1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_inet.h" 31 #include "opt_inet6.h" 32 #include "opt_wlan.h" 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/mbuf.h> 37 #include <sys/kernel.h> 38 #include <sys/endian.h> 39 40 #include <sys/socket.h> 41 42 #include <net/bpf.h> 43 #include <net/ethernet.h> 44 #include <net/if.h> 45 #include <net/if_var.h> 46 #include <net/if_llc.h> 47 #include <net/if_media.h> 48 #include <net/if_vlan_var.h> 49 50 #include <net80211/ieee80211_var.h> 51 #include <net80211/ieee80211_regdomain.h> 52 #ifdef IEEE80211_SUPPORT_SUPERG 53 #include <net80211/ieee80211_superg.h> 54 #endif 55 #ifdef IEEE80211_SUPPORT_TDMA 56 #include <net80211/ieee80211_tdma.h> 57 #endif 58 #include <net80211/ieee80211_wds.h> 59 #include <net80211/ieee80211_mesh.h> 60 61 #if defined(INET) || defined(INET6) 62 #include <netinet/in.h> 63 #endif 64 65 #ifdef INET 66 #include <netinet/if_ether.h> 67 #include <netinet/in_systm.h> 68 #include <netinet/ip.h> 69 #endif 70 #ifdef INET6 71 #include <netinet/ip6.h> 72 #endif 73 74 #include <security/mac/mac_framework.h> 75 76 #define ETHER_HEADER_COPY(dst, src) \ 77 memcpy(dst, src, sizeof(struct ether_header)) 78 79 /* unalligned little endian access */ 80 #define LE_WRITE_2(p, v) do { \ 81 ((uint8_t *)(p))[0] = (v) & 0xff; \ 82 ((uint8_t *)(p))[1] = ((v) >> 8) & 0xff; \ 83 } while (0) 84 #define LE_WRITE_4(p, v) do { \ 85 ((uint8_t *)(p))[0] = (v) & 0xff; \ 86 ((uint8_t *)(p))[1] = ((v) >> 8) & 0xff; \ 87 ((uint8_t *)(p))[2] = ((v) >> 16) & 0xff; \ 88 ((uint8_t *)(p))[3] = ((v) >> 24) & 0xff; \ 89 } while (0) 90 91 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *, 92 u_int hdrsize, u_int ciphdrsize, u_int mtu); 93 static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int); 94 95 #ifdef IEEE80211_DEBUG 96 /* 97 * Decide if an outbound management frame should be 98 * printed when debugging is enabled. This filters some 99 * of the less interesting frames that come frequently 100 * (e.g. beacons). 101 */ 102 static __inline int 103 doprint(struct ieee80211vap *vap, int subtype) 104 { 105 switch (subtype) { 106 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 107 return (vap->iv_opmode == IEEE80211_M_IBSS); 108 } 109 return 1; 110 } 111 #endif 112 113 /* 114 * Transmit a frame to the given destination on the given VAP. 115 * 116 * It's up to the caller to figure out the details of who this 117 * is going to and resolving the node. 118 * 119 * This routine takes care of queuing it for power save, 120 * A-MPDU state stuff, fast-frames state stuff, encapsulation 121 * if required, then passing it up to the driver layer. 122 * 123 * This routine (for now) consumes the mbuf and frees the node 124 * reference; it ideally will return a TX status which reflects 125 * whether the mbuf was consumed or not, so the caller can 126 * free the mbuf (if appropriate) and the node reference (again, 127 * if appropriate.) 128 */ 129 int 130 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m, 131 struct ieee80211_node *ni) 132 { 133 struct ieee80211com *ic = vap->iv_ic; 134 struct ifnet *ifp = vap->iv_ifp; 135 int error, len, mcast; 136 137 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 138 (m->m_flags & M_PWR_SAV) == 0) { 139 /* 140 * Station in power save mode; pass the frame 141 * to the 802.11 layer and continue. We'll get 142 * the frame back when the time is right. 143 * XXX lose WDS vap linkage? 144 */ 145 if (ieee80211_pwrsave(ni, m) != 0) 146 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 147 ieee80211_free_node(ni); 148 149 /* 150 * We queued it fine, so tell the upper layer 151 * that we consumed it. 152 */ 153 return (0); 154 } 155 /* calculate priority so drivers can find the tx queue */ 156 if (ieee80211_classify(ni, m)) { 157 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 158 ni->ni_macaddr, NULL, 159 "%s", "classification failure"); 160 vap->iv_stats.is_tx_classify++; 161 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 162 m_freem(m); 163 ieee80211_free_node(ni); 164 165 /* XXX better status? */ 166 return (0); 167 } 168 /* 169 * Stash the node pointer. Note that we do this after 170 * any call to ieee80211_dwds_mcast because that code 171 * uses any existing value for rcvif to identify the 172 * interface it (might have been) received on. 173 */ 174 m->m_pkthdr.rcvif = (void *)ni; 175 mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0; 176 len = m->m_pkthdr.len; 177 178 BPF_MTAP(ifp, m); /* 802.3 tx */ 179 180 /* 181 * Check if A-MPDU tx aggregation is setup or if we 182 * should try to enable it. The sta must be associated 183 * with HT and A-MPDU enabled for use. When the policy 184 * routine decides we should enable A-MPDU we issue an 185 * ADDBA request and wait for a reply. The frame being 186 * encapsulated will go out w/o using A-MPDU, or possibly 187 * it might be collected by the driver and held/retransmit. 188 * The default ic_ampdu_enable routine handles staggering 189 * ADDBA requests in case the receiver NAK's us or we are 190 * otherwise unable to establish a BA stream. 191 */ 192 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) && 193 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) && 194 (m->m_flags & M_EAPOL) == 0) { 195 int tid = WME_AC_TO_TID(M_WME_GETAC(m)); 196 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; 197 198 ieee80211_txampdu_count_packet(tap); 199 if (IEEE80211_AMPDU_RUNNING(tap)) { 200 /* 201 * Operational, mark frame for aggregation. 202 * 203 * XXX do tx aggregation here 204 */ 205 m->m_flags |= M_AMPDU_MPDU; 206 } else if (!IEEE80211_AMPDU_REQUESTED(tap) && 207 ic->ic_ampdu_enable(ni, tap)) { 208 /* 209 * Not negotiated yet, request service. 210 */ 211 ieee80211_ampdu_request(ni, tap); 212 /* XXX hold frame for reply? */ 213 } 214 } 215 216 #ifdef IEEE80211_SUPPORT_SUPERG 217 else if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) { 218 m = ieee80211_ff_check(ni, m); 219 if (m == NULL) { 220 /* NB: any ni ref held on stageq */ 221 return (0); 222 } 223 } 224 #endif /* IEEE80211_SUPPORT_SUPERG */ 225 226 /* 227 * Grab the TX lock - serialise the TX process from this 228 * point (where TX state is being checked/modified) 229 * through to driver queue. 230 */ 231 IEEE80211_TX_LOCK(ic); 232 233 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 234 /* 235 * Encapsulate the packet in prep for transmission. 236 */ 237 m = ieee80211_encap(vap, ni, m); 238 if (m == NULL) { 239 /* NB: stat+msg handled in ieee80211_encap */ 240 IEEE80211_TX_UNLOCK(ic); 241 ieee80211_free_node(ni); 242 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 243 return (ENOBUFS); 244 } 245 } 246 error = ieee80211_parent_xmitpkt(ic, m); 247 248 /* 249 * Unlock at this point - no need to hold it across 250 * ieee80211_free_node() (ie, the comlock) 251 */ 252 IEEE80211_TX_UNLOCK(ic); 253 if (error != 0) { 254 /* NB: IFQ_HANDOFF reclaims mbuf */ 255 ieee80211_free_node(ni); 256 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 257 } 258 ic->ic_lastdata = ticks; 259 260 return (0); 261 } 262 263 264 265 /* 266 * Send the given mbuf through the given vap. 267 * 268 * This consumes the mbuf regardless of whether the transmit 269 * was successful or not. 270 * 271 * This does none of the initial checks that ieee80211_start() 272 * does (eg CAC timeout, interface wakeup) - the caller must 273 * do this first. 274 */ 275 static int 276 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m) 277 { 278 #define IS_DWDS(vap) \ 279 (vap->iv_opmode == IEEE80211_M_WDS && \ 280 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0) 281 struct ieee80211com *ic = vap->iv_ic; 282 struct ifnet *ifp = vap->iv_ifp; 283 struct ieee80211_node *ni; 284 struct ether_header *eh; 285 286 /* 287 * Cancel any background scan. 288 */ 289 if (ic->ic_flags & IEEE80211_F_SCAN) 290 ieee80211_cancel_anyscan(vap); 291 /* 292 * Find the node for the destination so we can do 293 * things like power save and fast frames aggregation. 294 * 295 * NB: past this point various code assumes the first 296 * mbuf has the 802.3 header present (and contiguous). 297 */ 298 ni = NULL; 299 if (m->m_len < sizeof(struct ether_header) && 300 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 301 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 302 "discard frame, %s\n", "m_pullup failed"); 303 vap->iv_stats.is_tx_nobuf++; /* XXX */ 304 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 305 return (ENOBUFS); 306 } 307 eh = mtod(m, struct ether_header *); 308 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 309 if (IS_DWDS(vap)) { 310 /* 311 * Only unicast frames from the above go out 312 * DWDS vaps; multicast frames are handled by 313 * dispatching the frame as it comes through 314 * the AP vap (see below). 315 */ 316 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS, 317 eh->ether_dhost, "mcast", "%s", "on DWDS"); 318 vap->iv_stats.is_dwds_mcast++; 319 m_freem(m); 320 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 321 /* XXX better status? */ 322 return (ENOBUFS); 323 } 324 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { 325 /* 326 * Spam DWDS vap's w/ multicast traffic. 327 */ 328 /* XXX only if dwds in use? */ 329 ieee80211_dwds_mcast(vap, m); 330 } 331 } 332 #ifdef IEEE80211_SUPPORT_MESH 333 if (vap->iv_opmode != IEEE80211_M_MBSS) { 334 #endif 335 ni = ieee80211_find_txnode(vap, eh->ether_dhost); 336 if (ni == NULL) { 337 /* NB: ieee80211_find_txnode does stat+msg */ 338 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 339 m_freem(m); 340 /* XXX better status? */ 341 return (ENOBUFS); 342 } 343 if (ni->ni_associd == 0 && 344 (ni->ni_flags & IEEE80211_NODE_ASSOCID)) { 345 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 346 eh->ether_dhost, NULL, 347 "sta not associated (type 0x%04x)", 348 htons(eh->ether_type)); 349 vap->iv_stats.is_tx_notassoc++; 350 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 351 m_freem(m); 352 ieee80211_free_node(ni); 353 /* XXX better status? */ 354 return (ENOBUFS); 355 } 356 #ifdef IEEE80211_SUPPORT_MESH 357 } else { 358 if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) { 359 /* 360 * Proxy station only if configured. 361 */ 362 if (!ieee80211_mesh_isproxyena(vap)) { 363 IEEE80211_DISCARD_MAC(vap, 364 IEEE80211_MSG_OUTPUT | 365 IEEE80211_MSG_MESH, 366 eh->ether_dhost, NULL, 367 "%s", "proxy not enabled"); 368 vap->iv_stats.is_mesh_notproxy++; 369 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 370 m_freem(m); 371 /* XXX better status? */ 372 return (ENOBUFS); 373 } 374 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 375 "forward frame from DS SA(%6D), DA(%6D)\n", 376 eh->ether_shost, ":", 377 eh->ether_dhost, ":"); 378 ieee80211_mesh_proxy_check(vap, eh->ether_shost); 379 } 380 ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m); 381 if (ni == NULL) { 382 /* 383 * NB: ieee80211_mesh_discover holds/disposes 384 * frame (e.g. queueing on path discovery). 385 */ 386 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 387 /* XXX better status? */ 388 return (ENOBUFS); 389 } 390 } 391 #endif 392 393 /* 394 * We've resolved the sender, so attempt to transmit it. 395 */ 396 397 if (vap->iv_state == IEEE80211_S_SLEEP) { 398 /* 399 * In power save; queue frame and then wakeup device 400 * for transmit. 401 */ 402 ic->ic_lastdata = ticks; 403 if (ieee80211_pwrsave(ni, m) != 0) 404 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 405 ieee80211_free_node(ni); 406 ieee80211_new_state(vap, IEEE80211_S_RUN, 0); 407 return (0); 408 } 409 410 if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0) 411 return (ENOBUFS); 412 return (0); 413 #undef IS_DWDS 414 } 415 416 /* 417 * Start method for vap's. All packets from the stack come 418 * through here. We handle common processing of the packets 419 * before dispatching them to the underlying device. 420 * 421 * if_transmit() requires that the mbuf be consumed by this call 422 * regardless of the return condition. 423 */ 424 int 425 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m) 426 { 427 struct ieee80211vap *vap = ifp->if_softc; 428 struct ieee80211com *ic = vap->iv_ic; 429 430 /* 431 * No data frames go out unless we're running. 432 * Note in particular this covers CAC and CSA 433 * states (though maybe we should check muting 434 * for CSA). 435 */ 436 if (vap->iv_state != IEEE80211_S_RUN && 437 vap->iv_state != IEEE80211_S_SLEEP) { 438 IEEE80211_LOCK(ic); 439 /* re-check under the com lock to avoid races */ 440 if (vap->iv_state != IEEE80211_S_RUN && 441 vap->iv_state != IEEE80211_S_SLEEP) { 442 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 443 "%s: ignore queue, in %s state\n", 444 __func__, ieee80211_state_name[vap->iv_state]); 445 vap->iv_stats.is_tx_badstate++; 446 IEEE80211_UNLOCK(ic); 447 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 448 m_freem(m); 449 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 450 return (ENETDOWN); 451 } 452 IEEE80211_UNLOCK(ic); 453 } 454 455 /* 456 * Sanitize mbuf flags for net80211 use. We cannot 457 * clear M_PWR_SAV or M_MORE_DATA because these may 458 * be set for frames that are re-submitted from the 459 * power save queue. 460 * 461 * NB: This must be done before ieee80211_classify as 462 * it marks EAPOL in frames with M_EAPOL. 463 */ 464 m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA); 465 466 /* 467 * Bump to the packet transmission path. 468 * The mbuf will be consumed here. 469 */ 470 return (ieee80211_start_pkt(vap, m)); 471 } 472 473 void 474 ieee80211_vap_qflush(struct ifnet *ifp) 475 { 476 477 /* Empty for now */ 478 } 479 480 /* 481 * 802.11 raw output routine. 482 * 483 * XXX TODO: this (and other send routines) should correctly 484 * XXX keep the pwr mgmt bit set if it decides to call into the 485 * XXX driver to send a frame whilst the state is SLEEP. 486 * 487 * Otherwise the peer may decide that we're awake and flood us 488 * with traffic we are still too asleep to receive! 489 */ 490 int 491 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni, 492 struct mbuf *m, const struct ieee80211_bpf_params *params) 493 { 494 struct ieee80211com *ic = vap->iv_ic; 495 int error; 496 497 /* 498 * Set node - the caller has taken a reference, so ensure 499 * that the mbuf has the same node value that 500 * it would if it were going via the normal path. 501 */ 502 m->m_pkthdr.rcvif = (void *)ni; 503 504 /* 505 * Attempt to add bpf transmit parameters. 