1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_inet.h" 33 #include "opt_inet6.h" 34 #include "opt_wlan.h" 35 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/kernel.h> 39 #include <sys/malloc.h> 40 #include <sys/mbuf.h> 41 #include <sys/endian.h> 42 43 #include <sys/socket.h> 44 45 #include <net/bpf.h> 46 #include <net/ethernet.h> 47 #include <net/if.h> 48 #include <net/if_var.h> 49 #include <net/if_llc.h> 50 #include <net/if_media.h> 51 #include <net/if_vlan_var.h> 52 53 #include <net80211/ieee80211_var.h> 54 #include <net80211/ieee80211_regdomain.h> 55 #ifdef IEEE80211_SUPPORT_SUPERG 56 #include <net80211/ieee80211_superg.h> 57 #endif 58 #ifdef IEEE80211_SUPPORT_TDMA 59 #include <net80211/ieee80211_tdma.h> 60 #endif 61 #include <net80211/ieee80211_wds.h> 62 #include <net80211/ieee80211_mesh.h> 63 #include <net80211/ieee80211_vht.h> 64 65 #if defined(INET) || defined(INET6) 66 #include <netinet/in.h> 67 #endif 68 69 #ifdef INET 70 #include <netinet/if_ether.h> 71 #include <netinet/in_systm.h> 72 #include <netinet/ip.h> 73 #endif 74 #ifdef INET6 75 #include <netinet/ip6.h> 76 #endif 77 78 #include <security/mac/mac_framework.h> 79 80 #define ETHER_HEADER_COPY(dst, src) \ 81 memcpy(dst, src, sizeof(struct ether_header)) 82 83 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *, 84 u_int hdrsize, u_int ciphdrsize, u_int mtu); 85 static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int); 86 87 #ifdef IEEE80211_DEBUG 88 /* 89 * Decide if an outbound management frame should be 90 * printed when debugging is enabled. This filters some 91 * of the less interesting frames that come frequently 92 * (e.g. beacons). 93 */ 94 static __inline int 95 doprint(struct ieee80211vap *vap, int subtype) 96 { 97 switch (subtype) { 98 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 99 return (vap->iv_opmode == IEEE80211_M_IBSS); 100 } 101 return 1; 102 } 103 #endif 104 105 /* 106 * Transmit a frame to the given destination on the given VAP. 107 * 108 * It's up to the caller to figure out the details of who this 109 * is going to and resolving the node. 110 * 111 * This routine takes care of queuing it for power save, 112 * A-MPDU state stuff, fast-frames state stuff, encapsulation 113 * if required, then passing it up to the driver layer. 114 * 115 * This routine (for now) consumes the mbuf and frees the node 116 * reference; it ideally will return a TX status which reflects 117 * whether the mbuf was consumed or not, so the caller can 118 * free the mbuf (if appropriate) and the node reference (again, 119 * if appropriate.) 120 */ 121 int 122 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m, 123 struct ieee80211_node *ni) 124 { 125 struct ieee80211com *ic = vap->iv_ic; 126 struct ifnet *ifp = vap->iv_ifp; 127 int mcast; 128 129 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 130 (m->m_flags & M_PWR_SAV) == 0) { 131 /* 132 * Station in power save mode; pass the frame 133 * to the 802.11 layer and continue. We'll get 134 * the frame back when the time is right. 135 * XXX lose WDS vap linkage? 136 */ 137 if (ieee80211_pwrsave(ni, m) != 0) 138 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 139 ieee80211_free_node(ni); 140 141 /* 142 * We queued it fine, so tell the upper layer 143 * that we consumed it. 144 */ 145 return (0); 146 } 147 /* calculate priority so drivers can find the tx queue */ 148 if (ieee80211_classify(ni, m)) { 149 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 150 ni->ni_macaddr, NULL, 151 "%s", "classification failure"); 152 vap->iv_stats.is_tx_classify++; 153 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 154 m_freem(m); 155 ieee80211_free_node(ni); 156 157 /* XXX better status? */ 158 return (0); 159 } 160 /* 161 * Stash the node pointer. Note that we do this after 162 * any call to ieee80211_dwds_mcast because that code 163 * uses any existing value for rcvif to identify the 164 * interface it (might have been) received on. 165 */ 166 m->m_pkthdr.rcvif = (void *)ni; 167 mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0; 168 169 BPF_MTAP(ifp, m); /* 802.3 tx */ 170 171 /* 172 * Check if A-MPDU tx aggregation is setup or if we 173 * should try to enable it. The sta must be associated 174 * with HT and A-MPDU enabled for use. When the policy 175 * routine decides we should enable A-MPDU we issue an 176 * ADDBA request and wait for a reply. The frame being 177 * encapsulated will go out w/o using A-MPDU, or possibly 178 * it might be collected by the driver and held/retransmit. 179 * The default ic_ampdu_enable routine handles staggering 180 * ADDBA requests in case the receiver NAK's us or we are 181 * otherwise unable to establish a BA stream. 182 * 183 * Don't treat group-addressed frames as candidates for aggregation; 184 * net80211 doesn't support 802.11aa-2012 and so group addressed 185 * frames will always have sequence numbers allocated from the NON_QOS 186 * TID. 187 */ 188 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) && 189 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)) { 190 if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) { 191 int tid = WME_AC_TO_TID(M_WME_GETAC(m)); 192 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; 193 194 ieee80211_txampdu_count_packet(tap); 195 if (IEEE80211_AMPDU_RUNNING(tap)) { 196 /* 197 * Operational, mark frame for aggregation. 198 * 199 * XXX do tx aggregation here 200 */ 201 m->m_flags |= M_AMPDU_MPDU; 202 } else if (!IEEE80211_AMPDU_REQUESTED(tap) && 203 ic->ic_ampdu_enable(ni, tap)) { 204 /* 205 * Not negotiated yet, request service. 206 */ 207 ieee80211_ampdu_request(ni, tap); 208 /* XXX hold frame for reply? */ 209 } 210 } 211 } 212 213 #ifdef IEEE80211_SUPPORT_SUPERG 214 /* 215 * Check for AMSDU/FF; queue for aggregation 216 * 217 * Note: we don't bother trying to do fast frames or 218 * A-MSDU encapsulation for 802.3 drivers. Now, we 219 * likely could do it for FF (because it's a magic 220 * atheros tunnel LLC type) but I don't think we're going 221 * to really need to. For A-MSDU we'd have to set the 222 * A-MSDU QoS bit in the wifi header, so we just plain 223 * can't do it. 224 * 225 * Strictly speaking, we could actually /do/ A-MSDU / FF 226 * with A-MPDU together which for certain circumstances 227 * is beneficial (eg A-MSDU of TCK ACKs.) However, 228 * I'll ignore that for now so existing behaviour is maintained. 229 * Later on it would be good to make "amsdu + ampdu" configurable. 230 */ 231 else if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 232 if ((! mcast) && ieee80211_amsdu_tx_ok(ni)) { 233 m = ieee80211_amsdu_check(ni, m); 234 if (m == NULL) { 235 /* NB: any ni ref held on stageq */ 236 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 237 "%s: amsdu_check queued frame\n", 238 __func__); 239 return (0); 240 } 241 } else if ((! mcast) && IEEE80211_ATH_CAP(vap, ni, 242 IEEE80211_NODE_FF)) { 243 m = ieee80211_ff_check(ni, m); 244 if (m == NULL) { 245 /* NB: any ni ref held on stageq */ 246 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 247 "%s: ff_check queued frame\n", 248 __func__); 249 return (0); 250 } 251 } 252 } 253 #endif /* IEEE80211_SUPPORT_SUPERG */ 254 255 /* 256 * Grab the TX lock - serialise the TX process from this 257 * point (where TX state is being checked/modified) 258 * through to driver queue. 259 */ 260 IEEE80211_TX_LOCK(ic); 261 262 /* 263 * XXX make the encap and transmit code a separate function 264 * so things like the FF (and later A-MSDU) path can just call 265 * it for flushed frames. 266 */ 267 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 268 /* 269 * Encapsulate the packet in prep for transmission. 270 */ 271 m = ieee80211_encap(vap, ni, m); 272 if (m == NULL) { 273 /* NB: stat+msg handled in ieee80211_encap */ 274 IEEE80211_TX_UNLOCK(ic); 275 ieee80211_free_node(ni); 276 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 277 return (ENOBUFS); 278 } 279 } 280 (void) ieee80211_parent_xmitpkt(ic, m); 281 282 /* 283 * Unlock at this point - no need to hold it across 284 * ieee80211_free_node() (ie, the comlock) 285 */ 286 IEEE80211_TX_UNLOCK(ic); 287 ic->ic_lastdata = ticks; 288 289 return (0); 290 } 291 292 293 294 /* 295 * Send the given mbuf through the given vap. 296 * 297 * This consumes the mbuf regardless of whether the transmit 298 * was successful or not. 299 * 300 * This does none of the initial checks that ieee80211_start() 301 * does (eg CAC timeout, interface wakeup) - the caller must 302 * do this first. 303 */ 304 static int 305 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m) 306 { 307 #define IS_DWDS(vap) \ 308 (vap->iv_opmode == IEEE80211_M_WDS && \ 309 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0) 310 struct ieee80211com *ic = vap->iv_ic; 311 struct ifnet *ifp = vap->iv_ifp; 312 struct ieee80211_node *ni; 313 struct ether_header *eh; 314 315 /* 316 * Cancel any background scan. 317 */ 318 if (ic->ic_flags & IEEE80211_F_SCAN) 319 ieee80211_cancel_anyscan(vap); 320 /* 321 * Find the node for the destination so we can do 322 * things like power save and fast frames aggregation. 323 * 324 * NB: past this point various code assumes the first 325 * mbuf has the 802.3 header present (and contiguous). 326 */ 327 ni = NULL; 328 if (m->m_len < sizeof(struct ether_header) && 329 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 330 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 331 "discard frame, %s\n", "m_pullup failed"); 332 vap->iv_stats.is_tx_nobuf++; /* XXX */ 333 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 334 return (ENOBUFS); 335 } 336 eh = mtod(m, struct ether_header *); 337 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 338 if (IS_DWDS(vap)) { 339 /* 340 * Only unicast frames from the above go out 341 * DWDS vaps; multicast frames are handled by 342 * dispatching the frame as it comes through 343 * the AP vap (see below). 344 */ 345 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS, 346 eh->ether_dhost, "mcast", "%s", "on DWDS"); 347 vap->iv_stats.is_dwds_mcast++; 348 m_freem(m); 349 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 350 /* XXX better status? */ 351 return (ENOBUFS); 352 } 353 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { 354 /* 355 * Spam DWDS vap's w/ multicast traffic. 356 */ 357 /* XXX only if dwds in use? */ 358 ieee80211_dwds_mcast(vap, m); 359 } 360 } 361 #ifdef IEEE80211_SUPPORT_MESH 362 if (vap->iv_opmode != IEEE80211_M_MBSS) { 363 #endif 364 ni = ieee80211_find_txnode(vap, eh->ether_dhost); 365 if (ni == NULL) { 366 /* NB: ieee80211_find_txnode does stat+msg */ 367 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 368 m_freem(m); 369 /* XXX better status? */ 370 return (ENOBUFS); 371 } 372 if (ni->ni_associd == 0 && 373 (ni->ni_flags & IEEE80211_NODE_ASSOCID)) { 374 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 375 eh->ether_dhost, NULL, 376 "sta not associated (type 0x%04x)", 377 htons(eh->ether_type)); 378 vap->iv_stats.is_tx_notassoc++; 379 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 380 m_freem(m); 381 ieee80211_free_node(ni); 382 /* XXX better status? */ 383 return (ENOBUFS); 384 } 385 #ifdef IEEE80211_SUPPORT_MESH 386 } else { 387 if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) { 388 /* 389 * Proxy station only if configured. 390 */ 391 if (!ieee80211_mesh_isproxyena(vap)) { 392 IEEE80211_DISCARD_MAC(vap, 393 IEEE80211_MSG_OUTPUT | 394 IEEE80211_MSG_MESH, 395 eh->ether_dhost, NULL, 396 "%s", "proxy not enabled"); 397 vap->iv_stats.is_mesh_notproxy++; 398 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 399 m_freem(m); 400 /* XXX better status? */ 401 return (ENOBUFS); 402 } 403 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 404 "forward frame from DS SA(%6D), DA(%6D)\n", 405 eh->ether_shost, ":", 406 eh->ether_dhost, ":"); 407 ieee80211_mesh_proxy_check(vap, eh->ether_shost); 408 } 409 ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m); 410 if (ni == NULL) { 411 /* 412 * NB: ieee80211_mesh_discover holds/disposes 413 * frame (e.g. queueing on path discovery). 414 */ 415 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 416 /* XXX better status? */ 417 return (ENOBUFS); 418 } 419 } 420 #endif 421 422 /* 423 * We've resolved the sender, so attempt to transmit it. 424 */ 425 426 if (vap->iv_state == IEEE80211_S_SLEEP) { 427 /* 428 * In power save; queue frame and then wakeup device 429 * for transmit. 430 */ 431 ic->ic_lastdata = ticks; 432 if (ieee80211_pwrsave(ni, m) != 0) 433 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 434 ieee80211_free_node(ni); 435 ieee80211_new_state(vap, IEEE80211_S_RUN, 0); 436 return (0); 437 } 438 439 if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0) 440 return (ENOBUFS); 441 return (0); 442 #undef IS_DWDS 443 } 444 445 /* 446 * Start method for vap's. All packets from the stack come 447 * through here. We handle common processing of the packets 448 * before dispatching them to the underlying device. 449 * 450 * if_transmit() requires that the mbuf be consumed by this call 451 * regardless of the return condition. 452 */ 453 int 454 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m) 455 { 456 struct ieee80211vap *vap = ifp->if_softc; 457 struct ieee80211com *ic = vap->iv_ic; 458 459 /* 460 * No data frames go out unless we're running. 461 * Note in particular this covers CAC and CSA 462 * states (though maybe we should check muting 463 * for CSA). 464 */ 465 if (vap->iv_state != IEEE80211_S_RUN && 466 vap->iv_state != IEEE80211_S_SLEEP) { 467 IEEE80211_LOCK(ic); 468 /* re-check under the com lock to avoid races */ 469 if (vap->iv_state != IEEE80211_S_RUN && 470 vap->iv_state != IEEE80211_S_SLEEP) { 471 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 472 "%s: ignore queue, in %s state\n", 473 __func__, ieee80211_state_name[vap->iv_state]); 474 vap->iv_stats.is_tx_badstate++; 475 IEEE80211_UNLOCK(ic); 476 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 477 m_freem(m); 478 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 479 return (ENETDOWN); 480 } 481 IEEE80211_UNLOCK(ic); 482 } 483 484 /* 485 * Sanitize mbuf flags for net80211 use. We cannot 486 * clear M_PWR_SAV or M_MORE_DATA because these may 487 * be set for frames that are re-submitted from the 488 * power save queue. 489 * 490 * NB: This must be done before ieee80211_classify as 491 * it marks EAPOL in frames with M_EAPOL. 492 */ 493 m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA); 494 495 /* 496 * Bump to the packet transmission path. 497 * The mbuf will be consumed here. 498 */ 499 return (ieee80211_start_pkt(vap, m)); 500 } 501 502 void 503 ieee80211_vap_qflush(struct ifnet *ifp) 504 { 505 506 /* Empty for now */ 507 } 508 509 /* 510 * 802.11 raw output routine. 511 * 512 * XXX TODO: this (and other send routines) should correctly 513 * XXX keep the pwr mgmt bit set if it decides to call into the 514 * XXX driver to send a frame whilst the state is SLEEP. 515 * 516 * Otherwise the peer may decide that we're awake and flood us 517 * with traffic we are still too asleep to receive! 518 */ 519 int 520 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni, 521 struct mbuf *m, const struct ieee80211_bpf_params *params) 522 { 523 struct ieee80211com *ic = vap->iv_ic; 524 int error; 525 526 /* 527 * Set node - the caller has taken a reference, so ensure 528 * that the mbuf has the same node value that 529 * it would if it were going via the normal path. 530 */ 531 m->m_pkthdr.rcvif = (void *)ni; 532 533 /* 534 * Attempt to add bpf transmit parameters. 535 * 536 * For now it's ok to fail; the raw_xmit api still takes 537 * them as an option. 