1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_inet.h" 33 #include "opt_inet6.h" 34 #include "opt_wlan.h" 35 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/kernel.h> 39 #include <sys/malloc.h> 40 #include <sys/mbuf.h> 41 #include <sys/endian.h> 42 43 #include <sys/socket.h> 44 45 #include <net/bpf.h> 46 #include <net/ethernet.h> 47 #include <net/if.h> 48 #include <net/if_var.h> 49 #include <net/if_llc.h> 50 #include <net/if_media.h> 51 #include <net/if_vlan_var.h> 52 53 #include <net80211/ieee80211_var.h> 54 #include <net80211/ieee80211_regdomain.h> 55 #ifdef IEEE80211_SUPPORT_SUPERG 56 #include <net80211/ieee80211_superg.h> 57 #endif 58 #ifdef IEEE80211_SUPPORT_TDMA 59 #include <net80211/ieee80211_tdma.h> 60 #endif 61 #include <net80211/ieee80211_wds.h> 62 #include <net80211/ieee80211_mesh.h> 63 #include <net80211/ieee80211_vht.h> 64 65 #if defined(INET) || defined(INET6) 66 #include <netinet/in.h> 67 #endif 68 69 #ifdef INET 70 #include <netinet/if_ether.h> 71 #include <netinet/in_systm.h> 72 #include <netinet/ip.h> 73 #endif 74 #ifdef INET6 75 #include <netinet/ip6.h> 76 #endif 77 78 #include <security/mac/mac_framework.h> 79 80 #define ETHER_HEADER_COPY(dst, src) \ 81 memcpy(dst, src, sizeof(struct ether_header)) 82 83 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *, 84 u_int hdrsize, u_int ciphdrsize, u_int mtu); 85 static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int); 86 87 #ifdef IEEE80211_DEBUG 88 /* 89 * Decide if an outbound management frame should be 90 * printed when debugging is enabled. This filters some 91 * of the less interesting frames that come frequently 92 * (e.g. beacons). 93 */ 94 static __inline int 95 doprint(struct ieee80211vap *vap, int subtype) 96 { 97 switch (subtype) { 98 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 99 return (vap->iv_opmode == IEEE80211_M_IBSS); 100 } 101 return 1; 102 } 103 #endif 104 105 /* 106 * Transmit a frame to the given destination on the given VAP. 107 * 108 * It's up to the caller to figure out the details of who this 109 * is going to and resolving the node. 110 * 111 * This routine takes care of queuing it for power save, 112 * A-MPDU state stuff, fast-frames state stuff, encapsulation 113 * if required, then passing it up to the driver layer. 114 * 115 * This routine (for now) consumes the mbuf and frees the node 116 * reference; it ideally will return a TX status which reflects 117 * whether the mbuf was consumed or not, so the caller can 118 * free the mbuf (if appropriate) and the node reference (again, 119 * if appropriate.) 120 */ 121 int 122 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m, 123 struct ieee80211_node *ni) 124 { 125 struct ieee80211com *ic = vap->iv_ic; 126 struct ifnet *ifp = vap->iv_ifp; 127 int mcast; 128 int do_ampdu = 0; 129 #ifdef IEEE80211_SUPPORT_SUPERG 130 int do_amsdu = 0; 131 int do_ampdu_amsdu = 0; 132 int no_ampdu = 1; /* Will be set to 0 if ampdu is active */ 133 int do_ff = 0; 134 #endif 135 136 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 137 (m->m_flags & M_PWR_SAV) == 0) { 138 /* 139 * Station in power save mode; pass the frame 140 * to the 802.11 layer and continue. We'll get 141 * the frame back when the time is right. 142 * XXX lose WDS vap linkage? 143 */ 144 if (ieee80211_pwrsave(ni, m) != 0) 145 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 146 ieee80211_free_node(ni); 147 148 /* 149 * We queued it fine, so tell the upper layer 150 * that we consumed it. 151 */ 152 return (0); 153 } 154 /* calculate priority so drivers can find the tx queue */ 155 if (ieee80211_classify(ni, m)) { 156 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 157 ni->ni_macaddr, NULL, 158 "%s", "classification failure"); 159 vap->iv_stats.is_tx_classify++; 160 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 161 m_freem(m); 162 ieee80211_free_node(ni); 163 164 /* XXX better status? */ 165 return (0); 166 } 167 /* 168 * Stash the node pointer. Note that we do this after 169 * any call to ieee80211_dwds_mcast because that code 170 * uses any existing value for rcvif to identify the 171 * interface it (might have been) received on. 172 */ 173 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 174 m->m_pkthdr.rcvif = (void *)ni; 175 mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0; 176 177 BPF_MTAP(ifp, m); /* 802.3 tx */ 178 179 /* 180 * Figure out if we can do A-MPDU, A-MSDU or FF. 181 * 182 * A-MPDU depends upon vap/node config. 183 * A-MSDU depends upon vap/node config. 184 * FF depends upon vap config, IE and whether 185 * it's 11abg (and not 11n/11ac/etc.) 186 * 187 * Note that these flags indiciate whether we can do 188 * it at all, rather than the situation (eg traffic type.) 189 */ 190 do_ampdu = ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) && 191 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)); 192 #ifdef IEEE80211_SUPPORT_SUPERG 193 do_amsdu = ((ni->ni_flags & IEEE80211_NODE_AMSDU_TX) && 194 (vap->iv_flags_ht & IEEE80211_FHT_AMSDU_TX)); 195 do_ff = 196 ((ni->ni_flags & IEEE80211_NODE_HT) == 0) && 197 ((ni->ni_flags & IEEE80211_NODE_VHT) == 0) && 198 (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)); 199 #endif 200 201 /* 202 * Check if A-MPDU tx aggregation is setup or if we 203 * should try to enable it. The sta must be associated 204 * with HT and A-MPDU enabled for use. When the policy 205 * routine decides we should enable A-MPDU we issue an 206 * ADDBA request and wait for a reply. The frame being 207 * encapsulated will go out w/o using A-MPDU, or possibly 208 * it might be collected by the driver and held/retransmit. 209 * The default ic_ampdu_enable routine handles staggering 210 * ADDBA requests in case the receiver NAK's us or we are 211 * otherwise unable to establish a BA stream. 212 * 213 * Don't treat group-addressed frames as candidates for aggregation; 214 * net80211 doesn't support 802.11aa-2012 and so group addressed 215 * frames will always have sequence numbers allocated from the NON_QOS 216 * TID. 217 */ 218 if (do_ampdu) { 219 if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) { 220 int tid = WME_AC_TO_TID(M_WME_GETAC(m)); 221 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; 222 223 ieee80211_txampdu_count_packet(tap); 224 if (IEEE80211_AMPDU_RUNNING(tap)) { 225 /* 226 * Operational, mark frame for aggregation. 227 * 228 * XXX do tx aggregation here 229 */ 230 m->m_flags |= M_AMPDU_MPDU; 231 } else if (!IEEE80211_AMPDU_REQUESTED(tap) && 232 ic->ic_ampdu_enable(ni, tap)) { 233 /* 234 * Not negotiated yet, request service. 235 */ 236 ieee80211_ampdu_request(ni, tap); 237 /* XXX hold frame for reply? */ 238 } 239 /* 240 * Now update the no-ampdu flag. A-MPDU may have been 241 * started or administratively disabled above; so now we 242 * know whether we're running yet or not. 243 * 244 * This will let us know whether we should be doing A-MSDU 245 * at this point. We only do A-MSDU if we're either not 246 * doing A-MPDU, or A-MPDU is NACKed, or A-MPDU + A-MSDU 247 * is available. 248 * 249 * Whilst here, update the amsdu-ampdu flag. The above may 250 * have also set or cleared the amsdu-in-ampdu txa_flags 251 * combination so we can correctly do A-MPDU + A-MSDU. 252 */ 253 #ifdef IEEE80211_SUPPORT_SUPERG 254 no_ampdu = (! IEEE80211_AMPDU_RUNNING(tap) 255 || (IEEE80211_AMPDU_NACKED(tap))); 256 do_ampdu_amsdu = IEEE80211_AMPDU_RUNNING_AMSDU(tap); 257 #endif 258 } 259 } 260 261 #ifdef IEEE80211_SUPPORT_SUPERG 262 /* 263 * Check for AMSDU/FF; queue for aggregation 264 * 265 * Note: we don't bother trying to do fast frames or 266 * A-MSDU encapsulation for 802.3 drivers. Now, we 267 * likely could do it for FF (because it's a magic 268 * atheros tunnel LLC type) but I don't think we're going 269 * to really need to. For A-MSDU we'd have to set the 270 * A-MSDU QoS bit in the wifi header, so we just plain 271 * can't do it. 272 */ 273 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 274 if ((! mcast) && 275 (do_ampdu_amsdu || (no_ampdu && do_amsdu)) && 276 ieee80211_amsdu_tx_ok(ni)) { 277 m = ieee80211_amsdu_check(ni, m); 278 if (m == NULL) { 279 /* NB: any ni ref held on stageq */ 280 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 281 "%s: amsdu_check queued frame\n", 282 __func__); 283 return (0); 284 } 285 } else if ((! mcast) && do_ff) { 286 m = ieee80211_ff_check(ni, m); 287 if (m == NULL) { 288 /* NB: any ni ref held on stageq */ 289 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 290 "%s: ff_check queued frame\n", 291 __func__); 292 return (0); 293 } 294 } 295 } 296 #endif /* IEEE80211_SUPPORT_SUPERG */ 297 298 /* 299 * Grab the TX lock - serialise the TX process from this 300 * point (where TX state is being checked/modified) 301 * through to driver queue. 302 */ 303 IEEE80211_TX_LOCK(ic); 304 305 /* 306 * XXX make the encap and transmit code a separate function 307 * so things like the FF (and later A-MSDU) path can just call 308 * it for flushed frames. 309 */ 310 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 311 /* 312 * Encapsulate the packet in prep for transmission. 313 */ 314 m = ieee80211_encap(vap, ni, m); 315 if (m == NULL) { 316 /* NB: stat+msg handled in ieee80211_encap */ 317 IEEE80211_TX_UNLOCK(ic); 318 ieee80211_free_node(ni); 319 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 320 return (ENOBUFS); 321 } 322 } 323 (void) ieee80211_parent_xmitpkt(ic, m); 324 325 /* 326 * Unlock at this point - no need to hold it across 327 * ieee80211_free_node() (ie, the comlock) 328 */ 329 IEEE80211_TX_UNLOCK(ic); 330 ic->ic_lastdata = ticks; 331 332 return (0); 333 } 334 335 /* 336 * Send the given mbuf through the given vap. 337 * 338 * This consumes the mbuf regardless of whether the transmit 339 * was successful or not. 340 * 341 * This does none of the initial checks that ieee80211_start() 342 * does (eg CAC timeout, interface wakeup) - the caller must 343 * do this first. 344 */ 345 static int 346 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m) 347 { 348 #define IS_DWDS(vap) \ 349 (vap->iv_opmode == IEEE80211_M_WDS && \ 350 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0) 351 struct ieee80211com *ic = vap->iv_ic; 352 struct ifnet *ifp = vap->iv_ifp; 353 struct ieee80211_node *ni; 354 struct ether_header *eh; 355 356 /* 357 * Cancel any background scan. 358 */ 359 if (ic->ic_flags & IEEE80211_F_SCAN) 360 ieee80211_cancel_anyscan(vap); 361 /* 362 * Find the node for the destination so we can do 363 * things like power save and fast frames aggregation. 364 * 365 * NB: past this point various code assumes the first 366 * mbuf has the 802.3 header present (and contiguous). 367 */ 368 ni = NULL; 369 if (m->m_len < sizeof(struct ether_header) && 370 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 371 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 372 "discard frame, %s\n", "m_pullup failed"); 373 vap->iv_stats.is_tx_nobuf++; /* XXX */ 374 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 375 return (ENOBUFS); 376 } 377 eh = mtod(m, struct ether_header *); 378 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 379 if (IS_DWDS(vap)) { 380 /* 381 * Only unicast frames from the above go out 382 * DWDS vaps; multicast frames are handled by 383 * dispatching the frame as it comes through 384 * the AP vap (see below). 385 */ 386 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS, 387 eh->ether_dhost, "mcast", "%s", "on DWDS"); 388 vap->iv_stats.is_dwds_mcast++; 389 m_freem(m); 390 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 391 /* XXX better status? */ 392 return (ENOBUFS); 393 } 394 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { 395 /* 396 * Spam DWDS vap's w/ multicast traffic. 397 */ 398 /* XXX only if dwds in use? */ 399 ieee80211_dwds_mcast(vap, m); 400 } 401 } 402 #ifdef IEEE80211_SUPPORT_MESH 403 if (vap->iv_opmode != IEEE80211_M_MBSS) { 404 #endif 405 ni = ieee80211_find_txnode(vap, eh->ether_dhost); 406 if (ni == NULL) { 407 /* NB: ieee80211_find_txnode does stat+msg */ 408 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 409 m_freem(m); 410 /* XXX better status? */ 411 return (ENOBUFS); 412 } 413 if (ni->ni_associd == 0 && 414 (ni->ni_flags & IEEE80211_NODE_ASSOCID)) { 415 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 416 eh->ether_dhost, NULL, 417 "sta not associated (type 0x%04x)", 418 htons(eh->ether_type)); 419 vap->iv_stats.is_tx_notassoc++; 420 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 421 m_freem(m); 422 ieee80211_free_node(ni); 423 /* XXX better status? */ 424 return (ENOBUFS); 425 } 426 #ifdef IEEE80211_SUPPORT_MESH 427 } else { 428 if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) { 429 /* 430 * Proxy station only if configured. 431 */ 432 if (!ieee80211_mesh_isproxyena(vap)) { 433 IEEE80211_DISCARD_MAC(vap, 434 IEEE80211_MSG_OUTPUT | 435 IEEE80211_MSG_MESH, 436 eh->ether_dhost, NULL, 437 "%s", "proxy not enabled"); 438 vap->iv_stats.is_mesh_notproxy++; 439 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 440 m_freem(m); 441 /* XXX better status? */ 442 return (ENOBUFS); 443 } 444 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 445 "forward frame from DS SA(%6D), DA(%6D)\n", 446 eh->ether_shost, ":", 447 eh->ether_dhost, ":"); 448 ieee80211_mesh_proxy_check(vap, eh->ether_shost); 449 } 450 ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m); 451 if (ni == NULL) { 452 /* 453 * NB: ieee80211_mesh_discover holds/disposes 454 * frame (e.g. queueing on path discovery). 455 */ 456 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 457 /* XXX better status? */ 458 return (ENOBUFS); 459 } 460 } 461 #endif 462 463 /* 464 * We've resolved the sender, so attempt to transmit it. 465 */ 466 467 if (vap->iv_state == IEEE80211_S_SLEEP) { 468 /* 469 * In power save; queue frame and then wakeup device 470 * for transmit. 471 */ 472 ic->ic_lastdata = ticks; 473 if (ieee80211_pwrsave(ni, m) != 0) 474 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 475 ieee80211_free_node(ni); 476 ieee80211_new_state(vap, IEEE80211_S_RUN, 0); 477 return (0); 478 } 479 480 if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0) 481 return (ENOBUFS); 482 return (0); 483 #undef IS_DWDS 484 } 485 486 /* 487 * Start method for vap's. All packets from the stack come 488 * through here. We handle common processing of the packets 489 * before dispatching them to the underlying device. 490 * 491 * if_transmit() requires that the mbuf be consumed by this call 492 * regardless of the return condition. 493 */ 494 int 495 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m) 496 { 497 struct ieee80211vap *vap = ifp->if_softc; 498 struct ieee80211com *ic = vap->iv_ic; 499 500 /* 501 * No data frames go out unless we're running. 502 * Note in particular this covers CAC and CSA 503 * states (though maybe we should check muting 504 * for CSA). 505 */ 506 if (vap->iv_state != IEEE80211_S_RUN && 507 vap->iv_state != IEEE80211_S_SLEEP) { 508 IEEE80211_LOCK(ic); 509 /* re-check under the com lock to avoid races */ 510 if (vap->iv_state != IEEE80211_S_RUN && 511 vap->iv_state != IEEE80211_S_SLEEP) { 512 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 513 "%s: ignore queue, in %s state\n", 514 __func__, ieee80211_state_name[vap->iv_state]); 515 vap->iv_stats.is_tx_badstate++; 516 IEEE80211_UNLOCK(ic); 517 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 518 m_freem(m); 519 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 520 return (ENETDOWN); 521 } 522 IEEE80211_UNLOCK(ic); 523 } 524 525 /* 526 * Sanitize mbuf flags for net80211 use. We cannot 527 * clear M_PWR_SAV or M_MORE_DATA because these may 528 * be set for frames that are re-submitted from the 529 * power save queue. 530 * 531 * NB: This must be done before ieee80211_classify as 532 * it marks EAPOL in frames with M_EAPOL. 533 */ 534 m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA); 535 536 /* 537 * Bump to the packet transmission path. 538 * The mbuf will be consumed here. 539 */ 540 return (ieee80211_start_pkt(vap, m)); 541 } 542 543 void 544 ieee80211_vap_qflush(struct ifnet *ifp) 545 { 546 547 /* Empty for now */ 548 } 549 550 /* 551 * 802.11 raw output routine. 552 * 553 * XXX TODO: this (and other send routines) should correctly 554 * XXX keep the pwr mgmt bit set if it decides to call into the 555 * XXX driver to send a frame whilst the state is SLEEP. 556 * 557 * Otherwise the peer may decide that we're awake and flood us 558 * with traffic we are still too asleep to receive! 559 */ 560 int 561 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni, 562 struct mbuf *m, const struct ieee80211_bpf_params *params) 563 { 564 struct ieee80211com *ic = vap->iv_ic; 565 int error; 566 567 /* 568 * Set node - the caller has taken a reference, so ensure 569 * that the mbuf has the same node value that 570 * it would if it were going via the normal path. 571 */ 572 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 573 m->m_pkthdr.rcvif = (void *)ni; 574 575 /* 576 * Attempt to add bpf transmit parameters. 