1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_inet.h" 31 #include "opt_inet6.h" 32 #include "opt_wlan.h" 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/mbuf.h> 37 #include <sys/kernel.h> 38 #include <sys/endian.h> 39 40 #include <sys/socket.h> 41 42 #include <net/bpf.h> 43 #include <net/ethernet.h> 44 #include <net/if.h> 45 #include <net/if_llc.h> 46 #include <net/if_media.h> 47 #include <net/if_vlan_var.h> 48 49 #include <net80211/ieee80211_var.h> 50 #include <net80211/ieee80211_regdomain.h> 51 #ifdef IEEE80211_SUPPORT_SUPERG 52 #include <net80211/ieee80211_superg.h> 53 #endif 54 #ifdef IEEE80211_SUPPORT_TDMA 55 #include <net80211/ieee80211_tdma.h> 56 #endif 57 #include <net80211/ieee80211_wds.h> 58 #include <net80211/ieee80211_mesh.h> 59 60 #if defined(INET) || defined(INET6) 61 #include <netinet/in.h> 62 #endif 63 64 #ifdef INET 65 #include <netinet/if_ether.h> 66 #include <netinet/in_systm.h> 67 #include <netinet/ip.h> 68 #endif 69 #ifdef INET6 70 #include <netinet/ip6.h> 71 #endif 72 73 #include <security/mac/mac_framework.h> 74 75 #define ETHER_HEADER_COPY(dst, src) \ 76 memcpy(dst, src, sizeof(struct ether_header)) 77 78 /* unalligned little endian access */ 79 #define LE_WRITE_2(p, v) do { \ 80 ((uint8_t *)(p))[0] = (v) & 0xff; \ 81 ((uint8_t *)(p))[1] = ((v) >> 8) & 0xff; \ 82 } while (0) 83 #define LE_WRITE_4(p, v) do { \ 84 ((uint8_t *)(p))[0] = (v) & 0xff; \ 85 ((uint8_t *)(p))[1] = ((v) >> 8) & 0xff; \ 86 ((uint8_t *)(p))[2] = ((v) >> 16) & 0xff; \ 87 ((uint8_t *)(p))[3] = ((v) >> 24) & 0xff; \ 88 } while (0) 89 90 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *, 91 u_int hdrsize, u_int ciphdrsize, u_int mtu); 92 static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int); 93 94 #ifdef IEEE80211_DEBUG 95 /* 96 * Decide if an outbound management frame should be 97 * printed when debugging is enabled. This filters some 98 * of the less interesting frames that come frequently 99 * (e.g. beacons). 100 */ 101 static __inline int 102 doprint(struct ieee80211vap *vap, int subtype) 103 { 104 switch (subtype) { 105 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 106 return (vap->iv_opmode == IEEE80211_M_IBSS); 107 } 108 return 1; 109 } 110 #endif 111 112 /* 113 * Transmit a frame to the given destination on the given VAP. 114 * 115 * It's up to the caller to figure out the details of who this 116 * is going to and resolving the node. 117 * 118 * This routine takes care of queuing it for power save, 119 * A-MPDU state stuff, fast-frames state stuff, encapsulation 120 * if required, then passing it up to the driver layer. 121 * 122 * This routine (for now) consumes the mbuf and frees the node 123 * reference; it ideally will return a TX status which reflects 124 * whether the mbuf was consumed or not, so the caller can 125 * free the mbuf (if appropriate) and the node reference (again, 126 * if appropriate.) 127 */ 128 int 129 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m, 130 struct ieee80211_node *ni) 131 { 132 struct ieee80211com *ic = vap->iv_ic; 133 struct ifnet *ifp = vap->iv_ifp; 134 int error; 135 136 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 137 (m->m_flags & M_PWR_SAV) == 0) { 138 /* 139 * Station in power save mode; pass the frame 140 * to the 802.11 layer and continue. We'll get 141 * the frame back when the time is right. 142 * XXX lose WDS vap linkage? 143 */ 144 (void) ieee80211_pwrsave(ni, m); 145 ieee80211_free_node(ni); 146 /* XXX better status? */ 147 return (ENOBUFS); 148 } 149 /* calculate priority so drivers can find the tx queue */ 150 if (ieee80211_classify(ni, m)) { 151 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 152 ni->ni_macaddr, NULL, 153 "%s", "classification failure"); 154 vap->iv_stats.is_tx_classify++; 155 ifp->if_oerrors++; 156 m_freem(m); 157 ieee80211_free_node(ni); 158 /* XXX better status? */ 159 return (ENOBUFS); 160 } 161 /* 162 * Stash the node pointer. Note that we do this after 163 * any call to ieee80211_dwds_mcast because that code 164 * uses any existing value for rcvif to identify the 165 * interface it (might have been) received on. 166 */ 167 m->m_pkthdr.rcvif = (void *)ni; 168 169 BPF_MTAP(ifp, m); /* 802.3 tx */ 170 171 172 /* 173 * Check if A-MPDU tx aggregation is setup or if we 174 * should try to enable it. The sta must be associated 175 * with HT and A-MPDU enabled for use. When the policy 176 * routine decides we should enable A-MPDU we issue an 177 * ADDBA request and wait for a reply. The frame being 178 * encapsulated will go out w/o using A-MPDU, or possibly 179 * it might be collected by the driver and held/retransmit. 180 * The default ic_ampdu_enable routine handles staggering 181 * ADDBA requests in case the receiver NAK's us or we are 182 * otherwise unable to establish a BA stream. 183 */ 184 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) && 185 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) && 186 (m->m_flags & M_EAPOL) == 0) { 187 int tid = WME_AC_TO_TID(M_WME_GETAC(m)); 188 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; 189 190 ieee80211_txampdu_count_packet(tap); 191 if (IEEE80211_AMPDU_RUNNING(tap)) { 192 /* 193 * Operational, mark frame for aggregation. 194 * 195 * XXX do tx aggregation here 196 */ 197 m->m_flags |= M_AMPDU_MPDU; 198 } else if (!IEEE80211_AMPDU_REQUESTED(tap) && 199 ic->ic_ampdu_enable(ni, tap)) { 200 /* 201 * Not negotiated yet, request service. 202 */ 203 ieee80211_ampdu_request(ni, tap); 204 /* XXX hold frame for reply? */ 205 } 206 } 207 208 #ifdef IEEE80211_SUPPORT_SUPERG 209 else if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) { 210 m = ieee80211_ff_check(ni, m); 211 if (m == NULL) { 212 /* NB: any ni ref held on stageq */ 213 return (0); 214 } 215 } 216 #endif /* IEEE80211_SUPPORT_SUPERG */ 217 218 /* 219 * Grab the TX lock - serialise the TX process from this 220 * point (where TX state is being checked/modified) 221 * through to driver queue. 222 */ 223 IEEE80211_TX_LOCK(ic); 224 225 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 226 /* 227 * Encapsulate the packet in prep for transmission. 228 */ 229 m = ieee80211_encap(vap, ni, m); 230 if (m == NULL) { 231 /* NB: stat+msg handled in ieee80211_encap */ 232 IEEE80211_TX_UNLOCK(ic); 233 ieee80211_free_node(ni); 234 /* XXX better status? */ 235 return (ENOBUFS); 236 } 237 } 238 error = ieee80211_parent_xmitpkt(ic, m); 239 240 /* 241 * Unlock at this point - no need to hold it across 242 * ieee80211_free_node() (ie, the comlock) 243 */ 244 IEEE80211_TX_UNLOCK(ic); 245 if (error != 0) { 246 /* NB: IFQ_HANDOFF reclaims mbuf */ 247 ieee80211_free_node(ni); 248 } else { 249 ifp->if_opackets++; 250 } 251 ic->ic_lastdata = ticks; 252 253 return (0); 254 } 255 256 257 258 /* 259 * Send the given mbuf through the given vap. 260 * 261 * This consumes the mbuf regardless of whether the transmit 262 * was successful or not. 263 * 264 * This does none of the initial checks that ieee80211_start() 265 * does (eg CAC timeout, interface wakeup) - the caller must 266 * do this first. 267 */ 268 static int 269 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m) 270 { 271 #define IS_DWDS(vap) \ 272 (vap->iv_opmode == IEEE80211_M_WDS && \ 273 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0) 274 struct ieee80211com *ic = vap->iv_ic; 275 struct ifnet *ifp = vap->iv_ifp; 276 struct ieee80211_node *ni; 277 struct ether_header *eh; 278 279 /* 280 * Cancel any background scan. 281 */ 282 if (ic->ic_flags & IEEE80211_F_SCAN) 283 ieee80211_cancel_anyscan(vap); 284 /* 285 * Find the node for the destination so we can do 286 * things like power save and fast frames aggregation. 287 * 288 * NB: past this point various code assumes the first 289 * mbuf has the 802.3 header present (and contiguous). 290 */ 291 ni = NULL; 292 if (m->m_len < sizeof(struct ether_header) && 293 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 294 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 295 "discard frame, %s\n", "m_pullup failed"); 296 vap->iv_stats.is_tx_nobuf++; /* XXX */ 297 ifp->if_oerrors++; 298 return (ENOBUFS); 299 } 300 eh = mtod(m, struct ether_header *); 301 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 302 if (IS_DWDS(vap)) { 303 /* 304 * Only unicast frames from the above go out 305 * DWDS vaps; multicast frames are handled by 306 * dispatching the frame as it comes through 307 * the AP vap (see below). 308 */ 309 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS, 310 eh->ether_dhost, "mcast", "%s", "on DWDS"); 311 vap->iv_stats.is_dwds_mcast++; 312 m_freem(m); 313 /* XXX better status? */ 314 return (ENOBUFS); 315 } 316 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { 317 /* 318 * Spam DWDS vap's w/ multicast traffic. 319 */ 320 /* XXX only if dwds in use? */ 321 ieee80211_dwds_mcast(vap, m); 322 } 323 } 324 #ifdef IEEE80211_SUPPORT_MESH 325 if (vap->iv_opmode != IEEE80211_M_MBSS) { 326 #endif 327 ni = ieee80211_find_txnode(vap, eh->ether_dhost); 328 if (ni == NULL) { 329 /* NB: ieee80211_find_txnode does stat+msg */ 330 ifp->if_oerrors++; 331 m_freem(m); 332 /* XXX better status? */ 333 return (ENOBUFS); 334 } 335 if (ni->ni_associd == 0 && 336 (ni->ni_flags & IEEE80211_NODE_ASSOCID)) { 337 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 338 eh->ether_dhost, NULL, 339 "sta not associated (type 0x%04x)", 340 htons(eh->ether_type)); 341 vap->iv_stats.is_tx_notassoc++; 342 ifp->if_oerrors++; 343 m_freem(m); 344 ieee80211_free_node(ni); 345 /* XXX better status? */ 346 return (ENOBUFS); 347 } 348 #ifdef IEEE80211_SUPPORT_MESH 349 } else { 350 if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) { 351 /* 352 * Proxy station only if configured. 353 */ 354 if (!ieee80211_mesh_isproxyena(vap)) { 355 IEEE80211_DISCARD_MAC(vap, 356 IEEE80211_MSG_OUTPUT | 357 IEEE80211_MSG_MESH, 358 eh->ether_dhost, NULL, 359 "%s", "proxy not enabled"); 360 vap->iv_stats.is_mesh_notproxy++; 361 ifp->if_oerrors++; 362 m_freem(m); 363 /* XXX better status? */ 364 return (ENOBUFS); 365 } 366 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 367 "forward frame from DS SA(%6D), DA(%6D)\n", 368 eh->ether_shost, ":", 369 eh->ether_dhost, ":"); 370 ieee80211_mesh_proxy_check(vap, eh->ether_shost); 371 } 372 ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m); 373 if (ni == NULL) { 374 /* 375 * NB: ieee80211_mesh_discover holds/disposes 376 * frame (e.g. queueing on path discovery). 377 */ 378 ifp->if_oerrors++; 379 /* XXX better status? */ 380 return (ENOBUFS); 381 } 382 } 383 #endif 384 385 /* 386 * We've resolved the sender, so attempt to transmit it. 387 */ 388 if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0) 389 return (ENOBUFS); 390 return (0); 391 #undef IS_DWDS 392 } 393 394 /* 395 * Start method for vap's. All packets from the stack come 396 * through here. We handle common processing of the packets 397 * before dispatching them to the underlying device. 398 * 399 * if_transmit() requires that the mbuf be consumed by this call 400 * regardless of the return condition. 401 */ 402 int 403 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m) 404 { 405 struct ieee80211vap *vap = ifp->if_softc; 406 struct ieee80211com *ic = vap->iv_ic; 407 struct ifnet *parent = ic->ic_ifp; 408 409 /* NB: parent must be up and running */ 410 if (!IFNET_IS_UP_RUNNING(parent)) { 411 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 412 "%s: ignore queue, parent %s not up+running\n", 413 __func__, parent->if_xname); 414 /* XXX stat */ 415 m_freem(m); 416 return (EINVAL); 417 } 418 if (vap->iv_state == IEEE80211_S_SLEEP) { 419 /* 420 * In power save, wakeup device for transmit. 421 */ 422 ieee80211_new_state(vap, IEEE80211_S_RUN, 0); 423 m_freem(m); 424 return (0); 425 } 426 /* 427 * No data frames go out unless we're running. 428 * Note in particular this covers CAC and CSA 429 * states (though maybe we should check muting 430 * for CSA). 431 */ 432 if (vap->iv_state != IEEE80211_S_RUN) { 433 IEEE80211_LOCK(ic); 434 /* re-check under the com lock to avoid races */ 435 if (vap->iv_state != IEEE80211_S_RUN) { 436 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 437 "%s: ignore queue, in %s state\n", 438 __func__, ieee80211_state_name[vap->iv_state]); 439 vap->iv_stats.is_tx_badstate++; 440 IEEE80211_UNLOCK(ic); 441 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 442 m_freem(m); 443 return (EINVAL); 444 } 445 IEEE80211_UNLOCK(ic); 446 } 447 448 /* 449 * Sanitize mbuf flags for net80211 use. We cannot 450 * clear M_PWR_SAV or M_MORE_DATA because these may 451 * be set for frames that are re-submitted from the 452 * power save queue. 453 * 454 * NB: This must be done before ieee80211_classify as 455 * it marks EAPOL in frames with M_EAPOL. 456 */ 457 m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA); 458 459 /* 460 * Bump to the packet transmission path. 461 * The mbuf will be consumed here. 462 */ 463 return (ieee80211_start_pkt(vap, m)); 464 } 465 466 void 467 ieee80211_vap_qflush(struct ifnet *ifp) 468 { 469 470 /* Empty for now */ 471 } 472 473 /* 474 * 802.11 raw output routine. 475 */ 476 int 477 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni, 478 struct mbuf *m, const struct ieee80211_bpf_params *params) 479 { 480 struct ieee80211com *ic = vap->iv_ic; 481 482 return (ic->ic_raw_xmit(ni, m, params)); 483 } 484 485 /* 486 * 802.11 output routine. This is (currently) used only to 487 * connect bpf write calls to the 802.11 layer for injecting 488 * raw 802.11 frames. 