xref: /freebsd/sys/net80211/ieee80211_output.c (revision 5ca34122ecdd5abc62bdae39663fec9ac8523d87)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_wlan.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/endian.h>
39 
40 #include <sys/socket.h>
41 
42 #include <net/bpf.h>
43 #include <net/ethernet.h>
44 #include <net/if.h>
45 #include <net/if_var.h>
46 #include <net/if_llc.h>
47 #include <net/if_media.h>
48 #include <net/if_vlan_var.h>
49 
50 #include <net80211/ieee80211_var.h>
51 #include <net80211/ieee80211_regdomain.h>
52 #ifdef IEEE80211_SUPPORT_SUPERG
53 #include <net80211/ieee80211_superg.h>
54 #endif
55 #ifdef IEEE80211_SUPPORT_TDMA
56 #include <net80211/ieee80211_tdma.h>
57 #endif
58 #include <net80211/ieee80211_wds.h>
59 #include <net80211/ieee80211_mesh.h>
60 
61 #if defined(INET) || defined(INET6)
62 #include <netinet/in.h>
63 #endif
64 
65 #ifdef INET
66 #include <netinet/if_ether.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/ip.h>
69 #endif
70 #ifdef INET6
71 #include <netinet/ip6.h>
72 #endif
73 
74 #include <security/mac/mac_framework.h>
75 
76 #define	ETHER_HEADER_COPY(dst, src) \
77 	memcpy(dst, src, sizeof(struct ether_header))
78 
79 /* unalligned little endian access */
80 #define LE_WRITE_2(p, v) do {				\
81 	((uint8_t *)(p))[0] = (v) & 0xff;		\
82 	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
83 } while (0)
84 #define LE_WRITE_4(p, v) do {				\
85 	((uint8_t *)(p))[0] = (v) & 0xff;		\
86 	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
87 	((uint8_t *)(p))[2] = ((v) >> 16) & 0xff;	\
88 	((uint8_t *)(p))[3] = ((v) >> 24) & 0xff;	\
89 } while (0)
90 
91 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
92 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
93 static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
94 
95 #ifdef IEEE80211_DEBUG
96 /*
97  * Decide if an outbound management frame should be
98  * printed when debugging is enabled.  This filters some
99  * of the less interesting frames that come frequently
100  * (e.g. beacons).
101  */
102 static __inline int
103 doprint(struct ieee80211vap *vap, int subtype)
104 {
105 	switch (subtype) {
106 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
107 		return (vap->iv_opmode == IEEE80211_M_IBSS);
108 	}
109 	return 1;
110 }
111 #endif
112 
113 /*
114  * Transmit a frame to the given destination on the given VAP.
115  *
116  * It's up to the caller to figure out the details of who this
117  * is going to and resolving the node.
118  *
119  * This routine takes care of queuing it for power save,
120  * A-MPDU state stuff, fast-frames state stuff, encapsulation
121  * if required, then passing it up to the driver layer.
122  *
123  * This routine (for now) consumes the mbuf and frees the node
124  * reference; it ideally will return a TX status which reflects
125  * whether the mbuf was consumed or not, so the caller can
126  * free the mbuf (if appropriate) and the node reference (again,
127  * if appropriate.)
128  */
129 int
130 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
131     struct ieee80211_node *ni)
132 {
133 	struct ieee80211com *ic = vap->iv_ic;
134 	struct ifnet *ifp = vap->iv_ifp;
135 	int error, len, mcast;
136 
137 	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
138 	    (m->m_flags & M_PWR_SAV) == 0) {
139 		/*
140 		 * Station in power save mode; pass the frame
141 		 * to the 802.11 layer and continue.  We'll get
142 		 * the frame back when the time is right.
143 		 * XXX lose WDS vap linkage?
144 		 */
145 		if (ieee80211_pwrsave(ni, m) != 0)
146 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
147 		ieee80211_free_node(ni);
148 
149 		/*
150 		 * We queued it fine, so tell the upper layer
151 		 * that we consumed it.
152 		 */
153 		return (0);
154 	}
155 	/* calculate priority so drivers can find the tx queue */
156 	if (ieee80211_classify(ni, m)) {
157 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
158 		    ni->ni_macaddr, NULL,
159 		    "%s", "classification failure");
160 		vap->iv_stats.is_tx_classify++;
161 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
162 		m_freem(m);
163 		ieee80211_free_node(ni);
164 
165 		/* XXX better status? */
166 		return (0);
167 	}
168 	/*
169 	 * Stash the node pointer.  Note that we do this after
170 	 * any call to ieee80211_dwds_mcast because that code
171 	 * uses any existing value for rcvif to identify the
172 	 * interface it (might have been) received on.
173 	 */
174 	m->m_pkthdr.rcvif = (void *)ni;
175 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
176 	len = m->m_pkthdr.len;
177 
178 	BPF_MTAP(ifp, m);		/* 802.3 tx */
179 
180 	/*
181 	 * Check if A-MPDU tx aggregation is setup or if we
182 	 * should try to enable it.  The sta must be associated
183 	 * with HT and A-MPDU enabled for use.  When the policy
184 	 * routine decides we should enable A-MPDU we issue an
185 	 * ADDBA request and wait for a reply.  The frame being
186 	 * encapsulated will go out w/o using A-MPDU, or possibly
187 	 * it might be collected by the driver and held/retransmit.
188 	 * The default ic_ampdu_enable routine handles staggering
189 	 * ADDBA requests in case the receiver NAK's us or we are
190 	 * otherwise unable to establish a BA stream.
191 	 */
192 	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
193 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) &&
194 	    (m->m_flags & M_EAPOL) == 0) {
195 		int tid = WME_AC_TO_TID(M_WME_GETAC(m));
196 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
197 
198 		ieee80211_txampdu_count_packet(tap);
199 		if (IEEE80211_AMPDU_RUNNING(tap)) {
200 			/*
201 			 * Operational, mark frame for aggregation.
202 			 *
203 			 * XXX do tx aggregation here
204 			 */
205 			m->m_flags |= M_AMPDU_MPDU;
206 		} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
207 		    ic->ic_ampdu_enable(ni, tap)) {
208 			/*
209 			 * Not negotiated yet, request service.
210 			 */
211 			ieee80211_ampdu_request(ni, tap);
212 			/* XXX hold frame for reply? */
213 		}
214 	}
215 
216 #ifdef IEEE80211_SUPPORT_SUPERG
217 	else if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) {
218 		m = ieee80211_ff_check(ni, m);
219 		if (m == NULL) {
220 			/* NB: any ni ref held on stageq */
221 			return (0);
222 		}
223 	}
224 #endif /* IEEE80211_SUPPORT_SUPERG */
225 
226 	/*
227 	 * Grab the TX lock - serialise the TX process from this
228 	 * point (where TX state is being checked/modified)
229 	 * through to driver queue.
230 	 */
231 	IEEE80211_TX_LOCK(ic);
232 
233 	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
234 		/*
235 		 * Encapsulate the packet in prep for transmission.
236 		 */
237 		m = ieee80211_encap(vap, ni, m);
238 		if (m == NULL) {
239 			/* NB: stat+msg handled in ieee80211_encap */
240 			IEEE80211_TX_UNLOCK(ic);
241 			ieee80211_free_node(ni);
242 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
243 			return (ENOBUFS);
244 		}
245 	}
246 	error = ieee80211_parent_xmitpkt(ic, m);
247 
248 	/*
249 	 * Unlock at this point - no need to hold it across
250 	 * ieee80211_free_node() (ie, the comlock)
251 	 */
252 	IEEE80211_TX_UNLOCK(ic);
253 	if (error != 0) {
254 		/* NB: IFQ_HANDOFF reclaims mbuf */
255 		ieee80211_free_node(ni);
256 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
257 	}
258 	ic->ic_lastdata = ticks;
259 
260 	return (0);
261 }
262 
263 
264 
265 /*
266  * Send the given mbuf through the given vap.
267  *
268  * This consumes the mbuf regardless of whether the transmit
269  * was successful or not.
270  *
271  * This does none of the initial checks that ieee80211_start()
272  * does (eg CAC timeout, interface wakeup) - the caller must
273  * do this first.
274  */
275 static int
276 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
277 {
278 #define	IS_DWDS(vap) \
279 	(vap->iv_opmode == IEEE80211_M_WDS && \
280 	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
281 	struct ieee80211com *ic = vap->iv_ic;
282 	struct ifnet *ifp = vap->iv_ifp;
283 	struct ieee80211_node *ni;
284 	struct ether_header *eh;
285 
286 	/*
287 	 * Cancel any background scan.
288 	 */
289 	if (ic->ic_flags & IEEE80211_F_SCAN)
290 		ieee80211_cancel_anyscan(vap);
291 	/*
292 	 * Find the node for the destination so we can do
293 	 * things like power save and fast frames aggregation.
294 	 *
295 	 * NB: past this point various code assumes the first
296 	 *     mbuf has the 802.3 header present (and contiguous).
297 	 */
298 	ni = NULL;
299 	if (m->m_len < sizeof(struct ether_header) &&
300 	   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
301 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
302 		    "discard frame, %s\n", "m_pullup failed");
303 		vap->iv_stats.is_tx_nobuf++;	/* XXX */
304 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
305 		return (ENOBUFS);
306 	}
307 	eh = mtod(m, struct ether_header *);
308 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
309 		if (IS_DWDS(vap)) {
310 			/*
311 			 * Only unicast frames from the above go out
312 			 * DWDS vaps; multicast frames are handled by
313 			 * dispatching the frame as it comes through
314 			 * the AP vap (see below).
315 			 */
316 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
317 			    eh->ether_dhost, "mcast", "%s", "on DWDS");
318 			vap->iv_stats.is_dwds_mcast++;
319 			m_freem(m);
320 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
321 			/* XXX better status? */
322 			return (ENOBUFS);
323 		}
324 		if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
325 			/*
326 			 * Spam DWDS vap's w/ multicast traffic.
327 			 */
328 			/* XXX only if dwds in use? */
329 			ieee80211_dwds_mcast(vap, m);
330 		}
331 	}
332 #ifdef IEEE80211_SUPPORT_MESH
333 	if (vap->iv_opmode != IEEE80211_M_MBSS) {
334 #endif
335 		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
336 		if (ni == NULL) {
337 			/* NB: ieee80211_find_txnode does stat+msg */
338 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
339 			m_freem(m);
340 			/* XXX better status? */
341 			return (ENOBUFS);
342 		}
343 		if (ni->ni_associd == 0 &&
344 		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
345 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
346 			    eh->ether_dhost, NULL,
347 			    "sta not associated (type 0x%04x)",
348 			    htons(eh->ether_type));
349 			vap->iv_stats.is_tx_notassoc++;
350 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
351 			m_freem(m);
352 			ieee80211_free_node(ni);
353 			/* XXX better status? */
354 			return (ENOBUFS);
355 		}
356 #ifdef IEEE80211_SUPPORT_MESH
357 	} else {
358 		if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
359 			/*
360 			 * Proxy station only if configured.
361 			 */
362 			if (!ieee80211_mesh_isproxyena(vap)) {
363 				IEEE80211_DISCARD_MAC(vap,
364 				    IEEE80211_MSG_OUTPUT |
365 				    IEEE80211_MSG_MESH,
366 				    eh->ether_dhost, NULL,
367 				    "%s", "proxy not enabled");
368 				vap->iv_stats.is_mesh_notproxy++;
369 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
370 				m_freem(m);
371 				/* XXX better status? */
372 				return (ENOBUFS);
373 			}
374 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
375 			    "forward frame from DS SA(%6D), DA(%6D)\n",
376 			    eh->ether_shost, ":",
377 			    eh->ether_dhost, ":");
378 			ieee80211_mesh_proxy_check(vap, eh->ether_shost);
379 		}
380 		ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
381 		if (ni == NULL) {
382 			/*
383 			 * NB: ieee80211_mesh_discover holds/disposes
384 			 * frame (e.g. queueing on path discovery).
385 			 */
386 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
387 			/* XXX better status? */
388 			return (ENOBUFS);
389 		}
390 	}
391 #endif
392 
393 	/*
394 	 * We've resolved the sender, so attempt to transmit it.
395 	 */
396 
397 	if (vap->iv_state == IEEE80211_S_SLEEP) {
398 		/*
399 		 * In power save; queue frame and then  wakeup device
400 		 * for transmit.
401 		 */
402 		ic->ic_lastdata = ticks;
403 		if (ieee80211_pwrsave(ni, m) != 0)
404 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
405 		ieee80211_free_node(ni);
406 		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
407 		return (0);
408 	}
409 
410 	if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
411 		return (ENOBUFS);
412 	return (0);
413 #undef	IS_DWDS
414 }
415 
416 /*
417  * Start method for vap's.  All packets from the stack come
418  * through here.  We handle common processing of the packets
419  * before dispatching them to the underlying device.
420  *
421  * if_transmit() requires that the mbuf be consumed by this call
422  * regardless of the return condition.
423  */
424 int
425 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
426 {
427 	struct ieee80211vap *vap = ifp->if_softc;
428 	struct ieee80211com *ic = vap->iv_ic;
429 
430 	/*
431 	 * No data frames go out unless we're running.
432 	 * Note in particular this covers CAC and CSA
433 	 * states (though maybe we should check muting
434 	 * for CSA).
435 	 */
436 	if (vap->iv_state != IEEE80211_S_RUN &&
437 	    vap->iv_state != IEEE80211_S_SLEEP) {
438 		IEEE80211_LOCK(ic);
439 		/* re-check under the com lock to avoid races */
440 		if (vap->iv_state != IEEE80211_S_RUN &&
441 		    vap->iv_state != IEEE80211_S_SLEEP) {
442 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
443 			    "%s: ignore queue, in %s state\n",
444 			    __func__, ieee80211_state_name[vap->iv_state]);
445 			vap->iv_stats.is_tx_badstate++;
446 			IEEE80211_UNLOCK(ic);
447 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
448 			m_freem(m);
449 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
450 			return (ENETDOWN);
451 		}
452 		IEEE80211_UNLOCK(ic);
453 	}
454 
455 	/*
456 	 * Sanitize mbuf flags for net80211 use.  We cannot
457 	 * clear M_PWR_SAV or M_MORE_DATA because these may
458 	 * be set for frames that are re-submitted from the
459 	 * power save queue.
460 	 *
461 	 * NB: This must be done before ieee80211_classify as
462 	 *     it marks EAPOL in frames with M_EAPOL.
463 	 */
464 	m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
465 
466 	/*
467 	 * Bump to the packet transmission path.
468 	 * The mbuf will be consumed here.
469 	 */
470 	return (ieee80211_start_pkt(vap, m));
471 }
472 
473 void
474 ieee80211_vap_qflush(struct ifnet *ifp)
475 {
476 
477 	/* Empty for now */
478 }
479 
480 /*
481  * 802.11 raw output routine.
