xref: /freebsd/sys/net80211/ieee80211_output.c (revision 53120fbb68952b7d620c2c0e1cf05c5017fc1b27)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2001 Atsushi Onoe
5  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_wlan.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/malloc.h>
38 #include <sys/mbuf.h>
39 #include <sys/endian.h>
40 
41 #include <sys/socket.h>
42 
43 #include <net/bpf.h>
44 #include <net/ethernet.h>
45 #include <net/if.h>
46 #include <net/if_var.h>
47 #include <net/if_llc.h>
48 #include <net/if_media.h>
49 #include <net/if_private.h>
50 #include <net/if_vlan_var.h>
51 
52 #include <net80211/ieee80211_var.h>
53 #include <net80211/ieee80211_regdomain.h>
54 #ifdef IEEE80211_SUPPORT_SUPERG
55 #include <net80211/ieee80211_superg.h>
56 #endif
57 #ifdef IEEE80211_SUPPORT_TDMA
58 #include <net80211/ieee80211_tdma.h>
59 #endif
60 #include <net80211/ieee80211_wds.h>
61 #include <net80211/ieee80211_mesh.h>
62 #include <net80211/ieee80211_vht.h>
63 
64 #if defined(INET) || defined(INET6)
65 #include <netinet/in.h>
66 #endif
67 
68 #ifdef INET
69 #include <netinet/if_ether.h>
70 #include <netinet/in_systm.h>
71 #include <netinet/ip.h>
72 #endif
73 #ifdef INET6
74 #include <netinet/ip6.h>
75 #endif
76 
77 #include <security/mac/mac_framework.h>
78 
79 #define	ETHER_HEADER_COPY(dst, src) \
80 	memcpy(dst, src, sizeof(struct ether_header))
81 
82 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
83 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
84 static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
85 
86 #ifdef IEEE80211_DEBUG
87 /*
88  * Decide if an outbound management frame should be
89  * printed when debugging is enabled.  This filters some
90  * of the less interesting frames that come frequently
91  * (e.g. beacons).
92  */
93 static __inline int
94 doprint(struct ieee80211vap *vap, int subtype)
95 {
96 	switch (subtype) {
97 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
98 		return (vap->iv_opmode == IEEE80211_M_IBSS);
99 	}
100 	return 1;
101 }
102 #endif
103 
104 /*
105  * Transmit a frame to the given destination on the given VAP.
106  *
107  * It's up to the caller to figure out the details of who this
108  * is going to and resolving the node.
109  *
110  * This routine takes care of queuing it for power save,
111  * A-MPDU state stuff, fast-frames state stuff, encapsulation
112  * if required, then passing it up to the driver layer.
113  *
114  * This routine (for now) consumes the mbuf and frees the node
115  * reference; it ideally will return a TX status which reflects
116  * whether the mbuf was consumed or not, so the caller can
117  * free the mbuf (if appropriate) and the node reference (again,
118  * if appropriate.)
119  */
120 int
121 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
122     struct ieee80211_node *ni)
123 {
124 	struct ieee80211com *ic = vap->iv_ic;
125 	struct ifnet *ifp = vap->iv_ifp;
126 	int mcast;
127 	int do_ampdu = 0;
128 #ifdef IEEE80211_SUPPORT_SUPERG
129 	int do_amsdu = 0;
130 	int do_ampdu_amsdu = 0;
131 	int no_ampdu = 1; /* Will be set to 0 if ampdu is active */
132 	int do_ff = 0;
133 #endif
134 
135 	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
136 	    (m->m_flags & M_PWR_SAV) == 0) {
137 		/*
138 		 * Station in power save mode; pass the frame
139 		 * to the 802.11 layer and continue.  We'll get
140 		 * the frame back when the time is right.
141 		 * XXX lose WDS vap linkage?
142 		 */
143 		if (ieee80211_pwrsave(ni, m) != 0)
144 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
145 		ieee80211_free_node(ni);
146 
147 		/*
148 		 * We queued it fine, so tell the upper layer
149 		 * that we consumed it.
150 		 */
151 		return (0);
152 	}
153 	/* calculate priority so drivers can find the tx queue */
154 	if (ieee80211_classify(ni, m)) {
155 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
156 		    ni->ni_macaddr, NULL,
157 		    "%s", "classification failure");
158 		vap->iv_stats.is_tx_classify++;
159 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
160 		m_freem(m);
161 		ieee80211_free_node(ni);
162 
163 		/* XXX better status? */
164 		return (0);
165 	}
166 	/*
167 	 * Stash the node pointer.  Note that we do this after
168 	 * any call to ieee80211_dwds_mcast because that code
169 	 * uses any existing value for rcvif to identify the
170 	 * interface it (might have been) received on.
171 	 */
172 	MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
173 	m->m_pkthdr.rcvif = (void *)ni;
174 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
175 
176 	BPF_MTAP(ifp, m);		/* 802.3 tx */
177 
178 	/*
179 	 * Figure out if we can do A-MPDU, A-MSDU or FF.
180 	 *
181 	 * A-MPDU depends upon vap/node config.
182 	 * A-MSDU depends upon vap/node config.
183 	 * FF depends upon vap config, IE and whether
184 	 *  it's 11abg (and not 11n/11ac/etc.)
185 	 *
186 	 * Note that these flags indiciate whether we can do
187 	 * it at all, rather than the situation (eg traffic type.)
188 	 */
189 	do_ampdu = ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
190 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX));
191 #ifdef IEEE80211_SUPPORT_SUPERG
192 	do_amsdu = ((ni->ni_flags & IEEE80211_NODE_AMSDU_TX) &&
193 	    (vap->iv_flags_ht & IEEE80211_FHT_AMSDU_TX));
194 	do_ff =
195 	    ((ni->ni_flags & IEEE80211_NODE_HT) == 0) &&
196 	    ((ni->ni_flags & IEEE80211_NODE_VHT) == 0) &&
197 	    (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF));
198 #endif
199 
200 	/*
201 	 * Check if A-MPDU tx aggregation is setup or if we
202 	 * should try to enable it.  The sta must be associated
203 	 * with HT and A-MPDU enabled for use.  When the policy
204 	 * routine decides we should enable A-MPDU we issue an
205 	 * ADDBA request and wait for a reply.  The frame being
206 	 * encapsulated will go out w/o using A-MPDU, or possibly
207 	 * it might be collected by the driver and held/retransmit.
208 	 * The default ic_ampdu_enable routine handles staggering
209 	 * ADDBA requests in case the receiver NAK's us or we are
210 	 * otherwise unable to establish a BA stream.
211 	 *
212 	 * Don't treat group-addressed frames as candidates for aggregation;
213 	 * net80211 doesn't support 802.11aa-2012 and so group addressed
214 	 * frames will always have sequence numbers allocated from the NON_QOS
215 	 * TID.
216 	 */
217 	if (do_ampdu) {
218 		if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) {
219 			int tid = WME_AC_TO_TID(M_WME_GETAC(m));
220 			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
221 
222 			ieee80211_txampdu_count_packet(tap);
223 			if (IEEE80211_AMPDU_RUNNING(tap)) {
224 				/*
225 				 * Operational, mark frame for aggregation.
226 				 *
227 				 * XXX do tx aggregation here
228 				 */
229 				m->m_flags |= M_AMPDU_MPDU;
230 			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
231 			    ic->ic_ampdu_enable(ni, tap)) {
232 				/*
233 				 * Not negotiated yet, request service.
234 				 */
235 				ieee80211_ampdu_request(ni, tap);
236 				/* XXX hold frame for reply? */
237 			}
238 			/*
239 			 * Now update the no-ampdu flag.  A-MPDU may have been
240 			 * started or administratively disabled above; so now we
241 			 * know whether we're running yet or not.
242 			 *
243 			 * This will let us know whether we should be doing A-MSDU
244 			 * at this point.  We only do A-MSDU if we're either not
245 			 * doing A-MPDU, or A-MPDU is NACKed, or A-MPDU + A-MSDU
246 			 * is available.
247 			 *
248 			 * Whilst here, update the amsdu-ampdu flag.  The above may
249 			 * have also set or cleared the amsdu-in-ampdu txa_flags
250 			 * combination so we can correctly do A-MPDU + A-MSDU.
251 			 */
252 #ifdef IEEE80211_SUPPORT_SUPERG
253 			no_ampdu = (! IEEE80211_AMPDU_RUNNING(tap)
254 			    || (IEEE80211_AMPDU_NACKED(tap)));
255 			do_ampdu_amsdu = IEEE80211_AMPDU_RUNNING_AMSDU(tap);
256 #endif
257 		}
258 	}
259 
260 #ifdef IEEE80211_SUPPORT_SUPERG
261 	/*
262 	 * Check for AMSDU/FF; queue for aggregation
263 	 *
264 	 * Note: we don't bother trying to do fast frames or
265 	 * A-MSDU encapsulation for 802.3 drivers.  Now, we
266 	 * likely could do it for FF (because it's a magic
267 	 * atheros tunnel LLC type) but I don't think we're going
268 	 * to really need to.  For A-MSDU we'd have to set the
269 	 * A-MSDU QoS bit in the wifi header, so we just plain
270 	 * can't do it.
271 	 */
272 	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
273 		if ((! mcast) &&
274 		    (do_ampdu_amsdu || (no_ampdu && do_amsdu)) &&
275 		    ieee80211_amsdu_tx_ok(ni)) {
276 			m = ieee80211_amsdu_check(ni, m);
277 			if (m == NULL) {
278 				/* NB: any ni ref held on stageq */
279 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
280 				    "%s: amsdu_check queued frame\n",
281 				    __func__);
282 				return (0);
283 			}
284 		} else if ((! mcast) && do_ff) {
285 			m = ieee80211_ff_check(ni, m);
286 			if (m == NULL) {
287 				/* NB: any ni ref held on stageq */
288 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
289 				    "%s: ff_check queued frame\n",
290 				    __func__);
291 				return (0);
292 			}
293 		}
294 	}
295 #endif /* IEEE80211_SUPPORT_SUPERG */
296 
297 	/*
298 	 * Grab the TX lock - serialise the TX process from this
299 	 * point (where TX state is being checked/modified)
300 	 * through to driver queue.
301 	 */
302 	IEEE80211_TX_LOCK(ic);
303 
304 	/*
305 	 * XXX make the encap and transmit code a separate function
306 	 * so things like the FF (and later A-MSDU) path can just call
307 	 * it for flushed frames.
308 	 */
309 	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
310 		/*
311 		 * Encapsulate the packet in prep for transmission.
312 		 */
313 		m = ieee80211_encap(vap, ni, m);
314 		if (m == NULL) {
315 			/* NB: stat+msg handled in ieee80211_encap */
316 			IEEE80211_TX_UNLOCK(ic);
317 			ieee80211_free_node(ni);
318 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
319 			return (ENOBUFS);
320 		}
321 	}
322 	(void) ieee80211_parent_xmitpkt(ic, m);
323 
324 	/*
325 	 * Unlock at this point - no need to hold it across
326 	 * ieee80211_free_node() (ie, the comlock)
327 	 */
328 	IEEE80211_TX_UNLOCK(ic);
329 	ic->ic_lastdata = ticks;
330 
331 	return (0);
332 }
333 
334 /*
335  * Send the given mbuf through the given vap.
336  *
337  * This consumes the mbuf regardless of whether the transmit
338  * was successful or not.
339  *
340  * This does none of the initial checks that ieee80211_start()
341  * does (eg CAC timeout, interface wakeup) - the caller must
342  * do this first.
343  */
344 static int
345 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
346 {
347 #define	IS_DWDS(vap) \
348 	(vap->iv_opmode == IEEE80211_M_WDS && \
349 	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
350 	struct ieee80211com *ic = vap->iv_ic;
351 	struct ifnet *ifp = vap->iv_ifp;
352 	struct ieee80211_node *ni;
353 	struct ether_header *eh;
354 
355 	/*
356 	 * Cancel any background scan.
357 	 */
358 	if (ic->ic_flags & IEEE80211_F_SCAN)
359 		ieee80211_cancel_anyscan(vap);
360 	/*
361 	 * Find the node for the destination so we can do
362 	 * things like power save and fast frames aggregation.
363 	 *
364 	 * NB: past this point various code assumes the first
365 	 *     mbuf has the 802.3 header present (and contiguous).
366 	 */
367 	ni = NULL;
368 	if (m->m_len < sizeof(struct ether_header) &&
369 	   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
370 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
371 		    "discard frame, %s\n", "m_pullup failed");
372 		vap->iv_stats.is_tx_nobuf++;	/* XXX */
373 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
374 		return (ENOBUFS);
375 	}
376 	eh = mtod(m, struct ether_header *);
377 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
378 		if (IS_DWDS(vap)) {
379 			/*
380 			 * Only unicast frames from the above go out
381 			 * DWDS vaps; multicast frames are handled by
382 			 * dispatching the frame as it comes through
383 			 * the AP vap (see below).
384 			 */
385 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
386 			    eh->ether_dhost, "mcast", "%s", "on DWDS");
387 			vap->iv_stats.is_dwds_mcast++;
388 			m_freem(m);
389 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
390 			/* XXX better status? */
391 			return (ENOBUFS);
392 		}
393 		if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
394 			/*
395 			 * Spam DWDS vap's w/ multicast traffic.
396 			 */
397 			/* XXX only if dwds in use? */
398 			ieee80211_dwds_mcast(vap, m);
399 		}
400 	}
401 #ifdef IEEE80211_SUPPORT_MESH
402 	if (vap->iv_opmode != IEEE80211_M_MBSS) {
403 #endif
404 		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
405 		if (ni == NULL) {
406 			/* NB: ieee80211_find_txnode does stat+msg */
407 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
408 			m_freem(m);
409 			/* XXX better status? */
410 			return (ENOBUFS);
411 		}
412 		if (ni->ni_associd == 0 &&
413 		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
414 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
415 			    eh->ether_dhost, NULL,
416 			    "sta not associated (type 0x%04x)",
417 			    htons(eh->ether_type));
418 			vap->iv_stats.is_tx_notassoc++;
419 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
420 			m_freem(m);
421 			ieee80211_free_node(ni);
422 			/* XXX better status? */
423 			return (ENOBUFS);
424 		}
425 #ifdef IEEE80211_SUPPORT_MESH
426 	} else {
427 		if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
428 			/*
429 			 * Proxy station only if configured.
430 			 */
431 			if (!ieee80211_mesh_isproxyena(vap)) {
432 				IEEE80211_DISCARD_MAC(vap,
433 				    IEEE80211_MSG_OUTPUT |
434 				    IEEE80211_MSG_MESH,
435 				    eh->ether_dhost, NULL,
436 				    "%s", "proxy not enabled");
437 				vap->iv_stats.is_mesh_notproxy++;
438 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
439 				m_freem(m);
440 				/* XXX better status? */
441 				return (ENOBUFS);
442 			}
443 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
444 			    "forward frame from DS SA(%6D), DA(%6D)\n",
445 			    eh->ether_shost, ":",
446 			    eh->ether_dhost, ":");
447 			ieee80211_mesh_proxy_check(vap, eh->ether_shost);
448 		}
449 		ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
450 		if (ni == NULL) {
451 			/*
452 			 * NB: ieee80211_mesh_discover holds/disposes
453 			 * frame (e.g. queueing on path discovery).
454 			 */
455 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
456 			/* XXX better status? */
457 			return (ENOBUFS);
458 		}
459 	}
460 #endif
461 
462 	/*
463 	 * We've resolved the sender, so attempt to transmit it.
464 	 */
465 
466 	if (vap->iv_state == IEEE80211_S_SLEEP) {
467 		/*
468 		 * In power save; queue frame and then  wakeup device
469 		 * for transmit.
470 		 */
471 		ic->ic_lastdata = ticks;
472 		if (ieee80211_pwrsave(ni, m) != 0)
473 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
474 		ieee80211_free_node(ni);
475 		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
476 		return (0);
477 	}
478 
479 	if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
480 		return (ENOBUFS);
481 	return (0);
482 #undef	IS_DWDS
483 }
484 
485 /*
486  * Start method for vap's.  All packets from the stack come
487  * through here.  We handle common processing of the packets
488  * before dispatching them to the underlying device.
489  *
490  * if_transmit() requires that the mbuf be consumed by this call
491  * regardless of the return condition.
492  */
493 int
494 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
495 {
496 	struct ieee80211vap *vap = ifp->if_softc;
497 	struct ieee80211com *ic = vap->iv_ic;
498 
499 	/*
500 	 * No data frames go out unless we're running.
501 	 * Note in particular this covers CAC and CSA
502 	 * states (though maybe we should check muting
503 	 * for CSA).
504 	 */
505 	if (vap->iv_state != IEEE80211_S_RUN &&
506 	    vap->iv_state != IEEE80211_S_SLEEP) {
507 		IEEE80211_LOCK(ic);
508 		/* re-check under the com lock to avoid races */
509 		if (vap->iv_state != IEEE80211_S_RUN &&
510 		    vap->iv_state != IEEE80211_S_SLEEP) {
511 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
512 			    "%s: ignore queue, in %s state\n",
513 			    __func__, ieee80211_state_name[vap->iv_state]);
514 			vap->iv_stats.is_tx_badstate++;
515 			IEEE80211_UNLOCK(ic);
516 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
517 			m_freem(m);
518 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
519 			return (ENETDOWN);
520 		}
521 		IEEE80211_UNLOCK(ic);
522 	}
523 
524 	/*
525 	 * Sanitize mbuf flags for net80211 use.  We cannot
526 	 * clear M_PWR_SAV or M_MORE_DATA because these may
527 	 * be set for frames that are re-submitted from the
528 	 * power save queue.
529 	 *
530 	 * NB: This must be done before ieee80211_classify as
531 	 *     it marks EAPOL in frames with M_EAPOL.
532 	 */
533 	m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
534 
535 	/*
536 	 * Bump to the packet transmission path.
537 	 * The mbuf will be consumed here.
538 	 */
539 	return (ieee80211_start_pkt(vap, m));
540 }
541 
542 void
543 ieee80211_vap_qflush(struct ifnet *ifp)
544 {
545 
546 	/* Empty for now */
547 }
548 
549 /*
550  * 802.11 raw output routine.
551  *
552  * XXX TODO: this (and other send routines) should correctly
553  * XXX keep the pwr mgmt bit set if it decides to call into the
554  * XXX driver to send a frame whilst the state is SLEEP.
555  *
556  * Otherwise the peer may decide that we're awake and flood us
557  * with traffic we are still too asleep to receive!
558  */
559 int
560 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
561     struct mbuf *m, const struct ieee80211_bpf_params *params)
562 {
563 	struct ieee80211com *ic = vap->iv_ic;
564 	int error;
565 
566 	/*
567 	 * Set node - the caller has taken a reference, so ensure
568 	 * that the mbuf has the same node value that
569 	 * it would if it were going via the normal path.
