1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_inet.h" 31 #include "opt_inet6.h" 32 #include "opt_wlan.h" 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/kernel.h> 37 #include <sys/malloc.h> 38 #include <sys/mbuf.h> 39 #include <sys/endian.h> 40 41 #include <sys/socket.h> 42 43 #include <net/bpf.h> 44 #include <net/ethernet.h> 45 #include <net/if.h> 46 #include <net/if_var.h> 47 #include <net/if_llc.h> 48 #include <net/if_media.h> 49 #include <net/if_vlan_var.h> 50 51 #include <net80211/ieee80211_var.h> 52 #include <net80211/ieee80211_regdomain.h> 53 #ifdef IEEE80211_SUPPORT_SUPERG 54 #include <net80211/ieee80211_superg.h> 55 #endif 56 #ifdef IEEE80211_SUPPORT_TDMA 57 #include <net80211/ieee80211_tdma.h> 58 #endif 59 #include <net80211/ieee80211_wds.h> 60 #include <net80211/ieee80211_mesh.h> 61 62 #if defined(INET) || defined(INET6) 63 #include <netinet/in.h> 64 #endif 65 66 #ifdef INET 67 #include <netinet/if_ether.h> 68 #include <netinet/in_systm.h> 69 #include <netinet/ip.h> 70 #endif 71 #ifdef INET6 72 #include <netinet/ip6.h> 73 #endif 74 75 #include <security/mac/mac_framework.h> 76 77 #define ETHER_HEADER_COPY(dst, src) \ 78 memcpy(dst, src, sizeof(struct ether_header)) 79 80 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *, 81 u_int hdrsize, u_int ciphdrsize, u_int mtu); 82 static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int); 83 84 #ifdef IEEE80211_DEBUG 85 /* 86 * Decide if an outbound management frame should be 87 * printed when debugging is enabled. This filters some 88 * of the less interesting frames that come frequently 89 * (e.g. beacons). 90 */ 91 static __inline int 92 doprint(struct ieee80211vap *vap, int subtype) 93 { 94 switch (subtype) { 95 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 96 return (vap->iv_opmode == IEEE80211_M_IBSS); 97 } 98 return 1; 99 } 100 #endif 101 102 /* 103 * Transmit a frame to the given destination on the given VAP. 104 * 105 * It's up to the caller to figure out the details of who this 106 * is going to and resolving the node. 107 * 108 * This routine takes care of queuing it for power save, 109 * A-MPDU state stuff, fast-frames state stuff, encapsulation 110 * if required, then passing it up to the driver layer. 111 * 112 * This routine (for now) consumes the mbuf and frees the node 113 * reference; it ideally will return a TX status which reflects 114 * whether the mbuf was consumed or not, so the caller can 115 * free the mbuf (if appropriate) and the node reference (again, 116 * if appropriate.) 117 */ 118 int 119 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m, 120 struct ieee80211_node *ni) 121 { 122 struct ieee80211com *ic = vap->iv_ic; 123 struct ifnet *ifp = vap->iv_ifp; 124 #ifdef IEEE80211_SUPPORT_SUPERG 125 int mcast; 126 #endif 127 128 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 129 (m->m_flags & M_PWR_SAV) == 0) { 130 /* 131 * Station in power save mode; pass the frame 132 * to the 802.11 layer and continue. We'll get 133 * the frame back when the time is right. 134 * XXX lose WDS vap linkage? 135 */ 136 if (ieee80211_pwrsave(ni, m) != 0) 137 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 138 ieee80211_free_node(ni); 139 140 /* 141 * We queued it fine, so tell the upper layer 142 * that we consumed it. 143 */ 144 return (0); 145 } 146 /* calculate priority so drivers can find the tx queue */ 147 if (ieee80211_classify(ni, m)) { 148 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 149 ni->ni_macaddr, NULL, 150 "%s", "classification failure"); 151 vap->iv_stats.is_tx_classify++; 152 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 153 m_freem(m); 154 ieee80211_free_node(ni); 155 156 /* XXX better status? */ 157 return (0); 158 } 159 /* 160 * Stash the node pointer. Note that we do this after 161 * any call to ieee80211_dwds_mcast because that code 162 * uses any existing value for rcvif to identify the 163 * interface it (might have been) received on. 164 */ 165 m->m_pkthdr.rcvif = (void *)ni; 166 #ifdef IEEE80211_SUPPORT_SUPERG 167 mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0; 168 #endif 169 170 BPF_MTAP(ifp, m); /* 802.3 tx */ 171 172 /* 173 * Check if A-MPDU tx aggregation is setup or if we 174 * should try to enable it. The sta must be associated 175 * with HT and A-MPDU enabled for use. When the policy 176 * routine decides we should enable A-MPDU we issue an 177 * ADDBA request and wait for a reply. The frame being 178 * encapsulated will go out w/o using A-MPDU, or possibly 179 * it might be collected by the driver and held/retransmit. 180 * The default ic_ampdu_enable routine handles staggering 181 * ADDBA requests in case the receiver NAK's us or we are 182 * otherwise unable to establish a BA stream. 183 */ 184 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) && 185 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)) { 186 if ((m->m_flags & M_EAPOL) == 0) { 187 int tid = WME_AC_TO_TID(M_WME_GETAC(m)); 188 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; 189 190 ieee80211_txampdu_count_packet(tap); 191 if (IEEE80211_AMPDU_RUNNING(tap)) { 192 /* 193 * Operational, mark frame for aggregation. 194 * 195 * XXX do tx aggregation here 196 */ 197 m->m_flags |= M_AMPDU_MPDU; 198 } else if (!IEEE80211_AMPDU_REQUESTED(tap) && 199 ic->ic_ampdu_enable(ni, tap)) { 200 /* 201 * Not negotiated yet, request service. 202 */ 203 ieee80211_ampdu_request(ni, tap); 204 /* XXX hold frame for reply? */ 205 } 206 } 207 } 208 209 #ifdef IEEE80211_SUPPORT_SUPERG 210 /* 211 * Check for AMSDU/FF; queue for aggregation 212 * 213 * Note: we don't bother trying to do fast frames or 214 * A-MSDU encapsulation for 802.3 drivers. Now, we 215 * likely could do it for FF (because it's a magic 216 * atheros tunnel LLC type) but I don't think we're going 217 * to really need to. For A-MSDU we'd have to set the 218 * A-MSDU QoS bit in the wifi header, so we just plain 219 * can't do it. 220 * 221 * Strictly speaking, we could actually /do/ A-MSDU / FF 222 * with A-MPDU together which for certain circumstances 223 * is beneficial (eg A-MSDU of TCK ACKs.) However, 224 * I'll ignore that for now so existing behaviour is maintained. 225 * Later on it would be good to make "amsdu + ampdu" configurable. 226 */ 227 else if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 228 if ((! mcast) && ieee80211_amsdu_tx_ok(ni)) { 229 m = ieee80211_amsdu_check(ni, m); 230 if (m == NULL) { 231 /* NB: any ni ref held on stageq */ 232 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 233 "%s: amsdu_check queued frame\n", 234 __func__); 235 return (0); 236 } 237 } else if ((! mcast) && IEEE80211_ATH_CAP(vap, ni, 238 IEEE80211_NODE_FF)) { 239 m = ieee80211_ff_check(ni, m); 240 if (m == NULL) { 241 /* NB: any ni ref held on stageq */ 242 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 243 "%s: ff_check queued frame\n", 244 __func__); 245 return (0); 246 } 247 } 248 } 249 #endif /* IEEE80211_SUPPORT_SUPERG */ 250 251 /* 252 * Grab the TX lock - serialise the TX process from this 253 * point (where TX state is being checked/modified) 254 * through to driver queue. 255 */ 256 IEEE80211_TX_LOCK(ic); 257 258 /* 259 * XXX make the encap and transmit code a separate function 260 * so things like the FF (and later A-MSDU) path can just call 261 * it for flushed frames. 262 */ 263 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 264 /* 265 * Encapsulate the packet in prep for transmission. 266 */ 267 m = ieee80211_encap(vap, ni, m); 268 if (m == NULL) { 269 /* NB: stat+msg handled in ieee80211_encap */ 270 IEEE80211_TX_UNLOCK(ic); 271 ieee80211_free_node(ni); 272 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 273 return (ENOBUFS); 274 } 275 } 276 (void) ieee80211_parent_xmitpkt(ic, m); 277 278 /* 279 * Unlock at this point - no need to hold it across 280 * ieee80211_free_node() (ie, the comlock) 281 */ 282 IEEE80211_TX_UNLOCK(ic); 283 ic->ic_lastdata = ticks; 284 285 return (0); 286 } 287 288 289 290 /* 291 * Send the given mbuf through the given vap. 292 * 293 * This consumes the mbuf regardless of whether the transmit 294 * was successful or not. 295 * 296 * This does none of the initial checks that ieee80211_start() 297 * does (eg CAC timeout, interface wakeup) - the caller must 298 * do this first. 299 */ 300 static int 301 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m) 302 { 303 #define IS_DWDS(vap) \ 304 (vap->iv_opmode == IEEE80211_M_WDS && \ 305 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0) 306 struct ieee80211com *ic = vap->iv_ic; 307 struct ifnet *ifp = vap->iv_ifp; 308 struct ieee80211_node *ni; 309 struct ether_header *eh; 310 311 /* 312 * Cancel any background scan. 313 */ 314 if (ic->ic_flags & IEEE80211_F_SCAN) 315 ieee80211_cancel_anyscan(vap); 316 /* 317 * Find the node for the destination so we can do 318 * things like power save and fast frames aggregation. 319 * 320 * NB: past this point various code assumes the first 321 * mbuf has the 802.3 header present (and contiguous). 322 */ 323 ni = NULL; 324 if (m->m_len < sizeof(struct ether_header) && 325 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 326 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 327 "discard frame, %s\n", "m_pullup failed"); 328 vap->iv_stats.is_tx_nobuf++; /* XXX */ 329 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 330 return (ENOBUFS); 331 } 332 eh = mtod(m, struct ether_header *); 333 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 334 if (IS_DWDS(vap)) { 335 /* 336 * Only unicast frames from the above go out 337 * DWDS vaps; multicast frames are handled by 338 * dispatching the frame as it comes through 339 * the AP vap (see below). 340 */ 341 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS, 342 eh->ether_dhost, "mcast", "%s", "on DWDS"); 343 vap->iv_stats.is_dwds_mcast++; 344 m_freem(m); 345 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 346 /* XXX better status? */ 347 return (ENOBUFS); 348 } 349 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { 350 /* 351 * Spam DWDS vap's w/ multicast traffic. 352 */ 353 /* XXX only if dwds in use? */ 354 ieee80211_dwds_mcast(vap, m); 355 } 356 } 357 #ifdef IEEE80211_SUPPORT_MESH 358 if (vap->iv_opmode != IEEE80211_M_MBSS) { 359 #endif 360 ni = ieee80211_find_txnode(vap, eh->ether_dhost); 361 if (ni == NULL) { 362 /* NB: ieee80211_find_txnode does stat+msg */ 363 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 364 m_freem(m); 365 /* XXX better status? */ 366 return (ENOBUFS); 367 } 368 if (ni->ni_associd == 0 && 369 (ni->ni_flags & IEEE80211_NODE_ASSOCID)) { 370 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 371 eh->ether_dhost, NULL, 372 "sta not associated (type 0x%04x)", 373 htons(eh->ether_type)); 374 vap->iv_stats.is_tx_notassoc++; 375 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 376 m_freem(m); 377 ieee80211_free_node(ni); 378 /* XXX better status? */ 379 return (ENOBUFS); 380 } 381 #ifdef IEEE80211_SUPPORT_MESH 382 } else { 383 if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) { 384 /* 385 * Proxy station only if configured. 386 */ 387 if (!ieee80211_mesh_isproxyena(vap)) { 388 IEEE80211_DISCARD_MAC(vap, 389 IEEE80211_MSG_OUTPUT | 390 IEEE80211_MSG_MESH, 391 eh->ether_dhost, NULL, 392 "%s", "proxy not enabled"); 393 vap->iv_stats.is_mesh_notproxy++; 394 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 395 m_freem(m); 396 /* XXX better status? */ 397 return (ENOBUFS); 398 } 399 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 400 "forward frame from DS SA(%6D), DA(%6D)\n", 401 eh->ether_shost, ":", 402 eh->ether_dhost, ":"); 403 ieee80211_mesh_proxy_check(vap, eh->ether_shost); 404 } 405 ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m); 406 if (ni == NULL) { 407 /* 408 * NB: ieee80211_mesh_discover holds/disposes 409 * frame (e.g. queueing on path discovery). 410 */ 411 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 412 /* XXX better status? */ 413 return (ENOBUFS); 414 } 415 } 416 #endif 417 418 /* 419 * We've resolved the sender, so attempt to transmit it. 420 */ 421 422 if (vap->iv_state == IEEE80211_S_SLEEP) { 423 /* 424 * In power save; queue frame and then wakeup device 425 * for transmit. 426 */ 427 ic->ic_lastdata = ticks; 428 if (ieee80211_pwrsave(ni, m) != 0) 429 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 430 ieee80211_free_node(ni); 431 ieee80211_new_state(vap, IEEE80211_S_RUN, 0); 432 return (0); 433 } 434 435 if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0) 436 return (ENOBUFS); 437 return (0); 438 #undef IS_DWDS 439 } 440 441 /* 442 * Start method for vap's. All packets from the stack come 443 * through here. We handle common processing of the packets 444 * before dispatching them to the underlying device. 445 * 446 * if_transmit() requires that the mbuf be consumed by this call 447 * regardless of the return condition. 448 */ 449 int 450 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m) 451 { 452 struct ieee80211vap *vap = ifp->if_softc; 453 struct ieee80211com *ic = vap->iv_ic; 454 455 /* 456 * No data frames go out unless we're running. 457 * Note in particular this covers CAC and CSA 458 * states (though maybe we should check muting 459 * for CSA). 460 */ 461 if (vap->iv_state != IEEE80211_S_RUN && 462 vap->iv_state != IEEE80211_S_SLEEP) { 463 IEEE80211_LOCK(ic); 464 /* re-check under the com lock to avoid races */ 465 if (vap->iv_state != IEEE80211_S_RUN && 466 vap->iv_state != IEEE80211_S_SLEEP) { 467 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 468 "%s: ignore queue, in %s state\n", 469 __func__, ieee80211_state_name[vap->iv_state]); 470 vap->iv_stats.is_tx_badstate++; 471 IEEE80211_UNLOCK(ic); 472 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 473 m_freem(m); 474 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 475 return (ENETDOWN); 476 } 477 IEEE80211_UNLOCK(ic); 478 } 479 480 /* 481 * Sanitize mbuf flags for net80211 use. We cannot 482 * clear M_PWR_SAV or M_MORE_DATA because these may 483 * be set for frames that are re-submitted from the 484 * power save queue. 485 * 486 * NB: This must be done before ieee80211_classify as 487 * it marks EAPOL in frames with M_EAPOL. 488 */ 489 m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA); 490 491 /* 492 * Bump to the packet transmission path. 493 * The mbuf will be consumed here. 494 */ 495 return (ieee80211_start_pkt(vap, m)); 496 } 497 498 void 499 ieee80211_vap_qflush(struct ifnet *ifp) 500 { 501 502 /* Empty for now */ 503 } 504 505 /* 506 * 802.11 raw output routine. 