538 * 539 * Later on when ic_raw_xmit() has params removed, 540 * they'll have to be added - so fail the transmit if 541 * they can't be. 542 */ 543 if (params) 544 (void) ieee80211_add_xmit_params(m, params); 545 546 error = ic->ic_raw_xmit(ni, m, params); 547 if (error) { 548 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1); 549 ieee80211_free_node(ni); 550 } 551 return (error); 552 } 553 554 static int 555 ieee80211_validate_frame(struct mbuf *m, 556 const struct ieee80211_bpf_params *params) 557 { 558 struct ieee80211_frame *wh; 559 int type; 560 561 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack)) 562 return (EINVAL); 563 564 wh = mtod(m, struct ieee80211_frame *); 565 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) != 566 IEEE80211_FC0_VERSION_0) 567 return (EINVAL); 568 569 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 570 if (type != IEEE80211_FC0_TYPE_DATA) { 571 if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != 572 IEEE80211_FC1_DIR_NODS) 573 return (EINVAL); 574 575 if (type != IEEE80211_FC0_TYPE_MGT && 576 (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) != 0) 577 return (EINVAL); 578 579 /* XXX skip other field checks? */ 580 } 581 582 if ((params && (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0) || 583 (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) != 0) { 584 int subtype; 585 586 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 587 588 /* 589 * See IEEE Std 802.11-2012, 590 * 8.2.4.1.9 'Protected Frame field' 591 */ 592 /* XXX no support for robust management frames yet. */ 593 if (!(type == IEEE80211_FC0_TYPE_DATA || 594 (type == IEEE80211_FC0_TYPE_MGT && 595 subtype == IEEE80211_FC0_SUBTYPE_AUTH))) 596 return (EINVAL); 597 598 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 599 } 600 601 if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh)) 602 return (EINVAL); 603 604 return (0); 605 } 606 607 /* 608 * 802.11 output routine. This is (currently) used only to 609 * connect bpf write calls to the 802.11 layer for injecting 610 * raw 802.11 frames. 611 */ 612 int 613 ieee80211_output(struct ifnet *ifp, struct mbuf *m, 614 const struct sockaddr *dst, struct route *ro) 615 { 616 #define senderr(e) do { error = (e); goto bad;} while (0) 617 const struct ieee80211_bpf_params *params = NULL; 618 struct ieee80211_node *ni = NULL; 619 struct ieee80211vap *vap; 620 struct ieee80211_frame *wh; 621 struct ieee80211com *ic = NULL; 622 int error; 623 int ret; 624 625 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 626 /* 627 * Short-circuit requests if the vap is marked OACTIVE 628 * as this can happen because a packet came down through 629 * ieee80211_start before the vap entered RUN state in 630 * which case it's ok to just drop the frame. This 631 * should not be necessary but callers of if_output don't 632 * check OACTIVE. 633 */ 634 senderr(ENETDOWN); 635 } 636 vap = ifp->if_softc; 637 ic = vap->iv_ic; 638 /* 639 * Hand to the 802.3 code if not tagged as 640 * a raw 802.11 frame. 641 */ 642 if (dst->sa_family != AF_IEEE80211) 643 return vap->iv_output(ifp, m, dst, ro); 644 #ifdef MAC 645 error = mac_ifnet_check_transmit(ifp, m); 646 if (error) 647 senderr(error); 648 #endif 649 if (ifp->if_flags & IFF_MONITOR) 650 senderr(ENETDOWN); 651 if (!IFNET_IS_UP_RUNNING(ifp)) 652 senderr(ENETDOWN); 653 if (vap->iv_state == IEEE80211_S_CAC) { 654 IEEE80211_DPRINTF(vap, 655 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 656 "block %s frame in CAC state\n", "raw data"); 657 vap->iv_stats.is_tx_badstate++; 658 senderr(EIO); /* XXX */ 659 } else if (vap->iv_state == IEEE80211_S_SCAN) 660 senderr(EIO); 661 /* XXX bypass bridge, pfil, carp, etc. */ 662 663 /* 664 * NB: DLT_IEEE802_11_RADIO identifies the parameters are 665 * present by setting the sa_len field of the sockaddr (yes, 666 * this is a hack). 667 * NB: we assume sa_data is suitably aligned to cast. 668 */ 669 if (dst->sa_len != 0) 670 params = (const struct ieee80211_bpf_params *)dst->sa_data; 671 672 error = ieee80211_validate_frame(m, params); 673 if (error != 0) 674 senderr(error); 675 676 wh = mtod(m, struct ieee80211_frame *); 677 678 /* locate destination node */ 679 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 680 case IEEE80211_FC1_DIR_NODS: 681 case IEEE80211_FC1_DIR_FROMDS: 682 ni = ieee80211_find_txnode(vap, wh->i_addr1); 683 break; 684 case IEEE80211_FC1_DIR_TODS: 685 case IEEE80211_FC1_DIR_DSTODS: 686 ni = ieee80211_find_txnode(vap, wh->i_addr3); 687 break; 688 default: 689 senderr(EDOOFUS); 690 } 691 if (ni == NULL) { 692 /* 693 * Permit packets w/ bpf params through regardless 694 * (see below about sa_len). 695 */ 696 if (dst->sa_len == 0) 697 senderr(EHOSTUNREACH); 698 ni = ieee80211_ref_node(vap->iv_bss); 699 } 700 701 /* 702 * Sanitize mbuf for net80211 flags leaked from above. 703 * 704 * NB: This must be done before ieee80211_classify as 705 * it marks EAPOL in frames with M_EAPOL. 706 */ 707 m->m_flags &= ~M_80211_TX; 708 m->m_flags |= M_ENCAP; /* mark encapsulated */ 709 710 if (IEEE80211_IS_DATA(wh)) { 711 /* calculate priority so drivers can find the tx queue */ 712 if (ieee80211_classify(ni, m)) 713 senderr(EIO); /* XXX */ 714 715 /* NB: ieee80211_encap does not include 802.11 header */ 716 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, 717 m->m_pkthdr.len - ieee80211_hdrsize(wh)); 718 } else 719 M_WME_SETAC(m, WME_AC_BE); 720 721 IEEE80211_NODE_STAT(ni, tx_data); 722 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 723 IEEE80211_NODE_STAT(ni, tx_mcast); 724 m->m_flags |= M_MCAST; 725 } else 726 IEEE80211_NODE_STAT(ni, tx_ucast); 727 728 IEEE80211_TX_LOCK(ic); 729 ret = ieee80211_raw_output(vap, ni, m, params); 730 IEEE80211_TX_UNLOCK(ic); 731 return (ret); 732 bad: 733 if (m != NULL) 734 m_freem(m); 735 if (ni != NULL) 736 ieee80211_free_node(ni); 737 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 738 return error; 739 #undef senderr 740 } 741 742 /* 743 * Set the direction field and address fields of an outgoing 744 * frame. Note this should be called early on in constructing 745 * a frame as it sets i_fc[1]; other bits can then be or'd in. 746 */ 747 void 748 ieee80211_send_setup( 749 struct ieee80211_node *ni, 750 struct mbuf *m, 751 int type, int tid, 752 const uint8_t sa[IEEE80211_ADDR_LEN], 753 const uint8_t da[IEEE80211_ADDR_LEN], 754 const uint8_t bssid[IEEE80211_ADDR_LEN]) 755 { 756 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 757 struct ieee80211vap *vap = ni->ni_vap; 758 struct ieee80211_tx_ampdu *tap; 759 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 760 ieee80211_seq seqno; 761 762 IEEE80211_TX_LOCK_ASSERT(ni->ni_ic); 763 764 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 765 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 766 switch (vap->iv_opmode) { 767 case IEEE80211_M_STA: 768 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 769 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 770 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 771 IEEE80211_ADDR_COPY(wh->i_addr3, da); 772 break; 773 case IEEE80211_M_IBSS: 774 case IEEE80211_M_AHDEMO: 775 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 776 IEEE80211_ADDR_COPY(wh->i_addr1, da); 777 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 778 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 779 break; 780 case IEEE80211_M_HOSTAP: 781 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 782 IEEE80211_ADDR_COPY(wh->i_addr1, da); 783 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 784 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 785 break; 786 case IEEE80211_M_WDS: 787 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 788 IEEE80211_ADDR_COPY(wh->i_addr1, da); 789 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 790 IEEE80211_ADDR_COPY(wh->i_addr3, da); 791 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 792 break; 793 case IEEE80211_M_MBSS: 794 #ifdef IEEE80211_SUPPORT_MESH 795 if (IEEE80211_IS_MULTICAST(da)) { 796 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 797 /* XXX next hop */ 798 IEEE80211_ADDR_COPY(wh->i_addr1, da); 799 IEEE80211_ADDR_COPY(wh->i_addr2, 800 vap->iv_myaddr); 801 } else { 802 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 803 IEEE80211_ADDR_COPY(wh->i_addr1, da); 804 IEEE80211_ADDR_COPY(wh->i_addr2, 805 vap->iv_myaddr); 806 IEEE80211_ADDR_COPY(wh->i_addr3, da); 807 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 808 } 809 #endif 810 break; 811 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 812 break; 813 } 814 } else { 815 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 816 IEEE80211_ADDR_COPY(wh->i_addr1, da); 817 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 818 #ifdef IEEE80211_SUPPORT_MESH 819 if (vap->iv_opmode == IEEE80211_M_MBSS) 820 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 821 else 822 #endif 823 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 824 } 825 *(uint16_t *)&wh->i_dur[0] = 0; 826 827 /* 828 * XXX TODO: this is what the TX lock is for. 829 * Here we're incrementing sequence numbers, and they 830 * need to be in lock-step with what the driver is doing 831 * both in TX ordering and crypto encap (IV increment.) 832 * 833 * If the driver does seqno itself, then we can skip 834 * assigning sequence numbers here, and we can avoid 835 * requiring the TX lock. 836 */ 837 tap = &ni->ni_tx_ampdu[tid]; 838 if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) { 839 m->m_flags |= M_AMPDU_MPDU; 840 841 /* NB: zero out i_seq field (for s/w encryption etc) */ 842 *(uint16_t *)&wh->i_seq[0] = 0; 843 } else { 844 if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK, 845 type & IEEE80211_FC0_SUBTYPE_MASK)) 846 /* 847 * 802.11-2012 9.3.2.10 - QoS multicast frames 848 * come out of a different seqno space. 849 */ 850 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 851 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 852 } else { 853 seqno = ni->ni_txseqs[tid]++; 854 } 855 else 856 seqno = 0; 857 858 *(uint16_t *)&wh->i_seq[0] = 859 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 860 M_SEQNO_SET(m, seqno); 861 } 862 863 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 864 m->m_flags |= M_MCAST; 865 #undef WH4 866 } 867 868 /* 869 * Send a management frame to the specified node. The node pointer 870 * must have a reference as the pointer will be passed to the driver 871 * and potentially held for a long time. If the frame is successfully 872 * dispatched to the driver, then it is responsible for freeing the 873 * reference (and potentially free'ing up any associated storage); 874 * otherwise deal with reclaiming any reference (on error). 875 */ 876 int 877 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type, 878 struct ieee80211_bpf_params *params) 879 { 880 struct ieee80211vap *vap = ni->ni_vap; 881 struct ieee80211com *ic = ni->ni_ic; 882 struct ieee80211_frame *wh; 883 int ret; 884 885 KASSERT(ni != NULL, ("null node")); 886 887 if (vap->iv_state == IEEE80211_S_CAC) { 888 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 889 ni, "block %s frame in CAC state", 890 ieee80211_mgt_subtype_name(type)); 891 vap->iv_stats.is_tx_badstate++; 892 ieee80211_free_node(ni); 893 m_freem(m); 894 return EIO; /* XXX */ 895 } 896 897 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 898 if (m == NULL) { 899 ieee80211_free_node(ni); 900 return ENOMEM; 901 } 902 903 IEEE80211_TX_LOCK(ic); 904 905 wh = mtod(m, struct ieee80211_frame *); 906 ieee80211_send_setup(ni, m, 907 IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID, 908 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 909 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { 910 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1, 911 "encrypting frame (%s)", __func__); 912 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 913 } 914 m->m_flags |= M_ENCAP; /* mark encapsulated */ 915 916 KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?")); 917 M_WME_SETAC(m, params->ibp_pri); 918 919 #ifdef IEEE80211_DEBUG 920 /* avoid printing too many frames */ 921 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) || 922 ieee80211_msg_dumppkts(vap)) { 923 printf("[%s] send %s on channel %u\n", 924 ether_sprintf(wh->i_addr1), 925 ieee80211_mgt_subtype_name(type), 926 ieee80211_chan2ieee(ic, ic->ic_curchan)); 927 } 928 #endif 929 IEEE80211_NODE_STAT(ni, tx_mgmt); 930 931 ret = ieee80211_raw_output(vap, ni, m, params); 932 IEEE80211_TX_UNLOCK(ic); 933 return (ret); 934 } 935 936 static void 937 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg, 938 int status) 939 { 940 struct ieee80211vap *vap = ni->ni_vap; 941 942 wakeup(vap); 943 } 944 945 /* 946 * Send a null data frame to the specified node. If the station 947 * is setup for QoS then a QoS Null Data frame is constructed. 948 * If this is a WDS station then a 4-address frame is constructed. 949 * 950 * NB: the caller is assumed to have setup a node reference 951 * for use; this is necessary to deal with a race condition 952 * when probing for inactive stations. Like ieee80211_mgmt_output 953 * we must cleanup any node reference on error; however we 954 * can safely just unref it as we know it will never be the 955 * last reference to the node. 956 */ 957 int 958 ieee80211_send_nulldata(struct ieee80211_node *ni) 959 { 960 struct ieee80211vap *vap = ni->ni_vap; 961 struct ieee80211com *ic = ni->ni_ic; 962 struct mbuf *m; 963 struct ieee80211_frame *wh; 964 int hdrlen; 965 uint8_t *frm; 966 int ret; 967 968 if (vap->iv_state == IEEE80211_S_CAC) { 969 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 970 ni, "block %s frame in CAC state", "null data"); 971 ieee80211_unref_node(&ni); 972 vap->iv_stats.is_tx_badstate++; 973 return EIO; /* XXX */ 974 } 975 976 if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) 977 hdrlen = sizeof(struct ieee80211_qosframe); 978 else 979 hdrlen = sizeof(struct ieee80211_frame); 980 /* NB: only WDS vap's get 4-address frames */ 981 if (vap->iv_opmode == IEEE80211_M_WDS) 982 hdrlen += IEEE80211_ADDR_LEN; 983 if (ic->ic_flags & IEEE80211_F_DATAPAD) 984 hdrlen = roundup(hdrlen, sizeof(uint32_t)); 985 986 m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0); 987 if (m == NULL) { 988 /* XXX debug msg */ 989 ieee80211_unref_node(&ni); 990 vap->iv_stats.is_tx_nobuf++; 991 return ENOMEM; 992 } 993 KASSERT(M_LEADINGSPACE(m) >= hdrlen, 994 ("leading space %zd", M_LEADINGSPACE(m))); 995 M_PREPEND(m, hdrlen, M_NOWAIT); 996 if (m == NULL) { 997 /* NB: cannot happen */ 998 ieee80211_free_node(ni); 999 return ENOMEM; 1000 } 1001 1002 IEEE80211_TX_LOCK(ic); 1003 1004 wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */ 1005 if (ni->ni_flags & IEEE80211_NODE_QOS) { 1006 const int tid = WME_AC_TO_TID(WME_AC_BE); 1007 uint8_t *qos; 1008 1009 ieee80211_send_setup(ni, m, 1010 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL, 1011 tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 1012 1013 if (vap->iv_opmode == IEEE80211_M_WDS) 1014 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1015 else 1016 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1017 qos[0] = tid & IEEE80211_QOS_TID; 1018 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy) 1019 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1020 qos[1] = 0; 1021 } else { 1022 ieee80211_send_setup(ni, m, 1023 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 1024 IEEE80211_NONQOS_TID, 1025 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 1026 } 1027 if (vap->iv_opmode != IEEE80211_M_WDS) { 1028 /* NB: power management bit is never sent by an AP */ 1029 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 1030 vap->iv_opmode != IEEE80211_M_HOSTAP) 1031 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 1032 } 1033 if ((ic->ic_flags & IEEE80211_F_SCAN) && 1034 (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) { 1035 ieee80211_add_callback(m, ieee80211_nulldata_transmitted, 1036 NULL); 1037 } 1038 m->m_len = m->m_pkthdr.len = hdrlen; 1039 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1040 1041 M_WME_SETAC(m, WME_AC_BE); 1042 1043 IEEE80211_NODE_STAT(ni, tx_data); 1044 1045 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni, 1046 "send %snull data frame on channel %u, pwr mgt %s", 1047 ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "", 1048 ieee80211_chan2ieee(ic, ic->ic_curchan), 1049 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 1050 1051 ret = ieee80211_raw_output(vap, ni, m, NULL); 1052 IEEE80211_TX_UNLOCK(ic); 1053 return (ret); 1054 } 1055 1056 /* 1057 * Assign priority to a frame based on any vlan tag assigned 1058 * to the station and/or any Diffserv setting in an IP header. 