570 	 */
571 	MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
572 	m->m_pkthdr.rcvif = (void *)ni;
573 
574 	/*
575 	 * Attempt to add bpf transmit parameters.
576 	 *
577 	 * For now it's ok to fail; the raw_xmit api still takes
578 	 * them as an option.
579 	 *
580 	 * Later on when ic_raw_xmit() has params removed,
581 	 * they'll have to be added - so fail the transmit if
582 	 * they can't be.
583 	 */
584 	if (params)
585 		(void) ieee80211_add_xmit_params(m, params);
586 
587 	error = ic->ic_raw_xmit(ni, m, params);
588 	if (error) {
589 		if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
590 		ieee80211_free_node(ni);
591 	}
592 	return (error);
593 }
594 
595 static int
596 ieee80211_validate_frame(struct mbuf *m,
597     const struct ieee80211_bpf_params *params)
598 {
599 	struct ieee80211_frame *wh;
600 	int type;
601 
602 	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
603 		return (EINVAL);
604 
605 	wh = mtod(m, struct ieee80211_frame *);
606 	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
607 	    IEEE80211_FC0_VERSION_0)
608 		return (EINVAL);
609 
610 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
611 	if (type != IEEE80211_FC0_TYPE_DATA) {
612 		if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) !=
613 		    IEEE80211_FC1_DIR_NODS)
614 			return (EINVAL);
615 
616 		if (type != IEEE80211_FC0_TYPE_MGT &&
617 		    (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) != 0)
618 			return (EINVAL);
619 
620 		/* XXX skip other field checks? */
621 	}
622 
623 	if ((params && (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0) ||
624 	    (IEEE80211_IS_PROTECTED(wh))) {
625 		int subtype;
626 
627 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
628 
629 		/*
630 		 * See IEEE Std 802.11-2012,
631 		 * 8.2.4.1.9 'Protected Frame field'
632 		 */
633 		/* XXX no support for robust management frames yet. */
634 		if (!(type == IEEE80211_FC0_TYPE_DATA ||
635 		    (type == IEEE80211_FC0_TYPE_MGT &&
636 		     subtype == IEEE80211_FC0_SUBTYPE_AUTH)))
637 			return (EINVAL);
638 
639 		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
640 	}
641 
642 	if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh))
643 		return (EINVAL);
644 
645 	return (0);
646 }
647 
648 static int
649 ieee80211_validate_rate(struct ieee80211_node *ni, uint8_t rate)
650 {
651 	struct ieee80211com *ic = ni->ni_ic;
652 
653 	if (IEEE80211_IS_HT_RATE(rate)) {
654 		if ((ic->ic_htcaps & IEEE80211_HTC_HT) == 0)
655 			return (EINVAL);
656 
657 		rate = IEEE80211_RV(rate);
658 		if (rate <= 31) {
659 			if (rate > ic->ic_txstream * 8 - 1)
660 				return (EINVAL);
661 
662 			return (0);
663 		}
664 
665 		if (rate == 32) {
666 			if ((ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0)
667 				return (EINVAL);
668 
669 			return (0);
670 		}
671 
672 		if ((ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) == 0)
673 			return (EINVAL);
674 
675 		switch (ic->ic_txstream) {
676 		case 0:
677 		case 1:
678 			return (EINVAL);
679 		case 2:
680 			if (rate > 38)
681 				return (EINVAL);
682 
683 			return (0);
684 		case 3:
685 			if (rate > 52)
686 				return (EINVAL);
687 
688 			return (0);
689 		case 4:
690 		default:
691 			if (rate > 76)
692 				return (EINVAL);
693 
694 			return (0);
695 		}
696 	}
697 
698 	if (!ieee80211_isratevalid(ic->ic_rt, rate))
699 		return (EINVAL);
700 
701 	return (0);
702 }
703 
704 static int
705 ieee80211_sanitize_rates(struct ieee80211_node *ni, struct mbuf *m,
706     const struct ieee80211_bpf_params *params)
707 {
708 	int error;
709 
710 	if (!params)
711 		return (0);	/* nothing to do */
712 
713 	/* NB: most drivers assume that ibp_rate0 is set (!= 0). */
714 	if (params->ibp_rate0 != 0) {
715 		error = ieee80211_validate_rate(ni, params->ibp_rate0);
716 		if (error != 0)
717 			return (error);
718 	} else {
719 		/* XXX pre-setup some default (e.g., mgmt / mcast) rate */
720 		/* XXX __DECONST? */
721 		(void) m;
722 	}
723 
724 	if (params->ibp_rate1 != 0 &&
725 	    (error = ieee80211_validate_rate(ni, params->ibp_rate1)) != 0)
726 		return (error);
727 
728 	if (params->ibp_rate2 != 0 &&
729 	    (error = ieee80211_validate_rate(ni, params->ibp_rate2)) != 0)
730 		return (error);
731 
732 	if (params->ibp_rate3 != 0 &&
733 	    (error = ieee80211_validate_rate(ni, params->ibp_rate3)) != 0)
734 		return (error);
735 
736 	return (0);
737 }
738 
739 /*
740  * 802.11 output routine. This is (currently) used only to
741  * connect bpf write calls to the 802.11 layer for injecting
742  * raw 802.11 frames.
743  */
744 int
745 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
746 	const struct sockaddr *dst, struct route *ro)
747 {
748 #define senderr(e) do { error = (e); goto bad;} while (0)
749 	const struct ieee80211_bpf_params *params = NULL;
750 	struct ieee80211_node *ni = NULL;
751 	struct ieee80211vap *vap;
752 	struct ieee80211_frame *wh;
753 	struct ieee80211com *ic = NULL;
754 	int error;
755 	int ret;
756 
757 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
758 		/*
759 		 * Short-circuit requests if the vap is marked OACTIVE
760 		 * as this can happen because a packet came down through
761 		 * ieee80211_start before the vap entered RUN state in
762 		 * which case it's ok to just drop the frame.  This
763 		 * should not be necessary but callers of if_output don't
764 		 * check OACTIVE.
765 		 */
766 		senderr(ENETDOWN);
767 	}
768 	vap = ifp->if_softc;
769 	ic = vap->iv_ic;
770 	/*
771 	 * Hand to the 802.3 code if not tagged as
772 	 * a raw 802.11 frame.
773 	 */
774 	if (dst->sa_family != AF_IEEE80211)
775 		return vap->iv_output(ifp, m, dst, ro);
776 #ifdef MAC
777 	error = mac_ifnet_check_transmit(ifp, m);
778 	if (error)
779 		senderr(error);
780 #endif
781 	if (ifp->if_flags & IFF_MONITOR)
782 		senderr(ENETDOWN);
783 	if (!IFNET_IS_UP_RUNNING(ifp))
784 		senderr(ENETDOWN);
785 	if (vap->iv_state == IEEE80211_S_CAC) {
786 		IEEE80211_DPRINTF(vap,
787 		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
788 		    "block %s frame in CAC state\n", "raw data");
789 		vap->iv_stats.is_tx_badstate++;
790 		senderr(EIO);		/* XXX */
791 	} else if (vap->iv_state == IEEE80211_S_SCAN)
792 		senderr(EIO);
793 	/* XXX bypass bridge, pfil, carp, etc. */
794 
795 	/*
796 	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
797 	 * present by setting the sa_len field of the sockaddr (yes,
798 	 * this is a hack).
799 	 * NB: we assume sa_data is suitably aligned to cast.
800 	 */
801 	if (dst->sa_len != 0)
802 		params = (const struct ieee80211_bpf_params *)dst->sa_data;
803 
804 	error = ieee80211_validate_frame(m, params);
805 	if (error != 0)
806 		senderr(error);
807 
808 	wh = mtod(m, struct ieee80211_frame *);
809 
810 	/* locate destination node */
811 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
812 	case IEEE80211_FC1_DIR_NODS:
813 	case IEEE80211_FC1_DIR_FROMDS:
814 		ni = ieee80211_find_txnode(vap, wh->i_addr1);
815 		break;
816 	case IEEE80211_FC1_DIR_TODS:
817 	case IEEE80211_FC1_DIR_DSTODS:
818 		ni = ieee80211_find_txnode(vap, wh->i_addr3);
819 		break;
820 	default:
821 		senderr(EDOOFUS);
822 	}
823 	if (ni == NULL) {
824 		/*
825 		 * Permit packets w/ bpf params through regardless
826 		 * (see below about sa_len).
827 		 */
828 		if (dst->sa_len == 0)
829 			senderr(EHOSTUNREACH);
830 		ni = ieee80211_ref_node(vap->iv_bss);
831 	}
832 
833 	/*
834 	 * Sanitize mbuf for net80211 flags leaked from above.
835 	 *
836 	 * NB: This must be done before ieee80211_classify as
837 	 *     it marks EAPOL in frames with M_EAPOL.
838 	 */
839 	m->m_flags &= ~M_80211_TX;
840 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
841 
842 	if (IEEE80211_IS_DATA(wh)) {
843 		/* calculate priority so drivers can find the tx queue */
844 		if (ieee80211_classify(ni, m))
845 			senderr(EIO);		/* XXX */
846 
847 		/* NB: ieee80211_encap does not include 802.11 header */
848 		IEEE80211_NODE_STAT_ADD(ni, tx_bytes,
849 		    m->m_pkthdr.len - ieee80211_hdrsize(wh));
850 	} else
851 		M_WME_SETAC(m, WME_AC_BE);
852 
853 	error = ieee80211_sanitize_rates(ni, m, params);
854 	if (error != 0)
855 		senderr(error);
856 
857 	IEEE80211_NODE_STAT(ni, tx_data);
858 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
859 		IEEE80211_NODE_STAT(ni, tx_mcast);
860 		m->m_flags |= M_MCAST;
861 	} else
862 		IEEE80211_NODE_STAT(ni, tx_ucast);
863 
864 	IEEE80211_TX_LOCK(ic);
865 	ret = ieee80211_raw_output(vap, ni, m, params);
866 	IEEE80211_TX_UNLOCK(ic);
867 	return (ret);
868 bad:
869 	if (m != NULL)
870 		m_freem(m);
871 	if (ni != NULL)
872 		ieee80211_free_node(ni);
873 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
874 	return error;
875 #undef senderr
876 }
877 
878 /*
879  * Set the direction field and address fields of an outgoing
880  * frame.  Note this should be called early on in constructing
881  * a frame as it sets i_fc[1]; other bits can then be or'd in.
882  */
883 void
884 ieee80211_send_setup(
885 	struct ieee80211_node *ni,
886 	struct mbuf *m,
887 	int type, int tid,
888 	const uint8_t sa[IEEE80211_ADDR_LEN],
889 	const uint8_t da[IEEE80211_ADDR_LEN],
890 	const uint8_t bssid[IEEE80211_ADDR_LEN])
891 {
892 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
893 	struct ieee80211vap *vap = ni->ni_vap;
894 	struct ieee80211_tx_ampdu *tap;
895 	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
896 	ieee80211_seq seqno;
897 
898 	IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
899 
900 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
901 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
902 		switch (vap->iv_opmode) {
903 		case IEEE80211_M_STA:
904 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
905 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
906 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
907 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
908 			break;
909 		case IEEE80211_M_IBSS:
910 		case IEEE80211_M_AHDEMO:
911 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
912 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
913 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
914 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
915 			break;
916 		case IEEE80211_M_HOSTAP:
917 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
918 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
919 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
920 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
921 			break;
922 		case IEEE80211_M_WDS:
923 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
924 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
925 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
926 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
927 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
928 			break;
929 		case IEEE80211_M_MBSS:
930 #ifdef IEEE80211_SUPPORT_MESH
931 			if (IEEE80211_IS_MULTICAST(da)) {
932 				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
933 				/* XXX next hop */
934 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
935 				IEEE80211_ADDR_COPY(wh->i_addr2,
936 				    vap->iv_myaddr);
937 			} else {
938 				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
939 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
940 				IEEE80211_ADDR_COPY(wh->i_addr2,
941 				    vap->iv_myaddr);
942 				IEEE80211_ADDR_COPY(wh->i_addr3, da);
943 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
944 			}
945 #endif
946 			break;
947 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
948 			break;
949 		}
950 	} else {
951 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
952 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
953 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
954 #ifdef IEEE80211_SUPPORT_MESH
955 		if (vap->iv_opmode == IEEE80211_M_MBSS)
956 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
957 		else
958 #endif
959 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
960 	}
961 	*(uint16_t *)&wh->i_dur[0] = 0;
962 
963 	/*
964 	 * XXX TODO: this is what the TX lock is for.
965 	 * Here we're incrementing sequence numbers, and they
966 	 * need to be in lock-step with what the driver is doing
967 	 * both in TX ordering and crypto encap (IV increment.)
968 	 *
969 	 * If the driver does seqno itself, then we can skip
970 	 * assigning sequence numbers here, and we can avoid
971 	 * requiring the TX lock.
972 	 */
973 	tap = &ni->ni_tx_ampdu[tid];
974 	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) {
975 		m->m_flags |= M_AMPDU_MPDU;
976 
977 		/* NB: zero out i_seq field (for s/w encryption etc) */
978 		*(uint16_t *)&wh->i_seq[0] = 0;
979 	} else {
980 		if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
981 				      type & IEEE80211_FC0_SUBTYPE_MASK))
982 			/*
983 			 * 802.11-2012 9.3.2.10 - QoS multicast frames
984 			 * come out of a different seqno space.
985 			 */
986 			if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
987 				seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
988 			} else {
989 				seqno = ni->ni_txseqs[tid]++;
990 			}
991 		else
992 			seqno = 0;
993 
994 		*(uint16_t *)&wh->i_seq[0] =
995 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
996 		M_SEQNO_SET(m, seqno);
997 	}
998 
999 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1000 		m->m_flags |= M_MCAST;
1001 #undef WH4
1002 }
1003 
1004 /*
1005  * Send a management frame to the specified node.  The node pointer
1006  * must have a reference as the pointer will be passed to the driver
1007  * and potentially held for a long time.  If the frame is successfully
1008  * dispatched to the driver, then it is responsible for freeing the
1009  * reference (and potentially free'ing up any associated storage);
1010  * otherwise deal with reclaiming any reference (on error).
1011  */
1012 int
1013 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
1014 	struct ieee80211_bpf_params *params)
1015 {
1016 	struct ieee80211vap *vap = ni->ni_vap;
1017 	struct ieee80211com *ic = ni->ni_ic;
1018 	struct ieee80211_frame *wh;
1019 	int ret;
1020 
1021 	KASSERT(ni != NULL, ("null node"));
1022 
1023 	if (vap->iv_state == IEEE80211_S_CAC) {
1024 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
1025 		    ni, "block %s frame in CAC state",
1026 			ieee80211_mgt_subtype_name(type));
1027 		vap->iv_stats.is_tx_badstate++;
1028 		ieee80211_free_node(ni);
1029 		m_freem(m);
1030 		return EIO;		/* XXX */
1031 	}
1032 
1033 	M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
1034 	if (m == NULL) {
1035 		ieee80211_free_node(ni);
1036 		return ENOMEM;
1037 	}
1038 
1039 	IEEE80211_TX_LOCK(ic);
1040 
1041 	wh = mtod(m, struct ieee80211_frame *);
1042 	ieee80211_send_setup(ni, m,
1043 	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
1044 	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1045 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
1046 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
1047 		    "encrypting frame (%s)", __func__);
1048 		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1049 	}
1050 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1051 
1052 	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
1053 	M_WME_SETAC(m, params->ibp_pri);
1054 
1055 #ifdef IEEE80211_DEBUG
1056 	/* avoid printing too many frames */
1057 	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
1058 	    ieee80211_msg_dumppkts(vap)) {
1059 		ieee80211_note(vap, "[%s] send %s on channel %u\n",
1060 		    ether_sprintf(wh->i_addr1),
1061 		    ieee80211_mgt_subtype_name(type),
1062 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
1063 	}
1064 #endif
1065 	IEEE80211_NODE_STAT(ni, tx_mgmt);
1066 
1067 	ret = ieee80211_raw_output(vap, ni, m, params);
1068 	IEEE80211_TX_UNLOCK(ic);
1069 	return (ret);
1070 }
1071 
1072 static void
1073 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg,
1074     int status)
1075 {
1076 	struct ieee80211vap *vap = ni->ni_vap;
1077 
1078 	wakeup(vap);
1079 }
1080 
1081 /*
1082  * Send a null data frame to the specified node.  If the station
1083  * is setup for QoS then a QoS Null Data frame is constructed.
1084  * If this is a WDS station then a 4-address frame is constructed.
1085  *
1086  * NB: the caller is assumed to have setup a node reference
1087  *     for use; this is necessary to deal with a race condition
1088  *     when probing for inactive stations.  Like ieee80211_mgmt_output
1089  *     we must cleanup any node reference on error;  however we
1090  *     can safely just unref it as we know it will never be the
1091  *     last reference to the node.