489 */ 490 #if __FreeBSD_version >= 1000031 491 int 492 ieee80211_output(struct ifnet *ifp, struct mbuf *m, 493 const struct sockaddr *dst, struct route *ro) 494 #else 495 int 496 ieee80211_output(struct ifnet *ifp, struct mbuf *m, 497 struct sockaddr *dst, struct route *ro) 498 #endif 499 { 500 #define senderr(e) do { error = (e); goto bad;} while (0) 501 struct ieee80211_node *ni = NULL; 502 struct ieee80211vap *vap; 503 struct ieee80211_frame *wh; 504 struct ieee80211com *ic = NULL; 505 int error; 506 int ret; 507 508 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 509 /* 510 * Short-circuit requests if the vap is marked OACTIVE 511 * as this can happen because a packet came down through 512 * ieee80211_start before the vap entered RUN state in 513 * which case it's ok to just drop the frame. This 514 * should not be necessary but callers of if_output don't 515 * check OACTIVE. 516 */ 517 senderr(ENETDOWN); 518 } 519 vap = ifp->if_softc; 520 ic = vap->iv_ic; 521 /* 522 * Hand to the 802.3 code if not tagged as 523 * a raw 802.11 frame. 524 */ 525 if (dst->sa_family != AF_IEEE80211) 526 return vap->iv_output(ifp, m, dst, ro); 527 #ifdef MAC 528 error = mac_ifnet_check_transmit(ifp, m); 529 if (error) 530 senderr(error); 531 #endif 532 if (ifp->if_flags & IFF_MONITOR) 533 senderr(ENETDOWN); 534 if (!IFNET_IS_UP_RUNNING(ifp)) 535 senderr(ENETDOWN); 536 if (vap->iv_state == IEEE80211_S_CAC) { 537 IEEE80211_DPRINTF(vap, 538 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 539 "block %s frame in CAC state\n", "raw data"); 540 vap->iv_stats.is_tx_badstate++; 541 senderr(EIO); /* XXX */ 542 } else if (vap->iv_state == IEEE80211_S_SCAN) 543 senderr(EIO); 544 /* XXX bypass bridge, pfil, carp, etc. */ 545 546 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack)) 547 senderr(EIO); /* XXX */ 548 wh = mtod(m, struct ieee80211_frame *); 549 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) != 550 IEEE80211_FC0_VERSION_0) 551 senderr(EIO); /* XXX */ 552 553 /* locate destination node */ 554 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 555 case IEEE80211_FC1_DIR_NODS: 556 case IEEE80211_FC1_DIR_FROMDS: 557 ni = ieee80211_find_txnode(vap, wh->i_addr1); 558 break; 559 case IEEE80211_FC1_DIR_TODS: 560 case IEEE80211_FC1_DIR_DSTODS: 561 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame)) 562 senderr(EIO); /* XXX */ 563 ni = ieee80211_find_txnode(vap, wh->i_addr3); 564 break; 565 default: 566 senderr(EIO); /* XXX */ 567 } 568 if (ni == NULL) { 569 /* 570 * Permit packets w/ bpf params through regardless 571 * (see below about sa_len). 572 */ 573 if (dst->sa_len == 0) 574 senderr(EHOSTUNREACH); 575 ni = ieee80211_ref_node(vap->iv_bss); 576 } 577 578 /* 579 * Sanitize mbuf for net80211 flags leaked from above. 580 * 581 * NB: This must be done before ieee80211_classify as 582 * it marks EAPOL in frames with M_EAPOL. 583 */ 584 m->m_flags &= ~M_80211_TX; 585 586 /* calculate priority so drivers can find the tx queue */ 587 /* XXX assumes an 802.3 frame */ 588 if (ieee80211_classify(ni, m)) 589 senderr(EIO); /* XXX */ 590 591 ifp->if_opackets++; 592 IEEE80211_NODE_STAT(ni, tx_data); 593 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 594 IEEE80211_NODE_STAT(ni, tx_mcast); 595 m->m_flags |= M_MCAST; 596 } else 597 IEEE80211_NODE_STAT(ni, tx_ucast); 598 /* NB: ieee80211_encap does not include 802.11 header */ 599 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len); 600 601 IEEE80211_TX_LOCK(ic); 602 603 /* 604 * NB: DLT_IEEE802_11_RADIO identifies the parameters are 605 * present by setting the sa_len field of the sockaddr (yes, 606 * this is a hack). 607 * NB: we assume sa_data is suitably aligned to cast. 608 */ 609 ret = ieee80211_raw_output(vap, ni, m, 610 (const struct ieee80211_bpf_params *)(dst->sa_len ? 611 dst->sa_data : NULL)); 612 IEEE80211_TX_UNLOCK(ic); 613 return (ret); 614 bad: 615 if (m != NULL) 616 m_freem(m); 617 if (ni != NULL) 618 ieee80211_free_node(ni); 619 ifp->if_oerrors++; 620 return error; 621 #undef senderr 622 } 623 624 /* 625 * Set the direction field and address fields of an outgoing 626 * frame. Note this should be called early on in constructing 627 * a frame as it sets i_fc[1]; other bits can then be or'd in. 628 */ 629 void 630 ieee80211_send_setup( 631 struct ieee80211_node *ni, 632 struct mbuf *m, 633 int type, int tid, 634 const uint8_t sa[IEEE80211_ADDR_LEN], 635 const uint8_t da[IEEE80211_ADDR_LEN], 636 const uint8_t bssid[IEEE80211_ADDR_LEN]) 637 { 638 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 639 struct ieee80211vap *vap = ni->ni_vap; 640 struct ieee80211_tx_ampdu *tap; 641 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 642 ieee80211_seq seqno; 643 644 IEEE80211_TX_LOCK_ASSERT(ni->ni_ic); 645 646 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 647 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 648 switch (vap->iv_opmode) { 649 case IEEE80211_M_STA: 650 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 651 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 652 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 653 IEEE80211_ADDR_COPY(wh->i_addr3, da); 654 break; 655 case IEEE80211_M_IBSS: 656 case IEEE80211_M_AHDEMO: 657 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 658 IEEE80211_ADDR_COPY(wh->i_addr1, da); 659 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 660 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 661 break; 662 case IEEE80211_M_HOSTAP: 663 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 664 IEEE80211_ADDR_COPY(wh->i_addr1, da); 665 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 666 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 667 break; 668 case IEEE80211_M_WDS: 669 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 670 IEEE80211_ADDR_COPY(wh->i_addr1, da); 671 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 672 IEEE80211_ADDR_COPY(wh->i_addr3, da); 673 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 674 break; 675 case IEEE80211_M_MBSS: 676 #ifdef IEEE80211_SUPPORT_MESH 677 if (IEEE80211_IS_MULTICAST(da)) { 678 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 679 /* XXX next hop */ 680 IEEE80211_ADDR_COPY(wh->i_addr1, da); 681 IEEE80211_ADDR_COPY(wh->i_addr2, 682 vap->iv_myaddr); 683 } else { 684 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 685 IEEE80211_ADDR_COPY(wh->i_addr1, da); 686 IEEE80211_ADDR_COPY(wh->i_addr2, 687 vap->iv_myaddr); 688 IEEE80211_ADDR_COPY(wh->i_addr3, da); 689 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 690 } 691 #endif 692 break; 693 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 694 break; 695 } 696 } else { 697 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 698 IEEE80211_ADDR_COPY(wh->i_addr1, da); 699 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 700 #ifdef IEEE80211_SUPPORT_MESH 701 if (vap->iv_opmode == IEEE80211_M_MBSS) 702 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 703 else 704 #endif 705 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 706 } 707 *(uint16_t *)&wh->i_dur[0] = 0; 708 709 tap = &ni->ni_tx_ampdu[tid]; 710 if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) 711 m->m_flags |= M_AMPDU_MPDU; 712 else { 713 seqno = ni->ni_txseqs[tid]++; 714 *(uint16_t *)&wh->i_seq[0] = 715 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 716 M_SEQNO_SET(m, seqno); 717 } 718 719 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 720 m->m_flags |= M_MCAST; 721 #undef WH4 722 } 723 724 /* 725 * Send a management frame to the specified node. The node pointer 726 * must have a reference as the pointer will be passed to the driver 727 * and potentially held for a long time. If the frame is successfully 728 * dispatched to the driver, then it is responsible for freeing the 729 * reference (and potentially free'ing up any associated storage); 730 * otherwise deal with reclaiming any reference (on error). 731 */ 732 int 733 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type, 734 struct ieee80211_bpf_params *params) 735 { 736 struct ieee80211vap *vap = ni->ni_vap; 737 struct ieee80211com *ic = ni->ni_ic; 738 struct ieee80211_frame *wh; 739 int ret; 740 741 KASSERT(ni != NULL, ("null node")); 742 743 if (vap->iv_state == IEEE80211_S_CAC) { 744 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 745 ni, "block %s frame in CAC state", 746 ieee80211_mgt_subtype_name[ 747 (type & IEEE80211_FC0_SUBTYPE_MASK) >> 748 IEEE80211_FC0_SUBTYPE_SHIFT]); 749 vap->iv_stats.is_tx_badstate++; 750 ieee80211_free_node(ni); 751 m_freem(m); 752 return EIO; /* XXX */ 753 } 754 755 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 756 if (m == NULL) { 757 ieee80211_free_node(ni); 758 return ENOMEM; 759 } 760 761 IEEE80211_TX_LOCK(ic); 762 763 wh = mtod(m, struct ieee80211_frame *); 764 ieee80211_send_setup(ni, m, 765 IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID, 766 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 767 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { 768 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1, 769 "encrypting frame (%s)", __func__); 770 wh->i_fc[1] |= IEEE80211_FC1_WEP; 771 } 772 m->m_flags |= M_ENCAP; /* mark encapsulated */ 773 774 KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?")); 775 M_WME_SETAC(m, params->ibp_pri); 776 777 #ifdef IEEE80211_DEBUG 778 /* avoid printing too many frames */ 779 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) || 780 ieee80211_msg_dumppkts(vap)) { 781 printf("[%s] send %s on channel %u\n", 782 ether_sprintf(wh->i_addr1), 783 ieee80211_mgt_subtype_name[ 784 (type & IEEE80211_FC0_SUBTYPE_MASK) >> 785 IEEE80211_FC0_SUBTYPE_SHIFT], 786 ieee80211_chan2ieee(ic, ic->ic_curchan)); 787 } 788 #endif 789 IEEE80211_NODE_STAT(ni, tx_mgmt); 790 791 ret = ieee80211_raw_output(vap, ni, m, params); 792 IEEE80211_TX_UNLOCK(ic); 793 return (ret); 794 } 795 796 /* 797 * Send a null data frame to the specified node. If the station 798 * is setup for QoS then a QoS Null Data frame is constructed. 799 * If this is a WDS station then a 4-address frame is constructed. 800 * 801 * NB: the caller is assumed to have setup a node reference 802 * for use; this is necessary to deal with a race condition 803 * when probing for inactive stations. Like ieee80211_mgmt_output 804 * we must cleanup any node reference on error; however we 805 * can safely just unref it as we know it will never be the 806 * last reference to the node. 807 */ 808 int 809 ieee80211_send_nulldata(struct ieee80211_node *ni) 810 { 811 struct ieee80211vap *vap = ni->ni_vap; 812 struct ieee80211com *ic = ni->ni_ic; 813 struct mbuf *m; 814 struct ieee80211_frame *wh; 815 int hdrlen; 816 uint8_t *frm; 817 int ret; 818 819 if (vap->iv_state == IEEE80211_S_CAC) { 820 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 821 ni, "block %s frame in CAC state", "null data"); 822 ieee80211_unref_node(&ni); 823 vap->iv_stats.is_tx_badstate++; 824 return EIO; /* XXX */ 825 } 826 827 if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) 828 hdrlen = sizeof(struct ieee80211_qosframe); 829 else 830 hdrlen = sizeof(struct ieee80211_frame); 831 /* NB: only WDS vap's get 4-address frames */ 832 if (vap->iv_opmode == IEEE80211_M_WDS) 833 hdrlen += IEEE80211_ADDR_LEN; 834 if (ic->ic_flags & IEEE80211_F_DATAPAD) 835 hdrlen = roundup(hdrlen, sizeof(uint32_t)); 836 837 m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0); 838 if (m == NULL) { 839 /* XXX debug msg */ 840 ieee80211_unref_node(&ni); 841 vap->iv_stats.is_tx_nobuf++; 842 return ENOMEM; 843 } 844 KASSERT(M_LEADINGSPACE(m) >= hdrlen, 845 ("leading space %zd", M_LEADINGSPACE(m))); 846 M_PREPEND(m, hdrlen, M_NOWAIT); 847 if (m == NULL) { 848 /* NB: cannot happen */ 849 ieee80211_free_node(ni); 850 return ENOMEM; 851 } 852 853 IEEE80211_TX_LOCK(ic); 854 855 wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */ 856 if (ni->ni_flags & IEEE80211_NODE_QOS) { 857 const int tid = WME_AC_TO_TID(WME_AC_BE); 858 uint8_t *qos; 859 860 ieee80211_send_setup(ni, m, 861 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL, 862 tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 863 864 if (vap->iv_opmode == IEEE80211_M_WDS) 865 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 866 else 867 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 868 qos[0] = tid & IEEE80211_QOS_TID; 869 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy) 870 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 871 qos[1] = 0; 872 } else { 873 ieee80211_send_setup(ni, m, 874 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 875 IEEE80211_NONQOS_TID, 876 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 877 } 878 if (vap->iv_opmode != IEEE80211_M_WDS) { 879 /* NB: power management bit is never sent by an AP */ 880 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 881 vap->iv_opmode != IEEE80211_M_HOSTAP) 882 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 883 } 884 m->m_len = m->m_pkthdr.len = hdrlen; 885 m->m_flags |= M_ENCAP; /* mark encapsulated */ 886 887 M_WME_SETAC(m, WME_AC_BE); 888 889 IEEE80211_NODE_STAT(ni, tx_data); 890 891 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni, 892 "send %snull data frame on channel %u, pwr mgt %s", 893 ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "", 894 ieee80211_chan2ieee(ic, ic->ic_curchan), 895 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 896 897 ret = ieee80211_raw_output(vap, ni, m, NULL); 898 IEEE80211_TX_UNLOCK(ic); 899 return (ret); 900 } 901 902 /* 903 * Assign priority to a frame based on any vlan tag assigned 904 * to the station and/or any Diffserv setting in an IP header. 905 * Finally, if an ACM policy is setup (in station mode) it's 906 * applied. 907 */ 908 int 909 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m) 910 { 911 const struct ether_header *eh = mtod(m, struct ether_header *); 912 int v_wme_ac, d_wme_ac, ac; 913 914 /* 915 * Always promote PAE/EAPOL frames to high priority. 