xref: /freebsd/sys/net80211/ieee80211_output.c (revision 6486b015fc84e96725fef22b0e3363351399ae83)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_wlan.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/endian.h>
39 
40 #include <sys/socket.h>
41 
42 #include <net/bpf.h>
43 #include <net/ethernet.h>
44 #include <net/if.h>
45 #include <net/if_llc.h>
46 #include <net/if_media.h>
47 #include <net/if_vlan_var.h>
48 
49 #include <net80211/ieee80211_var.h>
50 #include <net80211/ieee80211_regdomain.h>
51 #ifdef IEEE80211_SUPPORT_SUPERG
52 #include <net80211/ieee80211_superg.h>
53 #endif
54 #ifdef IEEE80211_SUPPORT_TDMA
55 #include <net80211/ieee80211_tdma.h>
56 #endif
57 #include <net80211/ieee80211_wds.h>
58 #include <net80211/ieee80211_mesh.h>
59 
60 #if defined(INET) || defined(INET6)
61 #include <netinet/in.h>
62 #endif
63 
64 #ifdef INET
65 #include <netinet/if_ether.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/ip.h>
68 #endif
69 #ifdef INET6
70 #include <netinet/ip6.h>
71 #endif
72 
73 #include <security/mac/mac_framework.h>
74 
75 #define	ETHER_HEADER_COPY(dst, src) \
76 	memcpy(dst, src, sizeof(struct ether_header))
77 
78 /* unalligned little endian access */
79 #define LE_WRITE_2(p, v) do {				\
80 	((uint8_t *)(p))[0] = (v) & 0xff;		\
81 	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
82 } while (0)
83 #define LE_WRITE_4(p, v) do {				\
84 	((uint8_t *)(p))[0] = (v) & 0xff;		\
85 	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
86 	((uint8_t *)(p))[2] = ((v) >> 16) & 0xff;	\
87 	((uint8_t *)(p))[3] = ((v) >> 24) & 0xff;	\
88 } while (0)
89 
90 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
91 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
92 static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
93 
94 #ifdef IEEE80211_DEBUG
95 /*
96  * Decide if an outbound management frame should be
97  * printed when debugging is enabled.  This filters some
98  * of the less interesting frames that come frequently
99  * (e.g. beacons).
100  */
101 static __inline int
102 doprint(struct ieee80211vap *vap, int subtype)
103 {
104 	switch (subtype) {
105 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
106 		return (vap->iv_opmode == IEEE80211_M_IBSS);
107 	}
108 	return 1;
109 }
110 #endif
111 
112 /*
113  * Start method for vap's.  All packets from the stack come
114  * through here.  We handle common processing of the packets
115  * before dispatching them to the underlying device.
116  */
117 void
118 ieee80211_start(struct ifnet *ifp)
119 {
120 #define	IS_DWDS(vap) \
121 	(vap->iv_opmode == IEEE80211_M_WDS && \
122 	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
123 	struct ieee80211vap *vap = ifp->if_softc;
124 	struct ieee80211com *ic = vap->iv_ic;
125 	struct ifnet *parent = ic->ic_ifp;
126 	struct ieee80211_node *ni;
127 	struct mbuf *m;
128 	struct ether_header *eh;
129 	int error;
130 
131 	/* NB: parent must be up and running */
132 	if (!IFNET_IS_UP_RUNNING(parent)) {
133 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
134 		    "%s: ignore queue, parent %s not up+running\n",
135 		    __func__, parent->if_xname);
136 		/* XXX stat */
137 		return;
138 	}
139 	if (vap->iv_state == IEEE80211_S_SLEEP) {
140 		/*
141 		 * In power save, wakeup device for transmit.
142 		 */
143 		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
144 		return;
145 	}
146 	/*
147 	 * No data frames go out unless we're running.
148 	 * Note in particular this covers CAC and CSA
149 	 * states (though maybe we should check muting
150 	 * for CSA).
151 	 */
152 	if (vap->iv_state != IEEE80211_S_RUN) {
153 		IEEE80211_LOCK(ic);
154 		/* re-check under the com lock to avoid races */
155 		if (vap->iv_state != IEEE80211_S_RUN) {
156 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
157 			    "%s: ignore queue, in %s state\n",
158 			    __func__, ieee80211_state_name[vap->iv_state]);
159 			vap->iv_stats.is_tx_badstate++;
160 			IEEE80211_UNLOCK(ic);
161 			IFQ_LOCK(&ifp->if_snd);
162 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
163 			IFQ_UNLOCK(&ifp->if_snd);
164 			return;
165 		}
166 		IEEE80211_UNLOCK(ic);
167 	}
168 	for (;;) {
169 		IFQ_DEQUEUE(&ifp->if_snd, m);
170 		if (m == NULL)
171 			break;
172 		/*
173 		 * Sanitize mbuf flags for net80211 use.  We cannot
174 		 * clear M_PWR_SAV or M_MORE_DATA because these may
175 		 * be set for frames that are re-submitted from the
176 		 * power save queue.
177 		 *
178 		 * NB: This must be done before ieee80211_classify as
179 		 *     it marks EAPOL in frames with M_EAPOL.
180 		 */
181 		m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
182 		/*
183 		 * Cancel any background scan.
184 		 */
185 		if (ic->ic_flags & IEEE80211_F_SCAN)
186 			ieee80211_cancel_anyscan(vap);
187 		/*
188 		 * Find the node for the destination so we can do
189 		 * things like power save and fast frames aggregation.
190 		 *
191 		 * NB: past this point various code assumes the first
192 		 *     mbuf has the 802.3 header present (and contiguous).
193 		 */
194 		ni = NULL;
195 		if (m->m_len < sizeof(struct ether_header) &&
196 		   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
197 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
198 			    "discard frame, %s\n", "m_pullup failed");
199 			vap->iv_stats.is_tx_nobuf++;	/* XXX */
200 			ifp->if_oerrors++;
201 			continue;
202 		}
203 		eh = mtod(m, struct ether_header *);
204 		if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
205 			if (IS_DWDS(vap)) {
206 				/*
207 				 * Only unicast frames from the above go out
208 				 * DWDS vaps; multicast frames are handled by
209 				 * dispatching the frame as it comes through
210 				 * the AP vap (see below).
211 				 */
212 				IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
213 				    eh->ether_dhost, "mcast", "%s", "on DWDS");
214 				vap->iv_stats.is_dwds_mcast++;
215 				m_freem(m);
216 				continue;
217 			}
218 			if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
219 				/*
220 				 * Spam DWDS vap's w/ multicast traffic.
221 				 */
222 				/* XXX only if dwds in use? */
223 				ieee80211_dwds_mcast(vap, m);
224 			}
225 		}
226 #ifdef IEEE80211_SUPPORT_MESH
227 		if (vap->iv_opmode != IEEE80211_M_MBSS) {
228 #endif
229 			ni = ieee80211_find_txnode(vap, eh->ether_dhost);
230 			if (ni == NULL) {
231 				/* NB: ieee80211_find_txnode does stat+msg */
232 				ifp->if_oerrors++;
233 				m_freem(m);
234 				continue;
235 			}
236 			if (ni->ni_associd == 0 &&
237 			    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
238 				IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
239 				    eh->ether_dhost, NULL,
240 				    "sta not associated (type 0x%04x)",
241 				    htons(eh->ether_type));
242 				vap->iv_stats.is_tx_notassoc++;
243 				ifp->if_oerrors++;
244 				m_freem(m);
245 				ieee80211_free_node(ni);
246 				continue;
247 			}
248 #ifdef IEEE80211_SUPPORT_MESH
249 		} else {
250 			if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
251 				/*
252 				 * Proxy station only if configured.
253 				 */
254 				if (!ieee80211_mesh_isproxyena(vap)) {
255 					IEEE80211_DISCARD_MAC(vap,
256 					    IEEE80211_MSG_OUTPUT |
257 						IEEE80211_MSG_MESH,
258 					    eh->ether_dhost, NULL,
259 					    "%s", "proxy not enabled");
260 					vap->iv_stats.is_mesh_notproxy++;
261 					ifp->if_oerrors++;
262 					m_freem(m);
263 					continue;
264 				}
265 				ieee80211_mesh_proxy_check(vap, eh->ether_shost);
266 			}
267 			ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
268 			if (ni == NULL) {
269 				/*
270 				 * NB: ieee80211_mesh_discover holds/disposes
271 				 * frame (e.g. queueing on path discovery).
272 				 */
273 				ifp->if_oerrors++;
274 				continue;
275 			}
276 		}
277 #endif
278 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
279 		    (m->m_flags & M_PWR_SAV) == 0) {
280 			/*
281 			 * Station in power save mode; pass the frame
282 			 * to the 802.11 layer and continue.  We'll get
283 			 * the frame back when the time is right.
284 			 * XXX lose WDS vap linkage?
285 			 */
286 			(void) ieee80211_pwrsave(ni, m);
287 			ieee80211_free_node(ni);
288 			continue;
289 		}
290 		/* calculate priority so drivers can find the tx queue */
291 		if (ieee80211_classify(ni, m)) {
292 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
293 			    eh->ether_dhost, NULL,
294 			    "%s", "classification failure");
295 			vap->iv_stats.is_tx_classify++;
296 			ifp->if_oerrors++;
297 			m_freem(m);
298 			ieee80211_free_node(ni);
299 			continue;
300 		}
301 		/*
302 		 * Stash the node pointer.  Note that we do this after
303 		 * any call to ieee80211_dwds_mcast because that code
304 		 * uses any existing value for rcvif to identify the
305 		 * interface it (might have been) received on.
306 		 */
307 		m->m_pkthdr.rcvif = (void *)ni;
308 
309 		BPF_MTAP(ifp, m);		/* 802.3 tx */
310 
311 		/*
312 		 * Check if A-MPDU tx aggregation is setup or if we
313 		 * should try to enable it.  The sta must be associated
314 		 * with HT and A-MPDU enabled for use.  When the policy
315 		 * routine decides we should enable A-MPDU we issue an
316 		 * ADDBA request and wait for a reply.  The frame being
317 		 * encapsulated will go out w/o using A-MPDU, or possibly
318 		 * it might be collected by the driver and held/retransmit.
319 		 * The default ic_ampdu_enable routine handles staggering
320 		 * ADDBA requests in case the receiver NAK's us or we are
321 		 * otherwise unable to establish a BA stream.
322 		 */
323 		if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
324 		    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) &&
325 		    (m->m_flags & M_EAPOL) == 0) {
326 			int tid = WME_AC_TO_TID(M_WME_GETAC(m));
327 			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
328 
329 			ieee80211_txampdu_count_packet(tap);
330 			if (IEEE80211_AMPDU_RUNNING(tap)) {
331 				/*
332 				 * Operational, mark frame for aggregation.
333 				 *
334 				 * XXX do tx aggregation here
335 				 */
336 				m->m_flags |= M_AMPDU_MPDU;
337 			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
338 			    ic->ic_ampdu_enable(ni, tap)) {
339 				/*
340 				 * Not negotiated yet, request service.
341 				 */
342 				ieee80211_ampdu_request(ni, tap);
343 				/* XXX hold frame for reply? */
344 			}
345 		}
346 #ifdef IEEE80211_SUPPORT_SUPERG
347 		else if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) {
348 			m = ieee80211_ff_check(ni, m);
349 			if (m == NULL) {
350 				/* NB: any ni ref held on stageq */
351 				continue;
352 			}
353 		}
354 #endif /* IEEE80211_SUPPORT_SUPERG */
355 		if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
356 			/*
357 			 * Encapsulate the packet in prep for transmission.
358 			 */
359 			m = ieee80211_encap(vap, ni, m);
360 			if (m == NULL) {
361 				/* NB: stat+msg handled in ieee80211_encap */
362 				ieee80211_free_node(ni);
363 				continue;
364 			}
365 		}
366 
367 		error = parent->if_transmit(parent, m);
368 		if (error != 0) {
369 			/* NB: IFQ_HANDOFF reclaims mbuf */
370 			ieee80211_free_node(ni);
371 		} else {
372 			ifp->if_opackets++;
373 		}
374 		ic->ic_lastdata = ticks;
375 	}
376 #undef IS_DWDS
377 }
378 
379 /*
380  * 802.11 output routine. This is (currently) used only to
381  * connect bpf write calls to the 802.11 layer for injecting
382  * raw 802.11 frames.
383  */
384 int
385 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
386 	struct sockaddr *dst, struct route *ro)
387 {
388 #define senderr(e) do { error = (e); goto bad;} while (0)
389 	struct ieee80211_node *ni = NULL;
390 	struct ieee80211vap *vap;
391 	struct ieee80211_frame *wh;
392 	int error;
393 
394 	IFQ_LOCK(&ifp->if_snd);
395 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
396 		IFQ_UNLOCK(&ifp->if_snd);
397 		/*
398 		 * Short-circuit requests if the vap is marked OACTIVE
399 		 * as this can happen because a packet came down through
400 		 * ieee80211_start before the vap entered RUN state in
401 		 * which case it's ok to just drop the frame.  This
402 		 * should not be necessary but callers of if_output don't
403 		 * check OACTIVE.
404 		 */
405 		senderr(ENETDOWN);
406 	}
407 	IFQ_UNLOCK(&ifp->if_snd);
408 	vap = ifp->if_softc;
409 	/*
410 	 * Hand to the 802.3 code if not tagged as
411 	 * a raw 802.11 frame.