1092  */
1093 int
1094 ieee80211_send_nulldata(struct ieee80211_node *ni)
1095 {
1096 	struct ieee80211vap *vap = ni->ni_vap;
1097 	struct ieee80211com *ic = ni->ni_ic;
1098 	struct mbuf *m;
1099 	struct ieee80211_frame *wh;
1100 	int hdrlen;
1101 	uint8_t *frm;
1102 	int ret;
1103 
1104 	if (vap->iv_state == IEEE80211_S_CAC) {
1105 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
1106 		    ni, "block %s frame in CAC state", "null data");
1107 		ieee80211_node_decref(ni);
1108 		vap->iv_stats.is_tx_badstate++;
1109 		return EIO;		/* XXX */
1110 	}
1111 
1112 	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
1113 		hdrlen = sizeof(struct ieee80211_qosframe);
1114 	else
1115 		hdrlen = sizeof(struct ieee80211_frame);
1116 	/* NB: only WDS vap's get 4-address frames */
1117 	if (vap->iv_opmode == IEEE80211_M_WDS)
1118 		hdrlen += IEEE80211_ADDR_LEN;
1119 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1120 		hdrlen = roundup(hdrlen, sizeof(uint32_t));
1121 
1122 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
1123 	if (m == NULL) {
1124 		/* XXX debug msg */
1125 		ieee80211_node_decref(ni);
1126 		vap->iv_stats.is_tx_nobuf++;
1127 		return ENOMEM;
1128 	}
1129 	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
1130 	    ("leading space %zd", M_LEADINGSPACE(m)));
1131 	M_PREPEND(m, hdrlen, IEEE80211_M_NOWAIT);
1132 	if (m == NULL) {
1133 		/* NB: cannot happen */
1134 		ieee80211_free_node(ni);
1135 		return ENOMEM;
1136 	}
1137 
1138 	IEEE80211_TX_LOCK(ic);
1139 
1140 	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
1141 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
1142 		const int tid = WME_AC_TO_TID(WME_AC_BE);
1143 		uint8_t *qos;
1144 
1145 		ieee80211_send_setup(ni, m,
1146 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
1147 		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1148 
1149 		if (vap->iv_opmode == IEEE80211_M_WDS)
1150 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1151 		else
1152 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1153 		qos[0] = tid & IEEE80211_QOS_TID;
1154 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
1155 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1156 		qos[1] = 0;
1157 	} else {
1158 		ieee80211_send_setup(ni, m,
1159 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
1160 		    IEEE80211_NONQOS_TID,
1161 		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1162 	}
1163 	if (vap->iv_opmode != IEEE80211_M_WDS) {
1164 		/* NB: power management bit is never sent by an AP */
1165 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1166 		    vap->iv_opmode != IEEE80211_M_HOSTAP)
1167 			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
1168 	}
1169 	if ((ic->ic_flags & IEEE80211_F_SCAN) &&
1170 	    (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) {
1171 		ieee80211_add_callback(m, ieee80211_nulldata_transmitted,
1172 		    NULL);
1173 	}
1174 	m->m_len = m->m_pkthdr.len = hdrlen;
1175 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1176 
1177 	M_WME_SETAC(m, WME_AC_BE);
1178 
1179 	IEEE80211_NODE_STAT(ni, tx_data);
1180 
1181 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
1182 	    "send %snull data frame on channel %u, pwr mgt %s",
1183 	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
1184 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
1185 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
1186 
1187 	ret = ieee80211_raw_output(vap, ni, m, NULL);
1188 	IEEE80211_TX_UNLOCK(ic);
1189 	return (ret);
1190 }
1191 
1192 /*
1193  * Assign priority to a frame based on any vlan tag assigned
1194  * to the station and/or any Diffserv setting in an IP header.
1195  * Finally, if an ACM policy is setup (in station mode) it's
1196  * applied.
1197  */
1198 int
1199 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
1200 {
1201 	const struct ether_header *eh = NULL;
1202 	uint16_t ether_type;
1203 	int v_wme_ac, d_wme_ac, ac;
1204 
1205 	if (__predict_false(m->m_flags & M_ENCAP)) {
1206 		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
1207 		struct llc *llc;
1208 		int hdrlen, subtype;
1209 
1210 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1211 		if (subtype & IEEE80211_FC0_SUBTYPE_NODATA) {
1212 			ac = WME_AC_BE;
1213 			goto done;
1214 		}
1215 
1216 		hdrlen = ieee80211_hdrsize(wh);
1217 		if (m->m_pkthdr.len < hdrlen + sizeof(*llc))
1218 			return 1;
1219 
1220 		llc = (struct llc *)mtodo(m, hdrlen);
1221 		if (llc->llc_dsap != LLC_SNAP_LSAP ||
1222 		    llc->llc_ssap != LLC_SNAP_LSAP ||
1223 		    llc->llc_control != LLC_UI ||
1224 		    llc->llc_snap.org_code[0] != 0 ||
1225 		    llc->llc_snap.org_code[1] != 0 ||
1226 		    llc->llc_snap.org_code[2] != 0)
1227 			return 1;
1228 
1229 		ether_type = llc->llc_snap.ether_type;
1230 	} else {
1231 		eh = mtod(m, struct ether_header *);
1232 		ether_type = eh->ether_type;
1233 	}
1234 
1235 	/*
1236 	 * Always promote PAE/EAPOL frames to high priority.
1237 	 */
1238 	if (ether_type == htons(ETHERTYPE_PAE)) {
1239 		/* NB: mark so others don't need to check header */
1240 		m->m_flags |= M_EAPOL;
1241 		ac = WME_AC_VO;
1242 		goto done;
1243 	}
1244 	/*
1245 	 * Non-qos traffic goes to BE.
1246 	 */
1247 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
1248 		ac = WME_AC_BE;
1249 		goto done;
1250 	}
1251 
1252 	/*
1253 	 * If node has a vlan tag then all traffic
1254 	 * to it must have a matching tag.
1255 	 */
1256 	v_wme_ac = 0;
1257 	if (ni->ni_vlan != 0) {
1258 		 if ((m->m_flags & M_VLANTAG) == 0) {
1259 			IEEE80211_NODE_STAT(ni, tx_novlantag);
1260 			return 1;
1261 		}
1262 		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
1263 		    EVL_VLANOFTAG(ni->ni_vlan)) {
1264 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
1265 			return 1;
1266 		}
1267 		/* map vlan priority to AC */
1268 		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
1269 	}
1270 
1271 	if (eh == NULL)
1272 		goto no_eh;
1273 
1274 	/* XXX m_copydata may be too slow for fast path */
1275 	switch (ntohs(eh->ether_type)) {
1276 #ifdef INET
1277 	case ETHERTYPE_IP:
1278 	{
1279 		uint8_t tos;
1280 		/*
1281 		 * IP frame, map the DSCP bits from the TOS field.
1282 		 */
1283 		/* NB: ip header may not be in first mbuf */
1284 		m_copydata(m, sizeof(struct ether_header) +
1285 		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
1286 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1287 		d_wme_ac = TID_TO_WME_AC(tos);
1288 		break;
1289 	}
1290 #endif
1291 #ifdef INET6
1292 	case ETHERTYPE_IPV6:
1293 	{
1294 		uint32_t flow;
1295 		uint8_t tos;
1296 		/*
1297 		 * IPv6 frame, map the DSCP bits from the traffic class field.
1298 		 */
1299 		m_copydata(m, sizeof(struct ether_header) +
1300 		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
1301 		    (caddr_t) &flow);
1302 		tos = (uint8_t)(ntohl(flow) >> 20);
1303 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1304 		d_wme_ac = TID_TO_WME_AC(tos);
1305 		break;
1306 	}
1307 #endif
1308 	default:
1309 no_eh:
1310 		d_wme_ac = WME_AC_BE;
1311 		break;
1312 	}
1313 
1314 	/*
1315 	 * Use highest priority AC.
1316 	 */
1317 	if (v_wme_ac > d_wme_ac)
1318 		ac = v_wme_ac;
1319 	else
1320 		ac = d_wme_ac;
1321 
1322 	/*
1323 	 * Apply ACM policy.
1324 	 */
1325 	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1326 		static const int acmap[4] = {
1327 			WME_AC_BK,	/* WME_AC_BE */
1328 			WME_AC_BK,	/* WME_AC_BK */
1329 			WME_AC_BE,	/* WME_AC_VI */
1330 			WME_AC_VI,	/* WME_AC_VO */
1331 		};
1332 		struct ieee80211com *ic = ni->ni_ic;
1333 
1334 		while (ac != WME_AC_BK &&
1335 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1336 			ac = acmap[ac];
1337 	}
1338 done:
1339 	M_WME_SETAC(m, ac);
1340 	return 0;
1341 }
1342 
1343 /*
1344  * Insure there is sufficient contiguous space to encapsulate the
1345  * 802.11 data frame.  If room isn't already there, arrange for it.
1346  * Drivers and cipher modules assume we have done the necessary work
1347  * and fail rudely if they don't find the space they need.
1348  */
1349 struct mbuf *
1350 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1351 	struct ieee80211_key *key, struct mbuf *m)
1352 {
1353 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
1354 	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1355 
1356 	if (key != NULL) {
1357 		/* XXX belongs in crypto code? */
1358 		needed_space += key->wk_cipher->ic_header;
1359 		/* XXX frags */
1360 		/*
1361 		 * When crypto is being done in the host we must insure
1362 		 * the data are writable for the cipher routines; clone
1363 		 * a writable mbuf chain.
1364 		 * XXX handle SWMIC specially
1365 		 */
1366 		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1367 			m = m_unshare(m, IEEE80211_M_NOWAIT);
1368 			if (m == NULL) {
1369 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1370 				    "%s: cannot get writable mbuf\n", __func__);
1371 				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1372 				return NULL;
1373 			}
1374 		}
1375 	}
1376 	/*
1377 	 * We know we are called just before stripping an Ethernet
1378 	 * header and prepending an LLC header.  This means we know
1379 	 * there will be
1380 	 *	sizeof(struct ether_header) - sizeof(struct llc)
1381 	 * bytes recovered to which we need additional space for the
1382 	 * 802.11 header and any crypto header.
1383 	 */
1384 	/* XXX check trailing space and copy instead? */
1385 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1386 		struct mbuf *n = m_gethdr(IEEE80211_M_NOWAIT, m->m_type);
1387 		if (n == NULL) {
1388 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1389 			    "%s: cannot expand storage\n", __func__);
1390 			vap->iv_stats.is_tx_nobuf++;
1391 			m_freem(m);
1392 			return NULL;
1393 		}
1394 		KASSERT(needed_space <= MHLEN,
1395 		    ("not enough room, need %u got %d\n", needed_space, MHLEN));
1396 		/*
1397 		 * Setup new mbuf to have leading space to prepend the
1398 		 * 802.11 header and any crypto header bits that are
1399 		 * required (the latter are added when the driver calls
1400 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
1401 		 */
1402 		/* NB: must be first 'cuz it clobbers m_data */
1403 		m_move_pkthdr(n, m);
1404 		n->m_len = 0;			/* NB: m_gethdr does not set */
1405 		n->m_data += needed_space;
1406 		/*
1407 		 * Pull up Ethernet header to create the expected layout.
1408 		 * We could use m_pullup but that's overkill (i.e. we don't
1409 		 * need the actual data) and it cannot fail so do it inline
1410 		 * for speed.
1411 		 */
1412 		/* NB: struct ether_header is known to be contiguous */
1413 		n->m_len += sizeof(struct ether_header);
1414 		m->m_len -= sizeof(struct ether_header);
1415 		m->m_data += sizeof(struct ether_header);
1416 		/*
1417 		 * Replace the head of the chain.
1418 		 */
1419 		n->m_next = m;
1420 		m = n;
1421 	}
1422 	return m;
1423 #undef TO_BE_RECLAIMED
1424 }
1425 
1426 /*
1427  * Return the transmit key to use in sending a unicast frame.
1428  * If a unicast key is set we use that.  When no unicast key is set
1429  * we fall back to the default transmit key.
1430  */
1431 static __inline struct ieee80211_key *
1432 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1433 	struct ieee80211_node *ni)
1434 {
1435 	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1436 		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1437 		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1438 			return NULL;
1439 		return &vap->iv_nw_keys[vap->iv_def_txkey];
1440 	} else {
1441 		return &ni->ni_ucastkey;
1442 	}
1443 }
1444 
1445 /*
1446  * Return the transmit key to use in sending a multicast frame.
1447  * Multicast traffic always uses the group key which is installed as
1448  * the default tx key.
1449  */
1450 static __inline struct ieee80211_key *
1451 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1452 	struct ieee80211_node *ni)
1453 {
1454 	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1455 	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1456 		return NULL;
1457 	return &vap->iv_nw_keys[vap->iv_def_txkey];
1458 }
1459 
1460 /*
1461  * Encapsulate an outbound data frame.  The mbuf chain is updated.
1462  * If an error is encountered NULL is returned.  The caller is required
1463  * to provide a node reference and pullup the ethernet header in the
1464  * first mbuf.
1465  *
1466  * NB: Packet is assumed to be processed by ieee80211_classify which
1467  *     marked EAPOL frames w/ M_EAPOL.
1468  */
1469 struct mbuf *
1470 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1471     struct mbuf *m)
1472 {
1473 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1474 #define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
1475 	struct ieee80211com *ic = ni->ni_ic;
1476 #ifdef IEEE80211_SUPPORT_MESH
1477 	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1478 	struct ieee80211_meshcntl_ae10 *mc;
1479 	struct ieee80211_mesh_route *rt = NULL;
1480 	int dir = -1;
1481 #endif
1482 	struct ether_header eh;
1483 	struct ieee80211_frame *wh;
1484 	struct ieee80211_key *key;
1485 	struct llc *llc;
1486 	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast;
1487 	ieee80211_seq seqno;
1488 	int meshhdrsize, meshae;
1489 	uint8_t *qos;
1490 	int is_amsdu = 0;
1491 
1492 	IEEE80211_TX_LOCK_ASSERT(ic);
1493 
1494 	is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST));
1495 
1496 	/*
1497 	 * Copy existing Ethernet header to a safe place.  The
1498 	 * rest of the code assumes it's ok to strip it when
1499 	 * reorganizing state for the final encapsulation.
1500 	 */
1501 	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1502 	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1503 
1504 	/*
1505 	 * Insure space for additional headers.  First identify
1506 	 * transmit key to use in calculating any buffer adjustments
1507 	 * required.  This is also used below to do privacy
1508 	 * encapsulation work.  Then calculate the 802.11 header
1509 	 * size and any padding required by the driver.
1510 	 *
1511 	 * Note key may be NULL if we fall back to the default
1512 	 * transmit key and that is not set.  In that case the
1513 	 * buffer may not be expanded as needed by the cipher
1514 	 * routines, but they will/should discard it.
1515 	 */
1516 	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1517 		if (vap->iv_opmode == IEEE80211_M_STA ||
1518 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1519 		    (vap->iv_opmode == IEEE80211_M_WDS &&
1520 		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) {
1521 			key = ieee80211_crypto_getucastkey(vap, ni);
1522 		} else if ((vap->iv_opmode == IEEE80211_M_WDS) &&
1523 		    (! (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) {
1524 			/*
1525 			 * Use ucastkey for DWDS transmit nodes, multicast
1526 			 * or otherwise.
1527 			 *
1528 			 * This is required to ensure that multicast frames
1529 			 * from a DWDS AP to a DWDS STA is encrypted with
1530 			 * a key that can actually work.
1531 			 *
1532 			 * There's no default key for multicast traffic
1533 			 * on a DWDS WDS VAP node (note NOT the DWDS enabled
1534 			 * AP VAP, the dynamically created per-STA WDS node)
1535 			 * so encap fails and transmit fails.
1536 			 */
1537 			key = ieee80211_crypto_getucastkey(vap, ni);
1538 		} else {
1539 			key = ieee80211_crypto_getmcastkey(vap, ni);
1540 		}
1541 		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1542 			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1543 			    eh.ether_dhost,
1544 			    "no default transmit key (%s) deftxkey %u",
1545 			    __func__, vap->iv_def_txkey);
1546 			vap->iv_stats.is_tx_nodefkey++;
1547 			goto bad;
1548 		}
1549 	} else
1550 		key = NULL;
1551 	/*
1552 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1553 	 * frames so suppress use.  This may be an issue if other
1554 	 * ap's require all data frames to be QoS-encapsulated
1555 	 * once negotiated in which case we'll need to make this
1556 	 * configurable.
1557 	 *
1558 	 * Don't send multicast QoS frames.
1559 	 * Technically multicast frames can be QoS if all stations in the
1560 	 * BSS are also QoS.
1561 	 *
1562 	 * NB: mesh data frames are QoS, including multicast frames.
1563 	 */
1564 	addqos =
1565 	    (((is_mcast == 0) && (ni->ni_flags &
1566 	     (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) ||
1567 	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1568 	    (m->m_flags & M_EAPOL) == 0;
1569 
1570 	if (addqos)
1571 		hdrsize = sizeof(struct ieee80211_qosframe);
1572 	else
1573 		hdrsize = sizeof(struct ieee80211_frame);
1574 #ifdef IEEE80211_SUPPORT_MESH
1575 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1576 		/*
1577 		 * Mesh data frames are encapsulated according to the
1578 		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1579 		 * o Group Addressed data (aka multicast) originating
1580 		 *   at the local sta are sent w/ 3-address format and
1581 		 *   address extension mode 00
1582 		 * o Individually Addressed data (aka unicast) originating
1583 		 *   at the local sta are sent w/ 4-address format and
1584 		 *   address extension mode 00
1585 		 * o Group Addressed data forwarded from a non-mesh sta are
1586 		 *   sent w/ 3-address format and address extension mode 01
1587 		 * o Individually Address data from another sta are sent
1588 		 *   w/ 4-address format and address extension mode 10
1589 		 */
1590 		is4addr = 0;		/* NB: don't use, disable */
1591 		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1592 			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1593 			KASSERT(rt != NULL, ("route is NULL"));
1594 			dir = IEEE80211_FC1_DIR_DSTODS;
1595 			hdrsize += IEEE80211_ADDR_LEN;
1596 			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1597 				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1598 				    vap->iv_myaddr)) {
1599 					IEEE80211_NOTE_MAC(vap,
1600 					    IEEE80211_MSG_MESH,
1601 					    eh.ether_dhost,
1602 					    "%s", "trying to send to ourself");
1603 					goto bad;
1604 				}
1605 				meshae = IEEE80211_MESH_AE_10;
1606 				meshhdrsize =
1607 				    sizeof(struct ieee80211_meshcntl_ae10);
1608 			} else {
1609 				meshae = IEEE80211_MESH_AE_00;
1610 				meshhdrsize =
1611 				    sizeof(struct ieee80211_meshcntl);
1612 			}
1613 		} else {
1614 			dir = IEEE80211_FC1_DIR_FROMDS;
1615 			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1616 				/* proxy group */
1617 				meshae = IEEE80211_MESH_AE_01;
1618 				meshhdrsize =
1619 				    sizeof(struct ieee80211_meshcntl_ae01);
1620 			} else {
1621 				/* group */
1622 				meshae = IEEE80211_MESH_AE_00;
1623 				meshhdrsize = sizeof(struct ieee80211_meshcntl);
1624 			}
1625 		}
1626 	} else {
1627 #endif
1628 		/*
1629 		 * 4-address frames need to be generated for:
1630 		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1631 		 * o packets sent through a vap marked for relaying
1632 		 *   (e.g. a station operating with dynamic WDS)
1633 		 */
1634 		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1635 		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1636 		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1637 		if (is4addr)
1638 			hdrsize += IEEE80211_ADDR_LEN;
1639 		meshhdrsize = meshae = 0;
1640 #ifdef IEEE80211_SUPPORT_MESH
1641 	}
1642 #endif
1643 	/*
1644 	 * Honor driver DATAPAD requirement.
1645 	 */
1646 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1647 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1648 	else
1649 		hdrspace = hdrsize;
1650 
1651 	if (__predict_true((m->m_flags & M_FF) == 0)) {
1652 		/*
1653 		 * Normal frame.
1654 		 */
1655 		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1656 		if (m == NULL) {
1657 			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1658 			goto bad;
1659 		}
1660 		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1661 		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1662 		llc = mtod(m, struct llc *);
1663 		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1664 		llc->llc_control = LLC_UI;
1665 		llc->llc_snap.org_code[0] = 0;
1666 		llc->llc_snap.org_code[1] = 0;
1667 		llc->llc_snap.org_code[2] = 0;
1668 		llc->llc_snap.ether_type = eh.ether_type;
1669 	} else {
1670 #ifdef IEEE80211_SUPPORT_SUPERG
1671 		/*
1672 		 * Aggregated frame.  Check if it's for AMSDU or FF.
