_BEACON;
3046 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3047 	*(uint16_t *)wh->i_dur = 0;
3048 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3049 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3050 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3051 	*(uint16_t *)wh->i_seq = 0;
3052 
3053 	return m;
3054 }
3055 
3056 /*
3057  * Update the dynamic parts of a beacon frame based on the current state.
3058  */
3059 int
3060 ieee80211_beacon_update(struct ieee80211_node *ni,
3061 	struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
3062 {
3063 	struct ieee80211vap *vap = ni->ni_vap;
3064 	struct ieee80211com *ic = ni->ni_ic;
3065 	int len_changed = 0;
3066 	uint16_t capinfo;
3067 	struct ieee80211_frame *wh;
3068 	ieee80211_seq seqno;
3069 
3070 	IEEE80211_LOCK(ic);
3071 	/*
3072 	 * Handle 11h channel change when we've reached the count.
3073 	 * We must recalculate the beacon frame contents to account
3074 	 * for the new channel.  Note we do this only for the first
3075 	 * vap that reaches this point; subsequent vaps just update
3076 	 * their beacon state to reflect the recalculated channel.
3077 	 */
3078 	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3079 	    vap->iv_csa_count == ic->ic_csa_count) {
3080 		vap->iv_csa_count = 0;
3081 		/*
3082 		 * Effect channel change before reconstructing the beacon
3083 		 * frame contents as many places reference ni_chan.
3084 		 */
3085 		if (ic->ic_csa_newchan != NULL)
3086 			ieee80211_csa_completeswitch(ic);
3087 		/*
3088 		 * NB: ieee80211_beacon_construct clears all pending
3089 		 * updates in bo_flags so we don't need to explicitly
3090 		 * clear IEEE80211_BEACON_CSA.
3091 		 */
3092 		ieee80211_beacon_construct(m,
3093 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni);
3094 
3095 		/* XXX do WME aggressive mode processing? */
3096 		IEEE80211_UNLOCK(ic);
3097 		return 1;		/* just assume length changed */
3098 	}
3099 
3100 	wh = mtod(m, struct ieee80211_frame *);
3101 	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3102 	*(uint16_t *)&wh->i_seq[0] =
3103 		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3104 	M_SEQNO_SET(m, seqno);
3105 
3106 	/* XXX faster to recalculate entirely or just changes? */
3107 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3108 	*bo->bo_caps = htole16(capinfo);
3109 
3110 	if (vap->iv_flags & IEEE80211_F_WME) {
3111 		struct ieee80211_wme_state *wme = &ic->ic_wme;
3112 
3113 		/*
3114 		 * Check for agressive mode change.  When there is
3115 		 * significant high priority traffic in the BSS
3116 		 * throttle back BE traffic by using conservative
3117 		 * parameters.  Otherwise BE uses agressive params
3118 		 * to optimize performance of legacy/non-QoS traffic.
3119 		 */
3120 		if (wme->wme_flags & WME_F_AGGRMODE) {
3121 			if (wme->wme_hipri_traffic >
3122 			    wme->wme_hipri_switch_thresh) {
3123 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3124 				    "%s: traffic %u, disable aggressive mode\n",
3125 				    __func__, wme->wme_hipri_traffic);
3126 				wme->wme_flags &= ~WME_F_AGGRMODE;
3127 				ieee80211_wme_updateparams_locked(vap);
3128 				wme->wme_hipri_traffic =
3129 					wme->wme_hipri_switch_hysteresis;
3130 			} else
3131 				wme->wme_hipri_traffic = 0;
3132 		} else {
3133 			if (wme->wme_hipri_traffic <=
3134 			    wme->wme_hipri_switch_thresh) {
3135 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3136 				    "%s: traffic %u, enable aggressive mode\n",
3137 				    __func__, wme->wme_hipri_traffic);
3138 				wme->wme_flags |= WME_F_AGGRMODE;
3139 				ieee80211_wme_updateparams_locked(vap);
3140 				wme->wme_hipri_traffic = 0;
3141 			} else
3142 				wme->wme_hipri_traffic =
3143 					wme->wme_hipri_switch_hysteresis;
3144 		}
3145 		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3146 			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
3147 			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3148 		}
3149 	}
3150 
3151 	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
3152 		ieee80211_ht_update_beacon(vap, bo);
3153 		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3154 	}
3155 #ifdef IEEE80211_SUPPORT_TDMA
3156 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3157 		/*
3158 		 * NB: the beacon is potentially updated every TBTT.