412 	 */
413 	if (dst->sa_family != AF_IEEE80211)
414 		return vap->iv_output(ifp, m, dst, ro);
415 #ifdef MAC
416 	error = mac_ifnet_check_transmit(ifp, m);
417 	if (error)
418 		senderr(error);
419 #endif
420 	if (ifp->if_flags & IFF_MONITOR)
421 		senderr(ENETDOWN);
422 	if (!IFNET_IS_UP_RUNNING(ifp))
423 		senderr(ENETDOWN);
424 	if (vap->iv_state == IEEE80211_S_CAC) {
425 		IEEE80211_DPRINTF(vap,
426 		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
427 		    "block %s frame in CAC state\n", "raw data");
428 		vap->iv_stats.is_tx_badstate++;
429 		senderr(EIO);		/* XXX */
430 	} else if (vap->iv_state == IEEE80211_S_SCAN)
431 		senderr(EIO);
432 	/* XXX bypass bridge, pfil, carp, etc. */
433 
434 	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
435 		senderr(EIO);	/* XXX */
436 	wh = mtod(m, struct ieee80211_frame *);
437 	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
438 	    IEEE80211_FC0_VERSION_0)
439 		senderr(EIO);	/* XXX */
440 
441 	/* locate destination node */
442 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
443 	case IEEE80211_FC1_DIR_NODS:
444 	case IEEE80211_FC1_DIR_FROMDS:
445 		ni = ieee80211_find_txnode(vap, wh->i_addr1);
446 		break;
447 	case IEEE80211_FC1_DIR_TODS:
448 	case IEEE80211_FC1_DIR_DSTODS:
449 		if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
450 			senderr(EIO);	/* XXX */
451 		ni = ieee80211_find_txnode(vap, wh->i_addr3);
452 		break;
453 	default:
454 		senderr(EIO);	/* XXX */
455 	}
456 	if (ni == NULL) {
457 		/*
458 		 * Permit packets w/ bpf params through regardless
459 		 * (see below about sa_len).
460 		 */
461 		if (dst->sa_len == 0)
462 			senderr(EHOSTUNREACH);
463 		ni = ieee80211_ref_node(vap->iv_bss);
464 	}
465 
466 	/*
467 	 * Sanitize mbuf for net80211 flags leaked from above.
468 	 *
469 	 * NB: This must be done before ieee80211_classify as
470 	 *     it marks EAPOL in frames with M_EAPOL.
471 	 */
472 	m->m_flags &= ~M_80211_TX;
473 
474 	/* calculate priority so drivers can find the tx queue */
475 	/* XXX assumes an 802.3 frame */
476 	if (ieee80211_classify(ni, m))
477 		senderr(EIO);		/* XXX */
478 
479 	ifp->if_opackets++;
480 	IEEE80211_NODE_STAT(ni, tx_data);
481 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
482 		IEEE80211_NODE_STAT(ni, tx_mcast);
483 		m->m_flags |= M_MCAST;
484 	} else
485 		IEEE80211_NODE_STAT(ni, tx_ucast);
486 	/* NB: ieee80211_encap does not include 802.11 header */
487 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len);
488 
489 	/*
490 	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
491 	 * present by setting the sa_len field of the sockaddr (yes,
492 	 * this is a hack).
493 	 * NB: we assume sa_data is suitably aligned to cast.
494 	 */
495 	return vap->iv_ic->ic_raw_xmit(ni, m,
496 	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
497 		dst->sa_data : NULL));
498 bad:
499 	if (m != NULL)
500 		m_freem(m);
501 	if (ni != NULL)
502 		ieee80211_free_node(ni);
503 	ifp->if_oerrors++;
504 	return error;
505 #undef senderr
506 }
507 
508 /*
509  * Set the direction field and address fields of an outgoing
510  * frame.  Note this should be called early on in constructing
511  * a frame as it sets i_fc[1]; other bits can then be or'd in.
512  */
513 void
514 ieee80211_send_setup(
515 	struct ieee80211_node *ni,
516 	struct mbuf *m,
517 	int type, int tid,
518 	const uint8_t sa[IEEE80211_ADDR_LEN],
519 	const uint8_t da[IEEE80211_ADDR_LEN],
520 	const uint8_t bssid[IEEE80211_ADDR_LEN])
521 {
522 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
523 	struct ieee80211vap *vap = ni->ni_vap;
524 	struct ieee80211_tx_ampdu *tap;
525 	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
526 	ieee80211_seq seqno;
527 
528 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
529 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
530 		switch (vap->iv_opmode) {
531 		case IEEE80211_M_STA:
532 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
533 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
534 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
535 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
536 			break;
537 		case IEEE80211_M_IBSS:
538 		case IEEE80211_M_AHDEMO:
539 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
540 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
541 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
542 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
543 			break;
544 		case IEEE80211_M_HOSTAP:
545 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
546 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
547 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
548 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
549 			break;
550 		case IEEE80211_M_WDS:
551 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
552 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
553 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
554 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
555 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
556 			break;
557 		case IEEE80211_M_MBSS:
558 #ifdef IEEE80211_SUPPORT_MESH
559 			/* XXX add support for proxied addresses */
560 			if (IEEE80211_IS_MULTICAST(da)) {
561 				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
562 				/* XXX next hop */
563 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
564 				IEEE80211_ADDR_COPY(wh->i_addr2,
565 				    vap->iv_myaddr);
566 			} else {
567 				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
568 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
569 				IEEE80211_ADDR_COPY(wh->i_addr2,
570 				    vap->iv_myaddr);
571 				IEEE80211_ADDR_COPY(wh->i_addr3, da);
572 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
573 			}
574 #endif
575 			break;
576 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
577 			break;
578 		}
579 	} else {
580 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
581 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
582 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
583 #ifdef IEEE80211_SUPPORT_MESH
584 		if (vap->iv_opmode == IEEE80211_M_MBSS)
585 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
586 		else
587 #endif
588 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
589 	}
590 	*(uint16_t *)&wh->i_dur[0] = 0;
591 
592 	tap = &ni->ni_tx_ampdu[tid];
593 	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap))
594 		m->m_flags |= M_AMPDU_MPDU;
595 	else {
596 		seqno = ni->ni_txseqs[tid]++;
597 		*(uint16_t *)&wh->i_seq[0] =
598 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
599 		M_SEQNO_SET(m, seqno);
600 	}
601 
602 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
603 		m->m_flags |= M_MCAST;
604 #undef WH4
605 }
606 
607 /*
608  * Send a management frame to the specified node.  The node pointer
609  * must have a reference as the pointer will be passed to the driver
610  * and potentially held for a long time.  If the frame is successfully
611  * dispatched to the driver, then it is responsible for freeing the
612  * reference (and potentially free'ing up any associated storage);
613  * otherwise deal with reclaiming any reference (on error).
614  */
615 int
616 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
617 	struct ieee80211_bpf_params *params)
618 {
619 	struct ieee80211vap *vap = ni->ni_vap;
620 	struct ieee80211com *ic = ni->ni_ic;
621 	struct ieee80211_frame *wh;
622 
623 	KASSERT(ni != NULL, ("null node"));
624 
625 	if (vap->iv_state == IEEE80211_S_CAC) {
626 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
627 		    ni, "block %s frame in CAC state",
628 			ieee80211_mgt_subtype_name[
629 			    (type & IEEE80211_FC0_SUBTYPE_MASK) >>
630 				IEEE80211_FC0_SUBTYPE_SHIFT]);
631 		vap->iv_stats.is_tx_badstate++;
632 		ieee80211_free_node(ni);
633 		m_freem(m);
634 		return EIO;		/* XXX */
635 	}
636 
637 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
638 	if (m == NULL) {
639 		ieee80211_free_node(ni);
640 		return ENOMEM;
641 	}
642 
643 	wh = mtod(m, struct ieee80211_frame *);
644 	ieee80211_send_setup(ni, m,
645 	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
646 	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
647 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
648 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
649 		    "encrypting frame (%s)", __func__);
650 		wh->i_fc[1] |= IEEE80211_FC1_WEP;
651 	}
652 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
653 
654 	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
655 	M_WME_SETAC(m, params->ibp_pri);
656 
657 #ifdef IEEE80211_DEBUG
658 	/* avoid printing too many frames */
659 	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
660 	    ieee80211_msg_dumppkts(vap)) {
661 		printf("[%s] send %s on channel %u\n",
662 		    ether_sprintf(wh->i_addr1),
663 		    ieee80211_mgt_subtype_name[
664 			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
665 				IEEE80211_FC0_SUBTYPE_SHIFT],
666 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
667 	}
668 #endif
669 	IEEE80211_NODE_STAT(ni, tx_mgmt);
670 
671 	return ic->ic_raw_xmit(ni, m, params);
672 }
673 
674 /*
675  * Send a null data frame to the specified node.  If the station
676  * is setup for QoS then a QoS Null Data frame is constructed.
677  * If this is a WDS station then a 4-address frame is constructed.
678  *
679  * NB: the caller is assumed to have setup a node reference
680  *     for use; this is necessary to deal with a race condition
681  *     when probing for inactive stations.  Like ieee80211_mgmt_output
682  *     we must cleanup any node reference on error;  however we
683  *     can safely just unref it as we know it will never be the
684  *     last reference to the node.
685  */
686 int
687 ieee80211_send_nulldata(struct ieee80211_node *ni)
688 {
689 	struct ieee80211vap *vap = ni->ni_vap;
690 	struct ieee80211com *ic = ni->ni_ic;
691 	struct mbuf *m;
692 	struct ieee80211_frame *wh;
693 	int hdrlen;
694 	uint8_t *frm;
695 
696 	if (vap->iv_state == IEEE80211_S_CAC) {
697 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
698 		    ni, "block %s frame in CAC state", "null data");
699 		ieee80211_unref_node(&ni);
700 		vap->iv_stats.is_tx_badstate++;
701 		return EIO;		/* XXX */
702 	}
703 
704 	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
705 		hdrlen = sizeof(struct ieee80211_qosframe);
706 	else
707 		hdrlen = sizeof(struct ieee80211_frame);
708 	/* NB: only WDS vap's get 4-address frames */
709 	if (vap->iv_opmode == IEEE80211_M_WDS)
710 		hdrlen += IEEE80211_ADDR_LEN;
711 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
712 		hdrlen = roundup(hdrlen, sizeof(uint32_t));
713 
714 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
715 	if (m == NULL) {
716 		/* XXX debug msg */
717 		ieee80211_unref_node(&ni);
718 		vap->iv_stats.is_tx_nobuf++;
719 		return ENOMEM;
720 	}
721 	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
722 	    ("leading space %zd", M_LEADINGSPACE(m)));
723 	M_PREPEND(m, hdrlen, M_DONTWAIT);
724 	if (m == NULL) {
725 		/* NB: cannot happen */
726 		ieee80211_free_node(ni);
727 		return ENOMEM;
728 	}
729 
730 	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
731 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
732 		const int tid = WME_AC_TO_TID(WME_AC_BE);
733 		uint8_t *qos;
734 
735 		ieee80211_send_setup(ni, m,
736 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
737 		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
738 
739 		if (vap->iv_opmode == IEEE80211_M_WDS)
740 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
741 		else
742 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
743 		qos[0] = tid & IEEE80211_QOS_TID;
744 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
745 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
746 		qos[1] = 0;
747 	} else {
748 		ieee80211_send_setup(ni, m,
749 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
750 		    IEEE80211_NONQOS_TID,
751 		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
752 	}
753 	if (vap->iv_opmode != IEEE80211_M_WDS) {
754 		/* NB: power management bit is never sent by an AP */
755 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
756 		    vap->iv_opmode != IEEE80211_M_HOSTAP)
757 			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
758 	}
759 	m->m_len = m->m_pkthdr.len = hdrlen;
760 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
761 
762 	M_WME_SETAC(m, WME_AC_BE);
763 
764 	IEEE80211_NODE_STAT(ni, tx_data);
765 
766 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
767 	    "send %snull data frame on channel %u, pwr mgt %s",
768 	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
769 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
770 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
771 
772 	return ic->ic_raw_xmit(ni, m, NULL);
773 }
774 
775 /*
776  * Assign priority to a frame based on any vlan tag assigned
777  * to the station and/or any Diffserv setting in an IP header.
778  * Finally, if an ACM policy is setup (in station mode) it's
779  * applied.
780  */
781 int
782 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
783 {
784 	const struct ether_header *eh = mtod(m, struct ether_header *);
785 	int v_wme_ac, d_wme_ac, ac;
786 
787 	/*
788 	 * Always promote PAE/EAPOL frames to high priority.
789 	 */
790 	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
791 		/* NB: mark so others don't need to check header */
792 		m->m_flags |= M_EAPOL;
793 		ac = WME_AC_VO;
794 		goto done;
795 	}
796 	/*
797 	 * Non-qos traffic goes to BE.
798 	 */
799 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
800 		ac = WME_AC_BE;
801 		goto done;
802 	}
803 
804 	/*
805 	 * If node has a vlan tag then all traffic
806 	 * to it must have a matching tag.
807 	 */
808 	v_wme_ac = 0;
809 	if (ni->ni_vlan != 0) {
810 		 if ((m->m_flags & M_VLANTAG) == 0) {
811 			IEEE80211_NODE_STAT(ni, tx_novlantag);
812 			return 1;
813 		}
814 		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
815 		    EVL_VLANOFTAG(ni->ni_vlan)) {
816 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
817 			return 1;
818 		}
819 		/* map vlan priority to AC */
820 		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
821 	}
822 
823 	/* XXX m_copydata may be too slow for fast path */
824 #ifdef INET
825 	if (eh->ether_type == htons(ETHERTYPE_IP)) {
826 		uint8_t tos;
827 		/*
828 		 * IP frame, map the DSCP bits from the TOS field.
829 		 */
830 		/* NB: ip header may not be in first mbuf */
831 		m_copydata(m, sizeof(struct ether_header) +
832 		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
833 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
834 		d_wme_ac = TID_TO_WME_AC(tos);
835 	} else {
836 #endif /* INET */
837 #ifdef INET6
838 	if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
839 		uint32_t flow;
840 		uint8_t tos;
841 		/*
842 		 * IPv6 frame, map the DSCP bits from the traffic class field.