506 * 507 * For now it's ok to fail; the raw_xmit api still takes 508 * them as an option. 509 * 510 * Later on when ic_raw_xmit() has params removed, 511 * they'll have to be added - so fail the transmit if 512 * they can't be. 513 */ 514 if (params) 515 (void) ieee80211_add_xmit_params(m, params); 516 517 error = ic->ic_raw_xmit(ni, m, params); 518 if (error) 519 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1); 520 return (error); 521 } 522 523 /* 524 * 802.11 output routine. This is (currently) used only to 525 * connect bpf write calls to the 802.11 layer for injecting 526 * raw 802.11 frames. 527 */ 528 int 529 ieee80211_output(struct ifnet *ifp, struct mbuf *m, 530 const struct sockaddr *dst, struct route *ro) 531 { 532 #define senderr(e) do { error = (e); goto bad;} while (0) 533 struct ieee80211_node *ni = NULL; 534 struct ieee80211vap *vap; 535 struct ieee80211_frame *wh; 536 struct ieee80211com *ic = NULL; 537 int error; 538 int ret; 539 540 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 541 /* 542 * Short-circuit requests if the vap is marked OACTIVE 543 * as this can happen because a packet came down through 544 * ieee80211_start before the vap entered RUN state in 545 * which case it's ok to just drop the frame. This 546 * should not be necessary but callers of if_output don't 547 * check OACTIVE. 548 */ 549 senderr(ENETDOWN); 550 } 551 vap = ifp->if_softc; 552 ic = vap->iv_ic; 553 /* 554 * Hand to the 802.3 code if not tagged as 555 * a raw 802.11 frame. 556 */ 557 if (dst->sa_family != AF_IEEE80211) 558 return vap->iv_output(ifp, m, dst, ro); 559 #ifdef MAC 560 error = mac_ifnet_check_transmit(ifp, m); 561 if (error) 562 senderr(error); 563 #endif 564 if (ifp->if_flags & IFF_MONITOR) 565 senderr(ENETDOWN); 566 if (!IFNET_IS_UP_RUNNING(ifp)) 567 senderr(ENETDOWN); 568 if (vap->iv_state == IEEE80211_S_CAC) { 569 IEEE80211_DPRINTF(vap, 570 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 571 "block %s frame in CAC state\n", "raw data"); 572 vap->iv_stats.is_tx_badstate++; 573 senderr(EIO); /* XXX */ 574 } else if (vap->iv_state == IEEE80211_S_SCAN) 575 senderr(EIO); 576 /* XXX bypass bridge, pfil, carp, etc. */ 577 578 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack)) 579 senderr(EIO); /* XXX */ 580 wh = mtod(m, struct ieee80211_frame *); 581 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) != 582 IEEE80211_FC0_VERSION_0) 583 senderr(EIO); /* XXX */ 584 585 /* locate destination node */ 586 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 587 case IEEE80211_FC1_DIR_NODS: 588 case IEEE80211_FC1_DIR_FROMDS: 589 ni = ieee80211_find_txnode(vap, wh->i_addr1); 590 break; 591 case IEEE80211_FC1_DIR_TODS: 592 case IEEE80211_FC1_DIR_DSTODS: 593 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame)) 594 senderr(EIO); /* XXX */ 595 ni = ieee80211_find_txnode(vap, wh->i_addr3); 596 break; 597 default: 598 senderr(EIO); /* XXX */ 599 } 600 if (ni == NULL) { 601 /* 602 * Permit packets w/ bpf params through regardless 603 * (see below about sa_len). 604 */ 605 if (dst->sa_len == 0) 606 senderr(EHOSTUNREACH); 607 ni = ieee80211_ref_node(vap->iv_bss); 608 } 609 610 /* 611 * Sanitize mbuf for net80211 flags leaked from above. 612 * 613 * NB: This must be done before ieee80211_classify as 614 * it marks EAPOL in frames with M_EAPOL. 615 */ 616 m->m_flags &= ~M_80211_TX; 617 618 /* calculate priority so drivers can find the tx queue */ 619 /* XXX assumes an 802.3 frame */ 620 if (ieee80211_classify(ni, m)) 621 senderr(EIO); /* XXX */ 622 623 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 624 IEEE80211_NODE_STAT(ni, tx_data); 625 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 626 IEEE80211_NODE_STAT(ni, tx_mcast); 627 m->m_flags |= M_MCAST; 628 } else 629 IEEE80211_NODE_STAT(ni, tx_ucast); 630 /* NB: ieee80211_encap does not include 802.11 header */ 631 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len); 632 633 IEEE80211_TX_LOCK(ic); 634 635 /* 636 * NB: DLT_IEEE802_11_RADIO identifies the parameters are 637 * present by setting the sa_len field of the sockaddr (yes, 638 * this is a hack). 639 * NB: we assume sa_data is suitably aligned to cast. 640 */ 641 ret = ieee80211_raw_output(vap, ni, m, 642 (const struct ieee80211_bpf_params *)(dst->sa_len ? 643 dst->sa_data : NULL)); 644 IEEE80211_TX_UNLOCK(ic); 645 return (ret); 646 bad: 647 if (m != NULL) 648 m_freem(m); 649 if (ni != NULL) 650 ieee80211_free_node(ni); 651 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 652 return error; 653 #undef senderr 654 } 655 656 /* 657 * Set the direction field and address fields of an outgoing 658 * frame. Note this should be called early on in constructing 659 * a frame as it sets i_fc[1]; other bits can then be or'd in. 660 */ 661 void 662 ieee80211_send_setup( 663 struct ieee80211_node *ni, 664 struct mbuf *m, 665 int type, int tid, 666 const uint8_t sa[IEEE80211_ADDR_LEN], 667 const uint8_t da[IEEE80211_ADDR_LEN], 668 const uint8_t bssid[IEEE80211_ADDR_LEN]) 669 { 670 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 671 struct ieee80211vap *vap = ni->ni_vap; 672 struct ieee80211_tx_ampdu *tap; 673 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 674 ieee80211_seq seqno; 675 676 IEEE80211_TX_LOCK_ASSERT(ni->ni_ic); 677 678 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 679 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 680 switch (vap->iv_opmode) { 681 case IEEE80211_M_STA: 682 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 683 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 684 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 685 IEEE80211_ADDR_COPY(wh->i_addr3, da); 686 break; 687 case IEEE80211_M_IBSS: 688 case IEEE80211_M_AHDEMO: 689 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 690 IEEE80211_ADDR_COPY(wh->i_addr1, da); 691 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 692 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 693 break; 694 case IEEE80211_M_HOSTAP: 695 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 696 IEEE80211_ADDR_COPY(wh->i_addr1, da); 697 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 698 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 699 break; 700 case IEEE80211_M_WDS: 701 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 702 IEEE80211_ADDR_COPY(wh->i_addr1, da); 703 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 704 IEEE80211_ADDR_COPY(wh->i_addr3, da); 705 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 706 break; 707 case IEEE80211_M_MBSS: 708 #ifdef IEEE80211_SUPPORT_MESH 709 if (IEEE80211_IS_MULTICAST(da)) { 710 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 711 /* XXX next hop */ 712 IEEE80211_ADDR_COPY(wh->i_addr1, da); 713 IEEE80211_ADDR_COPY(wh->i_addr2, 714 vap->iv_myaddr); 715 } else { 716 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 717 IEEE80211_ADDR_COPY(wh->i_addr1, da); 718 IEEE80211_ADDR_COPY(wh->i_addr2, 719 vap->iv_myaddr); 720 IEEE80211_ADDR_COPY(wh->i_addr3, da); 721 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 722 } 723 #endif 724 break; 725 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 726 break; 727 } 728 } else { 729 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 730 IEEE80211_ADDR_COPY(wh->i_addr1, da); 731 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 732 #ifdef IEEE80211_SUPPORT_MESH 733 if (vap->iv_opmode == IEEE80211_M_MBSS) 734 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 735 else 736 #endif 737 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 738 } 739 *(uint16_t *)&wh->i_dur[0] = 0; 740 741 tap = &ni->ni_tx_ampdu[tid]; 742 if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) 743 m->m_flags |= M_AMPDU_MPDU; 744 else { 745 if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK, 746 type & IEEE80211_FC0_SUBTYPE_MASK)) 747 seqno = ni->ni_txseqs[tid]++; 748 else 749 seqno = 0; 750 751 *(uint16_t *)&wh->i_seq[0] = 752 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 753 M_SEQNO_SET(m, seqno); 754 } 755 756 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 757 m->m_flags |= M_MCAST; 758 #undef WH4 759 } 760 761 /* 762 * Send a management frame to the specified node. The node pointer 763 * must have a reference as the pointer will be passed to the driver 764 * and potentially held for a long time. If the frame is successfully 765 * dispatched to the driver, then it is responsible for freeing the 766 * reference (and potentially free'ing up any associated storage); 767 * otherwise deal with reclaiming any reference (on error). 768 */ 769 int 770 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type, 771 struct ieee80211_bpf_params *params) 772 { 773 struct ieee80211vap *vap = ni->ni_vap; 774 struct ieee80211com *ic = ni->ni_ic; 775 struct ieee80211_frame *wh; 776 int ret; 777 778 KASSERT(ni != NULL, ("null node")); 779 780 if (vap->iv_state == IEEE80211_S_CAC) { 781 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 782 ni, "block %s frame in CAC state", 783 ieee80211_mgt_subtype_name[ 784 (type & IEEE80211_FC0_SUBTYPE_MASK) >> 785 IEEE80211_FC0_SUBTYPE_SHIFT]); 786 vap->iv_stats.is_tx_badstate++; 787 ieee80211_free_node(ni); 788 m_freem(m); 789 return EIO; /* XXX */ 790 } 791 792 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 793 if (m == NULL) { 794 ieee80211_free_node(ni); 795 return ENOMEM; 796 } 797 798 IEEE80211_TX_LOCK(ic); 799 800 wh = mtod(m, struct ieee80211_frame *); 801 ieee80211_send_setup(ni, m, 802 IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID, 803 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 804 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { 805 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1, 806 "encrypting frame (%s)", __func__); 807 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 808 } 809 m->m_flags |= M_ENCAP; /* mark encapsulated */ 810 811 KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?")); 812 M_WME_SETAC(m, params->ibp_pri); 813 814 #ifdef IEEE80211_DEBUG 815 /* avoid printing too many frames */ 816 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) || 817 ieee80211_msg_dumppkts(vap)) { 818 printf("[%s] send %s on channel %u\n", 819 ether_sprintf(wh->i_addr1), 820 ieee80211_mgt_subtype_name[ 821 (type & IEEE80211_FC0_SUBTYPE_MASK) >> 822 IEEE80211_FC0_SUBTYPE_SHIFT], 823 ieee80211_chan2ieee(ic, ic->ic_curchan)); 824 } 825 #endif 826 IEEE80211_NODE_STAT(ni, tx_mgmt); 827 828 ret = ieee80211_raw_output(vap, ni, m, params); 829 IEEE80211_TX_UNLOCK(ic); 830 return (ret); 831 } 832 833 /* 834 * Send a null data frame to the specified node. If the station 835 * is setup for QoS then a QoS Null Data frame is constructed. 836 * If this is a WDS station then a 4-address frame is constructed. 837 * 838 * NB: the caller is assumed to have setup a node reference 839 * for use; this is necessary to deal with a race condition 840 * when probing for inactive stations. Like ieee80211_mgmt_output 841 * we must cleanup any node reference on error; however we 842 * can safely just unref it as we know it will never be the 843 * last reference to the node. 844 */ 845 int 846 ieee80211_send_nulldata(struct ieee80211_node *ni) 847 { 848 struct ieee80211vap *vap = ni->ni_vap; 849 struct ieee80211com *ic = ni->ni_ic; 850 struct mbuf *m; 851 struct ieee80211_frame *wh; 852 int hdrlen; 853 uint8_t *frm; 854 int ret; 855 856 if (vap->iv_state == IEEE80211_S_CAC) { 857 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 858 ni, "block %s frame in CAC state", "null data"); 859 ieee80211_unref_node(&ni); 860 vap->iv_stats.is_tx_badstate++; 861 return EIO; /* XXX */ 862 } 863 864 if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) 865 hdrlen = sizeof(struct ieee80211_qosframe); 866 else 867 hdrlen = sizeof(struct ieee80211_frame); 868 /* NB: only WDS vap's get 4-address frames */ 869 if (vap->iv_opmode == IEEE80211_M_WDS) 870 hdrlen += IEEE80211_ADDR_LEN; 871 if (ic->ic_flags & IEEE80211_F_DATAPAD) 872 hdrlen = roundup(hdrlen, sizeof(uint32_t)); 873 874 m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0); 875 if (m == NULL) { 876 /* XXX debug msg */ 877 ieee80211_unref_node(&ni); 878 vap->iv_stats.is_tx_nobuf++; 879 return ENOMEM; 880 } 881 KASSERT(M_LEADINGSPACE(m) >= hdrlen, 882 ("leading space %zd", M_LEADINGSPACE(m))); 883 M_PREPEND(m, hdrlen, M_NOWAIT); 884 if (m == NULL) { 885 /* NB: cannot happen */ 886 ieee80211_free_node(ni); 887 return ENOMEM; 888 } 889 890 IEEE80211_TX_LOCK(ic); 891 892 wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */ 893 if (ni->ni_flags & IEEE80211_NODE_QOS) { 894 const int tid = WME_AC_TO_TID(WME_AC_BE); 895 uint8_t *qos; 896 897 ieee80211_send_setup(ni, m, 898 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL, 899 tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 900 901 if (vap->iv_opmode == IEEE80211_M_WDS) 902 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 903 else 904 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 905 qos[0] = tid & IEEE80211_QOS_TID; 906 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy) 907 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 908 qos[1] = 0; 909 } else { 910 ieee80211_send_setup(ni, m, 911 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 912 IEEE80211_NONQOS_TID, 913 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 914 } 915 if (vap->iv_opmode != IEEE80211_M_WDS) { 916 /* NB: power management bit is never sent by an AP */ 917 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 918 vap->iv_opmode != IEEE80211_M_HOSTAP) 919 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 920 } 921 m->m_len = m->m_pkthdr.len = hdrlen; 922 m->m_flags |= M_ENCAP; /* mark encapsulated */ 923 924 M_WME_SETAC(m, WME_AC_BE); 925 926 IEEE80211_NODE_STAT(ni, tx_data); 927 928 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni, 929 "send %snull data frame on channel %u, pwr mgt %s", 930 ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "", 931 ieee80211_chan2ieee(ic, ic->ic_curchan), 932 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 933 934 ret = ieee80211_raw_output(vap, ni, m, NULL); 935 IEEE80211_TX_UNLOCK(ic); 936 return (ret); 937 } 938 939 /* 940 * Assign priority to a frame based on any vlan tag assigned 941 * to the station and/or any Diffserv setting in an IP header. 