xref: /freebsd/sys/net80211/ieee80211_output.c (revision 396c556d77189a5c474d35cec6f44a762e310b7d)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_wlan.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/malloc.h>
38 #include <sys/mbuf.h>
39 #include <sys/endian.h>
40 
41 #include <sys/socket.h>
42 
43 #include <net/bpf.h>
44 #include <net/ethernet.h>
45 #include <net/if.h>
46 #include <net/if_var.h>
47 #include <net/if_llc.h>
48 #include <net/if_media.h>
49 #include <net/if_vlan_var.h>
50 
51 #include <net80211/ieee80211_var.h>
52 #include <net80211/ieee80211_regdomain.h>
53 #ifdef IEEE80211_SUPPORT_SUPERG
54 #include <net80211/ieee80211_superg.h>
55 #endif
56 #ifdef IEEE80211_SUPPORT_TDMA
57 #include <net80211/ieee80211_tdma.h>
58 #endif
59 #include <net80211/ieee80211_wds.h>
60 #include <net80211/ieee80211_mesh.h>
61 #include <net80211/ieee80211_vht.h>
62 
63 #if defined(INET) || defined(INET6)
64 #include <netinet/in.h>
65 #endif
66 
67 #ifdef INET
68 #include <netinet/if_ether.h>
69 #include <netinet/in_systm.h>
70 #include <netinet/ip.h>
71 #endif
72 #ifdef INET6
73 #include <netinet/ip6.h>
74 #endif
75 
76 #include <security/mac/mac_framework.h>
77 
78 #define	ETHER_HEADER_COPY(dst, src) \
79 	memcpy(dst, src, sizeof(struct ether_header))
80 
81 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
82 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
83 static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
84 
85 #ifdef IEEE80211_DEBUG
86 /*
87  * Decide if an outbound management frame should be
88  * printed when debugging is enabled.  This filters some
89  * of the less interesting frames that come frequently
90  * (e.g. beacons).
91  */
92 static __inline int
93 doprint(struct ieee80211vap *vap, int subtype)
94 {
95 	switch (subtype) {
96 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
97 		return (vap->iv_opmode == IEEE80211_M_IBSS);
98 	}
99 	return 1;
100 }
101 #endif
102 
103 /*
104  * Transmit a frame to the given destination on the given VAP.
105  *
106  * It's up to the caller to figure out the details of who this
107  * is going to and resolving the node.
108  *
109  * This routine takes care of queuing it for power save,
110  * A-MPDU state stuff, fast-frames state stuff, encapsulation
111  * if required, then passing it up to the driver layer.
112  *
113  * This routine (for now) consumes the mbuf and frees the node
114  * reference; it ideally will return a TX status which reflects
115  * whether the mbuf was consumed or not, so the caller can
116  * free the mbuf (if appropriate) and the node reference (again,
117  * if appropriate.)
118  */
119 int
120 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
121     struct ieee80211_node *ni)
122 {
123 	struct ieee80211com *ic = vap->iv_ic;
124 	struct ifnet *ifp = vap->iv_ifp;
125 	int mcast;
126 
127 	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
128 	    (m->m_flags & M_PWR_SAV) == 0) {
129 		/*
130 		 * Station in power save mode; pass the frame
131 		 * to the 802.11 layer and continue.  We'll get
132 		 * the frame back when the time is right.
133 		 * XXX lose WDS vap linkage?
134 		 */
135 		if (ieee80211_pwrsave(ni, m) != 0)
136 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
137 		ieee80211_free_node(ni);
138 
139 		/*
140 		 * We queued it fine, so tell the upper layer
141 		 * that we consumed it.
142 		 */
143 		return (0);
144 	}
145 	/* calculate priority so drivers can find the tx queue */
146 	if (ieee80211_classify(ni, m)) {
147 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
148 		    ni->ni_macaddr, NULL,
149 		    "%s", "classification failure");
150 		vap->iv_stats.is_tx_classify++;
151 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
152 		m_freem(m);
153 		ieee80211_free_node(ni);
154 
155 		/* XXX better status? */
156 		return (0);
157 	}
158 	/*
159 	 * Stash the node pointer.  Note that we do this after
160 	 * any call to ieee80211_dwds_mcast because that code
161 	 * uses any existing value for rcvif to identify the
162 	 * interface it (might have been) received on.
163 	 */
164 	m->m_pkthdr.rcvif = (void *)ni;
165 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
166 
167 	BPF_MTAP(ifp, m);		/* 802.3 tx */
168 
169 	/*
170 	 * Check if A-MPDU tx aggregation is setup or if we
171 	 * should try to enable it.  The sta must be associated
172 	 * with HT and A-MPDU enabled for use.  When the policy
173 	 * routine decides we should enable A-MPDU we issue an
174 	 * ADDBA request and wait for a reply.  The frame being
175 	 * encapsulated will go out w/o using A-MPDU, or possibly
176 	 * it might be collected by the driver and held/retransmit.
177 	 * The default ic_ampdu_enable routine handles staggering
178 	 * ADDBA requests in case the receiver NAK's us or we are
179 	 * otherwise unable to establish a BA stream.
180 	 *
181 	 * Don't treat group-addressed frames as candidates for aggregation;
182 	 * net80211 doesn't support 802.11aa-2012 and so group addressed
183 	 * frames will always have sequence numbers allocated from the NON_QOS
184 	 * TID.
185 	 */
186 	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
187 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)) {
188 		if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) {
189 			int tid = WME_AC_TO_TID(M_WME_GETAC(m));
190 			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
191 
192 			ieee80211_txampdu_count_packet(tap);
193 			if (IEEE80211_AMPDU_RUNNING(tap)) {
194 				/*
195 				 * Operational, mark frame for aggregation.
196 				 *
197 				 * XXX do tx aggregation here
198 				 */
199 				m->m_flags |= M_AMPDU_MPDU;
200 			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
201 			    ic->ic_ampdu_enable(ni, tap)) {
202 				/*
203 				 * Not negotiated yet, request service.
204 				 */
205 				ieee80211_ampdu_request(ni, tap);
206 				/* XXX hold frame for reply? */
207 			}
208 		}
209 	}
210 
211 #ifdef IEEE80211_SUPPORT_SUPERG
212 	/*
213 	 * Check for AMSDU/FF; queue for aggregation
214 	 *
215 	 * Note: we don't bother trying to do fast frames or
216 	 * A-MSDU encapsulation for 802.3 drivers.  Now, we
217 	 * likely could do it for FF (because it's a magic
218 	 * atheros tunnel LLC type) but I don't think we're going
219 	 * to really need to.  For A-MSDU we'd have to set the
220 	 * A-MSDU QoS bit in the wifi header, so we just plain
221 	 * can't do it.
222 	 *
223 	 * Strictly speaking, we could actually /do/ A-MSDU / FF
224 	 * with A-MPDU together which for certain circumstances
225 	 * is beneficial (eg A-MSDU of TCK ACKs.)  However,
226 	 * I'll ignore that for now so existing behaviour is maintained.
227 	 * Later on it would be good to make "amsdu + ampdu" configurable.