507 * 508 * XXX TODO: this (and other send routines) should correctly 509 * XXX keep the pwr mgmt bit set if it decides to call into the 510 * XXX driver to send a frame whilst the state is SLEEP. 511 * 512 * Otherwise the peer may decide that we're awake and flood us 513 * with traffic we are still too asleep to receive! 514 */ 515 int 516 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni, 517 struct mbuf *m, const struct ieee80211_bpf_params *params) 518 { 519 struct ieee80211com *ic = vap->iv_ic; 520 int error; 521 522 /* 523 * Set node - the caller has taken a reference, so ensure 524 * that the mbuf has the same node value that 525 * it would if it were going via the normal path. 526 */ 527 m->m_pkthdr.rcvif = (void *)ni; 528 529 /* 530 * Attempt to add bpf transmit parameters. 531 * 532 * For now it's ok to fail; the raw_xmit api still takes 533 * them as an option. 534 * 535 * Later on when ic_raw_xmit() has params removed, 536 * they'll have to be added - so fail the transmit if 537 * they can't be. 538 */ 539 if (params) 540 (void) ieee80211_add_xmit_params(m, params); 541 542 error = ic->ic_raw_xmit(ni, m, params); 543 if (error) { 544 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1); 545 ieee80211_free_node(ni); 546 } 547 return (error); 548 } 549 550 /* 551 * 802.11 output routine. This is (currently) used only to 552 * connect bpf write calls to the 802.11 layer for injecting 553 * raw 802.11 frames. 554 */ 555 int 556 ieee80211_output(struct ifnet *ifp, struct mbuf *m, 557 const struct sockaddr *dst, struct route *ro) 558 { 559 #define senderr(e) do { error = (e); goto bad;} while (0) 560 struct ieee80211_node *ni = NULL; 561 struct ieee80211vap *vap; 562 struct ieee80211_frame *wh; 563 struct ieee80211com *ic = NULL; 564 int error; 565 int ret; 566 567 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 568 /* 569 * Short-circuit requests if the vap is marked OACTIVE 570 * as this can happen because a packet came down through 571 * ieee80211_start before the vap entered RUN state in 572 * which case it's ok to just drop the frame. This 573 * should not be necessary but callers of if_output don't 574 * check OACTIVE. 575 */ 576 senderr(ENETDOWN); 577 } 578 vap = ifp->if_softc; 579 ic = vap->iv_ic; 580 /* 581 * Hand to the 802.3 code if not tagged as 582 * a raw 802.11 frame. 583 */ 584 if (dst->sa_family != AF_IEEE80211) 585 return vap->iv_output(ifp, m, dst, ro); 586 #ifdef MAC 587 error = mac_ifnet_check_transmit(ifp, m); 588 if (error) 589 senderr(error); 590 #endif 591 if (ifp->if_flags & IFF_MONITOR) 592 senderr(ENETDOWN); 593 if (!IFNET_IS_UP_RUNNING(ifp)) 594 senderr(ENETDOWN); 595 if (vap->iv_state == IEEE80211_S_CAC) { 596 IEEE80211_DPRINTF(vap, 597 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 598 "block %s frame in CAC state\n", "raw data"); 599 vap->iv_stats.is_tx_badstate++; 600 senderr(EIO); /* XXX */ 601 } else if (vap->iv_state == IEEE80211_S_SCAN) 602 senderr(EIO); 603 /* XXX bypass bridge, pfil, carp, etc. */ 604 605 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack)) 606 senderr(EIO); /* XXX */ 607 wh = mtod(m, struct ieee80211_frame *); 608 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) != 609 IEEE80211_FC0_VERSION_0) 610 senderr(EIO); /* XXX */ 611 if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh)) 612 senderr(EIO); /* XXX */ 613 614 /* locate destination node */ 615 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 616 case IEEE80211_FC1_DIR_NODS: 617 case IEEE80211_FC1_DIR_FROMDS: 618 ni = ieee80211_find_txnode(vap, wh->i_addr1); 619 break; 620 case IEEE80211_FC1_DIR_TODS: 621 case IEEE80211_FC1_DIR_DSTODS: 622 ni = ieee80211_find_txnode(vap, wh->i_addr3); 623 break; 624 default: 625 senderr(EIO); /* XXX */ 626 } 627 if (ni == NULL) { 628 /* 629 * Permit packets w/ bpf params through regardless 630 * (see below about sa_len). 631 */ 632 if (dst->sa_len == 0) 633 senderr(EHOSTUNREACH); 634 ni = ieee80211_ref_node(vap->iv_bss); 635 } 636 637 /* 638 * Sanitize mbuf for net80211 flags leaked from above. 639 * 640 * NB: This must be done before ieee80211_classify as 641 * it marks EAPOL in frames with M_EAPOL. 642 */ 643 m->m_flags &= ~M_80211_TX; 644 645 /* calculate priority so drivers can find the tx queue */ 646 /* XXX assumes an 802.3 frame */ 647 if (ieee80211_classify(ni, m)) 648 senderr(EIO); /* XXX */ 649 650 IEEE80211_NODE_STAT(ni, tx_data); 651 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 652 IEEE80211_NODE_STAT(ni, tx_mcast); 653 m->m_flags |= M_MCAST; 654 } else 655 IEEE80211_NODE_STAT(ni, tx_ucast); 656 /* NB: ieee80211_encap does not include 802.11 header */ 657 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len); 658 659 IEEE80211_TX_LOCK(ic); 660 661 /* 662 * NB: DLT_IEEE802_11_RADIO identifies the parameters are 663 * present by setting the sa_len field of the sockaddr (yes, 664 * this is a hack). 665 * NB: we assume sa_data is suitably aligned to cast. 666 */ 667 ret = ieee80211_raw_output(vap, ni, m, 668 (const struct ieee80211_bpf_params *)(dst->sa_len ? 669 dst->sa_data : NULL)); 670 IEEE80211_TX_UNLOCK(ic); 671 return (ret); 672 bad: 673 if (m != NULL) 674 m_freem(m); 675 if (ni != NULL) 676 ieee80211_free_node(ni); 677 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 678 return error; 679 #undef senderr 680 } 681 682 /* 683 * Set the direction field and address fields of an outgoing 684 * frame. Note this should be called early on in constructing 685 * a frame as it sets i_fc[1]; other bits can then be or'd in. 686 */ 687 void 688 ieee80211_send_setup( 689 struct ieee80211_node *ni, 690 struct mbuf *m, 691 int type, int tid, 692 const uint8_t sa[IEEE80211_ADDR_LEN], 693 const uint8_t da[IEEE80211_ADDR_LEN], 694 const uint8_t bssid[IEEE80211_ADDR_LEN]) 695 { 696 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 697 struct ieee80211vap *vap = ni->ni_vap; 698 struct ieee80211_tx_ampdu *tap; 699 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 700 ieee80211_seq seqno; 701 702 IEEE80211_TX_LOCK_ASSERT(ni->ni_ic); 703 704 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 705 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 706 switch (vap->iv_opmode) { 707 case IEEE80211_M_STA: 708 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 709 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 710 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 711 IEEE80211_ADDR_COPY(wh->i_addr3, da); 712 break; 713 case IEEE80211_M_IBSS: 714 case IEEE80211_M_AHDEMO: 715 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 716 IEEE80211_ADDR_COPY(wh->i_addr1, da); 717 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 718 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 719 break; 720 case IEEE80211_M_HOSTAP: 721 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 722 IEEE80211_ADDR_COPY(wh->i_addr1, da); 723 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 724 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 725 break; 726 case IEEE80211_M_WDS: 727 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 728 IEEE80211_ADDR_COPY(wh->i_addr1, da); 729 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 730 IEEE80211_ADDR_COPY(wh->i_addr3, da); 731 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 732 break; 733 case IEEE80211_M_MBSS: 734 #ifdef IEEE80211_SUPPORT_MESH 735 if (IEEE80211_IS_MULTICAST(da)) { 736 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 737 /* XXX next hop */ 738 IEEE80211_ADDR_COPY(wh->i_addr1, da); 739 IEEE80211_ADDR_COPY(wh->i_addr2, 740 vap->iv_myaddr); 741 } else { 742 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 743 IEEE80211_ADDR_COPY(wh->i_addr1, da); 744 IEEE80211_ADDR_COPY(wh->i_addr2, 745 vap->iv_myaddr); 746 IEEE80211_ADDR_COPY(wh->i_addr3, da); 747 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 748 } 749 #endif 750 break; 751 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 752 break; 753 } 754 } else { 755 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 756 IEEE80211_ADDR_COPY(wh->i_addr1, da); 757 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 758 #ifdef IEEE80211_SUPPORT_MESH 759 if (vap->iv_opmode == IEEE80211_M_MBSS) 760 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 761 else 762 #endif 763 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 764 } 765 *(uint16_t *)&wh->i_dur[0] = 0; 766 767 tap = &ni->ni_tx_ampdu[tid]; 768 if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) 769 m->m_flags |= M_AMPDU_MPDU; 770 else { 771 if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK, 772 type & IEEE80211_FC0_SUBTYPE_MASK)) 773 seqno = ni->ni_txseqs[tid]++; 774 else 775 seqno = 0; 776 777 *(uint16_t *)&wh->i_seq[0] = 778 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 779 M_SEQNO_SET(m, seqno); 780 } 781 782 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 783 m->m_flags |= M_MCAST; 784 #undef WH4 785 } 786 787 /* 788 * Send a management frame to the specified node. The node pointer 789 * must have a reference as the pointer will be passed to the driver 790 * and potentially held for a long time. If the frame is successfully 791 * dispatched to the driver, then it is responsible for freeing the 792 * reference (and potentially free'ing up any associated storage); 793 * otherwise deal with reclaiming any reference (on error). 794 */ 795 int 796 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type, 797 struct ieee80211_bpf_params *params) 798 { 799 struct ieee80211vap *vap = ni->ni_vap; 800 struct ieee80211com *ic = ni->ni_ic; 801 struct ieee80211_frame *wh; 802 int ret; 803 804 KASSERT(ni != NULL, ("null node")); 805 806 if (vap->iv_state == IEEE80211_S_CAC) { 807 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 808 ni, "block %s frame in CAC state", 809 ieee80211_mgt_subtype_name(type)); 810 vap->iv_stats.is_tx_badstate++; 811 ieee80211_free_node(ni); 812 m_freem(m); 813 return EIO; /* XXX */ 814 } 815 816 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 817 if (m == NULL) { 818 ieee80211_free_node(ni); 819 return ENOMEM; 820 } 821 822 IEEE80211_TX_LOCK(ic); 823 824 wh = mtod(m, struct ieee80211_frame *); 825 ieee80211_send_setup(ni, m, 826 IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID, 827 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 828 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { 829 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1, 830 "encrypting frame (%s)", __func__); 831 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 832 } 833 m->m_flags |= M_ENCAP; /* mark encapsulated */ 834 835 KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?")); 836 M_WME_SETAC(m, params->ibp_pri); 837 838 #ifdef IEEE80211_DEBUG 839 /* avoid printing too many frames */ 840 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) || 841 ieee80211_msg_dumppkts(vap)) { 842 printf("[%s] send %s on channel %u\n", 843 ether_sprintf(wh->i_addr1), 844 ieee80211_mgt_subtype_name(type), 845 ieee80211_chan2ieee(ic, ic->ic_curchan)); 846 } 847 #endif 848 IEEE80211_NODE_STAT(ni, tx_mgmt); 849 850 ret = ieee80211_raw_output(vap, ni, m, params); 851 IEEE80211_TX_UNLOCK(ic); 852 return (ret); 853 } 854 855 static void 856 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg, 857 int status) 858 { 859 struct ieee80211vap *vap = ni->ni_vap; 860 861 wakeup(vap); 862 } 863 864 /* 865 * Send a null data frame to the specified node. If the station 866 * is setup for QoS then a QoS Null Data frame is constructed. 867 * If this is a WDS station then a 4-address frame is constructed. 868 * 869 * NB: the caller is assumed to have setup a node reference 870 * for use; this is necessary to deal with a race condition 871 * when probing for inactive stations. Like ieee80211_mgmt_output 872 * we must cleanup any node reference on error; however we 873 * can safely just unref it as we know it will never be the 874 * last reference to the node. 875 */ 876 int 877 ieee80211_send_nulldata(struct ieee80211_node *ni) 878 { 879 struct ieee80211vap *vap = ni->ni_vap; 880 struct ieee80211com *ic = ni->ni_ic; 881 struct mbuf *m; 882 struct ieee80211_frame *wh; 883 int hdrlen; 884 uint8_t *frm; 885 int ret; 886 887 if (vap->iv_state == IEEE80211_S_CAC) { 888 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 889 ni, "block %s frame in CAC state", "null data"); 890 ieee80211_unref_node(&ni); 891 vap->iv_stats.is_tx_badstate++; 892 return EIO; /* XXX */ 893 } 894 895 if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) 896 hdrlen = sizeof(struct ieee80211_qosframe); 897 else 898 hdrlen = sizeof(struct ieee80211_frame); 899 /* NB: only WDS vap's get 4-address frames */ 900 if (vap->iv_opmode == IEEE80211_M_WDS) 901 hdrlen += IEEE80211_ADDR_LEN; 902 if (ic->ic_flags & IEEE80211_F_DATAPAD) 903 hdrlen = roundup(hdrlen, sizeof(uint32_t)); 904 905 m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0); 906 if (m == NULL) { 907 /* XXX debug msg */ 908 ieee80211_unref_node(&ni); 909 vap->iv_stats.is_tx_nobuf++; 910 return ENOMEM; 911 } 912 KASSERT(M_LEADINGSPACE(m) >= hdrlen, 913 ("leading space %zd", M_LEADINGSPACE(m))); 914 M_PREPEND(m, hdrlen, M_NOWAIT); 915 if (m == NULL) { 916 /* NB: cannot happen */ 917 ieee80211_free_node(ni); 918 return ENOMEM; 919 } 920 921 IEEE80211_TX_LOCK(ic); 922 923 wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */ 924 if (ni->ni_flags & IEEE80211_NODE_QOS) { 925 const int tid = WME_AC_TO_TID(WME_AC_BE); 926 uint8_t *qos; 927 928 ieee80211_send_setup(ni, m, 929 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL, 930 tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 931 932 if (vap->iv_opmode == IEEE80211_M_WDS) 933 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 934 else 935 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 936 qos[0] = tid & IEEE80211_QOS_TID; 937 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy) 938 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 939 qos[1] = 0; 940 } else { 941 ieee80211_send_setup(ni, m, 942 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 943 IEEE80211_NONQOS_TID, 944 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 945 } 946 if (vap->iv_opmode != IEEE80211_M_WDS) { 947 /* NB: power management bit is never sent by an AP */ 948 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 949 vap->iv_opmode != IEEE80211_M_HOSTAP) 950 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 951 } 952 if ((ic->ic_flags & IEEE80211_F_SCAN) && 953 (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) { 954 ieee80211_add_callback(m, ieee80211_nulldata_transmitted, 955 NULL); 956 } 957 m->m_len = m->m_pkthdr.len = hdrlen; 958 m->m_flags |= M_ENCAP; /* mark encapsulated */ 959 960 M_WME_SETAC(m, WME_AC_BE); 961 962 IEEE80211_NODE_STAT(ni, tx_data); 963 964 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni, 965 "send %snull data frame on channel %u, pwr mgt %s", 966 ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "", 967 ieee80211_chan2ieee(ic, ic->ic_curchan), 968 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 969 970 ret = ieee80211_raw_output(vap, ni, m, NULL); 971 IEEE80211_TX_UNLOCK(ic); 972 return (ret); 973 } 974 975 /* 976 * Assign priority to a frame based on any vlan tag assigned 977 * to the station and/or any Diffserv setting in an IP header. 