1673 		 *
1674 		 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented
1675 		 * anywhere for some reason.  But, since 11n requires
1676 		 * AMSDU RX, we can just assume "11n" == "AMSDU".
1677 		 */
1678 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__);
1679 		if (ieee80211_amsdu_tx_ok(ni)) {
1680 			m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key);
1681 			is_amsdu = 1;
1682 		} else {
1683 			m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1684 		}
1685 		if (m == NULL)
1686 #endif
1687 			goto bad;
1688 	}
1689 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1690 
1691 	M_PREPEND(m, hdrspace + meshhdrsize, IEEE80211_M_NOWAIT);
1692 	if (m == NULL) {
1693 		vap->iv_stats.is_tx_nobuf++;
1694 		goto bad;
1695 	}
1696 	wh = mtod(m, struct ieee80211_frame *);
1697 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1698 	*(uint16_t *)wh->i_dur = 0;
1699 	qos = NULL;	/* NB: quiet compiler */
1700 	if (is4addr) {
1701 		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1702 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1703 		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1704 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1705 		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1706 	} else switch (vap->iv_opmode) {
1707 	case IEEE80211_M_STA:
1708 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1709 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1710 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1711 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1712 		break;
1713 	case IEEE80211_M_IBSS:
1714 	case IEEE80211_M_AHDEMO:
1715 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1716 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1717 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1718 		/*
1719 		 * NB: always use the bssid from iv_bss as the
1720 		 *     neighbor's may be stale after an ibss merge
1721 		 */
1722 		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1723 		break;
1724 	case IEEE80211_M_HOSTAP:
1725 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1726 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1727 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1728 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1729 		break;
1730 #ifdef IEEE80211_SUPPORT_MESH
1731 	case IEEE80211_M_MBSS:
1732 		/* NB: offset by hdrspace to deal with DATAPAD */
1733 		mc = (struct ieee80211_meshcntl_ae10 *)
1734 		     (mtod(m, uint8_t *) + hdrspace);
1735 		wh->i_fc[1] = dir;
1736 		switch (meshae) {
1737 		case IEEE80211_MESH_AE_00:	/* no proxy */
1738 			mc->mc_flags = 0;
1739 			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1740 				IEEE80211_ADDR_COPY(wh->i_addr1,
1741 				    ni->ni_macaddr);
1742 				IEEE80211_ADDR_COPY(wh->i_addr2,
1743 				    vap->iv_myaddr);
1744 				IEEE80211_ADDR_COPY(wh->i_addr3,
1745 				    eh.ether_dhost);
1746 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1747 				    eh.ether_shost);
1748 				qos =((struct ieee80211_qosframe_addr4 *)
1749 				    wh)->i_qos;
1750 			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1751 				 /* mcast */
1752 				IEEE80211_ADDR_COPY(wh->i_addr1,
1753 				    eh.ether_dhost);
1754 				IEEE80211_ADDR_COPY(wh->i_addr2,
1755 				    vap->iv_myaddr);
1756 				IEEE80211_ADDR_COPY(wh->i_addr3,
1757 				    eh.ether_shost);
1758 				qos = ((struct ieee80211_qosframe *)
1759 				    wh)->i_qos;
1760 			}
1761 			break;
1762 		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
1763 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1764 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1765 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1766 			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1767 			mc->mc_flags = 1;
1768 			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1769 			    eh.ether_shost);
1770 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1771 			break;
1772 		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
1773 			KASSERT(rt != NULL, ("route is NULL"));
1774 			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1775 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1776 			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1777 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1778 			mc->mc_flags = IEEE80211_MESH_AE_10;
1779 			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1780 			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1781 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1782 			break;
1783 		default:
1784 			KASSERT(0, ("meshae %d", meshae));
1785 			break;
1786 		}
1787 		mc->mc_ttl = ms->ms_ttl;
1788 		ms->ms_seq++;
1789 		le32enc(mc->mc_seq, ms->ms_seq);
1790 		break;
1791 #endif
1792 	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1793 	default:
1794 		goto bad;
1795 	}
1796 	if (m->m_flags & M_MORE_DATA)
1797 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1798 	if (addqos) {
1799 		int ac, tid;
1800 
1801 		if (is4addr) {
1802 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1803 		/* NB: mesh case handled earlier */
1804 		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1805 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1806 		ac = M_WME_GETAC(m);
1807 		/* map from access class/queue to 11e header priorty value */
1808 		tid = WME_AC_TO_TID(ac);
1809 		qos[0] = tid & IEEE80211_QOS_TID;
1810 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1811 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1812 #ifdef IEEE80211_SUPPORT_MESH
1813 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1814 			qos[1] = IEEE80211_QOS_MC;
1815 		else
1816 #endif
1817 			qos[1] = 0;
1818 		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS_DATA;
1819 
1820 		/*
1821 		 * If this is an A-MSDU then ensure we set the
1822 		 * relevant field.
1823 		 */
1824 		if (is_amsdu)
1825 			qos[0] |= IEEE80211_QOS_AMSDU;
1826 
1827 		/*
1828 		 * XXX TODO TX lock is needed for atomic updates of sequence
1829 		 * numbers.  If the driver does it, then don't do it here;
1830 		 * and we don't need the TX lock held.
1831 		 */
1832 		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1833 			/*
1834 			 * 802.11-2012 9.3.2.10 -
1835 			 *
1836 			 * If this is a multicast frame then we need
1837 			 * to ensure that the sequence number comes from
1838 			 * a separate seqno space and not the TID space.
1839 			 *
1840 			 * Otherwise multicast frames may actually cause
1841 			 * holes in the TX blockack window space and
1842 			 * upset various things.
1843 			 */
1844 			if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1845 				seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1846 			else
1847 				seqno = ni->ni_txseqs[tid]++;
1848 
1849 			/*
1850 			 * NB: don't assign a sequence # to potential
1851 			 * aggregates; we expect this happens at the
1852 			 * point the frame comes off any aggregation q
1853 			 * as otherwise we may introduce holes in the
1854 			 * BA sequence space and/or make window accouting
1855 			 * more difficult.
1856 			 *
1857 			 * XXX may want to control this with a driver
1858 			 * capability; this may also change when we pull
1859 			 * aggregation up into net80211
1860 			 */
1861 			*(uint16_t *)wh->i_seq =
1862 			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1863 			M_SEQNO_SET(m, seqno);
1864 		} else {
1865 			/* NB: zero out i_seq field (for s/w encryption etc) */
1866 			*(uint16_t *)wh->i_seq = 0;
1867 		}
1868 	} else {
1869 		/*
1870 		 * XXX TODO TX lock is needed for atomic updates of sequence
1871 		 * numbers.  If the driver does it, then don't do it here;
1872 		 * and we don't need the TX lock held.
1873 		 */
1874 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1875 		*(uint16_t *)wh->i_seq =
1876 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1877 		M_SEQNO_SET(m, seqno);
1878 
1879 		/*
1880 		 * XXX TODO: we shouldn't allow EAPOL, etc that would
1881 		 * be forced to be non-QoS traffic to be A-MSDU encapsulated.
1882 		 */
1883 		if (is_amsdu)
1884 			printf("%s: XXX ERROR: is_amsdu set; not QoS!\n",
1885 			    __func__);
1886 	}
1887 
1888 	/*
1889 	 * Check if xmit fragmentation is required.
1890 	 *
1891 	 * If the hardware does fragmentation offload, then don't bother
1892 	 * doing it here.
1893 	 */
1894 	if (IEEE80211_CONF_FRAG_OFFLOAD(ic))
1895 		txfrag = 0;
1896 	else
1897 		txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1898 		    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1899 		    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1900 		    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1901 
1902 	if (key != NULL) {
1903 		/*
1904 		 * IEEE 802.1X: send EAPOL frames always in the clear.
1905 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1906 		 */
1907 		if ((m->m_flags & M_EAPOL) == 0 ||
1908 		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1909 		     (vap->iv_opmode == IEEE80211_M_STA ?
1910 		      !IEEE80211_KEY_UNDEFINED(key) :
1911 		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1912 			wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1913 			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1914 				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1915 				    eh.ether_dhost,
1916 				    "%s", "enmic failed, discard frame");
1917 				vap->iv_stats.is_crypto_enmicfail++;
1918 				goto bad;
1919 			}
1920 		}
1921 	}
1922 	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1923 	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1924 		goto bad;
1925 
1926 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1927 
1928 	IEEE80211_NODE_STAT(ni, tx_data);
1929 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1930 		IEEE80211_NODE_STAT(ni, tx_mcast);
1931 		m->m_flags |= M_MCAST;
1932 	} else
1933 		IEEE80211_NODE_STAT(ni, tx_ucast);
1934 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1935 
1936 	return m;
1937 bad:
1938 	if (m != NULL)
1939 		m_freem(m);
1940 	return NULL;
1941 #undef WH4
1942 #undef MC01
1943 }
1944 
1945 void
1946 ieee80211_free_mbuf(struct mbuf *m)
1947 {
1948 	struct mbuf *next;
1949 
1950 	if (m == NULL)
1951 		return;
1952 
1953 	do {
1954 		next = m->m_nextpkt;
1955 		m->m_nextpkt = NULL;
1956 		m_freem(m);
1957 	} while ((m = next) != NULL);
1958 }
1959 
1960 /*
1961  * Fragment the frame according to the specified mtu.
1962  * The size of the 802.11 header (w/o padding) is provided
1963  * so we don't need to recalculate it.  We create a new
1964  * mbuf for each fragment and chain it through m_nextpkt;
1965  * we might be able to optimize this by reusing the original
1966  * packet's mbufs but that is significantly more complicated.
1967  */
1968 static int
1969 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1970 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1971 {
1972 	struct ieee80211com *ic = vap->iv_ic;
1973 	struct ieee80211_frame *wh, *whf;
1974 	struct mbuf *m, *prev;
1975 	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1976 	u_int hdrspace;
1977 
1978 	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1979 	KASSERT(m0->m_pkthdr.len > mtu,
1980 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1981 
1982 	/*
1983 	 * Honor driver DATAPAD requirement.
1984 	 */
1985 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1986 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1987 	else
1988 		hdrspace = hdrsize;
1989 
1990 	wh = mtod(m0, struct ieee80211_frame *);
1991 	/* NB: mark the first frag; it will be propagated below */
1992 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1993 	totalhdrsize = hdrspace + ciphdrsize;
1994 	fragno = 1;
1995 	off = mtu - ciphdrsize;
1996 	remainder = m0->m_pkthdr.len - off;
1997 	prev = m0;
1998 	do {
1999 		fragsize = MIN(totalhdrsize + remainder, mtu);
2000 		m = m_get2(fragsize, IEEE80211_M_NOWAIT, MT_DATA, M_PKTHDR);
2001 		if (m == NULL)
2002 			goto bad;
2003 		/* leave room to prepend any cipher header */
2004 		m_align(m, fragsize - ciphdrsize);
2005 
2006 		/*
2007 		 * Form the header in the fragment.  Note that since
2008 		 * we mark the first fragment with the MORE_FRAG bit
2009 		 * it automatically is propagated to each fragment; we
2010 		 * need only clear it on the last fragment (done below).
2011 		 * NB: frag 1+ dont have Mesh Control field present.
2012 		 */
2013 		whf = mtod(m, struct ieee80211_frame *);
2014 		memcpy(whf, wh, hdrsize);
2015 #ifdef IEEE80211_SUPPORT_MESH
2016 		if (vap->iv_opmode == IEEE80211_M_MBSS)
2017 			ieee80211_getqos(wh)[1] &= ~IEEE80211_QOS_MC;
2018 #endif
2019 		*(uint16_t *)&whf->i_seq[0] |= htole16(
2020 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
2021 				IEEE80211_SEQ_FRAG_SHIFT);
2022 		fragno++;
2023 
2024 		payload = fragsize - totalhdrsize;
2025 		/* NB: destination is known to be contiguous */
2026 
2027 		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
2028 		m->m_len = hdrspace + payload;
2029 		m->m_pkthdr.len = hdrspace + payload;
2030 		m->m_flags |= M_FRAG;
2031 
2032 		/* chain up the fragment */
2033 		prev->m_nextpkt = m;
2034 		prev = m;
2035 
2036 		/* deduct fragment just formed */
2037 		remainder -= payload;
2038 		off += payload;
2039 	} while (remainder != 0);
2040 
2041 	/* set the last fragment */
2042 	m->m_flags |= M_LASTFRAG;
2043 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
2044 
2045 	/* strip first mbuf now that everything has been copied */
2046 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
2047 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
2048 
2049 	vap->iv_stats.is_tx_fragframes++;
2050 	vap->iv_stats.is_tx_frags += fragno-1;
2051 
2052 	return 1;
2053 bad:
2054 	/* reclaim fragments but leave original frame for caller to free */
2055 	ieee80211_free_mbuf(m0->m_nextpkt);
2056 	m0->m_nextpkt = NULL;
2057 	return 0;
2058 }
2059 
2060 /*
2061  * Add a supported rates element id to a frame.
2062  */
2063 uint8_t *
2064 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
2065 {
2066 	int nrates;
2067 
2068 	*frm++ = IEEE80211_ELEMID_RATES;
2069 	nrates = rs->rs_nrates;
2070 	if (nrates > IEEE80211_RATE_SIZE)
2071 		nrates = IEEE80211_RATE_SIZE;
2072 	*frm++ = nrates;
2073 	memcpy(frm, rs->rs_rates, nrates);
2074 	return frm + nrates;
2075 }
2076 
2077 /*
2078  * Add an extended supported rates element id to a frame.
2079  */
2080 uint8_t *
2081 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
2082 {
2083 	/*
2084 	 * Add an extended supported rates element if operating in 11g mode.
2085 	 */
2086 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2087 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2088 		*frm++ = IEEE80211_ELEMID_XRATES;
2089 		*frm++ = nrates;
2090 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2091 		frm += nrates;
2092 	}
2093 	return frm;
2094 }
2095 
2096 /*
2097  * Add an ssid element to a frame.
2098  */
2099 uint8_t *
2100 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
2101 {
2102 	*frm++ = IEEE80211_ELEMID_SSID;
2103 	*frm++ = len;
2104 	memcpy(frm, ssid, len);
2105 	return frm + len;
2106 }
2107 
2108 /*
2109  * Add an erp element to a frame.
2110  */
2111 static uint8_t *
2112 ieee80211_add_erp(uint8_t *frm, struct ieee80211vap *vap)
2113 {
2114 	struct ieee80211com *ic = vap->iv_ic;
2115 	uint8_t erp;
2116 
2117 	*frm++ = IEEE80211_ELEMID_ERP;
2118 	*frm++ = 1;
2119 	erp = 0;
2120 
2121 	/*
2122 	 * TODO:  This uses the global flags for now because
2123 	 * the per-VAP flags are fine for per-VAP, but don't
2124 	 * take into account which VAPs share the same channel
2125 	 * and which are on different channels.
2126 	 *
2127 	 * ERP and HT/VHT protection mode is a function of
2128 	 * how many stations are on a channel, not specifically
2129 	 * the VAP or global.  But, until we grow that status,
2130 	 * the global flag will have to do.
2131 	 */
2132 	if (ic->ic_flags_ext & IEEE80211_FEXT_NONERP_PR)
2133 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
2134 
2135 	/*
2136 	 * TODO: same as above; these should be based not
2137 	 * on the vap or ic flags, but instead on a combination
2138 	 * of per-VAP and channels.
2139 	 */
2140 	if (ic->ic_flags & IEEE80211_F_USEPROT)
2141 		erp |= IEEE80211_ERP_USE_PROTECTION;
2142 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
2143 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
2144 	*frm++ = erp;
2145 	return frm;
2146 }
2147 
2148 /*
2149  * Add a CFParams element to a frame.
2150  */
2151 static uint8_t *
2152 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
2153 {
2154 #define	ADDSHORT(frm, v) do {	\
2155 	le16enc(frm, v);	\
2156 	frm += 2;		\
2157 } while (0)
2158 	*frm++ = IEEE80211_ELEMID_CFPARMS;
2159 	*frm++ = 6;
2160 	*frm++ = 0;		/* CFP count */
2161 	*frm++ = 2;		/* CFP period */
2162 	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
2163 	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
2164 	return frm;
2165 #undef ADDSHORT
2166 }
2167 
2168 static __inline uint8_t *
2169 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
2170 {
2171 	memcpy(frm, ie->ie_data, ie->ie_len);
2172 	return frm + ie->ie_len;
2173 }
2174 
2175 static __inline uint8_t *
2176 add_ie(uint8_t *frm, const uint8_t *ie)
2177 {
2178 	memcpy(frm, ie, 2 + ie[1]);
2179 	return frm + 2 + ie[1];
2180 }
2181 
2182 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
2183 /*
2184  * Add a WME information element to a frame.
2185  */
2186 uint8_t *
2187 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme,
2188     struct ieee80211_node *ni)
2189 {
2190 	static const uint8_t oui[4] = { WME_OUI_BYTES, WME_OUI_TYPE };
2191 	struct ieee80211vap *vap = ni->ni_vap;
2192 
2193 	*frm++ = IEEE80211_ELEMID_VENDOR;
2194 	*frm++ = sizeof(struct ieee80211_wme_info) - 2;
2195 	memcpy(frm, oui, sizeof(oui));
2196 	frm += sizeof(oui);
2197 	*frm++ = WME_INFO_OUI_SUBTYPE;
2198 	*frm++ = WME_VERSION;
2199 
2200 	/* QoS info field depends upon operating mode */
2201 	switch (vap->iv_opmode) {
2202 	case IEEE80211_M_HOSTAP:
2203 		*frm = wme->wme_bssChanParams.cap_info;
2204 		if (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD)
2205 			*frm |= WME_CAPINFO_UAPSD_EN;
2206 		frm++;
2207 		break;
2208 	case IEEE80211_M_STA:
2209 		/*
2210 		 * NB: UAPSD drivers must set this up in their
2211 		 * VAP creation method.
2212 		 */
2213 		*frm++ = vap->iv_uapsdinfo;
2214 		break;
2215 	default:
2216 		*frm++ = 0;
2217 		break;
2218 	}
2219 
2220 	return frm;
2221 }
2222 
2223 /*
2224  * Add a WME parameters element to a frame.