228 	 */
229 	else if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
230 		if ((! mcast) && ieee80211_amsdu_tx_ok(ni)) {
231 			m = ieee80211_amsdu_check(ni, m);
232 			if (m == NULL) {
233 				/* NB: any ni ref held on stageq */
234 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
235 				    "%s: amsdu_check queued frame\n",
236 				    __func__);
237 				return (0);
238 			}
239 		} else if ((! mcast) && IEEE80211_ATH_CAP(vap, ni,
240 		    IEEE80211_NODE_FF)) {
241 			m = ieee80211_ff_check(ni, m);
242 			if (m == NULL) {
243 				/* NB: any ni ref held on stageq */
244 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
245 				    "%s: ff_check queued frame\n",
246 				    __func__);
247 				return (0);
248 			}
249 		}
250 	}
251 #endif /* IEEE80211_SUPPORT_SUPERG */
252 
253 	/*
254 	 * Grab the TX lock - serialise the TX process from this
255 	 * point (where TX state is being checked/modified)
256 	 * through to driver queue.
257 	 */
258 	IEEE80211_TX_LOCK(ic);
259 
260 	/*
261 	 * XXX make the encap and transmit code a separate function
262 	 * so things like the FF (and later A-MSDU) path can just call
263 	 * it for flushed frames.
264 	 */
265 	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
266 		/*
267 		 * Encapsulate the packet in prep for transmission.
268 		 */
269 		m = ieee80211_encap(vap, ni, m);
270 		if (m == NULL) {
271 			/* NB: stat+msg handled in ieee80211_encap */
272 			IEEE80211_TX_UNLOCK(ic);
273 			ieee80211_free_node(ni);
274 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
275 			return (ENOBUFS);
276 		}
277 	}
278 	(void) ieee80211_parent_xmitpkt(ic, m);
279 
280 	/*
281 	 * Unlock at this point - no need to hold it across
282 	 * ieee80211_free_node() (ie, the comlock)
283 	 */
284 	IEEE80211_TX_UNLOCK(ic);
285 	ic->ic_lastdata = ticks;
286 
287 	return (0);
288 }
289 
290 
291 
292 /*
293  * Send the given mbuf through the given vap.
294  *
295  * This consumes the mbuf regardless of whether the transmit
296  * was successful or not.
297  *
298  * This does none of the initial checks that ieee80211_start()
299  * does (eg CAC timeout, interface wakeup) - the caller must
300  * do this first.
301  */
302 static int
303 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
304 {
305 #define	IS_DWDS(vap) \
306 	(vap->iv_opmode == IEEE80211_M_WDS && \
307 	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
308 	struct ieee80211com *ic = vap->iv_ic;
309 	struct ifnet *ifp = vap->iv_ifp;
310 	struct ieee80211_node *ni;
311 	struct ether_header *eh;
312 
313 	/*
314 	 * Cancel any background scan.
315 	 */
316 	if (ic->ic_flags & IEEE80211_F_SCAN)
317 		ieee80211_cancel_anyscan(vap);
318 	/*
319 	 * Find the node for the destination so we can do
320 	 * things like power save and fast frames aggregation.
321 	 *
322 	 * NB: past this point various code assumes the first
323 	 *     mbuf has the 802.3 header present (and contiguous).
324 	 */
325 	ni = NULL;
326 	if (m->m_len < sizeof(struct ether_header) &&
327 	   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
328 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
329 		    "discard frame, %s\n", "m_pullup failed");
330 		vap->iv_stats.is_tx_nobuf++;	/* XXX */
331 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
332 		return (ENOBUFS);
333 	}
334 	eh = mtod(m, struct ether_header *);
335 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
336 		if (IS_DWDS(vap)) {
337 			/*
338 			 * Only unicast frames from the above go out
339 			 * DWDS vaps; multicast frames are handled by
340 			 * dispatching the frame as it comes through
341 			 * the AP vap (see below).
342 			 */
343 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
344 			    eh->ether_dhost, "mcast", "%s", "on DWDS");
345 			vap->iv_stats.is_dwds_mcast++;
346 			m_freem(m);
347 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
348 			/* XXX better status? */
349 			return (ENOBUFS);
350 		}
351 		if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
352 			/*
353 			 * Spam DWDS vap's w/ multicast traffic.
354 			 */
355 			/* XXX only if dwds in use? */
356 			ieee80211_dwds_mcast(vap, m);
357 		}
358 	}
359 #ifdef IEEE80211_SUPPORT_MESH
360 	if (vap->iv_opmode != IEEE80211_M_MBSS) {
361 #endif
362 		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
363 		if (ni == NULL) {
364 			/* NB: ieee80211_find_txnode does stat+msg */
365 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
366 			m_freem(m);
367 			/* XXX better status? */
368 			return (ENOBUFS);
369 		}
370 		if (ni->ni_associd == 0 &&
371 		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
372 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
373 			    eh->ether_dhost, NULL,
374 			    "sta not associated (type 0x%04x)",
375 			    htons(eh->ether_type));
376 			vap->iv_stats.is_tx_notassoc++;
377 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
378 			m_freem(m);
379 			ieee80211_free_node(ni);
380 			/* XXX better status? */
381 			return (ENOBUFS);
382 		}
383 #ifdef IEEE80211_SUPPORT_MESH
384 	} else {
385 		if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
386 			/*
387 			 * Proxy station only if configured.
388 			 */
389 			if (!ieee80211_mesh_isproxyena(vap)) {
390 				IEEE80211_DISCARD_MAC(vap,
391 				    IEEE80211_MSG_OUTPUT |
392 				    IEEE80211_MSG_MESH,
393 				    eh->ether_dhost, NULL,
394 				    "%s", "proxy not enabled");
395 				vap->iv_stats.is_mesh_notproxy++;
396 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
397 				m_freem(m);
398 				/* XXX better status? */
399 				return (ENOBUFS);
400 			}
401 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
402 			    "forward frame from DS SA(%6D), DA(%6D)\n",
403 			    eh->ether_shost, ":",
404 			    eh->ether_dhost, ":");
405 			ieee80211_mesh_proxy_check(vap, eh->ether_shost);
406 		}
407 		ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
408 		if (ni == NULL) {
409 			/*
410 			 * NB: ieee80211_mesh_discover holds/disposes
411 			 * frame (e.g. queueing on path discovery).
412 			 */
413 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
414 			/* XXX better status? */
415 			return (ENOBUFS);
416 		}
417 	}
418 #endif
419 
420 	/*
421 	 * We've resolved the sender, so attempt to transmit it.
422 	 */
423 
424 	if (vap->iv_state == IEEE80211_S_SLEEP) {
425 		/*
426 		 * In power save; queue frame and then  wakeup device
427 		 * for transmit.
428 		 */
429 		ic->ic_lastdata = ticks;
430 		if (ieee80211_pwrsave(ni, m) != 0)
431 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
432 		ieee80211_free_node(ni);
433 		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
434 		return (0);
435 	}
436 
437 	if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
438 		return (ENOBUFS);
439 	return (0);
440 #undef	IS_DWDS
441 }
442 
443 /*
444  * Start method for vap's.  All packets from the stack come
445  * through here.  We handle common processing of the packets
446  * before dispatching them to the underlying device.
447  *
448  * if_transmit() requires that the mbuf be consumed by this call
449  * regardless of the return condition.