978 * Finally, if an ACM policy is setup (in station mode) it's 979 * applied. 980 */ 981 int 982 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m) 983 { 984 const struct ether_header *eh = mtod(m, struct ether_header *); 985 int v_wme_ac, d_wme_ac, ac; 986 987 /* 988 * Always promote PAE/EAPOL frames to high priority. 989 */ 990 if (eh->ether_type == htons(ETHERTYPE_PAE)) { 991 /* NB: mark so others don't need to check header */ 992 m->m_flags |= M_EAPOL; 993 ac = WME_AC_VO; 994 goto done; 995 } 996 /* 997 * Non-qos traffic goes to BE. 998 */ 999 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 1000 ac = WME_AC_BE; 1001 goto done; 1002 } 1003 1004 /* 1005 * If node has a vlan tag then all traffic 1006 * to it must have a matching tag. 1007 */ 1008 v_wme_ac = 0; 1009 if (ni->ni_vlan != 0) { 1010 if ((m->m_flags & M_VLANTAG) == 0) { 1011 IEEE80211_NODE_STAT(ni, tx_novlantag); 1012 return 1; 1013 } 1014 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 1015 EVL_VLANOFTAG(ni->ni_vlan)) { 1016 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 1017 return 1; 1018 } 1019 /* map vlan priority to AC */ 1020 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan)); 1021 } 1022 1023 /* XXX m_copydata may be too slow for fast path */ 1024 #ifdef INET 1025 if (eh->ether_type == htons(ETHERTYPE_IP)) { 1026 uint8_t tos; 1027 /* 1028 * IP frame, map the DSCP bits from the TOS field. 1029 */ 1030 /* NB: ip header may not be in first mbuf */ 1031 m_copydata(m, sizeof(struct ether_header) + 1032 offsetof(struct ip, ip_tos), sizeof(tos), &tos); 1033 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1034 d_wme_ac = TID_TO_WME_AC(tos); 1035 } else { 1036 #endif /* INET */ 1037 #ifdef INET6 1038 if (eh->ether_type == htons(ETHERTYPE_IPV6)) { 1039 uint32_t flow; 1040 uint8_t tos; 1041 /* 1042 * IPv6 frame, map the DSCP bits from the traffic class field. 1043 */ 1044 m_copydata(m, sizeof(struct ether_header) + 1045 offsetof(struct ip6_hdr, ip6_flow), sizeof(flow), 1046 (caddr_t) &flow); 1047 tos = (uint8_t)(ntohl(flow) >> 20); 1048 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1049 d_wme_ac = TID_TO_WME_AC(tos); 1050 } else { 1051 #endif /* INET6 */ 1052 d_wme_ac = WME_AC_BE; 1053 #ifdef INET6 1054 } 1055 #endif 1056 #ifdef INET 1057 } 1058 #endif 1059 /* 1060 * Use highest priority AC. 1061 */ 1062 if (v_wme_ac > d_wme_ac) 1063 ac = v_wme_ac; 1064 else 1065 ac = d_wme_ac; 1066 1067 /* 1068 * Apply ACM policy. 1069 */ 1070 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) { 1071 static const int acmap[4] = { 1072 WME_AC_BK, /* WME_AC_BE */ 1073 WME_AC_BK, /* WME_AC_BK */ 1074 WME_AC_BE, /* WME_AC_VI */ 1075 WME_AC_VI, /* WME_AC_VO */ 1076 }; 1077 struct ieee80211com *ic = ni->ni_ic; 1078 1079 while (ac != WME_AC_BK && 1080 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 1081 ac = acmap[ac]; 1082 } 1083 done: 1084 M_WME_SETAC(m, ac); 1085 return 0; 1086 } 1087 1088 /* 1089 * Insure there is sufficient contiguous space to encapsulate the 1090 * 802.11 data frame. If room isn't already there, arrange for it. 1091 * Drivers and cipher modules assume we have done the necessary work 1092 * and fail rudely if they don't find the space they need. 1093 */ 1094 struct mbuf * 1095 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize, 1096 struct ieee80211_key *key, struct mbuf *m) 1097 { 1098 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 1099 int needed_space = vap->iv_ic->ic_headroom + hdrsize; 1100 1101 if (key != NULL) { 1102 /* XXX belongs in crypto code? */ 1103 needed_space += key->wk_cipher->ic_header; 1104 /* XXX frags */ 1105 /* 1106 * When crypto is being done in the host we must insure 1107 * the data are writable for the cipher routines; clone 1108 * a writable mbuf chain. 1109 * XXX handle SWMIC specially 1110 */ 1111 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) { 1112 m = m_unshare(m, M_NOWAIT); 1113 if (m == NULL) { 1114 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1115 "%s: cannot get writable mbuf\n", __func__); 1116 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */ 1117 return NULL; 1118 } 1119 } 1120 } 1121 /* 1122 * We know we are called just before stripping an Ethernet 1123 * header and prepending an LLC header. This means we know 1124 * there will be 1125 * sizeof(struct ether_header) - sizeof(struct llc) 1126 * bytes recovered to which we need additional space for the 1127 * 802.11 header and any crypto header. 1128 */ 1129 /* XXX check trailing space and copy instead? */ 1130 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 1131 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); 1132 if (n == NULL) { 1133 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1134 "%s: cannot expand storage\n", __func__); 1135 vap->iv_stats.is_tx_nobuf++; 1136 m_freem(m); 1137 return NULL; 1138 } 1139 KASSERT(needed_space <= MHLEN, 1140 ("not enough room, need %u got %d\n", needed_space, MHLEN)); 1141 /* 1142 * Setup new mbuf to have leading space to prepend the 1143 * 802.11 header and any crypto header bits that are 1144 * required (the latter are added when the driver calls 1145 * back to ieee80211_crypto_encap to do crypto encapsulation). 1146 */ 1147 /* NB: must be first 'cuz it clobbers m_data */ 1148 m_move_pkthdr(n, m); 1149 n->m_len = 0; /* NB: m_gethdr does not set */ 1150 n->m_data += needed_space; 1151 /* 1152 * Pull up Ethernet header to create the expected layout. 1153 * We could use m_pullup but that's overkill (i.e. we don't 1154 * need the actual data) and it cannot fail so do it inline 1155 * for speed. 1156 */ 1157 /* NB: struct ether_header is known to be contiguous */ 1158 n->m_len += sizeof(struct ether_header); 1159 m->m_len -= sizeof(struct ether_header); 1160 m->m_data += sizeof(struct ether_header); 1161 /* 1162 * Replace the head of the chain. 1163 */ 1164 n->m_next = m; 1165 m = n; 1166 } 1167 return m; 1168 #undef TO_BE_RECLAIMED 1169 } 1170 1171 /* 1172 * Return the transmit key to use in sending a unicast frame. 1173 * If a unicast key is set we use that. When no unicast key is set 1174 * we fall back to the default transmit key. 1175 */ 1176 static __inline struct ieee80211_key * 1177 ieee80211_crypto_getucastkey(struct ieee80211vap *vap, 1178 struct ieee80211_node *ni) 1179 { 1180 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) { 1181 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1182 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1183 return NULL; 1184 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1185 } else { 1186 return &ni->ni_ucastkey; 1187 } 1188 } 1189 1190 /* 1191 * Return the transmit key to use in sending a multicast frame. 1192 * Multicast traffic always uses the group key which is installed as 1193 * the default tx key. 1194 */ 1195 static __inline struct ieee80211_key * 1196 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap, 1197 struct ieee80211_node *ni) 1198 { 1199 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1200 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1201 return NULL; 1202 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1203 } 1204 1205 /* 1206 * Encapsulate an outbound data frame. The mbuf chain is updated. 1207 * If an error is encountered NULL is returned. The caller is required 1208 * to provide a node reference and pullup the ethernet header in the 1209 * first mbuf. 1210 * 1211 * NB: Packet is assumed to be processed by ieee80211_classify which 1212 * marked EAPOL frames w/ M_EAPOL. 1213 */ 1214 struct mbuf * 1215 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni, 1216 struct mbuf *m) 1217 { 1218 #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh)) 1219 #define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc) 1220 struct ieee80211com *ic = ni->ni_ic; 1221 #ifdef IEEE80211_SUPPORT_MESH 1222 struct ieee80211_mesh_state *ms = vap->iv_mesh; 1223 struct ieee80211_meshcntl_ae10 *mc; 1224 struct ieee80211_mesh_route *rt = NULL; 1225 int dir = -1; 1226 #endif 1227 struct ether_header eh; 1228 struct ieee80211_frame *wh; 1229 struct ieee80211_key *key; 1230 struct llc *llc; 1231 int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr; 1232 ieee80211_seq seqno; 1233 int meshhdrsize, meshae; 1234 uint8_t *qos; 1235 int is_amsdu = 0; 1236 1237 IEEE80211_TX_LOCK_ASSERT(ic); 1238 1239 /* 1240 * Copy existing Ethernet header to a safe place. The 1241 * rest of the code assumes it's ok to strip it when 1242 * reorganizing state for the final encapsulation. 1243 */ 1244 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 1245 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t)); 1246 1247 /* 1248 * Insure space for additional headers. First identify 1249 * transmit key to use in calculating any buffer adjustments 1250 * required. This is also used below to do privacy 1251 * encapsulation work. Then calculate the 802.11 header 1252 * size and any padding required by the driver. 1253 * 1254 * Note key may be NULL if we fall back to the default 1255 * transmit key and that is not set. In that case the 1256 * buffer may not be expanded as needed by the cipher 1257 * routines, but they will/should discard it. 1258 */ 1259 if (vap->iv_flags & IEEE80211_F_PRIVACY) { 1260 if (vap->iv_opmode == IEEE80211_M_STA || 1261 !IEEE80211_IS_MULTICAST(eh.ether_dhost) || 1262 (vap->iv_opmode == IEEE80211_M_WDS && 1263 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) 1264 key = ieee80211_crypto_getucastkey(vap, ni); 1265 else 1266 key = ieee80211_crypto_getmcastkey(vap, ni); 1267 if (key == NULL && (m->m_flags & M_EAPOL) == 0) { 1268 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, 1269 eh.ether_dhost, 1270 "no default transmit key (%s) deftxkey %u", 1271 __func__, vap->iv_def_txkey); 1272 vap->iv_stats.is_tx_nodefkey++; 1273 goto bad; 1274 } 1275 } else 1276 key = NULL; 1277 /* 1278 * XXX Some ap's don't handle QoS-encapsulated EAPOL 1279 * frames so suppress use. This may be an issue if other 1280 * ap's require all data frames to be QoS-encapsulated 1281 * once negotiated in which case we'll need to make this 1282 * configurable. 1283 * NB: mesh data frames are QoS. 1284 */ 1285 addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) || 1286 (vap->iv_opmode == IEEE80211_M_MBSS)) && 1287 (m->m_flags & M_EAPOL) == 0; 1288 if (addqos) 1289 hdrsize = sizeof(struct ieee80211_qosframe); 1290 else 1291 hdrsize = sizeof(struct ieee80211_frame); 1292 #ifdef IEEE80211_SUPPORT_MESH 1293 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1294 /* 1295 * Mesh data frames are encapsulated according to the 1296 * rules of Section 11B.8.5 (p.139 of D3.0 spec). 1297 * o Group Addressed data (aka multicast) originating 1298 * at the local sta are sent w/ 3-address format and 1299 * address extension mode 00 1300 * o Individually Addressed data (aka unicast) originating 1301 * at the local sta are sent w/ 4-address format and 1302 * address extension mode 00 1303 * o Group Addressed data forwarded from a non-mesh sta are 1304 * sent w/ 3-address format and address extension mode 01 1305 * o Individually Address data from another sta are sent 1306 * w/ 4-address format and address extension mode 10 1307 */ 1308 is4addr = 0; /* NB: don't use, disable */ 1309 if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) { 1310 rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost); 1311 KASSERT(rt != NULL, ("route is NULL")); 1312 dir = IEEE80211_FC1_DIR_DSTODS; 1313 hdrsize += IEEE80211_ADDR_LEN; 1314 if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) { 1315 if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate, 1316 vap->iv_myaddr)) { 1317 IEEE80211_NOTE_MAC(vap, 1318 IEEE80211_MSG_MESH, 1319 eh.ether_dhost, 1320 "%s", "trying to send to ourself"); 1321 goto bad; 1322 } 1323 meshae = IEEE80211_MESH_AE_10; 1324 meshhdrsize = 1325 sizeof(struct ieee80211_meshcntl_ae10); 1326 } else { 1327 meshae = IEEE80211_MESH_AE_00; 1328 meshhdrsize = 1329 sizeof(struct ieee80211_meshcntl); 1330 } 1331 } else { 1332 dir = IEEE80211_FC1_DIR_FROMDS; 1333 if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) { 1334 /* proxy group */ 1335 meshae = IEEE80211_MESH_AE_01; 1336 meshhdrsize = 1337 sizeof(struct ieee80211_meshcntl_ae01); 1338 } else { 1339 /* group */ 1340 meshae = IEEE80211_MESH_AE_00; 1341 meshhdrsize = sizeof(struct ieee80211_meshcntl); 1342 } 1343 } 1344 } else { 1345 #endif 1346 /* 1347 * 4-address frames need to be generated for: 1348 * o packets sent through a WDS vap (IEEE80211_M_WDS) 1349 * o packets sent through a vap marked for relaying 1350 * (e.g. a station operating with dynamic WDS) 1351 */ 1352 is4addr = vap->iv_opmode == IEEE80211_M_WDS || 1353 ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) && 1354 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)); 1355 if (is4addr) 1356 hdrsize += IEEE80211_ADDR_LEN; 1357 meshhdrsize = meshae = 0; 1358 #ifdef IEEE80211_SUPPORT_MESH 1359 } 1360 #endif 1361 /* 1362 * Honor driver DATAPAD requirement. 1363 */ 1364 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1365 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1366 else 1367 hdrspace = hdrsize; 1368 1369 if (__predict_true((m->m_flags & M_FF) == 0)) { 1370 /* 1371 * Normal frame. 