2225  */
2226 static uint8_t *
2227 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme,
2228     int uapsd_enable)
2229 {
2230 #define	ADDSHORT(frm, v) do {	\
2231 	le16enc(frm, v);	\
2232 	frm += 2;		\
2233 } while (0)
2234 	/* NB: this works 'cuz a param has an info at the front */
2235 	static const struct ieee80211_wme_info param = {
2236 		.wme_id		= IEEE80211_ELEMID_VENDOR,
2237 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
2238 		.wme_oui	= { WME_OUI_BYTES },
2239 		.wme_type	= WME_OUI_TYPE,
2240 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
2241 		.wme_version	= WME_VERSION,
2242 	};
2243 	int i;
2244 
2245 	memcpy(frm, &param, sizeof(param));
2246 	frm += __offsetof(struct ieee80211_wme_info, wme_info);
2247 	*frm = wme->wme_bssChanParams.cap_info;	/* AC info */
2248 	if (uapsd_enable)
2249 		*frm |= WME_CAPINFO_UAPSD_EN;
2250 	frm++;
2251 	*frm++ = 0;					/* reserved field */
2252 	/* XXX TODO - U-APSD bits - SP, flags below */
2253 	for (i = 0; i < WME_NUM_AC; i++) {
2254 		const struct wmeParams *ac =
2255 		       &wme->wme_bssChanParams.cap_wmeParams[i];
2256 		*frm++ = _IEEE80211_SHIFTMASK(i, WME_PARAM_ACI)
2257 		       | _IEEE80211_SHIFTMASK(ac->wmep_acm, WME_PARAM_ACM)
2258 		       | _IEEE80211_SHIFTMASK(ac->wmep_aifsn, WME_PARAM_AIFSN)
2259 		       ;
2260 		*frm++ = _IEEE80211_SHIFTMASK(ac->wmep_logcwmax,
2261 			    WME_PARAM_LOGCWMAX)
2262 		       | _IEEE80211_SHIFTMASK(ac->wmep_logcwmin,
2263 			    WME_PARAM_LOGCWMIN)
2264 		       ;
2265 		ADDSHORT(frm, ac->wmep_txopLimit);
2266 	}
2267 	return frm;
2268 #undef ADDSHORT
2269 }
2270 #undef WME_OUI_BYTES
2271 
2272 /*
2273  * Add an 11h Power Constraint element to a frame.
2274  */
2275 static uint8_t *
2276 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
2277 {
2278 	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
2279 	/* XXX per-vap tx power limit? */
2280 	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
2281 
2282 	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
2283 	frm[1] = 1;
2284 	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
2285 	return frm + 3;
2286 }
2287 
2288 /*
2289  * Add an 11h Power Capability element to a frame.
2290  */
2291 static uint8_t *
2292 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
2293 {
2294 	frm[0] = IEEE80211_ELEMID_PWRCAP;
2295 	frm[1] = 2;
2296 	frm[2] = c->ic_minpower;
2297 	frm[3] = c->ic_maxpower;
2298 	return frm + 4;
2299 }
2300 
2301 /*
2302  * Add an 11h Supported Channels element to a frame.
2303  */
2304 static uint8_t *
2305 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
2306 {
2307 	static const int ielen = 26;
2308 
2309 	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
2310 	frm[1] = ielen;
2311 	/* XXX not correct */
2312 	memcpy(frm+2, ic->ic_chan_avail, ielen);
2313 	return frm + 2 + ielen;
2314 }
2315 
2316 /*
2317  * Add an 11h Quiet time element to a frame.
2318  */
2319 static uint8_t *
2320 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap, int update)
2321 {
2322 	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
2323 
2324 	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
2325 	quiet->len = 6;
2326 
2327 	/*
2328 	 * Only update every beacon interval - otherwise probe responses
2329 	 * would update the quiet count value.
2330 	 */
2331 	if (update) {
2332 		if (vap->iv_quiet_count_value == 1)
2333 			vap->iv_quiet_count_value = vap->iv_quiet_count;
2334 		else if (vap->iv_quiet_count_value > 1)
2335 			vap->iv_quiet_count_value--;
2336 	}
2337 
2338 	if (vap->iv_quiet_count_value == 0) {
2339 		/* value 0 is reserved as per 802.11h standerd */
2340 		vap->iv_quiet_count_value = 1;
2341 	}
2342 
2343 	quiet->tbttcount = vap->iv_quiet_count_value;
2344 	quiet->period = vap->iv_quiet_period;
2345 	quiet->duration = htole16(vap->iv_quiet_duration);
2346 	quiet->offset = htole16(vap->iv_quiet_offset);
2347 	return frm + sizeof(*quiet);
2348 }
2349 
2350 /*
2351  * Add an 11h Channel Switch Announcement element to a frame.
2352  * Note that we use the per-vap CSA count to adjust the global
2353  * counter so we can use this routine to form probe response
2354  * frames and get the current count.
2355  */
2356 static uint8_t *
2357 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
2358 {
2359 	struct ieee80211com *ic = vap->iv_ic;
2360 	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
2361 
2362 	csa->csa_ie = IEEE80211_ELEMID_CSA;
2363 	csa->csa_len = 3;
2364 	csa->csa_mode = 1;		/* XXX force quiet on channel */
2365 	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
2366 	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
2367 	return frm + sizeof(*csa);
2368 }
2369 
2370 /*
2371  * Add an 11h country information element to a frame.
2372  */
2373 static uint8_t *
2374 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
2375 {
2376 
2377 	if (ic->ic_countryie == NULL ||
2378 	    ic->ic_countryie_chan != ic->ic_bsschan) {
2379 		/*
2380 		 * Handle lazy construction of ie.  This is done on
2381 		 * first use and after a channel change that requires
2382 		 * re-calculation.
2383 		 */
2384 		if (ic->ic_countryie != NULL)
2385 			IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
2386 		ic->ic_countryie = ieee80211_alloc_countryie(ic);
2387 		if (ic->ic_countryie == NULL)
2388 			return frm;
2389 		ic->ic_countryie_chan = ic->ic_bsschan;
2390 	}
2391 	return add_appie(frm, ic->ic_countryie);
2392 }
2393 
2394 uint8_t *
2395 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
2396 {
2397 	if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
2398 		return (add_ie(frm, vap->iv_wpa_ie));
2399 	else {
2400 		/* XXX else complain? */
2401 		return (frm);
2402 	}
2403 }
2404 
2405 uint8_t *
2406 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
2407 {
2408 	if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
2409 		return (add_ie(frm, vap->iv_rsn_ie));
2410 	else {
2411 		/* XXX else complain? */
2412 		return (frm);
2413 	}
2414 }
2415 
2416 uint8_t *
2417 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
2418 {
2419 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
2420 		*frm++ = IEEE80211_ELEMID_QOS;
2421 		*frm++ = 1;
2422 		*frm++ = 0;
2423 	}
2424 
2425 	return (frm);
2426 }
2427 
2428 /*
2429  * ieee80211_send_probereq(): send a probe request frame with the specified ssid
2430  * and any optional information element data;  some helper functions as FW based
2431  * HW scans need some of that information passed too.
2432  */
2433 static uint32_t
2434 ieee80211_probereq_ie_len(struct ieee80211vap *vap, struct ieee80211com *ic)
2435 {
2436 	const struct ieee80211_rateset *rs;
2437 
2438 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2439 
2440 	/*
2441 	 * prreq frame format
2442 	 *	[tlv] ssid
2443 	 *	[tlv] supported rates
2444 	 *	[tlv] extended supported rates (if needed)
2445 	 *	[tlv] HT cap (optional)
2446 	 *	[tlv] VHT cap (optional)
2447 	 *	[tlv] WPA (optional)
2448 	 *	[tlv] user-specified ie's
2449 	 */
2450 	return ( 2 + IEEE80211_NWID_LEN
2451 	       + 2 + IEEE80211_RATE_SIZE
2452 	       + ((rs->rs_nrates > IEEE80211_RATE_SIZE) ?
2453 	           2 + (rs->rs_nrates - IEEE80211_RATE_SIZE) : 0)
2454 	       + (((vap->iv_opmode == IEEE80211_M_IBSS) &&
2455 		    (vap->iv_flags_ht & IEEE80211_FHT_HT)) ?
2456 	                sizeof(struct ieee80211_ie_htcap) : 0)
2457 #ifdef notyet
2458 	       + sizeof(struct ieee80211_ie_htinfo)	/* XXX not needed? */
2459 	       + 2 + sizeof(struct ieee80211_vht_cap)
2460 #endif
2461 	       + ((vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) ?
2462 	           vap->iv_wpa_ie[1] : 0)
2463 	       + (vap->iv_appie_probereq != NULL ?
2464 		   vap->iv_appie_probereq->ie_len : 0)
2465 	);
2466 }
2467 
2468 int
2469 ieee80211_probereq_ie(struct ieee80211vap *vap, struct ieee80211com *ic,
2470     uint8_t **frmp, uint32_t *frmlen, const uint8_t *ssid, size_t ssidlen,
2471     bool alloc)
2472 {
2473 	const struct ieee80211_rateset *rs;
2474 	uint8_t	*frm;
2475 	uint32_t len;
2476 
2477 	if (!alloc && (frmp == NULL || frmlen == NULL))
2478 		return (EINVAL);
2479 
2480 	len = ieee80211_probereq_ie_len(vap, ic);
2481 	if (!alloc && len > *frmlen)
2482 		return (ENOBUFS);
2483 
2484 	/* For HW scans we usually do not pass in the SSID as IE. */
2485 	if (ssidlen == -1)
2486 		len -= (2 + IEEE80211_NWID_LEN);
2487 
2488 	if (alloc) {
2489 		frm = IEEE80211_MALLOC(len, M_80211_VAP,
2490 		    IEEE80211_M_WAITOK | IEEE80211_M_ZERO);
2491 		*frmp = frm;
2492 		*frmlen = len;
2493 	} else
2494 		frm = *frmp;
2495 
2496 	if (ssidlen != -1)
2497 		frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2498 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2499 	frm = ieee80211_add_rates(frm, rs);
2500 	frm = ieee80211_add_xrates(frm, rs);
2501 
2502 	/*
2503 	 * Note: we can't use bss; we don't have one yet.
2504 	 *
2505 	 * So, we should announce our capabilities
2506 	 * in this channel mode (2g/5g), not the
2507 	 * channel details itself.
2508 	 */
2509 	if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
2510 	    (vap->iv_flags_ht & IEEE80211_FHT_HT)) {
2511 		struct ieee80211_channel *c;
2512 
2513 		/*
2514 		 * Get the HT channel that we should try upgrading to.
2515 		 * If we can do 40MHz then this'll upgrade it appropriately.
2516 		 */
2517 		c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2518 		    vap->iv_flags_ht);
2519 		frm = ieee80211_add_htcap_ch(frm, vap, c);
2520 	}
2521 
2522 	/*
2523 	 * XXX TODO: need to figure out what/how to update the
2524 	 * VHT channel.
2525 	 */
2526 #ifdef notyet
2527 	if (vap->iv_vht_flags & IEEE80211_FVHT_VHT) {
2528 		struct ieee80211_channel *c;
2529 
2530 		c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2531 		    vap->iv_flags_ht);
2532 		c = ieee80211_vht_adjust_channel(ic, c, vap->iv_vht_flags);
2533 		frm = ieee80211_add_vhtcap_ch(frm, vap, c);
2534 	}
2535 #endif
2536 
2537 	frm = ieee80211_add_wpa(frm, vap);
2538 	if (vap->iv_appie_probereq != NULL)
2539 		frm = add_appie(frm, vap->iv_appie_probereq);
2540 
2541 	if (!alloc) {
2542 		*frmp = frm;
2543 		*frmlen = len;
2544 	}
2545 
2546 	return (0);
2547 }
2548 
2549 int
2550 ieee80211_send_probereq(struct ieee80211_node *ni,
2551 	const uint8_t sa[IEEE80211_ADDR_LEN],
2552 	const uint8_t da[IEEE80211_ADDR_LEN],
2553 	const uint8_t bssid[IEEE80211_ADDR_LEN],
2554 	const uint8_t *ssid, size_t ssidlen)
2555 {
2556 	struct ieee80211vap *vap = ni->ni_vap;
2557 	struct ieee80211com *ic = ni->ni_ic;
2558 	struct ieee80211_node *bss;
2559 	const struct ieee80211_txparam *tp;
2560 	struct ieee80211_bpf_params params;
2561 	struct mbuf *m;
2562 	uint8_t *frm;
2563 	uint32_t frmlen;
2564 	int ret;
2565 
2566 	bss = ieee80211_ref_node(vap->iv_bss);
2567 
2568 	if (vap->iv_state == IEEE80211_S_CAC) {
2569 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
2570 		    "block %s frame in CAC state", "probe request");
2571 		vap->iv_stats.is_tx_badstate++;
2572 		ieee80211_free_node(bss);
2573 		return EIO;		/* XXX */
2574 	}
2575 
2576 	/*
2577 	 * Hold a reference on the node so it doesn't go away until after
2578 	 * the xmit is complete all the way in the driver.  On error we
2579 	 * will remove our reference.
2580 	 */
2581 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2582 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2583 		__func__, __LINE__,
2584 		ni, ether_sprintf(ni->ni_macaddr),
2585 		ieee80211_node_refcnt(ni)+1);
2586 	ieee80211_ref_node(ni);
2587 
2588 	/* See comments above for entire frame format. */
2589 	frmlen = ieee80211_probereq_ie_len(vap, ic);
2590 	m = ieee80211_getmgtframe(&frm,
2591 	    ic->ic_headroom + sizeof(struct ieee80211_frame), frmlen);
2592 	if (m == NULL) {
2593 		vap->iv_stats.is_tx_nobuf++;
2594 		ieee80211_free_node(ni);
2595 		ieee80211_free_node(bss);
2596 		return ENOMEM;
2597 	}
2598 
2599 	ret = ieee80211_probereq_ie(vap, ic, &frm, &frmlen, ssid, ssidlen,
2600 	    false);
2601 	KASSERT(ret == 0,
2602 	    ("%s: ieee80211_probereq_ie failed: %d\n", __func__, ret));
2603 
2604 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2605 	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2606 	    ("leading space %zd", M_LEADINGSPACE(m)));
2607 	M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
2608 	if (m == NULL) {
2609 		/* NB: cannot happen */
2610 		ieee80211_free_node(ni);
2611 		ieee80211_free_node(bss);
2612 		return ENOMEM;
2613 	}
2614 
2615 	IEEE80211_TX_LOCK(ic);
2616 	ieee80211_send_setup(ni, m,
2617 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2618 	     IEEE80211_NONQOS_TID, sa, da, bssid);
2619 	/* XXX power management? */
2620 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2621 
2622 	M_WME_SETAC(m, WME_AC_BE);
2623 
2624 	IEEE80211_NODE_STAT(ni, tx_probereq);
2625 	IEEE80211_NODE_STAT(ni, tx_mgmt);
2626 
2627 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2628 	    "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n",
2629 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
2630 	    ether_sprintf(bssid),
2631 	    sa, ":",
2632 	    da, ":",
2633 	    ssidlen, ssid);
2634 
2635 	memset(&params, 0, sizeof(params));
2636 	params.ibp_pri = M_WME_GETAC(m);
2637 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2638 	params.ibp_rate0 = tp->mgmtrate;
2639 	if (IEEE80211_IS_MULTICAST(da)) {
2640 		params.ibp_flags |= IEEE80211_BPF_NOACK;
2641 		params.ibp_try0 = 1;
2642 	} else
2643 		params.ibp_try0 = tp->maxretry;
2644 	params.ibp_power = ni->ni_txpower;
2645 	ret = ieee80211_raw_output(vap, ni, m, &params);
2646 	IEEE80211_TX_UNLOCK(ic);
2647 	ieee80211_free_node(bss);
2648 	return (ret);
2649 }
2650 
2651 /*
2652  * Calculate capability information for mgt frames.
2653  */
2654 uint16_t
2655 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2656 {
2657 	uint16_t capinfo;
2658 
2659 	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2660 
2661 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2662 		capinfo = IEEE80211_CAPINFO_ESS;
2663 	else if (vap->iv_opmode == IEEE80211_M_IBSS)
2664 		capinfo = IEEE80211_CAPINFO_IBSS;
2665 	else
2666 		capinfo = 0;
2667 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2668 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2669 	if ((vap->iv_flags & IEEE80211_F_SHPREAMBLE) &&
2670 	    IEEE80211_IS_CHAN_2GHZ(chan))
2671 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2672 	if (vap->iv_flags & IEEE80211_F_SHSLOT)
2673 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2674 	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2675 		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2676 	return capinfo;
2677 }
2678 
2679 /*
2680  * Send a management frame.  The node is for the destination (or ic_bss
2681  * when in station mode).  Nodes other than ic_bss have their reference
2682  * count bumped to reflect our use for an indeterminant time.
2683  */
2684 int
2685 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2686 {
2687 #define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2688 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2689 	struct ieee80211vap *vap = ni->ni_vap;
2690 	struct ieee80211com *ic = ni->ni_ic;
2691 	struct ieee80211_node *bss = vap->iv_bss;
2692 	struct ieee80211_bpf_params params;
2693 	struct mbuf *m;
2694 	uint8_t *frm;
2695 	uint16_t capinfo;
2696 	int has_challenge, is_shared_key, ret, status;
2697 
2698 	KASSERT(ni != NULL, ("null node"));
2699 
2700 	/*
2701 	 * Hold a reference on the node so it doesn't go away until after
2702 	 * the xmit is complete all the way in the driver.  On error we
2703 	 * will remove our reference.
2704 	 */
2705 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2706 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2707 		__func__, __LINE__,
2708 		ni, ether_sprintf(ni->ni_macaddr),
2709 		ieee80211_node_refcnt(ni)+1);
2710 	ieee80211_ref_node(ni);
2711 
2712 	memset(&params, 0, sizeof(params));
2713 	switch (type) {
2714 	case IEEE80211_FC0_SUBTYPE_AUTH:
2715 		status = arg >> 16;
2716 		arg &= 0xffff;
2717 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2718 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2719 		    ni->ni_challenge != NULL);
2720 
2721 		/*
2722 		 * Deduce whether we're doing open authentication or
2723 		 * shared key authentication.  We do the latter if
2724 		 * we're in the middle of a shared key authentication
2725 		 * handshake or if we're initiating an authentication
2726 		 * request and configured to use shared key.