916 */ 917 if (eh->ether_type == htons(ETHERTYPE_PAE)) { 918 /* NB: mark so others don't need to check header */ 919 m->m_flags |= M_EAPOL; 920 ac = WME_AC_VO; 921 goto done; 922 } 923 /* 924 * Non-qos traffic goes to BE. 925 */ 926 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 927 ac = WME_AC_BE; 928 goto done; 929 } 930 931 /* 932 * If node has a vlan tag then all traffic 933 * to it must have a matching tag. 934 */ 935 v_wme_ac = 0; 936 if (ni->ni_vlan != 0) { 937 if ((m->m_flags & M_VLANTAG) == 0) { 938 IEEE80211_NODE_STAT(ni, tx_novlantag); 939 return 1; 940 } 941 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 942 EVL_VLANOFTAG(ni->ni_vlan)) { 943 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 944 return 1; 945 } 946 /* map vlan priority to AC */ 947 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan)); 948 } 949 950 /* XXX m_copydata may be too slow for fast path */ 951 #ifdef INET 952 if (eh->ether_type == htons(ETHERTYPE_IP)) { 953 uint8_t tos; 954 /* 955 * IP frame, map the DSCP bits from the TOS field. 956 */ 957 /* NB: ip header may not be in first mbuf */ 958 m_copydata(m, sizeof(struct ether_header) + 959 offsetof(struct ip, ip_tos), sizeof(tos), &tos); 960 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 961 d_wme_ac = TID_TO_WME_AC(tos); 962 } else { 963 #endif /* INET */ 964 #ifdef INET6 965 if (eh->ether_type == htons(ETHERTYPE_IPV6)) { 966 uint32_t flow; 967 uint8_t tos; 968 /* 969 * IPv6 frame, map the DSCP bits from the traffic class field. 970 */ 971 m_copydata(m, sizeof(struct ether_header) + 972 offsetof(struct ip6_hdr, ip6_flow), sizeof(flow), 973 (caddr_t) &flow); 974 tos = (uint8_t)(ntohl(flow) >> 20); 975 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 976 d_wme_ac = TID_TO_WME_AC(tos); 977 } else { 978 #endif /* INET6 */ 979 d_wme_ac = WME_AC_BE; 980 #ifdef INET6 981 } 982 #endif 983 #ifdef INET 984 } 985 #endif 986 /* 987 * Use highest priority AC. 988 */ 989 if (v_wme_ac > d_wme_ac) 990 ac = v_wme_ac; 991 else 992 ac = d_wme_ac; 993 994 /* 995 * Apply ACM policy. 996 */ 997 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) { 998 static const int acmap[4] = { 999 WME_AC_BK, /* WME_AC_BE */ 1000 WME_AC_BK, /* WME_AC_BK */ 1001 WME_AC_BE, /* WME_AC_VI */ 1002 WME_AC_VI, /* WME_AC_VO */ 1003 }; 1004 struct ieee80211com *ic = ni->ni_ic; 1005 1006 while (ac != WME_AC_BK && 1007 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 1008 ac = acmap[ac]; 1009 } 1010 done: 1011 M_WME_SETAC(m, ac); 1012 return 0; 1013 } 1014 1015 /* 1016 * Insure there is sufficient contiguous space to encapsulate the 1017 * 802.11 data frame. If room isn't already there, arrange for it. 1018 * Drivers and cipher modules assume we have done the necessary work 1019 * and fail rudely if they don't find the space they need. 1020 */ 1021 struct mbuf * 1022 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize, 1023 struct ieee80211_key *key, struct mbuf *m) 1024 { 1025 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 1026 int needed_space = vap->iv_ic->ic_headroom + hdrsize; 1027 1028 if (key != NULL) { 1029 /* XXX belongs in crypto code? */ 1030 needed_space += key->wk_cipher->ic_header; 1031 /* XXX frags */ 1032 /* 1033 * When crypto is being done in the host we must insure 1034 * the data are writable for the cipher routines; clone 1035 * a writable mbuf chain. 1036 * XXX handle SWMIC specially 1037 */ 1038 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) { 1039 m = m_unshare(m, M_NOWAIT); 1040 if (m == NULL) { 1041 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1042 "%s: cannot get writable mbuf\n", __func__); 1043 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */ 1044 return NULL; 1045 } 1046 } 1047 } 1048 /* 1049 * We know we are called just before stripping an Ethernet 1050 * header and prepending an LLC header. This means we know 1051 * there will be 1052 * sizeof(struct ether_header) - sizeof(struct llc) 1053 * bytes recovered to which we need additional space for the 1054 * 802.11 header and any crypto header. 1055 */ 1056 /* XXX check trailing space and copy instead? */ 1057 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 1058 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); 1059 if (n == NULL) { 1060 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1061 "%s: cannot expand storage\n", __func__); 1062 vap->iv_stats.is_tx_nobuf++; 1063 m_freem(m); 1064 return NULL; 1065 } 1066 KASSERT(needed_space <= MHLEN, 1067 ("not enough room, need %u got %d\n", needed_space, MHLEN)); 1068 /* 1069 * Setup new mbuf to have leading space to prepend the 1070 * 802.11 header and any crypto header bits that are 1071 * required (the latter are added when the driver calls 1072 * back to ieee80211_crypto_encap to do crypto encapsulation). 1073 */ 1074 /* NB: must be first 'cuz it clobbers m_data */ 1075 m_move_pkthdr(n, m); 1076 n->m_len = 0; /* NB: m_gethdr does not set */ 1077 n->m_data += needed_space; 1078 /* 1079 * Pull up Ethernet header to create the expected layout. 1080 * We could use m_pullup but that's overkill (i.e. we don't 1081 * need the actual data) and it cannot fail so do it inline 1082 * for speed. 1083 */ 1084 /* NB: struct ether_header is known to be contiguous */ 1085 n->m_len += sizeof(struct ether_header); 1086 m->m_len -= sizeof(struct ether_header); 1087 m->m_data += sizeof(struct ether_header); 1088 /* 1089 * Replace the head of the chain. 1090 */ 1091 n->m_next = m; 1092 m = n; 1093 } 1094 return m; 1095 #undef TO_BE_RECLAIMED 1096 } 1097 1098 /* 1099 * Return the transmit key to use in sending a unicast frame. 1100 * If a unicast key is set we use that. When no unicast key is set 1101 * we fall back to the default transmit key. 1102 */ 1103 static __inline struct ieee80211_key * 1104 ieee80211_crypto_getucastkey(struct ieee80211vap *vap, 1105 struct ieee80211_node *ni) 1106 { 1107 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) { 1108 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1109 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1110 return NULL; 1111 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1112 } else { 1113 return &ni->ni_ucastkey; 1114 } 1115 } 1116 1117 /* 1118 * Return the transmit key to use in sending a multicast frame. 1119 * Multicast traffic always uses the group key which is installed as 1120 * the default tx key. 1121 */ 1122 static __inline struct ieee80211_key * 1123 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap, 1124 struct ieee80211_node *ni) 1125 { 1126 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1127 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1128 return NULL; 1129 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1130 } 1131 1132 /* 1133 * Encapsulate an outbound data frame. The mbuf chain is updated. 1134 * If an error is encountered NULL is returned. The caller is required 1135 * to provide a node reference and pullup the ethernet header in the 1136 * first mbuf. 1137 * 1138 * NB: Packet is assumed to be processed by ieee80211_classify which 1139 * marked EAPOL frames w/ M_EAPOL. 1140 */ 1141 struct mbuf * 1142 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni, 1143 struct mbuf *m) 1144 { 1145 #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh)) 1146 #define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc) 1147 struct ieee80211com *ic = ni->ni_ic; 1148 #ifdef IEEE80211_SUPPORT_MESH 1149 struct ieee80211_mesh_state *ms = vap->iv_mesh; 1150 struct ieee80211_meshcntl_ae10 *mc; 1151 struct ieee80211_mesh_route *rt = NULL; 1152 int dir = -1; 1153 #endif 1154 struct ether_header eh; 1155 struct ieee80211_frame *wh; 1156 struct ieee80211_key *key; 1157 struct llc *llc; 1158 int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr; 1159 ieee80211_seq seqno; 1160 int meshhdrsize, meshae; 1161 uint8_t *qos; 1162 1163 IEEE80211_TX_LOCK_ASSERT(ic); 1164 1165 /* 1166 * Copy existing Ethernet header to a safe place. The 1167 * rest of the code assumes it's ok to strip it when 1168 * reorganizing state for the final encapsulation. 1169 */ 1170 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 1171 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t)); 1172 1173 /* 1174 * Insure space for additional headers. First identify 1175 * transmit key to use in calculating any buffer adjustments 1176 * required. This is also used below to do privacy 1177 * encapsulation work. Then calculate the 802.11 header 1178 * size and any padding required by the driver. 1179 * 1180 * Note key may be NULL if we fall back to the default 1181 * transmit key and that is not set. In that case the 1182 * buffer may not be expanded as needed by the cipher 1183 * routines, but they will/should discard it. 1184 */ 1185 if (vap->iv_flags & IEEE80211_F_PRIVACY) { 1186 if (vap->iv_opmode == IEEE80211_M_STA || 1187 !IEEE80211_IS_MULTICAST(eh.ether_dhost) || 1188 (vap->iv_opmode == IEEE80211_M_WDS && 1189 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) 1190 key = ieee80211_crypto_getucastkey(vap, ni); 1191 else 1192 key = ieee80211_crypto_getmcastkey(vap, ni); 1193 if (key == NULL && (m->m_flags & M_EAPOL) == 0) { 1194 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, 1195 eh.ether_dhost, 1196 "no default transmit key (%s) deftxkey %u", 1197 __func__, vap->iv_def_txkey); 1198 vap->iv_stats.is_tx_nodefkey++; 1199 goto bad; 1200 } 1201 } else 1202 key = NULL; 1203 /* 1204 * XXX Some ap's don't handle QoS-encapsulated EAPOL 1205 * frames so suppress use. This may be an issue if other 1206 * ap's require all data frames to be QoS-encapsulated 1207 * once negotiated in which case we'll need to make this 1208 * configurable. 1209 * NB: mesh data frames are QoS. 1210 */ 1211 addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) || 1212 (vap->iv_opmode == IEEE80211_M_MBSS)) && 1213 (m->m_flags & M_EAPOL) == 0; 1214 if (addqos) 1215 hdrsize = sizeof(struct ieee80211_qosframe); 1216 else 1217 hdrsize = sizeof(struct ieee80211_frame); 1218 #ifdef IEEE80211_SUPPORT_MESH 1219 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1220 /* 1221 * Mesh data frames are encapsulated according to the 1222 * rules of Section 11B.8.5 (p.139 of D3.0 spec). 1223 * o Group Addressed data (aka multicast) originating 1224 * at the local sta are sent w/ 3-address format and 1225 * address extension mode 00 1226 * o Individually Addressed data (aka unicast) originating 1227 * at the local sta are sent w/ 4-address format and 1228 * address extension mode 00 1229 * o Group Addressed data forwarded from a non-mesh sta are 1230 * sent w/ 3-address format and address extension mode 01 1231 * o Individually Address data from another sta are sent 1232 * w/ 4-address format and address extension mode 10 1233 */ 1234 is4addr = 0; /* NB: don't use, disable */ 1235 if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) { 1236 rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost); 1237 KASSERT(rt != NULL, ("route is NULL")); 1238 dir = IEEE80211_FC1_DIR_DSTODS; 1239 hdrsize += IEEE80211_ADDR_LEN; 1240 if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) { 1241 if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate, 1242 vap->iv_myaddr)) { 1243 IEEE80211_NOTE_MAC(vap, 1244 IEEE80211_MSG_MESH, 1245 eh.ether_dhost, 1246 "%s", "trying to send to ourself"); 1247 goto bad; 1248 } 1249 meshae = IEEE80211_MESH_AE_10; 1250 meshhdrsize = 1251 sizeof(struct ieee80211_meshcntl_ae10); 1252 } else { 1253 meshae = IEEE80211_MESH_AE_00; 1254 meshhdrsize = 1255 sizeof(struct ieee80211_meshcntl); 1256 } 1257 } else { 1258 dir = IEEE80211_FC1_DIR_FROMDS; 1259 if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) { 1260 /* proxy group */ 1261 meshae = IEEE80211_MESH_AE_01; 1262 meshhdrsize = 1263 sizeof(struct ieee80211_meshcntl_ae01); 1264 } else { 1265 /* group */ 1266 meshae = IEEE80211_MESH_AE_00; 1267 meshhdrsize = sizeof(struct ieee80211_meshcntl); 1268 } 1269 } 1270 } else { 1271 #endif 1272 /* 1273 * 4-address frames need to be generated for: 1274 * o packets sent through a WDS vap (IEEE80211_M_WDS) 1275 * o packets sent through a vap marked for relaying 1276 * (e.g. a station operating with dynamic WDS) 1277 */ 1278 is4addr = vap->iv_opmode == IEEE80211_M_WDS || 1279 ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) && 1280 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)); 1281 if (is4addr) 1282 hdrsize += IEEE80211_ADDR_LEN; 1283 meshhdrsize = meshae = 0; 1284 #ifdef IEEE80211_SUPPORT_MESH 1285 } 1286 #endif 1287 /* 1288 * Honor driver DATAPAD requirement. 1289 */ 1290 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1291 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1292 else 1293 hdrspace = hdrsize; 1294 1295 if (__predict_true((m->m_flags & M_FF) == 0)) { 1296 /* 1297 * Normal frame. 1298 */ 1299 m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m); 1300 if (m == NULL) { 1301 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 1302 goto bad; 1303 } 1304 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */ 1305 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 1306 llc = mtod(m, struct llc *); 1307 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 1308 llc->llc_control = LLC_UI; 1309 llc->llc_snap.org_code[0] = 0; 1310 llc->llc_snap.org_code[1] = 0; 1311 llc->llc_snap.org_code[2] = 0; 1312 llc->llc_snap.ether_type = eh.ether_type; 1313 } else { 1314 #ifdef IEEE80211_SUPPORT_SUPERG 1315 /* 1316 * Aggregated frame. 