577 * 578 * For now it's ok to fail; the raw_xmit api still takes 579 * them as an option. 580 * 581 * Later on when ic_raw_xmit() has params removed, 582 * they'll have to be added - so fail the transmit if 583 * they can't be. 584 */ 585 if (params) 586 (void) ieee80211_add_xmit_params(m, params); 587 588 error = ic->ic_raw_xmit(ni, m, params); 589 if (error) { 590 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1); 591 ieee80211_free_node(ni); 592 } 593 return (error); 594 } 595 596 static int 597 ieee80211_validate_frame(struct mbuf *m, 598 const struct ieee80211_bpf_params *params) 599 { 600 struct ieee80211_frame *wh; 601 int type; 602 603 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack)) 604 return (EINVAL); 605 606 wh = mtod(m, struct ieee80211_frame *); 607 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) != 608 IEEE80211_FC0_VERSION_0) 609 return (EINVAL); 610 611 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 612 if (type != IEEE80211_FC0_TYPE_DATA) { 613 if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != 614 IEEE80211_FC1_DIR_NODS) 615 return (EINVAL); 616 617 if (type != IEEE80211_FC0_TYPE_MGT && 618 (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) != 0) 619 return (EINVAL); 620 621 /* XXX skip other field checks? */ 622 } 623 624 if ((params && (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0) || 625 (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) != 0) { 626 int subtype; 627 628 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 629 630 /* 631 * See IEEE Std 802.11-2012, 632 * 8.2.4.1.9 'Protected Frame field' 633 */ 634 /* XXX no support for robust management frames yet. */ 635 if (!(type == IEEE80211_FC0_TYPE_DATA || 636 (type == IEEE80211_FC0_TYPE_MGT && 637 subtype == IEEE80211_FC0_SUBTYPE_AUTH))) 638 return (EINVAL); 639 640 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 641 } 642 643 if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh)) 644 return (EINVAL); 645 646 return (0); 647 } 648 649 static int 650 ieee80211_validate_rate(struct ieee80211_node *ni, uint8_t rate) 651 { 652 struct ieee80211com *ic = ni->ni_ic; 653 654 if (IEEE80211_IS_HT_RATE(rate)) { 655 if ((ic->ic_htcaps & IEEE80211_HTC_HT) == 0) 656 return (EINVAL); 657 658 rate = IEEE80211_RV(rate); 659 if (rate <= 31) { 660 if (rate > ic->ic_txstream * 8 - 1) 661 return (EINVAL); 662 663 return (0); 664 } 665 666 if (rate == 32) { 667 if ((ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0) 668 return (EINVAL); 669 670 return (0); 671 } 672 673 if ((ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) == 0) 674 return (EINVAL); 675 676 switch (ic->ic_txstream) { 677 case 0: 678 case 1: 679 return (EINVAL); 680 case 2: 681 if (rate > 38) 682 return (EINVAL); 683 684 return (0); 685 case 3: 686 if (rate > 52) 687 return (EINVAL); 688 689 return (0); 690 case 4: 691 default: 692 if (rate > 76) 693 return (EINVAL); 694 695 return (0); 696 } 697 } 698 699 if (!ieee80211_isratevalid(ic->ic_rt, rate)) 700 return (EINVAL); 701 702 return (0); 703 } 704 705 static int 706 ieee80211_sanitize_rates(struct ieee80211_node *ni, struct mbuf *m, 707 const struct ieee80211_bpf_params *params) 708 { 709 int error; 710 711 if (!params) 712 return (0); /* nothing to do */ 713 714 /* NB: most drivers assume that ibp_rate0 is set (!= 0). */ 715 if (params->ibp_rate0 != 0) { 716 error = ieee80211_validate_rate(ni, params->ibp_rate0); 717 if (error != 0) 718 return (error); 719 } else { 720 /* XXX pre-setup some default (e.g., mgmt / mcast) rate */ 721 /* XXX __DECONST? */ 722 (void) m; 723 } 724 725 if (params->ibp_rate1 != 0 && 726 (error = ieee80211_validate_rate(ni, params->ibp_rate1)) != 0) 727 return (error); 728 729 if (params->ibp_rate2 != 0 && 730 (error = ieee80211_validate_rate(ni, params->ibp_rate2)) != 0) 731 return (error); 732 733 if (params->ibp_rate3 != 0 && 734 (error = ieee80211_validate_rate(ni, params->ibp_rate3)) != 0) 735 return (error); 736 737 return (0); 738 } 739 740 /* 741 * 802.11 output routine. This is (currently) used only to 742 * connect bpf write calls to the 802.11 layer for injecting 743 * raw 802.11 frames. 744 */ 745 int 746 ieee80211_output(struct ifnet *ifp, struct mbuf *m, 747 const struct sockaddr *dst, struct route *ro) 748 { 749 #define senderr(e) do { error = (e); goto bad;} while (0) 750 const struct ieee80211_bpf_params *params = NULL; 751 struct ieee80211_node *ni = NULL; 752 struct ieee80211vap *vap; 753 struct ieee80211_frame *wh; 754 struct ieee80211com *ic = NULL; 755 int error; 756 int ret; 757 758 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 759 /* 760 * Short-circuit requests if the vap is marked OACTIVE 761 * as this can happen because a packet came down through 762 * ieee80211_start before the vap entered RUN state in 763 * which case it's ok to just drop the frame. This 764 * should not be necessary but callers of if_output don't 765 * check OACTIVE. 766 */ 767 senderr(ENETDOWN); 768 } 769 vap = ifp->if_softc; 770 ic = vap->iv_ic; 771 /* 772 * Hand to the 802.3 code if not tagged as 773 * a raw 802.11 frame. 774 */ 775 if (dst->sa_family != AF_IEEE80211) 776 return vap->iv_output(ifp, m, dst, ro); 777 #ifdef MAC 778 error = mac_ifnet_check_transmit(ifp, m); 779 if (error) 780 senderr(error); 781 #endif 782 if (ifp->if_flags & IFF_MONITOR) 783 senderr(ENETDOWN); 784 if (!IFNET_IS_UP_RUNNING(ifp)) 785 senderr(ENETDOWN); 786 if (vap->iv_state == IEEE80211_S_CAC) { 787 IEEE80211_DPRINTF(vap, 788 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 789 "block %s frame in CAC state\n", "raw data"); 790 vap->iv_stats.is_tx_badstate++; 791 senderr(EIO); /* XXX */ 792 } else if (vap->iv_state == IEEE80211_S_SCAN) 793 senderr(EIO); 794 /* XXX bypass bridge, pfil, carp, etc. */ 795 796 /* 797 * NB: DLT_IEEE802_11_RADIO identifies the parameters are 798 * present by setting the sa_len field of the sockaddr (yes, 799 * this is a hack). 800 * NB: we assume sa_data is suitably aligned to cast. 801 */ 802 if (dst->sa_len != 0) 803 params = (const struct ieee80211_bpf_params *)dst->sa_data; 804 805 error = ieee80211_validate_frame(m, params); 806 if (error != 0) 807 senderr(error); 808 809 wh = mtod(m, struct ieee80211_frame *); 810 811 /* locate destination node */ 812 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 813 case IEEE80211_FC1_DIR_NODS: 814 case IEEE80211_FC1_DIR_FROMDS: 815 ni = ieee80211_find_txnode(vap, wh->i_addr1); 816 break; 817 case IEEE80211_FC1_DIR_TODS: 818 case IEEE80211_FC1_DIR_DSTODS: 819 ni = ieee80211_find_txnode(vap, wh->i_addr3); 820 break; 821 default: 822 senderr(EDOOFUS); 823 } 824 if (ni == NULL) { 825 /* 826 * Permit packets w/ bpf params through regardless 827 * (see below about sa_len). 828 */ 829 if (dst->sa_len == 0) 830 senderr(EHOSTUNREACH); 831 ni = ieee80211_ref_node(vap->iv_bss); 832 } 833 834 /* 835 * Sanitize mbuf for net80211 flags leaked from above. 836 * 837 * NB: This must be done before ieee80211_classify as 838 * it marks EAPOL in frames with M_EAPOL. 839 */ 840 m->m_flags &= ~M_80211_TX; 841 m->m_flags |= M_ENCAP; /* mark encapsulated */ 842 843 if (IEEE80211_IS_DATA(wh)) { 844 /* calculate priority so drivers can find the tx queue */ 845 if (ieee80211_classify(ni, m)) 846 senderr(EIO); /* XXX */ 847 848 /* NB: ieee80211_encap does not include 802.11 header */ 849 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, 850 m->m_pkthdr.len - ieee80211_hdrsize(wh)); 851 } else 852 M_WME_SETAC(m, WME_AC_BE); 853 854 error = ieee80211_sanitize_rates(ni, m, params); 855 if (error != 0) 856 senderr(error); 857 858 IEEE80211_NODE_STAT(ni, tx_data); 859 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 860 IEEE80211_NODE_STAT(ni, tx_mcast); 861 m->m_flags |= M_MCAST; 862 } else 863 IEEE80211_NODE_STAT(ni, tx_ucast); 864 865 IEEE80211_TX_LOCK(ic); 866 ret = ieee80211_raw_output(vap, ni, m, params); 867 IEEE80211_TX_UNLOCK(ic); 868 return (ret); 869 bad: 870 if (m != NULL) 871 m_freem(m); 872 if (ni != NULL) 873 ieee80211_free_node(ni); 874 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 875 return error; 876 #undef senderr 877 } 878 879 /* 880 * Set the direction field and address fields of an outgoing 881 * frame. Note this should be called early on in constructing 882 * a frame as it sets i_fc[1]; other bits can then be or'd in. 883 */ 884 void 885 ieee80211_send_setup( 886 struct ieee80211_node *ni, 887 struct mbuf *m, 888 int type, int tid, 889 const uint8_t sa[IEEE80211_ADDR_LEN], 890 const uint8_t da[IEEE80211_ADDR_LEN], 891 const uint8_t bssid[IEEE80211_ADDR_LEN]) 892 { 893 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 894 struct ieee80211vap *vap = ni->ni_vap; 895 struct ieee80211_tx_ampdu *tap; 896 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 897 ieee80211_seq seqno; 898 899 IEEE80211_TX_LOCK_ASSERT(ni->ni_ic); 900 901 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 902 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 903 switch (vap->iv_opmode) { 904 case IEEE80211_M_STA: 905 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 906 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 907 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 908 IEEE80211_ADDR_COPY(wh->i_addr3, da); 909 break; 910 case IEEE80211_M_IBSS: 911 case IEEE80211_M_AHDEMO: 912 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 913 IEEE80211_ADDR_COPY(wh->i_addr1, da); 914 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 915 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 916 break; 917 case IEEE80211_M_HOSTAP: 918 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 919 IEEE80211_ADDR_COPY(wh->i_addr1, da); 920 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 921 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 922 break; 923 case IEEE80211_M_WDS: 924 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 925 IEEE80211_ADDR_COPY(wh->i_addr1, da); 926 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 927 IEEE80211_ADDR_COPY(wh->i_addr3, da); 928 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 929 break; 930 case IEEE80211_M_MBSS: 931 #ifdef IEEE80211_SUPPORT_MESH 932 if (IEEE80211_IS_MULTICAST(da)) { 933 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 934 /* XXX next hop */ 935 IEEE80211_ADDR_COPY(wh->i_addr1, da); 936 IEEE80211_ADDR_COPY(wh->i_addr2, 937 vap->iv_myaddr); 938 } else { 939 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 940 IEEE80211_ADDR_COPY(wh->i_addr1, da); 941 IEEE80211_ADDR_COPY(wh->i_addr2, 942 vap->iv_myaddr); 943 IEEE80211_ADDR_COPY(wh->i_addr3, da); 944 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 945 } 946 #endif 947 break; 948 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 949 break; 950 } 951 } else { 952 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 953 IEEE80211_ADDR_COPY(wh->i_addr1, da); 954 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 955 #ifdef IEEE80211_SUPPORT_MESH 956 if (vap->iv_opmode == IEEE80211_M_MBSS) 957 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 958 else 959 #endif 960 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 961 } 962 *(uint16_t *)&wh->i_dur[0] = 0; 963 964 /* 965 * XXX TODO: this is what the TX lock is for. 966 * Here we're incrementing sequence numbers, and they 967 * need to be in lock-step with what the driver is doing 968 * both in TX ordering and crypto encap (IV increment.) 969 * 970 * If the driver does seqno itself, then we can skip 971 * assigning sequence numbers here, and we can avoid 972 * requiring the TX lock. 973 */ 974 tap = &ni->ni_tx_ampdu[tid]; 975 if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) { 976 m->m_flags |= M_AMPDU_MPDU; 977 978 /* NB: zero out i_seq field (for s/w encryption etc) */ 979 *(uint16_t *)&wh->i_seq[0] = 0; 980 } else { 981 if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK, 982 type & IEEE80211_FC0_SUBTYPE_MASK)) 983 /* 984 * 802.11-2012 9.3.2.10 - QoS multicast frames 985 * come out of a different seqno space. 986 */ 987 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 988 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 989 } else { 990 seqno = ni->ni_txseqs[tid]++; 991 } 992 else 993 seqno = 0; 994 995 *(uint16_t *)&wh->i_seq[0] = 996 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 997 M_SEQNO_SET(m, seqno); 998 } 999 1000 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1001 m->m_flags |= M_MCAST; 1002 #undef WH4 1003 } 1004 1005 /* 1006 * Send a management frame to the specified node. The node pointer 1007 * must have a reference as the pointer will be passed to the driver 1008 * and potentially held for a long time. If the frame is successfully 1009 * dispatched to the driver, then it is responsible for freeing the 1010 * reference (and potentially free'ing up any associated storage); 1011 * otherwise deal with reclaiming any reference (on error). 1012 */ 1013 int 1014 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type, 1015 struct ieee80211_bpf_params *params) 1016 { 1017 struct ieee80211vap *vap = ni->ni_vap; 1018 struct ieee80211com *ic = ni->ni_ic; 1019 struct ieee80211_frame *wh; 1020 int ret; 1021 1022 KASSERT(ni != NULL, ("null node")); 1023 1024 if (vap->iv_state == IEEE80211_S_CAC) { 1025 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 1026 ni, "block %s frame in CAC state", 1027 ieee80211_mgt_subtype_name(type)); 1028 vap->iv_stats.is_tx_badstate++; 1029 ieee80211_free_node(ni); 1030 m_freem(m); 1031 return EIO; /* XXX */ 1032 } 1033 1034 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 1035 if (m == NULL) { 1036 ieee80211_free_node(ni); 1037 return ENOMEM; 1038 } 1039 1040 IEEE80211_TX_LOCK(ic); 1041 1042 wh = mtod(m, struct ieee80211_frame *); 1043 ieee80211_send_setup(ni, m, 1044 IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID, 1045 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 1046 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { 1047 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1, 1048 "encrypting frame (%s)", __func__); 1049 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 1050 } 1051 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1052 1053 KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?")); 1054 M_WME_SETAC(m, params->ibp_pri); 1055 1056 #ifdef IEEE80211_DEBUG 1057 /* avoid printing too many frames */ 1058 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) || 1059 ieee80211_msg_dumppkts(vap)) { 1060 printf("[%s] send %s on channel %u\n", 1061 ether_sprintf(wh->i_addr1), 1062 ieee80211_mgt_subtype_name(type), 1063 ieee80211_chan2ieee(ic, ic->ic_curchan)); 1064 } 1065 #endif 1066 IEEE80211_NODE_STAT(ni, tx_mgmt); 1067 1068 ret = ieee80211_raw_output(vap, ni, m, params); 1069 IEEE80211_TX_UNLOCK(ic); 1070 return (ret); 1071 } 1072 1073 static void 1074 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg, 1075 int status) 1076 { 1077 struct ieee80211vap *vap = ni->ni_vap; 1078 1079 wakeup(vap); 1080 } 1081 1082 /* 1083 * Send a null data frame to the specified node. If the station 1084 * is setup for QoS then a QoS Null Data frame is constructed. 1085 * If this is a WDS station then a 4-address frame is constructed. 