450  */
451 int
452 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
453 {
454 	struct ieee80211vap *vap = ifp->if_softc;
455 	struct ieee80211com *ic = vap->iv_ic;
456 
457 	/*
458 	 * No data frames go out unless we're running.
459 	 * Note in particular this covers CAC and CSA
460 	 * states (though maybe we should check muting
461 	 * for CSA).
462 	 */
463 	if (vap->iv_state != IEEE80211_S_RUN &&
464 	    vap->iv_state != IEEE80211_S_SLEEP) {
465 		IEEE80211_LOCK(ic);
466 		/* re-check under the com lock to avoid races */
467 		if (vap->iv_state != IEEE80211_S_RUN &&
468 		    vap->iv_state != IEEE80211_S_SLEEP) {
469 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
470 			    "%s: ignore queue, in %s state\n",
471 			    __func__, ieee80211_state_name[vap->iv_state]);
472 			vap->iv_stats.is_tx_badstate++;
473 			IEEE80211_UNLOCK(ic);
474 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
475 			m_freem(m);
476 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
477 			return (ENETDOWN);
478 		}
479 		IEEE80211_UNLOCK(ic);
480 	}
481 
482 	/*
483 	 * Sanitize mbuf flags for net80211 use.  We cannot
484 	 * clear M_PWR_SAV or M_MORE_DATA because these may
485 	 * be set for frames that are re-submitted from the
486 	 * power save queue.
487 	 *
488 	 * NB: This must be done before ieee80211_classify as
489 	 *     it marks EAPOL in frames with M_EAPOL.
490 	 */
491 	m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
492 
493 	/*
494 	 * Bump to the packet transmission path.
495 	 * The mbuf will be consumed here.
496 	 */
497 	return (ieee80211_start_pkt(vap, m));
498 }
499 
500 void
501 ieee80211_vap_qflush(struct ifnet *ifp)
502 {
503 
504 	/* Empty for now */
505 }
506 
507 /*
508  * 802.11 raw output routine.
509  *
510  * XXX TODO: this (and other send routines) should correctly
511  * XXX keep the pwr mgmt bit set if it decides to call into the
512  * XXX driver to send a frame whilst the state is SLEEP.
513  *
514  * Otherwise the peer may decide that we're awake and flood us
515  * with traffic we are still too asleep to receive!
516  */
517 int
518 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
519     struct mbuf *m, const struct ieee80211_bpf_params *params)
520 {
521 	struct ieee80211com *ic = vap->iv_ic;
522 	int error;
523 
524 	/*
525 	 * Set node - the caller has taken a reference, so ensure
526 	 * that the mbuf has the same node value that
527 	 * it would if it were going via the normal path.
528 	 */
529 	m->m_pkthdr.rcvif = (void *)ni;
530 
531 	/*
532 	 * Attempt to add bpf transmit parameters.
533 	 *
534 	 * For now it's ok to fail; the raw_xmit api still takes
535 	 * them as an option.
536 	 *
537 	 * Later on when ic_raw_xmit() has params removed,
538 	 * they'll have to be added - so fail the transmit if
539 	 * they can't be.
540 	 */
541 	if (params)
542 		(void) ieee80211_add_xmit_params(m, params);
543 
544 	error = ic->ic_raw_xmit(ni, m, params);
545 	if (error) {
546 		if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
547 		ieee80211_free_node(ni);
548 	}
549 	return (error);
550 }
551 
552 /*
553  * 802.11 output routine. This is (currently) used only to
554  * connect bpf write calls to the 802.11 layer for injecting
555  * raw 802.11 frames.
556  */
557 int
558 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
559 	const struct sockaddr *dst, struct route *ro)
560 {
561 #define senderr(e) do { error = (e); goto bad;} while (0)
562 	struct ieee80211_node *ni = NULL;
563 	struct ieee80211vap *vap;
564 	struct ieee80211_frame *wh;
565 	struct ieee80211com *ic = NULL;
566 	int error;
567 	int ret;
568 
569 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
570 		/*
571 		 * Short-circuit requests if the vap is marked OACTIVE
572 		 * as this can happen because a packet came down through
573 		 * ieee80211_start before the vap entered RUN state in
574 		 * which case it's ok to just drop the frame.  This
575 		 * should not be necessary but callers of if_output don't
576 		 * check OACTIVE.
577 		 */
578 		senderr(ENETDOWN);
579 	}
580 	vap = ifp->if_softc;
581 	ic = vap->iv_ic;
582 	/*
583 	 * Hand to the 802.3 code if not tagged as
584 	 * a raw 802.11 frame.
585 	 */
586 	if (dst->sa_family != AF_IEEE80211)
587 		return vap->iv_output(ifp, m, dst, ro);
588 #ifdef MAC
589 	error = mac_ifnet_check_transmit(ifp, m);
590 	if (error)
591 		senderr(error);
592 #endif
593 	if (ifp->if_flags & IFF_MONITOR)
594 		senderr(ENETDOWN);
595 	if (!IFNET_IS_UP_RUNNING(ifp))
596 		senderr(ENETDOWN);
597 	if (vap->iv_state == IEEE80211_S_CAC) {
598 		IEEE80211_DPRINTF(vap,
599 		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
600 		    "block %s frame in CAC state\n", "raw data");
601 		vap->iv_stats.is_tx_badstate++;
602 		senderr(EIO);		/* XXX */
603 	} else if (vap->iv_state == IEEE80211_S_SCAN)
604 		senderr(EIO);
605 	/* XXX bypass bridge, pfil, carp, etc. */
606 
607 	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
608 		senderr(EIO);	/* XXX */
609 	wh = mtod(m, struct ieee80211_frame *);
610 	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
611 	    IEEE80211_FC0_VERSION_0)
612 		senderr(EIO);	/* XXX */
613 	if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh))
614 		senderr(EIO);	/* XXX */
615 
616 	/* locate destination node */
617 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
618 	case IEEE80211_FC1_DIR_NODS:
619 	case IEEE80211_FC1_DIR_FROMDS:
620 		ni = ieee80211_find_txnode(vap, wh->i_addr1);
621 		break;
622 	case IEEE80211_FC1_DIR_TODS:
623 	case IEEE80211_FC1_DIR_DSTODS:
624 		ni = ieee80211_find_txnode(vap, wh->i_addr3);
625 		break;
626 	default:
627 		senderr(EIO);	/* XXX */
628 	}
629 	if (ni == NULL) {
630 		/*
631 		 * Permit packets w/ bpf params through regardless
632 		 * (see below about sa_len).
633 		 */
634 		if (dst->sa_len == 0)
635 			senderr(EHOSTUNREACH);
636 		ni = ieee80211_ref_node(vap->iv_bss);
637 	}
638 
639 	/*
640 	 * Sanitize mbuf for net80211 flags leaked from above.
641 	 *
642 	 * NB: This must be done before ieee80211_classify as
643 	 *     it marks EAPOL in frames with M_EAPOL.