2727 		 */
2728 		is_shared_key = has_challenge ||
2729 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2730 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2731 		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
2732 
2733 		m = ieee80211_getmgtframe(&frm,
2734 			  ic->ic_headroom + sizeof(struct ieee80211_frame),
2735 			  3 * sizeof(uint16_t)
2736 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2737 				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0));
2738 		if (m == NULL)
2739 			senderr(ENOMEM, is_tx_nobuf);
2740 
2741 		((uint16_t *)frm)[0] =
2742 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2743 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
2744 		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
2745 		((uint16_t *)frm)[2] = htole16(status);/* status */
2746 
2747 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2748 			((uint16_t *)frm)[3] =
2749 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
2750 			    IEEE80211_ELEMID_CHALLENGE);
2751 			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2752 			    IEEE80211_CHALLENGE_LEN);
2753 			m->m_pkthdr.len = m->m_len =
2754 				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2755 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2756 				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2757 				    "request encrypt frame (%s)", __func__);
2758 				/* mark frame for encryption */
2759 				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2760 			}
2761 		} else
2762 			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2763 
2764 		/* XXX not right for shared key */
2765 		if (status == IEEE80211_STATUS_SUCCESS)
2766 			IEEE80211_NODE_STAT(ni, tx_auth);
2767 		else
2768 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
2769 
2770 		if (vap->iv_opmode == IEEE80211_M_STA)
2771 			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2772 				(void *) vap->iv_state);
2773 		break;
2774 
2775 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2776 		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2777 		    "send station deauthenticate (reason: %d (%s))", arg,
2778 		    ieee80211_reason_to_string(arg));
2779 		m = ieee80211_getmgtframe(&frm,
2780 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2781 			sizeof(uint16_t));
2782 		if (m == NULL)
2783 			senderr(ENOMEM, is_tx_nobuf);
2784 		*(uint16_t *)frm = htole16(arg);	/* reason */
2785 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2786 
2787 		IEEE80211_NODE_STAT(ni, tx_deauth);
2788 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2789 
2790 		ieee80211_node_unauthorize(ni);		/* port closed */
2791 		break;
2792 
2793 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2794 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2795 		/*
2796 		 * asreq frame format
2797 		 *	[2] capability information
2798 		 *	[2] listen interval
2799 		 *	[6*] current AP address (reassoc only)
2800 		 *	[tlv] ssid
2801 		 *	[tlv] supported rates
2802 		 *	[tlv] extended supported rates
2803 		 *	[4] power capability (optional)
2804 		 *	[28] supported channels (optional)
2805 		 *	[tlv] HT capabilities
2806 		 *	[tlv] VHT capabilities
2807 		 *	[tlv] WME (optional)
2808 		 *	[tlv] Vendor OUI HT capabilities (optional)
2809 		 *	[tlv] Atheros capabilities (if negotiated)
2810 		 *	[tlv] AppIE's (optional)
2811 		 */
2812 		m = ieee80211_getmgtframe(&frm,
2813 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2814 			 sizeof(uint16_t)
2815 		       + sizeof(uint16_t)
2816 		       + IEEE80211_ADDR_LEN
2817 		       + 2 + IEEE80211_NWID_LEN
2818 		       + 2 + IEEE80211_RATE_SIZE
2819 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2820 		       + 4
2821 		       + 2 + 26
2822 		       + sizeof(struct ieee80211_wme_info)
2823 		       + sizeof(struct ieee80211_ie_htcap)
2824 		       + 2 + sizeof(struct ieee80211_vht_cap)
2825 		       + 4 + sizeof(struct ieee80211_ie_htcap)
2826 #ifdef IEEE80211_SUPPORT_SUPERG
2827 		       + sizeof(struct ieee80211_ath_ie)
2828 #endif
2829 		       + (vap->iv_appie_wpa != NULL ?
2830 				vap->iv_appie_wpa->ie_len : 0)
2831 		       + (vap->iv_appie_assocreq != NULL ?
2832 				vap->iv_appie_assocreq->ie_len : 0)
2833 		);
2834 		if (m == NULL)
2835 			senderr(ENOMEM, is_tx_nobuf);
2836 
2837 		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2838 		    ("wrong mode %u", vap->iv_opmode));
2839 		capinfo = IEEE80211_CAPINFO_ESS;
2840 		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2841 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2842 		/*
2843 		 * NB: Some 11a AP's reject the request when
2844 		 *     short preamble is set.
2845 		 */
2846 		if ((vap->iv_flags & IEEE80211_F_SHPREAMBLE) &&
2847 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2848 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2849 		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2850 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2851 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2852 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2853 		    (vap->iv_flags & IEEE80211_F_DOTH))
2854 			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2855 		*(uint16_t *)frm = htole16(capinfo);
2856 		frm += 2;
2857 
2858 		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2859 		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2860 						    bss->ni_intval));
2861 		frm += 2;
2862 
2863 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2864 			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2865 			frm += IEEE80211_ADDR_LEN;
2866 		}
2867 
2868 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2869 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2870 		frm = ieee80211_add_rsn(frm, vap);
2871 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2872 		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2873 			frm = ieee80211_add_powercapability(frm,
2874 			    ic->ic_curchan);
2875 			frm = ieee80211_add_supportedchannels(frm, ic);
2876 		}
2877 
2878 		/*
2879 		 * Check the channel - we may be using an 11n NIC with an
2880 		 * 11n capable station, but we're configured to be an 11b
2881 		 * channel.
2882 		 */
2883 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2884 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2885 		    ni->ni_ies.htcap_ie != NULL &&
2886 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
2887 			frm = ieee80211_add_htcap(frm, ni);
2888 		}
2889 
2890 		if ((vap->iv_vht_flags & IEEE80211_FVHT_VHT) &&
2891 		    IEEE80211_IS_CHAN_VHT(ni->ni_chan) &&
2892 		    ni->ni_ies.vhtcap_ie != NULL &&
2893 		    ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) {
2894 			frm = ieee80211_add_vhtcap(frm, ni);
2895 		}
2896 
2897 		frm = ieee80211_add_wpa(frm, vap);
2898 		if ((vap->iv_flags & IEEE80211_F_WME) &&
2899 		    ni->ni_ies.wme_ie != NULL)
2900 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme, ni);
2901 
2902 		/*
2903 		 * Same deal - only send HT info if we're on an 11n
2904 		 * capable channel.
2905 		 */
2906 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2907 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2908 		    ni->ni_ies.htcap_ie != NULL &&
2909 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
2910 			frm = ieee80211_add_htcap_vendor(frm, ni);
2911 		}
2912 #ifdef IEEE80211_SUPPORT_SUPERG
2913 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2914 			frm = ieee80211_add_ath(frm,
2915 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2916 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2917 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2918 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2919 		}
2920 #endif /* IEEE80211_SUPPORT_SUPERG */
2921 		if (vap->iv_appie_assocreq != NULL)
2922 			frm = add_appie(frm, vap->iv_appie_assocreq);
2923 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2924 
2925 		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2926 			(void *) vap->iv_state);
2927 		break;
2928 
2929 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2930 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2931 		/*
2932 		 * asresp frame format
2933 		 *	[2] capability information
2934 		 *	[2] status
2935 		 *	[2] association ID
2936 		 *	[tlv] supported rates
2937 		 *	[tlv] extended supported rates
2938 		 *	[tlv] HT capabilities (standard, if STA enabled)
2939 		 *	[tlv] HT information (standard, if STA enabled)
2940 		 *	[tlv] VHT capabilities (standard, if STA enabled)
2941 		 *	[tlv] VHT information (standard, if STA enabled)
2942 		 *	[tlv] WME (if configured and STA enabled)
2943 		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2944 		 *	[tlv] HT information (vendor OUI, if STA enabled)
2945 		 *	[tlv] Atheros capabilities (if STA enabled)
2946 		 *	[tlv] AppIE's (optional)
2947 		 */
2948 		m = ieee80211_getmgtframe(&frm,
2949 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2950 			 sizeof(uint16_t)
2951 		       + sizeof(uint16_t)
2952 		       + sizeof(uint16_t)
2953 		       + 2 + IEEE80211_RATE_SIZE
2954 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2955 		       + sizeof(struct ieee80211_ie_htcap) + 4
2956 		       + sizeof(struct ieee80211_ie_htinfo) + 4
2957 		       + 2 + sizeof(struct ieee80211_vht_cap)
2958 		       + 2 + sizeof(struct ieee80211_vht_operation)
2959 		       + sizeof(struct ieee80211_wme_param)
2960 #ifdef IEEE80211_SUPPORT_SUPERG
2961 		       + sizeof(struct ieee80211_ath_ie)
2962 #endif
2963 		       + (vap->iv_appie_assocresp != NULL ?
2964 				vap->iv_appie_assocresp->ie_len : 0)
2965 		);
2966 		if (m == NULL)
2967 			senderr(ENOMEM, is_tx_nobuf);
2968 
2969 		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2970 		*(uint16_t *)frm = htole16(capinfo);
2971 		frm += 2;
2972 
2973 		*(uint16_t *)frm = htole16(arg);	/* status */
2974 		frm += 2;
2975 
2976 		if (arg == IEEE80211_STATUS_SUCCESS) {
2977 			*(uint16_t *)frm = htole16(ni->ni_associd);
2978 			IEEE80211_NODE_STAT(ni, tx_assoc);
2979 		} else
2980 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2981 		frm += 2;
2982 
2983 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2984 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2985 		/* NB: respond according to what we received */
2986 		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2987 			frm = ieee80211_add_htcap(frm, ni);
2988 			frm = ieee80211_add_htinfo(frm, ni);
2989 		}
2990 		if ((vap->iv_flags & IEEE80211_F_WME) &&
2991 		    ni->ni_ies.wme_ie != NULL)
2992 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme,
2993 			    !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD));
2994 		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2995 			frm = ieee80211_add_htcap_vendor(frm, ni);
2996 			frm = ieee80211_add_htinfo_vendor(frm, ni);
2997 		}
2998 		if (ni->ni_flags & IEEE80211_NODE_VHT) {
2999 			frm = ieee80211_add_vhtcap(frm, ni);
3000 			frm = ieee80211_add_vhtinfo(frm, ni);
3001 		}
3002 #ifdef IEEE80211_SUPPORT_SUPERG
3003 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
3004 			frm = ieee80211_add_ath(frm,
3005 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
3006 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
3007 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
3008 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
3009 #endif /* IEEE80211_SUPPORT_SUPERG */
3010 		if (vap->iv_appie_assocresp != NULL)
3011 			frm = add_appie(frm, vap->iv_appie_assocresp);
3012 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3013 		break;
3014 
3015 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
3016 		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
3017 		    "send station disassociate (reason: %d (%s))", arg,
3018 		    ieee80211_reason_to_string(arg));
3019 		m = ieee80211_getmgtframe(&frm,
3020 			ic->ic_headroom + sizeof(struct ieee80211_frame),
3021 			sizeof(uint16_t));
3022 		if (m == NULL)
3023 			senderr(ENOMEM, is_tx_nobuf);
3024 		*(uint16_t *)frm = htole16(arg);	/* reason */
3025 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
3026 
3027 		IEEE80211_NODE_STAT(ni, tx_disassoc);
3028 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
3029 		break;
3030 
3031 	default:
3032 		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
3033 		    "invalid mgmt frame type %u", type);
3034 		senderr(EINVAL, is_tx_unknownmgt);
3035 		/* NOTREACHED */
3036 	}
3037 
3038 	/* NB: force non-ProbeResp frames to the highest queue */
3039 	params.ibp_pri = WME_AC_VO;
3040 	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
3041 	/* NB: we know all frames are unicast */
3042 	params.ibp_try0 = bss->ni_txparms->maxretry;
3043 	params.ibp_power = bss->ni_txpower;
3044 	return ieee80211_mgmt_output(ni, m, type, &params);
3045 bad:
3046 	ieee80211_free_node(ni);
3047 	return ret;
3048 #undef senderr
3049 #undef HTFLAGS
3050 }
3051 
3052 /*
3053  * Return an mbuf with a probe response frame in it.
3054  * Space is left to prepend and 802.11 header at the
3055  * front but it's left to the caller to fill in.
3056  */
3057 struct mbuf *
3058 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
3059 {
3060 	struct ieee80211vap *vap = bss->ni_vap;
3061 	struct ieee80211com *ic = bss->ni_ic;
3062 	const struct ieee80211_rateset *rs;
3063 	struct mbuf *m;
3064 	uint16_t capinfo;
3065 	uint8_t *frm;
3066 
3067 	/*
3068 	 * probe response frame format
3069 	 *	[8] time stamp
3070 	 *	[2] beacon interval
3071 	 *	[2] cabability information
3072 	 *	[tlv] ssid
3073 	 *	[tlv] supported rates
3074 	 *	[tlv] parameter set (FH/DS)
3075 	 *	[tlv] parameter set (IBSS)
3076 	 *	[tlv] country (optional)
3077 	 *	[3] power control (optional)
3078 	 *	[5] channel switch announcement (CSA) (optional)
3079 	 *	[tlv] extended rate phy (ERP)
3080 	 *	[tlv] extended supported rates
3081 	 *	[tlv] RSN (optional)
3082 	 *	[tlv] HT capabilities
3083 	 *	[tlv] HT information
3084 	 *	[tlv] VHT capabilities
3085 	 *	[tlv] VHT information
3086 	 *	[tlv] WPA (optional)
3087 	 *	[tlv] WME (optional)
3088 	 *	[tlv] Vendor OUI HT capabilities (optional)
3089 	 *	[tlv] Vendor OUI HT information (optional)
3090 	 *	[tlv] Atheros capabilities
3091 	 *	[tlv] AppIE's (optional)
3092 	 *	[tlv] Mesh ID (MBSS)
3093 	 *	[tlv] Mesh Conf (MBSS)
3094 	 */
3095 	m = ieee80211_getmgtframe(&frm,
3096 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
3097 		 8
3098 	       + sizeof(uint16_t)
3099 	       + sizeof(uint16_t)
3100 	       + 2 + IEEE80211_NWID_LEN
3101 	       + 2 + IEEE80211_RATE_SIZE
3102 	       + 7	/* max(7,3) */
3103 	       + IEEE80211_COUNTRY_MAX_SIZE
3104 	       + 3
3105 	       + sizeof(struct ieee80211_csa_ie)
3106 	       + sizeof(struct ieee80211_quiet_ie)
3107 	       + 3
3108 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3109 	       + sizeof(struct ieee80211_ie_wpa)
3110 	       + sizeof(struct ieee80211_ie_htcap)
3111 	       + sizeof(struct ieee80211_ie_htinfo)
3112 	       + sizeof(struct ieee80211_ie_wpa)
3113 	       + sizeof(struct ieee80211_wme_param)
3114 	       + 4 + sizeof(struct ieee80211_ie_htcap)
3115 	       + 4 + sizeof(struct ieee80211_ie_htinfo)
3116 	       + 2 + sizeof(struct ieee80211_vht_cap)
3117 	       + 2 + sizeof(struct ieee80211_vht_operation)
3118 #ifdef IEEE80211_SUPPORT_SUPERG
3119 	       + sizeof(struct ieee80211_ath_ie)
3120 #endif
3121 #ifdef IEEE80211_SUPPORT_MESH
3122 	       + 2 + IEEE80211_MESHID_LEN
3123 	       + sizeof(struct ieee80211_meshconf_ie)
3124 #endif
3125 	       + (vap->iv_appie_proberesp != NULL ?
3126 			vap->iv_appie_proberesp->ie_len : 0)
3127 	);
3128 	if (m == NULL) {
3129 		vap->iv_stats.is_tx_nobuf++;
3130 		return NULL;
3131 	}
3132 
3133 	memset(frm, 0, 8);	/* timestamp should be filled later */
3134 	frm += 8;
3135 	*(uint16_t *)frm = htole16(bss->ni_intval);
3136 	frm += 2;
3137 	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
3138 	*(uint16_t *)frm = htole16(capinfo);
3139 	frm += 2;
3140 
3141 	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
3142 	rs = ieee80211_get_suprates(ic, bss->ni_chan);
3143 	frm = ieee80211_add_rates(frm, rs);
3144 
3145 	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
3146 		*frm++ = IEEE80211_ELEMID_FHPARMS;
3147 		*frm++ = 5;
3148 		*frm++ = bss->ni_fhdwell & 0x00ff;
3149 		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
3150 		*frm++ = IEEE80211_FH_CHANSET(
3151 		    ieee80211_chan2ieee(ic, bss->ni_chan));
3152 		*frm++ = IEEE80211_FH_CHANPAT(
3153 		    ieee80211_chan2ieee(ic, bss->ni_chan));
3154 		*frm++ = bss->ni_fhindex;
3155 	} else {
3156 		*frm++ = IEEE80211_ELEMID_DSPARMS;
3157 		*frm++ = 1;
3158 		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
3159 	}
3160 
3161 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
3162 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
3163 		*frm++ = 2;
3164 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
3165 	}
3166 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3167 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3168 		frm = ieee80211_add_countryie(frm, ic);
3169 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3170 		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
3171 			frm = ieee80211_add_powerconstraint(frm, vap);
3172 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3173 			frm = ieee80211_add_csa(frm, vap);
3174 	}
3175 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3176 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3177 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
3178 			if (vap->iv_quiet)
3179 				frm = ieee80211_add_quiet(frm, vap, 0);
3180 		}
3181 	}
3182 	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
3183 		frm = ieee80211_add_erp(frm, vap);
3184 	frm = ieee80211_add_xrates(frm, rs);
3185 	frm = ieee80211_add_rsn(frm, vap);
3186 	/*
3187 	 * NB: legacy 11b clients do not get certain ie's.
3188 	 *     The caller identifies such clients by passing
3189 	 *     a token in legacy to us.  Could expand this to be
3190 	 *     any legacy client for stuff like HT ie's.
3191 	 */
3192 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
3193 	    legacy != IEEE80211_SEND_LEGACY_11B) {
3194 		frm = ieee80211_add_htcap(frm, bss);
3195 		frm = ieee80211_add_htinfo(frm, bss);
3196 	}
3197 	if (IEEE80211_IS_CHAN_VHT(bss->ni_chan) &&
3198 	    legacy != IEEE80211_SEND_LEGACY_11B) {
3199 		frm = ieee80211_add_vhtcap(frm, bss);
3200 		frm = ieee80211_add_vhtinfo(frm, bss);
3201 	}
3202 	frm = ieee80211_add_wpa(frm, vap);
3203 	if (vap->iv_flags & IEEE80211_F_WME)
3204 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme,
3205 		    !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD));
3206 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
3207 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
3208 	    legacy != IEEE80211_SEND_LEGACY_11B) {
3209 		frm = ieee80211_add_htcap_vendor(frm, bss);
3210 		frm = ieee80211_add_htinfo_vendor(frm, bss);
3211 	}
3212 #ifdef IEEE80211_SUPPORT_SUPERG
3213 	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
3214 	    legacy != IEEE80211_SEND_LEGACY_11B)
3215 		frm = ieee80211_add_athcaps(frm, bss);
3216 #endif
3217 	if (vap->iv_appie_proberesp != NULL)
3218 		frm = add_appie(frm, vap->iv_appie_proberesp);
3219 #ifdef IEEE80211_SUPPORT_MESH
3220 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3221 		frm = ieee80211_add_meshid(frm, vap);
3222 		frm = ieee80211_add_meshconf(frm, vap);
3223 	}
3224 #endif
3225 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3226 
3227 	return m;
3228 }
3229 
3230 /*
3231  * Send a probe response frame to the specified mac address.