1086 * 1087 * NB: the caller is assumed to have setup a node reference 1088 * for use; this is necessary to deal with a race condition 1089 * when probing for inactive stations. Like ieee80211_mgmt_output 1090 * we must cleanup any node reference on error; however we 1091 * can safely just unref it as we know it will never be the 1092 * last reference to the node. 1093 */ 1094 int 1095 ieee80211_send_nulldata(struct ieee80211_node *ni) 1096 { 1097 struct ieee80211vap *vap = ni->ni_vap; 1098 struct ieee80211com *ic = ni->ni_ic; 1099 struct mbuf *m; 1100 struct ieee80211_frame *wh; 1101 int hdrlen; 1102 uint8_t *frm; 1103 int ret; 1104 1105 if (vap->iv_state == IEEE80211_S_CAC) { 1106 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 1107 ni, "block %s frame in CAC state", "null data"); 1108 ieee80211_unref_node(&ni); 1109 vap->iv_stats.is_tx_badstate++; 1110 return EIO; /* XXX */ 1111 } 1112 1113 if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) 1114 hdrlen = sizeof(struct ieee80211_qosframe); 1115 else 1116 hdrlen = sizeof(struct ieee80211_frame); 1117 /* NB: only WDS vap's get 4-address frames */ 1118 if (vap->iv_opmode == IEEE80211_M_WDS) 1119 hdrlen += IEEE80211_ADDR_LEN; 1120 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1121 hdrlen = roundup(hdrlen, sizeof(uint32_t)); 1122 1123 m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0); 1124 if (m == NULL) { 1125 /* XXX debug msg */ 1126 ieee80211_unref_node(&ni); 1127 vap->iv_stats.is_tx_nobuf++; 1128 return ENOMEM; 1129 } 1130 KASSERT(M_LEADINGSPACE(m) >= hdrlen, 1131 ("leading space %zd", M_LEADINGSPACE(m))); 1132 M_PREPEND(m, hdrlen, M_NOWAIT); 1133 if (m == NULL) { 1134 /* NB: cannot happen */ 1135 ieee80211_free_node(ni); 1136 return ENOMEM; 1137 } 1138 1139 IEEE80211_TX_LOCK(ic); 1140 1141 wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */ 1142 if (ni->ni_flags & IEEE80211_NODE_QOS) { 1143 const int tid = WME_AC_TO_TID(WME_AC_BE); 1144 uint8_t *qos; 1145 1146 ieee80211_send_setup(ni, m, 1147 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL, 1148 tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 1149 1150 if (vap->iv_opmode == IEEE80211_M_WDS) 1151 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1152 else 1153 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1154 qos[0] = tid & IEEE80211_QOS_TID; 1155 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy) 1156 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1157 qos[1] = 0; 1158 } else { 1159 ieee80211_send_setup(ni, m, 1160 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 1161 IEEE80211_NONQOS_TID, 1162 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 1163 } 1164 if (vap->iv_opmode != IEEE80211_M_WDS) { 1165 /* NB: power management bit is never sent by an AP */ 1166 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 1167 vap->iv_opmode != IEEE80211_M_HOSTAP) 1168 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 1169 } 1170 if ((ic->ic_flags & IEEE80211_F_SCAN) && 1171 (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) { 1172 ieee80211_add_callback(m, ieee80211_nulldata_transmitted, 1173 NULL); 1174 } 1175 m->m_len = m->m_pkthdr.len = hdrlen; 1176 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1177 1178 M_WME_SETAC(m, WME_AC_BE); 1179 1180 IEEE80211_NODE_STAT(ni, tx_data); 1181 1182 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni, 1183 "send %snull data frame on channel %u, pwr mgt %s", 1184 ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "", 1185 ieee80211_chan2ieee(ic, ic->ic_curchan), 1186 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 1187 1188 ret = ieee80211_raw_output(vap, ni, m, NULL); 1189 IEEE80211_TX_UNLOCK(ic); 1190 return (ret); 1191 } 1192 1193 /* 1194 * Assign priority to a frame based on any vlan tag assigned 1195 * to the station and/or any Diffserv setting in an IP header. 1196 * Finally, if an ACM policy is setup (in station mode) it's 1197 * applied. 1198 */ 1199 int 1200 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m) 1201 { 1202 const struct ether_header *eh = NULL; 1203 uint16_t ether_type; 1204 int v_wme_ac, d_wme_ac, ac; 1205 1206 if (__predict_false(m->m_flags & M_ENCAP)) { 1207 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 1208 struct llc *llc; 1209 int hdrlen, subtype; 1210 1211 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1212 if (subtype & IEEE80211_FC0_SUBTYPE_NODATA) { 1213 ac = WME_AC_BE; 1214 goto done; 1215 } 1216 1217 hdrlen = ieee80211_hdrsize(wh); 1218 if (m->m_pkthdr.len < hdrlen + sizeof(*llc)) 1219 return 1; 1220 1221 llc = (struct llc *)mtodo(m, hdrlen); 1222 if (llc->llc_dsap != LLC_SNAP_LSAP || 1223 llc->llc_ssap != LLC_SNAP_LSAP || 1224 llc->llc_control != LLC_UI || 1225 llc->llc_snap.org_code[0] != 0 || 1226 llc->llc_snap.org_code[1] != 0 || 1227 llc->llc_snap.org_code[2] != 0) 1228 return 1; 1229 1230 ether_type = llc->llc_snap.ether_type; 1231 } else { 1232 eh = mtod(m, struct ether_header *); 1233 ether_type = eh->ether_type; 1234 } 1235 1236 /* 1237 * Always promote PAE/EAPOL frames to high priority. 1238 */ 1239 if (ether_type == htons(ETHERTYPE_PAE)) { 1240 /* NB: mark so others don't need to check header */ 1241 m->m_flags |= M_EAPOL; 1242 ac = WME_AC_VO; 1243 goto done; 1244 } 1245 /* 1246 * Non-qos traffic goes to BE. 1247 */ 1248 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 1249 ac = WME_AC_BE; 1250 goto done; 1251 } 1252 1253 /* 1254 * If node has a vlan tag then all traffic 1255 * to it must have a matching tag. 1256 */ 1257 v_wme_ac = 0; 1258 if (ni->ni_vlan != 0) { 1259 if ((m->m_flags & M_VLANTAG) == 0) { 1260 IEEE80211_NODE_STAT(ni, tx_novlantag); 1261 return 1; 1262 } 1263 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 1264 EVL_VLANOFTAG(ni->ni_vlan)) { 1265 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 1266 return 1; 1267 } 1268 /* map vlan priority to AC */ 1269 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan)); 1270 } 1271 1272 /* XXX m_copydata may be too slow for fast path */ 1273 #ifdef INET 1274 if (eh && eh->ether_type == htons(ETHERTYPE_IP)) { 1275 uint8_t tos; 1276 /* 1277 * IP frame, map the DSCP bits from the TOS field. 1278 */ 1279 /* NB: ip header may not be in first mbuf */ 1280 m_copydata(m, sizeof(struct ether_header) + 1281 offsetof(struct ip, ip_tos), sizeof(tos), &tos); 1282 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1283 d_wme_ac = TID_TO_WME_AC(tos); 1284 } else { 1285 #endif /* INET */ 1286 #ifdef INET6 1287 if (eh && eh->ether_type == htons(ETHERTYPE_IPV6)) { 1288 uint32_t flow; 1289 uint8_t tos; 1290 /* 1291 * IPv6 frame, map the DSCP bits from the traffic class field. 1292 */ 1293 m_copydata(m, sizeof(struct ether_header) + 1294 offsetof(struct ip6_hdr, ip6_flow), sizeof(flow), 1295 (caddr_t) &flow); 1296 tos = (uint8_t)(ntohl(flow) >> 20); 1297 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1298 d_wme_ac = TID_TO_WME_AC(tos); 1299 } else { 1300 #endif /* INET6 */ 1301 d_wme_ac = WME_AC_BE; 1302 #ifdef INET6 1303 } 1304 #endif 1305 #ifdef INET 1306 } 1307 #endif 1308 /* 1309 * Use highest priority AC. 1310 */ 1311 if (v_wme_ac > d_wme_ac) 1312 ac = v_wme_ac; 1313 else 1314 ac = d_wme_ac; 1315 1316 /* 1317 * Apply ACM policy. 1318 */ 1319 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) { 1320 static const int acmap[4] = { 1321 WME_AC_BK, /* WME_AC_BE */ 1322 WME_AC_BK, /* WME_AC_BK */ 1323 WME_AC_BE, /* WME_AC_VI */ 1324 WME_AC_VI, /* WME_AC_VO */ 1325 }; 1326 struct ieee80211com *ic = ni->ni_ic; 1327 1328 while (ac != WME_AC_BK && 1329 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 1330 ac = acmap[ac]; 1331 } 1332 done: 1333 M_WME_SETAC(m, ac); 1334 return 0; 1335 } 1336 1337 /* 1338 * Insure there is sufficient contiguous space to encapsulate the 1339 * 802.11 data frame. If room isn't already there, arrange for it. 1340 * Drivers and cipher modules assume we have done the necessary work 1341 * and fail rudely if they don't find the space they need. 1342 */ 1343 struct mbuf * 1344 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize, 1345 struct ieee80211_key *key, struct mbuf *m) 1346 { 1347 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 1348 int needed_space = vap->iv_ic->ic_headroom + hdrsize; 1349 1350 if (key != NULL) { 1351 /* XXX belongs in crypto code? */ 1352 needed_space += key->wk_cipher->ic_header; 1353 /* XXX frags */ 1354 /* 1355 * When crypto is being done in the host we must insure 1356 * the data are writable for the cipher routines; clone 1357 * a writable mbuf chain. 1358 * XXX handle SWMIC specially 1359 */ 1360 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) { 1361 m = m_unshare(m, M_NOWAIT); 1362 if (m == NULL) { 1363 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1364 "%s: cannot get writable mbuf\n", __func__); 1365 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */ 1366 return NULL; 1367 } 1368 } 1369 } 1370 /* 1371 * We know we are called just before stripping an Ethernet 1372 * header and prepending an LLC header. This means we know 1373 * there will be 1374 * sizeof(struct ether_header) - sizeof(struct llc) 1375 * bytes recovered to which we need additional space for the 1376 * 802.11 header and any crypto header. 1377 */ 1378 /* XXX check trailing space and copy instead? */ 1379 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 1380 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); 1381 if (n == NULL) { 1382 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1383 "%s: cannot expand storage\n", __func__); 1384 vap->iv_stats.is_tx_nobuf++; 1385 m_freem(m); 1386 return NULL; 1387 } 1388 KASSERT(needed_space <= MHLEN, 1389 ("not enough room, need %u got %d\n", needed_space, MHLEN)); 1390 /* 1391 * Setup new mbuf to have leading space to prepend the 1392 * 802.11 header and any crypto header bits that are 1393 * required (the latter are added when the driver calls 1394 * back to ieee80211_crypto_encap to do crypto encapsulation). 1395 */ 1396 /* NB: must be first 'cuz it clobbers m_data */ 1397 m_move_pkthdr(n, m); 1398 n->m_len = 0; /* NB: m_gethdr does not set */ 1399 n->m_data += needed_space; 1400 /* 1401 * Pull up Ethernet header to create the expected layout. 1402 * We could use m_pullup but that's overkill (i.e. we don't 1403 * need the actual data) and it cannot fail so do it inline 1404 * for speed. 1405 */ 1406 /* NB: struct ether_header is known to be contiguous */ 1407 n->m_len += sizeof(struct ether_header); 1408 m->m_len -= sizeof(struct ether_header); 1409 m->m_data += sizeof(struct ether_header); 1410 /* 1411 * Replace the head of the chain. 1412 */ 1413 n->m_next = m; 1414 m = n; 1415 } 1416 return m; 1417 #undef TO_BE_RECLAIMED 1418 } 1419 1420 /* 1421 * Return the transmit key to use in sending a unicast frame. 1422 * If a unicast key is set we use that. When no unicast key is set 1423 * we fall back to the default transmit key. 1424 */ 1425 static __inline struct ieee80211_key * 1426 ieee80211_crypto_getucastkey(struct ieee80211vap *vap, 1427 struct ieee80211_node *ni) 1428 { 1429 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) { 1430 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1431 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1432 return NULL; 1433 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1434 } else { 1435 return &ni->ni_ucastkey; 1436 } 1437 } 1438 1439 /* 1440 * Return the transmit key to use in sending a multicast frame. 1441 * Multicast traffic always uses the group key which is installed as 1442 * the default tx key. 1443 */ 1444 static __inline struct ieee80211_key * 1445 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap, 1446 struct ieee80211_node *ni) 1447 { 1448 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1449 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1450 return NULL; 1451 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1452 } 1453 1454 /* 1455 * Encapsulate an outbound data frame. The mbuf chain is updated. 1456 * If an error is encountered NULL is returned. The caller is required 1457 * to provide a node reference and pullup the ethernet header in the 1458 * first mbuf. 1459 * 1460 * NB: Packet is assumed to be processed by ieee80211_classify which 1461 * marked EAPOL frames w/ M_EAPOL. 1462 */ 1463 struct mbuf * 1464 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni, 1465 struct mbuf *m) 1466 { 1467 #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh)) 1468 #define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc) 1469 struct ieee80211com *ic = ni->ni_ic; 1470 #ifdef IEEE80211_SUPPORT_MESH 1471 struct ieee80211_mesh_state *ms = vap->iv_mesh; 1472 struct ieee80211_meshcntl_ae10 *mc; 1473 struct ieee80211_mesh_route *rt = NULL; 1474 int dir = -1; 1475 #endif 1476 struct ether_header eh; 1477 struct ieee80211_frame *wh; 1478 struct ieee80211_key *key; 1479 struct llc *llc; 1480 int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast; 1481 ieee80211_seq seqno; 1482 int meshhdrsize, meshae; 1483 uint8_t *qos; 1484 int is_amsdu = 0; 1485 1486 IEEE80211_TX_LOCK_ASSERT(ic); 1487 1488 is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST)); 1489 1490 /* 1491 * Copy existing Ethernet header to a safe place. The 1492 * rest of the code assumes it's ok to strip it when 1493 * reorganizing state for the final encapsulation. 1494 */ 1495 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 1496 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t)); 1497 1498 /* 1499 * Insure space for additional headers. First identify 1500 * transmit key to use in calculating any buffer adjustments 1501 * required. This is also used below to do privacy 1502 * encapsulation work. Then calculate the 802.11 header 1503 * size and any padding required by the driver. 1504 * 1505 * Note key may be NULL if we fall back to the default 1506 * transmit key and that is not set. In that case the 1507 * buffer may not be expanded as needed by the cipher 1508 * routines, but they will/should discard it. 1509 */ 1510 if (vap->iv_flags & IEEE80211_F_PRIVACY) { 1511 if (vap->iv_opmode == IEEE80211_M_STA || 1512 !IEEE80211_IS_MULTICAST(eh.ether_dhost) || 1513 (vap->iv_opmode == IEEE80211_M_WDS && 1514 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) { 1515 key = ieee80211_crypto_getucastkey(vap, ni); 1516 } else if ((vap->iv_opmode == IEEE80211_M_WDS) && 1517 (! (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) { 1518 /* 1519 * Use ucastkey for DWDS transmit nodes, multicast 1520 * or otherwise. 1521 * 1522 * This is required to ensure that multicast frames 1523 * from a DWDS AP to a DWDS STA is encrypted with 1524 * a key that can actually work. 1525 * 1526 * There's no default key for multicast traffic 1527 * on a DWDS WDS VAP node (note NOT the DWDS enabled 1528 * AP VAP, the dynamically created per-STA WDS node) 1529 * so encap fails and transmit fails. 1530 */ 1531 key = ieee80211_crypto_getucastkey(vap, ni); 1532 } else { 1533 key = ieee80211_crypto_getmcastkey(vap, ni); 1534 } 1535 if (key == NULL && (m->m_flags & M_EAPOL) == 0) { 1536 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, 1537 eh.ether_dhost, 1538 "no default transmit key (%s) deftxkey %u", 1539 __func__, vap->iv_def_txkey); 1540 vap->iv_stats.is_tx_nodefkey++; 1541 goto bad; 1542 } 1543 } else 1544 key = NULL; 1545 /* 1546 * XXX Some ap's don't handle QoS-encapsulated EAPOL 1547 * frames so suppress use. This may be an issue if other 1548 * ap's require all data frames to be QoS-encapsulated 1549 * once negotiated in which case we'll need to make this 1550 * configurable. 1551 * 1552 * Don't send multicast QoS frames. 1553 * Technically multicast frames can be QoS if all stations in the 1554 * BSS are also QoS. 1555 * 1556 * NB: mesh data frames are QoS, including multicast frames. 1557 */ 1558 addqos = 1559 (((is_mcast == 0) && (ni->ni_flags & 1560 (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) || 1561 (vap->iv_opmode == IEEE80211_M_MBSS)) && 1562 (m->m_flags & M_EAPOL) == 0; 1563 1564 if (addqos) 1565 hdrsize = sizeof(struct ieee80211_qosframe); 1566 else 1567 hdrsize = sizeof(struct ieee80211_frame); 1568 #ifdef IEEE80211_SUPPORT_MESH 1569 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1570 /* 1571 * Mesh data frames are encapsulated according to the 1572 * rules of Section 11B.8.5 (p.139 of D3.0 spec). 1573 * o Group Addressed data (aka multicast) originating 1574 * at the local sta are sent w/ 3-address format and 1575 * address extension mode 00 1576 * o Individually Addressed data (aka unicast) originating 1577 * at the local sta are sent w/ 4-address format and 1578 * address extension mode 00 1579 * o Group Addressed data forwarded from a non-mesh sta are 1580 * sent w/ 3-address format and address extension mode 01 1581 * o Individually Address data from another sta are sent 1582 * w/ 4-address format and address extension mode 10 1583 */ 1584 is4addr = 0; /* NB: don't use, disable */ 1585 if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) { 1586 rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost); 1587 KASSERT(rt != NULL, ("route is NULL")); 1588 dir = IEEE80211_FC1_DIR_DSTODS; 1589 hdrsize += IEEE80211_ADDR_LEN; 1590 if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) { 1591 if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate, 1592 vap->iv_myaddr)) { 1593 IEEE80211_NOTE_MAC(vap, 1594 IEEE80211_MSG_MESH, 1595 eh.ether_dhost, 1596 "%s", "trying to send to ourself"); 1597 goto bad; 1598 } 1599 meshae = IEEE80211_MESH_AE_10; 1600 meshhdrsize = 1601 sizeof(struct ieee80211_meshcntl_ae10); 1602 } else { 1603 meshae = IEEE80211_MESH_AE_00; 1604 meshhdrsize = 1605 sizeof(struct ieee80211_meshcntl); 1606 } 1607 } else { 1608 dir = IEEE80211_FC1_DIR_FROMDS; 1609 if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) { 1610 /* proxy group */ 1611 meshae = IEEE80211_MESH_AE_01; 1612 meshhdrsize = 1613 sizeof(struct ieee80211_meshcntl_ae01); 1614 } else { 1615 /* group */ 1616 meshae = IEEE80211_MESH_AE_00; 1617 meshhdrsize = sizeof(struct ieee80211_meshcntl); 1618 } 1619 } 1620 } else { 1621 #endif 1622 /* 1623 * 4-address frames need to be generated for: 1624 * o packets sent through a WDS vap (IEEE80211_M_WDS) 1625 * o packets sent through a vap marked for relaying 1626 * (e.g. a station operating with dynamic WDS) 1627 */ 1628 is4addr = vap->iv_opmode == IEEE80211_M_WDS || 1629 ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) && 1630 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)); 1631 if (is4addr) 1632 hdrsize += IEEE80211_ADDR_LEN; 1633 meshhdrsize = meshae = 0; 1634 #ifdef IEEE80211_SUPPORT_MESH 1635 } 1636 #endif 1637 /* 1638 * Honor driver DATAPAD requirement. 