1317 */ 1318 m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key); 1319 if (m == NULL) 1320 #endif 1321 goto bad; 1322 } 1323 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 1324 1325 M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT); 1326 if (m == NULL) { 1327 vap->iv_stats.is_tx_nobuf++; 1328 goto bad; 1329 } 1330 wh = mtod(m, struct ieee80211_frame *); 1331 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 1332 *(uint16_t *)wh->i_dur = 0; 1333 qos = NULL; /* NB: quiet compiler */ 1334 if (is4addr) { 1335 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 1336 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); 1337 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1338 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1339 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); 1340 } else switch (vap->iv_opmode) { 1341 case IEEE80211_M_STA: 1342 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 1343 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 1344 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1345 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1346 break; 1347 case IEEE80211_M_IBSS: 1348 case IEEE80211_M_AHDEMO: 1349 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1350 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1351 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1352 /* 1353 * NB: always use the bssid from iv_bss as the 1354 * neighbor's may be stale after an ibss merge 1355 */ 1356 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid); 1357 break; 1358 case IEEE80211_M_HOSTAP: 1359 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1360 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1361 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 1362 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 1363 break; 1364 #ifdef IEEE80211_SUPPORT_MESH 1365 case IEEE80211_M_MBSS: 1366 /* NB: offset by hdrspace to deal with DATAPAD */ 1367 mc = (struct ieee80211_meshcntl_ae10 *) 1368 (mtod(m, uint8_t *) + hdrspace); 1369 wh->i_fc[1] = dir; 1370 switch (meshae) { 1371 case IEEE80211_MESH_AE_00: /* no proxy */ 1372 mc->mc_flags = 0; 1373 if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */ 1374 IEEE80211_ADDR_COPY(wh->i_addr1, 1375 ni->ni_macaddr); 1376 IEEE80211_ADDR_COPY(wh->i_addr2, 1377 vap->iv_myaddr); 1378 IEEE80211_ADDR_COPY(wh->i_addr3, 1379 eh.ether_dhost); 1380 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, 1381 eh.ether_shost); 1382 qos =((struct ieee80211_qosframe_addr4 *) 1383 wh)->i_qos; 1384 } else if (dir == IEEE80211_FC1_DIR_FROMDS) { 1385 /* mcast */ 1386 IEEE80211_ADDR_COPY(wh->i_addr1, 1387 eh.ether_dhost); 1388 IEEE80211_ADDR_COPY(wh->i_addr2, 1389 vap->iv_myaddr); 1390 IEEE80211_ADDR_COPY(wh->i_addr3, 1391 eh.ether_shost); 1392 qos = ((struct ieee80211_qosframe *) 1393 wh)->i_qos; 1394 } 1395 break; 1396 case IEEE80211_MESH_AE_01: /* mcast, proxy */ 1397 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1398 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1399 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1400 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr); 1401 mc->mc_flags = 1; 1402 IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4, 1403 eh.ether_shost); 1404 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1405 break; 1406 case IEEE80211_MESH_AE_10: /* ucast, proxy */ 1407 KASSERT(rt != NULL, ("route is NULL")); 1408 IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop); 1409 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1410 IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate); 1411 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr); 1412 mc->mc_flags = IEEE80211_MESH_AE_10; 1413 IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost); 1414 IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost); 1415 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1416 break; 1417 default: 1418 KASSERT(0, ("meshae %d", meshae)); 1419 break; 1420 } 1421 mc->mc_ttl = ms->ms_ttl; 1422 ms->ms_seq++; 1423 LE_WRITE_4(mc->mc_seq, ms->ms_seq); 1424 break; 1425 #endif 1426 case IEEE80211_M_WDS: /* NB: is4addr should always be true */ 1427 default: 1428 goto bad; 1429 } 1430 if (m->m_flags & M_MORE_DATA) 1431 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 1432 if (addqos) { 1433 int ac, tid; 1434 1435 if (is4addr) { 1436 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1437 /* NB: mesh case handled earlier */ 1438 } else if (vap->iv_opmode != IEEE80211_M_MBSS) 1439 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1440 ac = M_WME_GETAC(m); 1441 /* map from access class/queue to 11e header priorty value */ 1442 tid = WME_AC_TO_TID(ac); 1443 qos[0] = tid & IEEE80211_QOS_TID; 1444 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 1445 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1446 #ifdef IEEE80211_SUPPORT_MESH 1447 if (vap->iv_opmode == IEEE80211_M_MBSS) 1448 qos[1] = IEEE80211_QOS_MC; 1449 else 1450 #endif 1451 qos[1] = 0; 1452 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 1453 1454 if ((m->m_flags & M_AMPDU_MPDU) == 0) { 1455 /* 1456 * NB: don't assign a sequence # to potential 1457 * aggregates; we expect this happens at the 1458 * point the frame comes off any aggregation q 1459 * as otherwise we may introduce holes in the 1460 * BA sequence space and/or make window accouting 1461 * more difficult. 1462 * 1463 * XXX may want to control this with a driver 1464 * capability; this may also change when we pull 1465 * aggregation up into net80211 1466 */ 1467 seqno = ni->ni_txseqs[tid]++; 1468 *(uint16_t *)wh->i_seq = 1469 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1470 M_SEQNO_SET(m, seqno); 1471 } 1472 } else { 1473 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1474 *(uint16_t *)wh->i_seq = 1475 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1476 M_SEQNO_SET(m, seqno); 1477 } 1478 1479 1480 /* check if xmit fragmentation is required */ 1481 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold && 1482 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 1483 (vap->iv_caps & IEEE80211_C_TXFRAG) && 1484 (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0); 1485 if (key != NULL) { 1486 /* 1487 * IEEE 802.1X: send EAPOL frames always in the clear. 1488 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 1489 */ 1490 if ((m->m_flags & M_EAPOL) == 0 || 1491 ((vap->iv_flags & IEEE80211_F_WPA) && 1492 (vap->iv_opmode == IEEE80211_M_STA ? 1493 !IEEE80211_KEY_UNDEFINED(key) : 1494 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) { 1495 wh->i_fc[1] |= IEEE80211_FC1_WEP; 1496 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) { 1497 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT, 1498 eh.ether_dhost, 1499 "%s", "enmic failed, discard frame"); 1500 vap->iv_stats.is_crypto_enmicfail++; 1501 goto bad; 1502 } 1503 } 1504 } 1505 if (txfrag && !ieee80211_fragment(vap, m, hdrsize, 1506 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold)) 1507 goto bad; 1508 1509 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1510 1511 IEEE80211_NODE_STAT(ni, tx_data); 1512 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1513 IEEE80211_NODE_STAT(ni, tx_mcast); 1514 m->m_flags |= M_MCAST; 1515 } else 1516 IEEE80211_NODE_STAT(ni, tx_ucast); 1517 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 1518 1519 return m; 1520 bad: 1521 if (m != NULL) 1522 m_freem(m); 1523 return NULL; 1524 #undef WH4 1525 #undef MC01 1526 } 1527 1528 /* 1529 * Fragment the frame according to the specified mtu. 1530 * The size of the 802.11 header (w/o padding) is provided 1531 * so we don't need to recalculate it. We create a new 1532 * mbuf for each fragment and chain it through m_nextpkt; 1533 * we might be able to optimize this by reusing the original 1534 * packet's mbufs but that is significantly more complicated. 1535 */ 1536 static int 1537 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0, 1538 u_int hdrsize, u_int ciphdrsize, u_int mtu) 1539 { 1540 struct ieee80211com *ic = vap->iv_ic; 1541 struct ieee80211_frame *wh, *whf; 1542 struct mbuf *m, *prev, *next; 1543 u_int totalhdrsize, fragno, fragsize, off, remainder, payload; 1544 u_int hdrspace; 1545 1546 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); 1547 KASSERT(m0->m_pkthdr.len > mtu, 1548 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); 1549 1550 /* 1551 * Honor driver DATAPAD requirement. 1552 */ 1553 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1554 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1555 else 1556 hdrspace = hdrsize; 1557 1558 wh = mtod(m0, struct ieee80211_frame *); 1559 /* NB: mark the first frag; it will be propagated below */ 1560 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; 1561 totalhdrsize = hdrspace + ciphdrsize; 1562 fragno = 1; 1563 off = mtu - ciphdrsize; 1564 remainder = m0->m_pkthdr.len - off; 1565 prev = m0; 1566 do { 1567 fragsize = totalhdrsize + remainder; 1568 if (fragsize > mtu) 1569 fragsize = mtu; 1570 /* XXX fragsize can be >2048! */ 1571 KASSERT(fragsize < MCLBYTES, 1572 ("fragment size %u too big!", fragsize)); 1573 if (fragsize > MHLEN) 1574 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1575 else 1576 m = m_gethdr(M_NOWAIT, MT_DATA); 1577 if (m == NULL) 1578 goto bad; 1579 /* leave room to prepend any cipher header */ 1580 m_align(m, fragsize - ciphdrsize); 1581 1582 /* 1583 * Form the header in the fragment. Note that since 1584 * we mark the first fragment with the MORE_FRAG bit 1585 * it automatically is propagated to each fragment; we 1586 * need only clear it on the last fragment (done below). 1587 * NB: frag 1+ dont have Mesh Control field present. 1588 */ 1589 whf = mtod(m, struct ieee80211_frame *); 1590 memcpy(whf, wh, hdrsize); 1591 #ifdef IEEE80211_SUPPORT_MESH 1592 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1593 if (IEEE80211_IS_DSTODS(wh)) 1594 ((struct ieee80211_qosframe_addr4 *) 1595 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1596 else 1597 ((struct ieee80211_qosframe *) 1598 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1599 } 1600 #endif 1601 *(uint16_t *)&whf->i_seq[0] |= htole16( 1602 (fragno & IEEE80211_SEQ_FRAG_MASK) << 1603 IEEE80211_SEQ_FRAG_SHIFT); 1604 fragno++; 1605 1606 payload = fragsize - totalhdrsize; 1607 /* NB: destination is known to be contiguous */ 1608 1609 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace); 1610 m->m_len = hdrspace + payload; 1611 m->m_pkthdr.len = hdrspace + payload; 1612 m->m_flags |= M_FRAG; 1613 1614 /* chain up the fragment */ 1615 prev->m_nextpkt = m; 1616 prev = m; 1617 1618 /* deduct fragment just formed */ 1619 remainder -= payload; 1620 off += payload; 1621 } while (remainder != 0); 1622 1623 /* set the last fragment */ 1624 m->m_flags |= M_LASTFRAG; 1625 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; 1626 1627 /* strip first mbuf now that everything has been copied */ 1628 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); 1629 m0->m_flags |= M_FIRSTFRAG | M_FRAG; 1630 1631 vap->iv_stats.is_tx_fragframes++; 1632 vap->iv_stats.is_tx_frags += fragno-1; 1633 1634 return 1; 1635 bad: 1636 /* reclaim fragments but leave original frame for caller to free */ 1637 for (m = m0->m_nextpkt; m != NULL; m = next) { 1638 next = m->m_nextpkt; 1639 m->m_nextpkt = NULL; /* XXX paranoid */ 1640 m_freem(m); 1641 } 1642 m0->m_nextpkt = NULL; 1643 return 0; 1644 } 1645 1646 /* 1647 * Add a supported rates element id to a frame. 1648 */ 1649 uint8_t * 1650 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs) 1651 { 1652 int nrates; 1653 1654 *frm++ = IEEE80211_ELEMID_RATES; 1655 nrates = rs->rs_nrates; 1656 if (nrates > IEEE80211_RATE_SIZE) 1657 nrates = IEEE80211_RATE_SIZE; 1658 *frm++ = nrates; 1659 memcpy(frm, rs->rs_rates, nrates); 1660 return frm + nrates; 1661 } 1662 1663 /* 1664 * Add an extended supported rates element id to a frame. 1665 */ 1666 uint8_t * 1667 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs) 1668 { 1669 /* 1670 * Add an extended supported rates element if operating in 11g mode. 1671 */ 1672 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 1673 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 1674 *frm++ = IEEE80211_ELEMID_XRATES; 1675 *frm++ = nrates; 1676 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 1677 frm += nrates; 1678 } 1679 return frm; 1680 } 1681 1682 /* 1683 * Add an ssid element to a frame. 1684 */ 1685 static uint8_t * 1686 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) 1687 { 1688 *frm++ = IEEE80211_ELEMID_SSID; 1689 *frm++ = len; 1690 memcpy(frm, ssid, len); 1691 return frm + len; 1692 } 1693 1694 /* 1695 * Add an erp element to a frame. 1696 */ 1697 static uint8_t * 1698 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic) 1699 { 1700 uint8_t erp; 1701 1702 *frm++ = IEEE80211_ELEMID_ERP; 1703 *frm++ = 1; 1704 erp = 0; 1705 if (ic->ic_nonerpsta != 0) 1706 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 1707 if (ic->ic_flags & IEEE80211_F_USEPROT) 1708 erp |= IEEE80211_ERP_USE_PROTECTION; 1709 if (ic->ic_flags & IEEE80211_F_USEBARKER) 1710 erp |= IEEE80211_ERP_LONG_PREAMBLE; 1711 *frm++ = erp; 1712 return frm; 1713 } 1714 1715 /* 1716 * Add a CFParams element to a frame. 1717 */ 1718 static uint8_t * 1719 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic) 1720 { 1721 #define ADDSHORT(frm, v) do { \ 1722 LE_WRITE_2(frm, v); \ 1723 frm += 2; \ 1724 } while (0) 1725 *frm++ = IEEE80211_ELEMID_CFPARMS; 1726 *frm++ = 6; 1727 *frm++ = 0; /* CFP count */ 1728 *frm++ = 2; /* CFP period */ 1729 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */ 1730 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */ 1731 return frm; 1732 #undef ADDSHORT 1733 } 1734 1735 static __inline uint8_t * 1736 add_appie(uint8_t *frm, const struct ieee80211_appie *ie) 1737 { 1738 memcpy(frm, ie->ie_data, ie->ie_len); 1739 return frm + ie->ie_len; 1740 } 1741 1742 static __inline uint8_t * 1743 add_ie(uint8_t *frm, const uint8_t *ie) 1744 { 1745 memcpy(frm, ie, 2 + ie[1]); 1746 return frm + 2 + ie[1]; 1747 } 1748 1749 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 1750 /* 1751 * Add a WME information element to a frame. 1752 */ 1753 static uint8_t * 1754 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme) 1755 { 1756 static const struct ieee80211_wme_info info = { 1757 .wme_id = IEEE80211_ELEMID_VENDOR, 1758 .wme_len = sizeof(struct ieee80211_wme_info) - 2, 1759 .wme_oui = { WME_OUI_BYTES }, 1760 .wme_type = WME_OUI_TYPE, 1761 .wme_subtype = WME_INFO_OUI_SUBTYPE, 1762 .wme_version = WME_VERSION, 1763 .wme_info = 0, 1764 }; 1765 memcpy(frm, &info, sizeof(info)); 1766 return frm + sizeof(info); 1767 } 1768 1769 /* 1770 * Add a WME parameters element to a frame. 