644 	 */
645 	m->m_flags &= ~M_80211_TX;
646 
647 	/* calculate priority so drivers can find the tx queue */
648 	/* XXX assumes an 802.3 frame */
649 	if (ieee80211_classify(ni, m))
650 		senderr(EIO);		/* XXX */
651 
652 	IEEE80211_NODE_STAT(ni, tx_data);
653 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
654 		IEEE80211_NODE_STAT(ni, tx_mcast);
655 		m->m_flags |= M_MCAST;
656 	} else
657 		IEEE80211_NODE_STAT(ni, tx_ucast);
658 	/* NB: ieee80211_encap does not include 802.11 header */
659 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len);
660 
661 	IEEE80211_TX_LOCK(ic);
662 
663 	/*
664 	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
665 	 * present by setting the sa_len field of the sockaddr (yes,
666 	 * this is a hack).
667 	 * NB: we assume sa_data is suitably aligned to cast.
668 	 */
669 	ret = ieee80211_raw_output(vap, ni, m,
670 	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
671 		dst->sa_data : NULL));
672 	IEEE80211_TX_UNLOCK(ic);
673 	return (ret);
674 bad:
675 	if (m != NULL)
676 		m_freem(m);
677 	if (ni != NULL)
678 		ieee80211_free_node(ni);
679 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
680 	return error;
681 #undef senderr
682 }
683 
684 /*
685  * Set the direction field and address fields of an outgoing
686  * frame.  Note this should be called early on in constructing
687  * a frame as it sets i_fc[1]; other bits can then be or'd in.
688  */
689 void
690 ieee80211_send_setup(
691 	struct ieee80211_node *ni,
692 	struct mbuf *m,
693 	int type, int tid,
694 	const uint8_t sa[IEEE80211_ADDR_LEN],
695 	const uint8_t da[IEEE80211_ADDR_LEN],
696 	const uint8_t bssid[IEEE80211_ADDR_LEN])
697 {
698 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
699 	struct ieee80211vap *vap = ni->ni_vap;
700 	struct ieee80211_tx_ampdu *tap;
701 	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
702 	ieee80211_seq seqno;
703 
704 	IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
705 
706 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
707 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
708 		switch (vap->iv_opmode) {
709 		case IEEE80211_M_STA:
710 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
711 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
712 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
713 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
714 			break;
715 		case IEEE80211_M_IBSS:
716 		case IEEE80211_M_AHDEMO:
717 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
718 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
719 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
720 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
721 			break;
722 		case IEEE80211_M_HOSTAP:
723 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
724 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
725 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
726 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
727 			break;
728 		case IEEE80211_M_WDS:
729 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
730 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
731 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
732 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
733 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
734 			break;
735 		case IEEE80211_M_MBSS:
736 #ifdef IEEE80211_SUPPORT_MESH
737 			if (IEEE80211_IS_MULTICAST(da)) {
738 				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
739 				/* XXX next hop */
740 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
741 				IEEE80211_ADDR_COPY(wh->i_addr2,
742 				    vap->iv_myaddr);
743 			} else {
744 				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
745 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
746 				IEEE80211_ADDR_COPY(wh->i_addr2,
747 				    vap->iv_myaddr);
748 				IEEE80211_ADDR_COPY(wh->i_addr3, da);
749 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
750 			}
751 #endif
752 			break;
753 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
754 			break;
755 		}
756 	} else {
757 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
758 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
759 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
760 #ifdef IEEE80211_SUPPORT_MESH
761 		if (vap->iv_opmode == IEEE80211_M_MBSS)
762 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
763 		else
764 #endif
765 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
766 	}
767 	*(uint16_t *)&wh->i_dur[0] = 0;
768 
769 	/*
770 	 * XXX TODO: this is what the TX lock is for.
771 	 * Here we're incrementing sequence numbers, and they
772 	 * need to be in lock-step with what the driver is doing
773 	 * both in TX ordering and crypto encap (IV increment.)
774 	 *
775 	 * If the driver does seqno itself, then we can skip
776 	 * assigning sequence numbers here, and we can avoid
777 	 * requiring the TX lock.
778 	 */
779 	tap = &ni->ni_tx_ampdu[tid];
780 	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) {
781 		m->m_flags |= M_AMPDU_MPDU;
782 
783 		/* NB: zero out i_seq field (for s/w encryption etc) */
784 		*(uint16_t *)&wh->i_seq[0] = 0;
785 	} else {
786 		if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
787 				      type & IEEE80211_FC0_SUBTYPE_MASK))
788 			/*
789 			 * 802.11-2012 9.3.2.10 - QoS multicast frames
790 			 * come out of a different seqno space.
791 			 */
792 			if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
793 				seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
794 			} else {
795 				seqno = ni->ni_txseqs[tid]++;
796 			}
797 		else
798 			seqno = 0;
799 
800 		*(uint16_t *)&wh->i_seq[0] =
801 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
802 		M_SEQNO_SET(m, seqno);
803 	}
804 
805 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
806 		m->m_flags |= M_MCAST;
807 #undef WH4
808 }
809 
810 /*
811  * Send a management frame to the specified node.  The node pointer
812  * must have a reference as the pointer will be passed to the driver
813  * and potentially held for a long time.  If the frame is successfully
814  * dispatched to the driver, then it is responsible for freeing the
815  * reference (and potentially free'ing up any associated storage);
816  * otherwise deal with reclaiming any reference (on error).
817  */
818 int
819 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
820 	struct ieee80211_bpf_params *params)
821 {
822 	struct ieee80211vap *vap = ni->ni_vap;
823 	struct ieee80211com *ic = ni->ni_ic;
824 	struct ieee80211_frame *wh;
825 	int ret;
826 
827 	KASSERT(ni != NULL, ("null node"));
828 
829 	if (vap->iv_state == IEEE80211_S_CAC) {
830 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
831 		    ni, "block %s frame in CAC state",
832 			ieee80211_mgt_subtype_name(type));
833 		vap->iv_stats.is_tx_badstate++;
834 		ieee80211_free_node(ni);
835 		m_freem(m);
836 		return EIO;		/* XXX */
837 	}
838 
839 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
840 	if (m == NULL) {
841 		ieee80211_free_node(ni);
842 		return ENOMEM;
843 	}
844 
845 	IEEE80211_TX_LOCK(ic);
846 
847 	wh = mtod(m, struct ieee80211_frame *);
848 	ieee80211_send_setup(ni, m,
849 	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
850 	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
851 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
852 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
853 		    "encrypting frame (%s)", __func__);
854 		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
855 	}
856 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
857 
858 	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
859 	M_WME_SETAC(m, params->ibp_pri);
860 
861 #ifdef IEEE80211_DEBUG
862 	/* avoid printing too many frames */
863 	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
864 	    ieee80211_msg_dumppkts(vap)) {
865 		printf("[%s] send %s on channel %u\n",
866 		    ether_sprintf(wh->i_addr1),
867 		    ieee80211_mgt_subtype_name(type),
868 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
869 	}
870 #endif
871 	IEEE80211_NODE_STAT(ni, tx_mgmt);
872 
873 	ret = ieee80211_raw_output(vap, ni, m, params);
874 	IEEE80211_TX_UNLOCK(ic);
875 	return (ret);
876 }
877 
878 static void
879 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg,
880     int status)
881 {
882 	struct ieee80211vap *vap = ni->ni_vap;
883 
884 	wakeup(vap);
885 }
886 
887 /*
888  * Send a null data frame to the specified node.  If the station
889  * is setup for QoS then a QoS Null Data frame is constructed.