1372 */ 1373 m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m); 1374 if (m == NULL) { 1375 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 1376 goto bad; 1377 } 1378 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */ 1379 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 1380 llc = mtod(m, struct llc *); 1381 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 1382 llc->llc_control = LLC_UI; 1383 llc->llc_snap.org_code[0] = 0; 1384 llc->llc_snap.org_code[1] = 0; 1385 llc->llc_snap.org_code[2] = 0; 1386 llc->llc_snap.ether_type = eh.ether_type; 1387 } else { 1388 #ifdef IEEE80211_SUPPORT_SUPERG 1389 /* 1390 * Aggregated frame. Check if it's for AMSDU or FF. 1391 * 1392 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented 1393 * anywhere for some reason. But, since 11n requires 1394 * AMSDU RX, we can just assume "11n" == "AMSDU". 1395 */ 1396 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__); 1397 if (ieee80211_amsdu_tx_ok(ni)) { 1398 m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key); 1399 is_amsdu = 1; 1400 } else { 1401 m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key); 1402 } 1403 if (m == NULL) 1404 #endif 1405 goto bad; 1406 } 1407 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 1408 1409 M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT); 1410 if (m == NULL) { 1411 vap->iv_stats.is_tx_nobuf++; 1412 goto bad; 1413 } 1414 wh = mtod(m, struct ieee80211_frame *); 1415 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 1416 *(uint16_t *)wh->i_dur = 0; 1417 qos = NULL; /* NB: quiet compiler */ 1418 if (is4addr) { 1419 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 1420 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); 1421 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1422 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1423 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); 1424 } else switch (vap->iv_opmode) { 1425 case IEEE80211_M_STA: 1426 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 1427 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 1428 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1429 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1430 break; 1431 case IEEE80211_M_IBSS: 1432 case IEEE80211_M_AHDEMO: 1433 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1434 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1435 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1436 /* 1437 * NB: always use the bssid from iv_bss as the 1438 * neighbor's may be stale after an ibss merge 1439 */ 1440 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid); 1441 break; 1442 case IEEE80211_M_HOSTAP: 1443 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1444 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1445 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 1446 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 1447 break; 1448 #ifdef IEEE80211_SUPPORT_MESH 1449 case IEEE80211_M_MBSS: 1450 /* NB: offset by hdrspace to deal with DATAPAD */ 1451 mc = (struct ieee80211_meshcntl_ae10 *) 1452 (mtod(m, uint8_t *) + hdrspace); 1453 wh->i_fc[1] = dir; 1454 switch (meshae) { 1455 case IEEE80211_MESH_AE_00: /* no proxy */ 1456 mc->mc_flags = 0; 1457 if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */ 1458 IEEE80211_ADDR_COPY(wh->i_addr1, 1459 ni->ni_macaddr); 1460 IEEE80211_ADDR_COPY(wh->i_addr2, 1461 vap->iv_myaddr); 1462 IEEE80211_ADDR_COPY(wh->i_addr3, 1463 eh.ether_dhost); 1464 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, 1465 eh.ether_shost); 1466 qos =((struct ieee80211_qosframe_addr4 *) 1467 wh)->i_qos; 1468 } else if (dir == IEEE80211_FC1_DIR_FROMDS) { 1469 /* mcast */ 1470 IEEE80211_ADDR_COPY(wh->i_addr1, 1471 eh.ether_dhost); 1472 IEEE80211_ADDR_COPY(wh->i_addr2, 1473 vap->iv_myaddr); 1474 IEEE80211_ADDR_COPY(wh->i_addr3, 1475 eh.ether_shost); 1476 qos = ((struct ieee80211_qosframe *) 1477 wh)->i_qos; 1478 } 1479 break; 1480 case IEEE80211_MESH_AE_01: /* mcast, proxy */ 1481 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1482 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1483 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1484 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr); 1485 mc->mc_flags = 1; 1486 IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4, 1487 eh.ether_shost); 1488 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1489 break; 1490 case IEEE80211_MESH_AE_10: /* ucast, proxy */ 1491 KASSERT(rt != NULL, ("route is NULL")); 1492 IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop); 1493 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1494 IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate); 1495 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr); 1496 mc->mc_flags = IEEE80211_MESH_AE_10; 1497 IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost); 1498 IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost); 1499 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1500 break; 1501 default: 1502 KASSERT(0, ("meshae %d", meshae)); 1503 break; 1504 } 1505 mc->mc_ttl = ms->ms_ttl; 1506 ms->ms_seq++; 1507 le32enc(mc->mc_seq, ms->ms_seq); 1508 break; 1509 #endif 1510 case IEEE80211_M_WDS: /* NB: is4addr should always be true */ 1511 default: 1512 goto bad; 1513 } 1514 if (m->m_flags & M_MORE_DATA) 1515 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 1516 if (addqos) { 1517 int ac, tid; 1518 1519 if (is4addr) { 1520 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1521 /* NB: mesh case handled earlier */ 1522 } else if (vap->iv_opmode != IEEE80211_M_MBSS) 1523 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1524 ac = M_WME_GETAC(m); 1525 /* map from access class/queue to 11e header priorty value */ 1526 tid = WME_AC_TO_TID(ac); 1527 qos[0] = tid & IEEE80211_QOS_TID; 1528 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 1529 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1530 #ifdef IEEE80211_SUPPORT_MESH 1531 if (vap->iv_opmode == IEEE80211_M_MBSS) 1532 qos[1] = IEEE80211_QOS_MC; 1533 else 1534 #endif 1535 qos[1] = 0; 1536 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 1537 1538 /* 1539 * If this is an A-MSDU then ensure we set the 1540 * relevant field. 1541 */ 1542 if (is_amsdu) 1543 qos[0] |= IEEE80211_QOS_AMSDU; 1544 1545 if ((m->m_flags & M_AMPDU_MPDU) == 0) { 1546 /* 1547 * NB: don't assign a sequence # to potential 1548 * aggregates; we expect this happens at the 1549 * point the frame comes off any aggregation q 1550 * as otherwise we may introduce holes in the 1551 * BA sequence space and/or make window accouting 1552 * more difficult. 1553 * 1554 * XXX may want to control this with a driver 1555 * capability; this may also change when we pull 1556 * aggregation up into net80211 1557 */ 1558 seqno = ni->ni_txseqs[tid]++; 1559 *(uint16_t *)wh->i_seq = 1560 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1561 M_SEQNO_SET(m, seqno); 1562 } 1563 } else { 1564 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1565 *(uint16_t *)wh->i_seq = 1566 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1567 M_SEQNO_SET(m, seqno); 1568 1569 /* 1570 * XXX TODO: we shouldn't allow EAPOL, etc that would 1571 * be forced to be non-QoS traffic to be A-MSDU encapsulated. 1572 */ 1573 if (is_amsdu) 1574 printf("%s: XXX ERROR: is_amsdu set; not QoS!\n", 1575 __func__); 1576 } 1577 1578 1579 /* check if xmit fragmentation is required */ 1580 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold && 1581 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 1582 (vap->iv_caps & IEEE80211_C_TXFRAG) && 1583 (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0); 1584 if (key != NULL) { 1585 /* 1586 * IEEE 802.1X: send EAPOL frames always in the clear. 1587 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 1588 */ 1589 if ((m->m_flags & M_EAPOL) == 0 || 1590 ((vap->iv_flags & IEEE80211_F_WPA) && 1591 (vap->iv_opmode == IEEE80211_M_STA ? 1592 !IEEE80211_KEY_UNDEFINED(key) : 1593 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) { 1594 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 1595 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) { 1596 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT, 1597 eh.ether_dhost, 1598 "%s", "enmic failed, discard frame"); 1599 vap->iv_stats.is_crypto_enmicfail++; 1600 goto bad; 1601 } 1602 } 1603 } 1604 if (txfrag && !ieee80211_fragment(vap, m, hdrsize, 1605 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold)) 1606 goto bad; 1607 1608 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1609 1610 IEEE80211_NODE_STAT(ni, tx_data); 1611 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1612 IEEE80211_NODE_STAT(ni, tx_mcast); 1613 m->m_flags |= M_MCAST; 1614 } else 1615 IEEE80211_NODE_STAT(ni, tx_ucast); 1616 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 1617 1618 return m; 1619 bad: 1620 if (m != NULL) 1621 m_freem(m); 1622 return NULL; 1623 #undef WH4 1624 #undef MC01 1625 } 1626 1627 void 1628 ieee80211_free_mbuf(struct mbuf *m) 1629 { 1630 struct mbuf *next; 1631 1632 if (m == NULL) 1633 return; 1634 1635 do { 1636 next = m->m_nextpkt; 1637 m->m_nextpkt = NULL; 1638 m_freem(m); 1639 } while ((m = next) != NULL); 1640 } 1641 1642 /* 1643 * Fragment the frame according to the specified mtu. 1644 * The size of the 802.11 header (w/o padding) is provided 1645 * so we don't need to recalculate it. We create a new 1646 * mbuf for each fragment and chain it through m_nextpkt; 1647 * we might be able to optimize this by reusing the original 1648 * packet's mbufs but that is significantly more complicated. 1649 */ 1650 static int 1651 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0, 1652 u_int hdrsize, u_int ciphdrsize, u_int mtu) 1653 { 1654 struct ieee80211com *ic = vap->iv_ic; 1655 struct ieee80211_frame *wh, *whf; 1656 struct mbuf *m, *prev; 1657 u_int totalhdrsize, fragno, fragsize, off, remainder, payload; 1658 u_int hdrspace; 1659 1660 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); 1661 KASSERT(m0->m_pkthdr.len > mtu, 1662 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); 1663 1664 /* 1665 * Honor driver DATAPAD requirement. 1666 */ 1667 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1668 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1669 else 1670 hdrspace = hdrsize; 1671 1672 wh = mtod(m0, struct ieee80211_frame *); 1673 /* NB: mark the first frag; it will be propagated below */ 1674 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; 1675 totalhdrsize = hdrspace + ciphdrsize; 1676 fragno = 1; 1677 off = mtu - ciphdrsize; 1678 remainder = m0->m_pkthdr.len - off; 1679 prev = m0; 1680 do { 1681 fragsize = MIN(totalhdrsize + remainder, mtu); 1682 m = m_get2(fragsize, M_NOWAIT, MT_DATA, M_PKTHDR); 1683 if (m == NULL) 1684 goto bad; 1685 /* leave room to prepend any cipher header */ 1686 m_align(m, fragsize - ciphdrsize); 1687 1688 /* 1689 * Form the header in the fragment. Note that since 1690 * we mark the first fragment with the MORE_FRAG bit 1691 * it automatically is propagated to each fragment; we 1692 * need only clear it on the last fragment (done below). 1693 * NB: frag 1+ dont have Mesh Control field present. 1694 */ 1695 whf = mtod(m, struct ieee80211_frame *); 1696 memcpy(whf, wh, hdrsize); 1697 #ifdef IEEE80211_SUPPORT_MESH 1698 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1699 if (IEEE80211_IS_DSTODS(wh)) 1700 ((struct ieee80211_qosframe_addr4 *) 1701 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1702 else 1703 ((struct ieee80211_qosframe *) 1704 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1705 } 1706 #endif 1707 *(uint16_t *)&whf->i_seq[0] |= htole16( 1708 (fragno & IEEE80211_SEQ_FRAG_MASK) << 1709 IEEE80211_SEQ_FRAG_SHIFT); 1710 fragno++; 1711 1712 payload = fragsize - totalhdrsize; 1713 /* NB: destination is known to be contiguous */ 1714 1715 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace); 1716 m->m_len = hdrspace + payload; 1717 m->m_pkthdr.len = hdrspace + payload; 1718 m->m_flags |= M_FRAG; 1719 1720 /* chain up the fragment */ 1721 prev->m_nextpkt = m; 1722 prev = m; 1723 1724 /* deduct fragment just formed */ 1725 remainder -= payload; 1726 off += payload; 1727 } while (remainder != 0); 1728 1729 /* set the last fragment */ 1730 m->m_flags |= M_LASTFRAG; 1731 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; 1732 1733 /* strip first mbuf now that everything has been copied */ 1734 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); 1735 m0->m_flags |= M_FIRSTFRAG | M_FRAG; 1736 1737 vap->iv_stats.is_tx_fragframes++; 1738 vap->iv_stats.is_tx_frags += fragno-1; 1739 1740 return 1; 1741 bad: 1742 /* reclaim fragments but leave original frame for caller to free */ 1743 ieee80211_free_mbuf(m0->m_nextpkt); 1744 m0->m_nextpkt = NULL; 1745 return 0; 1746 } 1747 1748 /* 1749 * Add a supported rates element id to a frame. 1750 */ 1751 uint8_t * 1752 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs) 1753 { 1754 int nrates; 1755 1756 *frm++ = IEEE80211_ELEMID_RATES; 1757 nrates = rs->rs_nrates; 1758 if (nrates > IEEE80211_RATE_SIZE) 1759 nrates = IEEE80211_RATE_SIZE; 1760 *frm++ = nrates; 1761 memcpy(frm, rs->rs_rates, nrates); 1762 return frm + nrates; 1763 } 1764 1765 /* 1766 * Add an extended supported rates element id to a frame. 1767 */ 1768 uint8_t * 1769 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs) 1770 { 1771 /* 1772 * Add an extended supported rates element if operating in 11g mode. 1773 */ 1774 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 1775 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 1776 *frm++ = IEEE80211_ELEMID_XRATES; 1777 *frm++ = nrates; 1778 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 1779 frm += nrates; 1780 } 1781 return frm; 1782 } 1783 1784 /* 1785 * Add an ssid element to a frame. 1786 */ 1787 uint8_t * 1788 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) 1789 { 1790 *frm++ = IEEE80211_ELEMID_SSID; 1791 *frm++ = len; 1792 memcpy(frm, ssid, len); 1793 return frm + len; 1794 } 1795 1796 /* 1797 * Add an erp element to a frame. 1798 */ 1799 static uint8_t * 1800 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic) 1801 { 1802 uint8_t erp; 1803 1804 *frm++ = IEEE80211_ELEMID_ERP; 1805 *frm++ = 1; 1806 erp = 0; 1807 if (ic->ic_nonerpsta != 0) 1808 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 1809 if (ic->ic_flags & IEEE80211_F_USEPROT) 1810 erp |= IEEE80211_ERP_USE_PROTECTION; 1811 if (ic->ic_flags & IEEE80211_F_USEBARKER) 1812 erp |= IEEE80211_ERP_LONG_PREAMBLE; 1813 *frm++ = erp; 1814 return frm; 1815 } 1816 1817 /* 1818 * Add a CFParams element to a frame. 