1059 * Finally, if an ACM policy is setup (in station mode) it's 1060 * applied. 1061 */ 1062 int 1063 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m) 1064 { 1065 const struct ether_header *eh = NULL; 1066 uint16_t ether_type; 1067 int v_wme_ac, d_wme_ac, ac; 1068 1069 if (__predict_false(m->m_flags & M_ENCAP)) { 1070 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 1071 struct llc *llc; 1072 int hdrlen, subtype; 1073 1074 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1075 if (subtype & IEEE80211_FC0_SUBTYPE_NODATA) { 1076 ac = WME_AC_BE; 1077 goto done; 1078 } 1079 1080 hdrlen = ieee80211_hdrsize(wh); 1081 if (m->m_pkthdr.len < hdrlen + sizeof(*llc)) 1082 return 1; 1083 1084 llc = (struct llc *)mtodo(m, hdrlen); 1085 if (llc->llc_dsap != LLC_SNAP_LSAP || 1086 llc->llc_ssap != LLC_SNAP_LSAP || 1087 llc->llc_control != LLC_UI || 1088 llc->llc_snap.org_code[0] != 0 || 1089 llc->llc_snap.org_code[1] != 0 || 1090 llc->llc_snap.org_code[2] != 0) 1091 return 1; 1092 1093 ether_type = llc->llc_snap.ether_type; 1094 } else { 1095 eh = mtod(m, struct ether_header *); 1096 ether_type = eh->ether_type; 1097 } 1098 1099 /* 1100 * Always promote PAE/EAPOL frames to high priority. 1101 */ 1102 if (ether_type == htons(ETHERTYPE_PAE)) { 1103 /* NB: mark so others don't need to check header */ 1104 m->m_flags |= M_EAPOL; 1105 ac = WME_AC_VO; 1106 goto done; 1107 } 1108 /* 1109 * Non-qos traffic goes to BE. 1110 */ 1111 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 1112 ac = WME_AC_BE; 1113 goto done; 1114 } 1115 1116 /* 1117 * If node has a vlan tag then all traffic 1118 * to it must have a matching tag. 1119 */ 1120 v_wme_ac = 0; 1121 if (ni->ni_vlan != 0) { 1122 if ((m->m_flags & M_VLANTAG) == 0) { 1123 IEEE80211_NODE_STAT(ni, tx_novlantag); 1124 return 1; 1125 } 1126 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 1127 EVL_VLANOFTAG(ni->ni_vlan)) { 1128 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 1129 return 1; 1130 } 1131 /* map vlan priority to AC */ 1132 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan)); 1133 } 1134 1135 /* XXX m_copydata may be too slow for fast path */ 1136 #ifdef INET 1137 if (eh && eh->ether_type == htons(ETHERTYPE_IP)) { 1138 uint8_t tos; 1139 /* 1140 * IP frame, map the DSCP bits from the TOS field. 1141 */ 1142 /* NB: ip header may not be in first mbuf */ 1143 m_copydata(m, sizeof(struct ether_header) + 1144 offsetof(struct ip, ip_tos), sizeof(tos), &tos); 1145 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1146 d_wme_ac = TID_TO_WME_AC(tos); 1147 } else { 1148 #endif /* INET */ 1149 #ifdef INET6 1150 if (eh && eh->ether_type == htons(ETHERTYPE_IPV6)) { 1151 uint32_t flow; 1152 uint8_t tos; 1153 /* 1154 * IPv6 frame, map the DSCP bits from the traffic class field. 1155 */ 1156 m_copydata(m, sizeof(struct ether_header) + 1157 offsetof(struct ip6_hdr, ip6_flow), sizeof(flow), 1158 (caddr_t) &flow); 1159 tos = (uint8_t)(ntohl(flow) >> 20); 1160 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1161 d_wme_ac = TID_TO_WME_AC(tos); 1162 } else { 1163 #endif /* INET6 */ 1164 d_wme_ac = WME_AC_BE; 1165 #ifdef INET6 1166 } 1167 #endif 1168 #ifdef INET 1169 } 1170 #endif 1171 /* 1172 * Use highest priority AC. 1173 */ 1174 if (v_wme_ac > d_wme_ac) 1175 ac = v_wme_ac; 1176 else 1177 ac = d_wme_ac; 1178 1179 /* 1180 * Apply ACM policy. 1181 */ 1182 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) { 1183 static const int acmap[4] = { 1184 WME_AC_BK, /* WME_AC_BE */ 1185 WME_AC_BK, /* WME_AC_BK */ 1186 WME_AC_BE, /* WME_AC_VI */ 1187 WME_AC_VI, /* WME_AC_VO */ 1188 }; 1189 struct ieee80211com *ic = ni->ni_ic; 1190 1191 while (ac != WME_AC_BK && 1192 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 1193 ac = acmap[ac]; 1194 } 1195 done: 1196 M_WME_SETAC(m, ac); 1197 return 0; 1198 } 1199 1200 /* 1201 * Insure there is sufficient contiguous space to encapsulate the 1202 * 802.11 data frame. If room isn't already there, arrange for it. 1203 * Drivers and cipher modules assume we have done the necessary work 1204 * and fail rudely if they don't find the space they need. 1205 */ 1206 struct mbuf * 1207 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize, 1208 struct ieee80211_key *key, struct mbuf *m) 1209 { 1210 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 1211 int needed_space = vap->iv_ic->ic_headroom + hdrsize; 1212 1213 if (key != NULL) { 1214 /* XXX belongs in crypto code? */ 1215 needed_space += key->wk_cipher->ic_header; 1216 /* XXX frags */ 1217 /* 1218 * When crypto is being done in the host we must insure 1219 * the data are writable for the cipher routines; clone 1220 * a writable mbuf chain. 1221 * XXX handle SWMIC specially 1222 */ 1223 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) { 1224 m = m_unshare(m, M_NOWAIT); 1225 if (m == NULL) { 1226 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1227 "%s: cannot get writable mbuf\n", __func__); 1228 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */ 1229 return NULL; 1230 } 1231 } 1232 } 1233 /* 1234 * We know we are called just before stripping an Ethernet 1235 * header and prepending an LLC header. This means we know 1236 * there will be 1237 * sizeof(struct ether_header) - sizeof(struct llc) 1238 * bytes recovered to which we need additional space for the 1239 * 802.11 header and any crypto header. 1240 */ 1241 /* XXX check trailing space and copy instead? */ 1242 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 1243 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); 1244 if (n == NULL) { 1245 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1246 "%s: cannot expand storage\n", __func__); 1247 vap->iv_stats.is_tx_nobuf++; 1248 m_freem(m); 1249 return NULL; 1250 } 1251 KASSERT(needed_space <= MHLEN, 1252 ("not enough room, need %u got %d\n", needed_space, MHLEN)); 1253 /* 1254 * Setup new mbuf to have leading space to prepend the 1255 * 802.11 header and any crypto header bits that are 1256 * required (the latter are added when the driver calls 1257 * back to ieee80211_crypto_encap to do crypto encapsulation). 1258 */ 1259 /* NB: must be first 'cuz it clobbers m_data */ 1260 m_move_pkthdr(n, m); 1261 n->m_len = 0; /* NB: m_gethdr does not set */ 1262 n->m_data += needed_space; 1263 /* 1264 * Pull up Ethernet header to create the expected layout. 1265 * We could use m_pullup but that's overkill (i.e. we don't 1266 * need the actual data) and it cannot fail so do it inline 1267 * for speed. 1268 */ 1269 /* NB: struct ether_header is known to be contiguous */ 1270 n->m_len += sizeof(struct ether_header); 1271 m->m_len -= sizeof(struct ether_header); 1272 m->m_data += sizeof(struct ether_header); 1273 /* 1274 * Replace the head of the chain. 1275 */ 1276 n->m_next = m; 1277 m = n; 1278 } 1279 return m; 1280 #undef TO_BE_RECLAIMED 1281 } 1282 1283 /* 1284 * Return the transmit key to use in sending a unicast frame. 1285 * If a unicast key is set we use that. When no unicast key is set 1286 * we fall back to the default transmit key. 1287 */ 1288 static __inline struct ieee80211_key * 1289 ieee80211_crypto_getucastkey(struct ieee80211vap *vap, 1290 struct ieee80211_node *ni) 1291 { 1292 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) { 1293 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1294 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1295 return NULL; 1296 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1297 } else { 1298 return &ni->ni_ucastkey; 1299 } 1300 } 1301 1302 /* 1303 * Return the transmit key to use in sending a multicast frame. 1304 * Multicast traffic always uses the group key which is installed as 1305 * the default tx key. 1306 */ 1307 static __inline struct ieee80211_key * 1308 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap, 1309 struct ieee80211_node *ni) 1310 { 1311 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1312 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1313 return NULL; 1314 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1315 } 1316 1317 /* 1318 * Encapsulate an outbound data frame. The mbuf chain is updated. 1319 * If an error is encountered NULL is returned. The caller is required 1320 * to provide a node reference and pullup the ethernet header in the 1321 * first mbuf. 1322 * 1323 * NB: Packet is assumed to be processed by ieee80211_classify which 1324 * marked EAPOL frames w/ M_EAPOL. 1325 */ 1326 struct mbuf * 1327 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni, 1328 struct mbuf *m) 1329 { 1330 #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh)) 1331 #define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc) 1332 struct ieee80211com *ic = ni->ni_ic; 1333 #ifdef IEEE80211_SUPPORT_MESH 1334 struct ieee80211_mesh_state *ms = vap->iv_mesh; 1335 struct ieee80211_meshcntl_ae10 *mc; 1336 struct ieee80211_mesh_route *rt = NULL; 1337 int dir = -1; 1338 #endif 1339 struct ether_header eh; 1340 struct ieee80211_frame *wh; 1341 struct ieee80211_key *key; 1342 struct llc *llc; 1343 int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast; 1344 ieee80211_seq seqno; 1345 int meshhdrsize, meshae; 1346 uint8_t *qos; 1347 int is_amsdu = 0; 1348 1349 IEEE80211_TX_LOCK_ASSERT(ic); 1350 1351 is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST)); 1352 1353 /* 1354 * Copy existing Ethernet header to a safe place. The 1355 * rest of the code assumes it's ok to strip it when 1356 * reorganizing state for the final encapsulation. 1357 */ 1358 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 1359 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t)); 1360 1361 /* 1362 * Insure space for additional headers. First identify 1363 * transmit key to use in calculating any buffer adjustments 1364 * required. This is also used below to do privacy 1365 * encapsulation work. Then calculate the 802.11 header 1366 * size and any padding required by the driver. 1367 * 1368 * Note key may be NULL if we fall back to the default 1369 * transmit key and that is not set. In that case the 1370 * buffer may not be expanded as needed by the cipher 1371 * routines, but they will/should discard it. 1372 */ 1373 if (vap->iv_flags & IEEE80211_F_PRIVACY) { 1374 if (vap->iv_opmode == IEEE80211_M_STA || 1375 !IEEE80211_IS_MULTICAST(eh.ether_dhost) || 1376 (vap->iv_opmode == IEEE80211_M_WDS && 1377 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) 1378 key = ieee80211_crypto_getucastkey(vap, ni); 1379 else 1380 key = ieee80211_crypto_getmcastkey(vap, ni); 1381 if (key == NULL && (m->m_flags & M_EAPOL) == 0) { 1382 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, 1383 eh.ether_dhost, 1384 "no default transmit key (%s) deftxkey %u", 1385 __func__, vap->iv_def_txkey); 1386 vap->iv_stats.is_tx_nodefkey++; 1387 goto bad; 1388 } 1389 } else 1390 key = NULL; 1391 /* 1392 * XXX Some ap's don't handle QoS-encapsulated EAPOL 1393 * frames so suppress use. This may be an issue if other 1394 * ap's require all data frames to be QoS-encapsulated 1395 * once negotiated in which case we'll need to make this 1396 * configurable. 1397 * 1398 * Don't send multicast QoS frames. 1399 * Technically multicast frames can be QoS if all stations in the 1400 * BSS are also QoS. 1401 * 1402 * NB: mesh data frames are QoS, including multicast frames. 1403 */ 1404 addqos = 1405 (((is_mcast == 0) && (ni->ni_flags & 1406 (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) || 1407 (vap->iv_opmode == IEEE80211_M_MBSS)) && 1408 (m->m_flags & M_EAPOL) == 0; 1409 1410 if (addqos) 1411 hdrsize = sizeof(struct ieee80211_qosframe); 1412 else 1413 hdrsize = sizeof(struct ieee80211_frame); 1414 #ifdef IEEE80211_SUPPORT_MESH 1415 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1416 /* 1417 * Mesh data frames are encapsulated according to the 1418 * rules of Section 11B.8.5 (p.139 of D3.0 spec). 1419 * o Group Addressed data (aka multicast) originating 1420 * at the local sta are sent w/ 3-address format and 1421 * address extension mode 00 1422 * o Individually Addressed data (aka unicast) originating 1423 * at the local sta are sent w/ 4-address format and 1424 * address extension mode 00 1425 * o Group Addressed data forwarded from a non-mesh sta are 1426 * sent w/ 3-address format and address extension mode 01 1427 * o Individually Address data from another sta are sent 1428 * w/ 4-address format and address extension mode 10 1429 */ 1430 is4addr = 0; /* NB: don't use, disable */ 1431 if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) { 1432 rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost); 1433 KASSERT(rt != NULL, ("route is NULL")); 1434 dir = IEEE80211_FC1_DIR_DSTODS; 1435 hdrsize += IEEE80211_ADDR_LEN; 1436 if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) { 1437 if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate, 1438 vap->iv_myaddr)) { 1439 IEEE80211_NOTE_MAC(vap, 1440 IEEE80211_MSG_MESH, 1441 eh.ether_dhost, 1442 "%s", "trying to send to ourself"); 1443 goto bad; 1444 } 1445 meshae = IEEE80211_MESH_AE_10; 1446 meshhdrsize = 1447 sizeof(struct ieee80211_meshcntl_ae10); 1448 } else { 1449 meshae = IEEE80211_MESH_AE_00; 1450 meshhdrsize = 1451 sizeof(struct ieee80211_meshcntl); 1452 } 1453 } else { 1454 dir = IEEE80211_FC1_DIR_FROMDS; 1455 if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) { 1456 /* proxy group */ 1457 meshae = IEEE80211_MESH_AE_01; 1458 meshhdrsize = 1459 sizeof(struct ieee80211_meshcntl_ae01); 1460 } else { 1461 /* group */ 1462 meshae = IEEE80211_MESH_AE_00; 1463 meshhdrsize = sizeof(struct ieee80211_meshcntl); 1464 } 1465 } 1466 } else { 1467 #endif 1468 /* 1469 * 4-address frames need to be generated for: 1470 * o packets sent through a WDS vap (IEEE80211_M_WDS) 1471 * o packets sent through a vap marked for relaying 1472 * (e.g. a station operating with dynamic WDS) 1473 */ 1474 is4addr = vap->iv_opmode == IEEE80211_M_WDS || 1475 ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) && 1476 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)); 1477 if (is4addr) 1478 hdrsize += IEEE80211_ADDR_LEN; 1479 meshhdrsize = meshae = 0; 1480 #ifdef IEEE80211_SUPPORT_MESH 1481 } 1482 #endif 1483 /* 1484 * Honor driver DATAPAD requirement. 1485 */ 1486 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1487 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1488 else 1489 hdrspace = hdrsize; 1490 1491 if (__predict_true((m->m_flags & M_FF) == 0)) { 1492 /* 1493 * Normal frame. 1494 */ 1495 m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m); 1496 if (m == NULL) { 1497 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 1498 goto bad; 1499 } 1500 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */ 1501 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 1502 llc = mtod(m, struct llc *); 1503 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 1504 llc->llc_control = LLC_UI; 1505 llc->llc_snap.org_code[0] = 0; 1506 llc->llc_snap.org_code[1] = 0; 1507 llc->llc_snap.org_code[2] = 0; 1508 llc->llc_snap.ether_type = eh.ether_type; 1509 } else { 1510 #ifdef IEEE80211_SUPPORT_SUPERG 1511 /* 1512 * Aggregated frame. Check if it's for AMSDU or FF. 1513 * 1514 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented 1515 * anywhere for some reason. But, since 11n requires 1516 * AMSDU RX, we can just assume "11n" == "AMSDU". 