890  * If this is a WDS station then a 4-address frame is constructed.
891  *
892  * NB: the caller is assumed to have setup a node reference
893  *     for use; this is necessary to deal with a race condition
894  *     when probing for inactive stations.  Like ieee80211_mgmt_output
895  *     we must cleanup any node reference on error;  however we
896  *     can safely just unref it as we know it will never be the
897  *     last reference to the node.
898  */
899 int
900 ieee80211_send_nulldata(struct ieee80211_node *ni)
901 {
902 	struct ieee80211vap *vap = ni->ni_vap;
903 	struct ieee80211com *ic = ni->ni_ic;
904 	struct mbuf *m;
905 	struct ieee80211_frame *wh;
906 	int hdrlen;
907 	uint8_t *frm;
908 	int ret;
909 
910 	if (vap->iv_state == IEEE80211_S_CAC) {
911 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
912 		    ni, "block %s frame in CAC state", "null data");
913 		ieee80211_unref_node(&ni);
914 		vap->iv_stats.is_tx_badstate++;
915 		return EIO;		/* XXX */
916 	}
917 
918 	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
919 		hdrlen = sizeof(struct ieee80211_qosframe);
920 	else
921 		hdrlen = sizeof(struct ieee80211_frame);
922 	/* NB: only WDS vap's get 4-address frames */
923 	if (vap->iv_opmode == IEEE80211_M_WDS)
924 		hdrlen += IEEE80211_ADDR_LEN;
925 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
926 		hdrlen = roundup(hdrlen, sizeof(uint32_t));
927 
928 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
929 	if (m == NULL) {
930 		/* XXX debug msg */
931 		ieee80211_unref_node(&ni);
932 		vap->iv_stats.is_tx_nobuf++;
933 		return ENOMEM;
934 	}
935 	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
936 	    ("leading space %zd", M_LEADINGSPACE(m)));
937 	M_PREPEND(m, hdrlen, M_NOWAIT);
938 	if (m == NULL) {
939 		/* NB: cannot happen */
940 		ieee80211_free_node(ni);
941 		return ENOMEM;
942 	}
943 
944 	IEEE80211_TX_LOCK(ic);
945 
946 	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
947 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
948 		const int tid = WME_AC_TO_TID(WME_AC_BE);
949 		uint8_t *qos;
950 
951 		ieee80211_send_setup(ni, m,
952 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
953 		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
954 
955 		if (vap->iv_opmode == IEEE80211_M_WDS)
956 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
957 		else
958 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
959 		qos[0] = tid & IEEE80211_QOS_TID;
960 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
961 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
962 		qos[1] = 0;
963 	} else {
964 		ieee80211_send_setup(ni, m,
965 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
966 		    IEEE80211_NONQOS_TID,
967 		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
968 	}
969 	if (vap->iv_opmode != IEEE80211_M_WDS) {
970 		/* NB: power management bit is never sent by an AP */
971 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
972 		    vap->iv_opmode != IEEE80211_M_HOSTAP)
973 			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
974 	}
975 	if ((ic->ic_flags & IEEE80211_F_SCAN) &&
976 	    (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) {
977 		ieee80211_add_callback(m, ieee80211_nulldata_transmitted,
978 		    NULL);
979 	}
980 	m->m_len = m->m_pkthdr.len = hdrlen;
981 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
982 
983 	M_WME_SETAC(m, WME_AC_BE);
984 
985 	IEEE80211_NODE_STAT(ni, tx_data);
986 
987 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
988 	    "send %snull data frame on channel %u, pwr mgt %s",
989 	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
990 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
991 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
992 
993 	ret = ieee80211_raw_output(vap, ni, m, NULL);
994 	IEEE80211_TX_UNLOCK(ic);
995 	return (ret);
996 }
997 
998 /*
999  * Assign priority to a frame based on any vlan tag assigned
1000  * to the station and/or any Diffserv setting in an IP header.
1001  * Finally, if an ACM policy is setup (in station mode) it's
1002  * applied.
1003  */
1004 int
1005 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
1006 {
1007 	const struct ether_header *eh = mtod(m, struct ether_header *);
1008 	int v_wme_ac, d_wme_ac, ac;
1009 
1010 	/*
1011 	 * Always promote PAE/EAPOL frames to high priority.
1012 	 */
1013 	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
1014 		/* NB: mark so others don't need to check header */
1015 		m->m_flags |= M_EAPOL;
1016 		ac = WME_AC_VO;
1017 		goto done;
1018 	}
1019 	/*
1020 	 * Non-qos traffic goes to BE.
1021 	 */
1022 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
1023 		ac = WME_AC_BE;
1024 		goto done;
1025 	}
1026 
1027 	/*
1028 	 * If node has a vlan tag then all traffic
1029 	 * to it must have a matching tag.
1030 	 */
1031 	v_wme_ac = 0;
1032 	if (ni->ni_vlan != 0) {
1033 		 if ((m->m_flags & M_VLANTAG) == 0) {
1034 			IEEE80211_NODE_STAT(ni, tx_novlantag);
1035 			return 1;
1036 		}
1037 		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
1038 		    EVL_VLANOFTAG(ni->ni_vlan)) {
1039 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
1040 			return 1;
1041 		}
1042 		/* map vlan priority to AC */
1043 		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
1044 	}
1045 
1046 	/* XXX m_copydata may be too slow for fast path */
1047 #ifdef INET
1048 	if (eh->ether_type == htons(ETHERTYPE_IP)) {
1049 		uint8_t tos;
1050 		/*
1051 		 * IP frame, map the DSCP bits from the TOS field.
1052 		 */
1053 		/* NB: ip header may not be in first mbuf */
1054 		m_copydata(m, sizeof(struct ether_header) +
1055 		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
1056 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1057 		d_wme_ac = TID_TO_WME_AC(tos);
1058 	} else {
1059 #endif /* INET */
1060 #ifdef INET6
1061 	if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
1062 		uint32_t flow;
1063 		uint8_t tos;
1064 		/*
1065 		 * IPv6 frame, map the DSCP bits from the traffic class field.
1066 		 */
1067 		m_copydata(m, sizeof(struct ether_header) +
1068 		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
1069 		    (caddr_t) &flow);
1070 		tos = (uint8_t)(ntohl(flow) >> 20);
1071 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1072 		d_wme_ac = TID_TO_WME_AC(tos);
1073 	} else {
1074 #endif /* INET6 */
1075 		d_wme_ac = WME_AC_BE;
1076 #ifdef INET6
1077 	}
1078 #endif
1079 #ifdef INET
1080 	}
1081 #endif
1082 	/*
1083 	 * Use highest priority AC.
1084 	 */
1085 	if (v_wme_ac > d_wme_ac)
1086 		ac = v_wme_ac;
1087 	else
1088 		ac = d_wme_ac;
1089 
1090 	/*
1091 	 * Apply ACM policy.