942 * Finally, if an ACM policy is setup (in station mode) it's 943 * applied. 944 */ 945 int 946 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m) 947 { 948 const struct ether_header *eh = mtod(m, struct ether_header *); 949 int v_wme_ac, d_wme_ac, ac; 950 951 /* 952 * Always promote PAE/EAPOL frames to high priority. 953 */ 954 if (eh->ether_type == htons(ETHERTYPE_PAE)) { 955 /* NB: mark so others don't need to check header */ 956 m->m_flags |= M_EAPOL; 957 ac = WME_AC_VO; 958 goto done; 959 } 960 /* 961 * Non-qos traffic goes to BE. 962 */ 963 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 964 ac = WME_AC_BE; 965 goto done; 966 } 967 968 /* 969 * If node has a vlan tag then all traffic 970 * to it must have a matching tag. 971 */ 972 v_wme_ac = 0; 973 if (ni->ni_vlan != 0) { 974 if ((m->m_flags & M_VLANTAG) == 0) { 975 IEEE80211_NODE_STAT(ni, tx_novlantag); 976 return 1; 977 } 978 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 979 EVL_VLANOFTAG(ni->ni_vlan)) { 980 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 981 return 1; 982 } 983 /* map vlan priority to AC */ 984 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan)); 985 } 986 987 /* XXX m_copydata may be too slow for fast path */ 988 #ifdef INET 989 if (eh->ether_type == htons(ETHERTYPE_IP)) { 990 uint8_t tos; 991 /* 992 * IP frame, map the DSCP bits from the TOS field. 993 */ 994 /* NB: ip header may not be in first mbuf */ 995 m_copydata(m, sizeof(struct ether_header) + 996 offsetof(struct ip, ip_tos), sizeof(tos), &tos); 997 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 998 d_wme_ac = TID_TO_WME_AC(tos); 999 } else { 1000 #endif /* INET */ 1001 #ifdef INET6 1002 if (eh->ether_type == htons(ETHERTYPE_IPV6)) { 1003 uint32_t flow; 1004 uint8_t tos; 1005 /* 1006 * IPv6 frame, map the DSCP bits from the traffic class field. 1007 */ 1008 m_copydata(m, sizeof(struct ether_header) + 1009 offsetof(struct ip6_hdr, ip6_flow), sizeof(flow), 1010 (caddr_t) &flow); 1011 tos = (uint8_t)(ntohl(flow) >> 20); 1012 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1013 d_wme_ac = TID_TO_WME_AC(tos); 1014 } else { 1015 #endif /* INET6 */ 1016 d_wme_ac = WME_AC_BE; 1017 #ifdef INET6 1018 } 1019 #endif 1020 #ifdef INET 1021 } 1022 #endif 1023 /* 1024 * Use highest priority AC. 1025 */ 1026 if (v_wme_ac > d_wme_ac) 1027 ac = v_wme_ac; 1028 else 1029 ac = d_wme_ac; 1030 1031 /* 1032 * Apply ACM policy. 1033 */ 1034 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) { 1035 static const int acmap[4] = { 1036 WME_AC_BK, /* WME_AC_BE */ 1037 WME_AC_BK, /* WME_AC_BK */ 1038 WME_AC_BE, /* WME_AC_VI */ 1039 WME_AC_VI, /* WME_AC_VO */ 1040 }; 1041 struct ieee80211com *ic = ni->ni_ic; 1042 1043 while (ac != WME_AC_BK && 1044 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 1045 ac = acmap[ac]; 1046 } 1047 done: 1048 M_WME_SETAC(m, ac); 1049 return 0; 1050 } 1051 1052 /* 1053 * Insure there is sufficient contiguous space to encapsulate the 1054 * 802.11 data frame. If room isn't already there, arrange for it. 1055 * Drivers and cipher modules assume we have done the necessary work 1056 * and fail rudely if they don't find the space they need. 1057 */ 1058 struct mbuf * 1059 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize, 1060 struct ieee80211_key *key, struct mbuf *m) 1061 { 1062 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 1063 int needed_space = vap->iv_ic->ic_headroom + hdrsize; 1064 1065 if (key != NULL) { 1066 /* XXX belongs in crypto code? */ 1067 needed_space += key->wk_cipher->ic_header; 1068 /* XXX frags */ 1069 /* 1070 * When crypto is being done in the host we must insure 1071 * the data are writable for the cipher routines; clone 1072 * a writable mbuf chain. 1073 * XXX handle SWMIC specially 1074 */ 1075 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) { 1076 m = m_unshare(m, M_NOWAIT); 1077 if (m == NULL) { 1078 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1079 "%s: cannot get writable mbuf\n", __func__); 1080 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */ 1081 return NULL; 1082 } 1083 } 1084 } 1085 /* 1086 * We know we are called just before stripping an Ethernet 1087 * header and prepending an LLC header. This means we know 1088 * there will be 1089 * sizeof(struct ether_header) - sizeof(struct llc) 1090 * bytes recovered to which we need additional space for the 1091 * 802.11 header and any crypto header. 1092 */ 1093 /* XXX check trailing space and copy instead? */ 1094 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 1095 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); 1096 if (n == NULL) { 1097 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1098 "%s: cannot expand storage\n", __func__); 1099 vap->iv_stats.is_tx_nobuf++; 1100 m_freem(m); 1101 return NULL; 1102 } 1103 KASSERT(needed_space <= MHLEN, 1104 ("not enough room, need %u got %d\n", needed_space, MHLEN)); 1105 /* 1106 * Setup new mbuf to have leading space to prepend the 1107 * 802.11 header and any crypto header bits that are 1108 * required (the latter are added when the driver calls 1109 * back to ieee80211_crypto_encap to do crypto encapsulation). 1110 */ 1111 /* NB: must be first 'cuz it clobbers m_data */ 1112 m_move_pkthdr(n, m); 1113 n->m_len = 0; /* NB: m_gethdr does not set */ 1114 n->m_data += needed_space; 1115 /* 1116 * Pull up Ethernet header to create the expected layout. 1117 * We could use m_pullup but that's overkill (i.e. we don't 1118 * need the actual data) and it cannot fail so do it inline 1119 * for speed. 1120 */ 1121 /* NB: struct ether_header is known to be contiguous */ 1122 n->m_len += sizeof(struct ether_header); 1123 m->m_len -= sizeof(struct ether_header); 1124 m->m_data += sizeof(struct ether_header); 1125 /* 1126 * Replace the head of the chain. 1127 */ 1128 n->m_next = m; 1129 m = n; 1130 } 1131 return m; 1132 #undef TO_BE_RECLAIMED 1133 } 1134 1135 /* 1136 * Return the transmit key to use in sending a unicast frame. 1137 * If a unicast key is set we use that. When no unicast key is set 1138 * we fall back to the default transmit key. 1139 */ 1140 static __inline struct ieee80211_key * 1141 ieee80211_crypto_getucastkey(struct ieee80211vap *vap, 1142 struct ieee80211_node *ni) 1143 { 1144 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) { 1145 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1146 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1147 return NULL; 1148 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1149 } else { 1150 return &ni->ni_ucastkey; 1151 } 1152 } 1153 1154 /* 1155 * Return the transmit key to use in sending a multicast frame. 1156 * Multicast traffic always uses the group key which is installed as 1157 * the default tx key. 1158 */ 1159 static __inline struct ieee80211_key * 1160 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap, 1161 struct ieee80211_node *ni) 1162 { 1163 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1164 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1165 return NULL; 1166 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1167 } 1168 1169 /* 1170 * Encapsulate an outbound data frame. The mbuf chain is updated. 1171 * If an error is encountered NULL is returned. The caller is required 1172 * to provide a node reference and pullup the ethernet header in the 1173 * first mbuf. 1174 * 1175 * NB: Packet is assumed to be processed by ieee80211_classify which 1176 * marked EAPOL frames w/ M_EAPOL. 1177 */ 1178 struct mbuf * 1179 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni, 1180 struct mbuf *m) 1181 { 1182 #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh)) 1183 #define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc) 1184 struct ieee80211com *ic = ni->ni_ic; 1185 #ifdef IEEE80211_SUPPORT_MESH 1186 struct ieee80211_mesh_state *ms = vap->iv_mesh; 1187 struct ieee80211_meshcntl_ae10 *mc; 1188 struct ieee80211_mesh_route *rt = NULL; 1189 int dir = -1; 1190 #endif 1191 struct ether_header eh; 1192 struct ieee80211_frame *wh; 1193 struct ieee80211_key *key; 1194 struct llc *llc; 1195 int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr; 1196 ieee80211_seq seqno; 1197 int meshhdrsize, meshae; 1198 uint8_t *qos; 1199 1200 IEEE80211_TX_LOCK_ASSERT(ic); 1201 1202 /* 1203 * Copy existing Ethernet header to a safe place. The 1204 * rest of the code assumes it's ok to strip it when 1205 * reorganizing state for the final encapsulation. 1206 */ 1207 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 1208 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t)); 1209 1210 /* 1211 * Insure space for additional headers. First identify 1212 * transmit key to use in calculating any buffer adjustments 1213 * required. This is also used below to do privacy 1214 * encapsulation work. Then calculate the 802.11 header 1215 * size and any padding required by the driver. 1216 * 1217 * Note key may be NULL if we fall back to the default 1218 * transmit key and that is not set. In that case the 1219 * buffer may not be expanded as needed by the cipher 1220 * routines, but they will/should discard it. 1221 */ 1222 if (vap->iv_flags & IEEE80211_F_PRIVACY) { 1223 if (vap->iv_opmode == IEEE80211_M_STA || 1224 !IEEE80211_IS_MULTICAST(eh.ether_dhost) || 1225 (vap->iv_opmode == IEEE80211_M_WDS && 1226 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) 1227 key = ieee80211_crypto_getucastkey(vap, ni); 1228 else 1229 key = ieee80211_crypto_getmcastkey(vap, ni); 1230 if (key == NULL && (m->m_flags & M_EAPOL) == 0) { 1231 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, 1232 eh.ether_dhost, 1233 "no default transmit key (%s) deftxkey %u", 1234 __func__, vap->iv_def_txkey); 1235 vap->iv_stats.is_tx_nodefkey++; 1236 goto bad; 1237 } 1238 } else 1239 key = NULL; 1240 /* 1241 * XXX Some ap's don't handle QoS-encapsulated EAPOL 1242 * frames so suppress use. This may be an issue if other 1243 * ap's require all data frames to be QoS-encapsulated 1244 * once negotiated in which case we'll need to make this 1245 * configurable. 1246 * NB: mesh data frames are QoS. 1247 */ 1248 addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) || 1249 (vap->iv_opmode == IEEE80211_M_MBSS)) && 1250 (m->m_flags & M_EAPOL) == 0; 1251 if (addqos) 1252 hdrsize = sizeof(struct ieee80211_qosframe); 1253 else 1254 hdrsize = sizeof(struct ieee80211_frame); 1255 #ifdef IEEE80211_SUPPORT_MESH 1256 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1257 /* 1258 * Mesh data frames are encapsulated according to the 1259 * rules of Section 11B.8.5 (p.139 of D3.0 spec). 1260 * o Group Addressed data (aka multicast) originating 1261 * at the local sta are sent w/ 3-address format and 1262 * address extension mode 00 1263 * o Individually Addressed data (aka unicast) originating 1264 * at the local sta are sent w/ 4-address format and 1265 * address extension mode 00 1266 * o Group Addressed data forwarded from a non-mesh sta are 1267 * sent w/ 3-address format and address extension mode 01 1268 * o Individually Address data from another sta are sent 1269 * w/ 4-address format and address extension mode 10 1270 */ 1271 is4addr = 0; /* NB: don't use, disable */ 1272 if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) { 1273 rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost); 1274 KASSERT(rt != NULL, ("route is NULL")); 1275 dir = IEEE80211_FC1_DIR_DSTODS; 1276 hdrsize += IEEE80211_ADDR_LEN; 1277 if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) { 1278 if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate, 1279 vap->iv_myaddr)) { 1280 IEEE80211_NOTE_MAC(vap, 1281 IEEE80211_MSG_MESH, 1282 eh.ether_dhost, 1283 "%s", "trying to send to ourself"); 1284 goto bad; 1285 } 1286 meshae = IEEE80211_MESH_AE_10; 1287 meshhdrsize = 1288 sizeof(struct ieee80211_meshcntl_ae10); 1289 } else { 1290 meshae = IEEE80211_MESH_AE_00; 1291 meshhdrsize = 1292 sizeof(struct ieee80211_meshcntl); 1293 } 1294 } else { 1295 dir = IEEE80211_FC1_DIR_FROMDS; 1296 if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) { 1297 /* proxy group */ 1298 meshae = IEEE80211_MESH_AE_01; 1299 meshhdrsize = 1300 sizeof(struct ieee80211_meshcntl_ae01); 1301 } else { 1302 /* group */ 1303 meshae = IEEE80211_MESH_AE_00; 1304 meshhdrsize = sizeof(struct ieee80211_meshcntl); 1305 } 1306 } 1307 } else { 1308 #endif 1309 /* 1310 * 4-address frames need to be generated for: 1311 * o packets sent through a WDS vap (IEEE80211_M_WDS) 1312 * o packets sent through a vap marked for relaying 1313 * (e.g. a station operating with dynamic WDS) 1314 */ 1315 is4addr = vap->iv_opmode == IEEE80211_M_WDS || 1316 ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) && 1317 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)); 1318 if (is4addr) 1319 hdrsize += IEEE80211_ADDR_LEN; 1320 meshhdrsize = meshae = 0; 1321 #ifdef IEEE80211_SUPPORT_MESH 1322 } 1323 #endif 1324 /* 1325 * Honor driver DATAPAD requirement. 1326 */ 1327 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1328 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1329 else 1330 hdrspace = hdrsize; 1331 1332 if (__predict_true((m->m_flags & M_FF) == 0)) { 1333 /* 1334 * Normal frame. 1335 */ 1336 m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m); 1337 if (m == NULL) { 1338 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 1339 goto bad; 1340 } 1341 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */ 1342 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 1343 llc = mtod(m, struct llc *); 1344 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 1345 llc->llc_control = LLC_UI; 1346 llc->llc_snap.org_code[0] = 0; 1347 llc->llc_snap.org_code[1] = 0; 1348 llc->llc_snap.org_code[2] = 0; 1349 llc->llc_snap.ether_type = eh.ether_type; 1350 } else { 1351 #ifdef IEEE80211_SUPPORT_SUPERG 1352 /* 1353 * Aggregated frame. 