1639 */ 1640 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1641 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1642 else 1643 hdrspace = hdrsize; 1644 1645 if (__predict_true((m->m_flags & M_FF) == 0)) { 1646 /* 1647 * Normal frame. 1648 */ 1649 m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m); 1650 if (m == NULL) { 1651 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 1652 goto bad; 1653 } 1654 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */ 1655 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 1656 llc = mtod(m, struct llc *); 1657 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 1658 llc->llc_control = LLC_UI; 1659 llc->llc_snap.org_code[0] = 0; 1660 llc->llc_snap.org_code[1] = 0; 1661 llc->llc_snap.org_code[2] = 0; 1662 llc->llc_snap.ether_type = eh.ether_type; 1663 } else { 1664 #ifdef IEEE80211_SUPPORT_SUPERG 1665 /* 1666 * Aggregated frame. Check if it's for AMSDU or FF. 1667 * 1668 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented 1669 * anywhere for some reason. But, since 11n requires 1670 * AMSDU RX, we can just assume "11n" == "AMSDU". 1671 */ 1672 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__); 1673 if (ieee80211_amsdu_tx_ok(ni)) { 1674 m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key); 1675 is_amsdu = 1; 1676 } else { 1677 m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key); 1678 } 1679 if (m == NULL) 1680 #endif 1681 goto bad; 1682 } 1683 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 1684 1685 M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT); 1686 if (m == NULL) { 1687 vap->iv_stats.is_tx_nobuf++; 1688 goto bad; 1689 } 1690 wh = mtod(m, struct ieee80211_frame *); 1691 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 1692 *(uint16_t *)wh->i_dur = 0; 1693 qos = NULL; /* NB: quiet compiler */ 1694 if (is4addr) { 1695 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 1696 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); 1697 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1698 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1699 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); 1700 } else switch (vap->iv_opmode) { 1701 case IEEE80211_M_STA: 1702 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 1703 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 1704 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1705 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1706 break; 1707 case IEEE80211_M_IBSS: 1708 case IEEE80211_M_AHDEMO: 1709 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1710 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1711 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1712 /* 1713 * NB: always use the bssid from iv_bss as the 1714 * neighbor's may be stale after an ibss merge 1715 */ 1716 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid); 1717 break; 1718 case IEEE80211_M_HOSTAP: 1719 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1720 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1721 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 1722 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 1723 break; 1724 #ifdef IEEE80211_SUPPORT_MESH 1725 case IEEE80211_M_MBSS: 1726 /* NB: offset by hdrspace to deal with DATAPAD */ 1727 mc = (struct ieee80211_meshcntl_ae10 *) 1728 (mtod(m, uint8_t *) + hdrspace); 1729 wh->i_fc[1] = dir; 1730 switch (meshae) { 1731 case IEEE80211_MESH_AE_00: /* no proxy */ 1732 mc->mc_flags = 0; 1733 if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */ 1734 IEEE80211_ADDR_COPY(wh->i_addr1, 1735 ni->ni_macaddr); 1736 IEEE80211_ADDR_COPY(wh->i_addr2, 1737 vap->iv_myaddr); 1738 IEEE80211_ADDR_COPY(wh->i_addr3, 1739 eh.ether_dhost); 1740 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, 1741 eh.ether_shost); 1742 qos =((struct ieee80211_qosframe_addr4 *) 1743 wh)->i_qos; 1744 } else if (dir == IEEE80211_FC1_DIR_FROMDS) { 1745 /* mcast */ 1746 IEEE80211_ADDR_COPY(wh->i_addr1, 1747 eh.ether_dhost); 1748 IEEE80211_ADDR_COPY(wh->i_addr2, 1749 vap->iv_myaddr); 1750 IEEE80211_ADDR_COPY(wh->i_addr3, 1751 eh.ether_shost); 1752 qos = ((struct ieee80211_qosframe *) 1753 wh)->i_qos; 1754 } 1755 break; 1756 case IEEE80211_MESH_AE_01: /* mcast, proxy */ 1757 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1758 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1759 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1760 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr); 1761 mc->mc_flags = 1; 1762 IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4, 1763 eh.ether_shost); 1764 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1765 break; 1766 case IEEE80211_MESH_AE_10: /* ucast, proxy */ 1767 KASSERT(rt != NULL, ("route is NULL")); 1768 IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop); 1769 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1770 IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate); 1771 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr); 1772 mc->mc_flags = IEEE80211_MESH_AE_10; 1773 IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost); 1774 IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost); 1775 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1776 break; 1777 default: 1778 KASSERT(0, ("meshae %d", meshae)); 1779 break; 1780 } 1781 mc->mc_ttl = ms->ms_ttl; 1782 ms->ms_seq++; 1783 le32enc(mc->mc_seq, ms->ms_seq); 1784 break; 1785 #endif 1786 case IEEE80211_M_WDS: /* NB: is4addr should always be true */ 1787 default: 1788 goto bad; 1789 } 1790 if (m->m_flags & M_MORE_DATA) 1791 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 1792 if (addqos) { 1793 int ac, tid; 1794 1795 if (is4addr) { 1796 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1797 /* NB: mesh case handled earlier */ 1798 } else if (vap->iv_opmode != IEEE80211_M_MBSS) 1799 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1800 ac = M_WME_GETAC(m); 1801 /* map from access class/queue to 11e header priorty value */ 1802 tid = WME_AC_TO_TID(ac); 1803 qos[0] = tid & IEEE80211_QOS_TID; 1804 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 1805 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1806 #ifdef IEEE80211_SUPPORT_MESH 1807 if (vap->iv_opmode == IEEE80211_M_MBSS) 1808 qos[1] = IEEE80211_QOS_MC; 1809 else 1810 #endif 1811 qos[1] = 0; 1812 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 1813 1814 /* 1815 * If this is an A-MSDU then ensure we set the 1816 * relevant field. 1817 */ 1818 if (is_amsdu) 1819 qos[0] |= IEEE80211_QOS_AMSDU; 1820 1821 /* 1822 * XXX TODO TX lock is needed for atomic updates of sequence 1823 * numbers. If the driver does it, then don't do it here; 1824 * and we don't need the TX lock held. 1825 */ 1826 if ((m->m_flags & M_AMPDU_MPDU) == 0) { 1827 /* 1828 * 802.11-2012 9.3.2.10 - 1829 * 1830 * If this is a multicast frame then we need 1831 * to ensure that the sequence number comes from 1832 * a separate seqno space and not the TID space. 1833 * 1834 * Otherwise multicast frames may actually cause 1835 * holes in the TX blockack window space and 1836 * upset various things. 1837 */ 1838 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1839 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1840 else 1841 seqno = ni->ni_txseqs[tid]++; 1842 1843 /* 1844 * NB: don't assign a sequence # to potential 1845 * aggregates; we expect this happens at the 1846 * point the frame comes off any aggregation q 1847 * as otherwise we may introduce holes in the 1848 * BA sequence space and/or make window accouting 1849 * more difficult. 1850 * 1851 * XXX may want to control this with a driver 1852 * capability; this may also change when we pull 1853 * aggregation up into net80211 1854 */ 1855 *(uint16_t *)wh->i_seq = 1856 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1857 M_SEQNO_SET(m, seqno); 1858 } else { 1859 /* NB: zero out i_seq field (for s/w encryption etc) */ 1860 *(uint16_t *)wh->i_seq = 0; 1861 } 1862 } else { 1863 /* 1864 * XXX TODO TX lock is needed for atomic updates of sequence 1865 * numbers. If the driver does it, then don't do it here; 1866 * and we don't need the TX lock held. 1867 */ 1868 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1869 *(uint16_t *)wh->i_seq = 1870 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1871 M_SEQNO_SET(m, seqno); 1872 1873 /* 1874 * XXX TODO: we shouldn't allow EAPOL, etc that would 1875 * be forced to be non-QoS traffic to be A-MSDU encapsulated. 1876 */ 1877 if (is_amsdu) 1878 printf("%s: XXX ERROR: is_amsdu set; not QoS!\n", 1879 __func__); 1880 } 1881 1882 /* 1883 * Check if xmit fragmentation is required. 1884 * 1885 * If the hardware does fragmentation offload, then don't bother 1886 * doing it here. 1887 */ 1888 if (IEEE80211_CONF_FRAG_OFFLOAD(ic)) 1889 txfrag = 0; 1890 else 1891 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold && 1892 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 1893 (vap->iv_caps & IEEE80211_C_TXFRAG) && 1894 (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0); 1895 1896 if (key != NULL) { 1897 /* 1898 * IEEE 802.1X: send EAPOL frames always in the clear. 1899 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 1900 */ 1901 if ((m->m_flags & M_EAPOL) == 0 || 1902 ((vap->iv_flags & IEEE80211_F_WPA) && 1903 (vap->iv_opmode == IEEE80211_M_STA ? 1904 !IEEE80211_KEY_UNDEFINED(key) : 1905 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) { 1906 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 1907 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) { 1908 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT, 1909 eh.ether_dhost, 1910 "%s", "enmic failed, discard frame"); 1911 vap->iv_stats.is_crypto_enmicfail++; 1912 goto bad; 1913 } 1914 } 1915 } 1916 if (txfrag && !ieee80211_fragment(vap, m, hdrsize, 1917 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold)) 1918 goto bad; 1919 1920 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1921 1922 IEEE80211_NODE_STAT(ni, tx_data); 1923 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1924 IEEE80211_NODE_STAT(ni, tx_mcast); 1925 m->m_flags |= M_MCAST; 1926 } else 1927 IEEE80211_NODE_STAT(ni, tx_ucast); 1928 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 1929 1930 return m; 1931 bad: 1932 if (m != NULL) 1933 m_freem(m); 1934 return NULL; 1935 #undef WH4 1936 #undef MC01 1937 } 1938 1939 void 1940 ieee80211_free_mbuf(struct mbuf *m) 1941 { 1942 struct mbuf *next; 1943 1944 if (m == NULL) 1945 return; 1946 1947 do { 1948 next = m->m_nextpkt; 1949 m->m_nextpkt = NULL; 1950 m_freem(m); 1951 } while ((m = next) != NULL); 1952 } 1953 1954 /* 1955 * Fragment the frame according to the specified mtu. 1956 * The size of the 802.11 header (w/o padding) is provided 1957 * so we don't need to recalculate it. We create a new 1958 * mbuf for each fragment and chain it through m_nextpkt; 1959 * we might be able to optimize this by reusing the original 1960 * packet's mbufs but that is significantly more complicated. 1961 */ 1962 static int 1963 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0, 1964 u_int hdrsize, u_int ciphdrsize, u_int mtu) 1965 { 1966 struct ieee80211com *ic = vap->iv_ic; 1967 struct ieee80211_frame *wh, *whf; 1968 struct mbuf *m, *prev; 1969 u_int totalhdrsize, fragno, fragsize, off, remainder, payload; 1970 u_int hdrspace; 1971 1972 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); 1973 KASSERT(m0->m_pkthdr.len > mtu, 1974 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); 1975 1976 /* 1977 * Honor driver DATAPAD requirement. 1978 */ 1979 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1980 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1981 else 1982 hdrspace = hdrsize; 1983 1984 wh = mtod(m0, struct ieee80211_frame *); 1985 /* NB: mark the first frag; it will be propagated below */ 1986 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; 1987 totalhdrsize = hdrspace + ciphdrsize; 1988 fragno = 1; 1989 off = mtu - ciphdrsize; 1990 remainder = m0->m_pkthdr.len - off; 1991 prev = m0; 1992 do { 1993 fragsize = MIN(totalhdrsize + remainder, mtu); 1994 m = m_get2(fragsize, M_NOWAIT, MT_DATA, M_PKTHDR); 1995 if (m == NULL) 1996 goto bad; 1997 /* leave room to prepend any cipher header */ 1998 m_align(m, fragsize - ciphdrsize); 1999 2000 /* 2001 * Form the header in the fragment. Note that since 2002 * we mark the first fragment with the MORE_FRAG bit 2003 * it automatically is propagated to each fragment; we 2004 * need only clear it on the last fragment (done below). 2005 * NB: frag 1+ dont have Mesh Control field present. 2006 */ 2007 whf = mtod(m, struct ieee80211_frame *); 2008 memcpy(whf, wh, hdrsize); 2009 #ifdef IEEE80211_SUPPORT_MESH 2010 if (vap->iv_opmode == IEEE80211_M_MBSS) 2011 ieee80211_getqos(wh)[1] &= ~IEEE80211_QOS_MC; 2012 #endif 2013 *(uint16_t *)&whf->i_seq[0] |= htole16( 2014 (fragno & IEEE80211_SEQ_FRAG_MASK) << 2015 IEEE80211_SEQ_FRAG_SHIFT); 2016 fragno++; 2017 2018 payload = fragsize - totalhdrsize; 2019 /* NB: destination is known to be contiguous */ 2020 2021 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace); 2022 m->m_len = hdrspace + payload; 2023 m->m_pkthdr.len = hdrspace + payload; 2024 m->m_flags |= M_FRAG; 2025 2026 /* chain up the fragment */ 2027 prev->m_nextpkt = m; 2028 prev = m; 2029 2030 /* deduct fragment just formed */ 2031 remainder -= payload; 2032 off += payload; 2033 } while (remainder != 0); 2034 2035 /* set the last fragment */ 2036 m->m_flags |= M_LASTFRAG; 2037 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; 2038 2039 /* strip first mbuf now that everything has been copied */ 2040 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); 2041 m0->m_flags |= M_FIRSTFRAG | M_FRAG; 2042 2043 vap->iv_stats.is_tx_fragframes++; 2044 vap->iv_stats.is_tx_frags += fragno-1; 2045 2046 return 1; 2047 bad: 2048 /* reclaim fragments but leave original frame for caller to free */ 2049 ieee80211_free_mbuf(m0->m_nextpkt); 2050 m0->m_nextpkt = NULL; 2051 return 0; 2052 } 2053 2054 /* 2055 * Add a supported rates element id to a frame. 2056 */ 2057 uint8_t * 2058 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs) 2059 { 2060 int nrates; 2061 2062 *frm++ = IEEE80211_ELEMID_RATES; 2063 nrates = rs->rs_nrates; 2064 if (nrates > IEEE80211_RATE_SIZE) 2065 nrates = IEEE80211_RATE_SIZE; 2066 *frm++ = nrates; 2067 memcpy(frm, rs->rs_rates, nrates); 2068 return frm + nrates; 2069 } 2070 2071 /* 2072 * Add an extended supported rates element id to a frame. 2073 */ 2074 uint8_t * 2075 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs) 2076 { 2077 /* 2078 * Add an extended supported rates element if operating in 11g mode. 2079 */ 2080 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 2081 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 2082 *frm++ = IEEE80211_ELEMID_XRATES; 2083 *frm++ = nrates; 2084 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 2085 frm += nrates; 2086 } 2087 return frm; 2088 } 2089 2090 /* 2091 * Add an ssid element to a frame. 2092 */ 2093 uint8_t * 2094 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) 2095 { 2096 *frm++ = IEEE80211_ELEMID_SSID; 2097 *frm++ = len; 2098 memcpy(frm, ssid, len); 2099 return frm + len; 2100 } 2101 2102 /* 2103 * Add an erp element to a frame. 2104 */ 2105 static uint8_t * 2106 ieee80211_add_erp(uint8_t *frm, struct ieee80211vap *vap) 2107 { 2108 struct ieee80211com *ic = vap->iv_ic; 2109 uint8_t erp; 2110 2111 *frm++ = IEEE80211_ELEMID_ERP; 2112 *frm++ = 1; 2113 erp = 0; 2114 2115 /* 2116 * TODO: This uses the global flags for now because 2117 * the per-VAP flags are fine for per-VAP, but don't 2118 * take into account which VAPs share the same channel 2119 * and which are on different channels. 2120 * 2121 * ERP and HT/VHT protection mode is a function of 2122 * how many stations are on a channel, not specifically 2123 * the VAP or global. But, until we grow that status, 2124 * the global flag will have to do. 2125 */ 2126 if (ic->ic_flags_ext & IEEE80211_FEXT_NONERP_PR) 2127 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 2128 2129 /* 2130 * TODO: same as above; these should be based not 2131 * on the vap or ic flags, but instead on a combination 2132 * of per-VAP and channels. 2133 */ 2134 if (ic->ic_flags & IEEE80211_F_USEPROT) 2135 erp |= IEEE80211_ERP_USE_PROTECTION; 2136 if (ic->ic_flags & IEEE80211_F_USEBARKER) 2137 erp |= IEEE80211_ERP_LONG_PREAMBLE; 2138 *frm++ = erp; 2139 return frm; 2140 } 2141 2142 /* 2143 * Add a CFParams element to a frame. 