1092 	 */
1093 	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1094 		static const int acmap[4] = {
1095 			WME_AC_BK,	/* WME_AC_BE */
1096 			WME_AC_BK,	/* WME_AC_BK */
1097 			WME_AC_BE,	/* WME_AC_VI */
1098 			WME_AC_VI,	/* WME_AC_VO */
1099 		};
1100 		struct ieee80211com *ic = ni->ni_ic;
1101 
1102 		while (ac != WME_AC_BK &&
1103 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1104 			ac = acmap[ac];
1105 	}
1106 done:
1107 	M_WME_SETAC(m, ac);
1108 	return 0;
1109 }
1110 
1111 /*
1112  * Insure there is sufficient contiguous space to encapsulate the
1113  * 802.11 data frame.  If room isn't already there, arrange for it.
1114  * Drivers and cipher modules assume we have done the necessary work
1115  * and fail rudely if they don't find the space they need.
1116  */
1117 struct mbuf *
1118 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1119 	struct ieee80211_key *key, struct mbuf *m)
1120 {
1121 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
1122 	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1123 
1124 	if (key != NULL) {
1125 		/* XXX belongs in crypto code? */
1126 		needed_space += key->wk_cipher->ic_header;
1127 		/* XXX frags */
1128 		/*
1129 		 * When crypto is being done in the host we must insure
1130 		 * the data are writable for the cipher routines; clone
1131 		 * a writable mbuf chain.
1132 		 * XXX handle SWMIC specially
1133 		 */
1134 		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1135 			m = m_unshare(m, M_NOWAIT);
1136 			if (m == NULL) {
1137 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1138 				    "%s: cannot get writable mbuf\n", __func__);
1139 				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1140 				return NULL;
1141 			}
1142 		}
1143 	}
1144 	/*
1145 	 * We know we are called just before stripping an Ethernet
1146 	 * header and prepending an LLC header.  This means we know
1147 	 * there will be
1148 	 *	sizeof(struct ether_header) - sizeof(struct llc)
1149 	 * bytes recovered to which we need additional space for the
1150 	 * 802.11 header and any crypto header.
1151 	 */
1152 	/* XXX check trailing space and copy instead? */
1153 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1154 		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
1155 		if (n == NULL) {
1156 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1157 			    "%s: cannot expand storage\n", __func__);
1158 			vap->iv_stats.is_tx_nobuf++;
1159 			m_freem(m);
1160 			return NULL;
1161 		}
1162 		KASSERT(needed_space <= MHLEN,
1163 		    ("not enough room, need %u got %d\n", needed_space, MHLEN));
1164 		/*
1165 		 * Setup new mbuf to have leading space to prepend the
1166 		 * 802.11 header and any crypto header bits that are
1167 		 * required (the latter are added when the driver calls
1168 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
1169 		 */
1170 		/* NB: must be first 'cuz it clobbers m_data */
1171 		m_move_pkthdr(n, m);
1172 		n->m_len = 0;			/* NB: m_gethdr does not set */
1173 		n->m_data += needed_space;
1174 		/*
1175 		 * Pull up Ethernet header to create the expected layout.
1176 		 * We could use m_pullup but that's overkill (i.e. we don't
1177 		 * need the actual data) and it cannot fail so do it inline
1178 		 * for speed.
1179 		 */
1180 		/* NB: struct ether_header is known to be contiguous */
1181 		n->m_len += sizeof(struct ether_header);
1182 		m->m_len -= sizeof(struct ether_header);
1183 		m->m_data += sizeof(struct ether_header);
1184 		/*
1185 		 * Replace the head of the chain.
1186 		 */
1187 		n->m_next = m;
1188 		m = n;
1189 	}
1190 	return m;
1191 #undef TO_BE_RECLAIMED
1192 }
1193 
1194 /*
1195  * Return the transmit key to use in sending a unicast frame.
1196  * If a unicast key is set we use that.  When no unicast key is set
1197  * we fall back to the default transmit key.
1198  */
1199 static __inline struct ieee80211_key *
1200 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1201 	struct ieee80211_node *ni)
1202 {
1203 	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1204 		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1205 		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1206 			return NULL;
1207 		return &vap->iv_nw_keys[vap->iv_def_txkey];
1208 	} else {
1209 		return &ni->ni_ucastkey;
1210 	}
1211 }
1212 
1213 /*
1214  * Return the transmit key to use in sending a multicast frame.
1215  * Multicast traffic always uses the group key which is installed as
1216  * the default tx key.
1217  */
1218 static __inline struct ieee80211_key *
1219 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1220 	struct ieee80211_node *ni)
1221 {
1222 	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1223 	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1224 		return NULL;
1225 	return &vap->iv_nw_keys[vap->iv_def_txkey];
1226 }
1227 
1228 /*
1229  * Encapsulate an outbound data frame.  The mbuf chain is updated.
1230  * If an error is encountered NULL is returned.  The caller is required
1231  * to provide a node reference and pullup the ethernet header in the
1232  * first mbuf.
1233  *
1234  * NB: Packet is assumed to be processed by ieee80211_classify which
1235  *     marked EAPOL frames w/ M_EAPOL.
1236  */
1237 struct mbuf *
1238 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1239     struct mbuf *m)
1240 {
1241 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1242 #define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
1243 	struct ieee80211com *ic = ni->ni_ic;
1244 #ifdef IEEE80211_SUPPORT_MESH
1245 	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1246 	struct ieee80211_meshcntl_ae10 *mc;
1247 	struct ieee80211_mesh_route *rt = NULL;
1248 	int dir = -1;
1249 #endif
1250 	struct ether_header eh;
1251 	struct ieee80211_frame *wh;
1252 	struct ieee80211_key *key;
1253 	struct llc *llc;
1254 	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast;
1255 	ieee80211_seq seqno;
1256 	int meshhdrsize, meshae;
1257 	uint8_t *qos;
1258 	int is_amsdu = 0;
1259 
1260 	IEEE80211_TX_LOCK_ASSERT(ic);
1261 
1262 	is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST));
1263 
1264 	/*
1265 	 * Copy existing Ethernet header to a safe place.  The
1266 	 * rest of the code assumes it's ok to strip it when
1267 	 * reorganizing state for the final encapsulation.
1268 	 */
1269 	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1270 	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1271 
1272 	/*
1273 	 * Insure space for additional headers.  First identify
1274 	 * transmit key to use in calculating any buffer adjustments
1275 	 * required.  This is also used below to do privacy
1276 	 * encapsulation work.  Then calculate the 802.11 header
1277 	 * size and any padding required by the driver.
1278 	 *
1279 	 * Note key may be NULL if we fall back to the default
1280 	 * transmit key and that is not set.  In that case the
1281 	 * buffer may not be expanded as needed by the cipher
1282 	 * routines, but they will/should discard it.
1283 	 */
1284 	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1285 		if (vap->iv_opmode == IEEE80211_M_STA ||
1286 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1287 		    (vap->iv_opmode == IEEE80211_M_WDS &&
1288 		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1289 			key = ieee80211_crypto_getucastkey(vap, ni);
1290 		else
1291 			key = ieee80211_crypto_getmcastkey(vap, ni);
1292 		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1293 			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1294 			    eh.ether_dhost,
1295 			    "no default transmit key (%s) deftxkey %u",
1296 			    __func__, vap->iv_def_txkey);
1297 			vap->iv_stats.is_tx_nodefkey++;
1298 			goto bad;
1299 		}
1300 	} else
1301 		key = NULL;
1302 	/*
1303 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1304 	 * frames so suppress use.  This may be an issue if other
1305 	 * ap's require all data frames to be QoS-encapsulated
1306 	 * once negotiated in which case we'll need to make this
1307 	 * configurable.