843 		 */
844 		m_copydata(m, sizeof(struct ether_header) +
845 		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
846 		    (caddr_t) &flow);
847 		tos = (uint8_t)(ntohl(flow) >> 20);
848 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
849 		d_wme_ac = TID_TO_WME_AC(tos);
850 	} else {
851 #endif /* INET6 */
852 		d_wme_ac = WME_AC_BE;
853 #ifdef INET6
854 	}
855 #endif
856 #ifdef INET
857 	}
858 #endif
859 	/*
860 	 * Use highest priority AC.
861 	 */
862 	if (v_wme_ac > d_wme_ac)
863 		ac = v_wme_ac;
864 	else
865 		ac = d_wme_ac;
866 
867 	/*
868 	 * Apply ACM policy.
869 	 */
870 	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
871 		static const int acmap[4] = {
872 			WME_AC_BK,	/* WME_AC_BE */
873 			WME_AC_BK,	/* WME_AC_BK */
874 			WME_AC_BE,	/* WME_AC_VI */
875 			WME_AC_VI,	/* WME_AC_VO */
876 		};
877 		struct ieee80211com *ic = ni->ni_ic;
878 
879 		while (ac != WME_AC_BK &&
880 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
881 			ac = acmap[ac];
882 	}
883 done:
884 	M_WME_SETAC(m, ac);
885 	return 0;
886 }
887 
888 /*
889  * Insure there is sufficient contiguous space to encapsulate the
890  * 802.11 data frame.  If room isn't already there, arrange for it.
891  * Drivers and cipher modules assume we have done the necessary work
892  * and fail rudely if they don't find the space they need.
893  */
894 struct mbuf *
895 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
896 	struct ieee80211_key *key, struct mbuf *m)
897 {
898 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
899 	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
900 
901 	if (key != NULL) {
902 		/* XXX belongs in crypto code? */
903 		needed_space += key->wk_cipher->ic_header;
904 		/* XXX frags */
905 		/*
906 		 * When crypto is being done in the host we must insure
907 		 * the data are writable for the cipher routines; clone
908 		 * a writable mbuf chain.
909 		 * XXX handle SWMIC specially
910 		 */
911 		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
912 			m = m_unshare(m, M_NOWAIT);
913 			if (m == NULL) {
914 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
915 				    "%s: cannot get writable mbuf\n", __func__);
916 				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
917 				return NULL;
918 			}
919 		}
920 	}
921 	/*
922 	 * We know we are called just before stripping an Ethernet
923 	 * header and prepending an LLC header.  This means we know
924 	 * there will be
925 	 *	sizeof(struct ether_header) - sizeof(struct llc)
926 	 * bytes recovered to which we need additional space for the
927 	 * 802.11 header and any crypto header.
928 	 */
929 	/* XXX check trailing space and copy instead? */
930 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
931 		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
932 		if (n == NULL) {
933 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
934 			    "%s: cannot expand storage\n", __func__);
935 			vap->iv_stats.is_tx_nobuf++;
936 			m_freem(m);
937 			return NULL;
938 		}
939 		KASSERT(needed_space <= MHLEN,
940 		    ("not enough room, need %u got %zu\n", needed_space, MHLEN));
941 		/*
942 		 * Setup new mbuf to have leading space to prepend the
943 		 * 802.11 header and any crypto header bits that are
944 		 * required (the latter are added when the driver calls
945 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
946 		 */
947 		/* NB: must be first 'cuz it clobbers m_data */
948 		m_move_pkthdr(n, m);
949 		n->m_len = 0;			/* NB: m_gethdr does not set */
950 		n->m_data += needed_space;
951 		/*
952 		 * Pull up Ethernet header to create the expected layout.
953 		 * We could use m_pullup but that's overkill (i.e. we don't
954 		 * need the actual data) and it cannot fail so do it inline
955 		 * for speed.
956 		 */
957 		/* NB: struct ether_header is known to be contiguous */
958 		n->m_len += sizeof(struct ether_header);
959 		m->m_len -= sizeof(struct ether_header);
960 		m->m_data += sizeof(struct ether_header);
961 		/*
962 		 * Replace the head of the chain.
963 		 */
964 		n->m_next = m;
965 		m = n;
966 	}
967 	return m;
968 #undef TO_BE_RECLAIMED
969 }
970 
971 /*
972  * Return the transmit key to use in sending a unicast frame.
973  * If a unicast key is set we use that.  When no unicast key is set
974  * we fall back to the default transmit key.
975  */
976 static __inline struct ieee80211_key *
977 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
978 	struct ieee80211_node *ni)
979 {
980 	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
981 		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
982 		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
983 			return NULL;
984 		return &vap->iv_nw_keys[vap->iv_def_txkey];
985 	} else {
986 		return &ni->ni_ucastkey;
987 	}
988 }
989 
990 /*
991  * Return the transmit key to use in sending a multicast frame.
992  * Multicast traffic always uses the group key which is installed as
993  * the default tx key.
994  */
995 static __inline struct ieee80211_key *
996 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
997 	struct ieee80211_node *ni)
998 {
999 	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1000 	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1001 		return NULL;
1002 	return &vap->iv_nw_keys[vap->iv_def_txkey];
1003 }
1004 
1005 /*
1006  * Encapsulate an outbound data frame.  The mbuf chain is updated.
1007  * If an error is encountered NULL is returned.  The caller is required
1008  * to provide a node reference and pullup the ethernet header in the
1009  * first mbuf.
1010  *
1011  * NB: Packet is assumed to be processed by ieee80211_classify which
1012  *     marked EAPOL frames w/ M_EAPOL.
1013  */
1014 struct mbuf *
1015 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1016     struct mbuf *m)
1017 {
1018 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1019 	struct ieee80211com *ic = ni->ni_ic;
1020 #ifdef IEEE80211_SUPPORT_MESH
1021 	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1022 	struct ieee80211_meshcntl_ae10 *mc;
1023 #endif
1024 	struct ether_header eh;
1025 	struct ieee80211_frame *wh;
1026 	struct ieee80211_key *key;
1027 	struct llc *llc;
1028 	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr;
1029 	ieee80211_seq seqno;
1030 	int meshhdrsize, meshae;
1031 	uint8_t *qos;
1032 
1033 	/*
1034 	 * Copy existing Ethernet header to a safe place.  The
1035 	 * rest of the code assumes it's ok to strip it when
1036 	 * reorganizing state for the final encapsulation.
1037 	 */
1038 	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1039 	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1040 
1041 	/*
1042 	 * Insure space for additional headers.  First identify
1043 	 * transmit key to use in calculating any buffer adjustments
1044 	 * required.  This is also used below to do privacy
1045 	 * encapsulation work.  Then calculate the 802.11 header
1046 	 * size and any padding required by the driver.
1047 	 *
1048 	 * Note key may be NULL if we fall back to the default
1049 	 * transmit key and that is not set.  In that case the
1050 	 * buffer may not be expanded as needed by the cipher
1051 	 * routines, but they will/should discard it.
1052 	 */
1053 	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1054 		if (vap->iv_opmode == IEEE80211_M_STA ||
1055 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1056 		    (vap->iv_opmode == IEEE80211_M_WDS &&
1057 		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1058 			key = ieee80211_crypto_getucastkey(vap, ni);
1059 		else
1060 			key = ieee80211_crypto_getmcastkey(vap, ni);
1061 		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1062 			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1063 			    eh.ether_dhost,
1064 			    "no default transmit key (%s) deftxkey %u",
1065 			    __func__, vap->iv_def_txkey);
1066 			vap->iv_stats.is_tx_nodefkey++;
1067 			goto bad;
1068 		}
1069 	} else
1070 		key = NULL;
1071 	/*
1072 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1073 	 * frames so suppress use.  This may be an issue if other
1074 	 * ap's require all data frames to be QoS-encapsulated
1075 	 * once negotiated in which case we'll need to make this
1076 	 * configurable.
1077 	 * NB: mesh data frames are QoS.
1078 	 */
1079 	addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) ||
1080 	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1081 	    (m->m_flags & M_EAPOL) == 0;
1082 	if (addqos)
1083 		hdrsize = sizeof(struct ieee80211_qosframe);
1084 	else
1085 		hdrsize = sizeof(struct ieee80211_frame);
1086 #ifdef IEEE80211_SUPPORT_MESH
1087 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1088 		/*
1089 		 * Mesh data frames are encapsulated according to the
1090 		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1091 		 * o Group Addressed data (aka multicast) originating
1092 		 *   at the local sta are sent w/ 3-address format and
1093 		 *   address extension mode 00
1094 		 * o Individually Addressed data (aka unicast) originating
1095 		 *   at the local sta are sent w/ 4-address format and
1096 		 *   address extension mode 00
1097 		 * o Group Addressed data forwarded from a non-mesh sta are
1098 		 *   sent w/ 3-address format and address extension mode 01
1099 		 * o Individually Address data from another sta are sent
1100 		 *   w/ 4-address format and address extension mode 10
1101 		 */
1102 		is4addr = 0;		/* NB: don't use, disable */
1103 		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost))
1104 			hdrsize += IEEE80211_ADDR_LEN;	/* unicast are 4-addr */
1105 		meshhdrsize = sizeof(struct ieee80211_meshcntl);
1106 		/* XXX defines for AE modes */
1107 		if (IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1108 			if (!IEEE80211_IS_MULTICAST(eh.ether_dhost))
1109 				meshae = 0;
1110 			else
1111 				meshae = 4;		/* NB: pseudo */
1112 		} else if (IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1113 			meshae = 1;
1114 			meshhdrsize += 1*IEEE80211_ADDR_LEN;
1115 		} else {
1116 			meshae = 2;
1117 			meshhdrsize += 2*IEEE80211_ADDR_LEN;
1118 		}
1119 	} else {
1120 #endif
1121 		/*
1122 		 * 4-address frames need to be generated for:
1123 		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1124 		 * o packets sent through a vap marked for relaying
1125 		 *   (e.g. a station operating with dynamic WDS)
1126 		 */
1127 		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1128 		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1129 		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1130 		if (is4addr)
1131 			hdrsize += IEEE80211_ADDR_LEN;
1132 		meshhdrsize = meshae = 0;
1133 #ifdef IEEE80211_SUPPORT_MESH
1134 	}
1135 #endif
1136 	/*
1137 	 * Honor driver DATAPAD requirement.
1138 	 */
1139 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1140 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1141 	else
1142 		hdrspace = hdrsize;
1143 
1144 	if (__predict_true((m->m_flags & M_FF) == 0)) {
1145 		/*
1146 		 * Normal frame.
1147 		 */
1148 		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1149 		if (m == NULL) {
1150 			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1151 			goto bad;
1152 		}
1153 		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1154 		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1155 		llc = mtod(m, struct llc *);
1156 		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1157 		llc->llc_control = LLC_UI;
1158 		llc->llc_snap.org_code[0] = 0;
1159 		llc->llc_snap.org_code[1] = 0;
1160 		llc->llc_snap.org_code[2] = 0;
1161 		llc->llc_snap.ether_type = eh.ether_type;
1162 	} else {
1163 #ifdef IEEE80211_SUPPORT_SUPERG
1164 		/*
1165 		 * Aggregated frame.
1166 		 */
1167 		m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1168 		if (m == NULL)
1169 #endif
1170 			goto bad;
1171 	}
1172 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1173 
1174 	M_PREPEND(m, hdrspace + meshhdrsize, M_DONTWAIT);
1175 	if (m == NULL) {
1176 		vap->iv_stats.is_tx_nobuf++;
1177 		goto bad;
1178 	}
1179 	wh = mtod(m, struct ieee80211_frame *);
1180 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1181 	*(uint16_t *)wh->i_dur = 0;
1182 	qos = NULL;	/* NB: quiet compiler */
1183 	if (is4addr) {
1184 		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1185 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1186 		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1187 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1188 		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1189 	} else switch (vap->iv_opmode) {
1190 	case IEEE80211_M_STA:
1191 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1192 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1193 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1194 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1195 		break;
1196 	case IEEE80211_M_IBSS:
1197 	case IEEE80211_M_AHDEMO:
1198 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1199 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1200 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1201 		/*
1202 		 * NB: always use the bssid from iv_bss as the
1203 		 *     neighbor's may be stale after an ibss merge
1204 		 */
1205 		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1206 		break;
1207 	case IEEE80211_M_HOSTAP:
1208 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1209 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1210 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1211 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1212 		break;
1213 #ifdef IEEE80211_SUPPORT_MESH
1214 	case IEEE80211_M_MBSS:
1215 		/* NB: offset by hdrspace to deal with DATAPAD */
1216 		mc = (struct ieee80211_meshcntl_ae10 *)
1217 		     (mtod(m, uint8_t *) + hdrspace);
1218 		switch (meshae) {
1219 		case 0:			/* ucast, no proxy */
1220 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1221 			IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1222 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1223 			IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1224 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1225 			mc->mc_flags = 0;
1226 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1227 			break;
1228 		case 4:			/* mcast, no proxy */
1229 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1230 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1231 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1232 			IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1233 			mc->mc_flags = 0;		/* NB: AE is really 0 */
1234 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1235 			break;
1236 		case 1:			/* mcast, proxy */
1237 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1238 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1239 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1240 			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1241 			mc->mc_flags = 1;
1242 			IEEE80211_ADDR_COPY(mc->mc_addr4, eh.ether_shost);
1243 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1244 			break;
1245 		case 2:			/* ucast, proxy */
1246 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1247 			IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1248 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1249 			/* XXX not right, need MeshDA */
1250 			IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1251 			/* XXX assume are MeshSA */
1252 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1253 			mc->mc_flags = 2;
1254 			IEEE80211_ADDR_COPY(mc->mc_addr4, eh.ether_dhost);
1255 			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_shost);
1256 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1257 			break;
1258 		default:
1259 			KASSERT(0, ("meshae %d", meshae));
1260 			break;
1261 		}
1262 		mc->mc_ttl = ms->ms_ttl;
1263 		ms->ms_seq++;
1264 		LE_WRITE_4(mc->mc_seq, ms->ms_seq);
1265 		break;
1266 #endif
1267 	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1268 	default:
1269 		goto bad;
1270 	}
1271 	if (m->m_flags & M_MORE_DATA)
1272 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1273 	if (addqos) {
1274 		int ac, tid;
1275 
1276 		if (is4addr) {
1277 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1278 		/* NB: mesh case handled earlier */
1279 		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1280 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1281 		ac = M_WME_GETAC(m);
1282 		/* map from access class/queue to 11e header priorty value */
1283 		tid = WME_AC_TO_TID(ac);
1284 		qos[0] = tid & IEEE80211_QOS_TID;
1285 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1286 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1287 #ifdef IEEE80211_SUPPORT_MESH
1288 		if (vap->iv_opmode == IEEE80211_M_MBSS) {
1289 			qos[1] |= IEEE80211_QOS_MC;
1290 		} else
1291 #endif
1292 			qos[1] = 0;
1293 		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1294 
1295 		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1296 			/*
1297 			 * NB: don't assign a sequence # to potential
1298 			 * aggregates; we expect this happens at the
1299 			 * point the frame comes off any aggregation q
1300 			 * as otherwise we may introduce holes in the
1301 			 * BA sequence space and/or make window accouting
1302 			 * more difficult.