2144 */ 2145 static uint8_t * 2146 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic) 2147 { 2148 #define ADDSHORT(frm, v) do { \ 2149 le16enc(frm, v); \ 2150 frm += 2; \ 2151 } while (0) 2152 *frm++ = IEEE80211_ELEMID_CFPARMS; 2153 *frm++ = 6; 2154 *frm++ = 0; /* CFP count */ 2155 *frm++ = 2; /* CFP period */ 2156 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */ 2157 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */ 2158 return frm; 2159 #undef ADDSHORT 2160 } 2161 2162 static __inline uint8_t * 2163 add_appie(uint8_t *frm, const struct ieee80211_appie *ie) 2164 { 2165 memcpy(frm, ie->ie_data, ie->ie_len); 2166 return frm + ie->ie_len; 2167 } 2168 2169 static __inline uint8_t * 2170 add_ie(uint8_t *frm, const uint8_t *ie) 2171 { 2172 memcpy(frm, ie, 2 + ie[1]); 2173 return frm + 2 + ie[1]; 2174 } 2175 2176 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 2177 /* 2178 * Add a WME information element to a frame. 2179 */ 2180 uint8_t * 2181 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme, 2182 struct ieee80211_node *ni) 2183 { 2184 static const uint8_t oui[4] = { WME_OUI_BYTES, WME_OUI_TYPE }; 2185 struct ieee80211vap *vap = ni->ni_vap; 2186 2187 *frm++ = IEEE80211_ELEMID_VENDOR; 2188 *frm++ = sizeof(struct ieee80211_wme_info) - 2; 2189 memcpy(frm, oui, sizeof(oui)); 2190 frm += sizeof(oui); 2191 *frm++ = WME_INFO_OUI_SUBTYPE; 2192 *frm++ = WME_VERSION; 2193 2194 /* QoS info field depends upon operating mode */ 2195 switch (vap->iv_opmode) { 2196 case IEEE80211_M_HOSTAP: 2197 *frm = wme->wme_bssChanParams.cap_info; 2198 if (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD) 2199 *frm |= WME_CAPINFO_UAPSD_EN; 2200 frm++; 2201 break; 2202 case IEEE80211_M_STA: 2203 /* 2204 * NB: UAPSD drivers must set this up in their 2205 * VAP creation method. 2206 */ 2207 *frm++ = vap->iv_uapsdinfo; 2208 break; 2209 default: 2210 *frm++ = 0; 2211 break; 2212 } 2213 2214 return frm; 2215 } 2216 2217 /* 2218 * Add a WME parameters element to a frame. 2219 */ 2220 static uint8_t * 2221 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme, 2222 int uapsd_enable) 2223 { 2224 #define ADDSHORT(frm, v) do { \ 2225 le16enc(frm, v); \ 2226 frm += 2; \ 2227 } while (0) 2228 /* NB: this works 'cuz a param has an info at the front */ 2229 static const struct ieee80211_wme_info param = { 2230 .wme_id = IEEE80211_ELEMID_VENDOR, 2231 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 2232 .wme_oui = { WME_OUI_BYTES }, 2233 .wme_type = WME_OUI_TYPE, 2234 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 2235 .wme_version = WME_VERSION, 2236 }; 2237 int i; 2238 2239 memcpy(frm, ¶m, sizeof(param)); 2240 frm += __offsetof(struct ieee80211_wme_info, wme_info); 2241 *frm = wme->wme_bssChanParams.cap_info; /* AC info */ 2242 if (uapsd_enable) 2243 *frm |= WME_CAPINFO_UAPSD_EN; 2244 frm++; 2245 *frm++ = 0; /* reserved field */ 2246 /* XXX TODO - U-APSD bits - SP, flags below */ 2247 for (i = 0; i < WME_NUM_AC; i++) { 2248 const struct wmeParams *ac = 2249 &wme->wme_bssChanParams.cap_wmeParams[i]; 2250 *frm++ = _IEEE80211_SHIFTMASK(i, WME_PARAM_ACI) 2251 | _IEEE80211_SHIFTMASK(ac->wmep_acm, WME_PARAM_ACM) 2252 | _IEEE80211_SHIFTMASK(ac->wmep_aifsn, WME_PARAM_AIFSN) 2253 ; 2254 *frm++ = _IEEE80211_SHIFTMASK(ac->wmep_logcwmax, 2255 WME_PARAM_LOGCWMAX) 2256 | _IEEE80211_SHIFTMASK(ac->wmep_logcwmin, 2257 WME_PARAM_LOGCWMIN) 2258 ; 2259 ADDSHORT(frm, ac->wmep_txopLimit); 2260 } 2261 return frm; 2262 #undef ADDSHORT 2263 } 2264 #undef WME_OUI_BYTES 2265 2266 /* 2267 * Add an 11h Power Constraint element to a frame. 2268 */ 2269 static uint8_t * 2270 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap) 2271 { 2272 const struct ieee80211_channel *c = vap->iv_bss->ni_chan; 2273 /* XXX per-vap tx power limit? */ 2274 int8_t limit = vap->iv_ic->ic_txpowlimit / 2; 2275 2276 frm[0] = IEEE80211_ELEMID_PWRCNSTR; 2277 frm[1] = 1; 2278 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0; 2279 return frm + 3; 2280 } 2281 2282 /* 2283 * Add an 11h Power Capability element to a frame. 2284 */ 2285 static uint8_t * 2286 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c) 2287 { 2288 frm[0] = IEEE80211_ELEMID_PWRCAP; 2289 frm[1] = 2; 2290 frm[2] = c->ic_minpower; 2291 frm[3] = c->ic_maxpower; 2292 return frm + 4; 2293 } 2294 2295 /* 2296 * Add an 11h Supported Channels element to a frame. 2297 */ 2298 static uint8_t * 2299 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic) 2300 { 2301 static const int ielen = 26; 2302 2303 frm[0] = IEEE80211_ELEMID_SUPPCHAN; 2304 frm[1] = ielen; 2305 /* XXX not correct */ 2306 memcpy(frm+2, ic->ic_chan_avail, ielen); 2307 return frm + 2 + ielen; 2308 } 2309 2310 /* 2311 * Add an 11h Quiet time element to a frame. 2312 */ 2313 static uint8_t * 2314 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap, int update) 2315 { 2316 struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm; 2317 2318 quiet->quiet_ie = IEEE80211_ELEMID_QUIET; 2319 quiet->len = 6; 2320 2321 /* 2322 * Only update every beacon interval - otherwise probe responses 2323 * would update the quiet count value. 2324 */ 2325 if (update) { 2326 if (vap->iv_quiet_count_value == 1) 2327 vap->iv_quiet_count_value = vap->iv_quiet_count; 2328 else if (vap->iv_quiet_count_value > 1) 2329 vap->iv_quiet_count_value--; 2330 } 2331 2332 if (vap->iv_quiet_count_value == 0) { 2333 /* value 0 is reserved as per 802.11h standerd */ 2334 vap->iv_quiet_count_value = 1; 2335 } 2336 2337 quiet->tbttcount = vap->iv_quiet_count_value; 2338 quiet->period = vap->iv_quiet_period; 2339 quiet->duration = htole16(vap->iv_quiet_duration); 2340 quiet->offset = htole16(vap->iv_quiet_offset); 2341 return frm + sizeof(*quiet); 2342 } 2343 2344 /* 2345 * Add an 11h Channel Switch Announcement element to a frame. 2346 * Note that we use the per-vap CSA count to adjust the global 2347 * counter so we can use this routine to form probe response 2348 * frames and get the current count. 2349 */ 2350 static uint8_t * 2351 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap) 2352 { 2353 struct ieee80211com *ic = vap->iv_ic; 2354 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm; 2355 2356 csa->csa_ie = IEEE80211_ELEMID_CSA; 2357 csa->csa_len = 3; 2358 csa->csa_mode = 1; /* XXX force quiet on channel */ 2359 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan); 2360 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count; 2361 return frm + sizeof(*csa); 2362 } 2363 2364 /* 2365 * Add an 11h country information element to a frame. 2366 */ 2367 static uint8_t * 2368 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic) 2369 { 2370 2371 if (ic->ic_countryie == NULL || 2372 ic->ic_countryie_chan != ic->ic_bsschan) { 2373 /* 2374 * Handle lazy construction of ie. This is done on 2375 * first use and after a channel change that requires 2376 * re-calculation. 2377 */ 2378 if (ic->ic_countryie != NULL) 2379 IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE); 2380 ic->ic_countryie = ieee80211_alloc_countryie(ic); 2381 if (ic->ic_countryie == NULL) 2382 return frm; 2383 ic->ic_countryie_chan = ic->ic_bsschan; 2384 } 2385 return add_appie(frm, ic->ic_countryie); 2386 } 2387 2388 uint8_t * 2389 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap) 2390 { 2391 if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) 2392 return (add_ie(frm, vap->iv_wpa_ie)); 2393 else { 2394 /* XXX else complain? */ 2395 return (frm); 2396 } 2397 } 2398 2399 uint8_t * 2400 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap) 2401 { 2402 if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL) 2403 return (add_ie(frm, vap->iv_rsn_ie)); 2404 else { 2405 /* XXX else complain? */ 2406 return (frm); 2407 } 2408 } 2409 2410 uint8_t * 2411 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni) 2412 { 2413 if (ni->ni_flags & IEEE80211_NODE_QOS) { 2414 *frm++ = IEEE80211_ELEMID_QOS; 2415 *frm++ = 1; 2416 *frm++ = 0; 2417 } 2418 2419 return (frm); 2420 } 2421 2422 /* 2423 * ieee80211_send_probereq(): send a probe request frame with the specified ssid 2424 * and any optional information element data; some helper functions as FW based 2425 * HW scans need some of that information passed too. 2426 */ 2427 static uint32_t 2428 ieee80211_probereq_ie_len(struct ieee80211vap *vap, struct ieee80211com *ic) 2429 { 2430 const struct ieee80211_rateset *rs; 2431 2432 rs = ieee80211_get_suprates(ic, ic->ic_curchan); 2433 2434 /* 2435 * prreq frame format 2436 * [tlv] ssid 2437 * [tlv] supported rates 2438 * [tlv] RSN (optional) 2439 * [tlv] extended supported rates (if needed) 2440 * [tlv] HT cap (optional) 2441 * [tlv] VHT cap (optional) 2442 * [tlv] WPA (optional) 2443 * [tlv] user-specified ie's 2444 */ 2445 return ( 2 + IEEE80211_NWID_LEN 2446 + 2 + IEEE80211_RATE_SIZE 2447 + ((vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL) ? 2448 vap->iv_rsn_ie[1] : 0) 2449 + ((rs->rs_nrates > IEEE80211_RATE_SIZE) ? 2450 2 + (rs->rs_nrates - IEEE80211_RATE_SIZE) : 0) 2451 + (((vap->iv_opmode == IEEE80211_M_IBSS) && 2452 (vap->iv_flags_ht & IEEE80211_FHT_HT)) ? 2453 sizeof(struct ieee80211_ie_htcap) : 0) 2454 #ifdef notyet 2455 + sizeof(struct ieee80211_ie_htinfo) /* XXX not needed? */ 2456 + sizeof(struct ieee80211_ie_vhtcap) 2457 #endif 2458 + ((vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) ? 2459 vap->iv_wpa_ie[1] : 0) 2460 + (vap->iv_appie_probereq != NULL ? 2461 vap->iv_appie_probereq->ie_len : 0) 2462 ); 2463 } 2464 2465 int 2466 ieee80211_probereq_ie(struct ieee80211vap *vap, struct ieee80211com *ic, 2467 uint8_t **frmp, uint32_t *frmlen, const uint8_t *ssid, size_t ssidlen, 2468 bool alloc) 2469 { 2470 const struct ieee80211_rateset *rs; 2471 uint8_t *frm; 2472 uint32_t len; 2473 2474 if (!alloc && (frmp == NULL || frmlen == NULL)) 2475 return (EINVAL); 2476 2477 len = ieee80211_probereq_ie_len(vap, ic); 2478 if (!alloc && len > *frmlen) 2479 return (ENOBUFS); 2480 2481 /* For HW scans we usually do not pass in the SSID as IE. */ 2482 if (ssidlen == -1) 2483 len -= (2 + IEEE80211_NWID_LEN); 2484 2485 if (alloc) { 2486 frm = malloc(len, M_80211_VAP, M_WAITOK | M_ZERO); 2487 *frmp = frm; 2488 *frmlen = len; 2489 } else 2490 frm = *frmp; 2491 2492 if (ssidlen != -1) 2493 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 2494 rs = ieee80211_get_suprates(ic, ic->ic_curchan); 2495 frm = ieee80211_add_rates(frm, rs); 2496 frm = ieee80211_add_rsn(frm, vap); 2497 frm = ieee80211_add_xrates(frm, rs); 2498 2499 /* 2500 * Note: we can't use bss; we don't have one yet. 2501 * 2502 * So, we should announce our capabilities 2503 * in this channel mode (2g/5g), not the 2504 * channel details itself. 2505 */ 2506 if ((vap->iv_opmode == IEEE80211_M_IBSS) && 2507 (vap->iv_flags_ht & IEEE80211_FHT_HT)) { 2508 struct ieee80211_channel *c; 2509 2510 /* 2511 * Get the HT channel that we should try upgrading to. 2512 * If we can do 40MHz then this'll upgrade it appropriately. 2513 */ 2514 c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan, 2515 vap->iv_flags_ht); 2516 frm = ieee80211_add_htcap_ch(frm, vap, c); 2517 } 2518 2519 /* 2520 * XXX TODO: need to figure out what/how to update the 2521 * VHT channel. 2522 */ 2523 #ifdef notyet 2524 if (vap->iv_flags_vht & IEEE80211_FVHT_VHT) { 2525 struct ieee80211_channel *c; 2526 2527 c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan, 2528 vap->iv_flags_ht); 2529 c = ieee80211_vht_adjust_channel(ic, c, vap->iv_flags_vht); 2530 frm = ieee80211_add_vhtcap_ch(frm, vap, c); 2531 } 2532 #endif 2533 2534 frm = ieee80211_add_wpa(frm, vap); 2535 if (vap->iv_appie_probereq != NULL) 2536 frm = add_appie(frm, vap->iv_appie_probereq); 2537 2538 if (!alloc) { 2539 *frmp = frm; 2540 *frmlen = len; 2541 } 2542 2543 return (0); 2544 } 2545 2546 int 2547 ieee80211_send_probereq(struct ieee80211_node *ni, 2548 const uint8_t sa[IEEE80211_ADDR_LEN], 2549 const uint8_t da[IEEE80211_ADDR_LEN], 2550 const uint8_t bssid[IEEE80211_ADDR_LEN], 2551 const uint8_t *ssid, size_t ssidlen) 2552 { 2553 struct ieee80211vap *vap = ni->ni_vap; 2554 struct ieee80211com *ic = ni->ni_ic; 2555 struct ieee80211_node *bss; 2556 const struct ieee80211_txparam *tp; 2557 struct ieee80211_bpf_params params; 2558 struct mbuf *m; 2559 uint8_t *frm; 2560 uint32_t frmlen; 2561 int ret; 2562 2563 bss = ieee80211_ref_node(vap->iv_bss); 2564 2565 if (vap->iv_state == IEEE80211_S_CAC) { 2566 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni, 2567 "block %s frame in CAC state", "probe request"); 2568 vap->iv_stats.is_tx_badstate++; 2569 ieee80211_free_node(bss); 2570 return EIO; /* XXX */ 2571 } 2572 2573 /* 2574 * Hold a reference on the node so it doesn't go away until after 2575 * the xmit is complete all the way in the driver. On error we 2576 * will remove our reference. 2577 */ 2578 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2579 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2580 __func__, __LINE__, 2581 ni, ether_sprintf(ni->ni_macaddr), 2582 ieee80211_node_refcnt(ni)+1); 2583 ieee80211_ref_node(ni); 2584 2585 /* See comments above for entire frame format. */ 2586 frmlen = ieee80211_probereq_ie_len(vap, ic); 2587 m = ieee80211_getmgtframe(&frm, 2588 ic->ic_headroom + sizeof(struct ieee80211_frame), frmlen); 2589 if (m == NULL) { 2590 vap->iv_stats.is_tx_nobuf++; 2591 ieee80211_free_node(ni); 2592 ieee80211_free_node(bss); 2593 return ENOMEM; 2594 } 2595 2596 ret = ieee80211_probereq_ie(vap, ic, &frm, &frmlen, ssid, ssidlen, 2597 false); 2598 KASSERT(ret == 0, 2599 ("%s: ieee80211_probereq_ie failed: %d\n", __func__, ret)); 2600 2601 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2602 KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame), 2603 ("leading space %zd", M_LEADINGSPACE(m))); 2604 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2605 if (m == NULL) { 2606 /* NB: cannot happen */ 2607 ieee80211_free_node(ni); 2608 ieee80211_free_node(bss); 2609 return ENOMEM; 2610 } 2611 2612 IEEE80211_TX_LOCK(ic); 2613 ieee80211_send_setup(ni, m, 2614 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 2615 IEEE80211_NONQOS_TID, sa, da, bssid); 2616 /* XXX power management? */ 2617 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2618 2619 M_WME_SETAC(m, WME_AC_BE); 2620 2621 IEEE80211_NODE_STAT(ni, tx_probereq); 2622 IEEE80211_NODE_STAT(ni, tx_mgmt); 2623 2624 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2625 "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n", 2626 ieee80211_chan2ieee(ic, ic->ic_curchan), 2627 ether_sprintf(bssid), 2628 sa, ":", 2629 da, ":", 2630 ssidlen, ssid); 2631 2632 memset(¶ms, 0, sizeof(params)); 2633 params.ibp_pri = M_WME_GETAC(m); 2634 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 2635 params.ibp_rate0 = tp->mgmtrate; 2636 if (IEEE80211_IS_MULTICAST(da)) { 2637 params.ibp_flags |= IEEE80211_BPF_NOACK; 2638 params.ibp_try0 = 1; 2639 } else 2640 params.ibp_try0 = tp->maxretry; 2641 params.ibp_power = ni->ni_txpower; 2642 ret = ieee80211_raw_output(vap, ni, m, ¶ms); 2643 IEEE80211_TX_UNLOCK(ic); 2644 ieee80211_free_node(bss); 2645 return (ret); 2646 } 2647 2648 /* 2649 * Calculate capability information for mgt frames. 2650 */ 2651 uint16_t 2652 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan) 2653 { 2654 uint16_t capinfo; 2655 2656 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode")); 2657 2658 if (vap->iv_opmode == IEEE80211_M_HOSTAP) 2659 capinfo = IEEE80211_CAPINFO_ESS; 2660 else if (vap->iv_opmode == IEEE80211_M_IBSS) 2661 capinfo = IEEE80211_CAPINFO_IBSS; 2662 else 2663 capinfo = 0; 2664 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2665 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2666 if ((vap->iv_flags & IEEE80211_F_SHPREAMBLE) && 2667 IEEE80211_IS_CHAN_2GHZ(chan)) 2668 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2669 if (vap->iv_flags & IEEE80211_F_SHSLOT) 2670 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2671 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH)) 2672 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2673 return capinfo; 2674 } 2675 2676 /* 2677 * Send a management frame. The node is for the destination (or ic_bss 2678 * when in station mode). Nodes other than ic_bss have their reference 2679 * count bumped to reflect our use for an indeterminant time. 2680 */ 2681 int 2682 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg) 2683 { 2684 #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT) 2685 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2686 struct ieee80211vap *vap = ni->ni_vap; 2687 struct ieee80211com *ic = ni->ni_ic; 2688 struct ieee80211_node *bss = vap->iv_bss; 2689 struct ieee80211_bpf_params params; 2690 struct mbuf *m; 2691 uint8_t *frm; 2692 uint16_t capinfo; 2693 int has_challenge, is_shared_key, ret, status; 2694 2695 KASSERT(ni != NULL, ("null node")); 2696 2697 /* 2698 * Hold a reference on the node so it doesn't go away until after 2699 * the xmit is complete all the way in the driver. On error we 2700 * will remove our reference. 