1517 */ 1518 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__); 1519 if (ieee80211_amsdu_tx_ok(ni)) { 1520 m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key); 1521 is_amsdu = 1; 1522 } else { 1523 m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key); 1524 } 1525 if (m == NULL) 1526 #endif 1527 goto bad; 1528 } 1529 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 1530 1531 M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT); 1532 if (m == NULL) { 1533 vap->iv_stats.is_tx_nobuf++; 1534 goto bad; 1535 } 1536 wh = mtod(m, struct ieee80211_frame *); 1537 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 1538 *(uint16_t *)wh->i_dur = 0; 1539 qos = NULL; /* NB: quiet compiler */ 1540 if (is4addr) { 1541 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 1542 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); 1543 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1544 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1545 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); 1546 } else switch (vap->iv_opmode) { 1547 case IEEE80211_M_STA: 1548 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 1549 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 1550 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1551 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1552 break; 1553 case IEEE80211_M_IBSS: 1554 case IEEE80211_M_AHDEMO: 1555 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1556 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1557 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1558 /* 1559 * NB: always use the bssid from iv_bss as the 1560 * neighbor's may be stale after an ibss merge 1561 */ 1562 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid); 1563 break; 1564 case IEEE80211_M_HOSTAP: 1565 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1566 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1567 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 1568 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 1569 break; 1570 #ifdef IEEE80211_SUPPORT_MESH 1571 case IEEE80211_M_MBSS: 1572 /* NB: offset by hdrspace to deal with DATAPAD */ 1573 mc = (struct ieee80211_meshcntl_ae10 *) 1574 (mtod(m, uint8_t *) + hdrspace); 1575 wh->i_fc[1] = dir; 1576 switch (meshae) { 1577 case IEEE80211_MESH_AE_00: /* no proxy */ 1578 mc->mc_flags = 0; 1579 if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */ 1580 IEEE80211_ADDR_COPY(wh->i_addr1, 1581 ni->ni_macaddr); 1582 IEEE80211_ADDR_COPY(wh->i_addr2, 1583 vap->iv_myaddr); 1584 IEEE80211_ADDR_COPY(wh->i_addr3, 1585 eh.ether_dhost); 1586 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, 1587 eh.ether_shost); 1588 qos =((struct ieee80211_qosframe_addr4 *) 1589 wh)->i_qos; 1590 } else if (dir == IEEE80211_FC1_DIR_FROMDS) { 1591 /* mcast */ 1592 IEEE80211_ADDR_COPY(wh->i_addr1, 1593 eh.ether_dhost); 1594 IEEE80211_ADDR_COPY(wh->i_addr2, 1595 vap->iv_myaddr); 1596 IEEE80211_ADDR_COPY(wh->i_addr3, 1597 eh.ether_shost); 1598 qos = ((struct ieee80211_qosframe *) 1599 wh)->i_qos; 1600 } 1601 break; 1602 case IEEE80211_MESH_AE_01: /* mcast, proxy */ 1603 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1604 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1605 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1606 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr); 1607 mc->mc_flags = 1; 1608 IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4, 1609 eh.ether_shost); 1610 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1611 break; 1612 case IEEE80211_MESH_AE_10: /* ucast, proxy */ 1613 KASSERT(rt != NULL, ("route is NULL")); 1614 IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop); 1615 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1616 IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate); 1617 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr); 1618 mc->mc_flags = IEEE80211_MESH_AE_10; 1619 IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost); 1620 IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost); 1621 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1622 break; 1623 default: 1624 KASSERT(0, ("meshae %d", meshae)); 1625 break; 1626 } 1627 mc->mc_ttl = ms->ms_ttl; 1628 ms->ms_seq++; 1629 le32enc(mc->mc_seq, ms->ms_seq); 1630 break; 1631 #endif 1632 case IEEE80211_M_WDS: /* NB: is4addr should always be true */ 1633 default: 1634 goto bad; 1635 } 1636 if (m->m_flags & M_MORE_DATA) 1637 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 1638 if (addqos) { 1639 int ac, tid; 1640 1641 if (is4addr) { 1642 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1643 /* NB: mesh case handled earlier */ 1644 } else if (vap->iv_opmode != IEEE80211_M_MBSS) 1645 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1646 ac = M_WME_GETAC(m); 1647 /* map from access class/queue to 11e header priorty value */ 1648 tid = WME_AC_TO_TID(ac); 1649 qos[0] = tid & IEEE80211_QOS_TID; 1650 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 1651 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1652 #ifdef IEEE80211_SUPPORT_MESH 1653 if (vap->iv_opmode == IEEE80211_M_MBSS) 1654 qos[1] = IEEE80211_QOS_MC; 1655 else 1656 #endif 1657 qos[1] = 0; 1658 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 1659 1660 /* 1661 * If this is an A-MSDU then ensure we set the 1662 * relevant field. 1663 */ 1664 if (is_amsdu) 1665 qos[0] |= IEEE80211_QOS_AMSDU; 1666 1667 /* 1668 * XXX TODO TX lock is needed for atomic updates of sequence 1669 * numbers. If the driver does it, then don't do it here; 1670 * and we don't need the TX lock held. 1671 */ 1672 if ((m->m_flags & M_AMPDU_MPDU) == 0) { 1673 /* 1674 * 802.11-2012 9.3.2.10 - 1675 * 1676 * If this is a multicast frame then we need 1677 * to ensure that the sequence number comes from 1678 * a separate seqno space and not the TID space. 1679 * 1680 * Otherwise multicast frames may actually cause 1681 * holes in the TX blockack window space and 1682 * upset various things. 1683 */ 1684 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1685 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1686 else 1687 seqno = ni->ni_txseqs[tid]++; 1688 1689 /* 1690 * NB: don't assign a sequence # to potential 1691 * aggregates; we expect this happens at the 1692 * point the frame comes off any aggregation q 1693 * as otherwise we may introduce holes in the 1694 * BA sequence space and/or make window accouting 1695 * more difficult. 1696 * 1697 * XXX may want to control this with a driver 1698 * capability; this may also change when we pull 1699 * aggregation up into net80211 1700 */ 1701 *(uint16_t *)wh->i_seq = 1702 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1703 M_SEQNO_SET(m, seqno); 1704 } else { 1705 /* NB: zero out i_seq field (for s/w encryption etc) */ 1706 *(uint16_t *)wh->i_seq = 0; 1707 } 1708 } else { 1709 /* 1710 * XXX TODO TX lock is needed for atomic updates of sequence 1711 * numbers. If the driver does it, then don't do it here; 1712 * and we don't need the TX lock held. 1713 */ 1714 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1715 *(uint16_t *)wh->i_seq = 1716 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1717 M_SEQNO_SET(m, seqno); 1718 1719 /* 1720 * XXX TODO: we shouldn't allow EAPOL, etc that would 1721 * be forced to be non-QoS traffic to be A-MSDU encapsulated. 1722 */ 1723 if (is_amsdu) 1724 printf("%s: XXX ERROR: is_amsdu set; not QoS!\n", 1725 __func__); 1726 } 1727 1728 /* 1729 * Check if xmit fragmentation is required. 1730 * 1731 * If the hardware does fragmentation offload, then don't bother 1732 * doing it here. 1733 */ 1734 if (IEEE80211_CONF_FRAG_OFFLOAD(ic)) 1735 txfrag = 0; 1736 else 1737 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold && 1738 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 1739 (vap->iv_caps & IEEE80211_C_TXFRAG) && 1740 (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0); 1741 1742 if (key != NULL) { 1743 /* 1744 * IEEE 802.1X: send EAPOL frames always in the clear. 1745 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 1746 */ 1747 if ((m->m_flags & M_EAPOL) == 0 || 1748 ((vap->iv_flags & IEEE80211_F_WPA) && 1749 (vap->iv_opmode == IEEE80211_M_STA ? 1750 !IEEE80211_KEY_UNDEFINED(key) : 1751 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) { 1752 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 1753 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) { 1754 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT, 1755 eh.ether_dhost, 1756 "%s", "enmic failed, discard frame"); 1757 vap->iv_stats.is_crypto_enmicfail++; 1758 goto bad; 1759 } 1760 } 1761 } 1762 if (txfrag && !ieee80211_fragment(vap, m, hdrsize, 1763 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold)) 1764 goto bad; 1765 1766 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1767 1768 IEEE80211_NODE_STAT(ni, tx_data); 1769 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1770 IEEE80211_NODE_STAT(ni, tx_mcast); 1771 m->m_flags |= M_MCAST; 1772 } else 1773 IEEE80211_NODE_STAT(ni, tx_ucast); 1774 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 1775 1776 return m; 1777 bad: 1778 if (m != NULL) 1779 m_freem(m); 1780 return NULL; 1781 #undef WH4 1782 #undef MC01 1783 } 1784 1785 void 1786 ieee80211_free_mbuf(struct mbuf *m) 1787 { 1788 struct mbuf *next; 1789 1790 if (m == NULL) 1791 return; 1792 1793 do { 1794 next = m->m_nextpkt; 1795 m->m_nextpkt = NULL; 1796 m_freem(m); 1797 } while ((m = next) != NULL); 1798 } 1799 1800 /* 1801 * Fragment the frame according to the specified mtu. 1802 * The size of the 802.11 header (w/o padding) is provided 1803 * so we don't need to recalculate it. We create a new 1804 * mbuf for each fragment and chain it through m_nextpkt; 1805 * we might be able to optimize this by reusing the original 1806 * packet's mbufs but that is significantly more complicated. 1807 */ 1808 static int 1809 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0, 1810 u_int hdrsize, u_int ciphdrsize, u_int mtu) 1811 { 1812 struct ieee80211com *ic = vap->iv_ic; 1813 struct ieee80211_frame *wh, *whf; 1814 struct mbuf *m, *prev; 1815 u_int totalhdrsize, fragno, fragsize, off, remainder, payload; 1816 u_int hdrspace; 1817 1818 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); 1819 KASSERT(m0->m_pkthdr.len > mtu, 1820 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); 1821 1822 /* 1823 * Honor driver DATAPAD requirement. 1824 */ 1825 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1826 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1827 else 1828 hdrspace = hdrsize; 1829 1830 wh = mtod(m0, struct ieee80211_frame *); 1831 /* NB: mark the first frag; it will be propagated below */ 1832 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; 1833 totalhdrsize = hdrspace + ciphdrsize; 1834 fragno = 1; 1835 off = mtu - ciphdrsize; 1836 remainder = m0->m_pkthdr.len - off; 1837 prev = m0; 1838 do { 1839 fragsize = MIN(totalhdrsize + remainder, mtu); 1840 m = m_get2(fragsize, M_NOWAIT, MT_DATA, M_PKTHDR); 1841 if (m == NULL) 1842 goto bad; 1843 /* leave room to prepend any cipher header */ 1844 m_align(m, fragsize - ciphdrsize); 1845 1846 /* 1847 * Form the header in the fragment. Note that since 1848 * we mark the first fragment with the MORE_FRAG bit 1849 * it automatically is propagated to each fragment; we 1850 * need only clear it on the last fragment (done below). 1851 * NB: frag 1+ dont have Mesh Control field present. 1852 */ 1853 whf = mtod(m, struct ieee80211_frame *); 1854 memcpy(whf, wh, hdrsize); 1855 #ifdef IEEE80211_SUPPORT_MESH 1856 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1857 if (IEEE80211_IS_DSTODS(wh)) 1858 ((struct ieee80211_qosframe_addr4 *) 1859 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1860 else 1861 ((struct ieee80211_qosframe *) 1862 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1863 } 1864 #endif 1865 *(uint16_t *)&whf->i_seq[0] |= htole16( 1866 (fragno & IEEE80211_SEQ_FRAG_MASK) << 1867 IEEE80211_SEQ_FRAG_SHIFT); 1868 fragno++; 1869 1870 payload = fragsize - totalhdrsize; 1871 /* NB: destination is known to be contiguous */ 1872 1873 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace); 1874 m->m_len = hdrspace + payload; 1875 m->m_pkthdr.len = hdrspace + payload; 1876 m->m_flags |= M_FRAG; 1877 1878 /* chain up the fragment */ 1879 prev->m_nextpkt = m; 1880 prev = m; 1881 1882 /* deduct fragment just formed */ 1883 remainder -= payload; 1884 off += payload; 1885 } while (remainder != 0); 1886 1887 /* set the last fragment */ 1888 m->m_flags |= M_LASTFRAG; 1889 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; 1890 1891 /* strip first mbuf now that everything has been copied */ 1892 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); 1893 m0->m_flags |= M_FIRSTFRAG | M_FRAG; 1894 1895 vap->iv_stats.is_tx_fragframes++; 1896 vap->iv_stats.is_tx_frags += fragno-1; 1897 1898 return 1; 1899 bad: 1900 /* reclaim fragments but leave original frame for caller to free */ 1901 ieee80211_free_mbuf(m0->m_nextpkt); 1902 m0->m_nextpkt = NULL; 1903 return 0; 1904 } 1905 1906 /* 1907 * Add a supported rates element id to a frame. 1908 */ 1909 uint8_t * 1910 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs) 1911 { 1912 int nrates; 1913 1914 *frm++ = IEEE80211_ELEMID_RATES; 1915 nrates = rs->rs_nrates; 1916 if (nrates > IEEE80211_RATE_SIZE) 1917 nrates = IEEE80211_RATE_SIZE; 1918 *frm++ = nrates; 1919 memcpy(frm, rs->rs_rates, nrates); 1920 return frm + nrates; 1921 } 1922 1923 /* 1924 * Add an extended supported rates element id to a frame. 1925 */ 1926 uint8_t * 1927 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs) 1928 { 1929 /* 1930 * Add an extended supported rates element if operating in 11g mode. 1931 */ 1932 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 1933 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 1934 *frm++ = IEEE80211_ELEMID_XRATES; 1935 *frm++ = nrates; 1936 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 1937 frm += nrates; 1938 } 1939 return frm; 1940 } 1941 1942 /* 1943 * Add an ssid element to a frame. 1944 */ 1945 uint8_t * 1946 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) 1947 { 1948 *frm++ = IEEE80211_ELEMID_SSID; 1949 *frm++ = len; 1950 memcpy(frm, ssid, len); 1951 return frm + len; 1952 } 1953 1954 /* 1955 * Add an erp element to a frame. 1956 */ 1957 static uint8_t * 1958 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic) 1959 { 1960 uint8_t erp; 1961 1962 *frm++ = IEEE80211_ELEMID_ERP; 1963 *frm++ = 1; 1964 erp = 0; 1965 if (ic->ic_nonerpsta != 0) 1966 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 1967 if (ic->ic_flags & IEEE80211_F_USEPROT) 1968 erp |= IEEE80211_ERP_USE_PROTECTION; 1969 if (ic->ic_flags & IEEE80211_F_USEBARKER) 1970 erp |= IEEE80211_ERP_LONG_PREAMBLE; 1971 *frm++ = erp; 1972 return frm; 1973 } 1974 1975 /* 1976 * Add a CFParams element to a frame. 1977 */ 1978 static uint8_t * 1979 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic) 1980 { 1981 #define ADDSHORT(frm, v) do { \ 1982 le16enc(frm, v); \ 1983 frm += 2; \ 1984 } while (0) 1985 *frm++ = IEEE80211_ELEMID_CFPARMS; 1986 *frm++ = 6; 1987 *frm++ = 0; /* CFP count */ 1988 *frm++ = 2; /* CFP period */ 1989 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */ 1990 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */ 1991 return frm; 1992 #undef ADDSHORT 1993 } 1994 1995 static __inline uint8_t * 1996 add_appie(uint8_t *frm, const struct ieee80211_appie *ie) 1997 { 1998 memcpy(frm, ie->ie_data, ie->ie_len); 1999 return frm + ie->ie_len; 2000 } 2001 2002 static __inline uint8_t * 2003 add_ie(uint8_t *frm, const uint8_t *ie) 2004 { 2005 memcpy(frm, ie, 2 + ie[1]); 2006 return frm + 2 + ie[1]; 2007 } 2008 2009 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 2010 /* 2011 * Add a WME information element to a frame. 2012 */ 2013 uint8_t * 2014 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme) 2015 { 2016 static const struct ieee80211_wme_info info = { 2017 .wme_id = IEEE80211_ELEMID_VENDOR, 2018 .wme_len = sizeof(struct ieee80211_wme_info) - 2, 2019 .wme_oui = { WME_OUI_BYTES }, 2020 .wme_type = WME_OUI_TYPE, 2021 .wme_subtype = WME_INFO_OUI_SUBTYPE, 2022 .wme_version = WME_VERSION, 2023 .wme_info = 0, 2024 }; 2025 memcpy(frm, &info, sizeof(info)); 2026 return frm + sizeof(info); 2027 } 2028 2029 /* 2030 * Add a WME parameters element to a frame. 