3159 		 */
3160 		ieee80211_tdma_update_beacon(vap, bo);
3161 	}
3162 #endif
3163 #ifdef IEEE80211_SUPPORT_MESH
3164 	if (vap->iv_opmode == IEEE80211_M_MBSS)
3165 		ieee80211_mesh_update_beacon(vap, bo);
3166 #endif
3167 
3168 	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3169 	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
3170 		struct ieee80211_tim_ie *tie =
3171 			(struct ieee80211_tim_ie *) bo->bo_tim;
3172 		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3173 			u_int timlen, timoff, i;
3174 			/*
3175 			 * ATIM/DTIM needs updating.  If it fits in the
3176 			 * current space allocated then just copy in the
3177 			 * new bits.  Otherwise we need to move any trailing
3178 			 * data to make room.  Note that we know there is
3179 			 * contiguous space because ieee80211_beacon_allocate
3180 			 * insures there is space in the mbuf to write a
3181 			 * maximal-size virtual bitmap (based on iv_max_aid).
3182 			 */
3183 			/*
3184 			 * Calculate the bitmap size and offset, copy any
3185 			 * trailer out of the way, and then copy in the
3186 			 * new bitmap and update the information element.
3187 			 * Note that the tim bitmap must contain at least
3188 			 * one byte and any offset must be even.
3189 			 */
3190 			if (vap->iv_ps_pending != 0) {
3191 				timoff = 128;		/* impossibly large */
3192 				for (i = 0; i < vap->iv_tim_len; i++)
3193 					if (vap->iv_tim_bitmap[i]) {
3194 						timoff = i &~ 1;
3195 						break;
3196 					}
3197 				KASSERT(timoff != 128, ("tim bitmap empty!"));
3198 				for (i = vap->iv_tim_len-1; i >= timoff; i--)
3199 					if (vap->iv_tim_bitmap[i])
3200 						break;
3201 				timlen = 1 + (i - timoff);
3202 			} else {
3203 				timoff = 0;
3204 				timlen = 1;
3205 			}
3206 			if (timlen != bo->bo_tim_len) {
3207 				/* copy up/down trailer */
3208 				int adjust = tie->tim_bitmap+timlen
3209 					   - bo->bo_tim_trailer;
3210 				ovbcopy(bo->bo_tim_trailer,
3211 				    bo->bo_tim_trailer+adjust,
3212 				    bo->bo_tim_trailer_len);
3213 				bo->bo_tim_trailer += adjust;
3214 				bo->bo_erp += adjust;
3215 				bo->bo_htinfo += adjust;
3216 #ifdef IEEE80211_SUPPORT_SUPERG
3217 				bo->bo_ath += adjust;
3218 #endif
3219 #ifdef IEEE80211_SUPPORT_TDMA
3220 				bo->bo_tdma += adjust;
3221 #endif
3222 #ifdef IEEE80211_SUPPORT_MESH
3223 				bo->bo_meshconf += adjust;
3224 #endif
3225 				bo->bo_appie += adjust;
3226 				bo->bo_wme += adjust;
3227 				bo->bo_csa += adjust;
3228 				bo->bo_quiet += adjust;
3229 				bo->bo_tim_len = timlen;
3230 
3231 				/* update information element */
3232 				tie->tim_len = 3 + timlen;
3233 				tie->tim_bitctl = timoff;
3234 				len_changed = 1;
3235 			}
3236 			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
3237 				bo->bo_tim_len);
3238 
3239 			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
3240 
3241 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
3242 				"%s: TIM updated, pending %u, off %u, len %u\n",
3243 				__func__, vap->iv_ps_pending, timoff, timlen);
3244 		}
3245 		/* count down DTIM period */
3246 		if (tie->tim_count == 0)
3247 			tie->tim_count = tie->tim_period - 1;
3248 		else
3249 			tie->tim_count--;
3250 		/* update state for buffered multicast frames on DTIM */
3251 		if (mcast && tie->tim_count == 0)
3252 			tie->tim_bitctl |= 1;
3253 		else
3254 			tie->tim_bitctl &= ~1;
3255 		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
3256 			struct ieee80211_csa_ie *csa =
3257 			    (struct ieee80211_csa_ie *) bo->bo_csa;
3258 
3259 			/*
3260 			 * Insert or update CSA ie.  If we're just starting
3261 			 * to count down to the channel switch then we need
3262 			 * to insert the CSA ie.  Otherwise we just need to
3263 			 * drop the count.  The actual change happens above
3264 			 * when the vap's count reaches the target count.