1354 */ 1355 m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key); 1356 if (m == NULL) 1357 #endif 1358 goto bad; 1359 } 1360 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 1361 1362 M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT); 1363 if (m == NULL) { 1364 vap->iv_stats.is_tx_nobuf++; 1365 goto bad; 1366 } 1367 wh = mtod(m, struct ieee80211_frame *); 1368 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 1369 *(uint16_t *)wh->i_dur = 0; 1370 qos = NULL; /* NB: quiet compiler */ 1371 if (is4addr) { 1372 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 1373 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); 1374 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1375 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1376 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); 1377 } else switch (vap->iv_opmode) { 1378 case IEEE80211_M_STA: 1379 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 1380 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 1381 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1382 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1383 break; 1384 case IEEE80211_M_IBSS: 1385 case IEEE80211_M_AHDEMO: 1386 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1387 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1388 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1389 /* 1390 * NB: always use the bssid from iv_bss as the 1391 * neighbor's may be stale after an ibss merge 1392 */ 1393 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid); 1394 break; 1395 case IEEE80211_M_HOSTAP: 1396 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1397 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1398 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 1399 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 1400 break; 1401 #ifdef IEEE80211_SUPPORT_MESH 1402 case IEEE80211_M_MBSS: 1403 /* NB: offset by hdrspace to deal with DATAPAD */ 1404 mc = (struct ieee80211_meshcntl_ae10 *) 1405 (mtod(m, uint8_t *) + hdrspace); 1406 wh->i_fc[1] = dir; 1407 switch (meshae) { 1408 case IEEE80211_MESH_AE_00: /* no proxy */ 1409 mc->mc_flags = 0; 1410 if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */ 1411 IEEE80211_ADDR_COPY(wh->i_addr1, 1412 ni->ni_macaddr); 1413 IEEE80211_ADDR_COPY(wh->i_addr2, 1414 vap->iv_myaddr); 1415 IEEE80211_ADDR_COPY(wh->i_addr3, 1416 eh.ether_dhost); 1417 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, 1418 eh.ether_shost); 1419 qos =((struct ieee80211_qosframe_addr4 *) 1420 wh)->i_qos; 1421 } else if (dir == IEEE80211_FC1_DIR_FROMDS) { 1422 /* mcast */ 1423 IEEE80211_ADDR_COPY(wh->i_addr1, 1424 eh.ether_dhost); 1425 IEEE80211_ADDR_COPY(wh->i_addr2, 1426 vap->iv_myaddr); 1427 IEEE80211_ADDR_COPY(wh->i_addr3, 1428 eh.ether_shost); 1429 qos = ((struct ieee80211_qosframe *) 1430 wh)->i_qos; 1431 } 1432 break; 1433 case IEEE80211_MESH_AE_01: /* mcast, proxy */ 1434 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1435 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1436 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1437 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr); 1438 mc->mc_flags = 1; 1439 IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4, 1440 eh.ether_shost); 1441 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1442 break; 1443 case IEEE80211_MESH_AE_10: /* ucast, proxy */ 1444 KASSERT(rt != NULL, ("route is NULL")); 1445 IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop); 1446 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1447 IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate); 1448 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr); 1449 mc->mc_flags = IEEE80211_MESH_AE_10; 1450 IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost); 1451 IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost); 1452 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1453 break; 1454 default: 1455 KASSERT(0, ("meshae %d", meshae)); 1456 break; 1457 } 1458 mc->mc_ttl = ms->ms_ttl; 1459 ms->ms_seq++; 1460 LE_WRITE_4(mc->mc_seq, ms->ms_seq); 1461 break; 1462 #endif 1463 case IEEE80211_M_WDS: /* NB: is4addr should always be true */ 1464 default: 1465 goto bad; 1466 } 1467 if (m->m_flags & M_MORE_DATA) 1468 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 1469 if (addqos) { 1470 int ac, tid; 1471 1472 if (is4addr) { 1473 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1474 /* NB: mesh case handled earlier */ 1475 } else if (vap->iv_opmode != IEEE80211_M_MBSS) 1476 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1477 ac = M_WME_GETAC(m); 1478 /* map from access class/queue to 11e header priorty value */ 1479 tid = WME_AC_TO_TID(ac); 1480 qos[0] = tid & IEEE80211_QOS_TID; 1481 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 1482 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1483 #ifdef IEEE80211_SUPPORT_MESH 1484 if (vap->iv_opmode == IEEE80211_M_MBSS) 1485 qos[1] = IEEE80211_QOS_MC; 1486 else 1487 #endif 1488 qos[1] = 0; 1489 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 1490 1491 if ((m->m_flags & M_AMPDU_MPDU) == 0) { 1492 /* 1493 * NB: don't assign a sequence # to potential 1494 * aggregates; we expect this happens at the 1495 * point the frame comes off any aggregation q 1496 * as otherwise we may introduce holes in the 1497 * BA sequence space and/or make window accouting 1498 * more difficult. 1499 * 1500 * XXX may want to control this with a driver 1501 * capability; this may also change when we pull 1502 * aggregation up into net80211 1503 */ 1504 seqno = ni->ni_txseqs[tid]++; 1505 *(uint16_t *)wh->i_seq = 1506 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1507 M_SEQNO_SET(m, seqno); 1508 } 1509 } else { 1510 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1511 *(uint16_t *)wh->i_seq = 1512 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1513 M_SEQNO_SET(m, seqno); 1514 } 1515 1516 1517 /* check if xmit fragmentation is required */ 1518 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold && 1519 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 1520 (vap->iv_caps & IEEE80211_C_TXFRAG) && 1521 (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0); 1522 if (key != NULL) { 1523 /* 1524 * IEEE 802.1X: send EAPOL frames always in the clear. 1525 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 1526 */ 1527 if ((m->m_flags & M_EAPOL) == 0 || 1528 ((vap->iv_flags & IEEE80211_F_WPA) && 1529 (vap->iv_opmode == IEEE80211_M_STA ? 1530 !IEEE80211_KEY_UNDEFINED(key) : 1531 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) { 1532 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 1533 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) { 1534 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT, 1535 eh.ether_dhost, 1536 "%s", "enmic failed, discard frame"); 1537 vap->iv_stats.is_crypto_enmicfail++; 1538 goto bad; 1539 } 1540 } 1541 } 1542 if (txfrag && !ieee80211_fragment(vap, m, hdrsize, 1543 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold)) 1544 goto bad; 1545 1546 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1547 1548 IEEE80211_NODE_STAT(ni, tx_data); 1549 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1550 IEEE80211_NODE_STAT(ni, tx_mcast); 1551 m->m_flags |= M_MCAST; 1552 } else 1553 IEEE80211_NODE_STAT(ni, tx_ucast); 1554 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 1555 1556 return m; 1557 bad: 1558 if (m != NULL) 1559 m_freem(m); 1560 return NULL; 1561 #undef WH4 1562 #undef MC01 1563 } 1564 1565 /* 1566 * Fragment the frame according to the specified mtu. 1567 * The size of the 802.11 header (w/o padding) is provided 1568 * so we don't need to recalculate it. We create a new 1569 * mbuf for each fragment and chain it through m_nextpkt; 1570 * we might be able to optimize this by reusing the original 1571 * packet's mbufs but that is significantly more complicated. 1572 */ 1573 static int 1574 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0, 1575 u_int hdrsize, u_int ciphdrsize, u_int mtu) 1576 { 1577 struct ieee80211com *ic = vap->iv_ic; 1578 struct ieee80211_frame *wh, *whf; 1579 struct mbuf *m, *prev, *next; 1580 u_int totalhdrsize, fragno, fragsize, off, remainder, payload; 1581 u_int hdrspace; 1582 1583 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); 1584 KASSERT(m0->m_pkthdr.len > mtu, 1585 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); 1586 1587 /* 1588 * Honor driver DATAPAD requirement. 1589 */ 1590 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1591 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1592 else 1593 hdrspace = hdrsize; 1594 1595 wh = mtod(m0, struct ieee80211_frame *); 1596 /* NB: mark the first frag; it will be propagated below */ 1597 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; 1598 totalhdrsize = hdrspace + ciphdrsize; 1599 fragno = 1; 1600 off = mtu - ciphdrsize; 1601 remainder = m0->m_pkthdr.len - off; 1602 prev = m0; 1603 do { 1604 fragsize = totalhdrsize + remainder; 1605 if (fragsize > mtu) 1606 fragsize = mtu; 1607 /* XXX fragsize can be >2048! */ 1608 KASSERT(fragsize < MCLBYTES, 1609 ("fragment size %u too big!", fragsize)); 1610 if (fragsize > MHLEN) 1611 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1612 else 1613 m = m_gethdr(M_NOWAIT, MT_DATA); 1614 if (m == NULL) 1615 goto bad; 1616 /* leave room to prepend any cipher header */ 1617 m_align(m, fragsize - ciphdrsize); 1618 1619 /* 1620 * Form the header in the fragment. Note that since 1621 * we mark the first fragment with the MORE_FRAG bit 1622 * it automatically is propagated to each fragment; we 1623 * need only clear it on the last fragment (done below). 1624 * NB: frag 1+ dont have Mesh Control field present. 1625 */ 1626 whf = mtod(m, struct ieee80211_frame *); 1627 memcpy(whf, wh, hdrsize); 1628 #ifdef IEEE80211_SUPPORT_MESH 1629 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1630 if (IEEE80211_IS_DSTODS(wh)) 1631 ((struct ieee80211_qosframe_addr4 *) 1632 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1633 else 1634 ((struct ieee80211_qosframe *) 1635 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1636 } 1637 #endif 1638 *(uint16_t *)&whf->i_seq[0] |= htole16( 1639 (fragno & IEEE80211_SEQ_FRAG_MASK) << 1640 IEEE80211_SEQ_FRAG_SHIFT); 1641 fragno++; 1642 1643 payload = fragsize - totalhdrsize; 1644 /* NB: destination is known to be contiguous */ 1645 1646 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace); 1647 m->m_len = hdrspace + payload; 1648 m->m_pkthdr.len = hdrspace + payload; 1649 m->m_flags |= M_FRAG; 1650 1651 /* chain up the fragment */ 1652 prev->m_nextpkt = m; 1653 prev = m; 1654 1655 /* deduct fragment just formed */ 1656 remainder -= payload; 1657 off += payload; 1658 } while (remainder != 0); 1659 1660 /* set the last fragment */ 1661 m->m_flags |= M_LASTFRAG; 1662 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; 1663 1664 /* strip first mbuf now that everything has been copied */ 1665 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); 1666 m0->m_flags |= M_FIRSTFRAG | M_FRAG; 1667 1668 vap->iv_stats.is_tx_fragframes++; 1669 vap->iv_stats.is_tx_frags += fragno-1; 1670 1671 return 1; 1672 bad: 1673 /* reclaim fragments but leave original frame for caller to free */ 1674 for (m = m0->m_nextpkt; m != NULL; m = next) { 1675 next = m->m_nextpkt; 1676 m->m_nextpkt = NULL; /* XXX paranoid */ 1677 m_freem(m); 1678 } 1679 m0->m_nextpkt = NULL; 1680 return 0; 1681 } 1682 1683 /* 1684 * Add a supported rates element id to a frame. 1685 */ 1686 uint8_t * 1687 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs) 1688 { 1689 int nrates; 1690 1691 *frm++ = IEEE80211_ELEMID_RATES; 1692 nrates = rs->rs_nrates; 1693 if (nrates > IEEE80211_RATE_SIZE) 1694 nrates = IEEE80211_RATE_SIZE; 1695 *frm++ = nrates; 1696 memcpy(frm, rs->rs_rates, nrates); 1697 return frm + nrates; 1698 } 1699 1700 /* 1701 * Add an extended supported rates element id to a frame. 1702 */ 1703 uint8_t * 1704 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs) 1705 { 1706 /* 1707 * Add an extended supported rates element if operating in 11g mode. 1708 */ 1709 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 1710 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 1711 *frm++ = IEEE80211_ELEMID_XRATES; 1712 *frm++ = nrates; 1713 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 1714 frm += nrates; 1715 } 1716 return frm; 1717 } 1718 1719 /* 1720 * Add an ssid element to a frame. 1721 */ 1722 uint8_t * 1723 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) 1724 { 1725 *frm++ = IEEE80211_ELEMID_SSID; 1726 *frm++ = len; 1727 memcpy(frm, ssid, len); 1728 return frm + len; 1729 } 1730 1731 /* 1732 * Add an erp element to a frame. 1733 */ 1734 static uint8_t * 1735 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic) 1736 { 1737 uint8_t erp; 1738 1739 *frm++ = IEEE80211_ELEMID_ERP; 1740 *frm++ = 1; 1741 erp = 0; 1742 if (ic->ic_nonerpsta != 0) 1743 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 1744 if (ic->ic_flags & IEEE80211_F_USEPROT) 1745 erp |= IEEE80211_ERP_USE_PROTECTION; 1746 if (ic->ic_flags & IEEE80211_F_USEBARKER) 1747 erp |= IEEE80211_ERP_LONG_PREAMBLE; 1748 *frm++ = erp; 1749 return frm; 1750 } 1751 1752 /* 1753 * Add a CFParams element to a frame. 1754 */ 1755 static uint8_t * 1756 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic) 1757 { 1758 #define ADDSHORT(frm, v) do { \ 1759 LE_WRITE_2(frm, v); \ 1760 frm += 2; \ 1761 } while (0) 1762 *frm++ = IEEE80211_ELEMID_CFPARMS; 1763 *frm++ = 6; 1764 *frm++ = 0; /* CFP count */ 1765 *frm++ = 2; /* CFP period */ 1766 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */ 1767 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */ 1768 return frm; 1769 #undef ADDSHORT 1770 } 1771 1772 static __inline uint8_t * 1773 add_appie(uint8_t *frm, const struct ieee80211_appie *ie) 1774 { 1775 memcpy(frm, ie->ie_data, ie->ie_len); 1776 return frm + ie->ie_len; 1777 } 1778 1779 static __inline uint8_t * 1780 add_ie(uint8_t *frm, const uint8_t *ie) 1781 { 1782 memcpy(frm, ie, 2 + ie[1]); 1783 return frm + 2 + ie[1]; 1784 } 1785 1786 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 1787 /* 1788 * Add a WME information element to a frame. 