1303 			 *
1304 			 * XXX may want to control this with a driver
1305 			 * capability; this may also change when we pull
1306 			 * aggregation up into net80211
1307 			 */
1308 			seqno = ni->ni_txseqs[tid]++;
1309 			*(uint16_t *)wh->i_seq =
1310 			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1311 			M_SEQNO_SET(m, seqno);
1312 		}
1313 	} else {
1314 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1315 		*(uint16_t *)wh->i_seq =
1316 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1317 		M_SEQNO_SET(m, seqno);
1318 	}
1319 
1320 
1321 	/* check if xmit fragmentation is required */
1322 	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1323 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1324 	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1325 	    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1326 	if (key != NULL) {
1327 		/*
1328 		 * IEEE 802.1X: send EAPOL frames always in the clear.
1329 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1330 		 */
1331 		if ((m->m_flags & M_EAPOL) == 0 ||
1332 		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1333 		     (vap->iv_opmode == IEEE80211_M_STA ?
1334 		      !IEEE80211_KEY_UNDEFINED(key) :
1335 		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1336 			wh->i_fc[1] |= IEEE80211_FC1_WEP;
1337 			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1338 				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1339 				    eh.ether_dhost,
1340 				    "%s", "enmic failed, discard frame");
1341 				vap->iv_stats.is_crypto_enmicfail++;
1342 				goto bad;
1343 			}
1344 		}
1345 	}
1346 	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1347 	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1348 		goto bad;
1349 
1350 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1351 
1352 	IEEE80211_NODE_STAT(ni, tx_data);
1353 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1354 		IEEE80211_NODE_STAT(ni, tx_mcast);
1355 		m->m_flags |= M_MCAST;
1356 	} else
1357 		IEEE80211_NODE_STAT(ni, tx_ucast);
1358 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1359 
1360 	return m;
1361 bad:
1362 	if (m != NULL)
1363 		m_freem(m);
1364 	return NULL;
1365 #undef WH4
1366 }
1367 
1368 /*
1369  * Fragment the frame according to the specified mtu.
1370  * The size of the 802.11 header (w/o padding) is provided
1371  * so we don't need to recalculate it.  We create a new
1372  * mbuf for each fragment and chain it through m_nextpkt;
1373  * we might be able to optimize this by reusing the original
1374  * packet's mbufs but that is significantly more complicated.
1375  */
1376 static int
1377 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1378 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1379 {
1380 	struct ieee80211_frame *wh, *whf;
1381 	struct mbuf *m, *prev, *next;
1382 	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1383 
1384 	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1385 	KASSERT(m0->m_pkthdr.len > mtu,
1386 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1387 
1388 	wh = mtod(m0, struct ieee80211_frame *);
1389 	/* NB: mark the first frag; it will be propagated below */
1390 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1391 	totalhdrsize = hdrsize + ciphdrsize;
1392 	fragno = 1;
1393 	off = mtu - ciphdrsize;
1394 	remainder = m0->m_pkthdr.len - off;
1395 	prev = m0;
1396 	do {
1397 		fragsize = totalhdrsize + remainder;
1398 		if (fragsize > mtu)
1399 			fragsize = mtu;
1400 		/* XXX fragsize can be >2048! */
1401 		KASSERT(fragsize < MCLBYTES,
1402 			("fragment size %u too big!", fragsize));
1403 		if (fragsize > MHLEN)
1404 			m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1405 		else
1406 			m = m_gethdr(M_DONTWAIT, MT_DATA);
1407 		if (m == NULL)
1408 			goto bad;
1409 		/* leave room to prepend any cipher header */
1410 		m_align(m, fragsize - ciphdrsize);
1411 
1412 		/*
1413 		 * Form the header in the fragment.  Note that since
1414 		 * we mark the first fragment with the MORE_FRAG bit
1415 		 * it automatically is propagated to each fragment; we
1416 		 * need only clear it on the last fragment (done below).
1417 		 * NB: frag 1+ dont have Mesh Control field present.
1418 		 */
1419 		whf = mtod(m, struct ieee80211_frame *);
1420 		memcpy(whf, wh, hdrsize);
1421 #ifdef IEEE80211_SUPPORT_MESH
1422 		if (vap->iv_opmode == IEEE80211_M_MBSS) {
1423 			if (IEEE80211_IS_DSTODS(wh))
1424 				((struct ieee80211_qosframe_addr4 *)
1425 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1426 			else
1427 				((struct ieee80211_qosframe *)
1428 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1429 		}
1430 #endif
1431 		*(uint16_t *)&whf->i_seq[0] |= htole16(
1432 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1433 				IEEE80211_SEQ_FRAG_SHIFT);
1434 		fragno++;
1435 
1436 		payload = fragsize - totalhdrsize;
1437 		/* NB: destination is known to be contiguous */
1438 		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrsize);
1439 		m->m_len = hdrsize + payload;
1440 		m->m_pkthdr.len = hdrsize + payload;
1441 		m->m_flags |= M_FRAG;
1442 
1443 		/* chain up the fragment */
1444 		prev->m_nextpkt = m;
1445 		prev = m;
1446 
1447 		/* deduct fragment just formed */
1448 		remainder -= payload;
1449 		off += payload;
1450 	} while (remainder != 0);
1451 
1452 	/* set the last fragment */
1453 	m->m_flags |= M_LASTFRAG;
1454 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1455 
1456 	/* strip first mbuf now that everything has been copied */
1457 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1458 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1459 
1460 	vap->iv_stats.is_tx_fragframes++;
1461 	vap->iv_stats.is_tx_frags += fragno-1;
1462 
1463 	return 1;
1464 bad:
1465 	/* reclaim fragments but leave original frame for caller to free */
1466 	for (m = m0->m_nextpkt; m != NULL; m = next) {
1467 		next = m->m_nextpkt;
1468 		m->m_nextpkt = NULL;		/* XXX paranoid */
1469 		m_freem(m);
1470 	}
1471 	m0->m_nextpkt = NULL;
1472 	return 0;
1473 }
1474 
1475 /*
1476  * Add a supported rates element id to a frame.
1477  */
1478 uint8_t *
1479 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1480 {
1481 	int nrates;
1482 
1483 	*frm++ = IEEE80211_ELEMID_RATES;
1484 	nrates = rs->rs_nrates;
1485 	if (nrates > IEEE80211_RATE_SIZE)
1486 		nrates = IEEE80211_RATE_SIZE;
1487 	*frm++ = nrates;
1488 	memcpy(frm, rs->rs_rates, nrates);
1489 	return frm + nrates;
1490 }
1491 
1492 /*
1493  * Add an extended supported rates element id to a frame.
1494  */
1495 uint8_t *
1496 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1497 {
1498 	/*
1499 	 * Add an extended supported rates element if operating in 11g mode.
1500 	 */
1501 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1502 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1503 		*frm++ = IEEE80211_ELEMID_XRATES;
1504 		*frm++ = nrates;
1505 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1506 		frm += nrates;
1507 	}
1508 	return frm;
1509 }
1510 
1511 /*
1512  * Add an ssid element to a frame.
1513  */
1514 static uint8_t *
1515 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1516 {
1517 	*frm++ = IEEE80211_ELEMID_SSID;
1518 	*frm++ = len;
1519 	memcpy(frm, ssid, len);
1520 	return frm + len;
1521 }
1522 
1523 /*
1524  * Add an erp element to a frame.
1525  */
1526 static uint8_t *
1527 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1528 {
1529 	uint8_t erp;
1530 
1531 	*frm++ = IEEE80211_ELEMID_ERP;
1532 	*frm++ = 1;
1533 	erp = 0;
1534 	if (ic->ic_nonerpsta != 0)
1535 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1536 	if (ic->ic_flags & IEEE80211_F_USEPROT)
1537 		erp |= IEEE80211_ERP_USE_PROTECTION;
1538 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1539 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1540 	*frm++ = erp;
1541 	return frm;
1542 }
1543 
1544 /*
1545  * Add a CFParams element to a frame.
1546  */
1547 static uint8_t *
1548 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1549 {
1550 #define	ADDSHORT(frm, v) do {	\
1551 	LE_WRITE_2(frm, v);	\
1552 	frm += 2;		\
1553 } while (0)
1554 	*frm++ = IEEE80211_ELEMID_CFPARMS;
1555 	*frm++ = 6;
1556 	*frm++ = 0;		/* CFP count */
1557 	*frm++ = 2;		/* CFP period */
1558 	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1559 	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1560 	return frm;
1561 #undef ADDSHORT
1562 }
1563 
1564 static __inline uint8_t *
1565 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1566 {
1567 	memcpy(frm, ie->ie_data, ie->ie_len);
1568 	return frm + ie->ie_len;
1569 }
1570 
1571 static __inline uint8_t *
1572 add_ie(uint8_t *frm, const uint8_t *ie)
1573 {
1574 	memcpy(frm, ie, 2 + ie[1]);
1575 	return frm + 2 + ie[1];
1576 }
1577 
1578 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1579 /*
1580  * Add a WME information element to a frame.
1581  */
1582 static uint8_t *
1583 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1584 {
1585 	static const struct ieee80211_wme_info info = {
1586 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1587 		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1588 		.wme_oui	= { WME_OUI_BYTES },
1589 		.wme_type	= WME_OUI_TYPE,
1590 		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1591 		.wme_version	= WME_VERSION,
1592 		.wme_info	= 0,
1593 	};
1594 	memcpy(frm, &info, sizeof(info));
1595 	return frm + sizeof(info);
1596 }
1597 
1598 /*
1599  * Add a WME parameters element to a frame.
1600  */
1601 static uint8_t *
1602 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1603 {
1604 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1605 #define	ADDSHORT(frm, v) do {	\
1606 	LE_WRITE_2(frm, v);	\
1607 	frm += 2;		\
1608 } while (0)
1609 	/* NB: this works 'cuz a param has an info at the front */
1610 	static const struct ieee80211_wme_info param = {
1611 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1612 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1613 		.wme_oui	= { WME_OUI_BYTES },
1614 		.wme_type	= WME_OUI_TYPE,
1615 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1616 		.wme_version	= WME_VERSION,
1617 	};
1618 	int i;
1619 
1620 	memcpy(frm, &param, sizeof(param));
1621 	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1622 	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1623 	*frm++ = 0;					/* reserved field */
1624 	for (i = 0; i < WME_NUM_AC; i++) {
1625 		const struct wmeParams *ac =
1626 		       &wme->wme_bssChanParams.cap_wmeParams[i];
1627 		*frm++ = SM(i, WME_PARAM_ACI)
1628 		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1629 		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1630 		       ;
1631 		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1632 		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1633 		       ;
1634 		ADDSHORT(frm, ac->wmep_txopLimit);
1635 	}
1636 	return frm;
1637 #undef SM
1638 #undef ADDSHORT
1639 }
1640 #undef WME_OUI_BYTES
1641 
1642 /*
1643  * Add an 11h Power Constraint element to a frame.
1644  */
1645 static uint8_t *
1646 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1647 {
1648 	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1649 	/* XXX per-vap tx power limit? */
1650 	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1651 
1652 	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1653 	frm[1] = 1;
1654 	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1655 	return frm + 3;
1656 }
1657 
1658 /*
1659  * Add an 11h Power Capability element to a frame.
1660  */
1661 static uint8_t *
1662 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1663 {
1664 	frm[0] = IEEE80211_ELEMID_PWRCAP;
1665 	frm[1] = 2;
1666 	frm[2] = c->ic_minpower;
1667 	frm[3] = c->ic_maxpower;
1668 	return frm + 4;
1669 }
1670 
1671 /*
1672  * Add an 11h Supported Channels element to a frame.
1673  */
1674 static uint8_t *
1675 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1676 {
1677 	static const int ielen = 26;
1678 
1679 	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1680 	frm[1] = ielen;
1681 	/* XXX not correct */
1682 	memcpy(frm+2, ic->ic_chan_avail, ielen);
1683 	return frm + 2 + ielen;
1684 }
1685 
1686 /*
1687  * Add an 11h Quiet time element to a frame.