1771 */ 1772 static uint8_t * 1773 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme) 1774 { 1775 #define SM(_v, _f) (((_v) << _f##_S) & _f) 1776 #define ADDSHORT(frm, v) do { \ 1777 LE_WRITE_2(frm, v); \ 1778 frm += 2; \ 1779 } while (0) 1780 /* NB: this works 'cuz a param has an info at the front */ 1781 static const struct ieee80211_wme_info param = { 1782 .wme_id = IEEE80211_ELEMID_VENDOR, 1783 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 1784 .wme_oui = { WME_OUI_BYTES }, 1785 .wme_type = WME_OUI_TYPE, 1786 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 1787 .wme_version = WME_VERSION, 1788 }; 1789 int i; 1790 1791 memcpy(frm, ¶m, sizeof(param)); 1792 frm += __offsetof(struct ieee80211_wme_info, wme_info); 1793 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ 1794 *frm++ = 0; /* reserved field */ 1795 for (i = 0; i < WME_NUM_AC; i++) { 1796 const struct wmeParams *ac = 1797 &wme->wme_bssChanParams.cap_wmeParams[i]; 1798 *frm++ = SM(i, WME_PARAM_ACI) 1799 | SM(ac->wmep_acm, WME_PARAM_ACM) 1800 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) 1801 ; 1802 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) 1803 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) 1804 ; 1805 ADDSHORT(frm, ac->wmep_txopLimit); 1806 } 1807 return frm; 1808 #undef SM 1809 #undef ADDSHORT 1810 } 1811 #undef WME_OUI_BYTES 1812 1813 /* 1814 * Add an 11h Power Constraint element to a frame. 1815 */ 1816 static uint8_t * 1817 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap) 1818 { 1819 const struct ieee80211_channel *c = vap->iv_bss->ni_chan; 1820 /* XXX per-vap tx power limit? */ 1821 int8_t limit = vap->iv_ic->ic_txpowlimit / 2; 1822 1823 frm[0] = IEEE80211_ELEMID_PWRCNSTR; 1824 frm[1] = 1; 1825 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0; 1826 return frm + 3; 1827 } 1828 1829 /* 1830 * Add an 11h Power Capability element to a frame. 1831 */ 1832 static uint8_t * 1833 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c) 1834 { 1835 frm[0] = IEEE80211_ELEMID_PWRCAP; 1836 frm[1] = 2; 1837 frm[2] = c->ic_minpower; 1838 frm[3] = c->ic_maxpower; 1839 return frm + 4; 1840 } 1841 1842 /* 1843 * Add an 11h Supported Channels element to a frame. 1844 */ 1845 static uint8_t * 1846 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic) 1847 { 1848 static const int ielen = 26; 1849 1850 frm[0] = IEEE80211_ELEMID_SUPPCHAN; 1851 frm[1] = ielen; 1852 /* XXX not correct */ 1853 memcpy(frm+2, ic->ic_chan_avail, ielen); 1854 return frm + 2 + ielen; 1855 } 1856 1857 /* 1858 * Add an 11h Quiet time element to a frame. 1859 */ 1860 static uint8_t * 1861 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap) 1862 { 1863 struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm; 1864 1865 quiet->quiet_ie = IEEE80211_ELEMID_QUIET; 1866 quiet->len = 6; 1867 if (vap->iv_quiet_count_value == 1) 1868 vap->iv_quiet_count_value = vap->iv_quiet_count; 1869 else if (vap->iv_quiet_count_value > 1) 1870 vap->iv_quiet_count_value--; 1871 1872 if (vap->iv_quiet_count_value == 0) { 1873 /* value 0 is reserved as per 802.11h standerd */ 1874 vap->iv_quiet_count_value = 1; 1875 } 1876 1877 quiet->tbttcount = vap->iv_quiet_count_value; 1878 quiet->period = vap->iv_quiet_period; 1879 quiet->duration = htole16(vap->iv_quiet_duration); 1880 quiet->offset = htole16(vap->iv_quiet_offset); 1881 return frm + sizeof(*quiet); 1882 } 1883 1884 /* 1885 * Add an 11h Channel Switch Announcement element to a frame. 1886 * Note that we use the per-vap CSA count to adjust the global 1887 * counter so we can use this routine to form probe response 1888 * frames and get the current count. 1889 */ 1890 static uint8_t * 1891 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap) 1892 { 1893 struct ieee80211com *ic = vap->iv_ic; 1894 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm; 1895 1896 csa->csa_ie = IEEE80211_ELEMID_CSA; 1897 csa->csa_len = 3; 1898 csa->csa_mode = 1; /* XXX force quiet on channel */ 1899 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan); 1900 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count; 1901 return frm + sizeof(*csa); 1902 } 1903 1904 /* 1905 * Add an 11h country information element to a frame. 1906 */ 1907 static uint8_t * 1908 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic) 1909 { 1910 1911 if (ic->ic_countryie == NULL || 1912 ic->ic_countryie_chan != ic->ic_bsschan) { 1913 /* 1914 * Handle lazy construction of ie. This is done on 1915 * first use and after a channel change that requires 1916 * re-calculation. 1917 */ 1918 if (ic->ic_countryie != NULL) 1919 free(ic->ic_countryie, M_80211_NODE_IE); 1920 ic->ic_countryie = ieee80211_alloc_countryie(ic); 1921 if (ic->ic_countryie == NULL) 1922 return frm; 1923 ic->ic_countryie_chan = ic->ic_bsschan; 1924 } 1925 return add_appie(frm, ic->ic_countryie); 1926 } 1927 1928 uint8_t * 1929 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap) 1930 { 1931 if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) 1932 return (add_ie(frm, vap->iv_wpa_ie)); 1933 else { 1934 /* XXX else complain? */ 1935 return (frm); 1936 } 1937 } 1938 1939 uint8_t * 1940 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap) 1941 { 1942 if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL) 1943 return (add_ie(frm, vap->iv_rsn_ie)); 1944 else { 1945 /* XXX else complain? */ 1946 return (frm); 1947 } 1948 } 1949 1950 uint8_t * 1951 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni) 1952 { 1953 if (ni->ni_flags & IEEE80211_NODE_QOS) { 1954 *frm++ = IEEE80211_ELEMID_QOS; 1955 *frm++ = 1; 1956 *frm++ = 0; 1957 } 1958 1959 return (frm); 1960 } 1961 1962 /* 1963 * Send a probe request frame with the specified ssid 1964 * and any optional information element data. 1965 */ 1966 int 1967 ieee80211_send_probereq(struct ieee80211_node *ni, 1968 const uint8_t sa[IEEE80211_ADDR_LEN], 1969 const uint8_t da[IEEE80211_ADDR_LEN], 1970 const uint8_t bssid[IEEE80211_ADDR_LEN], 1971 const uint8_t *ssid, size_t ssidlen) 1972 { 1973 struct ieee80211vap *vap = ni->ni_vap; 1974 struct ieee80211com *ic = ni->ni_ic; 1975 const struct ieee80211_txparam *tp; 1976 struct ieee80211_bpf_params params; 1977 struct ieee80211_frame *wh; 1978 const struct ieee80211_rateset *rs; 1979 struct mbuf *m; 1980 uint8_t *frm; 1981 int ret; 1982 1983 if (vap->iv_state == IEEE80211_S_CAC) { 1984 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni, 1985 "block %s frame in CAC state", "probe request"); 1986 vap->iv_stats.is_tx_badstate++; 1987 return EIO; /* XXX */ 1988 } 1989 1990 /* 1991 * Hold a reference on the node so it doesn't go away until after 1992 * the xmit is complete all the way in the driver. On error we 1993 * will remove our reference. 1994 */ 1995 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 1996 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 1997 __func__, __LINE__, 1998 ni, ether_sprintf(ni->ni_macaddr), 1999 ieee80211_node_refcnt(ni)+1); 2000 ieee80211_ref_node(ni); 2001 2002 /* 2003 * prreq frame format 2004 * [tlv] ssid 2005 * [tlv] supported rates 2006 * [tlv] RSN (optional) 2007 * [tlv] extended supported rates 2008 * [tlv] WPA (optional) 2009 * [tlv] user-specified ie's 2010 */ 2011 m = ieee80211_getmgtframe(&frm, 2012 ic->ic_headroom + sizeof(struct ieee80211_frame), 2013 2 + IEEE80211_NWID_LEN 2014 + 2 + IEEE80211_RATE_SIZE 2015 + sizeof(struct ieee80211_ie_wpa) 2016 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2017 + sizeof(struct ieee80211_ie_wpa) 2018 + (vap->iv_appie_probereq != NULL ? 2019 vap->iv_appie_probereq->ie_len : 0) 2020 ); 2021 if (m == NULL) { 2022 vap->iv_stats.is_tx_nobuf++; 2023 ieee80211_free_node(ni); 2024 return ENOMEM; 2025 } 2026 2027 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 2028 rs = ieee80211_get_suprates(ic, ic->ic_curchan); 2029 frm = ieee80211_add_rates(frm, rs); 2030 frm = ieee80211_add_rsn(frm, vap); 2031 frm = ieee80211_add_xrates(frm, rs); 2032 frm = ieee80211_add_wpa(frm, vap); 2033 if (vap->iv_appie_probereq != NULL) 2034 frm = add_appie(frm, vap->iv_appie_probereq); 2035 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2036 2037 KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame), 2038 ("leading space %zd", M_LEADINGSPACE(m))); 2039 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2040 if (m == NULL) { 2041 /* NB: cannot happen */ 2042 ieee80211_free_node(ni); 2043 return ENOMEM; 2044 } 2045 2046 IEEE80211_TX_LOCK(ic); 2047 wh = mtod(m, struct ieee80211_frame *); 2048 ieee80211_send_setup(ni, m, 2049 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 2050 IEEE80211_NONQOS_TID, sa, da, bssid); 2051 /* XXX power management? */ 2052 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2053 2054 M_WME_SETAC(m, WME_AC_BE); 2055 2056 IEEE80211_NODE_STAT(ni, tx_probereq); 2057 IEEE80211_NODE_STAT(ni, tx_mgmt); 2058 2059 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2060 "send probe req on channel %u bssid %s ssid \"%.*s\"\n", 2061 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid), 2062 ssidlen, ssid); 2063 2064 memset(¶ms, 0, sizeof(params)); 2065 params.ibp_pri = M_WME_GETAC(m); 2066 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 2067 params.ibp_rate0 = tp->mgmtrate; 2068 if (IEEE80211_IS_MULTICAST(da)) { 2069 params.ibp_flags |= IEEE80211_BPF_NOACK; 2070 params.ibp_try0 = 1; 2071 } else 2072 params.ibp_try0 = tp->maxretry; 2073 params.ibp_power = ni->ni_txpower; 2074 ret = ieee80211_raw_output(vap, ni, m, ¶ms); 2075 IEEE80211_TX_UNLOCK(ic); 2076 return (ret); 2077 } 2078 2079 /* 2080 * Calculate capability information for mgt frames. 2081 */ 2082 uint16_t 2083 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan) 2084 { 2085 struct ieee80211com *ic = vap->iv_ic; 2086 uint16_t capinfo; 2087 2088 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode")); 2089 2090 if (vap->iv_opmode == IEEE80211_M_HOSTAP) 2091 capinfo = IEEE80211_CAPINFO_ESS; 2092 else if (vap->iv_opmode == IEEE80211_M_IBSS) 2093 capinfo = IEEE80211_CAPINFO_IBSS; 2094 else 2095 capinfo = 0; 2096 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2097 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2098 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2099 IEEE80211_IS_CHAN_2GHZ(chan)) 2100 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2101 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2102 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2103 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH)) 2104 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2105 return capinfo; 2106 } 2107 2108 /* 2109 * Send a management frame. The node is for the destination (or ic_bss 2110 * when in station mode). Nodes other than ic_bss have their reference 2111 * count bumped to reflect our use for an indeterminant time. 2112 */ 2113 int 2114 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg) 2115 { 2116 #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT) 2117 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2118 struct ieee80211vap *vap = ni->ni_vap; 2119 struct ieee80211com *ic = ni->ni_ic; 2120 struct ieee80211_node *bss = vap->iv_bss; 2121 struct ieee80211_bpf_params params; 2122 struct mbuf *m; 2123 uint8_t *frm; 2124 uint16_t capinfo; 2125 int has_challenge, is_shared_key, ret, status; 2126 2127 KASSERT(ni != NULL, ("null node")); 2128 2129 /* 2130 * Hold a reference on the node so it doesn't go away until after 2131 * the xmit is complete all the way in the driver. On error we 2132 * will remove our reference. 2133 */ 2134 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2135 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2136 __func__, __LINE__, 2137 ni, ether_sprintf(ni->ni_macaddr), 2138 ieee80211_node_refcnt(ni)+1); 2139 ieee80211_ref_node(ni); 2140 2141 memset(¶ms, 0, sizeof(params)); 2142 switch (type) { 2143 2144 case IEEE80211_FC0_SUBTYPE_AUTH: 2145 status = arg >> 16; 2146 arg &= 0xffff; 2147 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || 2148 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 2149 ni->ni_challenge != NULL); 2150 2151 /* 2152 * Deduce whether we're doing open authentication or 2153 * shared key authentication. We do the latter if 2154 * we're in the middle of a shared key authentication 2155 * handshake or if we're initiating an authentication 2156 * request and configured to use shared key. 2157 */ 2158 is_shared_key = has_challenge || 2159 arg >= IEEE80211_AUTH_SHARED_RESPONSE || 2160 (arg == IEEE80211_AUTH_SHARED_REQUEST && 2161 bss->ni_authmode == IEEE80211_AUTH_SHARED); 2162 2163 m = ieee80211_getmgtframe(&frm, 2164 ic->ic_headroom + sizeof(struct ieee80211_frame), 2165 3 * sizeof(uint16_t) 2166 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? 