1789 */ 1790 uint8_t * 1791 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme) 1792 { 1793 static const struct ieee80211_wme_info info = { 1794 .wme_id = IEEE80211_ELEMID_VENDOR, 1795 .wme_len = sizeof(struct ieee80211_wme_info) - 2, 1796 .wme_oui = { WME_OUI_BYTES }, 1797 .wme_type = WME_OUI_TYPE, 1798 .wme_subtype = WME_INFO_OUI_SUBTYPE, 1799 .wme_version = WME_VERSION, 1800 .wme_info = 0, 1801 }; 1802 memcpy(frm, &info, sizeof(info)); 1803 return frm + sizeof(info); 1804 } 1805 1806 /* 1807 * Add a WME parameters element to a frame. 1808 */ 1809 static uint8_t * 1810 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme) 1811 { 1812 #define SM(_v, _f) (((_v) << _f##_S) & _f) 1813 #define ADDSHORT(frm, v) do { \ 1814 LE_WRITE_2(frm, v); \ 1815 frm += 2; \ 1816 } while (0) 1817 /* NB: this works 'cuz a param has an info at the front */ 1818 static const struct ieee80211_wme_info param = { 1819 .wme_id = IEEE80211_ELEMID_VENDOR, 1820 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 1821 .wme_oui = { WME_OUI_BYTES }, 1822 .wme_type = WME_OUI_TYPE, 1823 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 1824 .wme_version = WME_VERSION, 1825 }; 1826 int i; 1827 1828 memcpy(frm, ¶m, sizeof(param)); 1829 frm += __offsetof(struct ieee80211_wme_info, wme_info); 1830 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ 1831 *frm++ = 0; /* reserved field */ 1832 for (i = 0; i < WME_NUM_AC; i++) { 1833 const struct wmeParams *ac = 1834 &wme->wme_bssChanParams.cap_wmeParams[i]; 1835 *frm++ = SM(i, WME_PARAM_ACI) 1836 | SM(ac->wmep_acm, WME_PARAM_ACM) 1837 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) 1838 ; 1839 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) 1840 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) 1841 ; 1842 ADDSHORT(frm, ac->wmep_txopLimit); 1843 } 1844 return frm; 1845 #undef SM 1846 #undef ADDSHORT 1847 } 1848 #undef WME_OUI_BYTES 1849 1850 /* 1851 * Add an 11h Power Constraint element to a frame. 1852 */ 1853 static uint8_t * 1854 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap) 1855 { 1856 const struct ieee80211_channel *c = vap->iv_bss->ni_chan; 1857 /* XXX per-vap tx power limit? */ 1858 int8_t limit = vap->iv_ic->ic_txpowlimit / 2; 1859 1860 frm[0] = IEEE80211_ELEMID_PWRCNSTR; 1861 frm[1] = 1; 1862 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0; 1863 return frm + 3; 1864 } 1865 1866 /* 1867 * Add an 11h Power Capability element to a frame. 1868 */ 1869 static uint8_t * 1870 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c) 1871 { 1872 frm[0] = IEEE80211_ELEMID_PWRCAP; 1873 frm[1] = 2; 1874 frm[2] = c->ic_minpower; 1875 frm[3] = c->ic_maxpower; 1876 return frm + 4; 1877 } 1878 1879 /* 1880 * Add an 11h Supported Channels element to a frame. 1881 */ 1882 static uint8_t * 1883 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic) 1884 { 1885 static const int ielen = 26; 1886 1887 frm[0] = IEEE80211_ELEMID_SUPPCHAN; 1888 frm[1] = ielen; 1889 /* XXX not correct */ 1890 memcpy(frm+2, ic->ic_chan_avail, ielen); 1891 return frm + 2 + ielen; 1892 } 1893 1894 /* 1895 * Add an 11h Quiet time element to a frame. 1896 */ 1897 static uint8_t * 1898 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap) 1899 { 1900 struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm; 1901 1902 quiet->quiet_ie = IEEE80211_ELEMID_QUIET; 1903 quiet->len = 6; 1904 if (vap->iv_quiet_count_value == 1) 1905 vap->iv_quiet_count_value = vap->iv_quiet_count; 1906 else if (vap->iv_quiet_count_value > 1) 1907 vap->iv_quiet_count_value--; 1908 1909 if (vap->iv_quiet_count_value == 0) { 1910 /* value 0 is reserved as per 802.11h standerd */ 1911 vap->iv_quiet_count_value = 1; 1912 } 1913 1914 quiet->tbttcount = vap->iv_quiet_count_value; 1915 quiet->period = vap->iv_quiet_period; 1916 quiet->duration = htole16(vap->iv_quiet_duration); 1917 quiet->offset = htole16(vap->iv_quiet_offset); 1918 return frm + sizeof(*quiet); 1919 } 1920 1921 /* 1922 * Add an 11h Channel Switch Announcement element to a frame. 1923 * Note that we use the per-vap CSA count to adjust the global 1924 * counter so we can use this routine to form probe response 1925 * frames and get the current count. 1926 */ 1927 static uint8_t * 1928 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap) 1929 { 1930 struct ieee80211com *ic = vap->iv_ic; 1931 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm; 1932 1933 csa->csa_ie = IEEE80211_ELEMID_CSA; 1934 csa->csa_len = 3; 1935 csa->csa_mode = 1; /* XXX force quiet on channel */ 1936 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan); 1937 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count; 1938 return frm + sizeof(*csa); 1939 } 1940 1941 /* 1942 * Add an 11h country information element to a frame. 1943 */ 1944 static uint8_t * 1945 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic) 1946 { 1947 1948 if (ic->ic_countryie == NULL || 1949 ic->ic_countryie_chan != ic->ic_bsschan) { 1950 /* 1951 * Handle lazy construction of ie. This is done on 1952 * first use and after a channel change that requires 1953 * re-calculation. 1954 */ 1955 if (ic->ic_countryie != NULL) 1956 IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE); 1957 ic->ic_countryie = ieee80211_alloc_countryie(ic); 1958 if (ic->ic_countryie == NULL) 1959 return frm; 1960 ic->ic_countryie_chan = ic->ic_bsschan; 1961 } 1962 return add_appie(frm, ic->ic_countryie); 1963 } 1964 1965 uint8_t * 1966 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap) 1967 { 1968 if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) 1969 return (add_ie(frm, vap->iv_wpa_ie)); 1970 else { 1971 /* XXX else complain? */ 1972 return (frm); 1973 } 1974 } 1975 1976 uint8_t * 1977 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap) 1978 { 1979 if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL) 1980 return (add_ie(frm, vap->iv_rsn_ie)); 1981 else { 1982 /* XXX else complain? */ 1983 return (frm); 1984 } 1985 } 1986 1987 uint8_t * 1988 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni) 1989 { 1990 if (ni->ni_flags & IEEE80211_NODE_QOS) { 1991 *frm++ = IEEE80211_ELEMID_QOS; 1992 *frm++ = 1; 1993 *frm++ = 0; 1994 } 1995 1996 return (frm); 1997 } 1998 1999 /* 2000 * Send a probe request frame with the specified ssid 2001 * and any optional information element data. 2002 */ 2003 int 2004 ieee80211_send_probereq(struct ieee80211_node *ni, 2005 const uint8_t sa[IEEE80211_ADDR_LEN], 2006 const uint8_t da[IEEE80211_ADDR_LEN], 2007 const uint8_t bssid[IEEE80211_ADDR_LEN], 2008 const uint8_t *ssid, size_t ssidlen) 2009 { 2010 struct ieee80211vap *vap = ni->ni_vap; 2011 struct ieee80211com *ic = ni->ni_ic; 2012 const struct ieee80211_txparam *tp; 2013 struct ieee80211_bpf_params params; 2014 struct ieee80211_frame *wh; 2015 const struct ieee80211_rateset *rs; 2016 struct mbuf *m; 2017 uint8_t *frm; 2018 int ret; 2019 2020 if (vap->iv_state == IEEE80211_S_CAC) { 2021 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni, 2022 "block %s frame in CAC state", "probe request"); 2023 vap->iv_stats.is_tx_badstate++; 2024 return EIO; /* XXX */ 2025 } 2026 2027 /* 2028 * Hold a reference on the node so it doesn't go away until after 2029 * the xmit is complete all the way in the driver. On error we 2030 * will remove our reference. 2031 */ 2032 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2033 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2034 __func__, __LINE__, 2035 ni, ether_sprintf(ni->ni_macaddr), 2036 ieee80211_node_refcnt(ni)+1); 2037 ieee80211_ref_node(ni); 2038 2039 /* 2040 * prreq frame format 2041 * [tlv] ssid 2042 * [tlv] supported rates 2043 * [tlv] RSN (optional) 2044 * [tlv] extended supported rates 2045 * [tlv] WPA (optional) 2046 * [tlv] user-specified ie's 2047 */ 2048 m = ieee80211_getmgtframe(&frm, 2049 ic->ic_headroom + sizeof(struct ieee80211_frame), 2050 2 + IEEE80211_NWID_LEN 2051 + 2 + IEEE80211_RATE_SIZE 2052 + sizeof(struct ieee80211_ie_wpa) 2053 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2054 + sizeof(struct ieee80211_ie_wpa) 2055 + (vap->iv_appie_probereq != NULL ? 2056 vap->iv_appie_probereq->ie_len : 0) 2057 ); 2058 if (m == NULL) { 2059 vap->iv_stats.is_tx_nobuf++; 2060 ieee80211_free_node(ni); 2061 return ENOMEM; 2062 } 2063 2064 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 2065 rs = ieee80211_get_suprates(ic, ic->ic_curchan); 2066 frm = ieee80211_add_rates(frm, rs); 2067 frm = ieee80211_add_rsn(frm, vap); 2068 frm = ieee80211_add_xrates(frm, rs); 2069 frm = ieee80211_add_wpa(frm, vap); 2070 if (vap->iv_appie_probereq != NULL) 2071 frm = add_appie(frm, vap->iv_appie_probereq); 2072 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2073 2074 KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame), 2075 ("leading space %zd", M_LEADINGSPACE(m))); 2076 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2077 if (m == NULL) { 2078 /* NB: cannot happen */ 2079 ieee80211_free_node(ni); 2080 return ENOMEM; 2081 } 2082 2083 IEEE80211_TX_LOCK(ic); 2084 wh = mtod(m, struct ieee80211_frame *); 2085 ieee80211_send_setup(ni, m, 2086 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 2087 IEEE80211_NONQOS_TID, sa, da, bssid); 2088 /* XXX power management? */ 2089 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2090 2091 M_WME_SETAC(m, WME_AC_BE); 2092 2093 IEEE80211_NODE_STAT(ni, tx_probereq); 2094 IEEE80211_NODE_STAT(ni, tx_mgmt); 2095 2096 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2097 "send probe req on channel %u bssid %s ssid \"%.*s\"\n", 2098 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid), 2099 ssidlen, ssid); 2100 2101 memset(¶ms, 0, sizeof(params)); 2102 params.ibp_pri = M_WME_GETAC(m); 2103 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 2104 params.ibp_rate0 = tp->mgmtrate; 2105 if (IEEE80211_IS_MULTICAST(da)) { 2106 params.ibp_flags |= IEEE80211_BPF_NOACK; 2107 params.ibp_try0 = 1; 2108 } else 2109 params.ibp_try0 = tp->maxretry; 2110 params.ibp_power = ni->ni_txpower; 2111 ret = ieee80211_raw_output(vap, ni, m, ¶ms); 2112 IEEE80211_TX_UNLOCK(ic); 2113 return (ret); 2114 } 2115 2116 /* 2117 * Calculate capability information for mgt frames. 2118 */ 2119 uint16_t 2120 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan) 2121 { 2122 struct ieee80211com *ic = vap->iv_ic; 2123 uint16_t capinfo; 2124 2125 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode")); 2126 2127 if (vap->iv_opmode == IEEE80211_M_HOSTAP) 2128 capinfo = IEEE80211_CAPINFO_ESS; 2129 else if (vap->iv_opmode == IEEE80211_M_IBSS) 2130 capinfo = IEEE80211_CAPINFO_IBSS; 2131 else 2132 capinfo = 0; 2133 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2134 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2135 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2136 IEEE80211_IS_CHAN_2GHZ(chan)) 2137 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2138 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2139 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2140 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH)) 2141 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2142 return capinfo; 2143 } 2144 2145 /* 2146 * Send a management frame. The node is for the destination (or ic_bss 2147 * when in station mode). Nodes other than ic_bss have their reference 2148 * count bumped to reflect our use for an indeterminant time. 2149 */ 2150 int 2151 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg) 2152 { 2153 #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT) 2154 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2155 struct ieee80211vap *vap = ni->ni_vap; 2156 struct ieee80211com *ic = ni->ni_ic; 2157 struct ieee80211_node *bss = vap->iv_bss; 2158 struct ieee80211_bpf_params params; 2159 struct mbuf *m; 2160 uint8_t *frm; 2161 uint16_t capinfo; 2162 int has_challenge, is_shared_key, ret, status; 2163 2164 KASSERT(ni != NULL, ("null node")); 2165 2166 /* 2167 * Hold a reference on the node so it doesn't go away until after 2168 * the xmit is complete all the way in the driver. On error we 2169 * will remove our reference. 2170 */ 2171 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2172 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2173 __func__, __LINE__, 2174 ni, ether_sprintf(ni->ni_macaddr), 2175 ieee80211_node_refcnt(ni)+1); 2176 ieee80211_ref_node(ni); 2177 2178 memset(¶ms, 0, sizeof(params)); 2179 switch (type) { 2180 2181 case IEEE80211_FC0_SUBTYPE_AUTH: 2182 status = arg >> 16; 2183 arg &= 0xffff; 2184 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || 2185 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 2186 ni->ni_challenge != NULL); 2187 2188 /* 2189 * Deduce whether we're doing open authentication or 2190 * shared key authentication. We do the latter if 2191 * we're in the middle of a shared key authentication 2192 * handshake or if we're initiating an authentication 2193 * request and configured to use shared key. 2194 */ 2195 is_shared_key = has_challenge || 2196 arg >= IEEE80211_AUTH_SHARED_RESPONSE || 2197 (arg == IEEE80211_AUTH_SHARED_REQUEST && 2198 bss->ni_authmode == IEEE80211_AUTH_SHARED); 2199 2200 m = ieee80211_getmgtframe(&frm, 2201 ic->ic_headroom + sizeof(struct ieee80211_frame), 2202 3 * sizeof(uint16_t) 2203 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? 