1819 */ 1820 static uint8_t * 1821 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic) 1822 { 1823 #define ADDSHORT(frm, v) do { \ 1824 le16enc(frm, v); \ 1825 frm += 2; \ 1826 } while (0) 1827 *frm++ = IEEE80211_ELEMID_CFPARMS; 1828 *frm++ = 6; 1829 *frm++ = 0; /* CFP count */ 1830 *frm++ = 2; /* CFP period */ 1831 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */ 1832 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */ 1833 return frm; 1834 #undef ADDSHORT 1835 } 1836 1837 static __inline uint8_t * 1838 add_appie(uint8_t *frm, const struct ieee80211_appie *ie) 1839 { 1840 memcpy(frm, ie->ie_data, ie->ie_len); 1841 return frm + ie->ie_len; 1842 } 1843 1844 static __inline uint8_t * 1845 add_ie(uint8_t *frm, const uint8_t *ie) 1846 { 1847 memcpy(frm, ie, 2 + ie[1]); 1848 return frm + 2 + ie[1]; 1849 } 1850 1851 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 1852 /* 1853 * Add a WME information element to a frame. 1854 */ 1855 uint8_t * 1856 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme) 1857 { 1858 static const struct ieee80211_wme_info info = { 1859 .wme_id = IEEE80211_ELEMID_VENDOR, 1860 .wme_len = sizeof(struct ieee80211_wme_info) - 2, 1861 .wme_oui = { WME_OUI_BYTES }, 1862 .wme_type = WME_OUI_TYPE, 1863 .wme_subtype = WME_INFO_OUI_SUBTYPE, 1864 .wme_version = WME_VERSION, 1865 .wme_info = 0, 1866 }; 1867 memcpy(frm, &info, sizeof(info)); 1868 return frm + sizeof(info); 1869 } 1870 1871 /* 1872 * Add a WME parameters element to a frame. 1873 */ 1874 static uint8_t * 1875 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme) 1876 { 1877 #define SM(_v, _f) (((_v) << _f##_S) & _f) 1878 #define ADDSHORT(frm, v) do { \ 1879 le16enc(frm, v); \ 1880 frm += 2; \ 1881 } while (0) 1882 /* NB: this works 'cuz a param has an info at the front */ 1883 static const struct ieee80211_wme_info param = { 1884 .wme_id = IEEE80211_ELEMID_VENDOR, 1885 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 1886 .wme_oui = { WME_OUI_BYTES }, 1887 .wme_type = WME_OUI_TYPE, 1888 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 1889 .wme_version = WME_VERSION, 1890 }; 1891 int i; 1892 1893 memcpy(frm, ¶m, sizeof(param)); 1894 frm += __offsetof(struct ieee80211_wme_info, wme_info); 1895 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ 1896 *frm++ = 0; /* reserved field */ 1897 for (i = 0; i < WME_NUM_AC; i++) { 1898 const struct wmeParams *ac = 1899 &wme->wme_bssChanParams.cap_wmeParams[i]; 1900 *frm++ = SM(i, WME_PARAM_ACI) 1901 | SM(ac->wmep_acm, WME_PARAM_ACM) 1902 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) 1903 ; 1904 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) 1905 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) 1906 ; 1907 ADDSHORT(frm, ac->wmep_txopLimit); 1908 } 1909 return frm; 1910 #undef SM 1911 #undef ADDSHORT 1912 } 1913 #undef WME_OUI_BYTES 1914 1915 /* 1916 * Add an 11h Power Constraint element to a frame. 1917 */ 1918 static uint8_t * 1919 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap) 1920 { 1921 const struct ieee80211_channel *c = vap->iv_bss->ni_chan; 1922 /* XXX per-vap tx power limit? */ 1923 int8_t limit = vap->iv_ic->ic_txpowlimit / 2; 1924 1925 frm[0] = IEEE80211_ELEMID_PWRCNSTR; 1926 frm[1] = 1; 1927 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0; 1928 return frm + 3; 1929 } 1930 1931 /* 1932 * Add an 11h Power Capability element to a frame. 1933 */ 1934 static uint8_t * 1935 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c) 1936 { 1937 frm[0] = IEEE80211_ELEMID_PWRCAP; 1938 frm[1] = 2; 1939 frm[2] = c->ic_minpower; 1940 frm[3] = c->ic_maxpower; 1941 return frm + 4; 1942 } 1943 1944 /* 1945 * Add an 11h Supported Channels element to a frame. 1946 */ 1947 static uint8_t * 1948 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic) 1949 { 1950 static const int ielen = 26; 1951 1952 frm[0] = IEEE80211_ELEMID_SUPPCHAN; 1953 frm[1] = ielen; 1954 /* XXX not correct */ 1955 memcpy(frm+2, ic->ic_chan_avail, ielen); 1956 return frm + 2 + ielen; 1957 } 1958 1959 /* 1960 * Add an 11h Quiet time element to a frame. 1961 */ 1962 static uint8_t * 1963 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap) 1964 { 1965 struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm; 1966 1967 quiet->quiet_ie = IEEE80211_ELEMID_QUIET; 1968 quiet->len = 6; 1969 if (vap->iv_quiet_count_value == 1) 1970 vap->iv_quiet_count_value = vap->iv_quiet_count; 1971 else if (vap->iv_quiet_count_value > 1) 1972 vap->iv_quiet_count_value--; 1973 1974 if (vap->iv_quiet_count_value == 0) { 1975 /* value 0 is reserved as per 802.11h standerd */ 1976 vap->iv_quiet_count_value = 1; 1977 } 1978 1979 quiet->tbttcount = vap->iv_quiet_count_value; 1980 quiet->period = vap->iv_quiet_period; 1981 quiet->duration = htole16(vap->iv_quiet_duration); 1982 quiet->offset = htole16(vap->iv_quiet_offset); 1983 return frm + sizeof(*quiet); 1984 } 1985 1986 /* 1987 * Add an 11h Channel Switch Announcement element to a frame. 1988 * Note that we use the per-vap CSA count to adjust the global 1989 * counter so we can use this routine to form probe response 1990 * frames and get the current count. 1991 */ 1992 static uint8_t * 1993 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap) 1994 { 1995 struct ieee80211com *ic = vap->iv_ic; 1996 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm; 1997 1998 csa->csa_ie = IEEE80211_ELEMID_CSA; 1999 csa->csa_len = 3; 2000 csa->csa_mode = 1; /* XXX force quiet on channel */ 2001 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan); 2002 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count; 2003 return frm + sizeof(*csa); 2004 } 2005 2006 /* 2007 * Add an 11h country information element to a frame. 2008 */ 2009 static uint8_t * 2010 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic) 2011 { 2012 2013 if (ic->ic_countryie == NULL || 2014 ic->ic_countryie_chan != ic->ic_bsschan) { 2015 /* 2016 * Handle lazy construction of ie. This is done on 2017 * first use and after a channel change that requires 2018 * re-calculation. 2019 */ 2020 if (ic->ic_countryie != NULL) 2021 IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE); 2022 ic->ic_countryie = ieee80211_alloc_countryie(ic); 2023 if (ic->ic_countryie == NULL) 2024 return frm; 2025 ic->ic_countryie_chan = ic->ic_bsschan; 2026 } 2027 return add_appie(frm, ic->ic_countryie); 2028 } 2029 2030 uint8_t * 2031 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap) 2032 { 2033 if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) 2034 return (add_ie(frm, vap->iv_wpa_ie)); 2035 else { 2036 /* XXX else complain? */ 2037 return (frm); 2038 } 2039 } 2040 2041 uint8_t * 2042 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap) 2043 { 2044 if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL) 2045 return (add_ie(frm, vap->iv_rsn_ie)); 2046 else { 2047 /* XXX else complain? */ 2048 return (frm); 2049 } 2050 } 2051 2052 uint8_t * 2053 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni) 2054 { 2055 if (ni->ni_flags & IEEE80211_NODE_QOS) { 2056 *frm++ = IEEE80211_ELEMID_QOS; 2057 *frm++ = 1; 2058 *frm++ = 0; 2059 } 2060 2061 return (frm); 2062 } 2063 2064 /* 2065 * Send a probe request frame with the specified ssid 2066 * and any optional information element data. 2067 */ 2068 int 2069 ieee80211_send_probereq(struct ieee80211_node *ni, 2070 const uint8_t sa[IEEE80211_ADDR_LEN], 2071 const uint8_t da[IEEE80211_ADDR_LEN], 2072 const uint8_t bssid[IEEE80211_ADDR_LEN], 2073 const uint8_t *ssid, size_t ssidlen) 2074 { 2075 struct ieee80211vap *vap = ni->ni_vap; 2076 struct ieee80211com *ic = ni->ni_ic; 2077 const struct ieee80211_txparam *tp; 2078 struct ieee80211_bpf_params params; 2079 const struct ieee80211_rateset *rs; 2080 struct mbuf *m; 2081 uint8_t *frm; 2082 int ret; 2083 2084 if (vap->iv_state == IEEE80211_S_CAC) { 2085 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni, 2086 "block %s frame in CAC state", "probe request"); 2087 vap->iv_stats.is_tx_badstate++; 2088 return EIO; /* XXX */ 2089 } 2090 2091 /* 2092 * Hold a reference on the node so it doesn't go away until after 2093 * the xmit is complete all the way in the driver. On error we 2094 * will remove our reference. 2095 */ 2096 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2097 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2098 __func__, __LINE__, 2099 ni, ether_sprintf(ni->ni_macaddr), 2100 ieee80211_node_refcnt(ni)+1); 2101 ieee80211_ref_node(ni); 2102 2103 /* 2104 * prreq frame format 2105 * [tlv] ssid 2106 * [tlv] supported rates 2107 * [tlv] RSN (optional) 2108 * [tlv] extended supported rates 2109 * [tlv] WPA (optional) 2110 * [tlv] user-specified ie's 2111 */ 2112 m = ieee80211_getmgtframe(&frm, 2113 ic->ic_headroom + sizeof(struct ieee80211_frame), 2114 2 + IEEE80211_NWID_LEN 2115 + 2 + IEEE80211_RATE_SIZE 2116 + sizeof(struct ieee80211_ie_wpa) 2117 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2118 + sizeof(struct ieee80211_ie_wpa) 2119 + (vap->iv_appie_probereq != NULL ? 2120 vap->iv_appie_probereq->ie_len : 0) 2121 ); 2122 if (m == NULL) { 2123 vap->iv_stats.is_tx_nobuf++; 2124 ieee80211_free_node(ni); 2125 return ENOMEM; 2126 } 2127 2128 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 2129 rs = ieee80211_get_suprates(ic, ic->ic_curchan); 2130 frm = ieee80211_add_rates(frm, rs); 2131 frm = ieee80211_add_rsn(frm, vap); 2132 frm = ieee80211_add_xrates(frm, rs); 2133 frm = ieee80211_add_wpa(frm, vap); 2134 if (vap->iv_appie_probereq != NULL) 2135 frm = add_appie(frm, vap->iv_appie_probereq); 2136 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2137 2138 KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame), 2139 ("leading space %zd", M_LEADINGSPACE(m))); 2140 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2141 if (m == NULL) { 2142 /* NB: cannot happen */ 2143 ieee80211_free_node(ni); 2144 return ENOMEM; 2145 } 2146 2147 IEEE80211_TX_LOCK(ic); 2148 ieee80211_send_setup(ni, m, 2149 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 2150 IEEE80211_NONQOS_TID, sa, da, bssid); 2151 /* XXX power management? */ 2152 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2153 2154 M_WME_SETAC(m, WME_AC_BE); 2155 2156 IEEE80211_NODE_STAT(ni, tx_probereq); 2157 IEEE80211_NODE_STAT(ni, tx_mgmt); 2158 2159 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2160 "send probe req on channel %u bssid %s ssid \"%.*s\"\n", 2161 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid), 2162 ssidlen, ssid); 2163 2164 memset(¶ms, 0, sizeof(params)); 2165 params.ibp_pri = M_WME_GETAC(m); 2166 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 2167 params.ibp_rate0 = tp->mgmtrate; 2168 if (IEEE80211_IS_MULTICAST(da)) { 2169 params.ibp_flags |= IEEE80211_BPF_NOACK; 2170 params.ibp_try0 = 1; 2171 } else 2172 params.ibp_try0 = tp->maxretry; 2173 params.ibp_power = ni->ni_txpower; 2174 ret = ieee80211_raw_output(vap, ni, m, ¶ms); 2175 IEEE80211_TX_UNLOCK(ic); 2176 return (ret); 2177 } 2178 2179 /* 2180 * Calculate capability information for mgt frames. 2181 */ 2182 uint16_t 2183 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan) 2184 { 2185 struct ieee80211com *ic = vap->iv_ic; 2186 uint16_t capinfo; 2187 2188 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode")); 2189 2190 if (vap->iv_opmode == IEEE80211_M_HOSTAP) 2191 capinfo = IEEE80211_CAPINFO_ESS; 2192 else if (vap->iv_opmode == IEEE80211_M_IBSS) 2193 capinfo = IEEE80211_CAPINFO_IBSS; 2194 else 2195 capinfo = 0; 2196 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2197 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2198 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2199 IEEE80211_IS_CHAN_2GHZ(chan)) 2200 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2201 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2202 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2203 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH)) 2204 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2205 return capinfo; 2206 } 2207 2208 /* 2209 * Send a management frame. The node is for the destination (or ic_bss 2210 * when in station mode). Nodes other than ic_bss have their reference 2211 * count bumped to reflect our use for an indeterminant time. 2212 */ 2213 int 2214 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg) 2215 { 2216 #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT) 2217 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2218 struct ieee80211vap *vap = ni->ni_vap; 2219 struct ieee80211com *ic = ni->ni_ic; 2220 struct ieee80211_node *bss = vap->iv_bss; 2221 struct ieee80211_bpf_params params; 2222 struct mbuf *m; 2223 uint8_t *frm; 2224 uint16_t capinfo; 2225 int has_challenge, is_shared_key, ret, status; 2226 2227 KASSERT(ni != NULL, ("null node")); 2228 2229 /* 2230 * Hold a reference on the node so it doesn't go away until after 2231 * the xmit is complete all the way in the driver. On error we 2232 * will remove our reference. 2233 */ 2234 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2235 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2236 __func__, __LINE__, 2237 ni, ether_sprintf(ni->ni_macaddr), 2238 ieee80211_node_refcnt(ni)+1); 2239 ieee80211_ref_node(ni); 2240 2241 memset(¶ms, 0, sizeof(params)); 2242 switch (type) { 2243 2244 case IEEE80211_FC0_SUBTYPE_AUTH: 2245 status = arg >> 16; 2246 arg &= 0xffff; 2247 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || 2248 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 2249 ni->ni_challenge != NULL); 2250 2251 /* 2252 * Deduce whether we're doing open authentication or 2253 * shared key authentication. We do the latter if 2254 * we're in the middle of a shared key authentication 2255 * handshake or if we're initiating an authentication 2256 * request and configured to use shared key. 2257 */ 2258 is_shared_key = has_challenge || 2259 arg >= IEEE80211_AUTH_SHARED_RESPONSE || 2260 (arg == IEEE80211_AUTH_SHARED_REQUEST && 2261 bss->ni_authmode == IEEE80211_AUTH_SHARED); 2262 2263 m = ieee80211_getmgtframe(&frm, 2264 ic->ic_headroom + sizeof(struct ieee80211_frame), 2265 3 * sizeof(uint16_t) 2266 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? 