2701 */ 2702 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2703 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2704 __func__, __LINE__, 2705 ni, ether_sprintf(ni->ni_macaddr), 2706 ieee80211_node_refcnt(ni)+1); 2707 ieee80211_ref_node(ni); 2708 2709 memset(¶ms, 0, sizeof(params)); 2710 switch (type) { 2711 case IEEE80211_FC0_SUBTYPE_AUTH: 2712 status = arg >> 16; 2713 arg &= 0xffff; 2714 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || 2715 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 2716 ni->ni_challenge != NULL); 2717 2718 /* 2719 * Deduce whether we're doing open authentication or 2720 * shared key authentication. We do the latter if 2721 * we're in the middle of a shared key authentication 2722 * handshake or if we're initiating an authentication 2723 * request and configured to use shared key. 2724 */ 2725 is_shared_key = has_challenge || 2726 arg >= IEEE80211_AUTH_SHARED_RESPONSE || 2727 (arg == IEEE80211_AUTH_SHARED_REQUEST && 2728 bss->ni_authmode == IEEE80211_AUTH_SHARED); 2729 2730 m = ieee80211_getmgtframe(&frm, 2731 ic->ic_headroom + sizeof(struct ieee80211_frame), 2732 3 * sizeof(uint16_t) 2733 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? 2734 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)); 2735 if (m == NULL) 2736 senderr(ENOMEM, is_tx_nobuf); 2737 2738 ((uint16_t *)frm)[0] = 2739 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) 2740 : htole16(IEEE80211_AUTH_ALG_OPEN); 2741 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */ 2742 ((uint16_t *)frm)[2] = htole16(status);/* status */ 2743 2744 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { 2745 ((uint16_t *)frm)[3] = 2746 htole16((IEEE80211_CHALLENGE_LEN << 8) | 2747 IEEE80211_ELEMID_CHALLENGE); 2748 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge, 2749 IEEE80211_CHALLENGE_LEN); 2750 m->m_pkthdr.len = m->m_len = 2751 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN; 2752 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 2753 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2754 "request encrypt frame (%s)", __func__); 2755 /* mark frame for encryption */ 2756 params.ibp_flags |= IEEE80211_BPF_CRYPTO; 2757 } 2758 } else 2759 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t); 2760 2761 /* XXX not right for shared key */ 2762 if (status == IEEE80211_STATUS_SUCCESS) 2763 IEEE80211_NODE_STAT(ni, tx_auth); 2764 else 2765 IEEE80211_NODE_STAT(ni, tx_auth_fail); 2766 2767 if (vap->iv_opmode == IEEE80211_M_STA) 2768 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2769 (void *) vap->iv_state); 2770 break; 2771 2772 case IEEE80211_FC0_SUBTYPE_DEAUTH: 2773 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2774 "send station deauthenticate (reason: %d (%s))", arg, 2775 ieee80211_reason_to_string(arg)); 2776 m = ieee80211_getmgtframe(&frm, 2777 ic->ic_headroom + sizeof(struct ieee80211_frame), 2778 sizeof(uint16_t)); 2779 if (m == NULL) 2780 senderr(ENOMEM, is_tx_nobuf); 2781 *(uint16_t *)frm = htole16(arg); /* reason */ 2782 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2783 2784 IEEE80211_NODE_STAT(ni, tx_deauth); 2785 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 2786 2787 ieee80211_node_unauthorize(ni); /* port closed */ 2788 break; 2789 2790 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 2791 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 2792 /* 2793 * asreq frame format 2794 * [2] capability information 2795 * [2] listen interval 2796 * [6*] current AP address (reassoc only) 2797 * [tlv] ssid 2798 * [tlv] supported rates 2799 * [tlv] extended supported rates 2800 * [4] power capability (optional) 2801 * [28] supported channels (optional) 2802 * [tlv] HT capabilities 2803 * [tlv] VHT capabilities 2804 * [tlv] WME (optional) 2805 * [tlv] Vendor OUI HT capabilities (optional) 2806 * [tlv] Atheros capabilities (if negotiated) 2807 * [tlv] AppIE's (optional) 2808 */ 2809 m = ieee80211_getmgtframe(&frm, 2810 ic->ic_headroom + sizeof(struct ieee80211_frame), 2811 sizeof(uint16_t) 2812 + sizeof(uint16_t) 2813 + IEEE80211_ADDR_LEN 2814 + 2 + IEEE80211_NWID_LEN 2815 + 2 + IEEE80211_RATE_SIZE 2816 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2817 + 4 2818 + 2 + 26 2819 + sizeof(struct ieee80211_wme_info) 2820 + sizeof(struct ieee80211_ie_htcap) 2821 + sizeof(struct ieee80211_ie_vhtcap) 2822 + 4 + sizeof(struct ieee80211_ie_htcap) 2823 #ifdef IEEE80211_SUPPORT_SUPERG 2824 + sizeof(struct ieee80211_ath_ie) 2825 #endif 2826 + (vap->iv_appie_wpa != NULL ? 2827 vap->iv_appie_wpa->ie_len : 0) 2828 + (vap->iv_appie_assocreq != NULL ? 2829 vap->iv_appie_assocreq->ie_len : 0) 2830 ); 2831 if (m == NULL) 2832 senderr(ENOMEM, is_tx_nobuf); 2833 2834 KASSERT(vap->iv_opmode == IEEE80211_M_STA, 2835 ("wrong mode %u", vap->iv_opmode)); 2836 capinfo = IEEE80211_CAPINFO_ESS; 2837 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2838 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2839 /* 2840 * NB: Some 11a AP's reject the request when 2841 * short preamble is set. 2842 */ 2843 if ((vap->iv_flags & IEEE80211_F_SHPREAMBLE) && 2844 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2845 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2846 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 2847 (ic->ic_caps & IEEE80211_C_SHSLOT)) 2848 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2849 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) && 2850 (vap->iv_flags & IEEE80211_F_DOTH)) 2851 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2852 *(uint16_t *)frm = htole16(capinfo); 2853 frm += 2; 2854 2855 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!")); 2856 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval, 2857 bss->ni_intval)); 2858 frm += 2; 2859 2860 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 2861 IEEE80211_ADDR_COPY(frm, bss->ni_bssid); 2862 frm += IEEE80211_ADDR_LEN; 2863 } 2864 2865 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 2866 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2867 frm = ieee80211_add_rsn(frm, vap); 2868 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2869 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) { 2870 frm = ieee80211_add_powercapability(frm, 2871 ic->ic_curchan); 2872 frm = ieee80211_add_supportedchannels(frm, ic); 2873 } 2874 2875 /* 2876 * Check the channel - we may be using an 11n NIC with an 2877 * 11n capable station, but we're configured to be an 11b 2878 * channel. 2879 */ 2880 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2881 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2882 ni->ni_ies.htcap_ie != NULL && 2883 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) { 2884 frm = ieee80211_add_htcap(frm, ni); 2885 } 2886 2887 if ((vap->iv_flags_vht & IEEE80211_FVHT_VHT) && 2888 IEEE80211_IS_CHAN_VHT(ni->ni_chan) && 2889 ni->ni_ies.vhtcap_ie != NULL && 2890 ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) { 2891 frm = ieee80211_add_vhtcap(frm, ni); 2892 } 2893 2894 frm = ieee80211_add_wpa(frm, vap); 2895 if ((ic->ic_flags & IEEE80211_F_WME) && 2896 ni->ni_ies.wme_ie != NULL) 2897 frm = ieee80211_add_wme_info(frm, &ic->ic_wme, ni); 2898 2899 /* 2900 * Same deal - only send HT info if we're on an 11n 2901 * capable channel. 2902 */ 2903 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2904 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2905 ni->ni_ies.htcap_ie != NULL && 2906 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) { 2907 frm = ieee80211_add_htcap_vendor(frm, ni); 2908 } 2909 #ifdef IEEE80211_SUPPORT_SUPERG 2910 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) { 2911 frm = ieee80211_add_ath(frm, 2912 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2913 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2914 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2915 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2916 } 2917 #endif /* IEEE80211_SUPPORT_SUPERG */ 2918 if (vap->iv_appie_assocreq != NULL) 2919 frm = add_appie(frm, vap->iv_appie_assocreq); 2920 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2921 2922 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2923 (void *) vap->iv_state); 2924 break; 2925 2926 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 2927 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 2928 /* 2929 * asresp frame format 2930 * [2] capability information 2931 * [2] status 2932 * [2] association ID 2933 * [tlv] supported rates 2934 * [tlv] extended supported rates 2935 * [tlv] HT capabilities (standard, if STA enabled) 2936 * [tlv] HT information (standard, if STA enabled) 2937 * [tlv] VHT capabilities (standard, if STA enabled) 2938 * [tlv] VHT information (standard, if STA enabled) 2939 * [tlv] WME (if configured and STA enabled) 2940 * [tlv] HT capabilities (vendor OUI, if STA enabled) 2941 * [tlv] HT information (vendor OUI, if STA enabled) 2942 * [tlv] Atheros capabilities (if STA enabled) 2943 * [tlv] AppIE's (optional) 2944 */ 2945 m = ieee80211_getmgtframe(&frm, 2946 ic->ic_headroom + sizeof(struct ieee80211_frame), 2947 sizeof(uint16_t) 2948 + sizeof(uint16_t) 2949 + sizeof(uint16_t) 2950 + 2 + IEEE80211_RATE_SIZE 2951 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2952 + sizeof(struct ieee80211_ie_htcap) + 4 2953 + sizeof(struct ieee80211_ie_htinfo) + 4 2954 + sizeof(struct ieee80211_ie_vhtcap) 2955 + sizeof(struct ieee80211_ie_vht_operation) 2956 + sizeof(struct ieee80211_wme_param) 2957 #ifdef IEEE80211_SUPPORT_SUPERG 2958 + sizeof(struct ieee80211_ath_ie) 2959 #endif 2960 + (vap->iv_appie_assocresp != NULL ? 2961 vap->iv_appie_assocresp->ie_len : 0) 2962 ); 2963 if (m == NULL) 2964 senderr(ENOMEM, is_tx_nobuf); 2965 2966 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2967 *(uint16_t *)frm = htole16(capinfo); 2968 frm += 2; 2969 2970 *(uint16_t *)frm = htole16(arg); /* status */ 2971 frm += 2; 2972 2973 if (arg == IEEE80211_STATUS_SUCCESS) { 2974 *(uint16_t *)frm = htole16(ni->ni_associd); 2975 IEEE80211_NODE_STAT(ni, tx_assoc); 2976 } else 2977 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 2978 frm += 2; 2979 2980 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2981 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2982 /* NB: respond according to what we received */ 2983 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) { 2984 frm = ieee80211_add_htcap(frm, ni); 2985 frm = ieee80211_add_htinfo(frm, ni); 2986 } 2987 if ((vap->iv_flags & IEEE80211_F_WME) && 2988 ni->ni_ies.wme_ie != NULL) 2989 frm = ieee80211_add_wme_param(frm, &ic->ic_wme, 2990 !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD)); 2991 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) { 2992 frm = ieee80211_add_htcap_vendor(frm, ni); 2993 frm = ieee80211_add_htinfo_vendor(frm, ni); 2994 } 2995 if (ni->ni_flags & IEEE80211_NODE_VHT) { 2996 frm = ieee80211_add_vhtcap(frm, ni); 2997 frm = ieee80211_add_vhtinfo(frm, ni); 2998 } 2999 #ifdef IEEE80211_SUPPORT_SUPERG 3000 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) 3001 frm = ieee80211_add_ath(frm, 3002 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 3003 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 3004 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 3005 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 3006 #endif /* IEEE80211_SUPPORT_SUPERG */ 3007 if (vap->iv_appie_assocresp != NULL) 3008 frm = add_appie(frm, vap->iv_appie_assocresp); 3009 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3010 break; 3011 3012 case IEEE80211_FC0_SUBTYPE_DISASSOC: 3013 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, 3014 "send station disassociate (reason: %d (%s))", arg, 3015 ieee80211_reason_to_string(arg)); 3016 m = ieee80211_getmgtframe(&frm, 3017 ic->ic_headroom + sizeof(struct ieee80211_frame), 3018 sizeof(uint16_t)); 3019 if (m == NULL) 3020 senderr(ENOMEM, is_tx_nobuf); 3021 *(uint16_t *)frm = htole16(arg); /* reason */ 3022 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 3023 3024 IEEE80211_NODE_STAT(ni, tx_disassoc); 3025 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 3026 break; 3027 3028 default: 3029 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni, 3030 "invalid mgmt frame type %u", type); 3031 senderr(EINVAL, is_tx_unknownmgt); 3032 /* NOTREACHED */ 3033 } 3034 3035 /* NB: force non-ProbeResp frames to the highest queue */ 3036 params.ibp_pri = WME_AC_VO; 3037 params.ibp_rate0 = bss->ni_txparms->mgmtrate; 3038 /* NB: we know all frames are unicast */ 3039 params.ibp_try0 = bss->ni_txparms->maxretry; 3040 params.ibp_power = bss->ni_txpower; 3041 return ieee80211_mgmt_output(ni, m, type, ¶ms); 3042 bad: 3043 ieee80211_free_node(ni); 3044 return ret; 3045 #undef senderr 3046 #undef HTFLAGS 3047 } 3048 3049 /* 3050 * Return an mbuf with a probe response frame in it. 3051 * Space is left to prepend and 802.11 header at the 3052 * front but it's left to the caller to fill in. 3053 */ 3054 struct mbuf * 3055 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy) 3056 { 3057 struct ieee80211vap *vap = bss->ni_vap; 3058 struct ieee80211com *ic = bss->ni_ic; 3059 const struct ieee80211_rateset *rs; 3060 struct mbuf *m; 3061 uint16_t capinfo; 3062 uint8_t *frm; 3063 3064 /* 3065 * probe response frame format 3066 * [8] time stamp 3067 * [2] beacon interval 3068 * [2] cabability information 3069 * [tlv] ssid 3070 * [tlv] supported rates 3071 * [tlv] parameter set (FH/DS) 3072 * [tlv] parameter set (IBSS) 3073 * [tlv] country (optional) 3074 * [3] power control (optional) 3075 * [5] channel switch announcement (CSA) (optional) 3076 * [tlv] extended rate phy (ERP) 3077 * [tlv] extended supported rates 3078 * [tlv] RSN (optional) 3079 * [tlv] HT capabilities 3080 * [tlv] HT information 3081 * [tlv] VHT capabilities 3082 * [tlv] VHT information 3083 * [tlv] WPA (optional) 3084 * [tlv] WME (optional) 3085 * [tlv] Vendor OUI HT capabilities (optional) 3086 * [tlv] Vendor OUI HT information (optional) 3087 * [tlv] Atheros capabilities 3088 * [tlv] AppIE's (optional) 3089 * [tlv] Mesh ID (MBSS) 3090 * [tlv] Mesh Conf (MBSS) 3091 */ 3092 m = ieee80211_getmgtframe(&frm, 3093 ic->ic_headroom + sizeof(struct ieee80211_frame), 3094 8 3095 + sizeof(uint16_t) 3096 + sizeof(uint16_t) 3097 + 2 + IEEE80211_NWID_LEN 3098 + 2 + IEEE80211_RATE_SIZE 3099 + 7 /* max(7,3) */ 3100 + IEEE80211_COUNTRY_MAX_SIZE 3101 + 3 3102 + sizeof(struct ieee80211_csa_ie) 3103 + sizeof(struct ieee80211_quiet_ie) 3104 + 3 3105 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 3106 + sizeof(struct ieee80211_ie_wpa) 3107 + sizeof(struct ieee80211_ie_htcap) 3108 + sizeof(struct ieee80211_ie_htinfo) 3109 + sizeof(struct ieee80211_ie_wpa) 3110 + sizeof(struct ieee80211_wme_param) 3111 + 4 + sizeof(struct ieee80211_ie_htcap) 3112 + 4 + sizeof(struct ieee80211_ie_htinfo) 3113 + sizeof(struct ieee80211_ie_vhtcap) 3114 + sizeof(struct ieee80211_ie_vht_operation) 3115 #ifdef IEEE80211_SUPPORT_SUPERG 3116 + sizeof(struct ieee80211_ath_ie) 3117 #endif 3118 #ifdef IEEE80211_SUPPORT_MESH 3119 + 2 + IEEE80211_MESHID_LEN 3120 + sizeof(struct ieee80211_meshconf_ie) 3121 #endif 3122 + (vap->iv_appie_proberesp != NULL ? 3123 vap->iv_appie_proberesp->ie_len : 0) 3124 ); 3125 if (m == NULL) { 3126 vap->iv_stats.is_tx_nobuf++; 3127 return NULL; 3128 } 3129 3130 memset(frm, 0, 8); /* timestamp should be filled later */ 3131 frm += 8; 3132 *(uint16_t *)frm = htole16(bss->ni_intval); 3133 frm += 2; 3134 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 3135 *(uint16_t *)frm = htole16(capinfo); 3136 frm += 2; 3137 3138 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen); 3139 rs = ieee80211_get_suprates(ic, bss->ni_chan); 3140 frm = ieee80211_add_rates(frm, rs); 3141 3142 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) { 3143 *frm++ = IEEE80211_ELEMID_FHPARMS; 3144 *frm++ = 5; 3145 *frm++ = bss->ni_fhdwell & 0x00ff; 3146 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff; 3147 *frm++ = IEEE80211_FH_CHANSET( 3148 ieee80211_chan2ieee(ic, bss->ni_chan)); 3149 *frm++ = IEEE80211_FH_CHANPAT( 3150 ieee80211_chan2ieee(ic, bss->ni_chan)); 3151 *frm++ = bss->ni_fhindex; 3152 } else { 3153 *frm++ = IEEE80211_ELEMID_DSPARMS; 3154 *frm++ = 1; 3155 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan); 3156 } 3157 3158 if (vap->iv_opmode == IEEE80211_M_IBSS) { 3159 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 3160 *frm++ = 2; 3161 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 3162 } 3163 if ((vap->iv_flags & IEEE80211_F_DOTH) || 3164 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 3165 frm = ieee80211_add_countryie(frm, ic); 3166 if (vap->iv_flags & IEEE80211_F_DOTH) { 3167 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan)) 3168 frm = ieee80211_add_powerconstraint(frm, vap); 3169 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 3170 frm = ieee80211_add_csa(frm, vap); 3171 } 3172 if (vap->iv_flags & IEEE80211_F_DOTH) { 3173 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3174 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 3175 if (vap->iv_quiet) 3176 frm = ieee80211_add_quiet(frm, vap, 0); 3177 } 3178 } 3179 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan)) 3180 frm = ieee80211_add_erp(frm, vap); 3181 frm = ieee80211_add_xrates(frm, rs); 3182 frm = ieee80211_add_rsn(frm, vap); 3183 /* 3184 * NB: legacy 11b clients do not get certain ie's. 3185 * The caller identifies such clients by passing 3186 * a token in legacy to us. Could expand this to be 3187 * any legacy client for stuff like HT ie's. 3188 */ 3189 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 3190 legacy != IEEE80211_SEND_LEGACY_11B) { 3191 frm = ieee80211_add_htcap(frm, bss); 3192 frm = ieee80211_add_htinfo(frm, bss); 3193 } 3194 if (IEEE80211_IS_CHAN_VHT(bss->ni_chan) && 3195 legacy != IEEE80211_SEND_LEGACY_11B) { 3196 frm = ieee80211_add_vhtcap(frm, bss); 3197 frm = ieee80211_add_vhtinfo(frm, bss); 3198 } 3199 frm = ieee80211_add_wpa(frm, vap); 3200 if (vap->iv_flags & IEEE80211_F_WME) 3201 frm = ieee80211_add_wme_param(frm, &ic->ic_wme, 3202 !