3232  * This does not go through the normal mgt frame api so we
3233  * can specify the destination address and re-use the bss node
3234  * for the sta reference.
3235  */
3236 int
3237 ieee80211_send_proberesp(struct ieee80211vap *vap,
3238 	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
3239 {
3240 	struct ieee80211_node *bss = vap->iv_bss;
3241 	struct ieee80211com *ic = vap->iv_ic;
3242 	struct mbuf *m;
3243 	int ret;
3244 
3245 	if (vap->iv_state == IEEE80211_S_CAC) {
3246 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
3247 		    "block %s frame in CAC state", "probe response");
3248 		vap->iv_stats.is_tx_badstate++;
3249 		return EIO;		/* XXX */
3250 	}
3251 
3252 	/*
3253 	 * Hold a reference on the node so it doesn't go away until after
3254 	 * the xmit is complete all the way in the driver.  On error we
3255 	 * will remove our reference.
3256 	 */
3257 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
3258 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
3259 	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
3260 	    ieee80211_node_refcnt(bss)+1);
3261 	ieee80211_ref_node(bss);
3262 
3263 	m = ieee80211_alloc_proberesp(bss, legacy);
3264 	if (m == NULL) {
3265 		ieee80211_free_node(bss);
3266 		return ENOMEM;
3267 	}
3268 
3269 	M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
3270 	KASSERT(m != NULL, ("no room for header"));
3271 
3272 	IEEE80211_TX_LOCK(ic);
3273 	ieee80211_send_setup(bss, m,
3274 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
3275 	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
3276 	/* XXX power management? */
3277 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
3278 
3279 	M_WME_SETAC(m, WME_AC_BE);
3280 
3281 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
3282 	    "send probe resp on channel %u to %s%s\n",
3283 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
3284 	    legacy ? " <legacy>" : "");
3285 	IEEE80211_NODE_STAT(bss, tx_mgmt);
3286 
3287 	ret = ieee80211_raw_output(vap, bss, m, NULL);
3288 	IEEE80211_TX_UNLOCK(ic);
3289 	return (ret);
3290 }
3291 
3292 /*
3293  * Allocate and build a RTS (Request To Send) control frame.
3294  */
3295 struct mbuf *
3296 ieee80211_alloc_rts(struct ieee80211com *ic,
3297 	const uint8_t ra[IEEE80211_ADDR_LEN],
3298 	const uint8_t ta[IEEE80211_ADDR_LEN],
3299 	uint16_t dur)
3300 {
3301 	struct ieee80211_frame_rts *rts;
3302 	struct mbuf *m;
3303 
3304 	/* XXX honor ic_headroom */
3305 	m = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA);
3306 	if (m != NULL) {
3307 		rts = mtod(m, struct ieee80211_frame_rts *);
3308 		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
3309 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
3310 		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3311 		*(u_int16_t *)rts->i_dur = htole16(dur);
3312 		IEEE80211_ADDR_COPY(rts->i_ra, ra);
3313 		IEEE80211_ADDR_COPY(rts->i_ta, ta);
3314 
3315 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
3316 	}
3317 	return m;
3318 }
3319 
3320 /*
3321  * Allocate and build a CTS (Clear To Send) control frame.
3322  */
3323 struct mbuf *
3324 ieee80211_alloc_cts(struct ieee80211com *ic,
3325 	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
3326 {
3327 	struct ieee80211_frame_cts *cts;
3328 	struct mbuf *m;
3329 
3330 	/* XXX honor ic_headroom */
3331 	m = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA);
3332 	if (m != NULL) {
3333 		cts = mtod(m, struct ieee80211_frame_cts *);
3334 		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
3335 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
3336 		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3337 		*(u_int16_t *)cts->i_dur = htole16(dur);
3338 		IEEE80211_ADDR_COPY(cts->i_ra, ra);
3339 
3340 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
3341 	}
3342 	return m;
3343 }
3344 
3345 /*
3346  * Wrapper for CTS/RTS frame allocation.
3347  */
3348 struct mbuf *
3349 ieee80211_alloc_prot(struct ieee80211_node *ni, const struct mbuf *m,
3350     uint8_t rate, int prot)
3351 {
3352 	struct ieee80211com *ic = ni->ni_ic;
3353 	struct ieee80211vap *vap = ni->ni_vap;
3354 	const struct ieee80211_frame *wh;
3355 	struct mbuf *mprot;
3356 	uint16_t dur;
3357 	int pktlen, isshort;
3358 
3359 	KASSERT(prot == IEEE80211_PROT_RTSCTS ||
3360 	    prot == IEEE80211_PROT_CTSONLY,
3361 	    ("wrong protection type %d", prot));
3362 
3363 	wh = mtod(m, const struct ieee80211_frame *);
3364 	pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3365 	isshort = (vap->iv_flags & IEEE80211_F_SHPREAMBLE) != 0;
3366 	dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
3367 	    + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3368 
3369 	if (prot == IEEE80211_PROT_RTSCTS) {
3370 		/* NB: CTS is the same size as an ACK */
3371 		dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3372 		mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
3373 	} else
3374 		mprot = ieee80211_alloc_cts(ic, vap->iv_myaddr, dur);
3375 
3376 	return (mprot);
3377 }
3378 
3379 static void
3380 ieee80211_tx_mgt_timeout(void *arg)
3381 {
3382 	struct ieee80211vap *vap = arg;
3383 
3384 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
3385 	    "vap %p mode %s state %s flags %#x & %#x\n", vap,
3386 	    ieee80211_opmode_name[vap->iv_opmode],
3387 	    ieee80211_state_name[vap->iv_state],
3388 	    vap->iv_ic->ic_flags, IEEE80211_F_SCAN);
3389 
3390 	IEEE80211_LOCK(vap->iv_ic);
3391 	if (vap->iv_state != IEEE80211_S_INIT &&
3392 	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3393 		/*
3394 		 * NB: it's safe to specify a timeout as the reason here;
3395 		 *     it'll only be used in the right state.
3396 		 */
3397 		ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
3398 			IEEE80211_SCAN_FAIL_TIMEOUT);
3399 	}
3400 	IEEE80211_UNLOCK(vap->iv_ic);
3401 }
3402 
3403 /*
3404  * This is the callback set on net80211-sourced transmitted
3405  * authentication request frames.
3406  *
3407  * This does a couple of things:
3408  *
3409  * + If the frame transmitted was a success, it schedules a future
3410  *   event which will transition the interface to scan.
3411  *   If a state transition _then_ occurs before that event occurs,
3412  *   said state transition will cancel this callout.
3413  *
3414  * + If the frame transmit was a failure, it immediately schedules
3415  *   the transition back to scan.
3416  */
3417 static void
3418 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
3419 {
3420 	struct ieee80211vap *vap = ni->ni_vap;
3421 	enum ieee80211_state ostate = (enum ieee80211_state)(uintptr_t)arg;
3422 
3423 	/*
3424 	 * Frame transmit completed; arrange timer callback.  If
3425 	 * transmit was successfully we wait for response.  Otherwise
3426 	 * we arrange an immediate callback instead of doing the
3427 	 * callback directly since we don't know what state the driver
3428 	 * is in (e.g. what locks it is holding).  This work should
3429 	 * not be too time-critical and not happen too often so the
3430 	 * added overhead is acceptable.
3431 	 *
3432 	 * XXX what happens if !acked but response shows up before callback?
3433 	 */
3434 	if (vap->iv_state == ostate) {
3435 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
3436 		    "ni %p mode %s state %s arg %p status %d\n", ni,
3437 		    ieee80211_opmode_name[vap->iv_opmode],
3438 		    ieee80211_state_name[vap->iv_state], arg, status);
3439 
3440 		callout_reset(&vap->iv_mgtsend,
3441 			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
3442 			ieee80211_tx_mgt_timeout, vap);
3443 	}
3444 }
3445 
3446 static void
3447 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
3448 	struct ieee80211_node *ni)
3449 {
3450 	struct ieee80211vap *vap = ni->ni_vap;
3451 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3452 	struct ieee80211com *ic = ni->ni_ic;
3453 	struct ieee80211_rateset *rs = &ni->ni_rates;
3454 	uint16_t capinfo;
3455 
3456 	/*
3457 	 * beacon frame format
3458 	 *
3459 	 * TODO: update to 802.11-2012; a lot of stuff has changed;
3460 	 * vendor extensions should be at the end, etc.
3461 	 *
3462 	 *	[8] time stamp
3463 	 *	[2] beacon interval
3464 	 *	[2] cabability information
3465 	 *	[tlv] ssid
3466 	 *	[tlv] supported rates
3467 	 *	[3] parameter set (DS)
3468 	 *	[8] CF parameter set (optional)
3469 	 *	[tlv] parameter set (IBSS/TIM)
3470 	 *	[tlv] country (optional)
3471 	 *	[3] power control (optional)
3472 	 *	[5] channel switch announcement (CSA) (optional)
3473 	 * XXX TODO: Quiet
3474 	 * XXX TODO: IBSS DFS
3475 	 * XXX TODO: TPC report
3476 	 *	[tlv] extended rate phy (ERP)
3477 	 *	[tlv] extended supported rates
3478 	 *	[tlv] RSN parameters
3479 	 * XXX TODO: BSSLOAD
3480 	 * (XXX EDCA parameter set, QoS capability?)
3481 	 * XXX TODO: AP channel report
3482 	 *
3483 	 *	[tlv] HT capabilities
3484 	 *	[tlv] HT information
3485 	 *	XXX TODO: 20/40 BSS coexistence
3486 	 * Mesh:
3487 	 * XXX TODO: Meshid
3488 	 * XXX TODO: mesh config
3489 	 * XXX TODO: mesh awake window
3490 	 * XXX TODO: beacon timing (mesh, etc)
3491 	 * XXX TODO: MCCAOP Advertisement Overview
3492 	 * XXX TODO: MCCAOP Advertisement
3493 	 * XXX TODO: Mesh channel switch parameters
3494 	 * VHT:
3495 	 * XXX TODO: VHT capabilities
3496 	 * XXX TODO: VHT operation
3497 	 * XXX TODO: VHT transmit power envelope
3498 	 * XXX TODO: channel switch wrapper element
3499 	 * XXX TODO: extended BSS load element
3500 	 *
3501 	 * XXX Vendor-specific OIDs (e.g. Atheros)
3502 	 *	[tlv] WPA parameters
3503 	 *	[tlv] WME parameters
3504 	 *	[tlv] Vendor OUI HT capabilities (optional)
3505 	 *	[tlv] Vendor OUI HT information (optional)
3506 	 *	[tlv] Atheros capabilities (optional)
3507 	 *	[tlv] TDMA parameters (optional)
3508 	 *	[tlv] Mesh ID (MBSS)
3509 	 *	[tlv] Mesh Conf (MBSS)
3510 	 *	[tlv] application data (optional)
3511 	 */
3512 
3513 	memset(bo, 0, sizeof(*bo));
3514 
3515 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
3516 	frm += 8;
3517 	*(uint16_t *)frm = htole16(ni->ni_intval);
3518 	frm += 2;
3519 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3520 	bo->bo_caps = (uint16_t *)frm;
3521 	*(uint16_t *)frm = htole16(capinfo);
3522 	frm += 2;
3523 	*frm++ = IEEE80211_ELEMID_SSID;
3524 	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
3525 		*frm++ = ni->ni_esslen;
3526 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
3527 		frm += ni->ni_esslen;
3528 	} else
3529 		*frm++ = 0;
3530 	frm = ieee80211_add_rates(frm, rs);
3531 	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
3532 		*frm++ = IEEE80211_ELEMID_DSPARMS;
3533 		*frm++ = 1;
3534 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
3535 	}
3536 	if (ic->ic_flags & IEEE80211_F_PCF) {
3537 		bo->bo_cfp = frm;
3538 		frm = ieee80211_add_cfparms(frm, ic);
3539 	}
3540 	bo->bo_tim = frm;
3541 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
3542 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
3543 		*frm++ = 2;
3544 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
3545 		bo->bo_tim_len = 0;
3546 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3547 	    vap->iv_opmode == IEEE80211_M_MBSS) {
3548 		/* TIM IE is the same for Mesh and Hostap */
3549 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
3550 
3551 		tie->tim_ie = IEEE80211_ELEMID_TIM;
3552 		tie->tim_len = 4;	/* length */
3553 		tie->tim_count = 0;	/* DTIM count */
3554 		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
3555 		tie->tim_bitctl = 0;	/* bitmap control */
3556 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
3557 		frm += sizeof(struct ieee80211_tim_ie);
3558 		bo->bo_tim_len = 1;
3559 	}
3560 	bo->bo_tim_trailer = frm;
3561 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3562 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3563 		frm = ieee80211_add_countryie(frm, ic);
3564 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3565 		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
3566 			frm = ieee80211_add_powerconstraint(frm, vap);
3567 		bo->bo_csa = frm;
3568 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3569 			frm = ieee80211_add_csa(frm, vap);
3570 	} else
3571 		bo->bo_csa = frm;
3572 
3573 	bo->bo_quiet = NULL;
3574 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3575 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3576 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
3577 		    (vap->iv_quiet == 1)) {
3578 			/*
3579 			 * We only insert the quiet IE offset if
3580 			 * the quiet IE is enabled.  Otherwise don't
3581 			 * put it here or we'll just overwrite
3582 			 * some other beacon contents.
3583 			 */
3584 			if (vap->iv_quiet) {
3585 				bo->bo_quiet = frm;
3586 				frm = ieee80211_add_quiet(frm,vap, 0);
3587 			}
3588 		}
3589 	}
3590 
3591 	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
3592 		bo->bo_erp = frm;
3593 		frm = ieee80211_add_erp(frm, vap);
3594 	}
3595 	frm = ieee80211_add_xrates(frm, rs);
3596 	frm = ieee80211_add_rsn(frm, vap);
3597 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
3598 		frm = ieee80211_add_htcap(frm, ni);
3599 		bo->bo_htinfo = frm;
3600 		frm = ieee80211_add_htinfo(frm, ni);
3601 	}
3602 
3603 	if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) {
3604 		frm = ieee80211_add_vhtcap(frm, ni);
3605 		bo->bo_vhtinfo = frm;
3606 		frm = ieee80211_add_vhtinfo(frm, ni);
3607 		/* Transmit power envelope */
3608 		/* Channel switch wrapper element */
3609 		/* Extended bss load element */
3610 	}
3611 
3612 	frm = ieee80211_add_wpa(frm, vap);
3613 	if (vap->iv_flags & IEEE80211_F_WME) {
3614 		bo->bo_wme = frm;
3615 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme,
3616 		    !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD));
3617 	}
3618 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
3619 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
3620 		frm = ieee80211_add_htcap_vendor(frm, ni);
3621 		frm = ieee80211_add_htinfo_vendor(frm, ni);
3622 	}
3623 
3624 #ifdef IEEE80211_SUPPORT_SUPERG
3625 	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
3626 		bo->bo_ath = frm;
3627 		frm = ieee80211_add_athcaps(frm, ni);
3628 	}
3629 #endif
3630 #ifdef IEEE80211_SUPPORT_TDMA
3631 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3632 		bo->bo_tdma = frm;
3633 		frm = ieee80211_add_tdma(frm, vap);
3634 	}
3635 #endif
3636 	if (vap->iv_appie_beacon != NULL) {
3637 		bo->bo_appie = frm;
3638 		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
3639 		frm = add_appie(frm, vap->iv_appie_beacon);
3640 	}
3641 
3642 	/* XXX TODO: move meshid/meshconf up to before vendor extensions? */
3643 #ifdef IEEE80211_SUPPORT_MESH
3644 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3645 		frm = ieee80211_add_meshid(frm, vap);
3646 		bo->bo_meshconf = frm;
3647 		frm = ieee80211_add_meshconf(frm, vap);
3648 	}
3649 #endif
3650 	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
3651 	bo->bo_csa_trailer_len = frm - bo->bo_csa;
3652 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3653 }
3654 
3655 /*
3656  * Allocate a beacon frame and fillin the appropriate bits.
3657  */
3658 struct mbuf *
3659 ieee80211_beacon_alloc(struct ieee80211_node *ni)
3660 {
3661 	struct ieee80211vap *vap = ni->ni_vap;
3662 	struct ieee80211com *ic = ni->ni_ic;
3663 	struct ifnet *ifp = vap->iv_ifp;
3664 	struct ieee80211_frame *wh;
3665 	struct mbuf *m;
3666 	int pktlen;
3667 	uint8_t *frm;
3668 
3669 	/*
3670 	 * Update the "We're putting the quiet IE in the beacon" state.
3671 	 */
3672 	if (vap->iv_quiet == 1)
3673 		vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
3674 	else if (vap->iv_quiet == 0)
3675 		vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
3676 
3677 	/*
3678 	 * beacon frame format
3679 	 *
3680 	 * Note: This needs updating for 802.11-2012.
3681 	 *
3682 	 *	[8] time stamp
3683 	 *	[2] beacon interval
3684 	 *	[2] cabability information
3685 	 *	[tlv] ssid
3686 	 *	[tlv] supported rates
3687 	 *	[3] parameter set (DS)
3688 	 *	[8] CF parameter set (optional)
3689 	 *	[tlv] parameter set (IBSS/TIM)
3690 	 *	[tlv] country (optional)
3691 	 *	[3] power control (optional)
3692 	 *	[5] channel switch announcement (CSA) (optional)
3693 	 *	[tlv] extended rate phy (ERP)
3694 	 *	[tlv] extended supported rates
3695 	 *	[tlv] RSN parameters
3696 	 *	[tlv] HT capabilities
3697 	 *	[tlv] HT information
3698 	 *	[tlv] VHT capabilities
3699 	 *	[tlv] VHT operation
3700 	 *	[tlv] Vendor OUI HT capabilities (optional)
3701 	 *	[tlv] Vendor OUI HT information (optional)
3702 	 * XXX Vendor-specific OIDs (e.g. Atheros)
3703 	 *	[tlv] WPA parameters
3704 	 *	[tlv] WME parameters
3705 	 *	[tlv] TDMA parameters (optional)
3706 	 *	[tlv] Mesh ID (MBSS)
3707 	 *	[tlv] Mesh Conf (MBSS)
3708 	 *	[tlv] application data (optional)
3709 	 * NB: we allocate the max space required for the TIM bitmap.
3710 	 * XXX how big is this?