1308 	 *
1309 	 * Don't send multicast QoS frames.
1310 	 * Technically multicast frames can be QoS if all stations in the
1311 	 * BSS are also QoS.
1312 	 *
1313 	 * NB: mesh data frames are QoS, including multicast frames.
1314 	 */
1315 	addqos =
1316 	    (((is_mcast == 0) && (ni->ni_flags &
1317 	     (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) ||
1318 	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1319 	    (m->m_flags & M_EAPOL) == 0;
1320 
1321 	if (addqos)
1322 		hdrsize = sizeof(struct ieee80211_qosframe);
1323 	else
1324 		hdrsize = sizeof(struct ieee80211_frame);
1325 #ifdef IEEE80211_SUPPORT_MESH
1326 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1327 		/*
1328 		 * Mesh data frames are encapsulated according to the
1329 		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1330 		 * o Group Addressed data (aka multicast) originating
1331 		 *   at the local sta are sent w/ 3-address format and
1332 		 *   address extension mode 00
1333 		 * o Individually Addressed data (aka unicast) originating
1334 		 *   at the local sta are sent w/ 4-address format and
1335 		 *   address extension mode 00
1336 		 * o Group Addressed data forwarded from a non-mesh sta are
1337 		 *   sent w/ 3-address format and address extension mode 01
1338 		 * o Individually Address data from another sta are sent
1339 		 *   w/ 4-address format and address extension mode 10
1340 		 */
1341 		is4addr = 0;		/* NB: don't use, disable */
1342 		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1343 			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1344 			KASSERT(rt != NULL, ("route is NULL"));
1345 			dir = IEEE80211_FC1_DIR_DSTODS;
1346 			hdrsize += IEEE80211_ADDR_LEN;
1347 			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1348 				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1349 				    vap->iv_myaddr)) {
1350 					IEEE80211_NOTE_MAC(vap,
1351 					    IEEE80211_MSG_MESH,
1352 					    eh.ether_dhost,
1353 					    "%s", "trying to send to ourself");
1354 					goto bad;
1355 				}
1356 				meshae = IEEE80211_MESH_AE_10;
1357 				meshhdrsize =
1358 				    sizeof(struct ieee80211_meshcntl_ae10);
1359 			} else {
1360 				meshae = IEEE80211_MESH_AE_00;
1361 				meshhdrsize =
1362 				    sizeof(struct ieee80211_meshcntl);
1363 			}
1364 		} else {
1365 			dir = IEEE80211_FC1_DIR_FROMDS;
1366 			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1367 				/* proxy group */
1368 				meshae = IEEE80211_MESH_AE_01;
1369 				meshhdrsize =
1370 				    sizeof(struct ieee80211_meshcntl_ae01);
1371 			} else {
1372 				/* group */
1373 				meshae = IEEE80211_MESH_AE_00;
1374 				meshhdrsize = sizeof(struct ieee80211_meshcntl);
1375 			}
1376 		}
1377 	} else {
1378 #endif
1379 		/*
1380 		 * 4-address frames need to be generated for:
1381 		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1382 		 * o packets sent through a vap marked for relaying
1383 		 *   (e.g. a station operating with dynamic WDS)
1384 		 */
1385 		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1386 		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1387 		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1388 		if (is4addr)
1389 			hdrsize += IEEE80211_ADDR_LEN;
1390 		meshhdrsize = meshae = 0;
1391 #ifdef IEEE80211_SUPPORT_MESH
1392 	}
1393 #endif
1394 	/*
1395 	 * Honor driver DATAPAD requirement.
1396 	 */
1397 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1398 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1399 	else
1400 		hdrspace = hdrsize;
1401 
1402 	if (__predict_true((m->m_flags & M_FF) == 0)) {
1403 		/*
1404 		 * Normal frame.
1405 		 */
1406 		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1407 		if (m == NULL) {
1408 			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1409 			goto bad;
1410 		}
1411 		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1412 		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1413 		llc = mtod(m, struct llc *);
1414 		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1415 		llc->llc_control = LLC_UI;
1416 		llc->llc_snap.org_code[0] = 0;
1417 		llc->llc_snap.org_code[1] = 0;
1418 		llc->llc_snap.org_code[2] = 0;
1419 		llc->llc_snap.ether_type = eh.ether_type;
1420 	} else {
1421 #ifdef IEEE80211_SUPPORT_SUPERG
1422 		/*
1423 		 * Aggregated frame.  Check if it's for AMSDU or FF.
1424 		 *
1425 		 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented
1426 		 * anywhere for some reason.  But, since 11n requires
1427 		 * AMSDU RX, we can just assume "11n" == "AMSDU".
1428 		 */
1429 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__);
1430 		if (ieee80211_amsdu_tx_ok(ni)) {
1431 			m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key);
1432 			is_amsdu = 1;
1433 		} else {
1434 			m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1435 		}
1436 		if (m == NULL)
1437 #endif
1438 			goto bad;
1439 	}
1440 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1441 
1442 	M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT);
1443 	if (m == NULL) {
1444 		vap->iv_stats.is_tx_nobuf++;
1445 		goto bad;
1446 	}
1447 	wh = mtod(m, struct ieee80211_frame *);
1448 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1449 	*(uint16_t *)wh->i_dur = 0;
1450 	qos = NULL;	/* NB: quiet compiler */
1451 	if (is4addr) {
1452 		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1453 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1454 		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1455 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1456 		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1457 	} else switch (vap->iv_opmode) {
1458 	case IEEE80211_M_STA:
1459 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1460 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1461 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1462 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1463 		break;
1464 	case IEEE80211_M_IBSS:
1465 	case IEEE80211_M_AHDEMO:
1466 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1467 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1468 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1469 		/*
1470 		 * NB: always use the bssid from iv_bss as the
1471 		 *     neighbor's may be stale after an ibss merge
1472 		 */
1473 		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1474 		break;
1475 	case IEEE80211_M_HOSTAP:
1476 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1477 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1478 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1479 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1480 		break;
1481 #ifdef IEEE80211_SUPPORT_MESH
1482 	case IEEE80211_M_MBSS:
1483 		/* NB: offset by hdrspace to deal with DATAPAD */
1484 		mc = (struct ieee80211_meshcntl_ae10 *)
1485 		     (mtod(m, uint8_t *) + hdrspace);
1486 		wh->i_fc[1] = dir;
1487 		switch (meshae) {
1488 		case IEEE80211_MESH_AE_00:	/* no proxy */
1489 			mc->mc_flags = 0;
1490 			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1491 				IEEE80211_ADDR_COPY(wh->i_addr1,
1492 				    ni->ni_macaddr);
1493 				IEEE80211_ADDR_COPY(wh->i_addr2,
1494 				    vap->iv_myaddr);
1495 				IEEE80211_ADDR_COPY(wh->i_addr3,
1496 				    eh.ether_dhost);
1497 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1498 				    eh.ether_shost);
1499 				qos =((struct ieee80211_qosframe_addr4 *)
1500 				    wh)->i_qos;
1501 			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1502 				 /* mcast */
1503 				IEEE80211_ADDR_COPY(wh->i_addr1,