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD)); 3203 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 3204 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) && 3205 legacy != IEEE80211_SEND_LEGACY_11B) { 3206 frm = ieee80211_add_htcap_vendor(frm, bss); 3207 frm = ieee80211_add_htinfo_vendor(frm, bss); 3208 } 3209 #ifdef IEEE80211_SUPPORT_SUPERG 3210 if ((vap->iv_flags & IEEE80211_F_ATHEROS) && 3211 legacy != IEEE80211_SEND_LEGACY_11B) 3212 frm = ieee80211_add_athcaps(frm, bss); 3213 #endif 3214 if (vap->iv_appie_proberesp != NULL) 3215 frm = add_appie(frm, vap->iv_appie_proberesp); 3216 #ifdef IEEE80211_SUPPORT_MESH 3217 if (vap->iv_opmode == IEEE80211_M_MBSS) { 3218 frm = ieee80211_add_meshid(frm, vap); 3219 frm = ieee80211_add_meshconf(frm, vap); 3220 } 3221 #endif 3222 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3223 3224 return m; 3225 } 3226 3227 /* 3228 * Send a probe response frame to the specified mac address. 3229 * This does not go through the normal mgt frame api so we 3230 * can specify the destination address and re-use the bss node 3231 * for the sta reference. 3232 */ 3233 int 3234 ieee80211_send_proberesp(struct ieee80211vap *vap, 3235 const uint8_t da[IEEE80211_ADDR_LEN], int legacy) 3236 { 3237 struct ieee80211_node *bss = vap->iv_bss; 3238 struct ieee80211com *ic = vap->iv_ic; 3239 struct mbuf *m; 3240 int ret; 3241 3242 if (vap->iv_state == IEEE80211_S_CAC) { 3243 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss, 3244 "block %s frame in CAC state", "probe response"); 3245 vap->iv_stats.is_tx_badstate++; 3246 return EIO; /* XXX */ 3247 } 3248 3249 /* 3250 * Hold a reference on the node so it doesn't go away until after 3251 * the xmit is complete all the way in the driver. On error we 3252 * will remove our reference. 3253 */ 3254 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 3255 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 3256 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr), 3257 ieee80211_node_refcnt(bss)+1); 3258 ieee80211_ref_node(bss); 3259 3260 m = ieee80211_alloc_proberesp(bss, legacy); 3261 if (m == NULL) { 3262 ieee80211_free_node(bss); 3263 return ENOMEM; 3264 } 3265 3266 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 3267 KASSERT(m != NULL, ("no room for header")); 3268 3269 IEEE80211_TX_LOCK(ic); 3270 ieee80211_send_setup(bss, m, 3271 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP, 3272 IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid); 3273 /* XXX power management? */ 3274 m->m_flags |= M_ENCAP; /* mark encapsulated */ 3275 3276 M_WME_SETAC(m, WME_AC_BE); 3277 3278 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 3279 "send probe resp on channel %u to %s%s\n", 3280 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da), 3281 legacy ? " <legacy>" : ""); 3282 IEEE80211_NODE_STAT(bss, tx_mgmt); 3283 3284 ret = ieee80211_raw_output(vap, bss, m, NULL); 3285 IEEE80211_TX_UNLOCK(ic); 3286 return (ret); 3287 } 3288 3289 /* 3290 * Allocate and build a RTS (Request To Send) control frame. 3291 */ 3292 struct mbuf * 3293 ieee80211_alloc_rts(struct ieee80211com *ic, 3294 const uint8_t ra[IEEE80211_ADDR_LEN], 3295 const uint8_t ta[IEEE80211_ADDR_LEN], 3296 uint16_t dur) 3297 { 3298 struct ieee80211_frame_rts *rts; 3299 struct mbuf *m; 3300 3301 /* XXX honor ic_headroom */ 3302 m = m_gethdr(M_NOWAIT, MT_DATA); 3303 if (m != NULL) { 3304 rts = mtod(m, struct ieee80211_frame_rts *); 3305 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 3306 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS; 3307 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3308 *(u_int16_t *)rts->i_dur = htole16(dur); 3309 IEEE80211_ADDR_COPY(rts->i_ra, ra); 3310 IEEE80211_ADDR_COPY(rts->i_ta, ta); 3311 3312 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); 3313 } 3314 return m; 3315 } 3316 3317 /* 3318 * Allocate and build a CTS (Clear To Send) control frame. 3319 */ 3320 struct mbuf * 3321 ieee80211_alloc_cts(struct ieee80211com *ic, 3322 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur) 3323 { 3324 struct ieee80211_frame_cts *cts; 3325 struct mbuf *m; 3326 3327 /* XXX honor ic_headroom */ 3328 m = m_gethdr(M_NOWAIT, MT_DATA); 3329 if (m != NULL) { 3330 cts = mtod(m, struct ieee80211_frame_cts *); 3331 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 3332 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS; 3333 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3334 *(u_int16_t *)cts->i_dur = htole16(dur); 3335 IEEE80211_ADDR_COPY(cts->i_ra, ra); 3336 3337 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts); 3338 } 3339 return m; 3340 } 3341 3342 /* 3343 * Wrapper for CTS/RTS frame allocation. 3344 */ 3345 struct mbuf * 3346 ieee80211_alloc_prot(struct ieee80211_node *ni, const struct mbuf *m, 3347 uint8_t rate, int prot) 3348 { 3349 struct ieee80211com *ic = ni->ni_ic; 3350 struct ieee80211vap *vap = ni->ni_vap; 3351 const struct ieee80211_frame *wh; 3352 struct mbuf *mprot; 3353 uint16_t dur; 3354 int pktlen, isshort; 3355 3356 KASSERT(prot == IEEE80211_PROT_RTSCTS || 3357 prot == IEEE80211_PROT_CTSONLY, 3358 ("wrong protection type %d", prot)); 3359 3360 wh = mtod(m, const struct ieee80211_frame *); 3361 pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; 3362 isshort = (vap->iv_flags & IEEE80211_F_SHPREAMBLE) != 0; 3363 dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort) 3364 + ieee80211_ack_duration(ic->ic_rt, rate, isshort); 3365 3366 if (prot == IEEE80211_PROT_RTSCTS) { 3367 /* NB: CTS is the same size as an ACK */ 3368 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); 3369 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); 3370 } else 3371 mprot = ieee80211_alloc_cts(ic, vap->iv_myaddr, dur); 3372 3373 return (mprot); 3374 } 3375 3376 static void 3377 ieee80211_tx_mgt_timeout(void *arg) 3378 { 3379 struct ieee80211vap *vap = arg; 3380 3381 IEEE80211_LOCK(vap->iv_ic); 3382 if (vap->iv_state != IEEE80211_S_INIT && 3383 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) { 3384 /* 3385 * NB: it's safe to specify a timeout as the reason here; 3386 * it'll only be used in the right state. 3387 */ 3388 ieee80211_new_state_locked(vap, IEEE80211_S_SCAN, 3389 IEEE80211_SCAN_FAIL_TIMEOUT); 3390 } 3391 IEEE80211_UNLOCK(vap->iv_ic); 3392 } 3393 3394 /* 3395 * This is the callback set on net80211-sourced transmitted 3396 * authentication request frames. 3397 * 3398 * This does a couple of things: 3399 * 3400 * + If the frame transmitted was a success, it schedules a future 3401 * event which will transition the interface to scan. 3402 * If a state transition _then_ occurs before that event occurs, 3403 * said state transition will cancel this callout. 3404 * 3405 * + If the frame transmit was a failure, it immediately schedules 3406 * the transition back to scan. 3407 */ 3408 static void 3409 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status) 3410 { 3411 struct ieee80211vap *vap = ni->ni_vap; 3412 enum ieee80211_state ostate = (enum ieee80211_state)(uintptr_t)arg; 3413 3414 /* 3415 * Frame transmit completed; arrange timer callback. If 3416 * transmit was successfully we wait for response. Otherwise 3417 * we arrange an immediate callback instead of doing the 3418 * callback directly since we don't know what state the driver 3419 * is in (e.g. what locks it is holding). This work should 3420 * not be too time-critical and not happen too often so the 3421 * added overhead is acceptable. 3422 * 3423 * XXX what happens if !acked but response shows up before callback? 3424 */ 3425 if (vap->iv_state == ostate) { 3426 callout_reset(&vap->iv_mgtsend, 3427 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0, 3428 ieee80211_tx_mgt_timeout, vap); 3429 } 3430 } 3431 3432 static void 3433 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm, 3434 struct ieee80211_node *ni) 3435 { 3436 struct ieee80211vap *vap = ni->ni_vap; 3437 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 3438 struct ieee80211com *ic = ni->ni_ic; 3439 struct ieee80211_rateset *rs = &ni->ni_rates; 3440 uint16_t capinfo; 3441 3442 /* 3443 * beacon frame format 3444 * 3445 * TODO: update to 802.11-2012; a lot of stuff has changed; 3446 * vendor extensions should be at the end, etc. 3447 * 3448 * [8] time stamp 3449 * [2] beacon interval 3450 * [2] cabability information 3451 * [tlv] ssid 3452 * [tlv] supported rates 3453 * [3] parameter set (DS) 3454 * [8] CF parameter set (optional) 3455 * [tlv] parameter set (IBSS/TIM) 3456 * [tlv] country (optional) 3457 * [3] power control (optional) 3458 * [5] channel switch announcement (CSA) (optional) 3459 * XXX TODO: Quiet 3460 * XXX TODO: IBSS DFS 3461 * XXX TODO: TPC report 3462 * [tlv] extended rate phy (ERP) 3463 * [tlv] extended supported rates 3464 * [tlv] RSN parameters 3465 * XXX TODO: BSSLOAD 3466 * (XXX EDCA parameter set, QoS capability?) 3467 * XXX TODO: AP channel report 3468 * 3469 * [tlv] HT capabilities 3470 * [tlv] HT information 3471 * XXX TODO: 20/40 BSS coexistence 3472 * Mesh: 3473 * XXX TODO: Meshid 3474 * XXX TODO: mesh config 3475 * XXX TODO: mesh awake window 3476 * XXX TODO: beacon timing (mesh, etc) 3477 * XXX TODO: MCCAOP Advertisement Overview 3478 * XXX TODO: MCCAOP Advertisement 3479 * XXX TODO: Mesh channel switch parameters 3480 * VHT: 3481 * XXX TODO: VHT capabilities 3482 * XXX TODO: VHT operation 3483 * XXX TODO: VHT transmit power envelope 3484 * XXX TODO: channel switch wrapper element 3485 * XXX TODO: extended BSS load element 3486 * 3487 * XXX Vendor-specific OIDs (e.g. Atheros) 3488 * [tlv] WPA parameters 3489 * [tlv] WME parameters 3490 * [tlv] Vendor OUI HT capabilities (optional) 3491 * [tlv] Vendor OUI HT information (optional) 3492 * [tlv] Atheros capabilities (optional) 3493 * [tlv] TDMA parameters (optional) 3494 * [tlv] Mesh ID (MBSS) 3495 * [tlv] Mesh Conf (MBSS) 3496 * [tlv] application data (optional) 3497 */ 3498 3499 memset(bo, 0, sizeof(*bo)); 3500 3501 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 3502 frm += 8; 3503 *(uint16_t *)frm = htole16(ni->ni_intval); 3504 frm += 2; 3505 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3506 bo->bo_caps = (uint16_t *)frm; 3507 *(uint16_t *)frm = htole16(capinfo); 3508 frm += 2; 3509 *frm++ = IEEE80211_ELEMID_SSID; 3510 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) { 3511 *frm++ = ni->ni_esslen; 3512 memcpy(frm, ni->ni_essid, ni->ni_esslen); 3513 frm += ni->ni_esslen; 3514 } else 3515 *frm++ = 0; 3516 frm = ieee80211_add_rates(frm, rs); 3517 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) { 3518 *frm++ = IEEE80211_ELEMID_DSPARMS; 3519 *frm++ = 1; 3520 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 3521 } 3522 if (ic->ic_flags & IEEE80211_F_PCF) { 3523 bo->bo_cfp = frm; 3524 frm = ieee80211_add_cfparms(frm, ic); 3525 } 3526 bo->bo_tim = frm; 3527 if (vap->iv_opmode == IEEE80211_M_IBSS) { 3528 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 3529 *frm++ = 2; 3530 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 3531 bo->bo_tim_len = 0; 3532 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3533 vap->iv_opmode == IEEE80211_M_MBSS) { 3534 /* TIM IE is the same for Mesh and Hostap */ 3535 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; 3536 3537 tie->tim_ie = IEEE80211_ELEMID_TIM; 3538 tie->tim_len = 4; /* length */ 3539 tie->tim_count = 0; /* DTIM count */ 3540 tie->tim_period = vap->iv_dtim_period; /* DTIM period */ 3541 tie->tim_bitctl = 0; /* bitmap control */ 3542 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 3543 frm += sizeof(struct ieee80211_tim_ie); 3544 bo->bo_tim_len = 1; 3545 } 3546 bo->bo_tim_trailer = frm; 3547 if ((vap->iv_flags & IEEE80211_F_DOTH) || 3548 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 3549 frm = ieee80211_add_countryie(frm, ic); 3550 if (vap->iv_flags & IEEE80211_F_DOTH) { 3551 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) 3552 frm = ieee80211_add_powerconstraint(frm, vap); 3553 bo->bo_csa = frm; 3554 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 3555 frm = ieee80211_add_csa(frm, vap); 3556 } else 3557 bo->bo_csa = frm; 3558 3559 bo->bo_quiet = NULL; 3560 if (vap->iv_flags & IEEE80211_F_DOTH) { 3561 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3562 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && 3563 (vap->iv_quiet == 1)) { 3564 /* 3565 * We only insert the quiet IE offset if 3566 * the quiet IE is enabled. Otherwise don't 3567 * put it here or we'll just overwrite 3568 * some other beacon contents. 3569 */ 3570 if (vap->iv_quiet) { 3571 bo->bo_quiet = frm; 3572 frm = ieee80211_add_quiet(frm,vap, 0); 3573 } 3574 } 3575 } 3576 3577 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) { 3578 bo->bo_erp = frm; 3579 frm = ieee80211_add_erp(frm, vap); 3580 } 3581 frm = ieee80211_add_xrates(frm, rs); 3582 frm = ieee80211_add_rsn(frm, vap); 3583 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 3584 frm = ieee80211_add_htcap(frm, ni); 3585 bo->bo_htinfo = frm; 3586 frm = ieee80211_add_htinfo(frm, ni); 3587 } 3588 3589 if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) { 3590 frm = ieee80211_add_vhtcap(frm, ni); 3591 bo->bo_vhtinfo = frm; 3592 frm = ieee80211_add_vhtinfo(frm, ni); 3593 /* Transmit power envelope */ 3594 /* Channel switch wrapper element */ 3595 /* Extended bss load element */ 3596 } 3597 3598 frm = ieee80211_add_wpa(frm, vap); 3599 if (vap->iv_flags & IEEE80211_F_WME) { 3600 bo->bo_wme = frm; 3601 frm = ieee80211_add_wme_param(frm, &ic->ic_wme, 3602 !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD)); 3603 } 3604 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && 3605 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) { 3606 frm = ieee80211_add_htcap_vendor(frm, ni); 3607 frm = ieee80211_add_htinfo_vendor(frm, ni); 3608 } 3609 3610 #ifdef IEEE80211_SUPPORT_SUPERG 3611 if (vap->iv_flags & IEEE80211_F_ATHEROS) { 3612 bo->bo_ath = frm; 3613 frm = ieee80211_add_athcaps(frm, ni); 3614 } 3615 #endif 3616 #ifdef IEEE80211_SUPPORT_TDMA 3617 if (vap->iv_caps & IEEE80211_C_TDMA) { 3618 bo->bo_tdma = frm; 3619 frm = ieee80211_add_tdma(frm, vap); 3620 } 3621 #endif 3622 if (vap->iv_appie_beacon != NULL) { 3623 bo->bo_appie = frm; 3624 bo->bo_appie_len = vap->iv_appie_beacon->ie_len; 3625 frm = add_appie(frm, vap->iv_appie_beacon); 3626 } 3627 3628 /* XXX TODO: move meshid/meshconf up to before vendor extensions? */ 3629 #ifdef IEEE80211_SUPPORT_MESH 3630 if (vap->iv_opmode == IEEE80211_M_MBSS) { 3631 frm = ieee80211_add_meshid(frm, vap); 3632 bo->bo_meshconf = frm; 3633 frm = ieee80211_add_meshconf(frm, vap); 3634 } 3635 #endif 3636 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer; 3637 bo->bo_csa_trailer_len = frm - bo->bo_csa; 3638 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3639 } 3640 3641 /* 3642 * Allocate a beacon frame and fillin the appropriate bits. 3643 */ 3644 struct mbuf * 3645 ieee80211_beacon_alloc(struct ieee80211_node *ni) 3646 { 3647 struct ieee80211vap *vap = ni->ni_vap; 3648 struct ieee80211com *ic = ni->ni_ic; 3649 struct ifnet *ifp = vap->iv_ifp; 3650 struct ieee80211_frame *wh; 3651 struct mbuf *m; 3652 int pktlen; 3653 uint8_t *frm; 3654 3655 /* 3656 * Update the "We're putting the quiet IE in the beacon" state. 3657 */ 3658 if (vap->iv_quiet == 1) 3659 vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE; 3660 else if (vap->iv_quiet == 0) 3661 vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE; 3662 3663 /* 3664 * beacon frame format 3665 * 3666 * Note: This needs updating for 802.11-2012. 3667 * 3668 * [8] time stamp 3669 * [2] beacon interval 3670 * [2] cabability information 3671 * [tlv] ssid 3672 * [tlv] supported rates 3673 * [3] parameter set (DS) 3674 * [8] CF parameter set (optional) 3675 * [tlv] parameter set (IBSS/TIM) 3676 * [tlv] country (optional) 3677 * [3] power control (optional) 3678 * [5] channel switch announcement (CSA) (optional) 3679 * [tlv] extended rate phy (ERP) 3680 * [tlv] extended supported rates 3681 * [tlv] RSN parameters 3682 * [tlv] HT capabilities 3683 * [tlv] HT information 3684 * [tlv] VHT capabilities 3685 * [tlv] VHT operation 3686 * [tlv] Vendor OUI HT capabilities (optional) 3687 * [tlv] Vendor OUI HT information (optional) 3688 * XXX Vendor-specific OIDs (e.g. Atheros) 3689 * [tlv] WPA parameters 3690 * [tlv] WME parameters 3691 * [tlv] TDMA parameters (optional) 3692 * [tlv] Mesh ID (MBSS) 3693 * [tlv] Mesh Conf (MBSS) 3694 * [tlv] application data (optional) 3695 * NB: we allocate the max space required for the TIM bitmap. 