2167 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0) 2168 ); 2169 if (m == NULL) 2170 senderr(ENOMEM, is_tx_nobuf); 2171 2172 ((uint16_t *)frm)[0] = 2173 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) 2174 : htole16(IEEE80211_AUTH_ALG_OPEN); 2175 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */ 2176 ((uint16_t *)frm)[2] = htole16(status);/* status */ 2177 2178 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { 2179 ((uint16_t *)frm)[3] = 2180 htole16((IEEE80211_CHALLENGE_LEN << 8) | 2181 IEEE80211_ELEMID_CHALLENGE); 2182 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge, 2183 IEEE80211_CHALLENGE_LEN); 2184 m->m_pkthdr.len = m->m_len = 2185 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN; 2186 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 2187 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2188 "request encrypt frame (%s)", __func__); 2189 /* mark frame for encryption */ 2190 params.ibp_flags |= IEEE80211_BPF_CRYPTO; 2191 } 2192 } else 2193 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t); 2194 2195 /* XXX not right for shared key */ 2196 if (status == IEEE80211_STATUS_SUCCESS) 2197 IEEE80211_NODE_STAT(ni, tx_auth); 2198 else 2199 IEEE80211_NODE_STAT(ni, tx_auth_fail); 2200 2201 if (vap->iv_opmode == IEEE80211_M_STA) 2202 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2203 (void *) vap->iv_state); 2204 break; 2205 2206 case IEEE80211_FC0_SUBTYPE_DEAUTH: 2207 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2208 "send station deauthenticate (reason %d)", arg); 2209 m = ieee80211_getmgtframe(&frm, 2210 ic->ic_headroom + sizeof(struct ieee80211_frame), 2211 sizeof(uint16_t)); 2212 if (m == NULL) 2213 senderr(ENOMEM, is_tx_nobuf); 2214 *(uint16_t *)frm = htole16(arg); /* reason */ 2215 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2216 2217 IEEE80211_NODE_STAT(ni, tx_deauth); 2218 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 2219 2220 ieee80211_node_unauthorize(ni); /* port closed */ 2221 break; 2222 2223 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 2224 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 2225 /* 2226 * asreq frame format 2227 * [2] capability information 2228 * [2] listen interval 2229 * [6*] current AP address (reassoc only) 2230 * [tlv] ssid 2231 * [tlv] supported rates 2232 * [tlv] extended supported rates 2233 * [4] power capability (optional) 2234 * [28] supported channels (optional) 2235 * [tlv] HT capabilities 2236 * [tlv] WME (optional) 2237 * [tlv] Vendor OUI HT capabilities (optional) 2238 * [tlv] Atheros capabilities (if negotiated) 2239 * [tlv] AppIE's (optional) 2240 */ 2241 m = ieee80211_getmgtframe(&frm, 2242 ic->ic_headroom + sizeof(struct ieee80211_frame), 2243 sizeof(uint16_t) 2244 + sizeof(uint16_t) 2245 + IEEE80211_ADDR_LEN 2246 + 2 + IEEE80211_NWID_LEN 2247 + 2 + IEEE80211_RATE_SIZE 2248 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2249 + 4 2250 + 2 + 26 2251 + sizeof(struct ieee80211_wme_info) 2252 + sizeof(struct ieee80211_ie_htcap) 2253 + 4 + sizeof(struct ieee80211_ie_htcap) 2254 #ifdef IEEE80211_SUPPORT_SUPERG 2255 + sizeof(struct ieee80211_ath_ie) 2256 #endif 2257 + (vap->iv_appie_wpa != NULL ? 2258 vap->iv_appie_wpa->ie_len : 0) 2259 + (vap->iv_appie_assocreq != NULL ? 2260 vap->iv_appie_assocreq->ie_len : 0) 2261 ); 2262 if (m == NULL) 2263 senderr(ENOMEM, is_tx_nobuf); 2264 2265 KASSERT(vap->iv_opmode == IEEE80211_M_STA, 2266 ("wrong mode %u", vap->iv_opmode)); 2267 capinfo = IEEE80211_CAPINFO_ESS; 2268 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2269 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2270 /* 2271 * NB: Some 11a AP's reject the request when 2272 * short premable is set. 2273 */ 2274 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2275 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2276 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2277 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 2278 (ic->ic_caps & IEEE80211_C_SHSLOT)) 2279 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2280 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) && 2281 (vap->iv_flags & IEEE80211_F_DOTH)) 2282 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2283 *(uint16_t *)frm = htole16(capinfo); 2284 frm += 2; 2285 2286 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!")); 2287 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval, 2288 bss->ni_intval)); 2289 frm += 2; 2290 2291 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 2292 IEEE80211_ADDR_COPY(frm, bss->ni_bssid); 2293 frm += IEEE80211_ADDR_LEN; 2294 } 2295 2296 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 2297 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2298 frm = ieee80211_add_rsn(frm, vap); 2299 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2300 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) { 2301 frm = ieee80211_add_powercapability(frm, 2302 ic->ic_curchan); 2303 frm = ieee80211_add_supportedchannels(frm, ic); 2304 } 2305 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2306 ni->ni_ies.htcap_ie != NULL && 2307 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) 2308 frm = ieee80211_add_htcap(frm, ni); 2309 frm = ieee80211_add_wpa(frm, vap); 2310 if ((ic->ic_flags & IEEE80211_F_WME) && 2311 ni->ni_ies.wme_ie != NULL) 2312 frm = ieee80211_add_wme_info(frm, &ic->ic_wme); 2313 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2314 ni->ni_ies.htcap_ie != NULL && 2315 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) 2316 frm = ieee80211_add_htcap_vendor(frm, ni); 2317 #ifdef IEEE80211_SUPPORT_SUPERG 2318 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) { 2319 frm = ieee80211_add_ath(frm, 2320 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2321 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2322 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2323 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2324 } 2325 #endif /* IEEE80211_SUPPORT_SUPERG */ 2326 if (vap->iv_appie_assocreq != NULL) 2327 frm = add_appie(frm, vap->iv_appie_assocreq); 2328 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2329 2330 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2331 (void *) vap->iv_state); 2332 break; 2333 2334 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 2335 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 2336 /* 2337 * asresp frame format 2338 * [2] capability information 2339 * [2] status 2340 * [2] association ID 2341 * [tlv] supported rates 2342 * [tlv] extended supported rates 2343 * [tlv] HT capabilities (standard, if STA enabled) 2344 * [tlv] HT information (standard, if STA enabled) 2345 * [tlv] WME (if configured and STA enabled) 2346 * [tlv] HT capabilities (vendor OUI, if STA enabled) 2347 * [tlv] HT information (vendor OUI, if STA enabled) 2348 * [tlv] Atheros capabilities (if STA enabled) 2349 * [tlv] AppIE's (optional) 2350 */ 2351 m = ieee80211_getmgtframe(&frm, 2352 ic->ic_headroom + sizeof(struct ieee80211_frame), 2353 sizeof(uint16_t) 2354 + sizeof(uint16_t) 2355 + sizeof(uint16_t) 2356 + 2 + IEEE80211_RATE_SIZE 2357 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2358 + sizeof(struct ieee80211_ie_htcap) + 4 2359 + sizeof(struct ieee80211_ie_htinfo) + 4 2360 + sizeof(struct ieee80211_wme_param) 2361 #ifdef IEEE80211_SUPPORT_SUPERG 2362 + sizeof(struct ieee80211_ath_ie) 2363 #endif 2364 + (vap->iv_appie_assocresp != NULL ? 2365 vap->iv_appie_assocresp->ie_len : 0) 2366 ); 2367 if (m == NULL) 2368 senderr(ENOMEM, is_tx_nobuf); 2369 2370 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2371 *(uint16_t *)frm = htole16(capinfo); 2372 frm += 2; 2373 2374 *(uint16_t *)frm = htole16(arg); /* status */ 2375 frm += 2; 2376 2377 if (arg == IEEE80211_STATUS_SUCCESS) { 2378 *(uint16_t *)frm = htole16(ni->ni_associd); 2379 IEEE80211_NODE_STAT(ni, tx_assoc); 2380 } else 2381 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 2382 frm += 2; 2383 2384 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2385 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2386 /* NB: respond according to what we received */ 2387 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) { 2388 frm = ieee80211_add_htcap(frm, ni); 2389 frm = ieee80211_add_htinfo(frm, ni); 2390 } 2391 if ((vap->iv_flags & IEEE80211_F_WME) && 2392 ni->ni_ies.wme_ie != NULL) 2393 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2394 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) { 2395 frm = ieee80211_add_htcap_vendor(frm, ni); 2396 frm = ieee80211_add_htinfo_vendor(frm, ni); 2397 } 2398 #ifdef IEEE80211_SUPPORT_SUPERG 2399 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) 2400 frm = ieee80211_add_ath(frm, 2401 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2402 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2403 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2404 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2405 #endif /* IEEE80211_SUPPORT_SUPERG */ 2406 if (vap->iv_appie_assocresp != NULL) 2407 frm = add_appie(frm, vap->iv_appie_assocresp); 2408 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2409 break; 2410 2411 case IEEE80211_FC0_SUBTYPE_DISASSOC: 2412 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, 2413 "send station disassociate (reason %d)", arg); 2414 m = ieee80211_getmgtframe(&frm, 2415 ic->ic_headroom + sizeof(struct ieee80211_frame), 2416 sizeof(uint16_t)); 2417 if (m == NULL) 2418 senderr(ENOMEM, is_tx_nobuf); 2419 *(uint16_t *)frm = htole16(arg); /* reason */ 2420 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2421 2422 IEEE80211_NODE_STAT(ni, tx_disassoc); 2423 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 2424 break; 2425 2426 default: 2427 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni, 2428 "invalid mgmt frame type %u", type); 2429 senderr(EINVAL, is_tx_unknownmgt); 2430 /* NOTREACHED */ 2431 } 2432 2433 /* NB: force non-ProbeResp frames to the highest queue */ 2434 params.ibp_pri = WME_AC_VO; 2435 params.ibp_rate0 = bss->ni_txparms->mgmtrate; 2436 /* NB: we know all frames are unicast */ 2437 params.ibp_try0 = bss->ni_txparms->maxretry; 2438 params.ibp_power = bss->ni_txpower; 2439 return ieee80211_mgmt_output(ni, m, type, ¶ms); 2440 bad: 2441 ieee80211_free_node(ni); 2442 return ret; 2443 #undef senderr 2444 #undef HTFLAGS 2445 } 2446 2447 /* 2448 * Return an mbuf with a probe response frame in it. 2449 * Space is left to prepend and 802.11 header at the 2450 * front but it's left to the caller to fill in. 2451 */ 2452 struct mbuf * 2453 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy) 2454 { 2455 struct ieee80211vap *vap = bss->ni_vap; 2456 struct ieee80211com *ic = bss->ni_ic; 2457 const struct ieee80211_rateset *rs; 2458 struct mbuf *m; 2459 uint16_t capinfo; 2460 uint8_t *frm; 2461 2462 /* 2463 * probe response frame format 2464 * [8] time stamp 2465 * [2] beacon interval 2466 * [2] cabability information 2467 * [tlv] ssid 2468 * [tlv] supported rates 2469 * [tlv] parameter set (FH/DS) 2470 * [tlv] parameter set (IBSS) 2471 * [tlv] country (optional) 2472 * [3] power control (optional) 2473 * [5] channel switch announcement (CSA) (optional) 2474 * [tlv] extended rate phy (ERP) 2475 * [tlv] extended supported rates 2476 * [tlv] RSN (optional) 2477 * [tlv] HT capabilities 2478 * [tlv] HT information 2479 * [tlv] WPA (optional) 2480 * [tlv] WME (optional) 2481 * [tlv] Vendor OUI HT capabilities (optional) 2482 * [tlv] Vendor OUI HT information (optional) 2483 * [tlv] Atheros capabilities 2484 * [tlv] AppIE's (optional) 2485 * [tlv] Mesh ID (MBSS) 2486 * [tlv] Mesh Conf (MBSS) 2487 */ 2488 m = ieee80211_getmgtframe(&frm, 2489 ic->ic_headroom + sizeof(struct ieee80211_frame), 2490 8 2491 + sizeof(uint16_t) 2492 + sizeof(uint16_t) 2493 + 2 + IEEE80211_NWID_LEN 2494 + 2 + IEEE80211_RATE_SIZE 2495 + 7 /* max(7,3) */ 2496 + IEEE80211_COUNTRY_MAX_SIZE 2497 + 3 2498 + sizeof(struct ieee80211_csa_ie) 2499 + sizeof(struct ieee80211_quiet_ie) 2500 + 3 2501 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2502 + sizeof(struct ieee80211_ie_wpa) 2503 + sizeof(struct ieee80211_ie_htcap) 2504 + sizeof(struct ieee80211_ie_htinfo) 2505 + sizeof(struct ieee80211_ie_wpa) 2506 + sizeof(struct ieee80211_wme_param) 2507 + 4 + sizeof(struct ieee80211_ie_htcap) 2508 + 4 + sizeof(struct ieee80211_ie_htinfo) 2509 #ifdef IEEE80211_SUPPORT_SUPERG 2510 + sizeof(struct ieee80211_ath_ie) 2511 #endif 2512 #ifdef IEEE80211_SUPPORT_MESH 2513 + 2 + IEEE80211_MESHID_LEN 2514 + sizeof(struct ieee80211_meshconf_ie) 2515 #endif 2516 + (vap->iv_appie_proberesp != NULL ? 2517 vap->iv_appie_proberesp->ie_len : 0) 2518 ); 2519 if (m == NULL) { 2520 vap->iv_stats.is_tx_nobuf++; 2521 return NULL; 2522 } 2523 2524 memset(frm, 0, 8); /* timestamp should be filled later */ 2525 frm += 8; 2526 *(uint16_t *)frm = htole16(bss->ni_intval); 2527 frm += 2; 2528 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2529 *(uint16_t *)frm = htole16(capinfo); 2530 frm += 2; 2531 2532 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen); 2533 rs = ieee80211_get_suprates(ic, bss->ni_chan); 2534 frm = ieee80211_add_rates(frm, rs); 2535 2536 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) { 2537 *frm++ = IEEE80211_ELEMID_FHPARMS; 2538 *frm++ = 5; 2539 *frm++ = bss->ni_fhdwell & 0x00ff; 2540 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff; 2541 *frm++ = IEEE80211_FH_CHANSET( 2542 ieee80211_chan2ieee(ic, bss->ni_chan)); 2543 *frm++ = IEEE80211_FH_CHANPAT( 2544 ieee80211_chan2ieee(ic, bss->ni_chan)); 2545 *frm++ = bss->ni_fhindex; 2546 } else { 2547 *frm++ = IEEE80211_ELEMID_DSPARMS; 2548 *frm++ = 1; 2549 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan); 2550 } 2551 2552 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2553 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2554 *frm++ = 2; 2555 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2556 } 2557 if ((vap->iv_flags & IEEE80211_F_DOTH) || 2558 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 2559 frm = ieee80211_add_countryie(frm, ic); 2560 if (vap->iv_flags & IEEE80211_F_DOTH) { 2561 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan)) 2562 frm = ieee80211_add_powerconstraint(frm, vap); 2563 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 2564 frm = ieee80211_add_csa(frm, vap); 2565 } 2566 if (vap->iv_flags & IEEE80211_F_DOTH) { 2567 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2568 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 2569 if (vap->iv_quiet) 2570 frm = ieee80211_add_quiet(frm, vap); 2571 } 2572 } 2573 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan)) 2574 frm = ieee80211_add_erp(frm, ic); 2575 frm = ieee80211_add_xrates(frm, rs); 2576 frm = ieee80211_add_rsn(frm, vap); 2577 /* 2578 * NB: legacy 11b clients do not get certain ie's. 2579 * The caller identifies such clients by passing 2580 * a token in legacy to us. Could expand this to be 2581 * any legacy client for stuff like HT ie's. 2582 */ 2583 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2584 legacy != IEEE80211_SEND_LEGACY_11B) { 2585 frm = ieee80211_add_htcap(frm, bss); 2586 frm = ieee80211_add_htinfo(frm, bss); 2587 } 2588 frm = ieee80211_add_wpa(frm, vap); 2589 if (vap->iv_flags & IEEE80211_F_WME) 2590 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2591 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2592 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) && 2593 legacy != IEEE80211_SEND_LEGACY_11B) { 2594 frm = ieee80211_add_htcap_vendor(frm, bss); 2595 frm = ieee80211_add_htinfo_vendor(frm, bss); 2596 } 2597 #ifdef IEEE80211_SUPPORT_SUPERG 2598 if ((vap->iv_flags & IEEE80211_F_ATHEROS) && 2599 legacy != IEEE80211_SEND_LEGACY_11B) 2600 frm = ieee80211_add_athcaps(frm, bss); 2601 #endif 2602 if (vap->iv_appie_proberesp != NULL) 2603 frm = add_appie(frm, vap->iv_appie_proberesp); 2604 #ifdef IEEE80211_SUPPORT_MESH 2605 if (vap->iv_opmode == IEEE80211_M_MBSS) { 2606 frm = ieee80211_add_meshid(frm, vap); 2607 frm = ieee80211_add_meshconf(frm, vap); 2608 } 2609 #endif 2610 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2611 2612 return m; 2613 } 2614 2615 /* 2616 * Send a probe response frame to the specified mac address. 