482  *
483  * XXX TODO: this (and other send routines) should correctly
484  * XXX keep the pwr mgmt bit set if it decides to call into the
485  * XXX driver to send a frame whilst the state is SLEEP.
486  *
487  * Otherwise the peer may decide that we're awake and flood us
488  * with traffic we are still too asleep to receive!
489  */
490 int
491 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
492     struct mbuf *m, const struct ieee80211_bpf_params *params)
493 {
494 	struct ieee80211com *ic = vap->iv_ic;
495 	int error;
496 
497 	/*
498 	 * Set node - the caller has taken a reference, so ensure
499 	 * that the mbuf has the same node value that
500 	 * it would if it were going via the normal path.
501 	 */
502 	m->m_pkthdr.rcvif = (void *)ni;
503 
504 	/*
505 	 * Attempt to add bpf transmit parameters.
506 	 *
507 	 * For now it's ok to fail; the raw_xmit api still takes
508 	 * them as an option.
509 	 *
510 	 * Later on when ic_raw_xmit() has params removed,
511 	 * they'll have to be added - so fail the transmit if
512 	 * they can't be.
513 	 */
514 	if (params)
515 		(void) ieee80211_add_xmit_params(m, params);
516 
517 	error = ic->ic_raw_xmit(ni, m, params);
518 	if (error)
519 		if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
520 	return (error);
521 }
522 
523 /*
524  * 802.11 output routine. This is (currently) used only to
525  * connect bpf write calls to the 802.11 layer for injecting
526  * raw 802.11 frames.
527  */
528 int
529 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
530 	const struct sockaddr *dst, struct route *ro)
531 {
532 #define senderr(e) do { error = (e); goto bad;} while (0)
533 	struct ieee80211_node *ni = NULL;
534 	struct ieee80211vap *vap;
535 	struct ieee80211_frame *wh;
536 	struct ieee80211com *ic = NULL;
537 	int error;
538 	int ret;
539 
540 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
541 		/*
542 		 * Short-circuit requests if the vap is marked OACTIVE
543 		 * as this can happen because a packet came down through
544 		 * ieee80211_start before the vap entered RUN state in
545 		 * which case it's ok to just drop the frame.  This
546 		 * should not be necessary but callers of if_output don't
547 		 * check OACTIVE.
548 		 */
549 		senderr(ENETDOWN);
550 	}
551 	vap = ifp->if_softc;
552 	ic = vap->iv_ic;
553 	/*
554 	 * Hand to the 802.3 code if not tagged as
555 	 * a raw 802.11 frame.
556 	 */
557 	if (dst->sa_family != AF_IEEE80211)
558 		return vap->iv_output(ifp, m, dst, ro);
559 #ifdef MAC
560 	error = mac_ifnet_check_transmit(ifp, m);
561 	if (error)
562 		senderr(error);
563 #endif
564 	if (ifp->if_flags & IFF_MONITOR)
565 		senderr(ENETDOWN);
566 	if (!IFNET_IS_UP_RUNNING(ifp))
567 		senderr(ENETDOWN);
568 	if (vap->iv_state == IEEE80211_S_CAC) {
569 		IEEE80211_DPRINTF(vap,
570 		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
571 		    "block %s frame in CAC state\n", "raw data");
572 		vap->iv_stats.is_tx_badstate++;
573 		senderr(EIO);		/* XXX */
574 	} else if (vap->iv_state == IEEE80211_S_SCAN)
575 		senderr(EIO);
576 	/* XXX bypass bridge, pfil, carp, etc. */
577 
578 	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
579 		senderr(EIO);	/* XXX */
580 	wh = mtod(m, struct ieee80211_frame *);
581 	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
582 	    IEEE80211_FC0_VERSION_0)
583 		senderr(EIO);	/* XXX */
584 
585 	/* locate destination node */
586 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
587 	case IEEE80211_FC1_DIR_NODS:
588 	case IEEE80211_FC1_DIR_FROMDS:
589 		ni = ieee80211_find_txnode(vap, wh->i_addr1);
590 		break;
591 	case IEEE80211_FC1_DIR_TODS:
592 	case IEEE80211_FC1_DIR_DSTODS:
593 		if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
594 			senderr(EIO);	/* XXX */
595 		ni = ieee80211_find_txnode(vap, wh->i_addr3);
596 		break;
597 	default:
598 		senderr(EIO);	/* XXX */
599 	}
600 	if (ni == NULL) {
601 		/*
602 		 * Permit packets w/ bpf params through regardless
603 		 * (see below about sa_len).
604 		 */
605 		if (dst->sa_len == 0)
606 			senderr(EHOSTUNREACH);
607 		ni = ieee80211_ref_node(vap->iv_bss);
608 	}
609 
610 	/*
611 	 * Sanitize mbuf for net80211 flags leaked from above.
612 	 *
613 	 * NB: This must be done before ieee80211_classify as
614 	 *     it marks EAPOL in frames with M_EAPOL.
615 	 */
616 	m->m_flags &= ~M_80211_TX;
617 
618 	/* calculate priority so drivers can find the tx queue */
619 	/* XXX assumes an 802.3 frame */
620 	if (ieee80211_classify(ni, m))
621 		senderr(EIO);		/* XXX */
622 
623 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
624 	IEEE80211_NODE_STAT(ni, tx_data);
625 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
626 		IEEE80211_NODE_STAT(ni, tx_mcast);
627 		m->m_flags |= M_MCAST;
628 	} else
629 		IEEE80211_NODE_STAT(ni, tx_ucast);
630 	/* NB: ieee80211_encap does not include 802.11 header */
631 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len);
632 
633 	IEEE80211_TX_LOCK(ic);
634 
635 	/*
636 	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
637 	 * present by setting the sa_len field of the sockaddr (yes,
638 	 * this is a hack).
639 	 * NB: we assume sa_data is suitably aligned to cast.
640 	 */
641 	ret = ieee80211_raw_output(vap, ni, m,
642 	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
643 		dst->sa_data : NULL));
644 	IEEE80211_TX_UNLOCK(ic);
645 	return (ret);
646 bad:
647 	if (m != NULL)
648 		m_freem(m);
649 	if (ni != NULL)
650 		ieee80211_free_node(ni);
651 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
652 	return error;
653 #undef senderr
654 }
655 
656 /*
657  * Set the direction field and address fields of an outgoing
658  * frame.  Note this should be called early on in constructing
659  * a frame as it sets i_fc[1]; other bits can then be or'd in.
660  */
661 void
662 ieee80211_send_setup(
663 	struct ieee80211_node *ni,
664 	struct mbuf *m,
665 	int type, int tid,
666 	const uint8_t sa[IEEE80211_ADDR_LEN],
667 	const uint8_t da[IEEE80211_ADDR_LEN],
668 	const uint8_t bssid[IEEE80211_ADDR_LEN])
669 {
670 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
671 	struct ieee80211vap *vap = ni->ni_vap;
672 	struct ieee80211_tx_ampdu *tap;
673 	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
674 	ieee80211_seq seqno;
675 
676 	IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
677 
678 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
679 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
680 		switch (vap->iv_opmode) {
681 		case IEEE80211_M_STA:
682 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
683 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
684 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
685 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
686 			break;
687 		case IEEE80211_M_IBSS:
688 		case IEEE80211_M_AHDEMO:
689 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
690 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
691 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
692 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
693 			break;
694 		case IEEE80211_M_HOSTAP:
695 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
696 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
697 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
698 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
699 			break;
700 		case IEEE80211_M_WDS:
701 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
702 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
703 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
704 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
705 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
706 			break;
707 		case IEEE80211_M_MBSS:
708 #ifdef IEEE80211_SUPPORT_MESH
709 			if (IEEE80211_IS_MULTICAST(da)) {
710 				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
711 				/* XXX next hop */
712 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
713 				IEEE80211_ADDR_COPY(wh->i_addr2,
714 				    vap->iv_myaddr);
715 			} else {
716 				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
717 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
718 				IEEE80211_ADDR_COPY(wh->i_addr2,
719 				    vap->iv_myaddr);
720 				IEEE80211_ADDR_COPY(wh->i_addr3, da);
721 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
722 			}
723 #endif
724 			break;
725 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
726 			break;
727 		}
728 	} else {
729 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
730 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
731 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
732 #ifdef IEEE80211_SUPPORT_MESH
733 		if (vap->iv_opmode == IEEE80211_M_MBSS)
734 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
735 		else
736 #endif
737 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
738 	}
739 	*(uint16_t *)&wh->i_dur[0] = 0;
740 
741 	tap = &ni->ni_tx_ampdu[tid];
742 	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap))
743 		m->m_flags |= M_AMPDU_MPDU;
744 	else {
745 		if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
746 				      type & IEEE80211_FC0_SUBTYPE_MASK))
747 			seqno = ni->ni_txseqs[tid]++;
748 		else
749 			seqno = 0;
750 
751 		*(uint16_t *)&wh->i_seq[0] =
752 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
753 		M_SEQNO_SET(m, seqno);
754 	}
755 
756 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
757 		m->m_flags |= M_MCAST;
758 #undef WH4
759 }
760 
761 /*
762  * Send a management frame to the specified node.  The node pointer
763  * must have a reference as the pointer will be passed to the driver
764  * and potentially held for a long time.  If the frame is successfully
765  * dispatched to the driver, then it is responsible for freeing the
766  * reference (and potentially free'ing up any associated storage);
767  * otherwise deal with reclaiming any reference (on error).
768  */
769 int
770 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
771 	struct ieee80211_bpf_params *params)
772 {
773 	struct ieee80211vap *vap = ni->ni_vap;
774 	struct ieee80211com *ic = ni->ni_ic;
775 	struct ieee80211_frame *wh;
776 	int ret;
777 
778 	KASSERT(ni != NULL, ("null node"));
779 
780 	if (vap->iv_state == IEEE80211_S_CAC) {
781 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
782 		    ni, "block %s frame in CAC state",
783 			ieee80211_mgt_subtype_name[
784 			    (type & IEEE80211_FC0_SUBTYPE_MASK) >>
785 				IEEE80211_FC0_SUBTYPE_SHIFT]);
786 		vap->iv_stats.is_tx_badstate++;
787 		ieee80211_free_node(ni);
788 		m_freem(m);
789 		return EIO;		/* XXX */
790 	}
791 
792 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
793 	if (m == NULL) {
794 		ieee80211_free_node(ni);
795 		return ENOMEM;
796 	}
797 
798 	IEEE80211_TX_LOCK(ic);
799 
800 	wh = mtod(m, struct ieee80211_frame *);
801 	ieee80211_send_setup(ni, m,
802 	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
803 	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
804 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
805 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
806 		    "encrypting frame (%s)", __func__);
807 		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
808 	}
809 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
810 
811 	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
812 	M_WME_SETAC(m, params->ibp_pri);
813 
814 #ifdef IEEE80211_DEBUG
815 	/* avoid printing too many frames */
816 	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
817 	    ieee80211_msg_dumppkts(vap)) {
818 		printf("[%s] send %s on channel %u\n",
819 		    ether_sprintf(wh->i_addr1),
820 		    ieee80211_mgt_subtype_name[
821 			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
822 				IEEE80211_FC0_SUBTYPE_SHIFT],
823 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
824 	}
825 #endif
826 	IEEE80211_NODE_STAT(ni, tx_mgmt);
827 
828 	ret = ieee80211_raw_output(vap, ni, m, params);
829 	IEEE80211_TX_UNLOCK(ic);
830 	return (ret);
831 }
832 
833 /*
834  * Send a null data frame to the specified node.  If the station
835  * is setup for QoS then a QoS Null Data frame is constructed.
836  * If this is a WDS station then a 4-address frame is constructed.
837  *
838  * NB: the caller is assumed to have setup a node reference
839  *     for use; this is necessary to deal with a race condition
840  *     when probing for inactive stations.  Like ieee80211_mgmt_output
841  *     we must cleanup any node reference on error;  however we
842  *     can safely just unref it as we know it will never be the
843  *     last reference to the node.
844  */
845 int
846 ieee80211_send_nulldata(struct ieee80211_node *ni)
847 {
848 	struct ieee80211vap *vap = ni->ni_vap;
849 	struct ieee80211com *ic = ni->ni_ic;
850 	struct mbuf *m;
851 	struct ieee80211_frame *wh;
852 	int hdrlen;
853 	uint8_t *frm;
854 	int ret;
855 
856 	if (vap->iv_state == IEEE80211_S_CAC) {
857 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
858 		    ni, "block %s frame in CAC state", "null data");
859 		ieee80211_unref_node(&ni);
860 		vap->iv_stats.is_tx_badstate++;
861 		return EIO;		/* XXX */
862 	}
863 
864 	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
865 		hdrlen = sizeof(struct ieee80211_qosframe);
866 	else
867 		hdrlen = sizeof(struct ieee80211_frame);
868 	/* NB: only WDS vap's get 4-address frames */
869 	if (vap->iv_opmode == IEEE80211_M_WDS)
870 		hdrlen += IEEE80211_ADDR_LEN;
871 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
872 		hdrlen = roundup(hdrlen, sizeof(uint32_t));
873 
874 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
875 	if (m == NULL) {
876 		/* XXX debug msg */
877 		ieee80211_unref_node(&ni);
878 		vap->iv_stats.is_tx_nobuf++;
879 		return ENOMEM;
880 	}
881 	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
882 	    ("leading space %zd", M_LEADINGSPACE(m)));
883 	M_PREPEND(m, hdrlen, M_NOWAIT);
884 	if (m == NULL) {
885 		/* NB: cannot happen */
886 		ieee80211_free_node(ni);
887 		return ENOMEM;
888 	}
889 
890 	IEEE80211_TX_LOCK(ic);
891 
892 	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
893 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
894 		const int tid = WME_AC_TO_TID(WME_AC_BE);
895 		uint8_t *qos;
896 
897 		ieee80211_send_setup(ni, m,
898 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
899 		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
900 
901 		if (vap->iv_opmode == IEEE80211_M_WDS)
902 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
903 		else
904 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
905 		qos[0] = tid & IEEE80211_QOS_TID;
906 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
907 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
908 		qos[1] = 0;
909 	} else {
910 		ieee80211_send_setup(ni, m,
911 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
912 		    IEEE80211_NONQOS_TID,
913 		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
914 	}
915 	if (vap->iv_opmode != IEEE80211_M_WDS) {
916 		/* NB: power management bit is never sent by an AP */
917 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
918 		    vap->iv_opmode != IEEE80211_M_HOSTAP)
919 			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
920 	}
921 	m->m_len = m->m_pkthdr.len = hdrlen;
922 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
923 
924 	M_WME_SETAC(m, WME_AC_BE);
925 
926 	IEEE80211_NODE_STAT(ni, tx_data);
927 
928 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
929 	    "send %snull data frame on channel %u, pwr mgt %s",
930 	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
931 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
932 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
933 
934 	ret = ieee80211_raw_output(vap, ni, m, NULL);
935 	IEEE80211_TX_UNLOCK(ic);
936 	return (ret);
937 }
938 
939 /*
940  * Assign priority to a frame based on any vlan tag assigned
941  * to the station and/or any Diffserv setting in an IP header.