2031 */ 2032 static uint8_t * 2033 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme) 2034 { 2035 #define SM(_v, _f) (((_v) << _f##_S) & _f) 2036 #define ADDSHORT(frm, v) do { \ 2037 le16enc(frm, v); \ 2038 frm += 2; \ 2039 } while (0) 2040 /* NB: this works 'cuz a param has an info at the front */ 2041 static const struct ieee80211_wme_info param = { 2042 .wme_id = IEEE80211_ELEMID_VENDOR, 2043 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 2044 .wme_oui = { WME_OUI_BYTES }, 2045 .wme_type = WME_OUI_TYPE, 2046 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 2047 .wme_version = WME_VERSION, 2048 }; 2049 int i; 2050 2051 memcpy(frm, ¶m, sizeof(param)); 2052 frm += __offsetof(struct ieee80211_wme_info, wme_info); 2053 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ 2054 *frm++ = 0; /* reserved field */ 2055 for (i = 0; i < WME_NUM_AC; i++) { 2056 const struct wmeParams *ac = 2057 &wme->wme_bssChanParams.cap_wmeParams[i]; 2058 *frm++ = SM(i, WME_PARAM_ACI) 2059 | SM(ac->wmep_acm, WME_PARAM_ACM) 2060 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) 2061 ; 2062 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) 2063 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) 2064 ; 2065 ADDSHORT(frm, ac->wmep_txopLimit); 2066 } 2067 return frm; 2068 #undef SM 2069 #undef ADDSHORT 2070 } 2071 #undef WME_OUI_BYTES 2072 2073 /* 2074 * Add an 11h Power Constraint element to a frame. 2075 */ 2076 static uint8_t * 2077 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap) 2078 { 2079 const struct ieee80211_channel *c = vap->iv_bss->ni_chan; 2080 /* XXX per-vap tx power limit? */ 2081 int8_t limit = vap->iv_ic->ic_txpowlimit / 2; 2082 2083 frm[0] = IEEE80211_ELEMID_PWRCNSTR; 2084 frm[1] = 1; 2085 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0; 2086 return frm + 3; 2087 } 2088 2089 /* 2090 * Add an 11h Power Capability element to a frame. 2091 */ 2092 static uint8_t * 2093 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c) 2094 { 2095 frm[0] = IEEE80211_ELEMID_PWRCAP; 2096 frm[1] = 2; 2097 frm[2] = c->ic_minpower; 2098 frm[3] = c->ic_maxpower; 2099 return frm + 4; 2100 } 2101 2102 /* 2103 * Add an 11h Supported Channels element to a frame. 2104 */ 2105 static uint8_t * 2106 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic) 2107 { 2108 static const int ielen = 26; 2109 2110 frm[0] = IEEE80211_ELEMID_SUPPCHAN; 2111 frm[1] = ielen; 2112 /* XXX not correct */ 2113 memcpy(frm+2, ic->ic_chan_avail, ielen); 2114 return frm + 2 + ielen; 2115 } 2116 2117 /* 2118 * Add an 11h Quiet time element to a frame. 2119 */ 2120 static uint8_t * 2121 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap, int update) 2122 { 2123 struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm; 2124 2125 quiet->quiet_ie = IEEE80211_ELEMID_QUIET; 2126 quiet->len = 6; 2127 2128 /* 2129 * Only update every beacon interval - otherwise probe responses 2130 * would update the quiet count value. 2131 */ 2132 if (update) { 2133 if (vap->iv_quiet_count_value == 1) 2134 vap->iv_quiet_count_value = vap->iv_quiet_count; 2135 else if (vap->iv_quiet_count_value > 1) 2136 vap->iv_quiet_count_value--; 2137 } 2138 2139 if (vap->iv_quiet_count_value == 0) { 2140 /* value 0 is reserved as per 802.11h standerd */ 2141 vap->iv_quiet_count_value = 1; 2142 } 2143 2144 quiet->tbttcount = vap->iv_quiet_count_value; 2145 quiet->period = vap->iv_quiet_period; 2146 quiet->duration = htole16(vap->iv_quiet_duration); 2147 quiet->offset = htole16(vap->iv_quiet_offset); 2148 return frm + sizeof(*quiet); 2149 } 2150 2151 /* 2152 * Add an 11h Channel Switch Announcement element to a frame. 2153 * Note that we use the per-vap CSA count to adjust the global 2154 * counter so we can use this routine to form probe response 2155 * frames and get the current count. 2156 */ 2157 static uint8_t * 2158 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap) 2159 { 2160 struct ieee80211com *ic = vap->iv_ic; 2161 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm; 2162 2163 csa->csa_ie = IEEE80211_ELEMID_CSA; 2164 csa->csa_len = 3; 2165 csa->csa_mode = 1; /* XXX force quiet on channel */ 2166 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan); 2167 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count; 2168 return frm + sizeof(*csa); 2169 } 2170 2171 /* 2172 * Add an 11h country information element to a frame. 2173 */ 2174 static uint8_t * 2175 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic) 2176 { 2177 2178 if (ic->ic_countryie == NULL || 2179 ic->ic_countryie_chan != ic->ic_bsschan) { 2180 /* 2181 * Handle lazy construction of ie. This is done on 2182 * first use and after a channel change that requires 2183 * re-calculation. 2184 */ 2185 if (ic->ic_countryie != NULL) 2186 IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE); 2187 ic->ic_countryie = ieee80211_alloc_countryie(ic); 2188 if (ic->ic_countryie == NULL) 2189 return frm; 2190 ic->ic_countryie_chan = ic->ic_bsschan; 2191 } 2192 return add_appie(frm, ic->ic_countryie); 2193 } 2194 2195 uint8_t * 2196 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap) 2197 { 2198 if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) 2199 return (add_ie(frm, vap->iv_wpa_ie)); 2200 else { 2201 /* XXX else complain? */ 2202 return (frm); 2203 } 2204 } 2205 2206 uint8_t * 2207 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap) 2208 { 2209 if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL) 2210 return (add_ie(frm, vap->iv_rsn_ie)); 2211 else { 2212 /* XXX else complain? */ 2213 return (frm); 2214 } 2215 } 2216 2217 uint8_t * 2218 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni) 2219 { 2220 if (ni->ni_flags & IEEE80211_NODE_QOS) { 2221 *frm++ = IEEE80211_ELEMID_QOS; 2222 *frm++ = 1; 2223 *frm++ = 0; 2224 } 2225 2226 return (frm); 2227 } 2228 2229 /* 2230 * Send a probe request frame with the specified ssid 2231 * and any optional information element data. 2232 */ 2233 int 2234 ieee80211_send_probereq(struct ieee80211_node *ni, 2235 const uint8_t sa[IEEE80211_ADDR_LEN], 2236 const uint8_t da[IEEE80211_ADDR_LEN], 2237 const uint8_t bssid[IEEE80211_ADDR_LEN], 2238 const uint8_t *ssid, size_t ssidlen) 2239 { 2240 struct ieee80211vap *vap = ni->ni_vap; 2241 struct ieee80211com *ic = ni->ni_ic; 2242 struct ieee80211_node *bss; 2243 const struct ieee80211_txparam *tp; 2244 struct ieee80211_bpf_params params; 2245 const struct ieee80211_rateset *rs; 2246 struct mbuf *m; 2247 uint8_t *frm; 2248 int ret; 2249 2250 bss = ieee80211_ref_node(vap->iv_bss); 2251 2252 if (vap->iv_state == IEEE80211_S_CAC) { 2253 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni, 2254 "block %s frame in CAC state", "probe request"); 2255 vap->iv_stats.is_tx_badstate++; 2256 ieee80211_free_node(bss); 2257 return EIO; /* XXX */ 2258 } 2259 2260 /* 2261 * Hold a reference on the node so it doesn't go away until after 2262 * the xmit is complete all the way in the driver. On error we 2263 * will remove our reference. 2264 */ 2265 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2266 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2267 __func__, __LINE__, 2268 ni, ether_sprintf(ni->ni_macaddr), 2269 ieee80211_node_refcnt(ni)+1); 2270 ieee80211_ref_node(ni); 2271 2272 /* 2273 * prreq frame format 2274 * [tlv] ssid 2275 * [tlv] supported rates 2276 * [tlv] RSN (optional) 2277 * [tlv] extended supported rates 2278 * [tlv] HT cap (optional) 2279 * [tlv] VHT cap (optional) 2280 * [tlv] WPA (optional) 2281 * [tlv] user-specified ie's 2282 */ 2283 m = ieee80211_getmgtframe(&frm, 2284 ic->ic_headroom + sizeof(struct ieee80211_frame), 2285 2 + IEEE80211_NWID_LEN 2286 + 2 + IEEE80211_RATE_SIZE 2287 + sizeof(struct ieee80211_ie_htcap) 2288 + sizeof(struct ieee80211_ie_vhtcap) 2289 + sizeof(struct ieee80211_ie_htinfo) /* XXX not needed? */ 2290 + sizeof(struct ieee80211_ie_wpa) 2291 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2292 + sizeof(struct ieee80211_ie_wpa) 2293 + (vap->iv_appie_probereq != NULL ? 2294 vap->iv_appie_probereq->ie_len : 0) 2295 ); 2296 if (m == NULL) { 2297 vap->iv_stats.is_tx_nobuf++; 2298 ieee80211_free_node(ni); 2299 ieee80211_free_node(bss); 2300 return ENOMEM; 2301 } 2302 2303 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 2304 rs = ieee80211_get_suprates(ic, ic->ic_curchan); 2305 frm = ieee80211_add_rates(frm, rs); 2306 frm = ieee80211_add_rsn(frm, vap); 2307 frm = ieee80211_add_xrates(frm, rs); 2308 2309 /* 2310 * Note: we can't use bss; we don't have one yet. 2311 * 2312 * So, we should announce our capabilities 2313 * in this channel mode (2g/5g), not the 2314 * channel details itself. 2315 */ 2316 if ((vap->iv_opmode == IEEE80211_M_IBSS) && 2317 (vap->iv_flags_ht & IEEE80211_FHT_HT)) { 2318 struct ieee80211_channel *c; 2319 2320 /* 2321 * Get the HT channel that we should try upgrading to. 2322 * If we can do 40MHz then this'll upgrade it appropriately. 2323 */ 2324 c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan, 2325 vap->iv_flags_ht); 2326 frm = ieee80211_add_htcap_ch(frm, vap, c); 2327 } 2328 2329 /* 2330 * XXX TODO: need to figure out what/how to update the 2331 * VHT channel. 2332 */ 2333 #if 0 2334 (vap->iv_flags_vht & IEEE80211_FVHT_VHT) { 2335 struct ieee80211_channel *c; 2336 2337 c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan, 2338 vap->iv_flags_ht); 2339 c = ieee80211_vht_adjust_channel(ic, c, vap->iv_flags_vht); 2340 frm = ieee80211_add_vhtcap_ch(frm, vap, c); 2341 } 2342 #endif 2343 2344 frm = ieee80211_add_wpa(frm, vap); 2345 if (vap->iv_appie_probereq != NULL) 2346 frm = add_appie(frm, vap->iv_appie_probereq); 2347 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2348 2349 KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame), 2350 ("leading space %zd", M_LEADINGSPACE(m))); 2351 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2352 if (m == NULL) { 2353 /* NB: cannot happen */ 2354 ieee80211_free_node(ni); 2355 ieee80211_free_node(bss); 2356 return ENOMEM; 2357 } 2358 2359 IEEE80211_TX_LOCK(ic); 2360 ieee80211_send_setup(ni, m, 2361 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 2362 IEEE80211_NONQOS_TID, sa, da, bssid); 2363 /* XXX power management? */ 2364 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2365 2366 M_WME_SETAC(m, WME_AC_BE); 2367 2368 IEEE80211_NODE_STAT(ni, tx_probereq); 2369 IEEE80211_NODE_STAT(ni, tx_mgmt); 2370 2371 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2372 "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n", 2373 ieee80211_chan2ieee(ic, ic->ic_curchan), 2374 ether_sprintf(bssid), 2375 sa, ":", 2376 da, ":", 2377 ssidlen, ssid); 2378 2379 memset(¶ms, 0, sizeof(params)); 2380 params.ibp_pri = M_WME_GETAC(m); 2381 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 2382 params.ibp_rate0 = tp->mgmtrate; 2383 if (IEEE80211_IS_MULTICAST(da)) { 2384 params.ibp_flags |= IEEE80211_BPF_NOACK; 2385 params.ibp_try0 = 1; 2386 } else 2387 params.ibp_try0 = tp->maxretry; 2388 params.ibp_power = ni->ni_txpower; 2389 ret = ieee80211_raw_output(vap, ni, m, ¶ms); 2390 IEEE80211_TX_UNLOCK(ic); 2391 ieee80211_free_node(bss); 2392 return (ret); 2393 } 2394 2395 /* 2396 * Calculate capability information for mgt frames. 2397 */ 2398 uint16_t 2399 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan) 2400 { 2401 struct ieee80211com *ic = vap->iv_ic; 2402 uint16_t capinfo; 2403 2404 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode")); 2405 2406 if (vap->iv_opmode == IEEE80211_M_HOSTAP) 2407 capinfo = IEEE80211_CAPINFO_ESS; 2408 else if (vap->iv_opmode == IEEE80211_M_IBSS) 2409 capinfo = IEEE80211_CAPINFO_IBSS; 2410 else 2411 capinfo = 0; 2412 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2413 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2414 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2415 IEEE80211_IS_CHAN_2GHZ(chan)) 2416 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2417 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2418 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2419 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH)) 2420 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2421 return capinfo; 2422 } 2423 2424 /* 2425 * Send a management frame. The node is for the destination (or ic_bss 2426 * when in station mode). Nodes other than ic_bss have their reference 2427 * count bumped to reflect our use for an indeterminant time. 2428 */ 2429 int 2430 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg) 2431 { 2432 #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT) 2433 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2434 struct ieee80211vap *vap = ni->ni_vap; 2435 struct ieee80211com *ic = ni->ni_ic; 2436 struct ieee80211_node *bss = vap->iv_bss; 2437 struct ieee80211_bpf_params params; 2438 struct mbuf *m; 2439 uint8_t *frm; 2440 uint16_t capinfo; 2441 int has_challenge, is_shared_key, ret, status; 2442 2443 KASSERT(ni != NULL, ("null node")); 2444 2445 /* 2446 * Hold a reference on the node so it doesn't go away until after 2447 * the xmit is complete all the way in the driver. On error we 2448 * will remove our reference. 2449 */ 2450 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2451 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2452 __func__, __LINE__, 2453 ni, ether_sprintf(ni->ni_macaddr), 2454 ieee80211_node_refcnt(ni)+1); 2455 ieee80211_ref_node(ni); 2456 2457 memset(¶ms, 0, sizeof(params)); 2458 switch (type) { 2459 2460 case IEEE80211_FC0_SUBTYPE_AUTH: 2461 status = arg >> 16; 2462 arg &= 0xffff; 2463 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || 2464 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 2465 ni->ni_challenge != NULL); 2466 2467 /* 2468 * Deduce whether we're doing open authentication or 2469 * shared key authentication. We do the latter if 2470 * we're in the middle of a shared key authentication 2471 * handshake or if we're initiating an authentication 2472 * request and configured to use shared key. 2473 */ 2474 is_shared_key = has_challenge || 2475 arg >= IEEE80211_AUTH_SHARED_RESPONSE || 2476 (arg == IEEE80211_AUTH_SHARED_REQUEST && 2477 bss->ni_authmode == IEEE80211_AUTH_SHARED); 2478 2479 m = ieee80211_getmgtframe(&frm, 2480 ic->ic_headroom + sizeof(struct ieee80211_frame), 2481 3 * sizeof(uint16_t) 2482 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? 2483 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0) 2484 ); 2485 if (m == NULL) 2486 senderr(ENOMEM, is_tx_nobuf); 2487 2488 ((uint16_t *)frm)[0] = 2489 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) 2490 : htole16(IEEE80211_AUTH_ALG_OPEN); 2491 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */ 2492 ((uint16_t *)frm)[2] = htole16(status);/* status */ 2493 2494 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { 2495 ((uint16_t *)frm)[3] = 2496 htole16((IEEE80211_CHALLENGE_LEN << 8) | 2497 IEEE80211_ELEMID_CHALLENGE); 2498 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge, 2499 IEEE80211_CHALLENGE_LEN); 2500 m->m_pkthdr.len = m->m_len = 2501 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN; 2502 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 2503 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2504 "request encrypt frame (%s)", __func__); 2505 /* mark frame for encryption */ 2506 params.ibp_flags |= IEEE80211_BPF_CRYPTO; 2507 } 2508 } else 2509 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t); 2510 2511 /* XXX not right for shared key */ 2512 if (status == IEEE80211_STATUS_SUCCESS) 2513 IEEE80211_NODE_STAT(ni, tx_auth); 2514 else 2515 IEEE80211_NODE_STAT(ni, tx_auth_fail); 2516 2517 if (vap->iv_opmode == IEEE80211_M_STA) 2518 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2519 (void *) vap->iv_state); 2520 break; 2521 2522 case IEEE80211_FC0_SUBTYPE_DEAUTH: 2523 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2524 "send station deauthenticate (reason: %d (%s))", arg, 2525 ieee80211_reason_to_string(arg)); 2526 m = ieee80211_getmgtframe(&frm, 2527 ic->ic_headroom + sizeof(struct ieee80211_frame), 2528 sizeof(uint16_t)); 2529 if (m == NULL) 2530 senderr(ENOMEM, is_tx_nobuf); 2531 *(uint16_t *)frm = htole16(arg); /* reason */ 2532 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2533 2534 IEEE80211_NODE_STAT(ni, tx_deauth); 2535 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 2536 2537 ieee80211_node_unauthorize(ni); /* port closed */ 2538 break; 2539 2540 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 2541 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 2542 /* 2543 * asreq frame format 2544 * [2] capability information 2545 * [2] listen interval 2546 * [6*] current AP address (reassoc only) 2547 * [tlv] ssid 2548 * [tlv] supported rates 2549 * [tlv] extended supported rates 2550 * [4] power capability (optional) 2551 * [28] supported channels (optional) 2552 * [tlv] HT capabilities 2553 * [tlv] VHT capabilities 2554 * [tlv] WME (optional) 2555 * [tlv] Vendor OUI HT capabilities (optional) 2556 * [tlv] Atheros capabilities (if negotiated) 2557 * [tlv] AppIE's (optional) 2558 */ 2559 m = ieee80211_getmgtframe(&frm, 2560 ic->ic_headroom + sizeof(struct ieee80211_frame), 2561 sizeof(uint16_t) 2562 + sizeof(uint16_t) 2563 + IEEE80211_ADDR_LEN 2564 + 2 + IEEE80211_NWID_LEN 2565 + 2 + IEEE80211_RATE_SIZE 2566 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2567 + 4 2568 + 2 + 26 2569 + sizeof(struct ieee80211_wme_info) 2570 + sizeof(struct ieee80211_ie_htcap) 2571 + sizeof(struct ieee80211_ie_vhtcap) 2572 + 4 + sizeof(struct ieee80211_ie_htcap) 2573 #ifdef IEEE80211_SUPPORT_SUPERG 2574 + sizeof(struct ieee80211_ath_ie) 2575 #endif 2576 + (vap->iv_appie_wpa != NULL ? 