2617 * This does not go through the normal mgt frame api so we 2618 * can specify the destination address and re-use the bss node 2619 * for the sta reference. 2620 */ 2621 int 2622 ieee80211_send_proberesp(struct ieee80211vap *vap, 2623 const uint8_t da[IEEE80211_ADDR_LEN], int legacy) 2624 { 2625 struct ieee80211_node *bss = vap->iv_bss; 2626 struct ieee80211com *ic = vap->iv_ic; 2627 struct ieee80211_frame *wh; 2628 struct mbuf *m; 2629 int ret; 2630 2631 if (vap->iv_state == IEEE80211_S_CAC) { 2632 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss, 2633 "block %s frame in CAC state", "probe response"); 2634 vap->iv_stats.is_tx_badstate++; 2635 return EIO; /* XXX */ 2636 } 2637 2638 /* 2639 * Hold a reference on the node so it doesn't go away until after 2640 * the xmit is complete all the way in the driver. On error we 2641 * will remove our reference. 2642 */ 2643 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2644 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2645 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr), 2646 ieee80211_node_refcnt(bss)+1); 2647 ieee80211_ref_node(bss); 2648 2649 m = ieee80211_alloc_proberesp(bss, legacy); 2650 if (m == NULL) { 2651 ieee80211_free_node(bss); 2652 return ENOMEM; 2653 } 2654 2655 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2656 KASSERT(m != NULL, ("no room for header")); 2657 2658 IEEE80211_TX_LOCK(ic); 2659 wh = mtod(m, struct ieee80211_frame *); 2660 ieee80211_send_setup(bss, m, 2661 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP, 2662 IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid); 2663 /* XXX power management? */ 2664 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2665 2666 M_WME_SETAC(m, WME_AC_BE); 2667 2668 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2669 "send probe resp on channel %u to %s%s\n", 2670 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da), 2671 legacy ? " <legacy>" : ""); 2672 IEEE80211_NODE_STAT(bss, tx_mgmt); 2673 2674 ret = ieee80211_raw_output(vap, bss, m, NULL); 2675 IEEE80211_TX_UNLOCK(ic); 2676 return (ret); 2677 } 2678 2679 /* 2680 * Allocate and build a RTS (Request To Send) control frame. 2681 */ 2682 struct mbuf * 2683 ieee80211_alloc_rts(struct ieee80211com *ic, 2684 const uint8_t ra[IEEE80211_ADDR_LEN], 2685 const uint8_t ta[IEEE80211_ADDR_LEN], 2686 uint16_t dur) 2687 { 2688 struct ieee80211_frame_rts *rts; 2689 struct mbuf *m; 2690 2691 /* XXX honor ic_headroom */ 2692 m = m_gethdr(M_NOWAIT, MT_DATA); 2693 if (m != NULL) { 2694 rts = mtod(m, struct ieee80211_frame_rts *); 2695 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2696 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS; 2697 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2698 *(u_int16_t *)rts->i_dur = htole16(dur); 2699 IEEE80211_ADDR_COPY(rts->i_ra, ra); 2700 IEEE80211_ADDR_COPY(rts->i_ta, ta); 2701 2702 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); 2703 } 2704 return m; 2705 } 2706 2707 /* 2708 * Allocate and build a CTS (Clear To Send) control frame. 2709 */ 2710 struct mbuf * 2711 ieee80211_alloc_cts(struct ieee80211com *ic, 2712 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur) 2713 { 2714 struct ieee80211_frame_cts *cts; 2715 struct mbuf *m; 2716 2717 /* XXX honor ic_headroom */ 2718 m = m_gethdr(M_NOWAIT, MT_DATA); 2719 if (m != NULL) { 2720 cts = mtod(m, struct ieee80211_frame_cts *); 2721 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2722 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS; 2723 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2724 *(u_int16_t *)cts->i_dur = htole16(dur); 2725 IEEE80211_ADDR_COPY(cts->i_ra, ra); 2726 2727 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts); 2728 } 2729 return m; 2730 } 2731 2732 static void 2733 ieee80211_tx_mgt_timeout(void *arg) 2734 { 2735 struct ieee80211_node *ni = arg; 2736 struct ieee80211vap *vap = ni->ni_vap; 2737 2738 if (vap->iv_state != IEEE80211_S_INIT && 2739 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) { 2740 /* 2741 * NB: it's safe to specify a timeout as the reason here; 2742 * it'll only be used in the right state. 2743 */ 2744 ieee80211_new_state(vap, IEEE80211_S_SCAN, 2745 IEEE80211_SCAN_FAIL_TIMEOUT); 2746 } 2747 } 2748 2749 static void 2750 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status) 2751 { 2752 struct ieee80211vap *vap = ni->ni_vap; 2753 enum ieee80211_state ostate = (enum ieee80211_state) arg; 2754 2755 /* 2756 * Frame transmit completed; arrange timer callback. If 2757 * transmit was successfuly we wait for response. Otherwise 2758 * we arrange an immediate callback instead of doing the 2759 * callback directly since we don't know what state the driver 2760 * is in (e.g. what locks it is holding). This work should 2761 * not be too time-critical and not happen too often so the 2762 * added overhead is acceptable. 2763 * 2764 * XXX what happens if !acked but response shows up before callback? 2765 */ 2766 if (vap->iv_state == ostate) 2767 callout_reset(&vap->iv_mgtsend, 2768 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0, 2769 ieee80211_tx_mgt_timeout, ni); 2770 } 2771 2772 static void 2773 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm, 2774 struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni) 2775 { 2776 struct ieee80211vap *vap = ni->ni_vap; 2777 struct ieee80211com *ic = ni->ni_ic; 2778 struct ieee80211_rateset *rs = &ni->ni_rates; 2779 uint16_t capinfo; 2780 2781 /* 2782 * beacon frame format 2783 * [8] time stamp 2784 * [2] beacon interval 2785 * [2] cabability information 2786 * [tlv] ssid 2787 * [tlv] supported rates 2788 * [3] parameter set (DS) 2789 * [8] CF parameter set (optional) 2790 * [tlv] parameter set (IBSS/TIM) 2791 * [tlv] country (optional) 2792 * [3] power control (optional) 2793 * [5] channel switch announcement (CSA) (optional) 2794 * [tlv] extended rate phy (ERP) 2795 * [tlv] extended supported rates 2796 * [tlv] RSN parameters 2797 * [tlv] HT capabilities 2798 * [tlv] HT information 2799 * XXX Vendor-specific OIDs (e.g. Atheros) 2800 * [tlv] WPA parameters 2801 * [tlv] WME parameters 2802 * [tlv] Vendor OUI HT capabilities (optional) 2803 * [tlv] Vendor OUI HT information (optional) 2804 * [tlv] Atheros capabilities (optional) 2805 * [tlv] TDMA parameters (optional) 2806 * [tlv] Mesh ID (MBSS) 2807 * [tlv] Mesh Conf (MBSS) 2808 * [tlv] application data (optional) 2809 */ 2810 2811 memset(bo, 0, sizeof(*bo)); 2812 2813 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 2814 frm += 8; 2815 *(uint16_t *)frm = htole16(ni->ni_intval); 2816 frm += 2; 2817 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 2818 bo->bo_caps = (uint16_t *)frm; 2819 *(uint16_t *)frm = htole16(capinfo); 2820 frm += 2; 2821 *frm++ = IEEE80211_ELEMID_SSID; 2822 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) { 2823 *frm++ = ni->ni_esslen; 2824 memcpy(frm, ni->ni_essid, ni->ni_esslen); 2825 frm += ni->ni_esslen; 2826 } else 2827 *frm++ = 0; 2828 frm = ieee80211_add_rates(frm, rs); 2829 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) { 2830 *frm++ = IEEE80211_ELEMID_DSPARMS; 2831 *frm++ = 1; 2832 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 2833 } 2834 if (ic->ic_flags & IEEE80211_F_PCF) { 2835 bo->bo_cfp = frm; 2836 frm = ieee80211_add_cfparms(frm, ic); 2837 } 2838 bo->bo_tim = frm; 2839 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2840 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2841 *frm++ = 2; 2842 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2843 bo->bo_tim_len = 0; 2844 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 2845 vap->iv_opmode == IEEE80211_M_MBSS) { 2846 /* TIM IE is the same for Mesh and Hostap */ 2847 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; 2848 2849 tie->tim_ie = IEEE80211_ELEMID_TIM; 2850 tie->tim_len = 4; /* length */ 2851 tie->tim_count = 0; /* DTIM count */ 2852 tie->tim_period = vap->iv_dtim_period; /* DTIM period */ 2853 tie->tim_bitctl = 0; /* bitmap control */ 2854 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 2855 frm += sizeof(struct ieee80211_tim_ie); 2856 bo->bo_tim_len = 1; 2857 } 2858 bo->bo_tim_trailer = frm; 2859 if ((vap->iv_flags & IEEE80211_F_DOTH) || 2860 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 2861 frm = ieee80211_add_countryie(frm, ic); 2862 if (vap->iv_flags & IEEE80211_F_DOTH) { 2863 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) 2864 frm = ieee80211_add_powerconstraint(frm, vap); 2865 bo->bo_csa = frm; 2866 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 2867 frm = ieee80211_add_csa(frm, vap); 2868 } else 2869 bo->bo_csa = frm; 2870 2871 if (vap->iv_flags & IEEE80211_F_DOTH) { 2872 bo->bo_quiet = frm; 2873 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2874 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 2875 if (vap->iv_quiet) 2876 frm = ieee80211_add_quiet(frm,vap); 2877 } 2878 } else 2879 bo->bo_quiet = frm; 2880 2881 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) { 2882 bo->bo_erp = frm; 2883 frm = ieee80211_add_erp(frm, ic); 2884 } 2885 frm = ieee80211_add_xrates(frm, rs); 2886 frm = ieee80211_add_rsn(frm, vap); 2887 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 2888 frm = ieee80211_add_htcap(frm, ni); 2889 bo->bo_htinfo = frm; 2890 frm = ieee80211_add_htinfo(frm, ni); 2891 } 2892 frm = ieee80211_add_wpa(frm, vap); 2893 if (vap->iv_flags & IEEE80211_F_WME) { 2894 bo->bo_wme = frm; 2895 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2896 } 2897 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2898 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) { 2899 frm = ieee80211_add_htcap_vendor(frm, ni); 2900 frm = ieee80211_add_htinfo_vendor(frm, ni); 2901 } 2902 #ifdef IEEE80211_SUPPORT_SUPERG 2903 if (vap->iv_flags & IEEE80211_F_ATHEROS) { 2904 bo->bo_ath = frm; 2905 frm = ieee80211_add_athcaps(frm, ni); 2906 } 2907 #endif 2908 #ifdef IEEE80211_SUPPORT_TDMA 2909 if (vap->iv_caps & IEEE80211_C_TDMA) { 2910 bo->bo_tdma = frm; 2911 frm = ieee80211_add_tdma(frm, vap); 2912 } 2913 #endif 2914 if (vap->iv_appie_beacon != NULL) { 2915 bo->bo_appie = frm; 2916 bo->bo_appie_len = vap->iv_appie_beacon->ie_len; 2917 frm = add_appie(frm, vap->iv_appie_beacon); 2918 } 2919 #ifdef IEEE80211_SUPPORT_MESH 2920 if (vap->iv_opmode == IEEE80211_M_MBSS) { 2921 frm = ieee80211_add_meshid(frm, vap); 2922 bo->bo_meshconf = frm; 2923 frm = ieee80211_add_meshconf(frm, vap); 2924 } 2925 #endif 2926 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer; 2927 bo->bo_csa_trailer_len = frm - bo->bo_csa; 2928 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2929 } 2930 2931 /* 2932 * Allocate a beacon frame and fillin the appropriate bits. 2933 */ 2934 struct mbuf * 2935 ieee80211_beacon_alloc(struct ieee80211_node *ni, 2936 struct ieee80211_beacon_offsets *bo) 2937 { 2938 struct ieee80211vap *vap = ni->ni_vap; 2939 struct ieee80211com *ic = ni->ni_ic; 2940 struct ifnet *ifp = vap->iv_ifp; 2941 struct ieee80211_frame *wh; 2942 struct mbuf *m; 2943 int pktlen; 2944 uint8_t *frm; 2945 2946 /* 2947 * beacon frame format 2948 * [8] time stamp 2949 * [2] beacon interval 2950 * [2] cabability information 2951 * [tlv] ssid 2952 * [tlv] supported rates 2953 * [3] parameter set (DS) 2954 * [8] CF parameter set (optional) 2955 * [tlv] parameter set (IBSS/TIM) 2956 * [tlv] country (optional) 2957 * [3] power control (optional) 2958 * [5] channel switch announcement (CSA) (optional) 2959 * [tlv] extended rate phy (ERP) 2960 * [tlv] extended supported rates 2961 * [tlv] RSN parameters 2962 * [tlv] HT capabilities 2963 * [tlv] HT information 2964 * [tlv] Vendor OUI HT capabilities (optional) 2965 * [tlv] Vendor OUI HT information (optional) 2966 * XXX Vendor-specific OIDs (e.g. Atheros) 2967 * [tlv] WPA parameters 2968 * [tlv] WME parameters 2969 * [tlv] TDMA parameters (optional) 2970 * [tlv] Mesh ID (MBSS) 2971 * [tlv] Mesh Conf (MBSS) 2972 * [tlv] application data (optional) 2973 * NB: we allocate the max space required for the TIM bitmap. 