3696 * XXX how big is this? 3697 */ 3698 pktlen = 8 /* time stamp */ 3699 + sizeof(uint16_t) /* beacon interval */ 3700 + sizeof(uint16_t) /* capabilities */ 3701 + 2 + ni->ni_esslen /* ssid */ 3702 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 3703 + 2 + 1 /* DS parameters */ 3704 + 2 + 6 /* CF parameters */ 3705 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */ 3706 + IEEE80211_COUNTRY_MAX_SIZE /* country */ 3707 + 2 + 1 /* power control */ 3708 + sizeof(struct ieee80211_csa_ie) /* CSA */ 3709 + sizeof(struct ieee80211_quiet_ie) /* Quiet */ 3710 + 2 + 1 /* ERP */ 3711 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 3712 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 3713 2*sizeof(struct ieee80211_ie_wpa) : 0) 3714 /* XXX conditional? */ 3715 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */ 3716 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */ 3717 + sizeof(struct ieee80211_ie_vhtcap)/* VHT caps */ 3718 + sizeof(struct ieee80211_ie_vht_operation)/* VHT info */ 3719 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */ 3720 sizeof(struct ieee80211_wme_param) : 0) 3721 #ifdef IEEE80211_SUPPORT_SUPERG 3722 + sizeof(struct ieee80211_ath_ie) /* ATH */ 3723 #endif 3724 #ifdef IEEE80211_SUPPORT_TDMA 3725 + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */ 3726 sizeof(struct ieee80211_tdma_param) : 0) 3727 #endif 3728 #ifdef IEEE80211_SUPPORT_MESH 3729 + 2 + ni->ni_meshidlen 3730 + sizeof(struct ieee80211_meshconf_ie) 3731 #endif 3732 + IEEE80211_MAX_APPIE 3733 ; 3734 m = ieee80211_getmgtframe(&frm, 3735 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen); 3736 if (m == NULL) { 3737 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, 3738 "%s: cannot get buf; size %u\n", __func__, pktlen); 3739 vap->iv_stats.is_tx_nobuf++; 3740 return NULL; 3741 } 3742 ieee80211_beacon_construct(m, frm, ni); 3743 3744 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 3745 KASSERT(m != NULL, ("no space for 802.11 header?")); 3746 wh = mtod(m, struct ieee80211_frame *); 3747 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 3748 IEEE80211_FC0_SUBTYPE_BEACON; 3749 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3750 *(uint16_t *)wh->i_dur = 0; 3751 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 3752 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 3753 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 3754 *(uint16_t *)wh->i_seq = 0; 3755 3756 return m; 3757 } 3758 3759 /* 3760 * Update the dynamic parts of a beacon frame based on the current state. 3761 */ 3762 int 3763 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast) 3764 { 3765 struct ieee80211vap *vap = ni->ni_vap; 3766 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 3767 struct ieee80211com *ic = ni->ni_ic; 3768 int len_changed = 0; 3769 uint16_t capinfo; 3770 struct ieee80211_frame *wh; 3771 ieee80211_seq seqno; 3772 3773 IEEE80211_LOCK(ic); 3774 /* 3775 * Handle 11h channel change when we've reached the count. 3776 * We must recalculate the beacon frame contents to account 3777 * for the new channel. Note we do this only for the first 3778 * vap that reaches this point; subsequent vaps just update 3779 * their beacon state to reflect the recalculated channel. 3780 */ 3781 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) && 3782 vap->iv_csa_count == ic->ic_csa_count) { 3783 vap->iv_csa_count = 0; 3784 /* 3785 * Effect channel change before reconstructing the beacon 3786 * frame contents as many places reference ni_chan. 3787 */ 3788 if (ic->ic_csa_newchan != NULL) 3789 ieee80211_csa_completeswitch(ic); 3790 /* 3791 * NB: ieee80211_beacon_construct clears all pending 3792 * updates in bo_flags so we don't need to explicitly 3793 * clear IEEE80211_BEACON_CSA. 3794 */ 3795 ieee80211_beacon_construct(m, 3796 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3797 3798 /* XXX do WME aggressive mode processing? */ 3799 IEEE80211_UNLOCK(ic); 3800 return 1; /* just assume length changed */ 3801 } 3802 3803 /* 3804 * Handle the quiet time element being added and removed. 3805 * Again, for now we just cheat and reconstruct the whole 3806 * beacon - that way the gap is provided as appropriate. 3807 * 3808 * So, track whether we have already added the IE versus 3809 * whether we want to be adding the IE. 3810 */ 3811 if ((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) && 3812 (vap->iv_quiet == 0)) { 3813 /* 3814 * Quiet time beacon IE enabled, but it's disabled; 3815 * recalc 3816 */ 3817 vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE; 3818 ieee80211_beacon_construct(m, 3819 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3820 /* XXX do WME aggressive mode processing? */ 3821 IEEE80211_UNLOCK(ic); 3822 return 1; /* just assume length changed */ 3823 } 3824 3825 if (((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) == 0) && 3826 (vap->iv_quiet == 1)) { 3827 /* 3828 * Quiet time beacon IE disabled, but it's now enabled; 3829 * recalc 3830 */ 3831 vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE; 3832 ieee80211_beacon_construct(m, 3833 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3834 /* XXX do WME aggressive mode processing? */ 3835 IEEE80211_UNLOCK(ic); 3836 return 1; /* just assume length changed */ 3837 } 3838 3839 wh = mtod(m, struct ieee80211_frame *); 3840 3841 /* 3842 * XXX TODO Strictly speaking this should be incremented with the TX 3843 * lock held so as to serialise access to the non-qos TID sequence 3844 * number space. 3845 * 3846 * If the driver identifies it does its own TX seqno management then 3847 * we can skip this (and still not do the TX seqno.) 3848 */ 3849 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 3850 *(uint16_t *)&wh->i_seq[0] = 3851 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 3852 M_SEQNO_SET(m, seqno); 3853 3854 /* XXX faster to recalculate entirely or just changes? */ 3855 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3856 *bo->bo_caps = htole16(capinfo); 3857 3858 if (vap->iv_flags & IEEE80211_F_WME) { 3859 struct ieee80211_wme_state *wme = &ic->ic_wme; 3860 3861 /* 3862 * Check for aggressive mode change. When there is 3863 * significant high priority traffic in the BSS 3864 * throttle back BE traffic by using conservative 3865 * parameters. Otherwise BE uses aggressive params 3866 * to optimize performance of legacy/non-QoS traffic. 3867 */ 3868 if (wme->wme_flags & WME_F_AGGRMODE) { 3869 if (wme->wme_hipri_traffic > 3870 wme->wme_hipri_switch_thresh) { 3871 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3872 "%s: traffic %u, disable aggressive mode\n", 3873 __func__, wme->wme_hipri_traffic); 3874 wme->wme_flags &= ~WME_F_AGGRMODE; 3875 ieee80211_wme_updateparams_locked(vap); 3876 wme->wme_hipri_traffic = 3877 wme->wme_hipri_switch_hysteresis; 3878 } else 3879 wme->wme_hipri_traffic = 0; 3880 } else { 3881 if (wme->wme_hipri_traffic <= 3882 wme->wme_hipri_switch_thresh) { 3883 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3884 "%s: traffic %u, enable aggressive mode\n", 3885 __func__, wme->wme_hipri_traffic); 3886 wme->wme_flags |= WME_F_AGGRMODE; 3887 ieee80211_wme_updateparams_locked(vap); 3888 wme->wme_hipri_traffic = 0; 3889 } else 3890 wme->wme_hipri_traffic = 3891 wme->wme_hipri_switch_hysteresis; 3892 } 3893 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) { 3894 (void) ieee80211_add_wme_param(bo->bo_wme, wme, 3895 vap->iv_flags_ext & IEEE80211_FEXT_UAPSD); 3896 clrbit(bo->bo_flags, IEEE80211_BEACON_WME); 3897 } 3898 } 3899 3900 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) { 3901 ieee80211_ht_update_beacon(vap, bo); 3902 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO); 3903 } 3904 #ifdef IEEE80211_SUPPORT_TDMA 3905 if (vap->iv_caps & IEEE80211_C_TDMA) { 3906 /* 3907 * NB: the beacon is potentially updated every TBTT. 3908 */ 3909 ieee80211_tdma_update_beacon(vap, bo); 3910 } 3911 #endif 3912 #ifdef IEEE80211_SUPPORT_MESH 3913 if (vap->iv_opmode == IEEE80211_M_MBSS) 3914 ieee80211_mesh_update_beacon(vap, bo); 3915 #endif 3916 3917 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3918 vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/ 3919 struct ieee80211_tim_ie *tie = 3920 (struct ieee80211_tim_ie *) bo->bo_tim; 3921 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) { 3922 u_int timlen, timoff, i; 3923 /* 3924 * ATIM/DTIM needs updating. If it fits in the 3925 * current space allocated then just copy in the 3926 * new bits. Otherwise we need to move any trailing 3927 * data to make room. Note that we know there is 3928 * contiguous space because ieee80211_beacon_allocate 3929 * insures there is space in the mbuf to write a 3930 * maximal-size virtual bitmap (based on iv_max_aid). 3931 */ 3932 /* 3933 * Calculate the bitmap size and offset, copy any 3934 * trailer out of the way, and then copy in the 3935 * new bitmap and update the information element. 3936 * Note that the tim bitmap must contain at least 3937 * one byte and any offset must be even. 3938 */ 3939 if (vap->iv_ps_pending != 0) { 3940 timoff = 128; /* impossibly large */ 3941 for (i = 0; i < vap->iv_tim_len; i++) 3942 if (vap->iv_tim_bitmap[i]) { 3943 timoff = i &~ 1; 3944 break; 3945 } 3946 KASSERT(timoff != 128, ("tim bitmap empty!")); 3947 for (i = vap->iv_tim_len-1; i >= timoff; i--) 3948 if (vap->iv_tim_bitmap[i]) 3949 break; 3950 timlen = 1 + (i - timoff); 3951 } else { 3952 timoff = 0; 3953 timlen = 1; 3954 } 3955 3956 /* 3957 * TODO: validate this! 3958 */ 3959 if (timlen != bo->bo_tim_len) { 3960 /* copy up/down trailer */ 3961 int adjust = tie->tim_bitmap+timlen 3962 - bo->bo_tim_trailer; 3963 ovbcopy(bo->bo_tim_trailer, 3964 bo->bo_tim_trailer+adjust, 3965 bo->bo_tim_trailer_len); 3966 bo->bo_tim_trailer += adjust; 3967 bo->bo_erp += adjust; 3968 bo->bo_htinfo += adjust; 3969 bo->bo_vhtinfo += adjust; 3970 #ifdef IEEE80211_SUPPORT_SUPERG 3971 bo->bo_ath += adjust; 3972 #endif 3973 #ifdef IEEE80211_SUPPORT_TDMA 3974 bo->bo_tdma += adjust; 3975 #endif 3976 #ifdef IEEE80211_SUPPORT_MESH 3977 bo->bo_meshconf += adjust; 3978 #endif 3979 bo->bo_appie += adjust; 3980 bo->bo_wme += adjust; 3981 bo->bo_csa += adjust; 3982 bo->bo_quiet += adjust; 3983 bo->bo_tim_len = timlen; 3984 3985 /* update information element */ 3986 tie->tim_len = 3 + timlen; 3987 tie->tim_bitctl = timoff; 3988 len_changed = 1; 3989 } 3990 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff, 3991 bo->bo_tim_len); 3992 3993 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM); 3994 3995 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER, 3996 "%s: TIM updated, pending %u, off %u, len %u\n", 3997 __func__, vap->iv_ps_pending, timoff, timlen); 3998 } 3999 /* count down DTIM period */ 4000 if (tie->tim_count == 0) 4001 tie->tim_count = tie->tim_period - 1; 4002 else 4003 tie->tim_count--; 4004 /* update state for buffered multicast frames on DTIM */ 4005 if (mcast && tie->tim_count == 0) 4006 tie->tim_bitctl |= 1; 4007 else 4008 tie->tim_bitctl &= ~1; 4009 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) { 4010 struct ieee80211_csa_ie *csa = 4011 (struct ieee80211_csa_ie *) bo->bo_csa; 4012 4013 /* 4014 * Insert or update CSA ie. If we're just starting 4015 * to count down to the channel switch then we need 4016 * to insert the CSA ie. Otherwise we just need to 4017 * drop the count. The actual change happens above 4018 * when the vap's count reaches the target count. 4019 */ 4020 if (vap->iv_csa_count == 0) { 4021 memmove(&csa[1], csa, bo->bo_csa_trailer_len); 4022 bo->bo_erp += sizeof(*csa); 4023 bo->bo_htinfo += sizeof(*csa); 4024 bo->bo_vhtinfo += sizeof(*csa); 4025 bo->bo_wme += sizeof(*csa); 4026 #ifdef IEEE80211_SUPPORT_SUPERG 4027 bo->bo_ath += sizeof(*csa); 4028 #endif 4029 #ifdef IEEE80211_SUPPORT_TDMA 4030 bo->bo_tdma += sizeof(*csa); 4031 #endif 4032 #ifdef IEEE80211_SUPPORT_MESH 4033 bo->bo_meshconf += sizeof(*csa); 4034 #endif 4035 bo->bo_appie += sizeof(*csa); 4036 bo->bo_csa_trailer_len += sizeof(*csa); 4037 bo->bo_quiet += sizeof(*csa); 4038 bo->bo_tim_trailer_len += sizeof(*csa); 4039 m->m_len += sizeof(*csa); 4040 m->m_pkthdr.len += sizeof(*csa); 4041 4042 ieee80211_add_csa(bo->bo_csa, vap); 4043 } else 4044 csa->csa_count--; 4045 vap->iv_csa_count++; 4046 /* NB: don't clear IEEE80211_BEACON_CSA */ 4047 } 4048 4049 /* 4050 * Only add the quiet time IE if we've enabled it 4051 * as appropriate. 4052 */ 4053 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 4054 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 4055 if (vap->iv_quiet && 4056 (vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE)) { 4057 ieee80211_add_quiet(bo->bo_quiet, vap, 1); 4058 } 4059 } 4060 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) { 4061 /* 4062 * ERP element needs updating. 4063 */ 4064 (void) ieee80211_add_erp(bo->bo_erp, vap); 4065 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP); 4066 } 4067 #ifdef IEEE80211_SUPPORT_SUPERG 4068 if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) { 4069 ieee80211_add_athcaps(bo->bo_ath, ni); 4070 clrbit(bo->bo_flags, IEEE80211_BEACON_ATH); 4071 } 4072 #endif 4073 } 4074 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) { 4075 const struct ieee80211_appie *aie = vap->iv_appie_beacon; 4076 int aielen; 4077 uint8_t *frm; 4078 4079 aielen = 0; 4080 if (aie != NULL) 4081 aielen += aie->ie_len; 4082 if (aielen != bo->bo_appie_len) { 4083 /* copy up/down trailer */ 4084 int adjust = aielen - bo->bo_appie_len; 4085 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust, 4086 bo->bo_tim_trailer_len); 4087 bo->bo_tim_trailer += adjust; 4088 bo->bo_appie += adjust; 4089 bo->bo_appie_len = aielen; 4090 4091 len_changed = 1; 4092 } 4093 frm = bo->bo_appie; 4094 if (aie != NULL) 4095 frm = add_appie(frm, aie); 4096 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE); 4097 } 4098 IEEE80211_UNLOCK(ic); 4099 4100 return len_changed; 4101 } 4102 4103 /* 4104 * Do Ethernet-LLC encapsulation for each payload in a fast frame 4105 * tunnel encapsulation. The frame is assumed to have an Ethernet 4106 * header at the front that must be stripped before prepending the 4107 * LLC followed by the Ethernet header passed in (with an Ethernet 4108 * type that specifies the payload size). 4109 */ 4110 struct mbuf * 4111 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m, 4112 const struct ether_header *eh) 4113 { 4114 struct llc *llc; 4115 uint16_t payload; 4116 4117 /* XXX optimize by combining m_adj+M_PREPEND */ 4118 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 4119 llc = mtod(m, struct llc *); 4120 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 4121 llc->llc_control = LLC_UI; 4122 llc->llc_snap.org_code[0] = 0; 4123 llc->llc_snap.org_code[1] = 0; 4124 llc->llc_snap.org_code[2] = 0; 4125 llc->llc_snap.ether_type = eh->ether_type; 4126 payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */ 4127 4128 M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT); 4129 if (m == NULL) { /* XXX cannot happen */ 4130 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 4131 "%s: no space for ether_header\n", __func__); 4132 vap->iv_stats.is_tx_nobuf++; 4133 return NULL; 4134 } 4135 ETHER_HEADER_COPY(mtod(m, void *), eh); 4136 mtod(m, struct ether_header *)->ether_type = htons(payload); 4137 return m; 4138 } 4139 4140 /* 4141 * Complete an mbuf transmission. 4142 * 4143 * For now, this simply processes a completed frame after the 4144 * driver has completed it's transmission and/or retransmission. 4145 * It assumes the frame is an 802.11 encapsulated frame. 4146 * 4147 * Later on it will grow to become the exit path for a given frame 4148 * from the driver and, depending upon how it's been encapsulated 4149 * and already transmitted, it may end up doing A-MPDU retransmission, 4150 * power save requeuing, etc. 4151 * 4152 * In order for the above to work, the driver entry point to this 4153 * must not hold any driver locks. Thus, the driver needs to delay 4154 * any actual mbuf completion until it can release said locks. 4155 * 4156 * This frees the mbuf and if the mbuf has a node reference, 4157 * the node reference will be freed. 4158 */ 4159 void 4160 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status) 4161 { 4162 4163 if (ni != NULL) { 4164 struct ifnet *ifp = ni->ni_vap->iv_ifp; 4165 4166 if (status == 0) { 4167 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len); 4168 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 4169 if (m->m_flags & M_MCAST) 4170 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 4171 } else 4172 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 4173 if (m->m_flags & M_TXCB) 4174 ieee80211_process_callback(ni, m, status); 4175 ieee80211_free_node(ni); 4176 } 4177 m_freem(m); 4178 } 4179