942  * Finally, if an ACM policy is setup (in station mode) it's
943  * applied.
944  */
945 int
946 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
947 {
948 	const struct ether_header *eh = mtod(m, struct ether_header *);
949 	int v_wme_ac, d_wme_ac, ac;
950 
951 	/*
952 	 * Always promote PAE/EAPOL frames to high priority.
953 	 */
954 	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
955 		/* NB: mark so others don't need to check header */
956 		m->m_flags |= M_EAPOL;
957 		ac = WME_AC_VO;
958 		goto done;
959 	}
960 	/*
961 	 * Non-qos traffic goes to BE.
962 	 */
963 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
964 		ac = WME_AC_BE;
965 		goto done;
966 	}
967 
968 	/*
969 	 * If node has a vlan tag then all traffic
970 	 * to it must have a matching tag.
971 	 */
972 	v_wme_ac = 0;
973 	if (ni->ni_vlan != 0) {
974 		 if ((m->m_flags & M_VLANTAG) == 0) {
975 			IEEE80211_NODE_STAT(ni, tx_novlantag);
976 			return 1;
977 		}
978 		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
979 		    EVL_VLANOFTAG(ni->ni_vlan)) {
980 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
981 			return 1;
982 		}
983 		/* map vlan priority to AC */
984 		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
985 	}
986 
987 	/* XXX m_copydata may be too slow for fast path */
988 #ifdef INET
989 	if (eh->ether_type == htons(ETHERTYPE_IP)) {
990 		uint8_t tos;
991 		/*
992 		 * IP frame, map the DSCP bits from the TOS field.
993 		 */
994 		/* NB: ip header may not be in first mbuf */
995 		m_copydata(m, sizeof(struct ether_header) +
996 		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
997 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
998 		d_wme_ac = TID_TO_WME_AC(tos);
999 	} else {
1000 #endif /* INET */
1001 #ifdef INET6
1002 	if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
1003 		uint32_t flow;
1004 		uint8_t tos;
1005 		/*
1006 		 * IPv6 frame, map the DSCP bits from the traffic class field.
1007 		 */
1008 		m_copydata(m, sizeof(struct ether_header) +
1009 		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
1010 		    (caddr_t) &flow);
1011 		tos = (uint8_t)(ntohl(flow) >> 20);
1012 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1013 		d_wme_ac = TID_TO_WME_AC(tos);
1014 	} else {
1015 #endif /* INET6 */
1016 		d_wme_ac = WME_AC_BE;
1017 #ifdef INET6
1018 	}
1019 #endif
1020 #ifdef INET
1021 	}
1022 #endif
1023 	/*
1024 	 * Use highest priority AC.
1025 	 */
1026 	if (v_wme_ac > d_wme_ac)
1027 		ac = v_wme_ac;
1028 	else
1029 		ac = d_wme_ac;
1030 
1031 	/*
1032 	 * Apply ACM policy.
1033 	 */
1034 	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1035 		static const int acmap[4] = {
1036 			WME_AC_BK,	/* WME_AC_BE */
1037 			WME_AC_BK,	/* WME_AC_BK */
1038 			WME_AC_BE,	/* WME_AC_VI */
1039 			WME_AC_VI,	/* WME_AC_VO */
1040 		};
1041 		struct ieee80211com *ic = ni->ni_ic;
1042 
1043 		while (ac != WME_AC_BK &&
1044 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1045 			ac = acmap[ac];
1046 	}
1047 done:
1048 	M_WME_SETAC(m, ac);
1049 	return 0;
1050 }
1051 
1052 /*
1053  * Insure there is sufficient contiguous space to encapsulate the
1054  * 802.11 data frame.  If room isn't already there, arrange for it.
1055  * Drivers and cipher modules assume we have done the necessary work
1056  * and fail rudely if they don't find the space they need.
1057  */
1058 struct mbuf *
1059 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1060 	struct ieee80211_key *key, struct mbuf *m)
1061 {
1062 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
1063 	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1064 
1065 	if (key != NULL) {
1066 		/* XXX belongs in crypto code? */
1067 		needed_space += key->wk_cipher->ic_header;
1068 		/* XXX frags */
1069 		/*
1070 		 * When crypto is being done in the host we must insure
1071 		 * the data are writable for the cipher routines; clone
1072 		 * a writable mbuf chain.
1073 		 * XXX handle SWMIC specially
1074 		 */
1075 		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1076 			m = m_unshare(m, M_NOWAIT);
1077 			if (m == NULL) {
1078 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1079 				    "%s: cannot get writable mbuf\n", __func__);
1080 				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1081 				return NULL;
1082 			}
1083 		}
1084 	}
1085 	/*
1086 	 * We know we are called just before stripping an Ethernet
1087 	 * header and prepending an LLC header.  This means we know
1088 	 * there will be
1089 	 *	sizeof(struct ether_header) - sizeof(struct llc)
1090 	 * bytes recovered to which we need additional space for the
1091 	 * 802.11 header and any crypto header.
1092 	 */
1093 	/* XXX check trailing space and copy instead? */
1094 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1095 		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
1096 		if (n == NULL) {
1097 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1098 			    "%s: cannot expand storage\n", __func__);
1099 			vap->iv_stats.is_tx_nobuf++;
1100 			m_freem(m);
1101 			return NULL;
1102 		}
1103 		KASSERT(needed_space <= MHLEN,
1104 		    ("not enough room, need %u got %d\n", needed_space, MHLEN));
1105 		/*
1106 		 * Setup new mbuf to have leading space to prepend the
1107 		 * 802.11 header and any crypto header bits that are
1108 		 * required (the latter are added when the driver calls
1109 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
1110 		 */
1111 		/* NB: must be first 'cuz it clobbers m_data */
1112 		m_move_pkthdr(n, m);
1113 		n->m_len = 0;			/* NB: m_gethdr does not set */
1114 		n->m_data += needed_space;
1115 		/*
1116 		 * Pull up Ethernet header to create the expected layout.
1117 		 * We could use m_pullup but that's overkill (i.e. we don't
1118 		 * need the actual data) and it cannot fail so do it inline
1119 		 * for speed.
1120 		 */
1121 		/* NB: struct ether_header is known to be contiguous */
1122 		n->m_len += sizeof(struct ether_header);
1123 		m->m_len -= sizeof(struct ether_header);
1124 		m->m_data += sizeof(struct ether_header);
1125 		/*
1126 		 * Replace the head of the chain.
1127 		 */
1128 		n->m_next = m;
1129 		m = n;
1130 	}
1131 	return m;
1132 #undef TO_BE_RECLAIMED
1133 }
1134 
1135 /*
1136  * Return the transmit key to use in sending a unicast frame.
1137  * If a unicast key is set we use that.  When no unicast key is set
1138  * we fall back to the default transmit key.
1139  */
1140 static __inline struct ieee80211_key *
1141 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1142 	struct ieee80211_node *ni)
1143 {
1144 	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1145 		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1146 		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1147 			return NULL;
1148 		return &vap->iv_nw_keys[vap->iv_def_txkey];
1149 	} else {
1150 		return &ni->ni_ucastkey;
1151 	}
1152 }
1153 
1154 /*
1155  * Return the transmit key to use in sending a multicast frame.
1156  * Multicast traffic always uses the group key which is installed as
1157  * the default tx key.
1158  */
1159 static __inline struct ieee80211_key *
1160 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1161 	struct ieee80211_node *ni)
1162 {
1163 	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1164 	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1165 		return NULL;
1166 	return &vap->iv_nw_keys[vap->iv_def_txkey];
1167 }
1168 
1169 /*
1170  * Encapsulate an outbound data frame.  The mbuf chain is updated.
1171  * If an error is encountered NULL is returned.  The caller is required
1172  * to provide a node reference and pullup the ethernet header in the
1173  * first mbuf.
1174  *
1175  * NB: Packet is assumed to be processed by ieee80211_classify which
1176  *     marked EAPOL frames w/ M_EAPOL.
1177  */
1178 struct mbuf *
1179 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1180     struct mbuf *m)
1181 {
1182 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1183 #define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
1184 	struct ieee80211com *ic = ni->ni_ic;
1185 #ifdef IEEE80211_SUPPORT_MESH
1186 	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1187 	struct ieee80211_meshcntl_ae10 *mc;
1188 	struct ieee80211_mesh_route *rt = NULL;
1189 	int dir = -1;
1190 #endif
1191 	struct ether_header eh;
1192 	struct ieee80211_frame *wh;
1193 	struct ieee80211_key *key;
1194 	struct llc *llc;
1195 	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr;
1196 	ieee80211_seq seqno;
1197 	int meshhdrsize, meshae;
1198 	uint8_t *qos;
1199 
1200 	IEEE80211_TX_LOCK_ASSERT(ic);
1201 
1202 	/*
1203 	 * Copy existing Ethernet header to a safe place.  The
1204 	 * rest of the code assumes it's ok to strip it when
1205 	 * reorganizing state for the final encapsulation.
1206 	 */
1207 	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1208 	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1209 
1210 	/*
1211 	 * Insure space for additional headers.  First identify
1212 	 * transmit key to use in calculating any buffer adjustments
1213 	 * required.  This is also used below to do privacy
1214 	 * encapsulation work.  Then calculate the 802.11 header
1215 	 * size and any padding required by the driver.
1216 	 *
1217 	 * Note key may be NULL if we fall back to the default
1218 	 * transmit key and that is not set.  In that case the
1219 	 * buffer may not be expanded as needed by the cipher
1220 	 * routines, but they will/should discard it.
1221 	 */
1222 	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1223 		if (vap->iv_opmode == IEEE80211_M_STA ||
1224 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1225 		    (vap->iv_opmode == IEEE80211_M_WDS &&
1226 		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1227 			key = ieee80211_crypto_getucastkey(vap, ni);
1228 		else
1229 			key = ieee80211_crypto_getmcastkey(vap, ni);
1230 		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1231 			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1232 			    eh.ether_dhost,
1233 			    "no default transmit key (%s) deftxkey %u",
1234 			    __func__, vap->iv_def_txkey);
1235 			vap->iv_stats.is_tx_nodefkey++;
1236 			goto bad;
1237 		}
1238 	} else
1239 		key = NULL;
1240 	/*
1241 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1242 	 * frames so suppress use.  This may be an issue if other
1243 	 * ap's require all data frames to be QoS-encapsulated
1244 	 * once negotiated in which case we'll need to make this
1245 	 * configurable.
1246 	 * NB: mesh data frames are QoS.
1247 	 */
1248 	addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) ||
1249 	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1250 	    (m->m_flags & M_EAPOL) == 0;
1251 	if (addqos)
1252 		hdrsize = sizeof(struct ieee80211_qosframe);
1253 	else
1254 		hdrsize = sizeof(struct ieee80211_frame);
1255 #ifdef IEEE80211_SUPPORT_MESH
1256 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1257 		/*
1258 		 * Mesh data frames are encapsulated according to the
1259 		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1260 		 * o Group Addressed data (aka multicast) originating
1261 		 *   at the local sta are sent w/ 3-address format and
1262 		 *   address extension mode 00
1263 		 * o Individually Addressed data (aka unicast) originating
1264 		 *   at the local sta are sent w/ 4-address format and
1265 		 *   address extension mode 00
1266 		 * o Group Addressed data forwarded from a non-mesh sta are
1267 		 *   sent w/ 3-address format and address extension mode 01
1268 		 * o Individually Address data from another sta are sent
1269 		 *   w/ 4-address format and address extension mode 10
1270 		 */
1271 		is4addr = 0;		/* NB: don't use, disable */
1272 		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1273 			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1274 			KASSERT(rt != NULL, ("route is NULL"));
1275 			dir = IEEE80211_FC1_DIR_DSTODS;
1276 			hdrsize += IEEE80211_ADDR_LEN;
1277 			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1278 				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1279 				    vap->iv_myaddr)) {
1280 					IEEE80211_NOTE_MAC(vap,
1281 					    IEEE80211_MSG_MESH,
1282 					    eh.ether_dhost,
1283 					    "%s", "trying to send to ourself");
1284 					goto bad;
1285 				}
1286 				meshae = IEEE80211_MESH_AE_10;
1287 				meshhdrsize =
1288 				    sizeof(struct ieee80211_meshcntl_ae10);
1289 			} else {
1290 				meshae = IEEE80211_MESH_AE_00;
1291 				meshhdrsize =
1292 				    sizeof(struct ieee80211_meshcntl);
1293 			}
1294 		} else {
1295 			dir = IEEE80211_FC1_DIR_FROMDS;
1296 			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1297 				/* proxy group */
1298 				meshae = IEEE80211_MESH_AE_01;
1299 				meshhdrsize =
1300 				    sizeof(struct ieee80211_meshcntl_ae01);
1301 			} else {
1302 				/* group */
1303 				meshae = IEEE80211_MESH_AE_00;
1304 				meshhdrsize = sizeof(struct ieee80211_meshcntl);
1305 			}
1306 		}
1307 	} else {
1308 #endif
1309 		/*
1310 		 * 4-address frames need to be generated for:
1311 		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1312 		 * o packets sent through a vap marked for relaying
1313 		 *   (e.g. a station operating with dynamic WDS)
1314 		 */
1315 		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1316 		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1317 		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1318 		if (is4addr)
1319 			hdrsize += IEEE80211_ADDR_LEN;
1320 		meshhdrsize = meshae = 0;
1321 #ifdef IEEE80211_SUPPORT_MESH
1322 	}
1323 #endif
1324 	/*
1325 	 * Honor driver DATAPAD requirement.
1326 	 */
1327 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1328 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1329 	else
1330 		hdrspace = hdrsize;
1331 
1332 	if (__predict_true((m->m_flags & M_FF) == 0)) {
1333 		/*
1334 		 * Normal frame.
1335 		 */
1336 		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1337 		if (m == NULL) {
1338 			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1339 			goto bad;
1340 		}
1341 		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1342 		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1343 		llc = mtod(m, struct llc *);
1344 		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1345 		llc->llc_control = LLC_UI;
1346 		llc->llc_snap.org_code[0] = 0;
1347 		llc->llc_snap.org_code[1] = 0;
1348 		llc->llc_snap.org_code[2] = 0;
1349 		llc->llc_snap.ether_type = eh.ether_type;
1350 	} else {
1351 #ifdef IEEE80211_SUPPORT_SUPERG
1352 		/*
1353 		 * Aggregated frame.