2577 vap->iv_appie_wpa->ie_len : 0) 2578 + (vap->iv_appie_assocreq != NULL ? 2579 vap->iv_appie_assocreq->ie_len : 0) 2580 ); 2581 if (m == NULL) 2582 senderr(ENOMEM, is_tx_nobuf); 2583 2584 KASSERT(vap->iv_opmode == IEEE80211_M_STA, 2585 ("wrong mode %u", vap->iv_opmode)); 2586 capinfo = IEEE80211_CAPINFO_ESS; 2587 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2588 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2589 /* 2590 * NB: Some 11a AP's reject the request when 2591 * short preamble is set. 2592 */ 2593 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2594 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2595 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2596 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 2597 (ic->ic_caps & IEEE80211_C_SHSLOT)) 2598 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2599 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) && 2600 (vap->iv_flags & IEEE80211_F_DOTH)) 2601 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2602 *(uint16_t *)frm = htole16(capinfo); 2603 frm += 2; 2604 2605 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!")); 2606 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval, 2607 bss->ni_intval)); 2608 frm += 2; 2609 2610 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 2611 IEEE80211_ADDR_COPY(frm, bss->ni_bssid); 2612 frm += IEEE80211_ADDR_LEN; 2613 } 2614 2615 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 2616 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2617 frm = ieee80211_add_rsn(frm, vap); 2618 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2619 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) { 2620 frm = ieee80211_add_powercapability(frm, 2621 ic->ic_curchan); 2622 frm = ieee80211_add_supportedchannels(frm, ic); 2623 } 2624 2625 /* 2626 * Check the channel - we may be using an 11n NIC with an 2627 * 11n capable station, but we're configured to be an 11b 2628 * channel. 2629 */ 2630 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2631 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2632 ni->ni_ies.htcap_ie != NULL && 2633 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) { 2634 frm = ieee80211_add_htcap(frm, ni); 2635 } 2636 2637 if ((vap->iv_flags_vht & IEEE80211_FVHT_VHT) && 2638 IEEE80211_IS_CHAN_VHT(ni->ni_chan) && 2639 ni->ni_ies.vhtcap_ie != NULL && 2640 ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) { 2641 frm = ieee80211_add_vhtcap(frm, ni); 2642 } 2643 2644 frm = ieee80211_add_wpa(frm, vap); 2645 if ((ic->ic_flags & IEEE80211_F_WME) && 2646 ni->ni_ies.wme_ie != NULL) 2647 frm = ieee80211_add_wme_info(frm, &ic->ic_wme); 2648 2649 /* 2650 * Same deal - only send HT info if we're on an 11n 2651 * capable channel. 2652 */ 2653 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2654 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2655 ni->ni_ies.htcap_ie != NULL && 2656 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) { 2657 frm = ieee80211_add_htcap_vendor(frm, ni); 2658 } 2659 #ifdef IEEE80211_SUPPORT_SUPERG 2660 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) { 2661 frm = ieee80211_add_ath(frm, 2662 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2663 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2664 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2665 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2666 } 2667 #endif /* IEEE80211_SUPPORT_SUPERG */ 2668 if (vap->iv_appie_assocreq != NULL) 2669 frm = add_appie(frm, vap->iv_appie_assocreq); 2670 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2671 2672 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2673 (void *) vap->iv_state); 2674 break; 2675 2676 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 2677 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 2678 /* 2679 * asresp frame format 2680 * [2] capability information 2681 * [2] status 2682 * [2] association ID 2683 * [tlv] supported rates 2684 * [tlv] extended supported rates 2685 * [tlv] HT capabilities (standard, if STA enabled) 2686 * [tlv] HT information (standard, if STA enabled) 2687 * [tlv] VHT capabilities (standard, if STA enabled) 2688 * [tlv] VHT information (standard, if STA enabled) 2689 * [tlv] WME (if configured and STA enabled) 2690 * [tlv] HT capabilities (vendor OUI, if STA enabled) 2691 * [tlv] HT information (vendor OUI, if STA enabled) 2692 * [tlv] Atheros capabilities (if STA enabled) 2693 * [tlv] AppIE's (optional) 2694 */ 2695 m = ieee80211_getmgtframe(&frm, 2696 ic->ic_headroom + sizeof(struct ieee80211_frame), 2697 sizeof(uint16_t) 2698 + sizeof(uint16_t) 2699 + sizeof(uint16_t) 2700 + 2 + IEEE80211_RATE_SIZE 2701 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2702 + sizeof(struct ieee80211_ie_htcap) + 4 2703 + sizeof(struct ieee80211_ie_htinfo) + 4 2704 + sizeof(struct ieee80211_ie_vhtcap) 2705 + sizeof(struct ieee80211_ie_vht_operation) 2706 + sizeof(struct ieee80211_wme_param) 2707 #ifdef IEEE80211_SUPPORT_SUPERG 2708 + sizeof(struct ieee80211_ath_ie) 2709 #endif 2710 + (vap->iv_appie_assocresp != NULL ? 2711 vap->iv_appie_assocresp->ie_len : 0) 2712 ); 2713 if (m == NULL) 2714 senderr(ENOMEM, is_tx_nobuf); 2715 2716 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2717 *(uint16_t *)frm = htole16(capinfo); 2718 frm += 2; 2719 2720 *(uint16_t *)frm = htole16(arg); /* status */ 2721 frm += 2; 2722 2723 if (arg == IEEE80211_STATUS_SUCCESS) { 2724 *(uint16_t *)frm = htole16(ni->ni_associd); 2725 IEEE80211_NODE_STAT(ni, tx_assoc); 2726 } else 2727 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 2728 frm += 2; 2729 2730 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2731 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2732 /* NB: respond according to what we received */ 2733 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) { 2734 frm = ieee80211_add_htcap(frm, ni); 2735 frm = ieee80211_add_htinfo(frm, ni); 2736 } 2737 if ((vap->iv_flags & IEEE80211_F_WME) && 2738 ni->ni_ies.wme_ie != NULL) 2739 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2740 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) { 2741 frm = ieee80211_add_htcap_vendor(frm, ni); 2742 frm = ieee80211_add_htinfo_vendor(frm, ni); 2743 } 2744 if (ni->ni_flags & IEEE80211_NODE_VHT) { 2745 frm = ieee80211_add_vhtcap(frm, ni); 2746 frm = ieee80211_add_vhtinfo(frm, ni); 2747 } 2748 #ifdef IEEE80211_SUPPORT_SUPERG 2749 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) 2750 frm = ieee80211_add_ath(frm, 2751 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2752 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2753 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2754 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2755 #endif /* IEEE80211_SUPPORT_SUPERG */ 2756 if (vap->iv_appie_assocresp != NULL) 2757 frm = add_appie(frm, vap->iv_appie_assocresp); 2758 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2759 break; 2760 2761 case IEEE80211_FC0_SUBTYPE_DISASSOC: 2762 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, 2763 "send station disassociate (reason: %d (%s))", arg, 2764 ieee80211_reason_to_string(arg)); 2765 m = ieee80211_getmgtframe(&frm, 2766 ic->ic_headroom + sizeof(struct ieee80211_frame), 2767 sizeof(uint16_t)); 2768 if (m == NULL) 2769 senderr(ENOMEM, is_tx_nobuf); 2770 *(uint16_t *)frm = htole16(arg); /* reason */ 2771 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2772 2773 IEEE80211_NODE_STAT(ni, tx_disassoc); 2774 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 2775 break; 2776 2777 default: 2778 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni, 2779 "invalid mgmt frame type %u", type); 2780 senderr(EINVAL, is_tx_unknownmgt); 2781 /* NOTREACHED */ 2782 } 2783 2784 /* NB: force non-ProbeResp frames to the highest queue */ 2785 params.ibp_pri = WME_AC_VO; 2786 params.ibp_rate0 = bss->ni_txparms->mgmtrate; 2787 /* NB: we know all frames are unicast */ 2788 params.ibp_try0 = bss->ni_txparms->maxretry; 2789 params.ibp_power = bss->ni_txpower; 2790 return ieee80211_mgmt_output(ni, m, type, ¶ms); 2791 bad: 2792 ieee80211_free_node(ni); 2793 return ret; 2794 #undef senderr 2795 #undef HTFLAGS 2796 } 2797 2798 /* 2799 * Return an mbuf with a probe response frame in it. 2800 * Space is left to prepend and 802.11 header at the 2801 * front but it's left to the caller to fill in. 2802 */ 2803 struct mbuf * 2804 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy) 2805 { 2806 struct ieee80211vap *vap = bss->ni_vap; 2807 struct ieee80211com *ic = bss->ni_ic; 2808 const struct ieee80211_rateset *rs; 2809 struct mbuf *m; 2810 uint16_t capinfo; 2811 uint8_t *frm; 2812 2813 /* 2814 * probe response frame format 2815 * [8] time stamp 2816 * [2] beacon interval 2817 * [2] cabability information 2818 * [tlv] ssid 2819 * [tlv] supported rates 2820 * [tlv] parameter set (FH/DS) 2821 * [tlv] parameter set (IBSS) 2822 * [tlv] country (optional) 2823 * [3] power control (optional) 2824 * [5] channel switch announcement (CSA) (optional) 2825 * [tlv] extended rate phy (ERP) 2826 * [tlv] extended supported rates 2827 * [tlv] RSN (optional) 2828 * [tlv] HT capabilities 2829 * [tlv] HT information 2830 * [tlv] VHT capabilities 2831 * [tlv] VHT information 2832 * [tlv] WPA (optional) 2833 * [tlv] WME (optional) 2834 * [tlv] Vendor OUI HT capabilities (optional) 2835 * [tlv] Vendor OUI HT information (optional) 2836 * [tlv] Atheros capabilities 2837 * [tlv] AppIE's (optional) 2838 * [tlv] Mesh ID (MBSS) 2839 * [tlv] Mesh Conf (MBSS) 2840 */ 2841 m = ieee80211_getmgtframe(&frm, 2842 ic->ic_headroom + sizeof(struct ieee80211_frame), 2843 8 2844 + sizeof(uint16_t) 2845 + sizeof(uint16_t) 2846 + 2 + IEEE80211_NWID_LEN 2847 + 2 + IEEE80211_RATE_SIZE 2848 + 7 /* max(7,3) */ 2849 + IEEE80211_COUNTRY_MAX_SIZE 2850 + 3 2851 + sizeof(struct ieee80211_csa_ie) 2852 + sizeof(struct ieee80211_quiet_ie) 2853 + 3 2854 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2855 + sizeof(struct ieee80211_ie_wpa) 2856 + sizeof(struct ieee80211_ie_htcap) 2857 + sizeof(struct ieee80211_ie_htinfo) 2858 + sizeof(struct ieee80211_ie_wpa) 2859 + sizeof(struct ieee80211_wme_param) 2860 + 4 + sizeof(struct ieee80211_ie_htcap) 2861 + 4 + sizeof(struct ieee80211_ie_htinfo) 2862 + sizeof(struct ieee80211_ie_vhtcap) 2863 + sizeof(struct ieee80211_ie_vht_operation) 2864 #ifdef IEEE80211_SUPPORT_SUPERG 2865 + sizeof(struct ieee80211_ath_ie) 2866 #endif 2867 #ifdef IEEE80211_SUPPORT_MESH 2868 + 2 + IEEE80211_MESHID_LEN 2869 + sizeof(struct ieee80211_meshconf_ie) 2870 #endif 2871 + (vap->iv_appie_proberesp != NULL ? 2872 vap->iv_appie_proberesp->ie_len : 0) 2873 ); 2874 if (m == NULL) { 2875 vap->iv_stats.is_tx_nobuf++; 2876 return NULL; 2877 } 2878 2879 memset(frm, 0, 8); /* timestamp should be filled later */ 2880 frm += 8; 2881 *(uint16_t *)frm = htole16(bss->ni_intval); 2882 frm += 2; 2883 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2884 *(uint16_t *)frm = htole16(capinfo); 2885 frm += 2; 2886 2887 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen); 2888 rs = ieee80211_get_suprates(ic, bss->ni_chan); 2889 frm = ieee80211_add_rates(frm, rs); 2890 2891 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) { 2892 *frm++ = IEEE80211_ELEMID_FHPARMS; 2893 *frm++ = 5; 2894 *frm++ = bss->ni_fhdwell & 0x00ff; 2895 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff; 2896 *frm++ = IEEE80211_FH_CHANSET( 2897 ieee80211_chan2ieee(ic, bss->ni_chan)); 2898 *frm++ = IEEE80211_FH_CHANPAT( 2899 ieee80211_chan2ieee(ic, bss->ni_chan)); 2900 *frm++ = bss->ni_fhindex; 2901 } else { 2902 *frm++ = IEEE80211_ELEMID_DSPARMS; 2903 *frm++ = 1; 2904 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan); 2905 } 2906 2907 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2908 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2909 *frm++ = 2; 2910 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2911 } 2912 if ((vap->iv_flags & IEEE80211_F_DOTH) || 2913 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 2914 frm = ieee80211_add_countryie(frm, ic); 2915 if (vap->iv_flags & IEEE80211_F_DOTH) { 2916 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan)) 2917 frm = ieee80211_add_powerconstraint(frm, vap); 2918 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 2919 frm = ieee80211_add_csa(frm, vap); 2920 } 2921 if (vap->iv_flags & IEEE80211_F_DOTH) { 2922 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2923 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 2924 if (vap->iv_quiet) 2925 frm = ieee80211_add_quiet(frm, vap, 0); 2926 } 2927 } 2928 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan)) 2929 frm = ieee80211_add_erp(frm, ic); 2930 frm = ieee80211_add_xrates(frm, rs); 2931 frm = ieee80211_add_rsn(frm, vap); 2932 /* 2933 * NB: legacy 11b clients do not get certain ie's. 2934 * The caller identifies such clients by passing 2935 * a token in legacy to us. Could expand this to be 2936 * any legacy client for stuff like HT ie's. 2937 */ 2938 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2939 legacy != IEEE80211_SEND_LEGACY_11B) { 2940 frm = ieee80211_add_htcap(frm, bss); 2941 frm = ieee80211_add_htinfo(frm, bss); 2942 } 2943 if (IEEE80211_IS_CHAN_VHT(bss->ni_chan) && 2944 legacy != IEEE80211_SEND_LEGACY_11B) { 2945 frm = ieee80211_add_vhtcap(frm, bss); 2946 frm = ieee80211_add_vhtinfo(frm, bss); 2947 } 2948 frm = ieee80211_add_wpa(frm, vap); 2949 if (vap->iv_flags & IEEE80211_F_WME) 2950 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2951 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2952 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) && 2953 legacy != IEEE80211_SEND_LEGACY_11B) { 2954 frm = ieee80211_add_htcap_vendor(frm, bss); 2955 frm = ieee80211_add_htinfo_vendor(frm, bss); 2956 } 2957 #ifdef IEEE80211_SUPPORT_SUPERG 2958 if ((vap->iv_flags & IEEE80211_F_ATHEROS) && 2959 legacy != IEEE80211_SEND_LEGACY_11B) 2960 frm = ieee80211_add_athcaps(frm, bss); 2961 #endif 2962 if (vap->iv_appie_proberesp != NULL) 2963 frm = add_appie(frm, vap->iv_appie_proberesp); 2964 #ifdef IEEE80211_SUPPORT_MESH 2965 if (vap->iv_opmode == IEEE80211_M_MBSS) { 2966 frm = ieee80211_add_meshid(frm, vap); 2967 frm = ieee80211_add_meshconf(frm, vap); 2968 } 2969 #endif 2970 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2971 2972 return m; 2973 } 2974 2975 /* 2976 * Send a probe response frame to the specified mac address. 2977 * This does not go through the normal mgt frame api so we 2978 * can specify the destination address and re-use the bss node 2979 * for the sta reference. 