2204 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0) 2205 ); 2206 if (m == NULL) 2207 senderr(ENOMEM, is_tx_nobuf); 2208 2209 ((uint16_t *)frm)[0] = 2210 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) 2211 : htole16(IEEE80211_AUTH_ALG_OPEN); 2212 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */ 2213 ((uint16_t *)frm)[2] = htole16(status);/* status */ 2214 2215 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { 2216 ((uint16_t *)frm)[3] = 2217 htole16((IEEE80211_CHALLENGE_LEN << 8) | 2218 IEEE80211_ELEMID_CHALLENGE); 2219 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge, 2220 IEEE80211_CHALLENGE_LEN); 2221 m->m_pkthdr.len = m->m_len = 2222 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN; 2223 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 2224 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2225 "request encrypt frame (%s)", __func__); 2226 /* mark frame for encryption */ 2227 params.ibp_flags |= IEEE80211_BPF_CRYPTO; 2228 } 2229 } else 2230 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t); 2231 2232 /* XXX not right for shared key */ 2233 if (status == IEEE80211_STATUS_SUCCESS) 2234 IEEE80211_NODE_STAT(ni, tx_auth); 2235 else 2236 IEEE80211_NODE_STAT(ni, tx_auth_fail); 2237 2238 if (vap->iv_opmode == IEEE80211_M_STA) 2239 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2240 (void *) vap->iv_state); 2241 break; 2242 2243 case IEEE80211_FC0_SUBTYPE_DEAUTH: 2244 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2245 "send station deauthenticate (reason %d)", arg); 2246 m = ieee80211_getmgtframe(&frm, 2247 ic->ic_headroom + sizeof(struct ieee80211_frame), 2248 sizeof(uint16_t)); 2249 if (m == NULL) 2250 senderr(ENOMEM, is_tx_nobuf); 2251 *(uint16_t *)frm = htole16(arg); /* reason */ 2252 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2253 2254 IEEE80211_NODE_STAT(ni, tx_deauth); 2255 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 2256 2257 ieee80211_node_unauthorize(ni); /* port closed */ 2258 break; 2259 2260 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 2261 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 2262 /* 2263 * asreq frame format 2264 * [2] capability information 2265 * [2] listen interval 2266 * [6*] current AP address (reassoc only) 2267 * [tlv] ssid 2268 * [tlv] supported rates 2269 * [tlv] extended supported rates 2270 * [4] power capability (optional) 2271 * [28] supported channels (optional) 2272 * [tlv] HT capabilities 2273 * [tlv] WME (optional) 2274 * [tlv] Vendor OUI HT capabilities (optional) 2275 * [tlv] Atheros capabilities (if negotiated) 2276 * [tlv] AppIE's (optional) 2277 */ 2278 m = ieee80211_getmgtframe(&frm, 2279 ic->ic_headroom + sizeof(struct ieee80211_frame), 2280 sizeof(uint16_t) 2281 + sizeof(uint16_t) 2282 + IEEE80211_ADDR_LEN 2283 + 2 + IEEE80211_NWID_LEN 2284 + 2 + IEEE80211_RATE_SIZE 2285 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2286 + 4 2287 + 2 + 26 2288 + sizeof(struct ieee80211_wme_info) 2289 + sizeof(struct ieee80211_ie_htcap) 2290 + 4 + sizeof(struct ieee80211_ie_htcap) 2291 #ifdef IEEE80211_SUPPORT_SUPERG 2292 + sizeof(struct ieee80211_ath_ie) 2293 #endif 2294 + (vap->iv_appie_wpa != NULL ? 2295 vap->iv_appie_wpa->ie_len : 0) 2296 + (vap->iv_appie_assocreq != NULL ? 2297 vap->iv_appie_assocreq->ie_len : 0) 2298 ); 2299 if (m == NULL) 2300 senderr(ENOMEM, is_tx_nobuf); 2301 2302 KASSERT(vap->iv_opmode == IEEE80211_M_STA, 2303 ("wrong mode %u", vap->iv_opmode)); 2304 capinfo = IEEE80211_CAPINFO_ESS; 2305 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2306 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2307 /* 2308 * NB: Some 11a AP's reject the request when 2309 * short premable is set. 2310 */ 2311 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2312 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2313 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2314 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 2315 (ic->ic_caps & IEEE80211_C_SHSLOT)) 2316 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2317 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) && 2318 (vap->iv_flags & IEEE80211_F_DOTH)) 2319 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2320 *(uint16_t *)frm = htole16(capinfo); 2321 frm += 2; 2322 2323 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!")); 2324 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval, 2325 bss->ni_intval)); 2326 frm += 2; 2327 2328 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 2329 IEEE80211_ADDR_COPY(frm, bss->ni_bssid); 2330 frm += IEEE80211_ADDR_LEN; 2331 } 2332 2333 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 2334 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2335 frm = ieee80211_add_rsn(frm, vap); 2336 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2337 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) { 2338 frm = ieee80211_add_powercapability(frm, 2339 ic->ic_curchan); 2340 frm = ieee80211_add_supportedchannels(frm, ic); 2341 } 2342 2343 /* 2344 * Check the channel - we may be using an 11n NIC with an 2345 * 11n capable station, but we're configured to be an 11b 2346 * channel. 2347 */ 2348 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2349 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2350 ni->ni_ies.htcap_ie != NULL && 2351 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) { 2352 frm = ieee80211_add_htcap(frm, ni); 2353 } 2354 frm = ieee80211_add_wpa(frm, vap); 2355 if ((ic->ic_flags & IEEE80211_F_WME) && 2356 ni->ni_ies.wme_ie != NULL) 2357 frm = ieee80211_add_wme_info(frm, &ic->ic_wme); 2358 2359 /* 2360 * Same deal - only send HT info if we're on an 11n 2361 * capable channel. 2362 */ 2363 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2364 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2365 ni->ni_ies.htcap_ie != NULL && 2366 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) { 2367 frm = ieee80211_add_htcap_vendor(frm, ni); 2368 } 2369 #ifdef IEEE80211_SUPPORT_SUPERG 2370 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) { 2371 frm = ieee80211_add_ath(frm, 2372 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2373 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2374 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2375 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2376 } 2377 #endif /* IEEE80211_SUPPORT_SUPERG */ 2378 if (vap->iv_appie_assocreq != NULL) 2379 frm = add_appie(frm, vap->iv_appie_assocreq); 2380 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2381 2382 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2383 (void *) vap->iv_state); 2384 break; 2385 2386 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 2387 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 2388 /* 2389 * asresp frame format 2390 * [2] capability information 2391 * [2] status 2392 * [2] association ID 2393 * [tlv] supported rates 2394 * [tlv] extended supported rates 2395 * [tlv] HT capabilities (standard, if STA enabled) 2396 * [tlv] HT information (standard, if STA enabled) 2397 * [tlv] WME (if configured and STA enabled) 2398 * [tlv] HT capabilities (vendor OUI, if STA enabled) 2399 * [tlv] HT information (vendor OUI, if STA enabled) 2400 * [tlv] Atheros capabilities (if STA enabled) 2401 * [tlv] AppIE's (optional) 2402 */ 2403 m = ieee80211_getmgtframe(&frm, 2404 ic->ic_headroom + sizeof(struct ieee80211_frame), 2405 sizeof(uint16_t) 2406 + sizeof(uint16_t) 2407 + sizeof(uint16_t) 2408 + 2 + IEEE80211_RATE_SIZE 2409 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2410 + sizeof(struct ieee80211_ie_htcap) + 4 2411 + sizeof(struct ieee80211_ie_htinfo) + 4 2412 + sizeof(struct ieee80211_wme_param) 2413 #ifdef IEEE80211_SUPPORT_SUPERG 2414 + sizeof(struct ieee80211_ath_ie) 2415 #endif 2416 + (vap->iv_appie_assocresp != NULL ? 2417 vap->iv_appie_assocresp->ie_len : 0) 2418 ); 2419 if (m == NULL) 2420 senderr(ENOMEM, is_tx_nobuf); 2421 2422 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2423 *(uint16_t *)frm = htole16(capinfo); 2424 frm += 2; 2425 2426 *(uint16_t *)frm = htole16(arg); /* status */ 2427 frm += 2; 2428 2429 if (arg == IEEE80211_STATUS_SUCCESS) { 2430 *(uint16_t *)frm = htole16(ni->ni_associd); 2431 IEEE80211_NODE_STAT(ni, tx_assoc); 2432 } else 2433 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 2434 frm += 2; 2435 2436 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2437 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2438 /* NB: respond according to what we received */ 2439 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) { 2440 frm = ieee80211_add_htcap(frm, ni); 2441 frm = ieee80211_add_htinfo(frm, ni); 2442 } 2443 if ((vap->iv_flags & IEEE80211_F_WME) && 2444 ni->ni_ies.wme_ie != NULL) 2445 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2446 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) { 2447 frm = ieee80211_add_htcap_vendor(frm, ni); 2448 frm = ieee80211_add_htinfo_vendor(frm, ni); 2449 } 2450 #ifdef IEEE80211_SUPPORT_SUPERG 2451 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) 2452 frm = ieee80211_add_ath(frm, 2453 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2454 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2455 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2456 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2457 #endif /* IEEE80211_SUPPORT_SUPERG */ 2458 if (vap->iv_appie_assocresp != NULL) 2459 frm = add_appie(frm, vap->iv_appie_assocresp); 2460 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2461 break; 2462 2463 case IEEE80211_FC0_SUBTYPE_DISASSOC: 2464 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, 2465 "send station disassociate (reason %d)", arg); 2466 m = ieee80211_getmgtframe(&frm, 2467 ic->ic_headroom + sizeof(struct ieee80211_frame), 2468 sizeof(uint16_t)); 2469 if (m == NULL) 2470 senderr(ENOMEM, is_tx_nobuf); 2471 *(uint16_t *)frm = htole16(arg); /* reason */ 2472 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2473 2474 IEEE80211_NODE_STAT(ni, tx_disassoc); 2475 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 2476 break; 2477 2478 default: 2479 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni, 2480 "invalid mgmt frame type %u", type); 2481 senderr(EINVAL, is_tx_unknownmgt); 2482 /* NOTREACHED */ 2483 } 2484 2485 /* NB: force non-ProbeResp frames to the highest queue */ 2486 params.ibp_pri = WME_AC_VO; 2487 params.ibp_rate0 = bss->ni_txparms->mgmtrate; 2488 /* NB: we know all frames are unicast */ 2489 params.ibp_try0 = bss->ni_txparms->maxretry; 2490 params.ibp_power = bss->ni_txpower; 2491 return ieee80211_mgmt_output(ni, m, type, ¶ms); 2492 bad: 2493 ieee80211_free_node(ni); 2494 return ret; 2495 #undef senderr 2496 #undef HTFLAGS 2497 } 2498 2499 /* 2500 * Return an mbuf with a probe response frame in it. 2501 * Space is left to prepend and 802.11 header at the 2502 * front but it's left to the caller to fill in. 2503 */ 2504 struct mbuf * 2505 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy) 2506 { 2507 struct ieee80211vap *vap = bss->ni_vap; 2508 struct ieee80211com *ic = bss->ni_ic; 2509 const struct ieee80211_rateset *rs; 2510 struct mbuf *m; 2511 uint16_t capinfo; 2512 uint8_t *frm; 2513 2514 /* 2515 * probe response frame format 2516 * [8] time stamp 2517 * [2] beacon interval 2518 * [2] cabability information 2519 * [tlv] ssid 2520 * [tlv] supported rates 2521 * [tlv] parameter set (FH/DS) 2522 * [tlv] parameter set (IBSS) 2523 * [tlv] country (optional) 2524 * [3] power control (optional) 2525 * [5] channel switch announcement (CSA) (optional) 2526 * [tlv] extended rate phy (ERP) 2527 * [tlv] extended supported rates 2528 * [tlv] RSN (optional) 2529 * [tlv] HT capabilities 2530 * [tlv] HT information 2531 * [tlv] WPA (optional) 2532 * [tlv] WME (optional) 2533 * [tlv] Vendor OUI HT capabilities (optional) 2534 * [tlv] Vendor OUI HT information (optional) 2535 * [tlv] Atheros capabilities 2536 * [tlv] AppIE's (optional) 2537 * [tlv] Mesh ID (MBSS) 2538 * [tlv] Mesh Conf (MBSS) 2539 */ 2540 m = ieee80211_getmgtframe(&frm, 2541 ic->ic_headroom + sizeof(struct ieee80211_frame), 2542 8 2543 + sizeof(uint16_t) 2544 + sizeof(uint16_t) 2545 + 2 + IEEE80211_NWID_LEN 2546 + 2 + IEEE80211_RATE_SIZE 2547 + 7 /* max(7,3) */ 2548 + IEEE80211_COUNTRY_MAX_SIZE 2549 + 3 2550 + sizeof(struct ieee80211_csa_ie) 2551 + sizeof(struct ieee80211_quiet_ie) 2552 + 3 2553 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2554 + sizeof(struct ieee80211_ie_wpa) 2555 + sizeof(struct ieee80211_ie_htcap) 2556 + sizeof(struct ieee80211_ie_htinfo) 2557 + sizeof(struct ieee80211_ie_wpa) 2558 + sizeof(struct ieee80211_wme_param) 2559 + 4 + sizeof(struct ieee80211_ie_htcap) 2560 + 4 + sizeof(struct ieee80211_ie_htinfo) 2561 #ifdef IEEE80211_SUPPORT_SUPERG 2562 + sizeof(struct ieee80211_ath_ie) 2563 #endif 2564 #ifdef IEEE80211_SUPPORT_MESH 2565 + 2 + IEEE80211_MESHID_LEN 2566 + sizeof(struct ieee80211_meshconf_ie) 2567 #endif 2568 + (vap->iv_appie_proberesp != NULL ? 2569 vap->iv_appie_proberesp->ie_len : 0) 2570 ); 2571 if (m == NULL) { 2572 vap->iv_stats.is_tx_nobuf++; 2573 return NULL; 2574 } 2575 2576 memset(frm, 0, 8); /* timestamp should be filled later */ 2577 frm += 8; 2578 *(uint16_t *)frm = htole16(bss->ni_intval); 2579 frm += 2; 2580 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2581 *(uint16_t *)frm = htole16(capinfo); 2582 frm += 2; 2583 2584 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen); 2585 rs = ieee80211_get_suprates(ic, bss->ni_chan); 2586 frm = ieee80211_add_rates(frm, rs); 2587 2588 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) { 2589 *frm++ = IEEE80211_ELEMID_FHPARMS; 2590 *frm++ = 5; 2591 *frm++ = bss->ni_fhdwell & 0x00ff; 2592 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff; 2593 *frm++ = IEEE80211_FH_CHANSET( 2594 ieee80211_chan2ieee(ic, bss->ni_chan)); 2595 *frm++ = IEEE80211_FH_CHANPAT( 2596 ieee80211_chan2ieee(ic, bss->ni_chan)); 2597 *frm++ = bss->ni_fhindex; 2598 } else { 2599 *frm++ = IEEE80211_ELEMID_DSPARMS; 2600 *frm++ = 1; 2601 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan); 2602 } 2603 2604 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2605 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2606 *frm++ = 2; 2607 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2608 } 2609 if ((vap->iv_flags & IEEE80211_F_DOTH) || 2610 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 2611 frm = ieee80211_add_countryie(frm, ic); 2612 if (vap->iv_flags & IEEE80211_F_DOTH) { 2613 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan)) 2614 frm = ieee80211_add_powerconstraint(frm, vap); 2615 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 2616 frm = ieee80211_add_csa(frm, vap); 2617 } 2618 if (vap->iv_flags & IEEE80211_F_DOTH) { 2619 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2620 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 2621 if (vap->iv_quiet) 2622 frm = ieee80211_add_quiet(frm, vap); 2623 } 2624 } 2625 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan)) 2626 frm = ieee80211_add_erp(frm, ic); 2627 frm = ieee80211_add_xrates(frm, rs); 2628 frm = ieee80211_add_rsn(frm, vap); 2629 /* 2630 * NB: legacy 11b clients do not get certain ie's. 2631 * The caller identifies such clients by passing 2632 * a token in legacy to us. Could expand this to be 2633 * any legacy client for stuff like HT ie's. 2634 */ 2635 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2636 legacy != IEEE80211_SEND_LEGACY_11B) { 2637 frm = ieee80211_add_htcap(frm, bss); 2638 frm = ieee80211_add_htinfo(frm, bss); 2639 } 2640 frm = ieee80211_add_wpa(frm, vap); 2641 if (vap->iv_flags & IEEE80211_F_WME) 2642 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2643 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2644 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) && 2645 legacy != IEEE80211_SEND_LEGACY_11B) { 2646 frm = ieee80211_add_htcap_vendor(frm, bss); 2647 frm = ieee80211_add_htinfo_vendor(frm, bss); 2648 } 2649 #ifdef IEEE80211_SUPPORT_SUPERG 2650 if ((vap->iv_flags & IEEE80211_F_ATHEROS) && 2651 legacy != IEEE80211_SEND_LEGACY_11B) 2652 frm = ieee80211_add_athcaps(frm, bss); 2653 #endif 2654 if (vap->iv_appie_proberesp != NULL) 2655 frm = add_appie(frm, vap->iv_appie_proberesp); 2656 #ifdef IEEE80211_SUPPORT_MESH 2657 if (vap->iv_opmode == IEEE80211_M_MBSS) { 2658 frm = ieee80211_add_meshid(frm, vap); 2659 frm = ieee80211_add_meshconf(frm, vap); 2660 } 2661 #endif 2662 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2663 2664 return m; 2665 } 2666 2667 /* 2668 * Send a probe response frame to the specified mac address. 