3711 	 */
3712 	pktlen =   8					/* time stamp */
3713 		 + sizeof(uint16_t)			/* beacon interval */
3714 		 + sizeof(uint16_t)			/* capabilities */
3715 		 + 2 + ni->ni_esslen			/* ssid */
3716 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
3717 	         + 2 + 1				/* DS parameters */
3718 		 + 2 + 6				/* CF parameters */
3719 		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
3720 		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
3721 		 + 2 + 1				/* power control */
3722 		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
3723 		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
3724 		 + 2 + 1				/* ERP */
3725 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3726 		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
3727 			2*sizeof(struct ieee80211_ie_wpa) : 0)
3728 		 /* XXX conditional? */
3729 		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3730 		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3731 		 + 2 + sizeof(struct ieee80211_vht_cap)/* VHT caps */
3732 		 + 2 + sizeof(struct ieee80211_vht_operation)/* VHT info */
3733 		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
3734 			sizeof(struct ieee80211_wme_param) : 0)
3735 #ifdef IEEE80211_SUPPORT_SUPERG
3736 		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
3737 #endif
3738 #ifdef IEEE80211_SUPPORT_TDMA
3739 		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
3740 			sizeof(struct ieee80211_tdma_param) : 0)
3741 #endif
3742 #ifdef IEEE80211_SUPPORT_MESH
3743 		 + 2 + ni->ni_meshidlen
3744 		 + sizeof(struct ieee80211_meshconf_ie)
3745 #endif
3746 		 + IEEE80211_MAX_APPIE
3747 		 ;
3748 	m = ieee80211_getmgtframe(&frm,
3749 		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3750 	if (m == NULL) {
3751 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3752 			"%s: cannot get buf; size %u\n", __func__, pktlen);
3753 		vap->iv_stats.is_tx_nobuf++;
3754 		return NULL;
3755 	}
3756 	ieee80211_beacon_construct(m, frm, ni);
3757 
3758 	M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
3759 	KASSERT(m != NULL, ("no space for 802.11 header?"));
3760 	wh = mtod(m, struct ieee80211_frame *);
3761 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3762 	    IEEE80211_FC0_SUBTYPE_BEACON;
3763 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3764 	*(uint16_t *)wh->i_dur = 0;
3765 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3766 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3767 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3768 	*(uint16_t *)wh->i_seq = 0;
3769 
3770 	return m;
3771 }
3772 
3773 /*
3774  * Update the dynamic parts of a beacon frame based on the current state.
3775  */
3776 int
3777 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast)
3778 {
3779 	struct ieee80211vap *vap = ni->ni_vap;
3780 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3781 	struct ieee80211com *ic = ni->ni_ic;
3782 	int len_changed = 0;
3783 	uint16_t capinfo;
3784 	struct ieee80211_frame *wh;
3785 	ieee80211_seq seqno;
3786 
3787 	IEEE80211_LOCK(ic);
3788 	/*
3789 	 * Handle 11h channel change when we've reached the count.
3790 	 * We must recalculate the beacon frame contents to account
3791 	 * for the new channel.  Note we do this only for the first
3792 	 * vap that reaches this point; subsequent vaps just update
3793 	 * their beacon state to reflect the recalculated channel.
3794 	 */
3795 	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3796 	    vap->iv_csa_count == ic->ic_csa_count) {
3797 		vap->iv_csa_count = 0;
3798 		/*
3799 		 * Effect channel change before reconstructing the beacon
3800 		 * frame contents as many places reference ni_chan.
3801 		 */
3802 		if (ic->ic_csa_newchan != NULL)
3803 			ieee80211_csa_completeswitch(ic);
3804 		/*
3805 		 * NB: ieee80211_beacon_construct clears all pending
3806 		 * updates in bo_flags so we don't need to explicitly
3807 		 * clear IEEE80211_BEACON_CSA.
3808 		 */
3809 		ieee80211_beacon_construct(m,
3810 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3811 
3812 		/* XXX do WME aggressive mode processing? */
3813 		IEEE80211_UNLOCK(ic);
3814 		return 1;		/* just assume length changed */
3815 	}
3816 
3817 	/*
3818 	 * Handle the quiet time element being added and removed.
3819 	 * Again, for now we just cheat and reconstruct the whole
3820 	 * beacon - that way the gap is provided as appropriate.
3821 	 *
3822 	 * So, track whether we have already added the IE versus
3823 	 * whether we want to be adding the IE.
3824 	 */
3825 	if ((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) &&
3826 	    (vap->iv_quiet == 0)) {
3827 		/*
3828 		 * Quiet time beacon IE enabled, but it's disabled;
3829 		 * recalc
3830 		 */
3831 		vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
3832 		ieee80211_beacon_construct(m,
3833 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3834 		/* XXX do WME aggressive mode processing? */
3835 		IEEE80211_UNLOCK(ic);
3836 		return 1;		/* just assume length changed */
3837 	}
3838 
3839 	if (((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) == 0) &&
3840 	    (vap->iv_quiet == 1)) {
3841 		/*
3842 		 * Quiet time beacon IE disabled, but it's now enabled;
3843 		 * recalc
3844 		 */
3845 		vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
3846 		ieee80211_beacon_construct(m,
3847 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3848 		/* XXX do WME aggressive mode processing? */
3849 		IEEE80211_UNLOCK(ic);
3850 		return 1;		/* just assume length changed */
3851 	}
3852 
3853 	wh = mtod(m, struct ieee80211_frame *);
3854 
3855 	/*
3856 	 * XXX TODO Strictly speaking this should be incremented with the TX
3857 	 * lock held so as to serialise access to the non-qos TID sequence
3858 	 * number space.
3859 	 *
3860 	 * If the driver identifies it does its own TX seqno management then
3861 	 * we can skip this (and still not do the TX seqno.)
3862 	 */
3863 	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3864 	*(uint16_t *)&wh->i_seq[0] =
3865 		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3866 	M_SEQNO_SET(m, seqno);
3867 
3868 	/* XXX faster to recalculate entirely or just changes? */
3869 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3870 	*bo->bo_caps = htole16(capinfo);
3871 
3872 	if (vap->iv_flags & IEEE80211_F_WME) {
3873 		struct ieee80211_wme_state *wme = &ic->ic_wme;
3874 
3875 		/*
3876 		 * Check for aggressive mode change.  When there is
3877 		 * significant high priority traffic in the BSS
3878 		 * throttle back BE traffic by using conservative
3879 		 * parameters.  Otherwise BE uses aggressive params
3880 		 * to optimize performance of legacy/non-QoS traffic.
3881 		 */
3882 		if (wme->wme_flags & WME_F_AGGRMODE) {
3883 			if (wme->wme_hipri_traffic >
3884 			    wme->wme_hipri_switch_thresh) {
3885 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3886 				    "%s: traffic %u, disable aggressive mode\n",
3887 				    __func__, wme->wme_hipri_traffic);
3888 				wme->wme_flags &= ~WME_F_AGGRMODE;
3889 				ieee80211_wme_updateparams_locked(vap);
3890 				wme->wme_hipri_traffic =
3891 					wme->wme_hipri_switch_hysteresis;
3892 			} else
3893 				wme->wme_hipri_traffic = 0;
3894 		} else {
3895 			if (wme->wme_hipri_traffic <=
3896 			    wme->wme_hipri_switch_thresh) {
3897 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3898 				    "%s: traffic %u, enable aggressive mode\n",
3899 				    __func__, wme->wme_hipri_traffic);
3900 				wme->wme_flags |= WME_F_AGGRMODE;
3901 				ieee80211_wme_updateparams_locked(vap);
3902 				wme->wme_hipri_traffic = 0;
3903 			} else
3904 				wme->wme_hipri_traffic =
3905 					wme->wme_hipri_switch_hysteresis;
3906 		}
3907 		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3908 			(void) ieee80211_add_wme_param(bo->bo_wme, wme,
3909 			  vap->iv_flags_ext & IEEE80211_FEXT_UAPSD);
3910 			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3911 		}
3912 	}
3913 
3914 	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
3915 		ieee80211_ht_update_beacon(vap, bo);
3916 		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3917 	}
3918 #ifdef IEEE80211_SUPPORT_TDMA
3919 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3920 		/*
3921 		 * NB: the beacon is potentially updated every TBTT.
3922 		 */
3923 		ieee80211_tdma_update_beacon(vap, bo);
3924 	}
3925 #endif
3926 #ifdef IEEE80211_SUPPORT_MESH
3927 	if (vap->iv_opmode == IEEE80211_M_MBSS)
3928 		ieee80211_mesh_update_beacon(vap, bo);
3929 #endif
3930 
3931 	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3932 	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
3933 		struct ieee80211_tim_ie *tie =
3934 			(struct ieee80211_tim_ie *) bo->bo_tim;
3935 		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3936 			u_int timlen, timoff, i;
3937 			/*
3938 			 * ATIM/DTIM needs updating.  If it fits in the
3939 			 * current space allocated then just copy in the
3940 			 * new bits.  Otherwise we need to move any trailing
3941 			 * data to make room.  Note that we know there is
3942 			 * contiguous space because ieee80211_beacon_allocate
3943 			 * insures there is space in the mbuf to write a
3944 			 * maximal-size virtual bitmap (based on iv_max_aid).
3945 			 */
3946 			/*
3947 			 * Calculate the bitmap size and offset, copy any
3948 			 * trailer out of the way, and then copy in the
3949 			 * new bitmap and update the information element.
3950 			 * Note that the tim bitmap must contain at least
3951 			 * one byte and any offset must be even.
3952 			 */
3953 			if (vap->iv_ps_pending != 0) {
3954 				timoff = 128;		/* impossibly large */
3955 				for (i = 0; i < vap->iv_tim_len; i++)
3956 					if (vap->iv_tim_bitmap[i]) {
3957 						timoff = i &~ 1;
3958 						break;
3959 					}
3960 				KASSERT(timoff != 128, ("tim bitmap empty!"));
3961 				for (i = vap->iv_tim_len-1; i >= timoff; i--)
3962 					if (vap->iv_tim_bitmap[i])
3963 						break;
3964 				timlen = 1 + (i - timoff);
3965 			} else {
3966 				timoff = 0;
3967 				timlen = 1;
3968 			}
3969 
3970 			/*
3971 			 * TODO: validate this!
3972 			 */
3973 			if (timlen != bo->bo_tim_len) {
3974 				/* copy up/down trailer */
3975 				int adjust = tie->tim_bitmap+timlen
3976 					   - bo->bo_tim_trailer;
3977 				ovbcopy(bo->bo_tim_trailer,
3978 				    bo->bo_tim_trailer+adjust,
3979 				    bo->bo_tim_trailer_len);
3980 				bo->bo_tim_trailer += adjust;
3981 				bo->bo_erp += adjust;
3982 				bo->bo_htinfo += adjust;
3983 				bo->bo_vhtinfo += adjust;
3984 #ifdef IEEE80211_SUPPORT_SUPERG
3985 				bo->bo_ath += adjust;
3986 #endif
3987 #ifdef IEEE80211_SUPPORT_TDMA
3988 				bo->bo_tdma += adjust;
3989 #endif
3990 #ifdef IEEE80211_SUPPORT_MESH
3991 				bo->bo_meshconf += adjust;
3992 #endif
3993 				bo->bo_appie += adjust;
3994 				bo->bo_wme += adjust;
3995 				bo->bo_csa += adjust;
3996 				bo->bo_quiet += adjust;
3997 				bo->bo_tim_len = timlen;
3998 
3999 				/* update information element */
4000 				tie->tim_len = 3 + timlen;
4001 				tie->tim_bitctl = timoff;
4002 				len_changed = 1;
4003 			}
4004 			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
4005 				bo->bo_tim_len);
4006 
4007 			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
4008 
4009 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
4010 				"%s: TIM updated, pending %u, off %u, len %u\n",
4011 				__func__, vap->iv_ps_pending, timoff, timlen);
4012 		}
4013 		/* count down DTIM period */
4014 		if (tie->tim_count == 0)
4015 			tie->tim_count = tie->tim_period - 1;
4016 		else
4017 			tie->tim_count--;
4018 		/* update state for buffered multicast frames on DTIM */
4019 		if (mcast && tie->tim_count == 0)
4020 			tie->tim_bitctl |= 1;
4021 		else
4022 			tie->tim_bitctl &= ~1;
4023 		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
4024 			struct ieee80211_csa_ie *csa =
4025 			    (struct ieee80211_csa_ie *) bo->bo_csa;
4026 
4027 			/*
4028 			 * Insert or update CSA ie.  If we're just starting
4029 			 * to count down to the channel switch then we need
4030 			 * to insert the CSA ie.  Otherwise we just need to
4031 			 * drop the count.  The actual change happens above
4032 			 * when the vap's count reaches the target count.
4033 			 */
4034 			if (vap->iv_csa_count == 0) {
4035 				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
4036 				bo->bo_erp += sizeof(*csa);
4037 				bo->bo_htinfo += sizeof(*csa);
4038 				bo->bo_vhtinfo += sizeof(*csa);
4039 				bo->bo_wme += sizeof(*csa);
4040 #ifdef IEEE80211_SUPPORT_SUPERG
4041 				bo->bo_ath += sizeof(*csa);
4042 #endif
4043 #ifdef IEEE80211_SUPPORT_TDMA
4044 				bo->bo_tdma += sizeof(*csa);
4045 #endif
4046 #ifdef IEEE80211_SUPPORT_MESH
4047 				bo->bo_meshconf += sizeof(*csa);
4048 #endif
4049 				bo->bo_appie += sizeof(*csa);
4050 				bo->bo_csa_trailer_len += sizeof(*csa);
4051 				bo->bo_quiet += sizeof(*csa);
4052 				bo->bo_tim_trailer_len += sizeof(*csa);
4053 				m->m_len += sizeof(*csa);
4054 				m->m_pkthdr.len += sizeof(*csa);
4055 
4056 				ieee80211_add_csa(bo->bo_csa, vap);
4057 			} else
4058 				csa->csa_count--;
4059 			vap->iv_csa_count++;
4060 			/* NB: don't clear IEEE80211_BEACON_CSA */
4061 		}
4062 
4063 		/*
4064 		 * Only add the quiet time IE if we've enabled it
4065 		 * as appropriate.
4066 		 */
4067 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
4068 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
4069 			if (vap->iv_quiet &&
4070 			    (vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE)) {
4071 				ieee80211_add_quiet(bo->bo_quiet, vap, 1);
4072 			}
4073 		}
4074 		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
4075 			/*
4076 			 * ERP element needs updating.
4077 			 */
4078 			(void) ieee80211_add_erp(bo->bo_erp, vap);
4079 			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
4080 		}
4081 #ifdef IEEE80211_SUPPORT_SUPERG
4082 		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
4083 			ieee80211_add_athcaps(bo->bo_ath, ni);
4084 			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
4085 		}
4086 #endif
4087 	}
4088 	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
4089 		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
4090 		int aielen;
4091 		uint8_t *frm;
4092 
4093 		aielen = 0;
4094 		if (aie != NULL)
4095 			aielen += aie->ie_len;
4096 		if (aielen != bo->bo_appie_len) {
4097 			/* copy up/down trailer */
4098 			int adjust = aielen - bo->bo_appie_len;
4099 			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
4100 				bo->bo_tim_trailer_len);
4101 			bo->bo_tim_trailer += adjust;
4102 			bo->bo_appie += adjust;
4103 			bo->bo_appie_len = aielen;
4104 
4105 			len_changed = 1;
4106 		}
4107 		frm = bo->bo_appie;
4108 		if (aie != NULL)
4109 			frm  = add_appie(frm, aie);
4110 		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
4111 	}
4112 	IEEE80211_UNLOCK(ic);
4113 
4114 	return len_changed;
4115 }
4116 
4117 /*
4118  * Do Ethernet-LLC encapsulation for each payload in a fast frame
4119  * tunnel encapsulation.  The frame is assumed to have an Ethernet
4120  * header at the front that must be stripped before prepending the
4121  * LLC followed by the Ethernet header passed in (with an Ethernet
4122  * type that specifies the payload size).
4123  */
4124 struct mbuf *
4125 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
4126 	const struct ether_header *eh)
4127 {
4128 	struct llc *llc;
4129 	uint16_t payload;
4130 
4131 	/* XXX optimize by combining m_adj+M_PREPEND */
4132 	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
4133 	llc = mtod(m, struct llc *);
4134 	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
4135 	llc->llc_control = LLC_UI;
4136 	llc->llc_snap.org_code[0] = 0;
4137 	llc->llc_snap.org_code[1] = 0;
4138 	llc->llc_snap.org_code[2] = 0;
4139 	llc->llc_snap.ether_type = eh->ether_type;
4140 	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
4141 
4142 	M_PREPEND(m, sizeof(struct ether_header), IEEE80211_M_NOWAIT);
4143 	if (m == NULL) {		/* XXX cannot happen */
4144 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
4145 			"%s: no space for ether_header\n", __func__);
4146 		vap->iv_stats.is_tx_nobuf++;
4147 		return NULL;
4148 	}
4149 	ETHER_HEADER_COPY(mtod(m, void *), eh);
4150 	mtod(m, struct ether_header *)->ether_type = htons(payload);
4151 	return m;
4152 }
4153 
4154 /*
4155  * Complete an mbuf transmission.
4156  *
4157  * For now, this simply processes a completed frame after the
4158  * driver has completed it's transmission and/or retransmission.
4159  * It assumes the frame is an 802.11 encapsulated frame.
4160  *
4161  * Later on it will grow to become the exit path for a given frame
4162  * from the driver and, depending upon how it's been encapsulated
4163  * and already transmitted, it may end up doing A-MPDU retransmission,
4164  * power save requeuing, etc.
4165  *
4166  * In order for the above to work, the driver entry point to this
4167  * must not hold any driver locks.  Thus, the driver needs to delay
4168  * any actual mbuf completion until it can release said locks.
4169  *
4170  * This frees the mbuf and if the mbuf has a node reference,
4171  * the node reference will be freed.
4172  */
4173 void
4174 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
4175 {
4176 
4177 	if (ni != NULL) {
4178 		struct ifnet *ifp = ni->ni_vap->iv_ifp;
4179 
4180 		if (status == 0) {
4181 			if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
4182 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
4183 			if (m->m_flags & M_MCAST)
4184 				if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
4185 		} else
4186 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
4187 		if (m->m_flags & M_TXCB) {
4188 			IEEE80211_DPRINTF(ni->ni_vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
4189 			   "ni %p vap %p mode %s state %s m %p status %d\n", ni, ni->ni_vap,
4190 			   ieee80211_opmode_name[ni->ni_vap->iv_opmode],
4191 			   ieee80211_state_name[ni->ni_vap->iv_state], m, status);
4192 			ieee80211_process_callback(ni, m, status);
4193 		}
4194 		ieee80211_free_node(ni);
4195 	}
4196 	m_freem(m);
4197 }
4198