2980 */ 2981 int 2982 ieee80211_send_proberesp(struct ieee80211vap *vap, 2983 const uint8_t da[IEEE80211_ADDR_LEN], int legacy) 2984 { 2985 struct ieee80211_node *bss = vap->iv_bss; 2986 struct ieee80211com *ic = vap->iv_ic; 2987 struct mbuf *m; 2988 int ret; 2989 2990 if (vap->iv_state == IEEE80211_S_CAC) { 2991 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss, 2992 "block %s frame in CAC state", "probe response"); 2993 vap->iv_stats.is_tx_badstate++; 2994 return EIO; /* XXX */ 2995 } 2996 2997 /* 2998 * Hold a reference on the node so it doesn't go away until after 2999 * the xmit is complete all the way in the driver. On error we 3000 * will remove our reference. 3001 */ 3002 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 3003 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 3004 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr), 3005 ieee80211_node_refcnt(bss)+1); 3006 ieee80211_ref_node(bss); 3007 3008 m = ieee80211_alloc_proberesp(bss, legacy); 3009 if (m == NULL) { 3010 ieee80211_free_node(bss); 3011 return ENOMEM; 3012 } 3013 3014 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 3015 KASSERT(m != NULL, ("no room for header")); 3016 3017 IEEE80211_TX_LOCK(ic); 3018 ieee80211_send_setup(bss, m, 3019 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP, 3020 IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid); 3021 /* XXX power management? */ 3022 m->m_flags |= M_ENCAP; /* mark encapsulated */ 3023 3024 M_WME_SETAC(m, WME_AC_BE); 3025 3026 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 3027 "send probe resp on channel %u to %s%s\n", 3028 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da), 3029 legacy ? " <legacy>" : ""); 3030 IEEE80211_NODE_STAT(bss, tx_mgmt); 3031 3032 ret = ieee80211_raw_output(vap, bss, m, NULL); 3033 IEEE80211_TX_UNLOCK(ic); 3034 return (ret); 3035 } 3036 3037 /* 3038 * Allocate and build a RTS (Request To Send) control frame. 3039 */ 3040 struct mbuf * 3041 ieee80211_alloc_rts(struct ieee80211com *ic, 3042 const uint8_t ra[IEEE80211_ADDR_LEN], 3043 const uint8_t ta[IEEE80211_ADDR_LEN], 3044 uint16_t dur) 3045 { 3046 struct ieee80211_frame_rts *rts; 3047 struct mbuf *m; 3048 3049 /* XXX honor ic_headroom */ 3050 m = m_gethdr(M_NOWAIT, MT_DATA); 3051 if (m != NULL) { 3052 rts = mtod(m, struct ieee80211_frame_rts *); 3053 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 3054 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS; 3055 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3056 *(u_int16_t *)rts->i_dur = htole16(dur); 3057 IEEE80211_ADDR_COPY(rts->i_ra, ra); 3058 IEEE80211_ADDR_COPY(rts->i_ta, ta); 3059 3060 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); 3061 } 3062 return m; 3063 } 3064 3065 /* 3066 * Allocate and build a CTS (Clear To Send) control frame. 3067 */ 3068 struct mbuf * 3069 ieee80211_alloc_cts(struct ieee80211com *ic, 3070 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur) 3071 { 3072 struct ieee80211_frame_cts *cts; 3073 struct mbuf *m; 3074 3075 /* XXX honor ic_headroom */ 3076 m = m_gethdr(M_NOWAIT, MT_DATA); 3077 if (m != NULL) { 3078 cts = mtod(m, struct ieee80211_frame_cts *); 3079 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 3080 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS; 3081 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3082 *(u_int16_t *)cts->i_dur = htole16(dur); 3083 IEEE80211_ADDR_COPY(cts->i_ra, ra); 3084 3085 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts); 3086 } 3087 return m; 3088 } 3089 3090 /* 3091 * Wrapper for CTS/RTS frame allocation. 3092 */ 3093 struct mbuf * 3094 ieee80211_alloc_prot(struct ieee80211_node *ni, const struct mbuf *m, 3095 uint8_t rate, int prot) 3096 { 3097 struct ieee80211com *ic = ni->ni_ic; 3098 const struct ieee80211_frame *wh; 3099 struct mbuf *mprot; 3100 uint16_t dur; 3101 int pktlen, isshort; 3102 3103 KASSERT(prot == IEEE80211_PROT_RTSCTS || 3104 prot == IEEE80211_PROT_CTSONLY, 3105 ("wrong protection type %d", prot)); 3106 3107 wh = mtod(m, const struct ieee80211_frame *); 3108 pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; 3109 isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0; 3110 dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort) 3111 + ieee80211_ack_duration(ic->ic_rt, rate, isshort); 3112 3113 if (prot == IEEE80211_PROT_RTSCTS) { 3114 /* NB: CTS is the same size as an ACK */ 3115 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); 3116 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); 3117 } else 3118 mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur); 3119 3120 return (mprot); 3121 } 3122 3123 static void 3124 ieee80211_tx_mgt_timeout(void *arg) 3125 { 3126 struct ieee80211vap *vap = arg; 3127 3128 IEEE80211_LOCK(vap->iv_ic); 3129 if (vap->iv_state != IEEE80211_S_INIT && 3130 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) { 3131 /* 3132 * NB: it's safe to specify a timeout as the reason here; 3133 * it'll only be used in the right state. 3134 */ 3135 ieee80211_new_state_locked(vap, IEEE80211_S_SCAN, 3136 IEEE80211_SCAN_FAIL_TIMEOUT); 3137 } 3138 IEEE80211_UNLOCK(vap->iv_ic); 3139 } 3140 3141 /* 3142 * This is the callback set on net80211-sourced transmitted 3143 * authentication request frames. 3144 * 3145 * This does a couple of things: 3146 * 3147 * + If the frame transmitted was a success, it schedules a future 3148 * event which will transition the interface to scan. 3149 * If a state transition _then_ occurs before that event occurs, 3150 * said state transition will cancel this callout. 3151 * 3152 * + If the frame transmit was a failure, it immediately schedules 3153 * the transition back to scan. 3154 */ 3155 static void 3156 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status) 3157 { 3158 struct ieee80211vap *vap = ni->ni_vap; 3159 enum ieee80211_state ostate = (enum ieee80211_state) arg; 3160 3161 /* 3162 * Frame transmit completed; arrange timer callback. If 3163 * transmit was successfully we wait for response. Otherwise 3164 * we arrange an immediate callback instead of doing the 3165 * callback directly since we don't know what state the driver 3166 * is in (e.g. what locks it is holding). This work should 3167 * not be too time-critical and not happen too often so the 3168 * added overhead is acceptable. 3169 * 3170 * XXX what happens if !acked but response shows up before callback? 3171 */ 3172 if (vap->iv_state == ostate) { 3173 callout_reset(&vap->iv_mgtsend, 3174 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0, 3175 ieee80211_tx_mgt_timeout, vap); 3176 } 3177 } 3178 3179 static void 3180 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm, 3181 struct ieee80211_node *ni) 3182 { 3183 struct ieee80211vap *vap = ni->ni_vap; 3184 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 3185 struct ieee80211com *ic = ni->ni_ic; 3186 struct ieee80211_rateset *rs = &ni->ni_rates; 3187 uint16_t capinfo; 3188 3189 /* 3190 * beacon frame format 3191 * 3192 * TODO: update to 802.11-2012; a lot of stuff has changed; 3193 * vendor extensions should be at the end, etc. 3194 * 3195 * [8] time stamp 3196 * [2] beacon interval 3197 * [2] cabability information 3198 * [tlv] ssid 3199 * [tlv] supported rates 3200 * [3] parameter set (DS) 3201 * [8] CF parameter set (optional) 3202 * [tlv] parameter set (IBSS/TIM) 3203 * [tlv] country (optional) 3204 * [3] power control (optional) 3205 * [5] channel switch announcement (CSA) (optional) 3206 * XXX TODO: Quiet 3207 * XXX TODO: IBSS DFS 3208 * XXX TODO: TPC report 3209 * [tlv] extended rate phy (ERP) 3210 * [tlv] extended supported rates 3211 * [tlv] RSN parameters 3212 * XXX TODO: BSSLOAD 3213 * (XXX EDCA parameter set, QoS capability?) 3214 * XXX TODO: AP channel report 3215 * 3216 * [tlv] HT capabilities 3217 * [tlv] HT information 3218 * XXX TODO: 20/40 BSS coexistence 3219 * Mesh: 3220 * XXX TODO: Meshid 3221 * XXX TODO: mesh config 3222 * XXX TODO: mesh awake window 3223 * XXX TODO: beacon timing (mesh, etc) 3224 * XXX TODO: MCCAOP Advertisement Overview 3225 * XXX TODO: MCCAOP Advertisement 3226 * XXX TODO: Mesh channel switch parameters 3227 * VHT: 3228 * XXX TODO: VHT capabilities 3229 * XXX TODO: VHT operation 3230 * XXX TODO: VHT transmit power envelope 3231 * XXX TODO: channel switch wrapper element 3232 * XXX TODO: extended BSS load element 3233 * 3234 * XXX Vendor-specific OIDs (e.g. Atheros) 3235 * [tlv] WPA parameters 3236 * [tlv] WME parameters 3237 * [tlv] Vendor OUI HT capabilities (optional) 3238 * [tlv] Vendor OUI HT information (optional) 3239 * [tlv] Atheros capabilities (optional) 3240 * [tlv] TDMA parameters (optional) 3241 * [tlv] Mesh ID (MBSS) 3242 * [tlv] Mesh Conf (MBSS) 3243 * [tlv] application data (optional) 3244 */ 3245 3246 memset(bo, 0, sizeof(*bo)); 3247 3248 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 3249 frm += 8; 3250 *(uint16_t *)frm = htole16(ni->ni_intval); 3251 frm += 2; 3252 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3253 bo->bo_caps = (uint16_t *)frm; 3254 *(uint16_t *)frm = htole16(capinfo); 3255 frm += 2; 3256 *frm++ = IEEE80211_ELEMID_SSID; 3257 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) { 3258 *frm++ = ni->ni_esslen; 3259 memcpy(frm, ni->ni_essid, ni->ni_esslen); 3260 frm += ni->ni_esslen; 3261 } else 3262 *frm++ = 0; 3263 frm = ieee80211_add_rates(frm, rs); 3264 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) { 3265 *frm++ = IEEE80211_ELEMID_DSPARMS; 3266 *frm++ = 1; 3267 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 3268 } 3269 if (ic->ic_flags & IEEE80211_F_PCF) { 3270 bo->bo_cfp = frm; 3271 frm = ieee80211_add_cfparms(frm, ic); 3272 } 3273 bo->bo_tim = frm; 3274 if (vap->iv_opmode == IEEE80211_M_IBSS) { 3275 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 3276 *frm++ = 2; 3277 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 3278 bo->bo_tim_len = 0; 3279 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3280 vap->iv_opmode == IEEE80211_M_MBSS) { 3281 /* TIM IE is the same for Mesh and Hostap */ 3282 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; 3283 3284 tie->tim_ie = IEEE80211_ELEMID_TIM; 3285 tie->tim_len = 4; /* length */ 3286 tie->tim_count = 0; /* DTIM count */ 3287 tie->tim_period = vap->iv_dtim_period; /* DTIM period */ 3288 tie->tim_bitctl = 0; /* bitmap control */ 3289 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 3290 frm += sizeof(struct ieee80211_tim_ie); 3291 bo->bo_tim_len = 1; 3292 } 3293 bo->bo_tim_trailer = frm; 3294 if ((vap->iv_flags & IEEE80211_F_DOTH) || 3295 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 3296 frm = ieee80211_add_countryie(frm, ic); 3297 if (vap->iv_flags & IEEE80211_F_DOTH) { 3298 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) 3299 frm = ieee80211_add_powerconstraint(frm, vap); 3300 bo->bo_csa = frm; 3301 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 3302 frm = ieee80211_add_csa(frm, vap); 3303 } else 3304 bo->bo_csa = frm; 3305 3306 bo->bo_quiet = NULL; 3307 if (vap->iv_flags & IEEE80211_F_DOTH) { 3308 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3309 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && 3310 (vap->iv_quiet == 1)) { 3311 /* 3312 * We only insert the quiet IE offset if 3313 * the quiet IE is enabled. Otherwise don't 3314 * put it here or we'll just overwrite 3315 * some other beacon contents. 3316 */ 3317 if (vap->iv_quiet) { 3318 bo->bo_quiet = frm; 3319 frm = ieee80211_add_quiet(frm,vap, 0); 3320 } 3321 } 3322 } 3323 3324 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) { 3325 bo->bo_erp = frm; 3326 frm = ieee80211_add_erp(frm, ic); 3327 } 3328 frm = ieee80211_add_xrates(frm, rs); 3329 frm = ieee80211_add_rsn(frm, vap); 3330 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 3331 frm = ieee80211_add_htcap(frm, ni); 3332 bo->bo_htinfo = frm; 3333 frm = ieee80211_add_htinfo(frm, ni); 3334 } 3335 3336 if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) { 3337 frm = ieee80211_add_vhtcap(frm, ni); 3338 bo->bo_vhtinfo = frm; 3339 frm = ieee80211_add_vhtinfo(frm, ni); 3340 /* Transmit power envelope */ 3341 /* Channel switch wrapper element */ 3342 /* Extended bss load element */ 3343 } 3344 3345 frm = ieee80211_add_wpa(frm, vap); 3346 if (vap->iv_flags & IEEE80211_F_WME) { 3347 bo->bo_wme = frm; 3348 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 3349 } 3350 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && 3351 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) { 3352 frm = ieee80211_add_htcap_vendor(frm, ni); 3353 frm = ieee80211_add_htinfo_vendor(frm, ni); 3354 } 3355 3356 #ifdef IEEE80211_SUPPORT_SUPERG 3357 if (vap->iv_flags & IEEE80211_F_ATHEROS) { 3358 bo->bo_ath = frm; 3359 frm = ieee80211_add_athcaps(frm, ni); 3360 } 3361 #endif 3362 #ifdef IEEE80211_SUPPORT_TDMA 3363 if (vap->iv_caps & IEEE80211_C_TDMA) { 3364 bo->bo_tdma = frm; 3365 frm = ieee80211_add_tdma(frm, vap); 3366 } 3367 #endif 3368 if (vap->iv_appie_beacon != NULL) { 3369 bo->bo_appie = frm; 3370 bo->bo_appie_len = vap->iv_appie_beacon->ie_len; 3371 frm = add_appie(frm, vap->iv_appie_beacon); 3372 } 3373 3374 /* XXX TODO: move meshid/meshconf up to before vendor extensions? */ 3375 #ifdef IEEE80211_SUPPORT_MESH 3376 if (vap->iv_opmode == IEEE80211_M_MBSS) { 3377 frm = ieee80211_add_meshid(frm, vap); 3378 bo->bo_meshconf = frm; 3379 frm = ieee80211_add_meshconf(frm, vap); 3380 } 3381 #endif 3382 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer; 3383 bo->bo_csa_trailer_len = frm - bo->bo_csa; 3384 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3385 } 3386 3387 /* 3388 * Allocate a beacon frame and fillin the appropriate bits. 3389 */ 3390 struct mbuf * 3391 ieee80211_beacon_alloc(struct ieee80211_node *ni) 3392 { 3393 struct ieee80211vap *vap = ni->ni_vap; 3394 struct ieee80211com *ic = ni->ni_ic; 3395 struct ifnet *ifp = vap->iv_ifp; 3396 struct ieee80211_frame *wh; 3397 struct mbuf *m; 3398 int pktlen; 3399 uint8_t *frm; 3400 3401 /* 3402 * Update the "We're putting the quiet IE in the beacon" state. 3403 */ 3404 if (vap->iv_quiet == 1) 3405 vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE; 3406 else if (vap->iv_quiet == 0) 3407 vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE; 3408 3409 /* 3410 * beacon frame format 3411 * 3412 * Note: This needs updating for 802.11-2012. 3413 * 3414 * [8] time stamp 3415 * [2] beacon interval 3416 * [2] cabability information 3417 * [tlv] ssid 3418 * [tlv] supported rates 3419 * [3] parameter set (DS) 3420 * [8] CF parameter set (optional) 3421 * [tlv] parameter set (IBSS/TIM) 3422 * [tlv] country (optional) 3423 * [3] power control (optional) 3424 * [5] channel switch announcement (CSA) (optional) 3425 * [tlv] extended rate phy (ERP) 3426 * [tlv] extended supported rates 3427 * [tlv] RSN parameters 3428 * [tlv] HT capabilities 3429 * [tlv] HT information 3430 * [tlv] VHT capabilities 3431 * [tlv] VHT operation 3432 * [tlv] Vendor OUI HT capabilities (optional) 3433 * [tlv] Vendor OUI HT information (optional) 3434 * XXX Vendor-specific OIDs (e.g. Atheros) 3435 * [tlv] WPA parameters 3436 * [tlv] WME parameters 3437 * [tlv] TDMA parameters (optional) 3438 * [tlv] Mesh ID (MBSS) 3439 * [tlv] Mesh Conf (MBSS) 3440 * [tlv] application data (optional) 3441 * NB: we allocate the max space required for the TIM bitmap. 