2267 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0) 2268 ); 2269 if (m == NULL) 2270 senderr(ENOMEM, is_tx_nobuf); 2271 2272 ((uint16_t *)frm)[0] = 2273 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) 2274 : htole16(IEEE80211_AUTH_ALG_OPEN); 2275 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */ 2276 ((uint16_t *)frm)[2] = htole16(status);/* status */ 2277 2278 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { 2279 ((uint16_t *)frm)[3] = 2280 htole16((IEEE80211_CHALLENGE_LEN << 8) | 2281 IEEE80211_ELEMID_CHALLENGE); 2282 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge, 2283 IEEE80211_CHALLENGE_LEN); 2284 m->m_pkthdr.len = m->m_len = 2285 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN; 2286 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 2287 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2288 "request encrypt frame (%s)", __func__); 2289 /* mark frame for encryption */ 2290 params.ibp_flags |= IEEE80211_BPF_CRYPTO; 2291 } 2292 } else 2293 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t); 2294 2295 /* XXX not right for shared key */ 2296 if (status == IEEE80211_STATUS_SUCCESS) 2297 IEEE80211_NODE_STAT(ni, tx_auth); 2298 else 2299 IEEE80211_NODE_STAT(ni, tx_auth_fail); 2300 2301 if (vap->iv_opmode == IEEE80211_M_STA) 2302 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2303 (void *) vap->iv_state); 2304 break; 2305 2306 case IEEE80211_FC0_SUBTYPE_DEAUTH: 2307 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2308 "send station deauthenticate (reason: %d (%s))", arg, 2309 ieee80211_reason_to_string(arg)); 2310 m = ieee80211_getmgtframe(&frm, 2311 ic->ic_headroom + sizeof(struct ieee80211_frame), 2312 sizeof(uint16_t)); 2313 if (m == NULL) 2314 senderr(ENOMEM, is_tx_nobuf); 2315 *(uint16_t *)frm = htole16(arg); /* reason */ 2316 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2317 2318 IEEE80211_NODE_STAT(ni, tx_deauth); 2319 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 2320 2321 ieee80211_node_unauthorize(ni); /* port closed */ 2322 break; 2323 2324 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 2325 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 2326 /* 2327 * asreq frame format 2328 * [2] capability information 2329 * [2] listen interval 2330 * [6*] current AP address (reassoc only) 2331 * [tlv] ssid 2332 * [tlv] supported rates 2333 * [tlv] extended supported rates 2334 * [4] power capability (optional) 2335 * [28] supported channels (optional) 2336 * [tlv] HT capabilities 2337 * [tlv] WME (optional) 2338 * [tlv] Vendor OUI HT capabilities (optional) 2339 * [tlv] Atheros capabilities (if negotiated) 2340 * [tlv] AppIE's (optional) 2341 */ 2342 m = ieee80211_getmgtframe(&frm, 2343 ic->ic_headroom + sizeof(struct ieee80211_frame), 2344 sizeof(uint16_t) 2345 + sizeof(uint16_t) 2346 + IEEE80211_ADDR_LEN 2347 + 2 + IEEE80211_NWID_LEN 2348 + 2 + IEEE80211_RATE_SIZE 2349 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2350 + 4 2351 + 2 + 26 2352 + sizeof(struct ieee80211_wme_info) 2353 + sizeof(struct ieee80211_ie_htcap) 2354 + 4 + sizeof(struct ieee80211_ie_htcap) 2355 #ifdef IEEE80211_SUPPORT_SUPERG 2356 + sizeof(struct ieee80211_ath_ie) 2357 #endif 2358 + (vap->iv_appie_wpa != NULL ? 2359 vap->iv_appie_wpa->ie_len : 0) 2360 + (vap->iv_appie_assocreq != NULL ? 2361 vap->iv_appie_assocreq->ie_len : 0) 2362 ); 2363 if (m == NULL) 2364 senderr(ENOMEM, is_tx_nobuf); 2365 2366 KASSERT(vap->iv_opmode == IEEE80211_M_STA, 2367 ("wrong mode %u", vap->iv_opmode)); 2368 capinfo = IEEE80211_CAPINFO_ESS; 2369 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2370 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2371 /* 2372 * NB: Some 11a AP's reject the request when 2373 * short premable is set. 2374 */ 2375 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2376 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2377 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2378 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 2379 (ic->ic_caps & IEEE80211_C_SHSLOT)) 2380 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2381 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) && 2382 (vap->iv_flags & IEEE80211_F_DOTH)) 2383 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2384 *(uint16_t *)frm = htole16(capinfo); 2385 frm += 2; 2386 2387 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!")); 2388 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval, 2389 bss->ni_intval)); 2390 frm += 2; 2391 2392 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 2393 IEEE80211_ADDR_COPY(frm, bss->ni_bssid); 2394 frm += IEEE80211_ADDR_LEN; 2395 } 2396 2397 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 2398 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2399 frm = ieee80211_add_rsn(frm, vap); 2400 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2401 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) { 2402 frm = ieee80211_add_powercapability(frm, 2403 ic->ic_curchan); 2404 frm = ieee80211_add_supportedchannels(frm, ic); 2405 } 2406 2407 /* 2408 * Check the channel - we may be using an 11n NIC with an 2409 * 11n capable station, but we're configured to be an 11b 2410 * channel. 2411 */ 2412 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2413 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2414 ni->ni_ies.htcap_ie != NULL && 2415 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) { 2416 frm = ieee80211_add_htcap(frm, ni); 2417 } 2418 frm = ieee80211_add_wpa(frm, vap); 2419 if ((ic->ic_flags & IEEE80211_F_WME) && 2420 ni->ni_ies.wme_ie != NULL) 2421 frm = ieee80211_add_wme_info(frm, &ic->ic_wme); 2422 2423 /* 2424 * Same deal - only send HT info if we're on an 11n 2425 * capable channel. 2426 */ 2427 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2428 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2429 ni->ni_ies.htcap_ie != NULL && 2430 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) { 2431 frm = ieee80211_add_htcap_vendor(frm, ni); 2432 } 2433 #ifdef IEEE80211_SUPPORT_SUPERG 2434 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) { 2435 frm = ieee80211_add_ath(frm, 2436 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2437 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2438 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2439 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2440 } 2441 #endif /* IEEE80211_SUPPORT_SUPERG */ 2442 if (vap->iv_appie_assocreq != NULL) 2443 frm = add_appie(frm, vap->iv_appie_assocreq); 2444 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2445 2446 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2447 (void *) vap->iv_state); 2448 break; 2449 2450 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 2451 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 2452 /* 2453 * asresp frame format 2454 * [2] capability information 2455 * [2] status 2456 * [2] association ID 2457 * [tlv] supported rates 2458 * [tlv] extended supported rates 2459 * [tlv] HT capabilities (standard, if STA enabled) 2460 * [tlv] HT information (standard, if STA enabled) 2461 * [tlv] WME (if configured and STA enabled) 2462 * [tlv] HT capabilities (vendor OUI, if STA enabled) 2463 * [tlv] HT information (vendor OUI, if STA enabled) 2464 * [tlv] Atheros capabilities (if STA enabled) 2465 * [tlv] AppIE's (optional) 2466 */ 2467 m = ieee80211_getmgtframe(&frm, 2468 ic->ic_headroom + sizeof(struct ieee80211_frame), 2469 sizeof(uint16_t) 2470 + sizeof(uint16_t) 2471 + sizeof(uint16_t) 2472 + 2 + IEEE80211_RATE_SIZE 2473 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2474 + sizeof(struct ieee80211_ie_htcap) + 4 2475 + sizeof(struct ieee80211_ie_htinfo) + 4 2476 + sizeof(struct ieee80211_wme_param) 2477 #ifdef IEEE80211_SUPPORT_SUPERG 2478 + sizeof(struct ieee80211_ath_ie) 2479 #endif 2480 + (vap->iv_appie_assocresp != NULL ? 2481 vap->iv_appie_assocresp->ie_len : 0) 2482 ); 2483 if (m == NULL) 2484 senderr(ENOMEM, is_tx_nobuf); 2485 2486 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2487 *(uint16_t *)frm = htole16(capinfo); 2488 frm += 2; 2489 2490 *(uint16_t *)frm = htole16(arg); /* status */ 2491 frm += 2; 2492 2493 if (arg == IEEE80211_STATUS_SUCCESS) { 2494 *(uint16_t *)frm = htole16(ni->ni_associd); 2495 IEEE80211_NODE_STAT(ni, tx_assoc); 2496 } else 2497 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 2498 frm += 2; 2499 2500 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2501 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2502 /* NB: respond according to what we received */ 2503 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) { 2504 frm = ieee80211_add_htcap(frm, ni); 2505 frm = ieee80211_add_htinfo(frm, ni); 2506 } 2507 if ((vap->iv_flags & IEEE80211_F_WME) && 2508 ni->ni_ies.wme_ie != NULL) 2509 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2510 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) { 2511 frm = ieee80211_add_htcap_vendor(frm, ni); 2512 frm = ieee80211_add_htinfo_vendor(frm, ni); 2513 } 2514 #ifdef IEEE80211_SUPPORT_SUPERG 2515 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) 2516 frm = ieee80211_add_ath(frm, 2517 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2518 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2519 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2520 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2521 #endif /* IEEE80211_SUPPORT_SUPERG */ 2522 if (vap->iv_appie_assocresp != NULL) 2523 frm = add_appie(frm, vap->iv_appie_assocresp); 2524 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2525 break; 2526 2527 case IEEE80211_FC0_SUBTYPE_DISASSOC: 2528 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, 2529 "send station disassociate (reason: %d (%s))", arg, 2530 ieee80211_reason_to_string(arg)); 2531 m = ieee80211_getmgtframe(&frm, 2532 ic->ic_headroom + sizeof(struct ieee80211_frame), 2533 sizeof(uint16_t)); 2534 if (m == NULL) 2535 senderr(ENOMEM, is_tx_nobuf); 2536 *(uint16_t *)frm = htole16(arg); /* reason */ 2537 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2538 2539 IEEE80211_NODE_STAT(ni, tx_disassoc); 2540 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 2541 break; 2542 2543 default: 2544 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni, 2545 "invalid mgmt frame type %u", type); 2546 senderr(EINVAL, is_tx_unknownmgt); 2547 /* NOTREACHED */ 2548 } 2549 2550 /* NB: force non-ProbeResp frames to the highest queue */ 2551 params.ibp_pri = WME_AC_VO; 2552 params.ibp_rate0 = bss->ni_txparms->mgmtrate; 2553 /* NB: we know all frames are unicast */ 2554 params.ibp_try0 = bss->ni_txparms->maxretry; 2555 params.ibp_power = bss->ni_txpower; 2556 return ieee80211_mgmt_output(ni, m, type, ¶ms); 2557 bad: 2558 ieee80211_free_node(ni); 2559 return ret; 2560 #undef senderr 2561 #undef HTFLAGS 2562 } 2563 2564 /* 2565 * Return an mbuf with a probe response frame in it. 2566 * Space is left to prepend and 802.11 header at the 2567 * front but it's left to the caller to fill in. 2568 */ 2569 struct mbuf * 2570 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy) 2571 { 2572 struct ieee80211vap *vap = bss->ni_vap; 2573 struct ieee80211com *ic = bss->ni_ic; 2574 const struct ieee80211_rateset *rs; 2575 struct mbuf *m; 2576 uint16_t capinfo; 2577 uint8_t *frm; 2578 2579 /* 2580 * probe response frame format 2581 * [8] time stamp 2582 * [2] beacon interval 2583 * [2] cabability information 2584 * [tlv] ssid 2585 * [tlv] supported rates 2586 * [tlv] parameter set (FH/DS) 2587 * [tlv] parameter set (IBSS) 2588 * [tlv] country (optional) 2589 * [3] power control (optional) 2590 * [5] channel switch announcement (CSA) (optional) 2591 * [tlv] extended rate phy (ERP) 2592 * [tlv] extended supported rates 2593 * [tlv] RSN (optional) 2594 * [tlv] HT capabilities 2595 * [tlv] HT information 2596 * [tlv] WPA (optional) 2597 * [tlv] WME (optional) 2598 * [tlv] Vendor OUI HT capabilities (optional) 2599 * [tlv] Vendor OUI HT information (optional) 2600 * [tlv] Atheros capabilities 2601 * [tlv] AppIE's (optional) 2602 * [tlv] Mesh ID (MBSS) 2603 * [tlv] Mesh Conf (MBSS) 2604 */ 2605 m = ieee80211_getmgtframe(&frm, 2606 ic->ic_headroom + sizeof(struct ieee80211_frame), 2607 8 2608 + sizeof(uint16_t) 2609 + sizeof(uint16_t) 2610 + 2 + IEEE80211_NWID_LEN 2611 + 2 + IEEE80211_RATE_SIZE 2612 + 7 /* max(7,3) */ 2613 + IEEE80211_COUNTRY_MAX_SIZE 2614 + 3 2615 + sizeof(struct ieee80211_csa_ie) 2616 + sizeof(struct ieee80211_quiet_ie) 2617 + 3 2618 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2619 + sizeof(struct ieee80211_ie_wpa) 2620 + sizeof(struct ieee80211_ie_htcap) 2621 + sizeof(struct ieee80211_ie_htinfo) 2622 + sizeof(struct ieee80211_ie_wpa) 2623 + sizeof(struct ieee80211_wme_param) 2624 + 4 + sizeof(struct ieee80211_ie_htcap) 2625 + 4 + sizeof(struct ieee80211_ie_htinfo) 2626 #ifdef IEEE80211_SUPPORT_SUPERG 2627 + sizeof(struct ieee80211_ath_ie) 2628 #endif 2629 #ifdef IEEE80211_SUPPORT_MESH 2630 + 2 + IEEE80211_MESHID_LEN 2631 + sizeof(struct ieee80211_meshconf_ie) 2632 #endif 2633 + (vap->iv_appie_proberesp != NULL ? 2634 vap->iv_appie_proberesp->ie_len : 0) 2635 ); 2636 if (m == NULL) { 2637 vap->iv_stats.is_tx_nobuf++; 2638 return NULL; 2639 } 2640 2641 memset(frm, 0, 8); /* timestamp should be filled later */ 2642 frm += 8; 2643 *(uint16_t *)frm = htole16(bss->ni_intval); 2644 frm += 2; 2645 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2646 *(uint16_t *)frm = htole16(capinfo); 2647 frm += 2; 2648 2649 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen); 2650 rs = ieee80211_get_suprates(ic, bss->ni_chan); 2651 frm = ieee80211_add_rates(frm, rs); 2652 2653 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) { 2654 *frm++ = IEEE80211_ELEMID_FHPARMS; 2655 *frm++ = 5; 2656 *frm++ = bss->ni_fhdwell & 0x00ff; 2657 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff; 2658 *frm++ = IEEE80211_FH_CHANSET( 2659 ieee80211_chan2ieee(ic, bss->ni_chan)); 2660 *frm++ = IEEE80211_FH_CHANPAT( 2661 ieee80211_chan2ieee(ic, bss->ni_chan)); 2662 *frm++ = bss->ni_fhindex; 2663 } else { 2664 *frm++ = IEEE80211_ELEMID_DSPARMS; 2665 *frm++ = 1; 2666 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan); 2667 } 2668 2669 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2670 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2671 *frm++ = 2; 2672 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2673 } 2674 if ((vap->iv_flags & IEEE80211_F_DOTH) || 2675 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 2676 frm = ieee80211_add_countryie(frm, ic); 2677 if (vap->iv_flags & IEEE80211_F_DOTH) { 2678 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan)) 2679 frm = ieee80211_add_powerconstraint(frm, vap); 2680 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 2681 frm = ieee80211_add_csa(frm, vap); 2682 } 2683 if (vap->iv_flags & IEEE80211_F_DOTH) { 2684 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2685 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 2686 if (vap->iv_quiet) 2687 frm = ieee80211_add_quiet(frm, vap); 2688 } 2689 } 2690 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan)) 2691 frm = ieee80211_add_erp(frm, ic); 2692 frm = ieee80211_add_xrates(frm, rs); 2693 frm = ieee80211_add_rsn(frm, vap); 2694 /* 2695 * NB: legacy 11b clients do not get certain ie's. 2696 * The caller identifies such clients by passing 2697 * a token in legacy to us. Could expand this to be 2698 * any legacy client for stuff like HT ie's. 2699 */ 2700 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2701 legacy != IEEE80211_SEND_LEGACY_11B) { 2702 frm = ieee80211_add_htcap(frm, bss); 2703 frm = ieee80211_add_htinfo(frm, bss); 2704 } 2705 frm = ieee80211_add_wpa(frm, vap); 2706 if (vap->iv_flags & IEEE80211_F_WME) 2707 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2708 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2709 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) && 2710 legacy != IEEE80211_SEND_LEGACY_11B) { 2711 frm = ieee80211_add_htcap_vendor(frm, bss); 2712 frm = ieee80211_add_htinfo_vendor(frm, bss); 2713 } 2714 #ifdef IEEE80211_SUPPORT_SUPERG 2715 if ((vap->iv_flags & IEEE80211_F_ATHEROS) && 2716 legacy != IEEE80211_SEND_LEGACY_11B) 2717 frm = ieee80211_add_athcaps(frm, bss); 2718 #endif 2719 if (vap->iv_appie_proberesp != NULL) 2720 frm = add_appie(frm, vap->iv_appie_proberesp); 2721 #ifdef IEEE80211_SUPPORT_MESH 2722 if (vap->iv_opmode == IEEE80211_M_MBSS) { 2723 frm = ieee80211_add_meshid(frm, vap); 2724 frm = ieee80211_add_meshconf(frm, vap); 2725 } 2726 #endif 2727 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2728 2729 return m; 2730 } 2731 2732 /* 2733 * Send a probe response frame to the specified mac address. 