2669 * This does not go through the normal mgt frame api so we 2670 * can specify the destination address and re-use the bss node 2671 * for the sta reference. 2672 */ 2673 int 2674 ieee80211_send_proberesp(struct ieee80211vap *vap, 2675 const uint8_t da[IEEE80211_ADDR_LEN], int legacy) 2676 { 2677 struct ieee80211_node *bss = vap->iv_bss; 2678 struct ieee80211com *ic = vap->iv_ic; 2679 struct ieee80211_frame *wh; 2680 struct mbuf *m; 2681 int ret; 2682 2683 if (vap->iv_state == IEEE80211_S_CAC) { 2684 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss, 2685 "block %s frame in CAC state", "probe response"); 2686 vap->iv_stats.is_tx_badstate++; 2687 return EIO; /* XXX */ 2688 } 2689 2690 /* 2691 * Hold a reference on the node so it doesn't go away until after 2692 * the xmit is complete all the way in the driver. On error we 2693 * will remove our reference. 2694 */ 2695 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2696 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2697 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr), 2698 ieee80211_node_refcnt(bss)+1); 2699 ieee80211_ref_node(bss); 2700 2701 m = ieee80211_alloc_proberesp(bss, legacy); 2702 if (m == NULL) { 2703 ieee80211_free_node(bss); 2704 return ENOMEM; 2705 } 2706 2707 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2708 KASSERT(m != NULL, ("no room for header")); 2709 2710 IEEE80211_TX_LOCK(ic); 2711 wh = mtod(m, struct ieee80211_frame *); 2712 ieee80211_send_setup(bss, m, 2713 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP, 2714 IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid); 2715 /* XXX power management? */ 2716 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2717 2718 M_WME_SETAC(m, WME_AC_BE); 2719 2720 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2721 "send probe resp on channel %u to %s%s\n", 2722 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da), 2723 legacy ? " <legacy>" : ""); 2724 IEEE80211_NODE_STAT(bss, tx_mgmt); 2725 2726 ret = ieee80211_raw_output(vap, bss, m, NULL); 2727 IEEE80211_TX_UNLOCK(ic); 2728 return (ret); 2729 } 2730 2731 /* 2732 * Allocate and build a RTS (Request To Send) control frame. 2733 */ 2734 struct mbuf * 2735 ieee80211_alloc_rts(struct ieee80211com *ic, 2736 const uint8_t ra[IEEE80211_ADDR_LEN], 2737 const uint8_t ta[IEEE80211_ADDR_LEN], 2738 uint16_t dur) 2739 { 2740 struct ieee80211_frame_rts *rts; 2741 struct mbuf *m; 2742 2743 /* XXX honor ic_headroom */ 2744 m = m_gethdr(M_NOWAIT, MT_DATA); 2745 if (m != NULL) { 2746 rts = mtod(m, struct ieee80211_frame_rts *); 2747 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2748 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS; 2749 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2750 *(u_int16_t *)rts->i_dur = htole16(dur); 2751 IEEE80211_ADDR_COPY(rts->i_ra, ra); 2752 IEEE80211_ADDR_COPY(rts->i_ta, ta); 2753 2754 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); 2755 } 2756 return m; 2757 } 2758 2759 /* 2760 * Allocate and build a CTS (Clear To Send) control frame. 2761 */ 2762 struct mbuf * 2763 ieee80211_alloc_cts(struct ieee80211com *ic, 2764 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur) 2765 { 2766 struct ieee80211_frame_cts *cts; 2767 struct mbuf *m; 2768 2769 /* XXX honor ic_headroom */ 2770 m = m_gethdr(M_NOWAIT, MT_DATA); 2771 if (m != NULL) { 2772 cts = mtod(m, struct ieee80211_frame_cts *); 2773 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2774 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS; 2775 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2776 *(u_int16_t *)cts->i_dur = htole16(dur); 2777 IEEE80211_ADDR_COPY(cts->i_ra, ra); 2778 2779 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts); 2780 } 2781 return m; 2782 } 2783 2784 static void 2785 ieee80211_tx_mgt_timeout(void *arg) 2786 { 2787 struct ieee80211vap *vap = arg; 2788 2789 IEEE80211_LOCK(vap->iv_ic); 2790 if (vap->iv_state != IEEE80211_S_INIT && 2791 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) { 2792 /* 2793 * NB: it's safe to specify a timeout as the reason here; 2794 * it'll only be used in the right state. 2795 */ 2796 ieee80211_new_state_locked(vap, IEEE80211_S_SCAN, 2797 IEEE80211_SCAN_FAIL_TIMEOUT); 2798 } 2799 IEEE80211_UNLOCK(vap->iv_ic); 2800 } 2801 2802 /* 2803 * This is the callback set on net80211-sourced transmitted 2804 * authentication request frames. 2805 * 2806 * This does a couple of things: 2807 * 2808 * + If the frame transmitted was a success, it schedules a future 2809 * event which will transition the interface to scan. 2810 * If a state transition _then_ occurs before that event occurs, 2811 * said state transition will cancel this callout. 2812 * 2813 * + If the frame transmit was a failure, it immediately schedules 2814 * the transition back to scan. 2815 */ 2816 static void 2817 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status) 2818 { 2819 struct ieee80211vap *vap = ni->ni_vap; 2820 enum ieee80211_state ostate = (enum ieee80211_state) arg; 2821 2822 /* 2823 * Frame transmit completed; arrange timer callback. If 2824 * transmit was successfuly we wait for response. Otherwise 2825 * we arrange an immediate callback instead of doing the 2826 * callback directly since we don't know what state the driver 2827 * is in (e.g. what locks it is holding). This work should 2828 * not be too time-critical and not happen too often so the 2829 * added overhead is acceptable. 2830 * 2831 * XXX what happens if !acked but response shows up before callback? 2832 */ 2833 if (vap->iv_state == ostate) { 2834 callout_reset(&vap->iv_mgtsend, 2835 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0, 2836 ieee80211_tx_mgt_timeout, vap); 2837 } 2838 } 2839 2840 static void 2841 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm, 2842 struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni) 2843 { 2844 struct ieee80211vap *vap = ni->ni_vap; 2845 struct ieee80211com *ic = ni->ni_ic; 2846 struct ieee80211_rateset *rs = &ni->ni_rates; 2847 uint16_t capinfo; 2848 2849 /* 2850 * beacon frame format 2851 * [8] time stamp 2852 * [2] beacon interval 2853 * [2] cabability information 2854 * [tlv] ssid 2855 * [tlv] supported rates 2856 * [3] parameter set (DS) 2857 * [8] CF parameter set (optional) 2858 * [tlv] parameter set (IBSS/TIM) 2859 * [tlv] country (optional) 2860 * [3] power control (optional) 2861 * [5] channel switch announcement (CSA) (optional) 2862 * [tlv] extended rate phy (ERP) 2863 * [tlv] extended supported rates 2864 * [tlv] RSN parameters 2865 * [tlv] HT capabilities 2866 * [tlv] HT information 2867 * XXX Vendor-specific OIDs (e.g. Atheros) 2868 * [tlv] WPA parameters 2869 * [tlv] WME parameters 2870 * [tlv] Vendor OUI HT capabilities (optional) 2871 * [tlv] Vendor OUI HT information (optional) 2872 * [tlv] Atheros capabilities (optional) 2873 * [tlv] TDMA parameters (optional) 2874 * [tlv] Mesh ID (MBSS) 2875 * [tlv] Mesh Conf (MBSS) 2876 * [tlv] application data (optional) 2877 */ 2878 2879 memset(bo, 0, sizeof(*bo)); 2880 2881 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 2882 frm += 8; 2883 *(uint16_t *)frm = htole16(ni->ni_intval); 2884 frm += 2; 2885 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 2886 bo->bo_caps = (uint16_t *)frm; 2887 *(uint16_t *)frm = htole16(capinfo); 2888 frm += 2; 2889 *frm++ = IEEE80211_ELEMID_SSID; 2890 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) { 2891 *frm++ = ni->ni_esslen; 2892 memcpy(frm, ni->ni_essid, ni->ni_esslen); 2893 frm += ni->ni_esslen; 2894 } else 2895 *frm++ = 0; 2896 frm = ieee80211_add_rates(frm, rs); 2897 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) { 2898 *frm++ = IEEE80211_ELEMID_DSPARMS; 2899 *frm++ = 1; 2900 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 2901 } 2902 if (ic->ic_flags & IEEE80211_F_PCF) { 2903 bo->bo_cfp = frm; 2904 frm = ieee80211_add_cfparms(frm, ic); 2905 } 2906 bo->bo_tim = frm; 2907 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2908 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2909 *frm++ = 2; 2910 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2911 bo->bo_tim_len = 0; 2912 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 2913 vap->iv_opmode == IEEE80211_M_MBSS) { 2914 /* TIM IE is the same for Mesh and Hostap */ 2915 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; 2916 2917 tie->tim_ie = IEEE80211_ELEMID_TIM; 2918 tie->tim_len = 4; /* length */ 2919 tie->tim_count = 0; /* DTIM count */ 2920 tie->tim_period = vap->iv_dtim_period; /* DTIM period */ 2921 tie->tim_bitctl = 0; /* bitmap control */ 2922 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 2923 frm += sizeof(struct ieee80211_tim_ie); 2924 bo->bo_tim_len = 1; 2925 } 2926 bo->bo_tim_trailer = frm; 2927 if ((vap->iv_flags & IEEE80211_F_DOTH) || 2928 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 2929 frm = ieee80211_add_countryie(frm, ic); 2930 if (vap->iv_flags & IEEE80211_F_DOTH) { 2931 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) 2932 frm = ieee80211_add_powerconstraint(frm, vap); 2933 bo->bo_csa = frm; 2934 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 2935 frm = ieee80211_add_csa(frm, vap); 2936 } else 2937 bo->bo_csa = frm; 2938 2939 if (vap->iv_flags & IEEE80211_F_DOTH) { 2940 bo->bo_quiet = frm; 2941 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2942 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 2943 if (vap->iv_quiet) 2944 frm = ieee80211_add_quiet(frm,vap); 2945 } 2946 } else 2947 bo->bo_quiet = frm; 2948 2949 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) { 2950 bo->bo_erp = frm; 2951 frm = ieee80211_add_erp(frm, ic); 2952 } 2953 frm = ieee80211_add_xrates(frm, rs); 2954 frm = ieee80211_add_rsn(frm, vap); 2955 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 2956 frm = ieee80211_add_htcap(frm, ni); 2957 bo->bo_htinfo = frm; 2958 frm = ieee80211_add_htinfo(frm, ni); 2959 } 2960 frm = ieee80211_add_wpa(frm, vap); 2961 if (vap->iv_flags & IEEE80211_F_WME) { 2962 bo->bo_wme = frm; 2963 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2964 } 2965 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2966 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) { 2967 frm = ieee80211_add_htcap_vendor(frm, ni); 2968 frm = ieee80211_add_htinfo_vendor(frm, ni); 2969 } 2970 #ifdef IEEE80211_SUPPORT_SUPERG 2971 if (vap->iv_flags & IEEE80211_F_ATHEROS) { 2972 bo->bo_ath = frm; 2973 frm = ieee80211_add_athcaps(frm, ni); 2974 } 2975 #endif 2976 #ifdef IEEE80211_SUPPORT_TDMA 2977 if (vap->iv_caps & IEEE80211_C_TDMA) { 2978 bo->bo_tdma = frm; 2979 frm = ieee80211_add_tdma(frm, vap); 2980 } 2981 #endif 2982 if (vap->iv_appie_beacon != NULL) { 2983 bo->bo_appie = frm; 2984 bo->bo_appie_len = vap->iv_appie_beacon->ie_len; 2985 frm = add_appie(frm, vap->iv_appie_beacon); 2986 } 2987 #ifdef IEEE80211_SUPPORT_MESH 2988 if (vap->iv_opmode == IEEE80211_M_MBSS) { 2989 frm = ieee80211_add_meshid(frm, vap); 2990 bo->bo_meshconf = frm; 2991 frm = ieee80211_add_meshconf(frm, vap); 2992 } 2993 #endif 2994 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer; 2995 bo->bo_csa_trailer_len = frm - bo->bo_csa; 2996 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2997 } 2998 2999 /* 3000 * Allocate a beacon frame and fillin the appropriate bits. 3001 */ 3002 struct mbuf * 3003 ieee80211_beacon_alloc(struct ieee80211_node *ni, 3004 struct ieee80211_beacon_offsets *bo) 3005 { 3006 struct ieee80211vap *vap = ni->ni_vap; 3007 struct ieee80211com *ic = ni->ni_ic; 3008 struct ifnet *ifp = vap->iv_ifp; 3009 struct ieee80211_frame *wh; 3010 struct mbuf *m; 3011 int pktlen; 3012 uint8_t *frm; 3013 3014 /* 3015 * beacon frame format 3016 * [8] time stamp 3017 * [2] beacon interval 3018 * [2] cabability information 3019 * [tlv] ssid 3020 * [tlv] supported rates 3021 * [3] parameter set (DS) 3022 * [8] CF parameter set (optional) 3023 * [tlv] parameter set (IBSS/TIM) 3024 * [tlv] country (optional) 3025 * [3] power control (optional) 3026 * [5] channel switch announcement (CSA) (optional) 3027 * [tlv] extended rate phy (ERP) 3028 * [tlv] extended supported rates 3029 * [tlv] RSN parameters 3030 * [tlv] HT capabilities 3031 * [tlv] HT information 3032 * [tlv] Vendor OUI HT capabilities (optional) 3033 * [tlv] Vendor OUI HT information (optional) 3034 * XXX Vendor-specific OIDs (e.g. Atheros) 3035 * [tlv] WPA parameters 3036 * [tlv] WME parameters 3037 * [tlv] TDMA parameters (optional) 3038 * [tlv] Mesh ID (MBSS) 3039 * [tlv] Mesh Conf (MBSS) 3040 * [tlv] application data (optional) 3041 * NB: we allocate the max space required for the TIM bitmap. 