3442 * XXX how big is this? 3443 */ 3444 pktlen = 8 /* time stamp */ 3445 + sizeof(uint16_t) /* beacon interval */ 3446 + sizeof(uint16_t) /* capabilities */ 3447 + 2 + ni->ni_esslen /* ssid */ 3448 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 3449 + 2 + 1 /* DS parameters */ 3450 + 2 + 6 /* CF parameters */ 3451 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */ 3452 + IEEE80211_COUNTRY_MAX_SIZE /* country */ 3453 + 2 + 1 /* power control */ 3454 + sizeof(struct ieee80211_csa_ie) /* CSA */ 3455 + sizeof(struct ieee80211_quiet_ie) /* Quiet */ 3456 + 2 + 1 /* ERP */ 3457 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 3458 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 3459 2*sizeof(struct ieee80211_ie_wpa) : 0) 3460 /* XXX conditional? */ 3461 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */ 3462 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */ 3463 + sizeof(struct ieee80211_ie_vhtcap)/* VHT caps */ 3464 + sizeof(struct ieee80211_ie_vht_operation)/* VHT info */ 3465 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */ 3466 sizeof(struct ieee80211_wme_param) : 0) 3467 #ifdef IEEE80211_SUPPORT_SUPERG 3468 + sizeof(struct ieee80211_ath_ie) /* ATH */ 3469 #endif 3470 #ifdef IEEE80211_SUPPORT_TDMA 3471 + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */ 3472 sizeof(struct ieee80211_tdma_param) : 0) 3473 #endif 3474 #ifdef IEEE80211_SUPPORT_MESH 3475 + 2 + ni->ni_meshidlen 3476 + sizeof(struct ieee80211_meshconf_ie) 3477 #endif 3478 + IEEE80211_MAX_APPIE 3479 ; 3480 m = ieee80211_getmgtframe(&frm, 3481 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen); 3482 if (m == NULL) { 3483 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, 3484 "%s: cannot get buf; size %u\n", __func__, pktlen); 3485 vap->iv_stats.is_tx_nobuf++; 3486 return NULL; 3487 } 3488 ieee80211_beacon_construct(m, frm, ni); 3489 3490 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 3491 KASSERT(m != NULL, ("no space for 802.11 header?")); 3492 wh = mtod(m, struct ieee80211_frame *); 3493 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 3494 IEEE80211_FC0_SUBTYPE_BEACON; 3495 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3496 *(uint16_t *)wh->i_dur = 0; 3497 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 3498 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 3499 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 3500 *(uint16_t *)wh->i_seq = 0; 3501 3502 return m; 3503 } 3504 3505 /* 3506 * Update the dynamic parts of a beacon frame based on the current state. 3507 */ 3508 int 3509 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast) 3510 { 3511 struct ieee80211vap *vap = ni->ni_vap; 3512 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 3513 struct ieee80211com *ic = ni->ni_ic; 3514 int len_changed = 0; 3515 uint16_t capinfo; 3516 struct ieee80211_frame *wh; 3517 ieee80211_seq seqno; 3518 3519 IEEE80211_LOCK(ic); 3520 /* 3521 * Handle 11h channel change when we've reached the count. 3522 * We must recalculate the beacon frame contents to account 3523 * for the new channel. Note we do this only for the first 3524 * vap that reaches this point; subsequent vaps just update 3525 * their beacon state to reflect the recalculated channel. 3526 */ 3527 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) && 3528 vap->iv_csa_count == ic->ic_csa_count) { 3529 vap->iv_csa_count = 0; 3530 /* 3531 * Effect channel change before reconstructing the beacon 3532 * frame contents as many places reference ni_chan. 3533 */ 3534 if (ic->ic_csa_newchan != NULL) 3535 ieee80211_csa_completeswitch(ic); 3536 /* 3537 * NB: ieee80211_beacon_construct clears all pending 3538 * updates in bo_flags so we don't need to explicitly 3539 * clear IEEE80211_BEACON_CSA. 3540 */ 3541 ieee80211_beacon_construct(m, 3542 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3543 3544 /* XXX do WME aggressive mode processing? */ 3545 IEEE80211_UNLOCK(ic); 3546 return 1; /* just assume length changed */ 3547 } 3548 3549 /* 3550 * Handle the quiet time element being added and removed. 3551 * Again, for now we just cheat and reconstruct the whole 3552 * beacon - that way the gap is provided as appropriate. 3553 * 3554 * So, track whether we have already added the IE versus 3555 * whether we want to be adding the IE. 3556 */ 3557 if ((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) && 3558 (vap->iv_quiet == 0)) { 3559 /* 3560 * Quiet time beacon IE enabled, but it's disabled; 3561 * recalc 3562 */ 3563 vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE; 3564 ieee80211_beacon_construct(m, 3565 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3566 /* XXX do WME aggressive mode processing? */ 3567 IEEE80211_UNLOCK(ic); 3568 return 1; /* just assume length changed */ 3569 } 3570 3571 if (((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) == 0) && 3572 (vap->iv_quiet == 1)) { 3573 /* 3574 * Quiet time beacon IE disabled, but it's now enabled; 3575 * recalc 3576 */ 3577 vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE; 3578 ieee80211_beacon_construct(m, 3579 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3580 /* XXX do WME aggressive mode processing? */ 3581 IEEE80211_UNLOCK(ic); 3582 return 1; /* just assume length changed */ 3583 } 3584 3585 wh = mtod(m, struct ieee80211_frame *); 3586 3587 /* 3588 * XXX TODO Strictly speaking this should be incremented with the TX 3589 * lock held so as to serialise access to the non-qos TID sequence 3590 * number space. 3591 * 3592 * If the driver identifies it does its own TX seqno management then 3593 * we can skip this (and still not do the TX seqno.) 3594 */ 3595 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 3596 *(uint16_t *)&wh->i_seq[0] = 3597 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 3598 M_SEQNO_SET(m, seqno); 3599 3600 /* XXX faster to recalculate entirely or just changes? */ 3601 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3602 *bo->bo_caps = htole16(capinfo); 3603 3604 if (vap->iv_flags & IEEE80211_F_WME) { 3605 struct ieee80211_wme_state *wme = &ic->ic_wme; 3606 3607 /* 3608 * Check for aggressive mode change. When there is 3609 * significant high priority traffic in the BSS 3610 * throttle back BE traffic by using conservative 3611 * parameters. Otherwise BE uses aggressive params 3612 * to optimize performance of legacy/non-QoS traffic. 3613 */ 3614 if (wme->wme_flags & WME_F_AGGRMODE) { 3615 if (wme->wme_hipri_traffic > 3616 wme->wme_hipri_switch_thresh) { 3617 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3618 "%s: traffic %u, disable aggressive mode\n", 3619 __func__, wme->wme_hipri_traffic); 3620 wme->wme_flags &= ~WME_F_AGGRMODE; 3621 ieee80211_wme_updateparams_locked(vap); 3622 wme->wme_hipri_traffic = 3623 wme->wme_hipri_switch_hysteresis; 3624 } else 3625 wme->wme_hipri_traffic = 0; 3626 } else { 3627 if (wme->wme_hipri_traffic <= 3628 wme->wme_hipri_switch_thresh) { 3629 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3630 "%s: traffic %u, enable aggressive mode\n", 3631 __func__, wme->wme_hipri_traffic); 3632 wme->wme_flags |= WME_F_AGGRMODE; 3633 ieee80211_wme_updateparams_locked(vap); 3634 wme->wme_hipri_traffic = 0; 3635 } else 3636 wme->wme_hipri_traffic = 3637 wme->wme_hipri_switch_hysteresis; 3638 } 3639 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) { 3640 (void) ieee80211_add_wme_param(bo->bo_wme, wme); 3641 clrbit(bo->bo_flags, IEEE80211_BEACON_WME); 3642 } 3643 } 3644 3645 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) { 3646 ieee80211_ht_update_beacon(vap, bo); 3647 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO); 3648 } 3649 #ifdef IEEE80211_SUPPORT_TDMA 3650 if (vap->iv_caps & IEEE80211_C_TDMA) { 3651 /* 3652 * NB: the beacon is potentially updated every TBTT. 3653 */ 3654 ieee80211_tdma_update_beacon(vap, bo); 3655 } 3656 #endif 3657 #ifdef IEEE80211_SUPPORT_MESH 3658 if (vap->iv_opmode == IEEE80211_M_MBSS) 3659 ieee80211_mesh_update_beacon(vap, bo); 3660 #endif 3661 3662 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3663 vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/ 3664 struct ieee80211_tim_ie *tie = 3665 (struct ieee80211_tim_ie *) bo->bo_tim; 3666 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) { 3667 u_int timlen, timoff, i; 3668 /* 3669 * ATIM/DTIM needs updating. If it fits in the 3670 * current space allocated then just copy in the 3671 * new bits. Otherwise we need to move any trailing 3672 * data to make room. Note that we know there is 3673 * contiguous space because ieee80211_beacon_allocate 3674 * insures there is space in the mbuf to write a 3675 * maximal-size virtual bitmap (based on iv_max_aid). 3676 */ 3677 /* 3678 * Calculate the bitmap size and offset, copy any 3679 * trailer out of the way, and then copy in the 3680 * new bitmap and update the information element. 3681 * Note that the tim bitmap must contain at least 3682 * one byte and any offset must be even. 3683 */ 3684 if (vap->iv_ps_pending != 0) { 3685 timoff = 128; /* impossibly large */ 3686 for (i = 0; i < vap->iv_tim_len; i++) 3687 if (vap->iv_tim_bitmap[i]) { 3688 timoff = i &~ 1; 3689 break; 3690 } 3691 KASSERT(timoff != 128, ("tim bitmap empty!")); 3692 for (i = vap->iv_tim_len-1; i >= timoff; i--) 3693 if (vap->iv_tim_bitmap[i]) 3694 break; 3695 timlen = 1 + (i - timoff); 3696 } else { 3697 timoff = 0; 3698 timlen = 1; 3699 } 3700 3701 /* 3702 * TODO: validate this! 3703 */ 3704 if (timlen != bo->bo_tim_len) { 3705 /* copy up/down trailer */ 3706 int adjust = tie->tim_bitmap+timlen 3707 - bo->bo_tim_trailer; 3708 ovbcopy(bo->bo_tim_trailer, 3709 bo->bo_tim_trailer+adjust, 3710 bo->bo_tim_trailer_len); 3711 bo->bo_tim_trailer += adjust; 3712 bo->bo_erp += adjust; 3713 bo->bo_htinfo += adjust; 3714 bo->bo_vhtinfo += adjust; 3715 #ifdef IEEE80211_SUPPORT_SUPERG 3716 bo->bo_ath += adjust; 3717 #endif 3718 #ifdef IEEE80211_SUPPORT_TDMA 3719 bo->bo_tdma += adjust; 3720 #endif 3721 #ifdef IEEE80211_SUPPORT_MESH 3722 bo->bo_meshconf += adjust; 3723 #endif 3724 bo->bo_appie += adjust; 3725 bo->bo_wme += adjust; 3726 bo->bo_csa += adjust; 3727 bo->bo_quiet += adjust; 3728 bo->bo_tim_len = timlen; 3729 3730 /* update information element */ 3731 tie->tim_len = 3 + timlen; 3732 tie->tim_bitctl = timoff; 3733 len_changed = 1; 3734 } 3735 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff, 3736 bo->bo_tim_len); 3737 3738 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM); 3739 3740 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER, 3741 "%s: TIM updated, pending %u, off %u, len %u\n", 3742 __func__, vap->iv_ps_pending, timoff, timlen); 3743 } 3744 /* count down DTIM period */ 3745 if (tie->tim_count == 0) 3746 tie->tim_count = tie->tim_period - 1; 3747 else 3748 tie->tim_count--; 3749 /* update state for buffered multicast frames on DTIM */ 3750 if (mcast && tie->tim_count == 0) 3751 tie->tim_bitctl |= 1; 3752 else 3753 tie->tim_bitctl &= ~1; 3754 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) { 3755 struct ieee80211_csa_ie *csa = 3756 (struct ieee80211_csa_ie *) bo->bo_csa; 3757 3758 /* 3759 * Insert or update CSA ie. If we're just starting 3760 * to count down to the channel switch then we need 3761 * to insert the CSA ie. Otherwise we just need to 3762 * drop the count. The actual change happens above 3763 * when the vap's count reaches the target count. 3764 */ 3765 if (vap->iv_csa_count == 0) { 3766 memmove(&csa[1], csa, bo->bo_csa_trailer_len); 3767 bo->bo_erp += sizeof(*csa); 3768 bo->bo_htinfo += sizeof(*csa); 3769 bo->bo_vhtinfo += sizeof(*csa); 3770 bo->bo_wme += sizeof(*csa); 3771 #ifdef IEEE80211_SUPPORT_SUPERG 3772 bo->bo_ath += sizeof(*csa); 3773 #endif 3774 #ifdef IEEE80211_SUPPORT_TDMA 3775 bo->bo_tdma += sizeof(*csa); 3776 #endif 3777 #ifdef IEEE80211_SUPPORT_MESH 3778 bo->bo_meshconf += sizeof(*csa); 3779 #endif 3780 bo->bo_appie += sizeof(*csa); 3781 bo->bo_csa_trailer_len += sizeof(*csa); 3782 bo->bo_quiet += sizeof(*csa); 3783 bo->bo_tim_trailer_len += sizeof(*csa); 3784 m->m_len += sizeof(*csa); 3785 m->m_pkthdr.len += sizeof(*csa); 3786 3787 ieee80211_add_csa(bo->bo_csa, vap); 3788 } else 3789 csa->csa_count--; 3790 vap->iv_csa_count++; 3791 /* NB: don't clear IEEE80211_BEACON_CSA */ 3792 } 3793 3794 /* 3795 * Only add the quiet time IE if we've enabled it 3796 * as appropriate. 3797 */ 3798 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3799 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 3800 if (vap->iv_quiet && 3801 (vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE)) { 3802 ieee80211_add_quiet(bo->bo_quiet, vap, 1); 3803 } 3804 } 3805 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) { 3806 /* 3807 * ERP element needs updating. 3808 */ 3809 (void) ieee80211_add_erp(bo->bo_erp, ic); 3810 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP); 3811 } 3812 #ifdef IEEE80211_SUPPORT_SUPERG 3813 if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) { 3814 ieee80211_add_athcaps(bo->bo_ath, ni); 3815 clrbit(bo->bo_flags, IEEE80211_BEACON_ATH); 3816 } 3817 #endif 3818 } 3819 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) { 3820 const struct ieee80211_appie *aie = vap->iv_appie_beacon; 3821 int aielen; 3822 uint8_t *frm; 3823 3824 aielen = 0; 3825 if (aie != NULL) 3826 aielen += aie->ie_len; 3827 if (aielen != bo->bo_appie_len) { 3828 /* copy up/down trailer */ 3829 int adjust = aielen - bo->bo_appie_len; 3830 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust, 3831 bo->bo_tim_trailer_len); 3832 bo->bo_tim_trailer += adjust; 3833 bo->bo_appie += adjust; 3834 bo->bo_appie_len = aielen; 3835 3836 len_changed = 1; 3837 } 3838 frm = bo->bo_appie; 3839 if (aie != NULL) 3840 frm = add_appie(frm, aie); 3841 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE); 3842 } 3843 IEEE80211_UNLOCK(ic); 3844 3845 return len_changed; 3846 } 3847 3848 /* 3849 * Do Ethernet-LLC encapsulation for each payload in a fast frame 3850 * tunnel encapsulation. The frame is assumed to have an Ethernet 3851 * header at the front that must be stripped before prepending the 3852 * LLC followed by the Ethernet header passed in (with an Ethernet 3853 * type that specifies the payload size). 3854 */ 3855 struct mbuf * 3856 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m, 3857 const struct ether_header *eh) 3858 { 3859 struct llc *llc; 3860 uint16_t payload; 3861 3862 /* XXX optimize by combining m_adj+M_PREPEND */ 3863 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 3864 llc = mtod(m, struct llc *); 3865 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 3866 llc->llc_control = LLC_UI; 3867 llc->llc_snap.org_code[0] = 0; 3868 llc->llc_snap.org_code[1] = 0; 3869 llc->llc_snap.org_code[2] = 0; 3870 llc->llc_snap.ether_type = eh->ether_type; 3871 payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */ 3872 3873 M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT); 3874 if (m == NULL) { /* XXX cannot happen */ 3875 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 3876 "%s: no space for ether_header\n", __func__); 3877 vap->iv_stats.is_tx_nobuf++; 3878 return NULL; 3879 } 3880 ETHER_HEADER_COPY(mtod(m, void *), eh); 3881 mtod(m, struct ether_header *)->ether_type = htons(payload); 3882 return m; 3883 } 3884 3885 /* 3886 * Complete an mbuf transmission. 3887 * 3888 * For now, this simply processes a completed frame after the 3889 * driver has completed it's transmission and/or retransmission. 3890 * It assumes the frame is an 802.11 encapsulated frame. 3891 * 3892 * Later on it will grow to become the exit path for a given frame 3893 * from the driver and, depending upon how it's been encapsulated 3894 * and already transmitted, it may end up doing A-MPDU retransmission, 3895 * power save requeuing, etc. 3896 * 3897 * In order for the above to work, the driver entry point to this 3898 * must not hold any driver locks. Thus, the driver needs to delay 3899 * any actual mbuf completion until it can release said locks. 3900 * 3901 * This frees the mbuf and if the mbuf has a node reference, 3902 * the node reference will be freed. 3903 */ 3904 void 3905 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status) 3906 { 3907 3908 if (ni != NULL) { 3909 struct ifnet *ifp = ni->ni_vap->iv_ifp; 3910 3911 if (status == 0) { 3912 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len); 3913 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 3914 if (m->m_flags & M_MCAST) 3915 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 3916 } else 3917 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 3918 if (m->m_flags & M_TXCB) 3919 ieee80211_process_callback(ni, m, status); 3920 ieee80211_free_node(ni); 3921 } 3922 m_freem(m); 3923 } 3924