2734 * This does not go through the normal mgt frame api so we 2735 * can specify the destination address and re-use the bss node 2736 * for the sta reference. 2737 */ 2738 int 2739 ieee80211_send_proberesp(struct ieee80211vap *vap, 2740 const uint8_t da[IEEE80211_ADDR_LEN], int legacy) 2741 { 2742 struct ieee80211_node *bss = vap->iv_bss; 2743 struct ieee80211com *ic = vap->iv_ic; 2744 struct mbuf *m; 2745 int ret; 2746 2747 if (vap->iv_state == IEEE80211_S_CAC) { 2748 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss, 2749 "block %s frame in CAC state", "probe response"); 2750 vap->iv_stats.is_tx_badstate++; 2751 return EIO; /* XXX */ 2752 } 2753 2754 /* 2755 * Hold a reference on the node so it doesn't go away until after 2756 * the xmit is complete all the way in the driver. On error we 2757 * will remove our reference. 2758 */ 2759 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2760 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2761 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr), 2762 ieee80211_node_refcnt(bss)+1); 2763 ieee80211_ref_node(bss); 2764 2765 m = ieee80211_alloc_proberesp(bss, legacy); 2766 if (m == NULL) { 2767 ieee80211_free_node(bss); 2768 return ENOMEM; 2769 } 2770 2771 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2772 KASSERT(m != NULL, ("no room for header")); 2773 2774 IEEE80211_TX_LOCK(ic); 2775 ieee80211_send_setup(bss, m, 2776 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP, 2777 IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid); 2778 /* XXX power management? */ 2779 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2780 2781 M_WME_SETAC(m, WME_AC_BE); 2782 2783 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2784 "send probe resp on channel %u to %s%s\n", 2785 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da), 2786 legacy ? " <legacy>" : ""); 2787 IEEE80211_NODE_STAT(bss, tx_mgmt); 2788 2789 ret = ieee80211_raw_output(vap, bss, m, NULL); 2790 IEEE80211_TX_UNLOCK(ic); 2791 return (ret); 2792 } 2793 2794 /* 2795 * Allocate and build a RTS (Request To Send) control frame. 2796 */ 2797 struct mbuf * 2798 ieee80211_alloc_rts(struct ieee80211com *ic, 2799 const uint8_t ra[IEEE80211_ADDR_LEN], 2800 const uint8_t ta[IEEE80211_ADDR_LEN], 2801 uint16_t dur) 2802 { 2803 struct ieee80211_frame_rts *rts; 2804 struct mbuf *m; 2805 2806 /* XXX honor ic_headroom */ 2807 m = m_gethdr(M_NOWAIT, MT_DATA); 2808 if (m != NULL) { 2809 rts = mtod(m, struct ieee80211_frame_rts *); 2810 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2811 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS; 2812 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2813 *(u_int16_t *)rts->i_dur = htole16(dur); 2814 IEEE80211_ADDR_COPY(rts->i_ra, ra); 2815 IEEE80211_ADDR_COPY(rts->i_ta, ta); 2816 2817 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); 2818 } 2819 return m; 2820 } 2821 2822 /* 2823 * Allocate and build a CTS (Clear To Send) control frame. 2824 */ 2825 struct mbuf * 2826 ieee80211_alloc_cts(struct ieee80211com *ic, 2827 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur) 2828 { 2829 struct ieee80211_frame_cts *cts; 2830 struct mbuf *m; 2831 2832 /* XXX honor ic_headroom */ 2833 m = m_gethdr(M_NOWAIT, MT_DATA); 2834 if (m != NULL) { 2835 cts = mtod(m, struct ieee80211_frame_cts *); 2836 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2837 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS; 2838 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2839 *(u_int16_t *)cts->i_dur = htole16(dur); 2840 IEEE80211_ADDR_COPY(cts->i_ra, ra); 2841 2842 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts); 2843 } 2844 return m; 2845 } 2846 2847 static void 2848 ieee80211_tx_mgt_timeout(void *arg) 2849 { 2850 struct ieee80211vap *vap = arg; 2851 2852 IEEE80211_LOCK(vap->iv_ic); 2853 if (vap->iv_state != IEEE80211_S_INIT && 2854 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) { 2855 /* 2856 * NB: it's safe to specify a timeout as the reason here; 2857 * it'll only be used in the right state. 2858 */ 2859 ieee80211_new_state_locked(vap, IEEE80211_S_SCAN, 2860 IEEE80211_SCAN_FAIL_TIMEOUT); 2861 } 2862 IEEE80211_UNLOCK(vap->iv_ic); 2863 } 2864 2865 /* 2866 * This is the callback set on net80211-sourced transmitted 2867 * authentication request frames. 2868 * 2869 * This does a couple of things: 2870 * 2871 * + If the frame transmitted was a success, it schedules a future 2872 * event which will transition the interface to scan. 2873 * If a state transition _then_ occurs before that event occurs, 2874 * said state transition will cancel this callout. 2875 * 2876 * + If the frame transmit was a failure, it immediately schedules 2877 * the transition back to scan. 2878 */ 2879 static void 2880 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status) 2881 { 2882 struct ieee80211vap *vap = ni->ni_vap; 2883 enum ieee80211_state ostate = (enum ieee80211_state) arg; 2884 2885 /* 2886 * Frame transmit completed; arrange timer callback. If 2887 * transmit was successfully we wait for response. Otherwise 2888 * we arrange an immediate callback instead of doing the 2889 * callback directly since we don't know what state the driver 2890 * is in (e.g. what locks it is holding). This work should 2891 * not be too time-critical and not happen too often so the 2892 * added overhead is acceptable. 2893 * 2894 * XXX what happens if !acked but response shows up before callback? 2895 */ 2896 if (vap->iv_state == ostate) { 2897 callout_reset(&vap->iv_mgtsend, 2898 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0, 2899 ieee80211_tx_mgt_timeout, vap); 2900 } 2901 } 2902 2903 static void 2904 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm, 2905 struct ieee80211_node *ni) 2906 { 2907 struct ieee80211vap *vap = ni->ni_vap; 2908 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 2909 struct ieee80211com *ic = ni->ni_ic; 2910 struct ieee80211_rateset *rs = &ni->ni_rates; 2911 uint16_t capinfo; 2912 2913 /* 2914 * beacon frame format 2915 * [8] time stamp 2916 * [2] beacon interval 2917 * [2] cabability information 2918 * [tlv] ssid 2919 * [tlv] supported rates 2920 * [3] parameter set (DS) 2921 * [8] CF parameter set (optional) 2922 * [tlv] parameter set (IBSS/TIM) 2923 * [tlv] country (optional) 2924 * [3] power control (optional) 2925 * [5] channel switch announcement (CSA) (optional) 2926 * [tlv] extended rate phy (ERP) 2927 * [tlv] extended supported rates 2928 * [tlv] RSN parameters 2929 * [tlv] HT capabilities 2930 * [tlv] HT information 2931 * XXX Vendor-specific OIDs (e.g. Atheros) 2932 * [tlv] WPA parameters 2933 * [tlv] WME parameters 2934 * [tlv] Vendor OUI HT capabilities (optional) 2935 * [tlv] Vendor OUI HT information (optional) 2936 * [tlv] Atheros capabilities (optional) 2937 * [tlv] TDMA parameters (optional) 2938 * [tlv] Mesh ID (MBSS) 2939 * [tlv] Mesh Conf (MBSS) 2940 * [tlv] application data (optional) 2941 */ 2942 2943 memset(bo, 0, sizeof(*bo)); 2944 2945 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 2946 frm += 8; 2947 *(uint16_t *)frm = htole16(ni->ni_intval); 2948 frm += 2; 2949 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 2950 bo->bo_caps = (uint16_t *)frm; 2951 *(uint16_t *)frm = htole16(capinfo); 2952 frm += 2; 2953 *frm++ = IEEE80211_ELEMID_SSID; 2954 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) { 2955 *frm++ = ni->ni_esslen; 2956 memcpy(frm, ni->ni_essid, ni->ni_esslen); 2957 frm += ni->ni_esslen; 2958 } else 2959 *frm++ = 0; 2960 frm = ieee80211_add_rates(frm, rs); 2961 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) { 2962 *frm++ = IEEE80211_ELEMID_DSPARMS; 2963 *frm++ = 1; 2964 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 2965 } 2966 if (ic->ic_flags & IEEE80211_F_PCF) { 2967 bo->bo_cfp = frm; 2968 frm = ieee80211_add_cfparms(frm, ic); 2969 } 2970 bo->bo_tim = frm; 2971 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2972 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2973 *frm++ = 2; 2974 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2975 bo->bo_tim_len = 0; 2976 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 2977 vap->iv_opmode == IEEE80211_M_MBSS) { 2978 /* TIM IE is the same for Mesh and Hostap */ 2979 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; 2980 2981 tie->tim_ie = IEEE80211_ELEMID_TIM; 2982 tie->tim_len = 4; /* length */ 2983 tie->tim_count = 0; /* DTIM count */ 2984 tie->tim_period = vap->iv_dtim_period; /* DTIM period */ 2985 tie->tim_bitctl = 0; /* bitmap control */ 2986 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 2987 frm += sizeof(struct ieee80211_tim_ie); 2988 bo->bo_tim_len = 1; 2989 } 2990 bo->bo_tim_trailer = frm; 2991 if ((vap->iv_flags & IEEE80211_F_DOTH) || 2992 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 2993 frm = ieee80211_add_countryie(frm, ic); 2994 if (vap->iv_flags & IEEE80211_F_DOTH) { 2995 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) 2996 frm = ieee80211_add_powerconstraint(frm, vap); 2997 bo->bo_csa = frm; 2998 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 2999 frm = ieee80211_add_csa(frm, vap); 3000 } else 3001 bo->bo_csa = frm; 3002 3003 if (vap->iv_flags & IEEE80211_F_DOTH) { 3004 bo->bo_quiet = frm; 3005 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3006 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 3007 if (vap->iv_quiet) 3008 frm = ieee80211_add_quiet(frm,vap); 3009 } 3010 } else 3011 bo->bo_quiet = frm; 3012 3013 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) { 3014 bo->bo_erp = frm; 3015 frm = ieee80211_add_erp(frm, ic); 3016 } 3017 frm = ieee80211_add_xrates(frm, rs); 3018 frm = ieee80211_add_rsn(frm, vap); 3019 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 3020 frm = ieee80211_add_htcap(frm, ni); 3021 bo->bo_htinfo = frm; 3022 frm = ieee80211_add_htinfo(frm, ni); 3023 } 3024 frm = ieee80211_add_wpa(frm, vap); 3025 if (vap->iv_flags & IEEE80211_F_WME) { 3026 bo->bo_wme = frm; 3027 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 3028 } 3029 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && 3030 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) { 3031 frm = ieee80211_add_htcap_vendor(frm, ni); 3032 frm = ieee80211_add_htinfo_vendor(frm, ni); 3033 } 3034 #ifdef IEEE80211_SUPPORT_SUPERG 3035 if (vap->iv_flags & IEEE80211_F_ATHEROS) { 3036 bo->bo_ath = frm; 3037 frm = ieee80211_add_athcaps(frm, ni); 3038 } 3039 #endif 3040 #ifdef IEEE80211_SUPPORT_TDMA 3041 if (vap->iv_caps & IEEE80211_C_TDMA) { 3042 bo->bo_tdma = frm; 3043 frm = ieee80211_add_tdma(frm, vap); 3044 } 3045 #endif 3046 if (vap->iv_appie_beacon != NULL) { 3047 bo->bo_appie = frm; 3048 bo->bo_appie_len = vap->iv_appie_beacon->ie_len; 3049 frm = add_appie(frm, vap->iv_appie_beacon); 3050 } 3051 #ifdef IEEE80211_SUPPORT_MESH 3052 if (vap->iv_opmode == IEEE80211_M_MBSS) { 3053 frm = ieee80211_add_meshid(frm, vap); 3054 bo->bo_meshconf = frm; 3055 frm = ieee80211_add_meshconf(frm, vap); 3056 } 3057 #endif 3058 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer; 3059 bo->bo_csa_trailer_len = frm - bo->bo_csa; 3060 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3061 } 3062 3063 /* 3064 * Allocate a beacon frame and fillin the appropriate bits. 3065 */ 3066 struct mbuf * 3067 ieee80211_beacon_alloc(struct ieee80211_node *ni) 3068 { 3069 struct ieee80211vap *vap = ni->ni_vap; 3070 struct ieee80211com *ic = ni->ni_ic; 3071 struct ifnet *ifp = vap->iv_ifp; 3072 struct ieee80211_frame *wh; 3073 struct mbuf *m; 3074 int pktlen; 3075 uint8_t *frm; 3076 3077 /* 3078 * beacon frame format 3079 * [8] time stamp 3080 * [2] beacon interval 3081 * [2] cabability information 3082 * [tlv] ssid 3083 * [tlv] supported rates 3084 * [3] parameter set (DS) 3085 * [8] CF parameter set (optional) 3086 * [tlv] parameter set (IBSS/TIM) 3087 * [tlv] country (optional) 3088 * [3] power control (optional) 3089 * [5] channel switch announcement (CSA) (optional) 3090 * [tlv] extended rate phy (ERP) 3091 * [tlv] extended supported rates 3092 * [tlv] RSN parameters 3093 * [tlv] HT capabilities 3094 * [tlv] HT information 3095 * [tlv] Vendor OUI HT capabilities (optional) 3096 * [tlv] Vendor OUI HT information (optional) 3097 * XXX Vendor-specific OIDs (e.g. Atheros) 3098 * [tlv] WPA parameters 3099 * [tlv] WME parameters 3100 * [tlv] TDMA parameters (optional) 3101 * [tlv] Mesh ID (MBSS) 3102 * [tlv] Mesh Conf (MBSS) 3103 * [tlv] application data (optional) 3104 * NB: we allocate the max space required for the TIM bitmap. 