2974 * XXX how big is this? 2975 */ 2976 pktlen = 8 /* time stamp */ 2977 + sizeof(uint16_t) /* beacon interval */ 2978 + sizeof(uint16_t) /* capabilities */ 2979 + 2 + ni->ni_esslen /* ssid */ 2980 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 2981 + 2 + 1 /* DS parameters */ 2982 + 2 + 6 /* CF parameters */ 2983 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */ 2984 + IEEE80211_COUNTRY_MAX_SIZE /* country */ 2985 + 2 + 1 /* power control */ 2986 + sizeof(struct ieee80211_csa_ie) /* CSA */ 2987 + sizeof(struct ieee80211_quiet_ie) /* Quiet */ 2988 + 2 + 1 /* ERP */ 2989 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2990 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 2991 2*sizeof(struct ieee80211_ie_wpa) : 0) 2992 /* XXX conditional? */ 2993 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */ 2994 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */ 2995 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */ 2996 sizeof(struct ieee80211_wme_param) : 0) 2997 #ifdef IEEE80211_SUPPORT_SUPERG 2998 + sizeof(struct ieee80211_ath_ie) /* ATH */ 2999 #endif 3000 #ifdef IEEE80211_SUPPORT_TDMA 3001 + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */ 3002 sizeof(struct ieee80211_tdma_param) : 0) 3003 #endif 3004 #ifdef IEEE80211_SUPPORT_MESH 3005 + 2 + ni->ni_meshidlen 3006 + sizeof(struct ieee80211_meshconf_ie) 3007 #endif 3008 + IEEE80211_MAX_APPIE 3009 ; 3010 m = ieee80211_getmgtframe(&frm, 3011 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen); 3012 if (m == NULL) { 3013 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, 3014 "%s: cannot get buf; size %u\n", __func__, pktlen); 3015 vap->iv_stats.is_tx_nobuf++; 3016 return NULL; 3017 } 3018 ieee80211_beacon_construct(m, frm, bo, ni); 3019 3020 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 3021 KASSERT(m != NULL, ("no space for 802.11 header?")); 3022 wh = mtod(m, struct ieee80211_frame *); 3023 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 3024 IEEE80211_FC0_SUBTYPE_BEACON; 3025 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3026 *(uint16_t *)wh->i_dur = 0; 3027 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 3028 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 3029 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 3030 *(uint16_t *)wh->i_seq = 0; 3031 3032 return m; 3033 } 3034 3035 /* 3036 * Update the dynamic parts of a beacon frame based on the current state. 3037 */ 3038 int 3039 ieee80211_beacon_update(struct ieee80211_node *ni, 3040 struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast) 3041 { 3042 struct ieee80211vap *vap = ni->ni_vap; 3043 struct ieee80211com *ic = ni->ni_ic; 3044 int len_changed = 0; 3045 uint16_t capinfo; 3046 struct ieee80211_frame *wh; 3047 ieee80211_seq seqno; 3048 3049 IEEE80211_LOCK(ic); 3050 /* 3051 * Handle 11h channel change when we've reached the count. 3052 * We must recalculate the beacon frame contents to account 3053 * for the new channel. Note we do this only for the first 3054 * vap that reaches this point; subsequent vaps just update 3055 * their beacon state to reflect the recalculated channel. 3056 */ 3057 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) && 3058 vap->iv_csa_count == ic->ic_csa_count) { 3059 vap->iv_csa_count = 0; 3060 /* 3061 * Effect channel change before reconstructing the beacon 3062 * frame contents as many places reference ni_chan. 3063 */ 3064 if (ic->ic_csa_newchan != NULL) 3065 ieee80211_csa_completeswitch(ic); 3066 /* 3067 * NB: ieee80211_beacon_construct clears all pending 3068 * updates in bo_flags so we don't need to explicitly 3069 * clear IEEE80211_BEACON_CSA. 3070 */ 3071 ieee80211_beacon_construct(m, 3072 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni); 3073 3074 /* XXX do WME aggressive mode processing? */ 3075 IEEE80211_UNLOCK(ic); 3076 return 1; /* just assume length changed */ 3077 } 3078 3079 wh = mtod(m, struct ieee80211_frame *); 3080 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 3081 *(uint16_t *)&wh->i_seq[0] = 3082 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 3083 M_SEQNO_SET(m, seqno); 3084 3085 /* XXX faster to recalculate entirely or just changes? */ 3086 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3087 *bo->bo_caps = htole16(capinfo); 3088 3089 if (vap->iv_flags & IEEE80211_F_WME) { 3090 struct ieee80211_wme_state *wme = &ic->ic_wme; 3091 3092 /* 3093 * Check for agressive mode change. When there is 3094 * significant high priority traffic in the BSS 3095 * throttle back BE traffic by using conservative 3096 * parameters. Otherwise BE uses agressive params 3097 * to optimize performance of legacy/non-QoS traffic. 3098 */ 3099 if (wme->wme_flags & WME_F_AGGRMODE) { 3100 if (wme->wme_hipri_traffic > 3101 wme->wme_hipri_switch_thresh) { 3102 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3103 "%s: traffic %u, disable aggressive mode\n", 3104 __func__, wme->wme_hipri_traffic); 3105 wme->wme_flags &= ~WME_F_AGGRMODE; 3106 ieee80211_wme_updateparams_locked(vap); 3107 wme->wme_hipri_traffic = 3108 wme->wme_hipri_switch_hysteresis; 3109 } else 3110 wme->wme_hipri_traffic = 0; 3111 } else { 3112 if (wme->wme_hipri_traffic <= 3113 wme->wme_hipri_switch_thresh) { 3114 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3115 "%s: traffic %u, enable aggressive mode\n", 3116 __func__, wme->wme_hipri_traffic); 3117 wme->wme_flags |= WME_F_AGGRMODE; 3118 ieee80211_wme_updateparams_locked(vap); 3119 wme->wme_hipri_traffic = 0; 3120 } else 3121 wme->wme_hipri_traffic = 3122 wme->wme_hipri_switch_hysteresis; 3123 } 3124 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) { 3125 (void) ieee80211_add_wme_param(bo->bo_wme, wme); 3126 clrbit(bo->bo_flags, IEEE80211_BEACON_WME); 3127 } 3128 } 3129 3130 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) { 3131 ieee80211_ht_update_beacon(vap, bo); 3132 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO); 3133 } 3134 #ifdef IEEE80211_SUPPORT_TDMA 3135 if (vap->iv_caps & IEEE80211_C_TDMA) { 3136 /* 3137 * NB: the beacon is potentially updated every TBTT. 3138 */ 3139 ieee80211_tdma_update_beacon(vap, bo); 3140 } 3141 #endif 3142 #ifdef IEEE80211_SUPPORT_MESH 3143 if (vap->iv_opmode == IEEE80211_M_MBSS) 3144 ieee80211_mesh_update_beacon(vap, bo); 3145 #endif 3146 3147 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3148 vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/ 3149 struct ieee80211_tim_ie *tie = 3150 (struct ieee80211_tim_ie *) bo->bo_tim; 3151 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) { 3152 u_int timlen, timoff, i; 3153 /* 3154 * ATIM/DTIM needs updating. If it fits in the 3155 * current space allocated then just copy in the 3156 * new bits. Otherwise we need to move any trailing 3157 * data to make room. Note that we know there is 3158 * contiguous space because ieee80211_beacon_allocate 3159 * insures there is space in the mbuf to write a 3160 * maximal-size virtual bitmap (based on iv_max_aid). 3161 */ 3162 /* 3163 * Calculate the bitmap size and offset, copy any 3164 * trailer out of the way, and then copy in the 3165 * new bitmap and update the information element. 3166 * Note that the tim bitmap must contain at least 3167 * one byte and any offset must be even. 3168 */ 3169 if (vap->iv_ps_pending != 0) { 3170 timoff = 128; /* impossibly large */ 3171 for (i = 0; i < vap->iv_tim_len; i++) 3172 if (vap->iv_tim_bitmap[i]) { 3173 timoff = i &~ 1; 3174 break; 3175 } 3176 KASSERT(timoff != 128, ("tim bitmap empty!")); 3177 for (i = vap->iv_tim_len-1; i >= timoff; i--) 3178 if (vap->iv_tim_bitmap[i]) 3179 break; 3180 timlen = 1 + (i - timoff); 3181 } else { 3182 timoff = 0; 3183 timlen = 1; 3184 } 3185 if (timlen != bo->bo_tim_len) { 3186 /* copy up/down trailer */ 3187 int adjust = tie->tim_bitmap+timlen 3188 - bo->bo_tim_trailer; 3189 ovbcopy(bo->bo_tim_trailer, 3190 bo->bo_tim_trailer+adjust, 3191 bo->bo_tim_trailer_len); 3192 bo->bo_tim_trailer += adjust; 3193 bo->bo_erp += adjust; 3194 bo->bo_htinfo += adjust; 3195 #ifdef IEEE80211_SUPPORT_SUPERG 3196 bo->bo_ath += adjust; 3197 #endif 3198 #ifdef IEEE80211_SUPPORT_TDMA 3199 bo->bo_tdma += adjust; 3200 #endif 3201 #ifdef IEEE80211_SUPPORT_MESH 3202 bo->bo_meshconf += adjust; 3203 #endif 3204 bo->bo_appie += adjust; 3205 bo->bo_wme += adjust; 3206 bo->bo_csa += adjust; 3207 bo->bo_quiet += adjust; 3208 bo->bo_tim_len = timlen; 3209 3210 /* update information element */ 3211 tie->tim_len = 3 + timlen; 3212 tie->tim_bitctl = timoff; 3213 len_changed = 1; 3214 } 3215 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff, 3216 bo->bo_tim_len); 3217 3218 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM); 3219 3220 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER, 3221 "%s: TIM updated, pending %u, off %u, len %u\n", 3222 __func__, vap->iv_ps_pending, timoff, timlen); 3223 } 3224 /* count down DTIM period */ 3225 if (tie->tim_count == 0) 3226 tie->tim_count = tie->tim_period - 1; 3227 else 3228 tie->tim_count--; 3229 /* update state for buffered multicast frames on DTIM */ 3230 if (mcast && tie->tim_count == 0) 3231 tie->tim_bitctl |= 1; 3232 else 3233 tie->tim_bitctl &= ~1; 3234 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) { 3235 struct ieee80211_csa_ie *csa = 3236 (struct ieee80211_csa_ie *) bo->bo_csa; 3237 3238 /* 3239 * Insert or update CSA ie. If we're just starting 3240 * to count down to the channel switch then we need 3241 * to insert the CSA ie. Otherwise we just need to 3242 * drop the count. The actual change happens above 3243 * when the vap's count reaches the target count. 3244 */ 3245 if (vap->iv_csa_count == 0) { 3246 memmove(&csa[1], csa, bo->bo_csa_trailer_len); 3247 bo->bo_erp += sizeof(*csa); 3248 bo->bo_htinfo += sizeof(*csa); 3249 bo->bo_wme += sizeof(*csa); 3250 #ifdef IEEE80211_SUPPORT_SUPERG 3251 bo->bo_ath += sizeof(*csa); 3252 #endif 3253 #ifdef IEEE80211_SUPPORT_TDMA 3254 bo->bo_tdma += sizeof(*csa); 3255 #endif 3256 #ifdef IEEE80211_SUPPORT_MESH 3257 bo->bo_meshconf += sizeof(*csa); 3258 #endif 3259 bo->bo_appie += sizeof(*csa); 3260 bo->bo_csa_trailer_len += sizeof(*csa); 3261 bo->bo_quiet += sizeof(*csa); 3262 bo->bo_tim_trailer_len += sizeof(*csa); 3263 m->m_len += sizeof(*csa); 3264 m->m_pkthdr.len += sizeof(*csa); 3265 3266 ieee80211_add_csa(bo->bo_csa, vap); 3267 } else 3268 csa->csa_count--; 3269 vap->iv_csa_count++; 3270 /* NB: don't clear IEEE80211_BEACON_CSA */ 3271 } 3272 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3273 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){ 3274 if (vap->iv_quiet) 3275 ieee80211_add_quiet(bo->bo_quiet, vap); 3276 } 3277 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) { 3278 /* 3279 * ERP element needs updating. 3280 */ 3281 (void) ieee80211_add_erp(bo->bo_erp, ic); 3282 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP); 3283 } 3284 #ifdef IEEE80211_SUPPORT_SUPERG 3285 if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) { 3286 ieee80211_add_athcaps(bo->bo_ath, ni); 3287 clrbit(bo->bo_flags, IEEE80211_BEACON_ATH); 3288 } 3289 #endif 3290 } 3291 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) { 3292 const struct ieee80211_appie *aie = vap->iv_appie_beacon; 3293 int aielen; 3294 uint8_t *frm; 3295 3296 aielen = 0; 3297 if (aie != NULL) 3298 aielen += aie->ie_len; 3299 if (aielen != bo->bo_appie_len) { 3300 /* copy up/down trailer */ 3301 int adjust = aielen - bo->bo_appie_len; 3302 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust, 3303 bo->bo_tim_trailer_len); 3304 bo->bo_tim_trailer += adjust; 3305 bo->bo_appie += adjust; 3306 bo->bo_appie_len = aielen; 3307 3308 len_changed = 1; 3309 } 3310 frm = bo->bo_appie; 3311 if (aie != NULL) 3312 frm = add_appie(frm, aie); 3313 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE); 3314 } 3315 IEEE80211_UNLOCK(ic); 3316 3317 return len_changed; 3318 } 3319 3320 /* 3321 * Do Ethernet-LLC encapsulation for each payload in a fast frame 3322 * tunnel encapsulation. The frame is assumed to have an Ethernet 3323 * header at the front that must be stripped before prepending the 3324 * LLC followed by the Ethernet header passed in (with an Ethernet 3325 * type that specifies the payload size). 3326 */ 3327 struct mbuf * 3328 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m, 3329 const struct ether_header *eh) 3330 { 3331 struct llc *llc; 3332 uint16_t payload; 3333 3334 /* XXX optimize by combining m_adj+M_PREPEND */ 3335 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 3336 llc = mtod(m, struct llc *); 3337 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 3338 llc->llc_control = LLC_UI; 3339 llc->llc_snap.org_code[0] = 0; 3340 llc->llc_snap.org_code[1] = 0; 3341 llc->llc_snap.org_code[2] = 0; 3342 llc->llc_snap.ether_type = eh->ether_type; 3343 payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */ 3344 3345 M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT); 3346 if (m == NULL) { /* XXX cannot happen */ 3347 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 3348 "%s: no space for ether_header\n", __func__); 3349 vap->iv_stats.is_tx_nobuf++; 3350 return NULL; 3351 } 3352 ETHER_HEADER_COPY(mtod(m, void *), eh); 3353 mtod(m, struct ether_header *)->ether_type = htons(payload); 3354 return m; 3355 } 3356 3357 /* 3358 * Complete an mbuf transmission. 3359 * 3360 * For now, this simply processes a completed frame after the 3361 * driver has completed it's transmission and/or retransmission. 3362 * It assumes the frame is an 802.11 encapsulated frame. 3363 * 3364 * Later on it will grow to become the exit path for a given frame 3365 * from the driver and, depending upon how it's been encapsulated 3366 * and already transmitted, it may end up doing A-MPDU retransmission, 3367 * power save requeuing, etc. 3368 * 3369 * In order for the above to work, the driver entry point to this 3370 * must not hold any driver locks. Thus, the driver needs to delay 3371 * any actual mbuf completion until it can release said locks. 3372 * 3373 * This frees the mbuf and if the mbuf has a node reference, 3374 * the node reference will be freed. 3375 */ 3376 void 3377 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status) 3378 { 3379 3380 if (ni != NULL) { 3381 if (m->m_flags & M_TXCB) 3382 ieee80211_process_callback(ni, m, status); 3383 ieee80211_free_node(ni); 3384 } 3385 m_freem(m); 3386 } 3387