3042 * XXX how big is this? 3043 */ 3044 pktlen = 8 /* time stamp */ 3045 + sizeof(uint16_t) /* beacon interval */ 3046 + sizeof(uint16_t) /* capabilities */ 3047 + 2 + ni->ni_esslen /* ssid */ 3048 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 3049 + 2 + 1 /* DS parameters */ 3050 + 2 + 6 /* CF parameters */ 3051 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */ 3052 + IEEE80211_COUNTRY_MAX_SIZE /* country */ 3053 + 2 + 1 /* power control */ 3054 + sizeof(struct ieee80211_csa_ie) /* CSA */ 3055 + sizeof(struct ieee80211_quiet_ie) /* Quiet */ 3056 + 2 + 1 /* ERP */ 3057 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 3058 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 3059 2*sizeof(struct ieee80211_ie_wpa) : 0) 3060 /* XXX conditional? */ 3061 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */ 3062 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */ 3063 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */ 3064 sizeof(struct ieee80211_wme_param) : 0) 3065 #ifdef IEEE80211_SUPPORT_SUPERG 3066 + sizeof(struct ieee80211_ath_ie) /* ATH */ 3067 #endif 3068 #ifdef IEEE80211_SUPPORT_TDMA 3069 + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */ 3070 sizeof(struct ieee80211_tdma_param) : 0) 3071 #endif 3072 #ifdef IEEE80211_SUPPORT_MESH 3073 + 2 + ni->ni_meshidlen 3074 + sizeof(struct ieee80211_meshconf_ie) 3075 #endif 3076 + IEEE80211_MAX_APPIE 3077 ; 3078 m = ieee80211_getmgtframe(&frm, 3079 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen); 3080 if (m == NULL) { 3081 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, 3082 "%s: cannot get buf; size %u\n", __func__, pktlen); 3083 vap->iv_stats.is_tx_nobuf++; 3084 return NULL; 3085 } 3086 ieee80211_beacon_construct(m, frm, bo, ni); 3087 3088 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 3089 KASSERT(m != NULL, ("no space for 802.11 header?")); 3090 wh = mtod(m, struct ieee80211_frame *); 3091 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 3092 IEEE80211_FC0_SUBTYPE_BEACON; 3093 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3094 *(uint16_t *)wh->i_dur = 0; 3095 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 3096 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 3097 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 3098 *(uint16_t *)wh->i_seq = 0; 3099 3100 return m; 3101 } 3102 3103 /* 3104 * Update the dynamic parts of a beacon frame based on the current state. 3105 */ 3106 int 3107 ieee80211_beacon_update(struct ieee80211_node *ni, 3108 struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast) 3109 { 3110 struct ieee80211vap *vap = ni->ni_vap; 3111 struct ieee80211com *ic = ni->ni_ic; 3112 int len_changed = 0; 3113 uint16_t capinfo; 3114 struct ieee80211_frame *wh; 3115 ieee80211_seq seqno; 3116 3117 IEEE80211_LOCK(ic); 3118 /* 3119 * Handle 11h channel change when we've reached the count. 3120 * We must recalculate the beacon frame contents to account 3121 * for the new channel. Note we do this only for the first 3122 * vap that reaches this point; subsequent vaps just update 3123 * their beacon state to reflect the recalculated channel. 3124 */ 3125 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) && 3126 vap->iv_csa_count == ic->ic_csa_count) { 3127 vap->iv_csa_count = 0; 3128 /* 3129 * Effect channel change before reconstructing the beacon 3130 * frame contents as many places reference ni_chan. 3131 */ 3132 if (ic->ic_csa_newchan != NULL) 3133 ieee80211_csa_completeswitch(ic); 3134 /* 3135 * NB: ieee80211_beacon_construct clears all pending 3136 * updates in bo_flags so we don't need to explicitly 3137 * clear IEEE80211_BEACON_CSA. 3138 */ 3139 ieee80211_beacon_construct(m, 3140 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni); 3141 3142 /* XXX do WME aggressive mode processing? */ 3143 IEEE80211_UNLOCK(ic); 3144 return 1; /* just assume length changed */ 3145 } 3146 3147 wh = mtod(m, struct ieee80211_frame *); 3148 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 3149 *(uint16_t *)&wh->i_seq[0] = 3150 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 3151 M_SEQNO_SET(m, seqno); 3152 3153 /* XXX faster to recalculate entirely or just changes? */ 3154 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3155 *bo->bo_caps = htole16(capinfo); 3156 3157 if (vap->iv_flags & IEEE80211_F_WME) { 3158 struct ieee80211_wme_state *wme = &ic->ic_wme; 3159 3160 /* 3161 * Check for agressive mode change. When there is 3162 * significant high priority traffic in the BSS 3163 * throttle back BE traffic by using conservative 3164 * parameters. Otherwise BE uses agressive params 3165 * to optimize performance of legacy/non-QoS traffic. 3166 */ 3167 if (wme->wme_flags & WME_F_AGGRMODE) { 3168 if (wme->wme_hipri_traffic > 3169 wme->wme_hipri_switch_thresh) { 3170 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3171 "%s: traffic %u, disable aggressive mode\n", 3172 __func__, wme->wme_hipri_traffic); 3173 wme->wme_flags &= ~WME_F_AGGRMODE; 3174 ieee80211_wme_updateparams_locked(vap); 3175 wme->wme_hipri_traffic = 3176 wme->wme_hipri_switch_hysteresis; 3177 } else 3178 wme->wme_hipri_traffic = 0; 3179 } else { 3180 if (wme->wme_hipri_traffic <= 3181 wme->wme_hipri_switch_thresh) { 3182 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3183 "%s: traffic %u, enable aggressive mode\n", 3184 __func__, wme->wme_hipri_traffic); 3185 wme->wme_flags |= WME_F_AGGRMODE; 3186 ieee80211_wme_updateparams_locked(vap); 3187 wme->wme_hipri_traffic = 0; 3188 } else 3189 wme->wme_hipri_traffic = 3190 wme->wme_hipri_switch_hysteresis; 3191 } 3192 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) { 3193 (void) ieee80211_add_wme_param(bo->bo_wme, wme); 3194 clrbit(bo->bo_flags, IEEE80211_BEACON_WME); 3195 } 3196 } 3197 3198 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) { 3199 ieee80211_ht_update_beacon(vap, bo); 3200 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO); 3201 } 3202 #ifdef IEEE80211_SUPPORT_TDMA 3203 if (vap->iv_caps & IEEE80211_C_TDMA) { 3204 /* 3205 * NB: the beacon is potentially updated every TBTT. 3206 */ 3207 ieee80211_tdma_update_beacon(vap, bo); 3208 } 3209 #endif 3210 #ifdef IEEE80211_SUPPORT_MESH 3211 if (vap->iv_opmode == IEEE80211_M_MBSS) 3212 ieee80211_mesh_update_beacon(vap, bo); 3213 #endif 3214 3215 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3216 vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/ 3217 struct ieee80211_tim_ie *tie = 3218 (struct ieee80211_tim_ie *) bo->bo_tim; 3219 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) { 3220 u_int timlen, timoff, i; 3221 /* 3222 * ATIM/DTIM needs updating. If it fits in the 3223 * current space allocated then just copy in the 3224 * new bits. Otherwise we need to move any trailing 3225 * data to make room. Note that we know there is 3226 * contiguous space because ieee80211_beacon_allocate 3227 * insures there is space in the mbuf to write a 3228 * maximal-size virtual bitmap (based on iv_max_aid). 3229 */ 3230 /* 3231 * Calculate the bitmap size and offset, copy any 3232 * trailer out of the way, and then copy in the 3233 * new bitmap and update the information element. 3234 * Note that the tim bitmap must contain at least 3235 * one byte and any offset must be even. 3236 */ 3237 if (vap->iv_ps_pending != 0) { 3238 timoff = 128; /* impossibly large */ 3239 for (i = 0; i < vap->iv_tim_len; i++) 3240 if (vap->iv_tim_bitmap[i]) { 3241 timoff = i &~ 1; 3242 break; 3243 } 3244 KASSERT(timoff != 128, ("tim bitmap empty!")); 3245 for (i = vap->iv_tim_len-1; i >= timoff; i--) 3246 if (vap->iv_tim_bitmap[i]) 3247 break; 3248 timlen = 1 + (i - timoff); 3249 } else { 3250 timoff = 0; 3251 timlen = 1; 3252 } 3253 if (timlen != bo->bo_tim_len) { 3254 /* copy up/down trailer */ 3255 int adjust = tie->tim_bitmap+timlen 3256 - bo->bo_tim_trailer; 3257 ovbcopy(bo->bo_tim_trailer, 3258 bo->bo_tim_trailer+adjust, 3259 bo->bo_tim_trailer_len); 3260 bo->bo_tim_trailer += adjust; 3261 bo->bo_erp += adjust; 3262 bo->bo_htinfo += adjust; 3263 #ifdef IEEE80211_SUPPORT_SUPERG 3264 bo->bo_ath += adjust; 3265 #endif 3266 #ifdef IEEE80211_SUPPORT_TDMA 3267 bo->bo_tdma += adjust; 3268 #endif 3269 #ifdef IEEE80211_SUPPORT_MESH 3270 bo->bo_meshconf += adjust; 3271 #endif 3272 bo->bo_appie += adjust; 3273 bo->bo_wme += adjust; 3274 bo->bo_csa += adjust; 3275 bo->bo_quiet += adjust; 3276 bo->bo_tim_len = timlen; 3277 3278 /* update information element */ 3279 tie->tim_len = 3 + timlen; 3280 tie->tim_bitctl = timoff; 3281 len_changed = 1; 3282 } 3283 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff, 3284 bo->bo_tim_len); 3285 3286 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM); 3287 3288 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER, 3289 "%s: TIM updated, pending %u, off %u, len %u\n", 3290 __func__, vap->iv_ps_pending, timoff, timlen); 3291 } 3292 /* count down DTIM period */ 3293 if (tie->tim_count == 0) 3294 tie->tim_count = tie->tim_period - 1; 3295 else 3296 tie->tim_count--; 3297 /* update state for buffered multicast frames on DTIM */ 3298 if (mcast && tie->tim_count == 0) 3299 tie->tim_bitctl |= 1; 3300 else 3301 tie->tim_bitctl &= ~1; 3302 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) { 3303 struct ieee80211_csa_ie *csa = 3304 (struct ieee80211_csa_ie *) bo->bo_csa; 3305 3306 /* 3307 * Insert or update CSA ie. If we're just starting 3308 * to count down to the channel switch then we need 3309 * to insert the CSA ie. Otherwise we just need to 3310 * drop the count. The actual change happens above 3311 * when the vap's count reaches the target count. 3312 */ 3313 if (vap->iv_csa_count == 0) { 3314 memmove(&csa[1], csa, bo->bo_csa_trailer_len); 3315 bo->bo_erp += sizeof(*csa); 3316 bo->bo_htinfo += sizeof(*csa); 3317 bo->bo_wme += sizeof(*csa); 3318 #ifdef IEEE80211_SUPPORT_SUPERG 3319 bo->bo_ath += sizeof(*csa); 3320 #endif 3321 #ifdef IEEE80211_SUPPORT_TDMA 3322 bo->bo_tdma += sizeof(*csa); 3323 #endif 3324 #ifdef IEEE80211_SUPPORT_MESH 3325 bo->bo_meshconf += sizeof(*csa); 3326 #endif 3327 bo->bo_appie += sizeof(*csa); 3328 bo->bo_csa_trailer_len += sizeof(*csa); 3329 bo->bo_quiet += sizeof(*csa); 3330 bo->bo_tim_trailer_len += sizeof(*csa); 3331 m->m_len += sizeof(*csa); 3332 m->m_pkthdr.len += sizeof(*csa); 3333 3334 ieee80211_add_csa(bo->bo_csa, vap); 3335 } else 3336 csa->csa_count--; 3337 vap->iv_csa_count++; 3338 /* NB: don't clear IEEE80211_BEACON_CSA */ 3339 } 3340 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3341 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){ 3342 if (vap->iv_quiet) 3343 ieee80211_add_quiet(bo->bo_quiet, vap); 3344 } 3345 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) { 3346 /* 3347 * ERP element needs updating. 3348 */ 3349 (void) ieee80211_add_erp(bo->bo_erp, ic); 3350 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP); 3351 } 3352 #ifdef IEEE80211_SUPPORT_SUPERG 3353 if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) { 3354 ieee80211_add_athcaps(bo->bo_ath, ni); 3355 clrbit(bo->bo_flags, IEEE80211_BEACON_ATH); 3356 } 3357 #endif 3358 } 3359 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) { 3360 const struct ieee80211_appie *aie = vap->iv_appie_beacon; 3361 int aielen; 3362 uint8_t *frm; 3363 3364 aielen = 0; 3365 if (aie != NULL) 3366 aielen += aie->ie_len; 3367 if (aielen != bo->bo_appie_len) { 3368 /* copy up/down trailer */ 3369 int adjust = aielen - bo->bo_appie_len; 3370 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust, 3371 bo->bo_tim_trailer_len); 3372 bo->bo_tim_trailer += adjust; 3373 bo->bo_appie += adjust; 3374 bo->bo_appie_len = aielen; 3375 3376 len_changed = 1; 3377 } 3378 frm = bo->bo_appie; 3379 if (aie != NULL) 3380 frm = add_appie(frm, aie); 3381 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE); 3382 } 3383 IEEE80211_UNLOCK(ic); 3384 3385 return len_changed; 3386 } 3387 3388 /* 3389 * Do Ethernet-LLC encapsulation for each payload in a fast frame 3390 * tunnel encapsulation. The frame is assumed to have an Ethernet 3391 * header at the front that must be stripped before prepending the 3392 * LLC followed by the Ethernet header passed in (with an Ethernet 3393 * type that specifies the payload size). 3394 */ 3395 struct mbuf * 3396 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m, 3397 const struct ether_header *eh) 3398 { 3399 struct llc *llc; 3400 uint16_t payload; 3401 3402 /* XXX optimize by combining m_adj+M_PREPEND */ 3403 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 3404 llc = mtod(m, struct llc *); 3405 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 3406 llc->llc_control = LLC_UI; 3407 llc->llc_snap.org_code[0] = 0; 3408 llc->llc_snap.org_code[1] = 0; 3409 llc->llc_snap.org_code[2] = 0; 3410 llc->llc_snap.ether_type = eh->ether_type; 3411 payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */ 3412 3413 M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT); 3414 if (m == NULL) { /* XXX cannot happen */ 3415 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 3416 "%s: no space for ether_header\n", __func__); 3417 vap->iv_stats.is_tx_nobuf++; 3418 return NULL; 3419 } 3420 ETHER_HEADER_COPY(mtod(m, void *), eh); 3421 mtod(m, struct ether_header *)->ether_type = htons(payload); 3422 return m; 3423 } 3424 3425 /* 3426 * Complete an mbuf transmission. 3427 * 3428 * For now, this simply processes a completed frame after the 3429 * driver has completed it's transmission and/or retransmission. 3430 * It assumes the frame is an 802.11 encapsulated frame. 3431 * 3432 * Later on it will grow to become the exit path for a given frame 3433 * from the driver and, depending upon how it's been encapsulated 3434 * and already transmitted, it may end up doing A-MPDU retransmission, 3435 * power save requeuing, etc. 3436 * 3437 * In order for the above to work, the driver entry point to this 3438 * must not hold any driver locks. Thus, the driver needs to delay 3439 * any actual mbuf completion until it can release said locks. 3440 * 3441 * This frees the mbuf and if the mbuf has a node reference, 3442 * the node reference will be freed. 3443 */ 3444 void 3445 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status) 3446 { 3447 3448 if (ni != NULL) { 3449 struct ifnet *ifp = ni->ni_vap->iv_ifp; 3450 3451 if (status == 0) { 3452 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len); 3453 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 3454 if (m->m_flags & M_MCAST) 3455 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 3456 } else 3457 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 3458 if (m->m_flags & M_TXCB) 3459 ieee80211_process_callback(ni, m, status); 3460 ieee80211_free_node(ni); 3461 } 3462 m_freem(m); 3463 } 3464