3105 * XXX how big is this? 3106 */ 3107 pktlen = 8 /* time stamp */ 3108 + sizeof(uint16_t) /* beacon interval */ 3109 + sizeof(uint16_t) /* capabilities */ 3110 + 2 + ni->ni_esslen /* ssid */ 3111 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 3112 + 2 + 1 /* DS parameters */ 3113 + 2 + 6 /* CF parameters */ 3114 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */ 3115 + IEEE80211_COUNTRY_MAX_SIZE /* country */ 3116 + 2 + 1 /* power control */ 3117 + sizeof(struct ieee80211_csa_ie) /* CSA */ 3118 + sizeof(struct ieee80211_quiet_ie) /* Quiet */ 3119 + 2 + 1 /* ERP */ 3120 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 3121 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 3122 2*sizeof(struct ieee80211_ie_wpa) : 0) 3123 /* XXX conditional? */ 3124 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */ 3125 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */ 3126 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */ 3127 sizeof(struct ieee80211_wme_param) : 0) 3128 #ifdef IEEE80211_SUPPORT_SUPERG 3129 + sizeof(struct ieee80211_ath_ie) /* ATH */ 3130 #endif 3131 #ifdef IEEE80211_SUPPORT_TDMA 3132 + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */ 3133 sizeof(struct ieee80211_tdma_param) : 0) 3134 #endif 3135 #ifdef IEEE80211_SUPPORT_MESH 3136 + 2 + ni->ni_meshidlen 3137 + sizeof(struct ieee80211_meshconf_ie) 3138 #endif 3139 + IEEE80211_MAX_APPIE 3140 ; 3141 m = ieee80211_getmgtframe(&frm, 3142 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen); 3143 if (m == NULL) { 3144 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, 3145 "%s: cannot get buf; size %u\n", __func__, pktlen); 3146 vap->iv_stats.is_tx_nobuf++; 3147 return NULL; 3148 } 3149 ieee80211_beacon_construct(m, frm, ni); 3150 3151 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 3152 KASSERT(m != NULL, ("no space for 802.11 header?")); 3153 wh = mtod(m, struct ieee80211_frame *); 3154 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 3155 IEEE80211_FC0_SUBTYPE_BEACON; 3156 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3157 *(uint16_t *)wh->i_dur = 0; 3158 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 3159 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 3160 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 3161 *(uint16_t *)wh->i_seq = 0; 3162 3163 return m; 3164 } 3165 3166 /* 3167 * Update the dynamic parts of a beacon frame based on the current state. 3168 */ 3169 int 3170 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast) 3171 { 3172 struct ieee80211vap *vap = ni->ni_vap; 3173 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 3174 struct ieee80211com *ic = ni->ni_ic; 3175 int len_changed = 0; 3176 uint16_t capinfo; 3177 struct ieee80211_frame *wh; 3178 ieee80211_seq seqno; 3179 3180 IEEE80211_LOCK(ic); 3181 /* 3182 * Handle 11h channel change when we've reached the count. 3183 * We must recalculate the beacon frame contents to account 3184 * for the new channel. Note we do this only for the first 3185 * vap that reaches this point; subsequent vaps just update 3186 * their beacon state to reflect the recalculated channel. 3187 */ 3188 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) && 3189 vap->iv_csa_count == ic->ic_csa_count) { 3190 vap->iv_csa_count = 0; 3191 /* 3192 * Effect channel change before reconstructing the beacon 3193 * frame contents as many places reference ni_chan. 3194 */ 3195 if (ic->ic_csa_newchan != NULL) 3196 ieee80211_csa_completeswitch(ic); 3197 /* 3198 * NB: ieee80211_beacon_construct clears all pending 3199 * updates in bo_flags so we don't need to explicitly 3200 * clear IEEE80211_BEACON_CSA. 3201 */ 3202 ieee80211_beacon_construct(m, 3203 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3204 3205 /* XXX do WME aggressive mode processing? */ 3206 IEEE80211_UNLOCK(ic); 3207 return 1; /* just assume length changed */ 3208 } 3209 3210 wh = mtod(m, struct ieee80211_frame *); 3211 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 3212 *(uint16_t *)&wh->i_seq[0] = 3213 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 3214 M_SEQNO_SET(m, seqno); 3215 3216 /* XXX faster to recalculate entirely or just changes? */ 3217 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3218 *bo->bo_caps = htole16(capinfo); 3219 3220 if (vap->iv_flags & IEEE80211_F_WME) { 3221 struct ieee80211_wme_state *wme = &ic->ic_wme; 3222 3223 /* 3224 * Check for aggressive mode change. When there is 3225 * significant high priority traffic in the BSS 3226 * throttle back BE traffic by using conservative 3227 * parameters. Otherwise BE uses aggressive params 3228 * to optimize performance of legacy/non-QoS traffic. 3229 */ 3230 if (wme->wme_flags & WME_F_AGGRMODE) { 3231 if (wme->wme_hipri_traffic > 3232 wme->wme_hipri_switch_thresh) { 3233 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3234 "%s: traffic %u, disable aggressive mode\n", 3235 __func__, wme->wme_hipri_traffic); 3236 wme->wme_flags &= ~WME_F_AGGRMODE; 3237 ieee80211_wme_updateparams_locked(vap); 3238 wme->wme_hipri_traffic = 3239 wme->wme_hipri_switch_hysteresis; 3240 } else 3241 wme->wme_hipri_traffic = 0; 3242 } else { 3243 if (wme->wme_hipri_traffic <= 3244 wme->wme_hipri_switch_thresh) { 3245 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3246 "%s: traffic %u, enable aggressive mode\n", 3247 __func__, wme->wme_hipri_traffic); 3248 wme->wme_flags |= WME_F_AGGRMODE; 3249 ieee80211_wme_updateparams_locked(vap); 3250 wme->wme_hipri_traffic = 0; 3251 } else 3252 wme->wme_hipri_traffic = 3253 wme->wme_hipri_switch_hysteresis; 3254 } 3255 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) { 3256 (void) ieee80211_add_wme_param(bo->bo_wme, wme); 3257 clrbit(bo->bo_flags, IEEE80211_BEACON_WME); 3258 } 3259 } 3260 3261 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) { 3262 ieee80211_ht_update_beacon(vap, bo); 3263 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO); 3264 } 3265 #ifdef IEEE80211_SUPPORT_TDMA 3266 if (vap->iv_caps & IEEE80211_C_TDMA) { 3267 /* 3268 * NB: the beacon is potentially updated every TBTT. 3269 */ 3270 ieee80211_tdma_update_beacon(vap, bo); 3271 } 3272 #endif 3273 #ifdef IEEE80211_SUPPORT_MESH 3274 if (vap->iv_opmode == IEEE80211_M_MBSS) 3275 ieee80211_mesh_update_beacon(vap, bo); 3276 #endif 3277 3278 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3279 vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/ 3280 struct ieee80211_tim_ie *tie = 3281 (struct ieee80211_tim_ie *) bo->bo_tim; 3282 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) { 3283 u_int timlen, timoff, i; 3284 /* 3285 * ATIM/DTIM needs updating. If it fits in the 3286 * current space allocated then just copy in the 3287 * new bits. Otherwise we need to move any trailing 3288 * data to make room. Note that we know there is 3289 * contiguous space because ieee80211_beacon_allocate 3290 * insures there is space in the mbuf to write a 3291 * maximal-size virtual bitmap (based on iv_max_aid). 3292 */ 3293 /* 3294 * Calculate the bitmap size and offset, copy any 3295 * trailer out of the way, and then copy in the 3296 * new bitmap and update the information element. 3297 * Note that the tim bitmap must contain at least 3298 * one byte and any offset must be even. 3299 */ 3300 if (vap->iv_ps_pending != 0) { 3301 timoff = 128; /* impossibly large */ 3302 for (i = 0; i < vap->iv_tim_len; i++) 3303 if (vap->iv_tim_bitmap[i]) { 3304 timoff = i &~ 1; 3305 break; 3306 } 3307 KASSERT(timoff != 128, ("tim bitmap empty!")); 3308 for (i = vap->iv_tim_len-1; i >= timoff; i--) 3309 if (vap->iv_tim_bitmap[i]) 3310 break; 3311 timlen = 1 + (i - timoff); 3312 } else { 3313 timoff = 0; 3314 timlen = 1; 3315 } 3316 if (timlen != bo->bo_tim_len) { 3317 /* copy up/down trailer */ 3318 int adjust = tie->tim_bitmap+timlen 3319 - bo->bo_tim_trailer; 3320 ovbcopy(bo->bo_tim_trailer, 3321 bo->bo_tim_trailer+adjust, 3322 bo->bo_tim_trailer_len); 3323 bo->bo_tim_trailer += adjust; 3324 bo->bo_erp += adjust; 3325 bo->bo_htinfo += adjust; 3326 #ifdef IEEE80211_SUPPORT_SUPERG 3327 bo->bo_ath += adjust; 3328 #endif 3329 #ifdef IEEE80211_SUPPORT_TDMA 3330 bo->bo_tdma += adjust; 3331 #endif 3332 #ifdef IEEE80211_SUPPORT_MESH 3333 bo->bo_meshconf += adjust; 3334 #endif 3335 bo->bo_appie += adjust; 3336 bo->bo_wme += adjust; 3337 bo->bo_csa += adjust; 3338 bo->bo_quiet += adjust; 3339 bo->bo_tim_len = timlen; 3340 3341 /* update information element */ 3342 tie->tim_len = 3 + timlen; 3343 tie->tim_bitctl = timoff; 3344 len_changed = 1; 3345 } 3346 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff, 3347 bo->bo_tim_len); 3348 3349 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM); 3350 3351 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER, 3352 "%s: TIM updated, pending %u, off %u, len %u\n", 3353 __func__, vap->iv_ps_pending, timoff, timlen); 3354 } 3355 /* count down DTIM period */ 3356 if (tie->tim_count == 0) 3357 tie->tim_count = tie->tim_period - 1; 3358 else 3359 tie->tim_count--; 3360 /* update state for buffered multicast frames on DTIM */ 3361 if (mcast && tie->tim_count == 0) 3362 tie->tim_bitctl |= 1; 3363 else 3364 tie->tim_bitctl &= ~1; 3365 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) { 3366 struct ieee80211_csa_ie *csa = 3367 (struct ieee80211_csa_ie *) bo->bo_csa; 3368 3369 /* 3370 * Insert or update CSA ie. If we're just starting 3371 * to count down to the channel switch then we need 3372 * to insert the CSA ie. Otherwise we just need to 3373 * drop the count. The actual change happens above 3374 * when the vap's count reaches the target count. 3375 */ 3376 if (vap->iv_csa_count == 0) { 3377 memmove(&csa[1], csa, bo->bo_csa_trailer_len); 3378 bo->bo_erp += sizeof(*csa); 3379 bo->bo_htinfo += sizeof(*csa); 3380 bo->bo_wme += sizeof(*csa); 3381 #ifdef IEEE80211_SUPPORT_SUPERG 3382 bo->bo_ath += sizeof(*csa); 3383 #endif 3384 #ifdef IEEE80211_SUPPORT_TDMA 3385 bo->bo_tdma += sizeof(*csa); 3386 #endif 3387 #ifdef IEEE80211_SUPPORT_MESH 3388 bo->bo_meshconf += sizeof(*csa); 3389 #endif 3390 bo->bo_appie += sizeof(*csa); 3391 bo->bo_csa_trailer_len += sizeof(*csa); 3392 bo->bo_quiet += sizeof(*csa); 3393 bo->bo_tim_trailer_len += sizeof(*csa); 3394 m->m_len += sizeof(*csa); 3395 m->m_pkthdr.len += sizeof(*csa); 3396 3397 ieee80211_add_csa(bo->bo_csa, vap); 3398 } else 3399 csa->csa_count--; 3400 vap->iv_csa_count++; 3401 /* NB: don't clear IEEE80211_BEACON_CSA */ 3402 } 3403 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3404 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){ 3405 if (vap->iv_quiet) 3406 ieee80211_add_quiet(bo->bo_quiet, vap); 3407 } 3408 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) { 3409 /* 3410 * ERP element needs updating. 3411 */ 3412 (void) ieee80211_add_erp(bo->bo_erp, ic); 3413 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP); 3414 } 3415 #ifdef IEEE80211_SUPPORT_SUPERG 3416 if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) { 3417 ieee80211_add_athcaps(bo->bo_ath, ni); 3418 clrbit(bo->bo_flags, IEEE80211_BEACON_ATH); 3419 } 3420 #endif 3421 } 3422 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) { 3423 const struct ieee80211_appie *aie = vap->iv_appie_beacon; 3424 int aielen; 3425 uint8_t *frm; 3426 3427 aielen = 0; 3428 if (aie != NULL) 3429 aielen += aie->ie_len; 3430 if (aielen != bo->bo_appie_len) { 3431 /* copy up/down trailer */ 3432 int adjust = aielen - bo->bo_appie_len; 3433 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust, 3434 bo->bo_tim_trailer_len); 3435 bo->bo_tim_trailer += adjust; 3436 bo->bo_appie += adjust; 3437 bo->bo_appie_len = aielen; 3438 3439 len_changed = 1; 3440 } 3441 frm = bo->bo_appie; 3442 if (aie != NULL) 3443 frm = add_appie(frm, aie); 3444 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE); 3445 } 3446 IEEE80211_UNLOCK(ic); 3447 3448 return len_changed; 3449 } 3450 3451 /* 3452 * Do Ethernet-LLC encapsulation for each payload in a fast frame 3453 * tunnel encapsulation. The frame is assumed to have an Ethernet 3454 * header at the front that must be stripped before prepending the 3455 * LLC followed by the Ethernet header passed in (with an Ethernet 3456 * type that specifies the payload size). 3457 */ 3458 struct mbuf * 3459 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m, 3460 const struct ether_header *eh) 3461 { 3462 struct llc *llc; 3463 uint16_t payload; 3464 3465 /* XXX optimize by combining m_adj+M_PREPEND */ 3466 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 3467 llc = mtod(m, struct llc *); 3468 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 3469 llc->llc_control = LLC_UI; 3470 llc->llc_snap.org_code[0] = 0; 3471 llc->llc_snap.org_code[1] = 0; 3472 llc->llc_snap.org_code[2] = 0; 3473 llc->llc_snap.ether_type = eh->ether_type; 3474 payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */ 3475 3476 M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT); 3477 if (m == NULL) { /* XXX cannot happen */ 3478 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 3479 "%s: no space for ether_header\n", __func__); 3480 vap->iv_stats.is_tx_nobuf++; 3481 return NULL; 3482 } 3483 ETHER_HEADER_COPY(mtod(m, void *), eh); 3484 mtod(m, struct ether_header *)->ether_type = htons(payload); 3485 return m; 3486 } 3487 3488 /* 3489 * Complete an mbuf transmission. 3490 * 3491 * For now, this simply processes a completed frame after the 3492 * driver has completed it's transmission and/or retransmission. 3493 * It assumes the frame is an 802.11 encapsulated frame. 3494 * 3495 * Later on it will grow to become the exit path for a given frame 3496 * from the driver and, depending upon how it's been encapsulated 3497 * and already transmitted, it may end up doing A-MPDU retransmission, 3498 * power save requeuing, etc. 3499 * 3500 * In order for the above to work, the driver entry point to this 3501 * must not hold any driver locks. Thus, the driver needs to delay 3502 * any actual mbuf completion until it can release said locks. 3503 * 3504 * This frees the mbuf and if the mbuf has a node reference, 3505 * the node reference will be freed. 3506 */ 3507 void 3508 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status) 3509 { 3510 3511 if (ni != NULL) { 3512 struct ifnet *ifp = ni->ni_vap->iv_ifp; 3513 3514 if (status == 0) { 3515 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len); 3516 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 3517 if (m->m_flags & M_MCAST) 3518 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 3519 } else 3520 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 3521 if (m->m_flags & M_TXCB) 3522 ieee80211_process_callback(ni, m, status); 3523 ieee80211_free_node(ni); 3524 } 3525 m_freem(m); 3526 } 3527