1354 		 */
1355 		m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1356 		if (m == NULL)
1357 #endif
1358 			goto bad;
1359 	}
1360 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1361 
1362 	M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT);
1363 	if (m == NULL) {
1364 		vap->iv_stats.is_tx_nobuf++;
1365 		goto bad;
1366 	}
1367 	wh = mtod(m, struct ieee80211_frame *);
1368 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1369 	*(uint16_t *)wh->i_dur = 0;
1370 	qos = NULL;	/* NB: quiet compiler */
1371 	if (is4addr) {
1372 		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1373 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1374 		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1375 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1376 		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1377 	} else switch (vap->iv_opmode) {
1378 	case IEEE80211_M_STA:
1379 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1380 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1381 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1382 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1383 		break;
1384 	case IEEE80211_M_IBSS:
1385 	case IEEE80211_M_AHDEMO:
1386 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1387 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1388 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1389 		/*
1390 		 * NB: always use the bssid from iv_bss as the
1391 		 *     neighbor's may be stale after an ibss merge
1392 		 */
1393 		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1394 		break;
1395 	case IEEE80211_M_HOSTAP:
1396 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1397 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1398 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1399 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1400 		break;
1401 #ifdef IEEE80211_SUPPORT_MESH
1402 	case IEEE80211_M_MBSS:
1403 		/* NB: offset by hdrspace to deal with DATAPAD */
1404 		mc = (struct ieee80211_meshcntl_ae10 *)
1405 		     (mtod(m, uint8_t *) + hdrspace);
1406 		wh->i_fc[1] = dir;
1407 		switch (meshae) {
1408 		case IEEE80211_MESH_AE_00:	/* no proxy */
1409 			mc->mc_flags = 0;
1410 			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1411 				IEEE80211_ADDR_COPY(wh->i_addr1,
1412 				    ni->ni_macaddr);
1413 				IEEE80211_ADDR_COPY(wh->i_addr2,
1414 				    vap->iv_myaddr);
1415 				IEEE80211_ADDR_COPY(wh->i_addr3,
1416 				    eh.ether_dhost);
1417 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1418 				    eh.ether_shost);
1419 				qos =((struct ieee80211_qosframe_addr4 *)
1420 				    wh)->i_qos;
1421 			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1422 				 /* mcast */
1423 				IEEE80211_ADDR_COPY(wh->i_addr1,
1424 				    eh.ether_dhost);
1425 				IEEE80211_ADDR_COPY(wh->i_addr2,
1426 				    vap->iv_myaddr);
1427 				IEEE80211_ADDR_COPY(wh->i_addr3,
1428 				    eh.ether_shost);
1429 				qos = ((struct ieee80211_qosframe *)
1430 				    wh)->i_qos;
1431 			}
1432 			break;
1433 		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
1434 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1435 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1436 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1437 			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1438 			mc->mc_flags = 1;
1439 			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1440 			    eh.ether_shost);
1441 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1442 			break;
1443 		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
1444 			KASSERT(rt != NULL, ("route is NULL"));
1445 			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1446 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1447 			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1448 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1449 			mc->mc_flags = IEEE80211_MESH_AE_10;
1450 			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1451 			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1452 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1453 			break;
1454 		default:
1455 			KASSERT(0, ("meshae %d", meshae));
1456 			break;
1457 		}
1458 		mc->mc_ttl = ms->ms_ttl;
1459 		ms->ms_seq++;
1460 		LE_WRITE_4(mc->mc_seq, ms->ms_seq);
1461 		break;
1462 #endif
1463 	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1464 	default:
1465 		goto bad;
1466 	}
1467 	if (m->m_flags & M_MORE_DATA)
1468 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1469 	if (addqos) {
1470 		int ac, tid;
1471 
1472 		if (is4addr) {
1473 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1474 		/* NB: mesh case handled earlier */
1475 		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1476 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1477 		ac = M_WME_GETAC(m);
1478 		/* map from access class/queue to 11e header priorty value */
1479 		tid = WME_AC_TO_TID(ac);
1480 		qos[0] = tid & IEEE80211_QOS_TID;
1481 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1482 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1483 #ifdef IEEE80211_SUPPORT_MESH
1484 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1485 			qos[1] = IEEE80211_QOS_MC;
1486 		else
1487 #endif
1488 			qos[1] = 0;
1489 		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1490 
1491 		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1492 			/*
1493 			 * NB: don't assign a sequence # to potential
1494 			 * aggregates; we expect this happens at the
1495 			 * point the frame comes off any aggregation q
1496 			 * as otherwise we may introduce holes in the
1497 			 * BA sequence space and/or make window accouting
1498 			 * more difficult.
1499 			 *
1500 			 * XXX may want to control this with a driver
1501 			 * capability; this may also change when we pull
1502 			 * aggregation up into net80211
1503 			 */
1504 			seqno = ni->ni_txseqs[tid]++;
1505 			*(uint16_t *)wh->i_seq =
1506 			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1507 			M_SEQNO_SET(m, seqno);
1508 		}
1509 	} else {
1510 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1511 		*(uint16_t *)wh->i_seq =
1512 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1513 		M_SEQNO_SET(m, seqno);
1514 	}
1515 
1516 
1517 	/* check if xmit fragmentation is required */
1518 	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1519 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1520 	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1521 	    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1522 	if (key != NULL) {
1523 		/*
1524 		 * IEEE 802.1X: send EAPOL frames always in the clear.
1525 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1526 		 */
1527 		if ((m->m_flags & M_EAPOL) == 0 ||
1528 		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1529 		     (vap->iv_opmode == IEEE80211_M_STA ?
1530 		      !IEEE80211_KEY_UNDEFINED(key) :
1531 		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1532 			wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1533 			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1534 				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1535 				    eh.ether_dhost,
1536 				    "%s", "enmic failed, discard frame");
1537 				vap->iv_stats.is_crypto_enmicfail++;
1538 				goto bad;
1539 			}
1540 		}
1541 	}
1542 	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1543 	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1544 		goto bad;
1545 
1546 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1547 
1548 	IEEE80211_NODE_STAT(ni, tx_data);
1549 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1550 		IEEE80211_NODE_STAT(ni, tx_mcast);
1551 		m->m_flags |= M_MCAST;
1552 	} else
1553 		IEEE80211_NODE_STAT(ni, tx_ucast);
1554 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1555 
1556 	return m;
1557 bad:
1558 	if (m != NULL)
1559 		m_freem(m);
1560 	return NULL;
1561 #undef WH4
1562 #undef MC01
1563 }
1564 
1565 /*
1566  * Fragment the frame according to the specified mtu.
1567  * The size of the 802.11 header (w/o padding) is provided
1568  * so we don't need to recalculate it.  We create a new
1569  * mbuf for each fragment and chain it through m_nextpkt;
1570  * we might be able to optimize this by reusing the original
1571  * packet's mbufs but that is significantly more complicated.
1572  */
1573 static int
1574 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1575 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1576 {
1577 	struct ieee80211com *ic = vap->iv_ic;
1578 	struct ieee80211_frame *wh, *whf;
1579 	struct mbuf *m, *prev, *next;
1580 	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1581 	u_int hdrspace;
1582 
1583 	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1584 	KASSERT(m0->m_pkthdr.len > mtu,
1585 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1586 
1587 	/*
1588 	 * Honor driver DATAPAD requirement.
1589 	 */
1590 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1591 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1592 	else
1593 		hdrspace = hdrsize;
1594 
1595 	wh = mtod(m0, struct ieee80211_frame *);
1596 	/* NB: mark the first frag; it will be propagated below */
1597 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1598 	totalhdrsize = hdrspace + ciphdrsize;
1599 	fragno = 1;
1600 	off = mtu - ciphdrsize;
1601 	remainder = m0->m_pkthdr.len - off;
1602 	prev = m0;
1603 	do {
1604 		fragsize = totalhdrsize + remainder;
1605 		if (fragsize > mtu)
1606 			fragsize = mtu;
1607 		/* XXX fragsize can be >2048! */
1608 		KASSERT(fragsize < MCLBYTES,
1609 			("fragment size %u too big!", fragsize));
1610 		if (fragsize > MHLEN)
1611 			m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1612 		else
1613 			m = m_gethdr(M_NOWAIT, MT_DATA);
1614 		if (m == NULL)
1615 			goto bad;
1616 		/* leave room to prepend any cipher header */
1617 		m_align(m, fragsize - ciphdrsize);
1618 
1619 		/*
1620 		 * Form the header in the fragment.  Note that since
1621 		 * we mark the first fragment with the MORE_FRAG bit
1622 		 * it automatically is propagated to each fragment; we
1623 		 * need only clear it on the last fragment (done below).
1624 		 * NB: frag 1+ dont have Mesh Control field present.
1625 		 */
1626 		whf = mtod(m, struct ieee80211_frame *);
1627 		memcpy(whf, wh, hdrsize);
1628 #ifdef IEEE80211_SUPPORT_MESH
1629 		if (vap->iv_opmode == IEEE80211_M_MBSS) {
1630 			if (IEEE80211_IS_DSTODS(wh))
1631 				((struct ieee80211_qosframe_addr4 *)
1632 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1633 			else
1634 				((struct ieee80211_qosframe *)
1635 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1636 		}
1637 #endif
1638 		*(uint16_t *)&whf->i_seq[0] |= htole16(
1639 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1640 				IEEE80211_SEQ_FRAG_SHIFT);
1641 		fragno++;
1642 
1643 		payload = fragsize - totalhdrsize;
1644 		/* NB: destination is known to be contiguous */
1645 
1646 		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
1647 		m->m_len = hdrspace + payload;
1648 		m->m_pkthdr.len = hdrspace + payload;
1649 		m->m_flags |= M_FRAG;
1650 
1651 		/* chain up the fragment */
1652 		prev->m_nextpkt = m;
1653 		prev = m;
1654 
1655 		/* deduct fragment just formed */
1656 		remainder -= payload;
1657 		off += payload;
1658 	} while (remainder != 0);
1659 
1660 	/* set the last fragment */
1661 	m->m_flags |= M_LASTFRAG;
1662 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1663 
1664 	/* strip first mbuf now that everything has been copied */
1665 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1666 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1667 
1668 	vap->iv_stats.is_tx_fragframes++;
1669 	vap->iv_stats.is_tx_frags += fragno-1;
1670 
1671 	return 1;
1672 bad:
1673 	/* reclaim fragments but leave original frame for caller to free */
1674 	for (m = m0->m_nextpkt; m != NULL; m = next) {
1675 		next = m->m_nextpkt;
1676 		m->m_nextpkt = NULL;		/* XXX paranoid */
1677 		m_freem(m);
1678 	}
1679 	m0->m_nextpkt = NULL;
1680 	return 0;
1681 }
1682 
1683 /*
1684  * Add a supported rates element id to a frame.
1685  */
1686 uint8_t *
1687 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1688 {
1689 	int nrates;
1690 
1691 	*frm++ = IEEE80211_ELEMID_RATES;
1692 	nrates = rs->rs_nrates;
1693 	if (nrates > IEEE80211_RATE_SIZE)
1694 		nrates = IEEE80211_RATE_SIZE;
1695 	*frm++ = nrates;
1696 	memcpy(frm, rs->rs_rates, nrates);
1697 	return frm + nrates;
1698 }
1699 
1700 /*
1701  * Add an extended supported rates element id to a frame.
1702  */
1703 uint8_t *
1704 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1705 {
1706 	/*
1707 	 * Add an extended supported rates element if operating in 11g mode.
1708 	 */
1709 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1710 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1711 		*frm++ = IEEE80211_ELEMID_XRATES;
1712 		*frm++ = nrates;
1713 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1714 		frm += nrates;
1715 	}
1716 	return frm;
1717 }
1718 
1719 /*
1720  * Add an ssid element to a frame.
1721  */
1722 uint8_t *
1723 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1724 {
1725 	*frm++ = IEEE80211_ELEMID_SSID;
1726 	*frm++ = len;
1727 	memcpy(frm, ssid, len);
1728 	return frm + len;
1729 }
1730 
1731 /*
1732  * Add an erp element to a frame.
1733  */
1734 static uint8_t *
1735 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1736 {
1737 	uint8_t erp;
1738 
1739 	*frm++ = IEEE80211_ELEMID_ERP;
1740 	*frm++ = 1;
1741 	erp = 0;
1742 	if (ic->ic_nonerpsta != 0)
1743 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1744 	if (ic->ic_flags & IEEE80211_F_USEPROT)
1745 		erp |= IEEE80211_ERP_USE_PROTECTION;
1746 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1747 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1748 	*frm++ = erp;
1749 	return frm;
1750 }
1751 
1752 /*
1753  * Add a CFParams element to a frame.
1754  */
1755 static uint8_t *
1756 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1757 {
1758 #define	ADDSHORT(frm, v) do {	\
1759 	LE_WRITE_2(frm, v);	\
1760 	frm += 2;		\
1761 } while (0)
1762 	*frm++ = IEEE80211_ELEMID_CFPARMS;
1763 	*frm++ = 6;
1764 	*frm++ = 0;		/* CFP count */
1765 	*frm++ = 2;		/* CFP period */
1766 	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1767 	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1768 	return frm;
1769 #undef ADDSHORT
1770 }
1771 
1772 static __inline uint8_t *
1773 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1774 {
1775 	memcpy(frm, ie->ie_data, ie->ie_len);
1776 	return frm + ie->ie_len;
1777 }
1778 
1779 static __inline uint8_t *
1780 add_ie(uint8_t *frm, const uint8_t *ie)
1781 {
1782 	memcpy(frm, ie, 2 + ie[1]);
1783 	return frm + 2 + ie[1];
1784 }
1785 
1786 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1787 /*
1788  * Add a WME information element to a frame.
1789  */
1790 uint8_t *
1791 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1792 {
1793 	static const struct ieee80211_wme_info info = {
1794 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1795 		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1796 		.wme_oui	= { WME_OUI_BYTES },
1797 		.wme_type	= WME_OUI_TYPE,
1798 		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1799 		.wme_version	= WME_VERSION,
1800 		.wme_info	= 0,
1801 	};
1802 	memcpy(frm, &info, sizeof(info));
1803 	return frm + sizeof(info);
1804 }
1805 
1806 /*
1807  * Add a WME parameters element to a frame.
1808  */
1809 static uint8_t *
1810 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1811 {
1812 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1813 #define	ADDSHORT(frm, v) do {	\
1814 	LE_WRITE_2(frm, v);	\
1815 	frm += 2;		\
1816 } while (0)
1817 	/* NB: this works 'cuz a param has an info at the front */
1818 	static const struct ieee80211_wme_info param = {
1819 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1820 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1821 		.wme_oui	= { WME_OUI_BYTES },
1822 		.wme_type	= WME_OUI_TYPE,
1823 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1824 		.wme_version	= WME_VERSION,
1825 	};
1826 	int i;
1827 
1828 	memcpy(frm, &param, sizeof(param));
1829 	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1830 	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1831 	*frm++ = 0;					/* reserved field */
1832 	for (i = 0; i < WME_NUM_AC; i++) {
1833 		const struct wmeParams *ac =
1834 		       &wme->wme_bssChanParams.cap_wmeParams[i];
1835 		*frm++ = SM(i, WME_PARAM_ACI)
1836 		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1837 		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1838 		       ;
1839 		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1840 		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1841 		       ;
1842 		ADDSHORT(frm, ac->wmep_txopLimit);
1843 	}
1844 	return frm;
1845 #undef SM
1846 #undef ADDSHORT
1847 }
1848 #undef WME_OUI_BYTES
1849 
1850 /*
1851  * Add an 11h Power Constraint element to a frame.