1688  */
1689 static uint8_t *
1690 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap)
1691 {
1692 	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
1693 
1694 	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
1695 	quiet->len = 6;
1696 	if (vap->iv_quiet_count_value == 1)
1697 		vap->iv_quiet_count_value = vap->iv_quiet_count;
1698 	else if (vap->iv_quiet_count_value > 1)
1699 		vap->iv_quiet_count_value--;
1700 
1701 	if (vap->iv_quiet_count_value == 0) {
1702 		/* value 0 is reserved as per 802.11h standerd */
1703 		vap->iv_quiet_count_value = 1;
1704 	}
1705 
1706 	quiet->tbttcount = vap->iv_quiet_count_value;
1707 	quiet->period = vap->iv_quiet_period;
1708 	quiet->duration = htole16(vap->iv_quiet_duration);
1709 	quiet->offset = htole16(vap->iv_quiet_offset);
1710 	return frm + sizeof(*quiet);
1711 }
1712 
1713 /*
1714  * Add an 11h Channel Switch Announcement element to a frame.
1715  * Note that we use the per-vap CSA count to adjust the global
1716  * counter so we can use this routine to form probe response
1717  * frames and get the current count.
1718  */
1719 static uint8_t *
1720 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
1721 {
1722 	struct ieee80211com *ic = vap->iv_ic;
1723 	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
1724 
1725 	csa->csa_ie = IEEE80211_ELEMID_CSA;
1726 	csa->csa_len = 3;
1727 	csa->csa_mode = 1;		/* XXX force quiet on channel */
1728 	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
1729 	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
1730 	return frm + sizeof(*csa);
1731 }
1732 
1733 /*
1734  * Add an 11h country information element to a frame.
1735  */
1736 static uint8_t *
1737 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
1738 {
1739 
1740 	if (ic->ic_countryie == NULL ||
1741 	    ic->ic_countryie_chan != ic->ic_bsschan) {
1742 		/*
1743 		 * Handle lazy construction of ie.  This is done on
1744 		 * first use and after a channel change that requires
1745 		 * re-calculation.
1746 		 */
1747 		if (ic->ic_countryie != NULL)
1748 			free(ic->ic_countryie, M_80211_NODE_IE);
1749 		ic->ic_countryie = ieee80211_alloc_countryie(ic);
1750 		if (ic->ic_countryie == NULL)
1751 			return frm;
1752 		ic->ic_countryie_chan = ic->ic_bsschan;
1753 	}
1754 	return add_appie(frm, ic->ic_countryie);
1755 }
1756 
1757 /*
1758  * Send a probe request frame with the specified ssid
1759  * and any optional information element data.
1760  */
1761 int
1762 ieee80211_send_probereq(struct ieee80211_node *ni,
1763 	const uint8_t sa[IEEE80211_ADDR_LEN],
1764 	const uint8_t da[IEEE80211_ADDR_LEN],
1765 	const uint8_t bssid[IEEE80211_ADDR_LEN],
1766 	const uint8_t *ssid, size_t ssidlen)
1767 {
1768 	struct ieee80211vap *vap = ni->ni_vap;
1769 	struct ieee80211com *ic = ni->ni_ic;
1770 	const struct ieee80211_txparam *tp;
1771 	struct ieee80211_bpf_params params;
1772 	struct ieee80211_frame *wh;
1773 	const struct ieee80211_rateset *rs;
1774 	struct mbuf *m;
1775 	uint8_t *frm;
1776 
1777 	if (vap->iv_state == IEEE80211_S_CAC) {
1778 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
1779 		    "block %s frame in CAC state", "probe request");
1780 		vap->iv_stats.is_tx_badstate++;
1781 		return EIO;		/* XXX */
1782 	}
1783 
1784 	/*
1785 	 * Hold a reference on the node so it doesn't go away until after
1786 	 * the xmit is complete all the way in the driver.  On error we
1787 	 * will remove our reference.
1788 	 */
1789 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1790 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1791 		__func__, __LINE__,
1792 		ni, ether_sprintf(ni->ni_macaddr),
1793 		ieee80211_node_refcnt(ni)+1);
1794 	ieee80211_ref_node(ni);
1795 
1796 	/*
1797 	 * prreq frame format
1798 	 *	[tlv] ssid
1799 	 *	[tlv] supported rates
1800 	 *	[tlv] RSN (optional)
1801 	 *	[tlv] extended supported rates
1802 	 *	[tlv] WPA (optional)
1803 	 *	[tlv] user-specified ie's
1804 	 */
1805 	m = ieee80211_getmgtframe(&frm,
1806 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
1807 	       	 2 + IEEE80211_NWID_LEN
1808 	       + 2 + IEEE80211_RATE_SIZE
1809 	       + sizeof(struct ieee80211_ie_wpa)
1810 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1811 	       + sizeof(struct ieee80211_ie_wpa)
1812 	       + (vap->iv_appie_probereq != NULL ?
1813 		   vap->iv_appie_probereq->ie_len : 0)
1814 	);
1815 	if (m == NULL) {
1816 		vap->iv_stats.is_tx_nobuf++;
1817 		ieee80211_free_node(ni);
1818 		return ENOMEM;
1819 	}
1820 
1821 	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
1822 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
1823 	frm = ieee80211_add_rates(frm, rs);
1824 	if (vap->iv_flags & IEEE80211_F_WPA2) {
1825 		if (vap->iv_rsn_ie != NULL)
1826 			frm = add_ie(frm, vap->iv_rsn_ie);
1827 		/* XXX else complain? */
1828 	}
1829 	frm = ieee80211_add_xrates(frm, rs);
1830 	if (vap->iv_flags & IEEE80211_F_WPA1) {
1831 		if (vap->iv_wpa_ie != NULL)
1832 			frm = add_ie(frm, vap->iv_wpa_ie);
1833 		/* XXX else complain? */
1834 	}
1835 	if (vap->iv_appie_probereq != NULL)
1836 		frm = add_appie(frm, vap->iv_appie_probereq);
1837 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
1838 
1839 	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
1840 	    ("leading space %zd", M_LEADINGSPACE(m)));
1841 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
1842 	if (m == NULL) {
1843 		/* NB: cannot happen */
1844 		ieee80211_free_node(ni);
1845 		return ENOMEM;
1846 	}
1847 
1848 	wh = mtod(m, struct ieee80211_frame *);
1849 	ieee80211_send_setup(ni, m,
1850 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
1851 	     IEEE80211_NONQOS_TID, sa, da, bssid);
1852 	/* XXX power management? */
1853 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1854 
1855 	M_WME_SETAC(m, WME_AC_BE);
1856 
1857 	IEEE80211_NODE_STAT(ni, tx_probereq);
1858 	IEEE80211_NODE_STAT(ni, tx_mgmt);
1859 
1860 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
1861 	    "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
1862 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
1863 	    ssidlen, ssid);
1864 
1865 	memset(&params, 0, sizeof(params));
1866 	params.ibp_pri = M_WME_GETAC(m);
1867 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1868 	params.ibp_rate0 = tp->mgmtrate;
1869 	if (IEEE80211_IS_MULTICAST(da)) {
1870 		params.ibp_flags |= IEEE80211_BPF_NOACK;
1871 		params.ibp_try0 = 1;
1872 	} else
1873 		params.ibp_try0 = tp->maxretry;
1874 	params.ibp_power = ni->ni_txpower;
1875 	return ic->ic_raw_xmit(ni, m, &params);
1876 }
1877 
1878 /*
1879  * Calculate capability information for mgt frames.
1880  */
1881 uint16_t
1882 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
1883 {
1884 	struct ieee80211com *ic = vap->iv_ic;
1885 	uint16_t capinfo;
1886 
1887 	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
1888 
1889 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
1890 		capinfo = IEEE80211_CAPINFO_ESS;
1891 	else if (vap->iv_opmode == IEEE80211_M_IBSS)
1892 		capinfo = IEEE80211_CAPINFO_IBSS;
1893 	else
1894 		capinfo = 0;
1895 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
1896 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
1897 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1898 	    IEEE80211_IS_CHAN_2GHZ(chan))
1899 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1900 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1901 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1902 	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
1903 		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
1904 	return capinfo;
1905 }
1906 
1907 /*
1908  * Send a management frame.  The node is for the destination (or ic_bss
1909  * when in station mode).  Nodes other than ic_bss have their reference
1910  * count bumped to reflect our use for an indeterminant time.
1911  */
1912 int
1913 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
1914 {
1915 #define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
1916 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
1917 	struct ieee80211vap *vap = ni->ni_vap;
1918 	struct ieee80211com *ic = ni->ni_ic;
1919 	struct ieee80211_node *bss = vap->iv_bss;
1920 	struct ieee80211_bpf_params params;
1921 	struct mbuf *m;
1922 	uint8_t *frm;
1923 	uint16_t capinfo;
1924 	int has_challenge, is_shared_key, ret, status;
1925 
1926 	KASSERT(ni != NULL, ("null node"));
1927 
1928 	/*
1929 	 * Hold a reference on the node so it doesn't go away until after
1930 	 * the xmit is complete all the way in the driver.  On error we
1931 	 * will remove our reference.
1932 	 */
1933 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1934 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1935 		__func__, __LINE__,
1936 		ni, ether_sprintf(ni->ni_macaddr),
1937 		ieee80211_node_refcnt(ni)+1);
1938 	ieee80211_ref_node(ni);
1939 
1940 	memset(&params, 0, sizeof(params));
1941 	switch (type) {
1942 
1943 	case IEEE80211_FC0_SUBTYPE_AUTH:
1944 		status = arg >> 16;
1945 		arg &= 0xffff;
1946 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
1947 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
1948 		    ni->ni_challenge != NULL);
1949 
1950 		/*
1951 		 * Deduce whether we're doing open authentication or
1952 		 * shared key authentication.  We do the latter if
1953 		 * we're in the middle of a shared key authentication
1954 		 * handshake or if we're initiating an authentication
1955 		 * request and configured to use shared key.
1956 		 */
1957 		is_shared_key = has_challenge ||
1958 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
1959 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
1960 		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
1961 
1962 		m = ieee80211_getmgtframe(&frm,
1963 			  ic->ic_headroom + sizeof(struct ieee80211_frame),
1964 			  3 * sizeof(uint16_t)
1965 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
1966 				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
1967 		);
1968 		if (m == NULL)
1969 			senderr(ENOMEM, is_tx_nobuf);
1970 
1971 		((uint16_t *)frm)[0] =
1972 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
1973 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
1974 		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
1975 		((uint16_t *)frm)[2] = htole16(status);/* status */
1976 
1977 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
1978 			((uint16_t *)frm)[3] =
1979 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
1980 			    IEEE80211_ELEMID_CHALLENGE);
1981 			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
1982 			    IEEE80211_CHALLENGE_LEN);
1983 			m->m_pkthdr.len = m->m_len =
1984 				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
1985 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
1986 				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
1987 				    "request encrypt frame (%s)", __func__);
1988 				/* mark frame for encryption */
1989 				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
1990 			}
1991 		} else
1992 			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
1993 
1994 		/* XXX not right for shared key */
1995 		if (status == IEEE80211_STATUS_SUCCESS)
1996 			IEEE80211_NODE_STAT(ni, tx_auth);
1997 		else
1998 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
1999 
2000 		if (vap->iv_opmode == IEEE80211_M_STA)
2001 			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2002 				(void *) vap->iv_state);
2003 		break;
2004 
2005 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2006 		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2007 		    "send station deauthenticate (reason %d)", arg);
2008 		m = ieee80211_getmgtframe(&frm,
2009 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2010 			sizeof(uint16_t));
2011 		if (m == NULL)
2012 			senderr(ENOMEM, is_tx_nobuf);
2013 		*(uint16_t *)frm = htole16(arg);	/* reason */
2014 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2015 
2016 		IEEE80211_NODE_STAT(ni, tx_deauth);
2017 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2018 
2019 		ieee80211_node_unauthorize(ni);		/* port closed */
2020 		break;
2021 
2022 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2023 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2024 		/*
2025 		 * asreq frame format
2026 		 *	[2] capability information
2027 		 *	[2] listen interval
2028 		 *	[6*] current AP address (reassoc only)
2029 		 *	[tlv] ssid
2030 		 *	[tlv] supported rates
2031 		 *	[tlv] extended supported rates
2032 		 *	[4] power capability (optional)
2033 		 *	[28] supported channels (optional)
2034 		 *	[tlv] HT capabilities
2035 		 *	[tlv] WME (optional)
2036 		 *	[tlv] Vendor OUI HT capabilities (optional)
2037 		 *	[tlv] Atheros capabilities (if negotiated)
2038 		 *	[tlv] AppIE's (optional)
2039 		 */
2040 		m = ieee80211_getmgtframe(&frm,
2041 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2042 			 sizeof(uint16_t)
2043 		       + sizeof(uint16_t)
2044 		       + IEEE80211_ADDR_LEN
2045 		       + 2 + IEEE80211_NWID_LEN
2046 		       + 2 + IEEE80211_RATE_SIZE
2047 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2048 		       + 4
2049 		       + 2 + 26
2050 		       + sizeof(struct ieee80211_wme_info)
2051 		       + sizeof(struct ieee80211_ie_htcap)
2052 		       + 4 + sizeof(struct ieee80211_ie_htcap)
2053 #ifdef IEEE80211_SUPPORT_SUPERG
2054 		       + sizeof(struct ieee80211_ath_ie)
2055 #endif
2056 		       + (vap->iv_appie_wpa != NULL ?
2057 				vap->iv_appie_wpa->ie_len : 0)
2058 		       + (vap->iv_appie_assocreq != NULL ?