3265 			 */
3266 			if (vap->iv_csa_count == 0) {
3267 				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
3268 				bo->bo_erp += sizeof(*csa);
3269 				bo->bo_htinfo += sizeof(*csa);
3270 				bo->bo_wme += sizeof(*csa);
3271 #ifdef IEEE80211_SUPPORT_SUPERG
3272 				bo->bo_ath += sizeof(*csa);
3273 #endif
3274 #ifdef IEEE80211_SUPPORT_TDMA
3275 				bo->bo_tdma += sizeof(*csa);
3276 #endif
3277 #ifdef IEEE80211_SUPPORT_MESH
3278 				bo->bo_meshconf += sizeof(*csa);
3279 #endif
3280 				bo->bo_appie += sizeof(*csa);
3281 				bo->bo_csa_trailer_len += sizeof(*csa);
3282 				bo->bo_quiet += sizeof(*csa);
3283 				bo->bo_tim_trailer_len += sizeof(*csa);
3284 				m->m_len += sizeof(*csa);
3285 				m->m_pkthdr.len += sizeof(*csa);
3286 
3287 				ieee80211_add_csa(bo->bo_csa, vap);
3288 			} else
3289 				csa->csa_count--;
3290 			vap->iv_csa_count++;
3291 			/* NB: don't clear IEEE80211_BEACON_CSA */
3292 		}
3293 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3294 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){
3295 			if (vap->iv_quiet)
3296 				ieee80211_add_quiet(bo->bo_quiet, vap);
3297 		}
3298 		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3299 			/*
3300 			 * ERP element needs updating.
3301 			 */
3302 			(void) ieee80211_add_erp(bo->bo_erp, ic);
3303 			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3304 		}
3305 #ifdef IEEE80211_SUPPORT_SUPERG
3306 		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
3307 			ieee80211_add_athcaps(bo->bo_ath, ni);
3308 			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3309 		}
3310 #endif
3311 	}
3312 	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3313 		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3314 		int aielen;
3315 		uint8_t *frm;
3316 
3317 		aielen = 0;
3318 		if (aie != NULL)
3319 			aielen += aie->ie_len;
3320 		if (aielen != bo->bo_appie_len) {
3321 			/* copy up/down trailer */
3322 			int adjust = aielen - bo->bo_appie_len;
3323 			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3324 				bo->bo_tim_trailer_len);
3325 			bo->bo_tim_trailer += adjust;
3326 			bo->bo_appie += adjust;
3327 			bo->bo_appie_len = aielen;
3328 
3329 			len_changed = 1;
3330 		}
3331 		frm = bo->bo_appie;
3332 		if (aie != NULL)
3333 			frm  = add_appie(frm, aie);
3334 		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3335 	}
3336 	IEEE80211_UNLOCK(ic);
3337 
3338 	return len_changed;
3339 }
3340 
3341 /*
3342  * Do Ethernet-LLC encapsulation for each payload in a fast frame
3343  * tunnel encapsulation.  The frame is assumed to have an Ethernet
3344  * header at the front that must be stripped before prepending the
3345  * LLC followed by the Ethernet header passed in (with an Ethernet
3346  * type that specifies the payload size).
3347  */
3348 struct mbuf *
3349 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
3350 	const struct ether_header *eh)
3351 {
3352 	struct llc *llc;
3353 	uint16_t payload;
3354 
3355 	/* XXX optimize by combining m_adj+M_PREPEND */
3356 	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
3357 	llc = mtod(m, struct llc *);
3358 	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
3359 	llc->llc_control = LLC_UI;
3360 	llc->llc_snap.org_code[0] = 0;
3361 	llc->llc_snap.org_code[1] = 0;
3362 	llc->llc_snap.org_code[2] = 0;
3363 	llc->llc_snap.ether_type = eh->ether_type;
3364 	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
3365 
3366 	M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
3367 	if (m == NULL) {		/* XXX cannot happen */
3368 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
3369 			"%s: no space for ether_header\n", __func__);
3370 		vap->iv_stats.is_tx_nobuf++;
3371 		return NULL;
3372 	}
3373 	ETHER_HEADER_COPY(mtod(m, void *), eh);
3374 	mtod(m, struct ether_header *)->ether_type = htons(payload);
3375 	return m;
3376 }
3377 
3378 /*
3379  * Complete an mbuf transmission.
3380  *
3381  * For now, this simply processes a completed frame after the
3382  * driver has completed it's transmission and/or retransmission.
3383  * It assumes the frame is an 802.11 encapsulated frame.
3384  *
3385  * Later on it will grow to become the exit path for a given frame
3386  * from the driver and, depending upon how it's been encapsulated
3387  * and already transmitted, it may end up doing A-MPDU retransmission,
3388  * power save requeuing, etc.
3389  *
3390  * In order for the above to work, the driver entry point to this
3391  * must not hold any driver locks.  Thus, the driver needs to delay
3392  * any actual mbuf completion until it can release said locks.
3393  *
3394  * This frees the mbuf and if the mbuf has a node reference,
3395  * the node reference will be freed.
3396  */
3397 void
3398 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
3399 {
3400 
3401 	if (ni != NULL) {
3402 		if (m->m_flags & M_TXCB)
3403 			ieee80211_process_callback(ni, m, status);
3404 		ieee80211_free_node(ni);
3405 	}
3406 	m_freem(m);
3407 }
3408