1852  */
1853 static uint8_t *
1854 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1855 {
1856 	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1857 	/* XXX per-vap tx power limit? */
1858 	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1859 
1860 	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1861 	frm[1] = 1;
1862 	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1863 	return frm + 3;
1864 }
1865 
1866 /*
1867  * Add an 11h Power Capability element to a frame.
1868  */
1869 static uint8_t *
1870 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1871 {
1872 	frm[0] = IEEE80211_ELEMID_PWRCAP;
1873 	frm[1] = 2;
1874 	frm[2] = c->ic_minpower;
1875 	frm[3] = c->ic_maxpower;
1876 	return frm + 4;
1877 }
1878 
1879 /*
1880  * Add an 11h Supported Channels element to a frame.
1881  */
1882 static uint8_t *
1883 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1884 {
1885 	static const int ielen = 26;
1886 
1887 	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1888 	frm[1] = ielen;
1889 	/* XXX not correct */
1890 	memcpy(frm+2, ic->ic_chan_avail, ielen);
1891 	return frm + 2 + ielen;
1892 }
1893 
1894 /*
1895  * Add an 11h Quiet time element to a frame.
1896  */
1897 static uint8_t *
1898 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap)
1899 {
1900 	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
1901 
1902 	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
1903 	quiet->len = 6;
1904 	if (vap->iv_quiet_count_value == 1)
1905 		vap->iv_quiet_count_value = vap->iv_quiet_count;
1906 	else if (vap->iv_quiet_count_value > 1)
1907 		vap->iv_quiet_count_value--;
1908 
1909 	if (vap->iv_quiet_count_value == 0) {
1910 		/* value 0 is reserved as per 802.11h standerd */
1911 		vap->iv_quiet_count_value = 1;
1912 	}
1913 
1914 	quiet->tbttcount = vap->iv_quiet_count_value;
1915 	quiet->period = vap->iv_quiet_period;
1916 	quiet->duration = htole16(vap->iv_quiet_duration);
1917 	quiet->offset = htole16(vap->iv_quiet_offset);
1918 	return frm + sizeof(*quiet);
1919 }
1920 
1921 /*
1922  * Add an 11h Channel Switch Announcement element to a frame.
1923  * Note that we use the per-vap CSA count to adjust the global
1924  * counter so we can use this routine to form probe response
1925  * frames and get the current count.
1926  */
1927 static uint8_t *
1928 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
1929 {
1930 	struct ieee80211com *ic = vap->iv_ic;
1931 	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
1932 
1933 	csa->csa_ie = IEEE80211_ELEMID_CSA;
1934 	csa->csa_len = 3;
1935 	csa->csa_mode = 1;		/* XXX force quiet on channel */
1936 	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
1937 	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
1938 	return frm + sizeof(*csa);
1939 }
1940 
1941 /*
1942  * Add an 11h country information element to a frame.
1943  */
1944 static uint8_t *
1945 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
1946 {
1947 
1948 	if (ic->ic_countryie == NULL ||
1949 	    ic->ic_countryie_chan != ic->ic_bsschan) {
1950 		/*
1951 		 * Handle lazy construction of ie.  This is done on
1952 		 * first use and after a channel change that requires
1953 		 * re-calculation.
1954 		 */
1955 		if (ic->ic_countryie != NULL)
1956 			IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
1957 		ic->ic_countryie = ieee80211_alloc_countryie(ic);
1958 		if (ic->ic_countryie == NULL)
1959 			return frm;
1960 		ic->ic_countryie_chan = ic->ic_bsschan;
1961 	}
1962 	return add_appie(frm, ic->ic_countryie);
1963 }
1964 
1965 uint8_t *
1966 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
1967 {
1968 	if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
1969 		return (add_ie(frm, vap->iv_wpa_ie));
1970 	else {
1971 		/* XXX else complain? */
1972 		return (frm);
1973 	}
1974 }
1975 
1976 uint8_t *
1977 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
1978 {
1979 	if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
1980 		return (add_ie(frm, vap->iv_rsn_ie));
1981 	else {
1982 		/* XXX else complain? */
1983 		return (frm);
1984 	}
1985 }
1986 
1987 uint8_t *
1988 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
1989 {
1990 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
1991 		*frm++ = IEEE80211_ELEMID_QOS;
1992 		*frm++ = 1;
1993 		*frm++ = 0;
1994 	}
1995 
1996 	return (frm);
1997 }
1998 
1999 /*
2000  * Send a probe request frame with the specified ssid
2001  * and any optional information element data.
2002  */
2003 int
2004 ieee80211_send_probereq(struct ieee80211_node *ni,
2005 	const uint8_t sa[IEEE80211_ADDR_LEN],
2006 	const uint8_t da[IEEE80211_ADDR_LEN],
2007 	const uint8_t bssid[IEEE80211_ADDR_LEN],
2008 	const uint8_t *ssid, size_t ssidlen)
2009 {
2010 	struct ieee80211vap *vap = ni->ni_vap;
2011 	struct ieee80211com *ic = ni->ni_ic;
2012 	const struct ieee80211_txparam *tp;
2013 	struct ieee80211_bpf_params params;
2014 	struct ieee80211_frame *wh;
2015 	const struct ieee80211_rateset *rs;
2016 	struct mbuf *m;
2017 	uint8_t *frm;
2018 	int ret;
2019 
2020 	if (vap->iv_state == IEEE80211_S_CAC) {
2021 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
2022 		    "block %s frame in CAC state", "probe request");
2023 		vap->iv_stats.is_tx_badstate++;
2024 		return EIO;		/* XXX */
2025 	}
2026 
2027 	/*
2028 	 * Hold a reference on the node so it doesn't go away until after
2029 	 * the xmit is complete all the way in the driver.  On error we
2030 	 * will remove our reference.
2031 	 */
2032 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2033 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2034 		__func__, __LINE__,
2035 		ni, ether_sprintf(ni->ni_macaddr),
2036 		ieee80211_node_refcnt(ni)+1);
2037 	ieee80211_ref_node(ni);
2038 
2039 	/*
2040 	 * prreq frame format
2041 	 *	[tlv] ssid
2042 	 *	[tlv] supported rates
2043 	 *	[tlv] RSN (optional)
2044 	 *	[tlv] extended supported rates
2045 	 *	[tlv] WPA (optional)
2046 	 *	[tlv] user-specified ie's
2047 	 */
2048 	m = ieee80211_getmgtframe(&frm,
2049 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2050 	       	 2 + IEEE80211_NWID_LEN
2051 	       + 2 + IEEE80211_RATE_SIZE
2052 	       + sizeof(struct ieee80211_ie_wpa)
2053 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2054 	       + sizeof(struct ieee80211_ie_wpa)
2055 	       + (vap->iv_appie_probereq != NULL ?
2056 		   vap->iv_appie_probereq->ie_len : 0)
2057 	);
2058 	if (m == NULL) {
2059 		vap->iv_stats.is_tx_nobuf++;
2060 		ieee80211_free_node(ni);
2061 		return ENOMEM;
2062 	}
2063 
2064 	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2065 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2066 	frm = ieee80211_add_rates(frm, rs);
2067 	frm = ieee80211_add_rsn(frm, vap);
2068 	frm = ieee80211_add_xrates(frm, rs);
2069 	frm = ieee80211_add_wpa(frm, vap);
2070 	if (vap->iv_appie_probereq != NULL)
2071 		frm = add_appie(frm, vap->iv_appie_probereq);
2072 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2073 
2074 	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2075 	    ("leading space %zd", M_LEADINGSPACE(m)));
2076 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2077 	if (m == NULL) {
2078 		/* NB: cannot happen */
2079 		ieee80211_free_node(ni);
2080 		return ENOMEM;
2081 	}
2082 
2083 	IEEE80211_TX_LOCK(ic);
2084 	wh = mtod(m, struct ieee80211_frame *);
2085 	ieee80211_send_setup(ni, m,
2086 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2087 	     IEEE80211_NONQOS_TID, sa, da, bssid);
2088 	/* XXX power management? */
2089 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2090 
2091 	M_WME_SETAC(m, WME_AC_BE);
2092 
2093 	IEEE80211_NODE_STAT(ni, tx_probereq);
2094 	IEEE80211_NODE_STAT(ni, tx_mgmt);
2095 
2096 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2097 	    "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
2098 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
2099 	    ssidlen, ssid);
2100 
2101 	memset(&params, 0, sizeof(params));
2102 	params.ibp_pri = M_WME_GETAC(m);
2103 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2104 	params.ibp_rate0 = tp->mgmtrate;
2105 	if (IEEE80211_IS_MULTICAST(da)) {
2106 		params.ibp_flags |= IEEE80211_BPF_NOACK;
2107 		params.ibp_try0 = 1;
2108 	} else
2109 		params.ibp_try0 = tp->maxretry;
2110 	params.ibp_power = ni->ni_txpower;
2111 	ret = ieee80211_raw_output(vap, ni, m, &params);
2112 	IEEE80211_TX_UNLOCK(ic);
2113 	return (ret);
2114 }
2115 
2116 /*
2117  * Calculate capability information for mgt frames.
2118  */
2119 uint16_t
2120 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2121 {
2122 	struct ieee80211com *ic = vap->iv_ic;
2123 	uint16_t capinfo;
2124 
2125 	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2126 
2127 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2128 		capinfo = IEEE80211_CAPINFO_ESS;
2129 	else if (vap->iv_opmode == IEEE80211_M_IBSS)
2130 		capinfo = IEEE80211_CAPINFO_IBSS;
2131 	else
2132 		capinfo = 0;
2133 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2134 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2135 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2136 	    IEEE80211_IS_CHAN_2GHZ(chan))
2137 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2138 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2139 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2140 	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2141 		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2142 	return capinfo;
2143 }
2144 
2145 /*
2146  * Send a management frame.  The node is for the destination (or ic_bss
2147  * when in station mode).  Nodes other than ic_bss have their reference
2148  * count bumped to reflect our use for an indeterminant time.
2149  */
2150 int
2151 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2152 {
2153 #define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2154 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2155 	struct ieee80211vap *vap = ni->ni_vap;
2156 	struct ieee80211com *ic = ni->ni_ic;
2157 	struct ieee80211_node *bss = vap->iv_bss;
2158 	struct ieee80211_bpf_params params;
2159 	struct mbuf *m;
2160 	uint8_t *frm;
2161 	uint16_t capinfo;
2162 	int has_challenge, is_shared_key, ret, status;
2163 
2164 	KASSERT(ni != NULL, ("null node"));
2165 
2166 	/*
2167 	 * Hold a reference on the node so it doesn't go away until after
2168 	 * the xmit is complete all the way in the driver.  On error we
2169 	 * will remove our reference.
2170 	 */
2171 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2172 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2173 		__func__, __LINE__,
2174 		ni, ether_sprintf(ni->ni_macaddr),
2175 		ieee80211_node_refcnt(ni)+1);
2176 	ieee80211_ref_node(ni);
2177 
2178 	memset(&params, 0, sizeof(params));
2179 	switch (type) {
2180 
2181 	case IEEE80211_FC0_SUBTYPE_AUTH:
2182 		status = arg >> 16;
2183 		arg &= 0xffff;
2184 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2185 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2186 		    ni->ni_challenge != NULL);
2187 
2188 		/*
2189 		 * Deduce whether we're doing open authentication or
2190 		 * shared key authentication.  We do the latter if
2191 		 * we're in the middle of a shared key authentication
2192 		 * handshake or if we're initiating an authentication
2193 		 * request and configured to use shared key.
2194 		 */
2195 		is_shared_key = has_challenge ||
2196 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2197 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2198 		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
2199 
2200 		m = ieee80211_getmgtframe(&frm,
2201 			  ic->ic_headroom + sizeof(struct ieee80211_frame),
2202 			  3 * sizeof(uint16_t)
2203 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2204 				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
2205 		);
2206 		if (m == NULL)
2207 			senderr(ENOMEM, is_tx_nobuf);
2208 
2209 		((uint16_t *)frm)[0] =
2210 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2211 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
2212 		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
2213 		((uint16_t *)frm)[2] = htole16(status);/* status */
2214 
2215 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2216 			((uint16_t *)frm)[3] =
2217 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
2218 			    IEEE80211_ELEMID_CHALLENGE);
2219 			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2220 			    IEEE80211_CHALLENGE_LEN);
2221 			m->m_pkthdr.len = m->m_len =
2222 				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2223 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2224 				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2225 				    "request encrypt frame (%s)", __func__);
2226 				/* mark frame for encryption */
2227 				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2228 			}
2229 		} else
2230 			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2231 
2232 		/* XXX not right for shared key */
2233 		if (status == IEEE80211_STATUS_SUCCESS)
2234 			IEEE80211_NODE_STAT(ni, tx_auth);
2235 		else
2236 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
2237 
2238 		if (vap->iv_opmode == IEEE80211_M_STA)
2239 			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2240 				(void *) vap->iv_state);
2241 		break;
2242 
2243 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2244 		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2245 		    "send station deauthenticate (reason %d)", arg);
2246 		m = ieee80211_getmgtframe(&frm,
2247 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2248 			sizeof(uint16_t));
2249 		if (m == NULL)
2250 			senderr(ENOMEM, is_tx_nobuf);
2251 		*(uint16_t *)frm = htole16(arg);	/* reason */
2252 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2253 
2254 		IEEE80211_NODE_STAT(ni, tx_deauth);
2255 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2256 
2257 		ieee80211_node_unauthorize(ni);		/* port closed */
2258 		break;
2259 
2260 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2261 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2262 		/*
2263 		 * asreq frame format
2264 		 *	[2] capability information
2265 		 *	[2] listen interval
2266 		 *	[6*] current AP address (reassoc only)
2267 		 *	[tlv] ssid
2268 		 *	[tlv] supported rates
2269 		 *	[tlv] extended supported rates
2270 		 *	[4] power capability (optional)
2271 		 *	[28] supported channels (optional)
2272 		 *	[tlv] HT capabilities
2273 		 *	[tlv] WME (optional)
2274 		 *	[tlv] Vendor OUI HT capabilities (optional)
2275 		 *	[tlv] Atheros capabilities (if negotiated)
2276 		 *	[tlv] AppIE's (optional)
2277 		 */
2278 		m = ieee80211_getmgtframe(&frm,
2279 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2280 			 sizeof(uint16_t)
2281 		       + sizeof(uint16_t)
2282 		       + IEEE80211_ADDR_LEN
2283 		       + 2 + IEEE80211_NWID_LEN
2284 		       + 2 + IEEE80211_RATE_SIZE
2285 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2286 		       + 4
2287 		       + 2 + 26
2288 		       + sizeof(struct ieee80211_wme_info)
2289 		       + sizeof(struct ieee80211_ie_htcap)
2290 		       + 4 + sizeof(struct ieee80211_ie_htcap)
2291 #ifdef IEEE80211_SUPPORT_SUPERG
2292 		       + sizeof(struct ieee80211_ath_ie)
2293 #endif
2294 		       + (vap->iv_appie_wpa != NULL ?