2059 				vap->iv_appie_assocreq->ie_len : 0)
2060 		);
2061 		if (m == NULL)
2062 			senderr(ENOMEM, is_tx_nobuf);
2063 
2064 		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2065 		    ("wrong mode %u", vap->iv_opmode));
2066 		capinfo = IEEE80211_CAPINFO_ESS;
2067 		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2068 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2069 		/*
2070 		 * NB: Some 11a AP's reject the request when
2071 		 *     short premable is set.
2072 		 */
2073 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2074 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2075 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2076 		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2077 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2078 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2079 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2080 		    (vap->iv_flags & IEEE80211_F_DOTH))
2081 			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2082 		*(uint16_t *)frm = htole16(capinfo);
2083 		frm += 2;
2084 
2085 		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2086 		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2087 						    bss->ni_intval));
2088 		frm += 2;
2089 
2090 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2091 			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2092 			frm += IEEE80211_ADDR_LEN;
2093 		}
2094 
2095 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2096 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2097 		if (vap->iv_flags & IEEE80211_F_WPA2) {
2098 			if (vap->iv_rsn_ie != NULL)
2099 				frm = add_ie(frm, vap->iv_rsn_ie);
2100 			/* XXX else complain? */
2101 		}
2102 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2103 		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2104 			frm = ieee80211_add_powercapability(frm,
2105 			    ic->ic_curchan);
2106 			frm = ieee80211_add_supportedchannels(frm, ic);
2107 		}
2108 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2109 		    ni->ni_ies.htcap_ie != NULL &&
2110 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP)
2111 			frm = ieee80211_add_htcap(frm, ni);
2112 		if (vap->iv_flags & IEEE80211_F_WPA1) {
2113 			if (vap->iv_wpa_ie != NULL)
2114 				frm = add_ie(frm, vap->iv_wpa_ie);
2115 			/* XXX else complain */
2116 		}
2117 		if ((ic->ic_flags & IEEE80211_F_WME) &&
2118 		    ni->ni_ies.wme_ie != NULL)
2119 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2120 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2121 		    ni->ni_ies.htcap_ie != NULL &&
2122 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR)
2123 			frm = ieee80211_add_htcap_vendor(frm, ni);
2124 #ifdef IEEE80211_SUPPORT_SUPERG
2125 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2126 			frm = ieee80211_add_ath(frm,
2127 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2128 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2129 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2130 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2131 		}
2132 #endif /* IEEE80211_SUPPORT_SUPERG */
2133 		if (vap->iv_appie_assocreq != NULL)
2134 			frm = add_appie(frm, vap->iv_appie_assocreq);
2135 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2136 
2137 		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2138 			(void *) vap->iv_state);
2139 		break;
2140 
2141 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2142 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2143 		/*
2144 		 * asresp frame format
2145 		 *	[2] capability information
2146 		 *	[2] status
2147 		 *	[2] association ID
2148 		 *	[tlv] supported rates
2149 		 *	[tlv] extended supported rates
2150 		 *	[tlv] HT capabilities (standard, if STA enabled)
2151 		 *	[tlv] HT information (standard, if STA enabled)
2152 		 *	[tlv] WME (if configured and STA enabled)
2153 		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2154 		 *	[tlv] HT information (vendor OUI, if STA enabled)
2155 		 *	[tlv] Atheros capabilities (if STA enabled)
2156 		 *	[tlv] AppIE's (optional)
2157 		 */
2158 		m = ieee80211_getmgtframe(&frm,
2159 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2160 			 sizeof(uint16_t)
2161 		       + sizeof(uint16_t)
2162 		       + sizeof(uint16_t)
2163 		       + 2 + IEEE80211_RATE_SIZE
2164 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2165 		       + sizeof(struct ieee80211_ie_htcap) + 4
2166 		       + sizeof(struct ieee80211_ie_htinfo) + 4
2167 		       + sizeof(struct ieee80211_wme_param)
2168 #ifdef IEEE80211_SUPPORT_SUPERG
2169 		       + sizeof(struct ieee80211_ath_ie)
2170 #endif
2171 		       + (vap->iv_appie_assocresp != NULL ?
2172 				vap->iv_appie_assocresp->ie_len : 0)
2173 		);
2174 		if (m == NULL)
2175 			senderr(ENOMEM, is_tx_nobuf);
2176 
2177 		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2178 		*(uint16_t *)frm = htole16(capinfo);
2179 		frm += 2;
2180 
2181 		*(uint16_t *)frm = htole16(arg);	/* status */
2182 		frm += 2;
2183 
2184 		if (arg == IEEE80211_STATUS_SUCCESS) {
2185 			*(uint16_t *)frm = htole16(ni->ni_associd);
2186 			IEEE80211_NODE_STAT(ni, tx_assoc);
2187 		} else
2188 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2189 		frm += 2;
2190 
2191 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2192 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2193 		/* NB: respond according to what we received */
2194 		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2195 			frm = ieee80211_add_htcap(frm, ni);
2196 			frm = ieee80211_add_htinfo(frm, ni);
2197 		}
2198 		if ((vap->iv_flags & IEEE80211_F_WME) &&
2199 		    ni->ni_ies.wme_ie != NULL)
2200 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2201 		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2202 			frm = ieee80211_add_htcap_vendor(frm, ni);
2203 			frm = ieee80211_add_htinfo_vendor(frm, ni);
2204 		}
2205 #ifdef IEEE80211_SUPPORT_SUPERG
2206 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2207 			frm = ieee80211_add_ath(frm,
2208 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2209 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2210 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2211 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2212 #endif /* IEEE80211_SUPPORT_SUPERG */
2213 		if (vap->iv_appie_assocresp != NULL)
2214 			frm = add_appie(frm, vap->iv_appie_assocresp);
2215 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2216 		break;
2217 
2218 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2219 		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2220 		    "send station disassociate (reason %d)", arg);
2221 		m = ieee80211_getmgtframe(&frm,
2222 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2223 			sizeof(uint16_t));
2224 		if (m == NULL)
2225 			senderr(ENOMEM, is_tx_nobuf);
2226 		*(uint16_t *)frm = htole16(arg);	/* reason */
2227 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2228 
2229 		IEEE80211_NODE_STAT(ni, tx_disassoc);
2230 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2231 		break;
2232 
2233 	default:
2234 		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2235 		    "invalid mgmt frame type %u", type);
2236 		senderr(EINVAL, is_tx_unknownmgt);
2237 		/* NOTREACHED */
2238 	}
2239 
2240 	/* NB: force non-ProbeResp frames to the highest queue */
2241 	params.ibp_pri = WME_AC_VO;
2242 	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2243 	/* NB: we know all frames are unicast */
2244 	params.ibp_try0 = bss->ni_txparms->maxretry;
2245 	params.ibp_power = bss->ni_txpower;
2246 	return ieee80211_mgmt_output(ni, m, type, &params);
2247 bad:
2248 	ieee80211_free_node(ni);
2249 	return ret;
2250 #undef senderr
2251 #undef HTFLAGS
2252 }
2253 
2254 /*
2255  * Return an mbuf with a probe response frame in it.
2256  * Space is left to prepend and 802.11 header at the
2257  * front but it's left to the caller to fill in.
2258  */
2259 struct mbuf *
2260 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2261 {
2262 	struct ieee80211vap *vap = bss->ni_vap;
2263 	struct ieee80211com *ic = bss->ni_ic;
2264 	const struct ieee80211_rateset *rs;
2265 	struct mbuf *m;
2266 	uint16_t capinfo;
2267 	uint8_t *frm;
2268 
2269 	/*
2270 	 * probe response frame format
2271 	 *	[8] time stamp
2272 	 *	[2] beacon interval
2273 	 *	[2] cabability information
2274 	 *	[tlv] ssid
2275 	 *	[tlv] supported rates
2276 	 *	[tlv] parameter set (FH/DS)
2277 	 *	[tlv] parameter set (IBSS)
2278 	 *	[tlv] country (optional)
2279 	 *	[3] power control (optional)
2280 	 *	[5] channel switch announcement (CSA) (optional)
2281 	 *	[tlv] extended rate phy (ERP)
2282 	 *	[tlv] extended supported rates
2283 	 *	[tlv] RSN (optional)
2284 	 *	[tlv] HT capabilities
2285 	 *	[tlv] HT information
2286 	 *	[tlv] WPA (optional)
2287 	 *	[tlv] WME (optional)
2288 	 *	[tlv] Vendor OUI HT capabilities (optional)
2289 	 *	[tlv] Vendor OUI HT information (optional)
2290 	 *	[tlv] Atheros capabilities
2291 	 *	[tlv] AppIE's (optional)
2292 	 *	[tlv] Mesh ID (MBSS)
2293 	 *	[tlv] Mesh Conf (MBSS)
2294 	 */
2295 	m = ieee80211_getmgtframe(&frm,
2296 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2297 		 8
2298 	       + sizeof(uint16_t)
2299 	       + sizeof(uint16_t)
2300 	       + 2 + IEEE80211_NWID_LEN
2301 	       + 2 + IEEE80211_RATE_SIZE
2302 	       + 7	/* max(7,3) */
2303 	       + IEEE80211_COUNTRY_MAX_SIZE
2304 	       + 3
2305 	       + sizeof(struct ieee80211_csa_ie)
2306 	       + sizeof(struct ieee80211_quiet_ie)
2307 	       + 3
2308 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2309 	       + sizeof(struct ieee80211_ie_wpa)
2310 	       + sizeof(struct ieee80211_ie_htcap)
2311 	       + sizeof(struct ieee80211_ie_htinfo)
2312 	       + sizeof(struct ieee80211_ie_wpa)
2313 	       + sizeof(struct ieee80211_wme_param)
2314 	       + 4 + sizeof(struct ieee80211_ie_htcap)
2315 	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2316 #ifdef IEEE80211_SUPPORT_SUPERG
2317 	       + sizeof(struct ieee80211_ath_ie)
2318 #endif
2319 #ifdef IEEE80211_SUPPORT_MESH
2320 	       + 2 + IEEE80211_MESHID_LEN
2321 	       + sizeof(struct ieee80211_meshconf_ie)
2322 #endif
2323 	       + (vap->iv_appie_proberesp != NULL ?
2324 			vap->iv_appie_proberesp->ie_len : 0)
2325 	);
2326 	if (m == NULL) {
2327 		vap->iv_stats.is_tx_nobuf++;
2328 		return NULL;
2329 	}
2330 
2331 	memset(frm, 0, 8);	/* timestamp should be filled later */
2332 	frm += 8;
2333 	*(uint16_t *)frm = htole16(bss->ni_intval);
2334 	frm += 2;
2335 	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2336 	*(uint16_t *)frm = htole16(capinfo);
2337 	frm += 2;
2338 
2339 	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2340 	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2341 	frm = ieee80211_add_rates(frm, rs);
2342 
2343 	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2344 		*frm++ = IEEE80211_ELEMID_FHPARMS;
2345 		*frm++ = 5;
2346 		*frm++ = bss->ni_fhdwell & 0x00ff;
2347 		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2348 		*frm++ = IEEE80211_FH_CHANSET(
2349 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2350 		*frm++ = IEEE80211_FH_CHANPAT(
2351 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2352 		*frm++ = bss->ni_fhindex;
2353 	} else {
2354 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2355 		*frm++ = 1;
2356 		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2357 	}
2358 
2359 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2360 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2361 		*frm++ = 2;
2362 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2363 	}
2364 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2365 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2366 		frm = ieee80211_add_countryie(frm, ic);
2367 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2368 		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2369 			frm = ieee80211_add_powerconstraint(frm, vap);
2370 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2371 			frm = ieee80211_add_csa(frm, vap);
2372 	}
2373 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2374 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2375 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2376 			if (vap->iv_quiet)
2377 				frm = ieee80211_add_quiet(frm, vap);
2378 		}
2379 	}
2380 	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2381 		frm = ieee80211_add_erp(frm, ic);
2382 	frm = ieee80211_add_xrates(frm, rs);
2383 	if (vap->iv_flags & IEEE80211_F_WPA2) {
2384 		if (vap->iv_rsn_ie != NULL)
2385 			frm = add_ie(frm, vap->iv_rsn_ie);
2386 		/* XXX else complain? */
2387 	}
2388 	/*
2389 	 * NB: legacy 11b clients do not get certain ie's.
2390 	 *     The caller identifies such clients by passing
2391 	 *     a token in legacy to us.  Could expand this to be
2392 	 *     any legacy client for stuff like HT ie's.
2393 	 */
2394 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2395 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2396 		frm = ieee80211_add_htcap(frm, bss);
2397 		frm = ieee80211_add_htinfo(frm, bss);
2398 	}
2399 	if (vap->iv_flags & IEEE80211_F_WPA1) {
2400 		if (vap->iv_wpa_ie != NULL)
2401 			frm = add_ie(frm, vap->iv_wpa_ie);
2402 		/* XXX else complain? */
2403 	}
2404 	if (vap->iv_flags & IEEE80211_F_WME)
2405 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2406 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2407 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
2408 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2409 		frm = ieee80211_add_htcap_vendor(frm, bss);
2410 		frm = ieee80211_add_htinfo_vendor(frm, bss);
2411 	}
2412 #ifdef IEEE80211_SUPPORT_SUPERG
2413 	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
2414 	    legacy != IEEE80211_SEND_LEGACY_11B)
2415 		frm = ieee80211_add_athcaps(frm, bss);
2416 #endif
2417 	if (vap->iv_appie_proberesp != NULL)
2418 		frm = add_appie(frm, vap->iv_appie_proberesp);
2419 #ifdef IEEE80211_SUPPORT_MESH
2420 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2421 		frm = ieee80211_add_meshid(frm, vap);
2422 		frm = ieee80211_add_meshconf(frm, vap);
2423 	}
2424 #endif
2425 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2426 
2427 	return m;
2428 }
2429 
2430 /*
2431  * Send a probe response frame to the specified mac address.