2295 				vap->iv_appie_wpa->ie_len : 0)
2296 		       + (vap->iv_appie_assocreq != NULL ?
2297 				vap->iv_appie_assocreq->ie_len : 0)
2298 		);
2299 		if (m == NULL)
2300 			senderr(ENOMEM, is_tx_nobuf);
2301 
2302 		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2303 		    ("wrong mode %u", vap->iv_opmode));
2304 		capinfo = IEEE80211_CAPINFO_ESS;
2305 		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2306 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2307 		/*
2308 		 * NB: Some 11a AP's reject the request when
2309 		 *     short premable is set.
2310 		 */
2311 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2312 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2313 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2314 		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2315 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2316 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2317 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2318 		    (vap->iv_flags & IEEE80211_F_DOTH))
2319 			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2320 		*(uint16_t *)frm = htole16(capinfo);
2321 		frm += 2;
2322 
2323 		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2324 		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2325 						    bss->ni_intval));
2326 		frm += 2;
2327 
2328 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2329 			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2330 			frm += IEEE80211_ADDR_LEN;
2331 		}
2332 
2333 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2334 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2335 		frm = ieee80211_add_rsn(frm, vap);
2336 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2337 		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2338 			frm = ieee80211_add_powercapability(frm,
2339 			    ic->ic_curchan);
2340 			frm = ieee80211_add_supportedchannels(frm, ic);
2341 		}
2342 
2343 		/*
2344 		 * Check the channel - we may be using an 11n NIC with an
2345 		 * 11n capable station, but we're configured to be an 11b
2346 		 * channel.
2347 		 */
2348 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2349 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2350 		    ni->ni_ies.htcap_ie != NULL &&
2351 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
2352 			frm = ieee80211_add_htcap(frm, ni);
2353 		}
2354 		frm = ieee80211_add_wpa(frm, vap);
2355 		if ((ic->ic_flags & IEEE80211_F_WME) &&
2356 		    ni->ni_ies.wme_ie != NULL)
2357 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2358 
2359 		/*
2360 		 * Same deal - only send HT info if we're on an 11n
2361 		 * capable channel.
2362 		 */
2363 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2364 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2365 		    ni->ni_ies.htcap_ie != NULL &&
2366 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
2367 			frm = ieee80211_add_htcap_vendor(frm, ni);
2368 		}
2369 #ifdef IEEE80211_SUPPORT_SUPERG
2370 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2371 			frm = ieee80211_add_ath(frm,
2372 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2373 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2374 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2375 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2376 		}
2377 #endif /* IEEE80211_SUPPORT_SUPERG */
2378 		if (vap->iv_appie_assocreq != NULL)
2379 			frm = add_appie(frm, vap->iv_appie_assocreq);
2380 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2381 
2382 		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2383 			(void *) vap->iv_state);
2384 		break;
2385 
2386 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2387 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2388 		/*
2389 		 * asresp frame format
2390 		 *	[2] capability information
2391 		 *	[2] status
2392 		 *	[2] association ID
2393 		 *	[tlv] supported rates
2394 		 *	[tlv] extended supported rates
2395 		 *	[tlv] HT capabilities (standard, if STA enabled)
2396 		 *	[tlv] HT information (standard, if STA enabled)
2397 		 *	[tlv] WME (if configured and STA enabled)
2398 		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2399 		 *	[tlv] HT information (vendor OUI, if STA enabled)
2400 		 *	[tlv] Atheros capabilities (if STA enabled)
2401 		 *	[tlv] AppIE's (optional)
2402 		 */
2403 		m = ieee80211_getmgtframe(&frm,
2404 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2405 			 sizeof(uint16_t)
2406 		       + sizeof(uint16_t)
2407 		       + sizeof(uint16_t)
2408 		       + 2 + IEEE80211_RATE_SIZE
2409 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2410 		       + sizeof(struct ieee80211_ie_htcap) + 4
2411 		       + sizeof(struct ieee80211_ie_htinfo) + 4
2412 		       + sizeof(struct ieee80211_wme_param)
2413 #ifdef IEEE80211_SUPPORT_SUPERG
2414 		       + sizeof(struct ieee80211_ath_ie)
2415 #endif
2416 		       + (vap->iv_appie_assocresp != NULL ?
2417 				vap->iv_appie_assocresp->ie_len : 0)
2418 		);
2419 		if (m == NULL)
2420 			senderr(ENOMEM, is_tx_nobuf);
2421 
2422 		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2423 		*(uint16_t *)frm = htole16(capinfo);
2424 		frm += 2;
2425 
2426 		*(uint16_t *)frm = htole16(arg);	/* status */
2427 		frm += 2;
2428 
2429 		if (arg == IEEE80211_STATUS_SUCCESS) {
2430 			*(uint16_t *)frm = htole16(ni->ni_associd);
2431 			IEEE80211_NODE_STAT(ni, tx_assoc);
2432 		} else
2433 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2434 		frm += 2;
2435 
2436 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2437 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2438 		/* NB: respond according to what we received */
2439 		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2440 			frm = ieee80211_add_htcap(frm, ni);
2441 			frm = ieee80211_add_htinfo(frm, ni);
2442 		}
2443 		if ((vap->iv_flags & IEEE80211_F_WME) &&
2444 		    ni->ni_ies.wme_ie != NULL)
2445 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2446 		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2447 			frm = ieee80211_add_htcap_vendor(frm, ni);
2448 			frm = ieee80211_add_htinfo_vendor(frm, ni);
2449 		}
2450 #ifdef IEEE80211_SUPPORT_SUPERG
2451 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2452 			frm = ieee80211_add_ath(frm,
2453 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2454 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2455 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2456 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2457 #endif /* IEEE80211_SUPPORT_SUPERG */
2458 		if (vap->iv_appie_assocresp != NULL)
2459 			frm = add_appie(frm, vap->iv_appie_assocresp);
2460 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2461 		break;
2462 
2463 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2464 		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2465 		    "send station disassociate (reason %d)", arg);
2466 		m = ieee80211_getmgtframe(&frm,
2467 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2468 			sizeof(uint16_t));
2469 		if (m == NULL)
2470 			senderr(ENOMEM, is_tx_nobuf);
2471 		*(uint16_t *)frm = htole16(arg);	/* reason */
2472 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2473 
2474 		IEEE80211_NODE_STAT(ni, tx_disassoc);
2475 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2476 		break;
2477 
2478 	default:
2479 		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2480 		    "invalid mgmt frame type %u", type);
2481 		senderr(EINVAL, is_tx_unknownmgt);
2482 		/* NOTREACHED */
2483 	}
2484 
2485 	/* NB: force non-ProbeResp frames to the highest queue */
2486 	params.ibp_pri = WME_AC_VO;
2487 	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2488 	/* NB: we know all frames are unicast */
2489 	params.ibp_try0 = bss->ni_txparms->maxretry;
2490 	params.ibp_power = bss->ni_txpower;
2491 	return ieee80211_mgmt_output(ni, m, type, &params);
2492 bad:
2493 	ieee80211_free_node(ni);
2494 	return ret;
2495 #undef senderr
2496 #undef HTFLAGS
2497 }
2498 
2499 /*
2500  * Return an mbuf with a probe response frame in it.
2501  * Space is left to prepend and 802.11 header at the
2502  * front but it's left to the caller to fill in.
2503  */
2504 struct mbuf *
2505 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2506 {
2507 	struct ieee80211vap *vap = bss->ni_vap;
2508 	struct ieee80211com *ic = bss->ni_ic;
2509 	const struct ieee80211_rateset *rs;
2510 	struct mbuf *m;
2511 	uint16_t capinfo;
2512 	uint8_t *frm;
2513 
2514 	/*
2515 	 * probe response frame format
2516 	 *	[8] time stamp
2517 	 *	[2] beacon interval
2518 	 *	[2] cabability information
2519 	 *	[tlv] ssid
2520 	 *	[tlv] supported rates
2521 	 *	[tlv] parameter set (FH/DS)
2522 	 *	[tlv] parameter set (IBSS)
2523 	 *	[tlv] country (optional)
2524 	 *	[3] power control (optional)
2525 	 *	[5] channel switch announcement (CSA) (optional)
2526 	 *	[tlv] extended rate phy (ERP)
2527 	 *	[tlv] extended supported rates
2528 	 *	[tlv] RSN (optional)
2529 	 *	[tlv] HT capabilities
2530 	 *	[tlv] HT information
2531 	 *	[tlv] WPA (optional)
2532 	 *	[tlv] WME (optional)
2533 	 *	[tlv] Vendor OUI HT capabilities (optional)
2534 	 *	[tlv] Vendor OUI HT information (optional)
2535 	 *	[tlv] Atheros capabilities
2536 	 *	[tlv] AppIE's (optional)
2537 	 *	[tlv] Mesh ID (MBSS)
2538 	 *	[tlv] Mesh Conf (MBSS)
2539 	 */
2540 	m = ieee80211_getmgtframe(&frm,
2541 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2542 		 8
2543 	       + sizeof(uint16_t)
2544 	       + sizeof(uint16_t)
2545 	       + 2 + IEEE80211_NWID_LEN
2546 	       + 2 + IEEE80211_RATE_SIZE
2547 	       + 7	/* max(7,3) */
2548 	       + IEEE80211_COUNTRY_MAX_SIZE
2549 	       + 3
2550 	       + sizeof(struct ieee80211_csa_ie)
2551 	       + sizeof(struct ieee80211_quiet_ie)
2552 	       + 3
2553 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2554 	       + sizeof(struct ieee80211_ie_wpa)
2555 	       + sizeof(struct ieee80211_ie_htcap)
2556 	       + sizeof(struct ieee80211_ie_htinfo)
2557 	       + sizeof(struct ieee80211_ie_wpa)
2558 	       + sizeof(struct ieee80211_wme_param)
2559 	       + 4 + sizeof(struct ieee80211_ie_htcap)
2560 	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2561 #ifdef IEEE80211_SUPPORT_SUPERG
2562 	       + sizeof(struct ieee80211_ath_ie)
2563 #endif
2564 #ifdef IEEE80211_SUPPORT_MESH
2565 	       + 2 + IEEE80211_MESHID_LEN
2566 	       + sizeof(struct ieee80211_meshconf_ie)
2567 #endif
2568 	       + (vap->iv_appie_proberesp != NULL ?
2569 			vap->iv_appie_proberesp->ie_len : 0)
2570 	);
2571 	if (m == NULL) {
2572 		vap->iv_stats.is_tx_nobuf++;
2573 		return NULL;
2574 	}
2575 
2576 	memset(frm, 0, 8);	/* timestamp should be filled later */
2577 	frm += 8;
2578 	*(uint16_t *)frm = htole16(bss->ni_intval);
2579 	frm += 2;
2580 	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2581 	*(uint16_t *)frm = htole16(capinfo);
2582 	frm += 2;
2583 
2584 	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2585 	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2586 	frm = ieee80211_add_rates(frm, rs);
2587 
2588 	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2589 		*frm++ = IEEE80211_ELEMID_FHPARMS;
2590 		*frm++ = 5;
2591 		*frm++ = bss->ni_fhdwell & 0x00ff;
2592 		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2593 		*frm++ = IEEE80211_FH_CHANSET(
2594 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2595 		*frm++ = IEEE80211_FH_CHANPAT(
2596 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2597 		*frm++ = bss->ni_fhindex;
2598 	} else {
2599 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2600 		*frm++ = 1;
2601 		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2602 	}
2603 
2604 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2605 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2606 		*frm++ = 2;
2607 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2608 	}
2609 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2610 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2611 		frm = ieee80211_add_countryie(frm, ic);
2612 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2613 		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2614 			frm = ieee80211_add_powerconstraint(frm, vap);
2615 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2616 			frm = ieee80211_add_csa(frm, vap);
2617 	}
2618 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2619 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2620 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2621 			if (vap->iv_quiet)
2622 				frm = ieee80211_add_quiet(frm, vap);
2623 		}
2624 	}
2625 	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2626 		frm = ieee80211_add_erp(frm, ic);
2627 	frm = ieee80211_add_xrates(frm, rs);
2628 	frm = ieee80211_add_rsn(frm, vap);
2629 	/*
2630 	 * NB: legacy 11b clients do not get certain ie's.
2631 	 *     The caller identifies such clients by passing
2632 	 *     a token in legacy to us.  Could expand this to be
2633 	 *     any legacy client for stuff like HT ie's.
2634 	 */
2635 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2636 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2637 		frm = ieee80211_add_htcap(frm, bss);
2638 		frm = ieee80211_add_htinfo(frm, bss);
2639 	}
2640 	frm = ieee80211_add_wpa(frm, vap);
2641 	if (vap->iv_flags & IEEE80211_F_WME)
2642 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2643 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2644 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
2645 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2646 		frm = ieee80211_add_htcap_vendor(frm, bss);
2647 		frm = ieee80211_add_htinfo_vendor(frm, bss);
2648 	}
2649 #ifdef IEEE80211_SUPPORT_SUPERG
2650 	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
2651 	    legacy != IEEE80211_SEND_LEGACY_11B)
2652 		frm = ieee80211_add_athcaps(frm, bss);
2653 #endif
2654 	if (vap->iv_appie_proberesp != NULL)
2655 		frm = add_appie(frm, vap->iv_appie_proberesp);
2656 #ifdef IEEE80211_SUPPORT_MESH
2657 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2658 		frm = ieee80211_add_meshid(frm, vap);
2659 		frm = ieee80211_add_meshconf(frm, vap);
2660 	}
2661 #endif
2662 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2663 
2664 	return m;
2665 }
2666 
2667 /*
2668  * Send a probe response frame to the specified mac address.
2669  * This does not go through the normal mgt frame api so we
2670  * can specify the destination address and re-use the bss node
2671  * for the sta reference.