2432  * This does not go through the normal mgt frame api so we
2433  * can specify the destination address and re-use the bss node
2434  * for the sta reference.
2435  */
2436 int
2437 ieee80211_send_proberesp(struct ieee80211vap *vap,
2438 	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2439 {
2440 	struct ieee80211_node *bss = vap->iv_bss;
2441 	struct ieee80211com *ic = vap->iv_ic;
2442 	struct ieee80211_frame *wh;
2443 	struct mbuf *m;
2444 
2445 	if (vap->iv_state == IEEE80211_S_CAC) {
2446 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2447 		    "block %s frame in CAC state", "probe response");
2448 		vap->iv_stats.is_tx_badstate++;
2449 		return EIO;		/* XXX */
2450 	}
2451 
2452 	/*
2453 	 * Hold a reference on the node so it doesn't go away until after
2454 	 * the xmit is complete all the way in the driver.  On error we
2455 	 * will remove our reference.
2456 	 */
2457 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2458 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2459 	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2460 	    ieee80211_node_refcnt(bss)+1);
2461 	ieee80211_ref_node(bss);
2462 
2463 	m = ieee80211_alloc_proberesp(bss, legacy);
2464 	if (m == NULL) {
2465 		ieee80211_free_node(bss);
2466 		return ENOMEM;
2467 	}
2468 
2469 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
2470 	KASSERT(m != NULL, ("no room for header"));
2471 
2472 	wh = mtod(m, struct ieee80211_frame *);
2473 	ieee80211_send_setup(bss, m,
2474 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2475 	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2476 	/* XXX power management? */
2477 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2478 
2479 	M_WME_SETAC(m, WME_AC_BE);
2480 
2481 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2482 	    "send probe resp on channel %u to %s%s\n",
2483 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2484 	    legacy ? " <legacy>" : "");
2485 	IEEE80211_NODE_STAT(bss, tx_mgmt);
2486 
2487 	return ic->ic_raw_xmit(bss, m, NULL);
2488 }
2489 
2490 /*
2491  * Allocate and build a RTS (Request To Send) control frame.
2492  */
2493 struct mbuf *
2494 ieee80211_alloc_rts(struct ieee80211com *ic,
2495 	const uint8_t ra[IEEE80211_ADDR_LEN],
2496 	const uint8_t ta[IEEE80211_ADDR_LEN],
2497 	uint16_t dur)
2498 {
2499 	struct ieee80211_frame_rts *rts;
2500 	struct mbuf *m;
2501 
2502 	/* XXX honor ic_headroom */
2503 	m = m_gethdr(M_DONTWAIT, MT_DATA);
2504 	if (m != NULL) {
2505 		rts = mtod(m, struct ieee80211_frame_rts *);
2506 		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2507 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2508 		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2509 		*(u_int16_t *)rts->i_dur = htole16(dur);
2510 		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2511 		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2512 
2513 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2514 	}
2515 	return m;
2516 }
2517 
2518 /*
2519  * Allocate and build a CTS (Clear To Send) control frame.
2520  */
2521 struct mbuf *
2522 ieee80211_alloc_cts(struct ieee80211com *ic,
2523 	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2524 {
2525 	struct ieee80211_frame_cts *cts;
2526 	struct mbuf *m;
2527 
2528 	/* XXX honor ic_headroom */
2529 	m = m_gethdr(M_DONTWAIT, MT_DATA);
2530 	if (m != NULL) {
2531 		cts = mtod(m, struct ieee80211_frame_cts *);
2532 		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2533 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2534 		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2535 		*(u_int16_t *)cts->i_dur = htole16(dur);
2536 		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2537 
2538 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2539 	}
2540 	return m;
2541 }
2542 
2543 static void
2544 ieee80211_tx_mgt_timeout(void *arg)
2545 {
2546 	struct ieee80211_node *ni = arg;
2547 	struct ieee80211vap *vap = ni->ni_vap;
2548 
2549 	if (vap->iv_state != IEEE80211_S_INIT &&
2550 	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2551 		/*
2552 		 * NB: it's safe to specify a timeout as the reason here;
2553 		 *     it'll only be used in the right state.
2554 		 */
2555 		ieee80211_new_state(vap, IEEE80211_S_SCAN,
2556 			IEEE80211_SCAN_FAIL_TIMEOUT);
2557 	}
2558 }
2559 
2560 static void
2561 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2562 {
2563 	struct ieee80211vap *vap = ni->ni_vap;
2564 	enum ieee80211_state ostate = (enum ieee80211_state) arg;
2565 
2566 	/*
2567 	 * Frame transmit completed; arrange timer callback.  If
2568 	 * transmit was successfuly we wait for response.  Otherwise
2569 	 * we arrange an immediate callback instead of doing the
2570 	 * callback directly since we don't know what state the driver
2571 	 * is in (e.g. what locks it is holding).  This work should
2572 	 * not be too time-critical and not happen too often so the
2573 	 * added overhead is acceptable.
2574 	 *
2575 	 * XXX what happens if !acked but response shows up before callback?
2576 	 */
2577 	if (vap->iv_state == ostate)
2578 		callout_reset(&vap->iv_mgtsend,
2579 			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2580 			ieee80211_tx_mgt_timeout, ni);
2581 }
2582 
2583 static void
2584 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2585 	struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni)
2586 {
2587 	struct ieee80211vap *vap = ni->ni_vap;
2588 	struct ieee80211com *ic = ni->ni_ic;
2589 	struct ieee80211_rateset *rs = &ni->ni_rates;
2590 	uint16_t capinfo;
2591 
2592 	/*
2593 	 * beacon frame format
2594 	 *	[8] time stamp
2595 	 *	[2] beacon interval
2596 	 *	[2] cabability information
2597 	 *	[tlv] ssid
2598 	 *	[tlv] supported rates
2599 	 *	[3] parameter set (DS)
2600 	 *	[8] CF parameter set (optional)
2601 	 *	[tlv] parameter set (IBSS/TIM)
2602 	 *	[tlv] country (optional)
2603 	 *	[3] power control (optional)
2604 	 *	[5] channel switch announcement (CSA) (optional)
2605 	 *	[tlv] extended rate phy (ERP)
2606 	 *	[tlv] extended supported rates
2607 	 *	[tlv] RSN parameters
2608 	 *	[tlv] HT capabilities
2609 	 *	[tlv] HT information
2610 	 * XXX Vendor-specific OIDs (e.g. Atheros)
2611 	 *	[tlv] WPA parameters
2612 	 *	[tlv] WME parameters
2613 	 *	[tlv] Vendor OUI HT capabilities (optional)
2614 	 *	[tlv] Vendor OUI HT information (optional)
2615 	 *	[tlv] Atheros capabilities (optional)
2616 	 *	[tlv] TDMA parameters (optional)
2617 	 *	[tlv] Mesh ID (MBSS)
2618 	 *	[tlv] Mesh Conf (MBSS)
2619 	 *	[tlv] application data (optional)
2620 	 */
2621 
2622 	memset(bo, 0, sizeof(*bo));
2623 
2624 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
2625 	frm += 8;
2626 	*(uint16_t *)frm = htole16(ni->ni_intval);
2627 	frm += 2;
2628 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
2629 	bo->bo_caps = (uint16_t *)frm;
2630 	*(uint16_t *)frm = htole16(capinfo);
2631 	frm += 2;
2632 	*frm++ = IEEE80211_ELEMID_SSID;
2633 	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2634 		*frm++ = ni->ni_esslen;
2635 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
2636 		frm += ni->ni_esslen;
2637 	} else
2638 		*frm++ = 0;
2639 	frm = ieee80211_add_rates(frm, rs);
2640 	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2641 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2642 		*frm++ = 1;
2643 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2644 	}
2645 	if (ic->ic_flags & IEEE80211_F_PCF) {
2646 		bo->bo_cfp = frm;
2647 		frm = ieee80211_add_cfparms(frm, ic);
2648 	}
2649 	bo->bo_tim = frm;
2650 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2651 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2652 		*frm++ = 2;
2653 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2654 		bo->bo_tim_len = 0;
2655 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2656 	    vap->iv_opmode == IEEE80211_M_MBSS) {
2657 		/* TIM IE is the same for Mesh and Hostap */
2658 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2659 
2660 		tie->tim_ie = IEEE80211_ELEMID_TIM;
2661 		tie->tim_len = 4;	/* length */
2662 		tie->tim_count = 0;	/* DTIM count */
2663 		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
2664 		tie->tim_bitctl = 0;	/* bitmap control */
2665 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
2666 		frm += sizeof(struct ieee80211_tim_ie);
2667 		bo->bo_tim_len = 1;
2668 	}
2669 	bo->bo_tim_trailer = frm;
2670 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2671 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2672 		frm = ieee80211_add_countryie(frm, ic);
2673 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2674 		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
2675 			frm = ieee80211_add_powerconstraint(frm, vap);
2676 		bo->bo_csa = frm;
2677 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2678 			frm = ieee80211_add_csa(frm, vap);
2679 	} else
2680 		bo->bo_csa = frm;
2681 
2682 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2683 		bo->bo_quiet = frm;
2684 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2685 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2686 			if (vap->iv_quiet)
2687 				frm = ieee80211_add_quiet(frm,vap);
2688 		}
2689 	} else
2690 		bo->bo_quiet = frm;
2691 
2692 	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
2693 		bo->bo_erp = frm;
2694 		frm = ieee80211_add_erp(frm, ic);
2695 	}
2696 	frm = ieee80211_add_xrates(frm, rs);
2697 	if (vap->iv_flags & IEEE80211_F_WPA2) {
2698 		if (vap->iv_rsn_ie != NULL)
2699 			frm = add_ie(frm, vap->iv_rsn_ie);
2700 		/* XXX else complain */
2701 	}
2702 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2703 		frm = ieee80211_add_htcap(frm, ni);
2704 		bo->bo_htinfo = frm;
2705 		frm = ieee80211_add_htinfo(frm, ni);
2706 	}
2707 	if (vap->iv_flags & IEEE80211_F_WPA1) {
2708 		if (vap->iv_wpa_ie != NULL)
2709 			frm = add_ie(frm, vap->iv_wpa_ie);
2710 		/* XXX else complain */
2711 	}
2712 	if (vap->iv_flags & IEEE80211_F_WME) {
2713 		bo->bo_wme = frm;
2714 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2715 	}
2716 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2717 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
2718 		frm = ieee80211_add_htcap_vendor(frm, ni);
2719 		frm = ieee80211_add_htinfo_vendor(frm, ni);
2720 	}
2721 #ifdef IEEE80211_SUPPORT_SUPERG
2722 	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
2723 		bo->bo_ath = frm;
2724 		frm = ieee80211_add_athcaps(frm, ni);
2725 	}
2726 #endif
2727 #ifdef IEEE80211_SUPPORT_TDMA
2728 	if (vap->iv_caps & IEEE80211_C_TDMA) {
2729 		bo->bo_tdma = frm;
2730 		frm = ieee80211_add_tdma(frm, vap);
2731 	}
2732 #endif
2733 	if (vap->iv_appie_beacon != NULL) {
2734 		bo->bo_appie = frm;
2735 		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
2736 		frm = add_appie(frm, vap->iv_appie_beacon);
2737 	}
2738 #ifdef IEEE80211_SUPPORT_MESH
2739 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2740 		frm = ieee80211_add_meshid(frm, vap);
2741 		bo->bo_meshconf = frm;
2742 		frm = ieee80211_add_meshconf(frm, vap);
2743 	}
2744 #endif
2745 	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
2746 	bo->bo_csa_trailer_len = frm - bo->bo_csa;
2747 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2748 }
2749 
2750 /*
2751  * Allocate a beacon frame and fillin the appropriate bits.
2752  */
2753 struct mbuf *
2754 ieee80211_beacon_alloc(struct ieee80211_node *ni,
2755 	struct ieee80211_beacon_offsets *bo)
2756 {
2757 	struct ieee80211vap *vap = ni->ni_vap;
2758 	struct ieee80211com *ic = ni->ni_ic;
2759 	struct ifnet *ifp = vap->iv_ifp;
2760 	struct ieee80211_frame *wh;
2761 	struct mbuf *m;
2762 	int pktlen;
2763 	uint8_t *frm;
2764 
2765 	/*
2766 	 * beacon frame format
2767 	 *	[8] time stamp
2768 	 *	[2] beacon interval
2769 	 *	[2] cabability information
2770 	 *	[tlv] ssid
2771 	 *	[tlv] supported rates
2772 	 *	[3] parameter set (DS)
2773 	 *	[8] CF parameter set (optional)
2774 	 *	[tlv] parameter set (IBSS/TIM)
2775 	 *	[tlv] country (optional)
2776 	 *	[3] power control (optional)
2777 	 *	[5] channel switch announcement (CSA) (optional)
2778 	 *	[tlv] extended rate phy (ERP)
2779 	 *	[tlv] extended supported rates
2780 	 *	[tlv] RSN parameters
2781 	 *	[tlv] HT capabilities
2782 	 *	[tlv] HT information
2783 	 *	[tlv] Vendor OUI HT capabilities (optional)
2784 	 *	[tlv] Vendor OUI HT information (optional)
2785 	 * XXX Vendor-specific OIDs (e.g. Atheros)
2786 	 *	[tlv] WPA parameters
2787 	 *	[tlv] WME parameters
2788 	 *	[tlv] TDMA parameters (optional)
2789 	 *	[tlv] Mesh ID (MBSS)
2790 	 *	[tlv] Mesh Conf (MBSS)
2791 	 *	[tlv] application data (optional)
2792 	 * NB: we allocate the max space required for the TIM bitmap.
2793 	 * XXX how big is this?
2794 	 */
2795 	pktlen =   8					/* time stamp */
2796 		 + sizeof(uint16_t)			/* beacon interval */
2797 		 + sizeof(uint16_t)			/* capabilities */
2798 		 + 2 + ni->ni_esslen			/* ssid */
2799 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
2800 	         + 2 + 1				/* DS parameters */
2801 		 + 2 + 6				/* CF parameters */
2802 		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
2803 		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
2804 		 + 2 + 1				/* power control */
2805 		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
2806 		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
2807 		 + 2 + 1				/* ERP */
2808 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2809 		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
2810 			2*sizeof(struct ieee80211_ie_wpa) : 0)
2811 		 /* XXX conditional? */
2812 		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
2813 		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
2814 		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
2815 			sizeof(struct ieee80211_wme_param) : 0)
2816 #ifdef IEEE80211_SUPPORT_SUPERG
2817 		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
2818 #endif
2819 #ifdef IEEE80211_SUPPORT_TDMA
2820 		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
2821 			sizeof(struct ieee80211_tdma_param) : 0)
2822 #endif
2823 #ifdef IEEE80211_SUPPORT_MESH
2824 		 + 2 + ni->ni_meshidlen
2825 		 + sizeof(struct ieee80211_meshconf_ie)
2826 #endif
2827 		 + IEEE80211_MAX_APPIE
2828 		 ;
2829 	m = ieee80211_getmgtframe(&frm,
2830 		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
2831 	if (m == NULL) {
2832 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
2833 			"%s: cannot get buf; size %u\n", __func__, pktlen);
2834 		vap->iv_stats.is_tx_nobuf++;
2835 		return NULL;
2836 	}
2837 	ieee80211_beacon_construct(m, frm, bo, ni);
2838 
2839 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
2840 	KASSERT(m != NULL, ("no space for 802.11 header?"));
2841 	wh = mtod(m, struct ieee80211_frame *);
2842 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2843 	    IEEE80211_FC0_SUBTYPE_BEACON;
2844 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2845 	*(uint16_t *)wh->i_dur = 0;
2846 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2847 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
2848 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
2849 	*(uint16_t *)wh->i_seq = 0;
2850 
2851 	return m;
2852 }
2853 
2854 /*
2855  * Update the dynamic parts of a beacon frame based on the current state.
2856  */
2857 int
2858 ieee80211_beacon_update(struct ieee80211_node *ni,
2859 	struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
2860 {
2861 	struct ieee80211vap *vap = ni->ni_vap;
2862 	struct ieee80211com *ic = ni->ni_ic;
2863 	int len_changed = 0;
2864 	uint16_t capinfo;
2865 	struct ieee80211_frame *wh;
2866 	ieee80211_seq seqno;
2867 
2868 	IEEE80211_LOCK(ic);
2869 	/*
2870 	 * Handle 11h channel change when we've reached the count.
2871 	 * We must recalculate the beacon frame contents to account
2872 	 * for the new channel.  Note we do this only for the first
2873 	 * vap that reaches this point; subsequent vaps just update
2874 	 * their beacon state to reflect the recalculated channel.
2875 	 */
2876 	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
2877 	    vap->iv_csa_count == ic->ic_csa_count) {
2878 		vap->iv_csa_count = 0;
2879 		/*
2880 		 * Effect channel change before reconstructing the beacon
2881 		 * frame contents as many places reference ni_chan.
2882 		 */
2883 		if (ic->ic_csa_newchan != NULL)
2884 			ieee80211_csa_completeswitch(ic);
2885 		/*
2886 		 * NB: ieee80211_beacon_construct clears all pending
2887 		 * updates in bo_flags so we don't need to explicitly
2888 		 * clear IEEE80211_BEACON_CSA.
2889 		 */
2890 		ieee80211_beacon_construct(m,
2891 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni);
2892 
2893 		/* XXX do WME aggressive mode processing? */
2894 		IEEE80211_UNLOCK(ic);
2895 		return 1;		/* just assume length changed */
2896 	}
2897 
2898 	wh = mtod(m, struct ieee80211_frame *);
2899 	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
2900 	*(uint16_t *)&wh->i_seq[0] =
2901 		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
2902 	M_SEQNO_SET(m, seqno);
2903 
2904 	/* XXX faster to recalculate entirely or just changes? */
2905 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
2906 	*bo->bo_caps = htole16(capinfo);
2907 
2908 	if (vap->iv_flags & IEEE80211_F_WME) {
2909 		struct ieee80211_wme_state *wme = &ic->ic_wme;
2910 
2911 		/*
2912 		 * Check for agressive mode change.  When there is
2913 		 * significant high priority traffic in the BSS
2914 		 * throttle back BE traffic by using conservative
2915 		 * parameters.  Otherwise BE uses agressive params
2916 		 * to optimize performance of legacy/non-QoS traffic.
2917 		 */
2918 		if (wme->wme_flags & WME_F_AGGRMODE) {
2919 			if (wme->wme_hipri_traffic >
2920 			    wme->wme_hipri_switch_thresh) {
2921 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2922 				    "%s: traffic %u, disable aggressive mode\n",
2923 				    __func__, wme->wme_hipri_traffic);
2924 				wme->wme_flags &= ~WME_F_AGGRMODE;
2925 				ieee80211_wme_updateparams_locked(vap);
2926 				wme->wme_hipri_traffic =
2927 					wme->wme_hipri_switch_hysteresis;
2928 			} else
2929 				wme->wme_hipri_traffic = 0;
2930 		} else {
2931 			if (wme->wme_hipri_traffic <=
2932 			    wme->wme_hipri_switch_thresh) {
2933 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2934 				    "%s: traffic %u, enable aggressive mode\n",
2935 				    __func__, wme->wme_hipri_traffic);
2936 				wme->wme_flags |= WME_F_AGGRMODE;
2937 				ieee80211_wme_updateparams_locked(vap);
2938 				wme->wme_hipri_traffic = 0;
2939 			} else
2940 				wme->wme_hipri_traffic =
2941 					wme->wme_hipri_switch_hysteresis;
2942 		}
2943 		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
2944 			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
2945 			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
2946 		}
2947 	}
2948 
2949 	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
2950 		ieee80211_ht_update_beacon(vap, bo);
2951 		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
2952 	}
2953 #ifdef IEEE80211_SUPPORT_TDMA
2954 	if (vap->iv_caps & IEEE80211_C_TDMA) {
2955 		/*
2956 		 * NB: the beacon is potentially updated every TBTT.
2957 		 */
2958 		ieee80211_tdma_update_beacon(vap, bo);
2959 	}
2960 #endif
2961 #ifdef IEEE80211_SUPPORT_MESH
2962 	if (vap->iv_opmode == IEEE80211_M_MBSS)
2963 		ieee80211_mesh_update_beacon(vap, bo);
2964 #endif
2965 
2966 	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2967 	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
2968 		struct ieee80211_tim_ie *tie =
2969 			(struct ieee80211_tim_ie *) bo->bo_tim;
2970 		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
2971 			u_int timlen, timoff, i;
2972 			/*
2973 			 * ATIM/DTIM needs updating.  If it fits in the
2974 			 * current space allocated then just copy in the
2975 			 * new bits.  Otherwise we need to move any trailing
2976 			 * data to make room.  Note that we know there is
2977 			 * contiguous space because ieee80211_beacon_allocate
2978 			 * insures there is space in the mbuf to write a
2979 			 * maximal-size virtual bitmap (based on iv_max_aid).
2980 			 */
2981 			/*
2982 			 * Calculate the bitmap size and offset, copy any
2983 			 * trailer out of the way, and then copy in the
2984 			 * new bitmap and update the information element.
2985 			 * Note that the tim bitmap must contain at least
2986 			 * one byte and any offset must be even.
2987 			 */
2988 			if (vap->iv_ps_pending != 0) {
2989 				timoff = 128;		/* impossibly large */
2990 				for (i = 0; i < vap->iv_tim_len; i++)
2991 					if (vap->iv_tim_bitmap[i]) {
2992 						timoff = i &~ 1;
2993 						break;
2994 					}
2995 				KASSERT(timoff != 128, ("tim bitmap empty!"));
2996 				for (i = vap->iv_tim_len-1; i >= timoff; i--)
2997 					if (vap->iv_tim_bitmap[i])
2998 						break;
2999 				timlen = 1 + (i - timoff);
3000 			} else {
3001 				timoff = 0;
3002 				timlen = 1;
3003 			}
3004 			if (timlen != bo->bo_tim_len) {
3005 				/* copy up/down trailer */
3006 				int adjust = tie->tim_bitmap+timlen
3007 					   - bo->bo_tim_trailer;
3008 				ovbcopy(bo->bo_tim_trailer,
3009 				    bo->bo_tim_trailer+adjust,
3010 				    bo->bo_tim_trailer_len);
3011 				bo->bo_tim_trailer += adjust;
3012 				bo->bo_erp += adjust;
3013 				bo->bo_htinfo += adjust;
3014 #ifdef IEEE80211_SUPPORT_SUPERG
3015 				bo->bo_ath += adjust;
3016 #endif
3017 #ifdef IEEE80211_SUPPORT_TDMA
3018 				bo->bo_tdma += adjust;
3019 #endif
3020 #ifdef IEEE80211_SUPPORT_MESH
3021 				bo->bo_meshconf += adjust;
3022 #endif
3023 				bo->bo_appie += adjust;
3024 				bo->bo_wme += adjust;
3025 				bo->bo_csa += adjust;
3026 				bo->bo_quiet += adjust;
3027 				bo->bo_tim_len = timlen;
3028 
3029 				/* update information element */
3030 				tie->tim_len = 3 + timlen;
3031 				tie->tim_bitctl = timoff;
3032 				len_changed = 1;
3033 			}
3034 			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
3035 				bo->bo_tim_len);
3036 
3037 			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
3038 
3039 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
3040 				"%s: TIM updated, pending %u, off %u, len %u\n",
3041 				__func__, vap->iv_ps_pending, timoff, timlen);
3042 		}
3043 		/* count down DTIM period */
3044 		if (tie->tim_count == 0)
3045 			tie->tim_count = tie->tim_period - 1;
3046 		else
3047 			tie->tim_count--;
3048 		/* update state for buffered multicast frames on DTIM */
3049 		if (mcast && tie->tim_count == 0)
3050 			tie->tim_bitctl |= 1;
3051 		else
3052 			tie->tim_bitctl &= ~1;
3053 		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
3054 			struct ieee80211_csa_ie *csa =
3055 			    (struct ieee80211_csa_ie *) bo->bo_csa;
3056 
3057 			/*
3058 			 * Insert or update CSA ie.  If we're just starting
3059 			 * to count down to the channel switch then we need
3060 			 * to insert the CSA ie.  Otherwise we just need to
3061 			 * drop the count.  The actual change happens above
3062 			 * when the vap's count reaches the target count.
3063 			 */
3064 			if (vap->iv_csa_count == 0) {
3065 				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
3066 				bo->bo_erp += sizeof(*csa);
3067 				bo->bo_htinfo += sizeof(*csa);
3068 				bo->bo_wme += sizeof(*csa);
3069 #ifdef IEEE80211_SUPPORT_SUPERG
3070 				bo->bo_ath += sizeof(*csa);
3071 #endif
3072 #ifdef IEEE80211_SUPPORT_TDMA
3073 				bo->bo_tdma += sizeof(*csa);
3074 #endif
3075 #ifdef IEEE80211_SUPPORT_MESH
3076 				bo->bo_meshconf += sizeof(*csa);
3077 #endif
3078 				bo->bo_appie += sizeof(*csa);
3079 				bo->bo_csa_trailer_len += sizeof(*csa);
3080 				bo->bo_quiet += sizeof(*csa);
3081 				bo->bo_tim_trailer_len += sizeof(*csa);
3082 				m->m_len += sizeof(*csa);
3083 				m->m_pkthdr.len += sizeof(*csa);
3084 
3085 				ieee80211_add_csa(bo->bo_csa, vap);
3086 			} else
3087 				csa->csa_count--;
3088 			vap->iv_csa_count++;
3089 			/* NB: don't clear IEEE80211_BEACON_CSA */
3090 		}
3091 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3092 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){
3093 			if (vap->iv_quiet)
3094 				ieee80211_add_quiet(bo->bo_quiet, vap);
3095 		}
3096 		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3097 			/*
3098 			 * ERP element needs updating.
3099 			 */
3100 			(void) ieee80211_add_erp(bo->bo_erp, ic);
3101 			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3102 		}
3103 #ifdef IEEE80211_SUPPORT_SUPERG
3104 		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
3105 			ieee80211_add_athcaps(bo->bo_ath, ni);
3106 			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3107 		}
3108 #endif
3109 	}
3110 	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3111 		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3112 		int aielen;
3113 		uint8_t *frm;
3114 
3115 		aielen = 0;
3116 		if (aie != NULL)
3117 			aielen += aie->ie_len;
3118 		if (aielen != bo->bo_appie_len) {
3119 			/* copy up/down trailer */
3120 			int adjust = aielen - bo->bo_appie_len;
3121 			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3122 				bo->bo_tim_trailer_len);
3123 			bo->bo_tim_trailer += adjust;
3124 			bo->bo_appie += adjust;
3125 			bo->bo_appie_len = aielen;
3126 
3127 			len_changed = 1;
3128 		}
3129 		frm = bo->bo_appie;
3130 		if (aie != NULL)
3131 			frm  = add_appie(frm, aie);
3132 		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3133 	}
3134 	IEEE80211_UNLOCK(ic);
3135 
3136 	return len_changed;
3137 }
3138