2672  */
2673 int
2674 ieee80211_send_proberesp(struct ieee80211vap *vap,
2675 	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2676 {
2677 	struct ieee80211_node *bss = vap->iv_bss;
2678 	struct ieee80211com *ic = vap->iv_ic;
2679 	struct ieee80211_frame *wh;
2680 	struct mbuf *m;
2681 	int ret;
2682 
2683 	if (vap->iv_state == IEEE80211_S_CAC) {
2684 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2685 		    "block %s frame in CAC state", "probe response");
2686 		vap->iv_stats.is_tx_badstate++;
2687 		return EIO;		/* XXX */
2688 	}
2689 
2690 	/*
2691 	 * Hold a reference on the node so it doesn't go away until after
2692 	 * the xmit is complete all the way in the driver.  On error we
2693 	 * will remove our reference.
2694 	 */
2695 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2696 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2697 	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2698 	    ieee80211_node_refcnt(bss)+1);
2699 	ieee80211_ref_node(bss);
2700 
2701 	m = ieee80211_alloc_proberesp(bss, legacy);
2702 	if (m == NULL) {
2703 		ieee80211_free_node(bss);
2704 		return ENOMEM;
2705 	}
2706 
2707 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2708 	KASSERT(m != NULL, ("no room for header"));
2709 
2710 	IEEE80211_TX_LOCK(ic);
2711 	wh = mtod(m, struct ieee80211_frame *);
2712 	ieee80211_send_setup(bss, m,
2713 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2714 	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2715 	/* XXX power management? */
2716 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2717 
2718 	M_WME_SETAC(m, WME_AC_BE);
2719 
2720 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2721 	    "send probe resp on channel %u to %s%s\n",
2722 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2723 	    legacy ? " <legacy>" : "");
2724 	IEEE80211_NODE_STAT(bss, tx_mgmt);
2725 
2726 	ret = ieee80211_raw_output(vap, bss, m, NULL);
2727 	IEEE80211_TX_UNLOCK(ic);
2728 	return (ret);
2729 }
2730 
2731 /*
2732  * Allocate and build a RTS (Request To Send) control frame.
2733  */
2734 struct mbuf *
2735 ieee80211_alloc_rts(struct ieee80211com *ic,
2736 	const uint8_t ra[IEEE80211_ADDR_LEN],
2737 	const uint8_t ta[IEEE80211_ADDR_LEN],
2738 	uint16_t dur)
2739 {
2740 	struct ieee80211_frame_rts *rts;
2741 	struct mbuf *m;
2742 
2743 	/* XXX honor ic_headroom */
2744 	m = m_gethdr(M_NOWAIT, MT_DATA);
2745 	if (m != NULL) {
2746 		rts = mtod(m, struct ieee80211_frame_rts *);
2747 		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2748 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2749 		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2750 		*(u_int16_t *)rts->i_dur = htole16(dur);
2751 		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2752 		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2753 
2754 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2755 	}
2756 	return m;
2757 }
2758 
2759 /*
2760  * Allocate and build a CTS (Clear To Send) control frame.
2761  */
2762 struct mbuf *
2763 ieee80211_alloc_cts(struct ieee80211com *ic,
2764 	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2765 {
2766 	struct ieee80211_frame_cts *cts;
2767 	struct mbuf *m;
2768 
2769 	/* XXX honor ic_headroom */
2770 	m = m_gethdr(M_NOWAIT, MT_DATA);
2771 	if (m != NULL) {
2772 		cts = mtod(m, struct ieee80211_frame_cts *);
2773 		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2774 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2775 		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2776 		*(u_int16_t *)cts->i_dur = htole16(dur);
2777 		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2778 
2779 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2780 	}
2781 	return m;
2782 }
2783 
2784 static void
2785 ieee80211_tx_mgt_timeout(void *arg)
2786 {
2787 	struct ieee80211vap *vap = arg;
2788 
2789 	IEEE80211_LOCK(vap->iv_ic);
2790 	if (vap->iv_state != IEEE80211_S_INIT &&
2791 	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2792 		/*
2793 		 * NB: it's safe to specify a timeout as the reason here;
2794 		 *     it'll only be used in the right state.
2795 		 */
2796 		ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
2797 			IEEE80211_SCAN_FAIL_TIMEOUT);
2798 	}
2799 	IEEE80211_UNLOCK(vap->iv_ic);
2800 }
2801 
2802 /*
2803  * This is the callback set on net80211-sourced transmitted
2804  * authentication request frames.
2805  *
2806  * This does a couple of things:
2807  *
2808  * + If the frame transmitted was a success, it schedules a future
2809  *   event which will transition the interface to scan.
2810  *   If a state transition _then_ occurs before that event occurs,
2811  *   said state transition will cancel this callout.
2812  *
2813  * + If the frame transmit was a failure, it immediately schedules
2814  *   the transition back to scan.
2815  */
2816 static void
2817 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2818 {
2819 	struct ieee80211vap *vap = ni->ni_vap;
2820 	enum ieee80211_state ostate = (enum ieee80211_state) arg;
2821 
2822 	/*
2823 	 * Frame transmit completed; arrange timer callback.  If
2824 	 * transmit was successfuly we wait for response.  Otherwise
2825 	 * we arrange an immediate callback instead of doing the
2826 	 * callback directly since we don't know what state the driver
2827 	 * is in (e.g. what locks it is holding).  This work should
2828 	 * not be too time-critical and not happen too often so the
2829 	 * added overhead is acceptable.
2830 	 *
2831 	 * XXX what happens if !acked but response shows up before callback?
2832 	 */
2833 	if (vap->iv_state == ostate) {
2834 		callout_reset(&vap->iv_mgtsend,
2835 			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2836 			ieee80211_tx_mgt_timeout, vap);
2837 	}
2838 }
2839 
2840 static void
2841 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2842 	struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni)
2843 {
2844 	struct ieee80211vap *vap = ni->ni_vap;
2845 	struct ieee80211com *ic = ni->ni_ic;
2846 	struct ieee80211_rateset *rs = &ni->ni_rates;
2847 	uint16_t capinfo;
2848 
2849 	/*
2850 	 * beacon frame format
2851 	 *	[8] time stamp
2852 	 *	[2] beacon interval
2853 	 *	[2] cabability information
2854 	 *	[tlv] ssid
2855 	 *	[tlv] supported rates
2856 	 *	[3] parameter set (DS)
2857 	 *	[8] CF parameter set (optional)
2858 	 *	[tlv] parameter set (IBSS/TIM)
2859 	 *	[tlv] country (optional)
2860 	 *	[3] power control (optional)
2861 	 *	[5] channel switch announcement (CSA) (optional)
2862 	 *	[tlv] extended rate phy (ERP)
2863 	 *	[tlv] extended supported rates
2864 	 *	[tlv] RSN parameters
2865 	 *	[tlv] HT capabilities
2866 	 *	[tlv] HT information
2867 	 * XXX Vendor-specific OIDs (e.g. Atheros)
2868 	 *	[tlv] WPA parameters
2869 	 *	[tlv] WME parameters
2870 	 *	[tlv] Vendor OUI HT capabilities (optional)
2871 	 *	[tlv] Vendor OUI HT information (optional)
2872 	 *	[tlv] Atheros capabilities (optional)
2873 	 *	[tlv] TDMA parameters (optional)
2874 	 *	[tlv] Mesh ID (MBSS)
2875 	 *	[tlv] Mesh Conf (MBSS)
2876 	 *	[tlv] application data (optional)
2877 	 */
2878 
2879 	memset(bo, 0, sizeof(*bo));
2880 
2881 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
2882 	frm += 8;
2883 	*(uint16_t *)frm = htole16(ni->ni_intval);
2884 	frm += 2;
2885 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
2886 	bo->bo_caps = (uint16_t *)frm;
2887 	*(uint16_t *)frm = htole16(capinfo);
2888 	frm += 2;
2889 	*frm++ = IEEE80211_ELEMID_SSID;
2890 	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2891 		*frm++ = ni->ni_esslen;
2892 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
2893 		frm += ni->ni_esslen;
2894 	} else
2895 		*frm++ = 0;
2896 	frm = ieee80211_add_rates(frm, rs);
2897 	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2898 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2899 		*frm++ = 1;
2900 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2901 	}
2902 	if (ic->ic_flags & IEEE80211_F_PCF) {
2903 		bo->bo_cfp = frm;
2904 		frm = ieee80211_add_cfparms(frm, ic);
2905 	}
2906 	bo->bo_tim = frm;
2907 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2908 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2909 		*frm++ = 2;
2910 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2911 		bo->bo_tim_len = 0;
2912 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2913 	    vap->iv_opmode == IEEE80211_M_MBSS) {
2914 		/* TIM IE is the same for Mesh and Hostap */
2915 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2916 
2917 		tie->tim_ie = IEEE80211_ELEMID_TIM;
2918 		tie->tim_len = 4;	/* length */
2919 		tie->tim_count = 0;	/* DTIM count */
2920 		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
2921 		tie->tim_bitctl = 0;	/* bitmap control */
2922 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
2923 		frm += sizeof(struct ieee80211_tim_ie);
2924 		bo->bo_tim_len = 1;
2925 	}
2926 	bo->bo_tim_trailer = frm;
2927 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2928 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2929 		frm = ieee80211_add_countryie(frm, ic);
2930 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2931 		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
2932 			frm = ieee80211_add_powerconstraint(frm, vap);
2933 		bo->bo_csa = frm;
2934 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2935 			frm = ieee80211_add_csa(frm, vap);
2936 	} else
2937 		bo->bo_csa = frm;
2938 
2939 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2940 		bo->bo_quiet = frm;
2941 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2942 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2943 			if (vap->iv_quiet)
2944 				frm = ieee80211_add_quiet(frm,vap);
2945 		}
2946 	} else
2947 		bo->bo_quiet = frm;
2948 
2949 	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
2950 		bo->bo_erp = frm;
2951 		frm = ieee80211_add_erp(frm, ic);
2952 	}
2953 	frm = ieee80211_add_xrates(frm, rs);
2954 	frm = ieee80211_add_rsn(frm, vap);
2955 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2956 		frm = ieee80211_add_htcap(frm, ni);
2957 		bo->bo_htinfo = frm;
2958 		frm = ieee80211_add_htinfo(frm, ni);
2959 	}
2960 	frm = ieee80211_add_wpa(frm, vap);
2961 	if (vap->iv_flags & IEEE80211_F_WME) {
2962 		bo->bo_wme = frm;
2963 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2964 	}
2965 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2966 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
2967 		frm = ieee80211_add_htcap_vendor(frm, ni);
2968 		frm = ieee80211_add_htinfo_vendor(frm, ni);
2969 	}
2970 #ifdef IEEE80211_SUPPORT_SUPERG
2971 	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
2972 		bo->bo_ath = frm;
2973 		frm = ieee80211_add_athcaps(frm, ni);
2974 	}
2975 #endif
2976 #ifdef IEEE80211_SUPPORT_TDMA
2977 	if (vap->iv_caps & IEEE80211_C_TDMA) {
2978 		bo->bo_tdma = frm;
2979 		frm = ieee80211_add_tdma(frm, vap);
2980 	}
2981 #endif
2982 	if (vap->iv_appie_beacon != NULL) {
2983 		bo->bo_appie = frm;
2984 		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
2985 		frm = add_appie(frm, vap->iv_appie_beacon);
2986 	}
2987 #ifdef IEEE80211_SUPPORT_MESH
2988 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2989 		frm = ieee80211_add_meshid(frm, vap);
2990 		bo->bo_meshconf = frm;
2991 		frm = ieee80211_add_meshconf(frm, vap);
2992 	}
2993 #endif
2994 	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
2995 	bo->bo_csa_trailer_len = frm - bo->bo_csa;
2996 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2997 }
2998 
2999 /*
3000  * Allocate a beacon frame and fillin the appropriate bits.
3001  */
3002 struct mbuf *
3003 ieee80211_beacon_alloc(struct ieee80211_node *ni,
3004 	struct ieee80211_beacon_offsets *bo)
3005 {
3006 	struct ieee80211vap *vap = ni->ni_vap;
3007 	struct ieee80211com *ic = ni->ni_ic;
3008 	struct ifnet *ifp = vap->iv_ifp;
3009 	struct ieee80211_frame *wh;
3010 	struct mbuf *m;
3011 	int pktlen;
3012 	uint8_t *frm;
3013 
3014 	/*
3015 	 * beacon frame format
3016 	 *	[8] time stamp
3017 	 *	[2] beacon interval
3018 	 *	[2] cabability information
3019 	 *	[tlv] ssid
3020 	 *	[tlv] supported rates
3021 	 *	[3] parameter set (DS)
3022 	 *	[8] CF parameter set (optional)
3023 	 *	[tlv] parameter set (IBSS/TIM)
3024 	 *	[tlv] country (optional)
3025 	 *	[3] power control (optional)
3026 	 *	[5] channel switch announcement (CSA) (optional)
3027 	 *	[tlv] extended rate phy (ERP)
3028 	 *	[tlv] extended supported rates
3029 	 *	[tlv] RSN parameters
3030 	 *	[tlv] HT capabilities
3031 	 *	[tlv] HT information
3032 	 *	[tlv] Vendor OUI HT capabilities (optional)
3033 	 *	[tlv] Vendor OUI HT information (optional)
3034 	 * XXX Vendor-specific OIDs (e.g. Atheros)
3035 	 *	[tlv] WPA parameters
3036 	 *	[tlv] WME parameters
3037 	 *	[tlv] TDMA parameters (optional)
3038 	 *	[tlv] Mesh ID (MBSS)
3039 	 *	[tlv] Mesh Conf (MBSS)
3040 	 *	[tlv] application data (optional)
3041 	 * NB: we allocate the max space required for the TIM bitmap.
3042 	 * XXX how big is this?
3043 	 */
3044 	pktlen =   8					/* time stamp */
3045 		 + sizeof(uint16_t)			/* beacon interval */
3046 		 + sizeof(uint16_t)			/* capabilities */
3047 		 + 2 + ni->ni_esslen			/* ssid */
3048 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
3049 	         + 2 + 1				/* DS parameters */
3050 		 + 2 + 6				/* CF parameters */
3051 		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
3052 		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
3053 		 + 2 + 1				/* power control */
3054 		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
3055 		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
3056 		 + 2 + 1				/* ERP */
3057 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3058 		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
3059 			2*sizeof(struct ieee80211_ie_wpa) : 0)
3060 		 /* XXX conditional? */
3061 		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3062 		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3063 		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
3064 			sizeof(struct ieee80211_wme_param) : 0)
3065 #ifdef IEEE80211_SUPPORT_SUPERG
3066 		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
3067 #endif
3068 #ifdef IEEE80211_SUPPORT_TDMA
3069 		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
3070 			sizeof(struct ieee80211_tdma_param) : 0)
3071 #endif
3072 #ifdef IEEE80211_SUPPORT_MESH
3073 		 + 2 + ni->ni_meshidlen
3074 		 + sizeof(struct ieee80211_meshconf_ie)
3075 #endif
3076 		 + IEEE80211_MAX_APPIE
3077 		 ;
3078 	m = ieee80211_getmgtframe(&frm,
3079 		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3080 	if (m == NULL) {
3081 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3082 			"%s: cannot get buf; size %u\n", __func__, pktlen);
3083 		vap->iv_stats.is_tx_nobuf++;
3084 		return NULL;
3085 	}
3086 	ieee80211_beacon_construct(m, frm, bo, ni);
3087 
3088 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
3089 	KASSERT(m != NULL, ("no space for 802.11 header?"));
3090 	wh = mtod(m, struct ieee80211_frame *);
3091 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3092 	    IEEE80211_FC0_SUBTYPE_BEACON;
3093 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3094 	*(uint16_t *)wh->i_dur = 0;
3095 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3096 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3097 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3098 	*(uint16_t *)wh->i_seq = 0;
3099 
3100 	return m;
3101 }
3102 
3103 /*
3104  * Update the dynamic parts of a beacon frame based on the current state.
3105  */
3106 int
3107 ieee80211_beacon_update(struct ieee80211_node *ni,
3108 	struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
3109 {
3110 	struct ieee80211vap *vap = ni->ni_vap;
3111 	struct ieee80211com *ic = ni->ni_ic;
3112 	int len_changed = 0;
3113 	uint16_t capinfo;
3114 	struct ieee80211_frame *wh;
3115 	ieee80211_seq seqno;
3116 
3117 	IEEE80211_LOCK(ic);
3118 	/*
3119 	 * Handle 11h channel change when we've reached the count.
3120 	 * We must recalculate the beacon frame contents to account
3121 	 * for the new channel.  Note we do this only for the first
3122 	 * vap that reaches this point; subsequent vaps just update
3123 	 * their beacon state to reflect the recalculated channel.
3124 	 */
3125 	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3126 	    vap->iv_csa_count == ic->ic_csa_count) {
3127 		vap->iv_csa_count = 0;
3128 		/*
3129 		 * Effect channel change before reconstructing the beacon
3130 		 * frame contents as many places reference ni_chan.
3131 		 */
3132 		if (ic->ic_csa_newchan != NULL)
3133 			ieee80211_csa_completeswitch(ic);
3134 		/*
3135 		 * NB: ieee80211_beacon_construct clears all pending
3136 		 * updates in bo_flags so we don't need to explicitly
3137 		 * clear IEEE80211_BEACON_CSA.
3138 		 */
3139 		ieee80211_beacon_construct(m,
3140 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni);
3141 
3142 		/* XXX do WME aggressive mode processing? */
3143 		IEEE80211_UNLOCK(ic);
3144 		return 1;		/* just assume length changed */
3145 	}
3146 
3147 	wh = mtod(m, struct ieee80211_frame *);
3148 	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3149 	*(uint16_t *)&wh->i_seq[0] =
3150 		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3151 	M_SEQNO_SET(m, seqno);
3152 
3153 	/* XXX faster to recalculate entirely or just changes? */
3154 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3155 	*bo->bo_caps = htole16(capinfo);
3156 
3157 	if (vap->iv_flags & IEEE80211_F_WME) {
3158 		struct ieee80211_wme_state *wme = &ic->ic_wme;
3159 
3160 		/*
3161 		 * Check for agressive mode change.  When there is
3162 		 * significant high priority traffic in the BSS
3163 		 * throttle back BE traffic by using conservative
3164 		 * parameters.  Otherwise BE uses agressive params
3165 		 * to optimize performance of legacy/non-QoS traffic.
3166 		 */
3167 		if (wme->wme_flags & WME_F_AGGRMODE) {
3168 			if (wme->wme_hipri_traffic >
3169 			    wme->wme_hipri_switch_thresh) {
3170 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3171 				    "%s: traffic %u, disable aggressive mode\n",
3172 				    __func__, wme->wme_hipri_traffic);
3173 				wme->wme_flags &= ~WME_F_AGGRMODE;
3174 				ieee80211_wme_updateparams_locked(vap);
3175 				wme->wme_hipri_traffic =
3176 					wme->wme_hipri_switch_hysteresis;
3177 			} else
3178 				wme->wme_hipri_traffic = 0;
3179 		} else {
3180 			if (wme->wme_hipri_traffic <=
3181 			    wme->wme_hipri_switch_thresh) {
3182 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3183 				    "%s: traffic %u, enable aggressive mode\n",
3184 				    __func__, wme->wme_hipri_traffic);
3185 				wme->wme_flags |= WME_F_AGGRMODE;
3186 				ieee80211_wme_updateparams_locked(vap);
3187 				wme->wme_hipri_traffic = 0;
3188 			} else
3189 				wme->wme_hipri_traffic =
3190 					wme->wme_hipri_switch_hysteresis;
3191 		}
3192 		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3193 			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
3194 			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3195 		}
3196 	}
3197 
3198 	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
3199 		ieee80211_ht_update_beacon(vap, bo);
3200 		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3201 	}
3202 #ifdef IEEE80211_SUPPORT_TDMA
3203 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3204 		/*
3205 		 * NB: the beacon is potentially updated every TBTT.
3206 		 */
3207 		ieee80211_tdma_update_beacon(vap, bo);
3208 	}
3209 #endif
3210 #ifdef IEEE80211_SUPPORT_MESH
3211 	if (vap->iv_opmode == IEEE80211_M_MBSS)
3212 		ieee80211_mesh_update_beacon(vap, bo);
3213 #endif
3214 
3215 	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3216 	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
3217 		struct ieee80211_tim_ie *tie =
3218 			(struct ieee80211_tim_ie *) bo->bo_tim;
3219 		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3220 			u_int timlen, timoff, i;
3221 			/*
3222 			 * ATIM/DTIM needs updating.  If it fits in the
3223 			 * current space allocated then just copy in the
3224 			 * new bits.  Otherwise we need to move any trailing
3225 			 * data to make room.  Note that we know there is
3226 			 * contiguous space because ieee80211_beacon_allocate
3227 			 * insures there is space in the mbuf to write a
3228 			 * maximal-size virtual bitmap (based on iv_max_aid).
3229 			 */
3230 			/*
3231 			 * Calculate the bitmap size and offset, copy any
3232 			 * trailer out of the way, and then copy in the
3233 			 * new bitmap and update the information element.
3234 			 * Note that the tim bitmap must contain at least
3235 			 * one byte and any offset must be even.
3236 			 */
3237 			if (vap->iv_ps_pending != 0) {
3238 				timoff = 128;		/* impossibly large */
3239 				for (i = 0; i < vap->iv_tim_len; i++)
3240 					if (vap->iv_tim_bitmap[i]) {
3241 						timoff = i &~ 1;
3242 						break;
3243 					}
3244 				KASSERT(timoff != 128, ("tim bitmap empty!"));
3245 				for (i = vap->iv_tim_len-1; i >= timoff; i--)
3246 					if (vap->iv_tim_bitmap[i])
3247 						break;
3248 				timlen = 1 + (i - timoff);
3249 			} else {
3250 				timoff = 0;
3251 				timlen = 1;
3252 			}
3253 			if (timlen != bo->bo_tim_len) {
3254 				/* copy up/down trailer */
3255 				int adjust = tie->tim_bitmap+timlen
3256 					   - bo->bo_tim_trailer;
3257 				ovbcopy(bo->bo_tim_trailer,
3258 				    bo->bo_tim_trailer+adjust,
3259 				    bo->bo_tim_trailer_len);
3260 				bo->bo_tim_trailer += adjust;
3261 				bo->bo_erp += adjust;
3262 				bo->bo_htinfo += adjust;
3263 #ifdef IEEE80211_SUPPORT_SUPERG
3264 				bo->bo_ath += adjust;
3265 #endif
3266 #ifdef IEEE80211_SUPPORT_TDMA
3267 				bo->bo_tdma += adjust;
3268 #endif
3269 #ifdef IEEE80211_SUPPORT_MESH
3270 				bo->bo_meshconf += adjust;
3271 #endif
3272 				bo->bo_appie += adjust;
3273 				bo->bo_wme += adjust;
3274 				bo->bo_csa += adjust;
3275 				bo->bo_quiet += adjust;
3276 				bo->bo_tim_len = timlen;
3277 
3278 				/* update information element */
3279 				tie->tim_len = 3 + timlen;
3280 				tie->tim_bitctl = timoff;
3281 				len_changed = 1;
3282 			}
3283 			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
3284 				bo->bo_tim_len);
3285 
3286 			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
3287 
3288 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
3289 				"%s: TIM updated, pending %u, off %u, len %u\n",
3290 				__func__, vap->iv_ps_pending, timoff, timlen);
3291 		}
3292 		/* count down DTIM period */
3293 		if (tie->tim_count == 0)
3294 			tie->tim_count = tie->tim_period - 1;
3295 		else
3296 			tie->tim_count--;
3297 		/* update state for buffered multicast frames on DTIM */
3298 		if (mcast && tie->tim_count == 0)
3299 			tie->tim_bitctl |= 1;
3300 		else
3301 			tie->tim_bitctl &= ~1;
3302 		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
3303 			struct ieee80211_csa_ie *csa =
3304 			    (struct ieee80211_csa_ie *) bo->bo_csa;
3305 
3306 			/*
3307 			 * Insert or update CSA ie.  If we're just starting
3308 			 * to count down to the channel switch then we need
3309 			 * to insert the CSA ie.  Otherwise we just need to
3310 			 * drop the count.  The actual change happens above
3311 			 * when the vap's count reaches the target count.
3312 			 */
3313 			if (vap->iv_csa_count == 0) {
3314 				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
3315 				bo->bo_erp += sizeof(*csa);
3316 				bo->bo_htinfo += sizeof(*csa);
3317 				bo->bo_wme += sizeof(*csa);
3318 #ifdef IEEE80211_SUPPORT_SUPERG
3319 				bo->bo_ath += sizeof(*csa);
3320 #endif
3321 #ifdef IEEE80211_SUPPORT_TDMA
3322 				bo->bo_tdma += sizeof(*csa);
3323 #endif
3324 #ifdef IEEE80211_SUPPORT_MESH
3325 				bo->bo_meshconf += sizeof(*csa);
3326 #endif
3327 				bo->bo_appie += sizeof(*csa);
3328 				bo->bo_csa_trailer_len += sizeof(*csa);
3329 				bo->bo_quiet += sizeof(*csa);
3330 				bo->bo_tim_trailer_len += sizeof(*csa);
3331 				m->m_len += sizeof(*csa);
3332 				m->m_pkthdr.len += sizeof(*csa);
3333 
3334 				ieee80211_add_csa(bo->bo_csa, vap);
3335 			} else
3336 				csa->csa_count--;
3337 			vap->iv_csa_count++;
3338 			/* NB: don't clear IEEE80211_BEACON_CSA */
3339 		}
3340 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3341 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){
3342 			if (vap->iv_quiet)
3343 				ieee80211_add_quiet(bo->bo_quiet, vap);
3344 		}
3345 		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3346 			/*
3347 			 * ERP element needs updating.
3348 			 */
3349 			(void) ieee80211_add_erp(bo->bo_erp, ic);
3350 			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3351 		}
3352 #ifdef IEEE80211_SUPPORT_SUPERG
3353 		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
3354 			ieee80211_add_athcaps(bo->bo_ath, ni);
3355 			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3356 		}
3357 #endif
3358 	}
3359 	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3360 		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3361 		int aielen;
3362 		uint8_t *frm;
3363 
3364 		aielen = 0;
3365 		if (aie != NULL)
3366 			aielen += aie->ie_len;
3367 		if (aielen != bo->bo_appie_len) {
3368 			/* copy up/down trailer */
3369 			int adjust = aielen - bo->bo_appie_len;
3370 			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3371 				bo->bo_tim_trailer_len);
3372 			bo->bo_tim_trailer += adjust;
3373 			bo->bo_appie += adjust;
3374 			bo->bo_appie_len = aielen;
3375 
3376 			len_changed = 1;
3377 		}
3378 		frm = bo->bo_appie;
3379 		if (aie != NULL)
3380 			frm  = add_appie(frm, aie);
3381 		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3382 	}
3383 	IEEE80211_UNLOCK(ic);
3384 
3385 	return len_changed;
3386 }
3387 
3388 /*
3389  * Do Ethernet-LLC encapsulation for each payload in a fast frame
3390  * tunnel encapsulation.  The frame is assumed to have an Ethernet
3391  * header at the front that must be stripped before prepending the
3392  * LLC followed by the Ethernet header passed in (with an Ethernet
3393  * type that specifies the payload size).
3394  */
3395 struct mbuf *
3396 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
3397 	const struct ether_header *eh)
3398 {
3399 	struct llc *llc;
3400 	uint16_t payload;
3401 
3402 	/* XXX optimize by combining m_adj+M_PREPEND */
3403 	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
3404 	llc = mtod(m, struct llc *);
3405 	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
3406 	llc->llc_control = LLC_UI;
3407 	llc->llc_snap.org_code[0] = 0;
3408 	llc->llc_snap.org_code[1] = 0;
3409 	llc->llc_snap.org_code[2] = 0;
3410 	llc->llc_snap.ether_type = eh->ether_type;
3411 	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
3412 
3413 	M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
3414 	if (m == NULL) {		/* XXX cannot happen */
3415 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
3416 			"%s: no space for ether_header\n", __func__);
3417 		vap->iv_stats.is_tx_nobuf++;
3418 		return NULL;
3419 	}
3420 	ETHER_HEADER_COPY(mtod(m, void *), eh);
3421 	mtod(m, struct ether_header *)->ether_type = htons(payload);
3422 	return m;
3423 }
3424 
3425 /*
3426  * Complete an mbuf transmission.
3427  *
3428  * For now, this simply processes a completed frame after the
3429  * driver has completed it's transmission and/or retransmission.
3430  * It assumes the frame is an 802.11 encapsulated frame.
3431  *
3432  * Later on it will grow to become the exit path for a given frame
3433  * from the driver and, depending upon how it's been encapsulated
3434  * and already transmitted, it may end up doing A-MPDU retransmission,
3435  * power save requeuing, etc.
3436  *
3437  * In order for the above to work, the driver entry point to this
3438  * must not hold any driver locks.  Thus, the driver needs to delay
3439  * any actual mbuf completion until it can release said locks.
3440  *
3441  * This frees the mbuf and if the mbuf has a node reference,
3442  * the node reference will be freed.
3443  */
3444 void
3445 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
3446 {
3447 
3448 	if (ni != NULL) {
3449 		struct ifnet *ifp = ni->ni_vap->iv_ifp;
3450 
3451 		if (status == 0) {
3452 			if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
3453 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3454 			if (m->m_flags & M_MCAST)
3455 				if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
3456 		} else
3457 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3458 		if (m->m_flags & M_TXCB)
3459 			ieee80211_process_callback(ni, m, status);
3460 		ieee80211_free_node(ni);
3461 	}
3462 	m_freem(m);
3463 }
3464