1504 				    eh.ether_dhost);
1505 				IEEE80211_ADDR_COPY(wh->i_addr2,
1506 				    vap->iv_myaddr);
1507 				IEEE80211_ADDR_COPY(wh->i_addr3,
1508 				    eh.ether_shost);
1509 				qos = ((struct ieee80211_qosframe *)
1510 				    wh)->i_qos;
1511 			}
1512 			break;
1513 		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
1514 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1515 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1516 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1517 			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1518 			mc->mc_flags = 1;
1519 			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1520 			    eh.ether_shost);
1521 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1522 			break;
1523 		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
1524 			KASSERT(rt != NULL, ("route is NULL"));
1525 			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1526 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1527 			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1528 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1529 			mc->mc_flags = IEEE80211_MESH_AE_10;
1530 			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1531 			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1532 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1533 			break;
1534 		default:
1535 			KASSERT(0, ("meshae %d", meshae));
1536 			break;
1537 		}
1538 		mc->mc_ttl = ms->ms_ttl;
1539 		ms->ms_seq++;
1540 		le32enc(mc->mc_seq, ms->ms_seq);
1541 		break;
1542 #endif
1543 	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1544 	default:
1545 		goto bad;
1546 	}
1547 	if (m->m_flags & M_MORE_DATA)
1548 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1549 	if (addqos) {
1550 		int ac, tid;
1551 
1552 		if (is4addr) {
1553 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1554 		/* NB: mesh case handled earlier */
1555 		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1556 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1557 		ac = M_WME_GETAC(m);
1558 		/* map from access class/queue to 11e header priorty value */
1559 		tid = WME_AC_TO_TID(ac);
1560 		qos[0] = tid & IEEE80211_QOS_TID;
1561 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1562 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1563 #ifdef IEEE80211_SUPPORT_MESH
1564 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1565 			qos[1] = IEEE80211_QOS_MC;
1566 		else
1567 #endif
1568 			qos[1] = 0;
1569 		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1570 
1571 		/*
1572 		 * If this is an A-MSDU then ensure we set the
1573 		 * relevant field.
1574 		 */
1575 		if (is_amsdu)
1576 			qos[0] |= IEEE80211_QOS_AMSDU;
1577 
1578 		/*
1579 		 * XXX TODO TX lock is needed for atomic updates of sequence
1580 		 * numbers.  If the driver does it, then don't do it here;
1581 		 * and we don't need the TX lock held.
1582 		 */
1583 		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1584 			/*
1585 			 * 802.11-2012 9.3.2.10 -
1586 			 *
1587 			 * If this is a multicast frame then we need
1588 			 * to ensure that the sequence number comes from
1589 			 * a separate seqno space and not the TID space.
1590 			 *
1591 			 * Otherwise multicast frames may actually cause
1592 			 * holes in the TX blockack window space and
1593 			 * upset various things.
1594 			 */
1595 			if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1596 				seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1597 			else
1598 				seqno = ni->ni_txseqs[tid]++;
1599 
1600 			/*
1601 			 * NB: don't assign a sequence # to potential
1602 			 * aggregates; we expect this happens at the
1603 			 * point the frame comes off any aggregation q
1604 			 * as otherwise we may introduce holes in the
1605 			 * BA sequence space and/or make window accouting
1606 			 * more difficult.
1607 			 *
1608 			 * XXX may want to control this with a driver
1609 			 * capability; this may also change when we pull
1610 			 * aggregation up into net80211
1611 			 */
1612 			seqno = ni->ni_txseqs[tid]++;
1613 			*(uint16_t *)wh->i_seq =
1614 			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1615 			M_SEQNO_SET(m, seqno);
1616 		} else {
1617 			/* NB: zero out i_seq field (for s/w encryption etc) */
1618 			*(uint16_t *)wh->i_seq = 0;
1619 		}
1620 	} else {
1621 		/*
1622 		 * XXX TODO TX lock is needed for atomic updates of sequence
1623 		 * numbers.  If the driver does it, then don't do it here;
1624 		 * and we don't need the TX lock held.
1625 		 */
1626 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1627 		*(uint16_t *)wh->i_seq =
1628 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1629 		M_SEQNO_SET(m, seqno);
1630 
1631 		/*
1632 		 * XXX TODO: we shouldn't allow EAPOL, etc that would
1633 		 * be forced to be non-QoS traffic to be A-MSDU encapsulated.
1634 		 */
1635 		if (is_amsdu)
1636 			printf("%s: XXX ERROR: is_amsdu set; not QoS!\n",
1637 			    __func__);
1638 	}
1639 
1640 	/*
1641 	 * Check if xmit fragmentation is required.
1642 	 *
1643 	 * If the hardware does fragmentation offload, then don't bother
1644 	 * doing it here.
1645 	 */
1646 	if (IEEE80211_CONF_FRAG_OFFLOAD(ic))
1647 		txfrag = 0;
1648 	else
1649 		txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1650 		    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1651 		    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1652 		    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1653 
1654 	if (key != NULL) {
1655 		/*
1656 		 * IEEE 802.1X: send EAPOL frames always in the clear.
1657 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1658 		 */
1659 		if ((m->m_flags & M_EAPOL) == 0 ||
1660 		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1661 		     (vap->iv_opmode == IEEE80211_M_STA ?
1662 		      !IEEE80211_KEY_UNDEFINED(key) :
1663 		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1664 			wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1665 			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1666 				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1667 				    eh.ether_dhost,
1668 				    "%s", "enmic failed, discard frame");
1669 				vap->iv_stats.is_crypto_enmicfail++;
1670 				goto bad;
1671 			}
1672 		}
1673 	}
1674 	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1675 	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1676 		goto bad;
1677 
1678 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1679 
1680 	IEEE80211_NODE_STAT(ni, tx_data);
1681 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1682 		IEEE80211_NODE_STAT(ni, tx_mcast);
1683 		m->m_flags |= M_MCAST;
1684 	} else
1685 		IEEE80211_NODE_STAT(ni, tx_ucast);
1686 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1687 
1688 	return m;
1689 bad:
1690 	if (m != NULL)
1691 		m_freem(m);
1692 	return NULL;
1693 #undef WH4
1694 #undef MC01
1695 }
1696 
1697 void
1698 ieee80211_free_mbuf(struct mbuf *m)
1699 {
1700 	struct mbuf *next;
1701 
1702 	if (m == NULL)
1703 		return;
1704 
1705 	do {
1706 		next = m->m_nextpkt;
1707 		m->m_nextpkt = NULL;
1708 		m_freem(m);
1709 	} while ((m = next) != NULL);
1710 }
1711 
1712 /*
1713  * Fragment the frame according to the specified mtu.
1714  * The size of the 802.11 header (w/o padding) is provided
1715  * so we don't need to recalculate it.  We create a new
1716  * mbuf for each fragment and chain it through m_nextpkt;
1717  * we might be able to optimize this by reusing the original
1718  * packet's mbufs but that is significantly more complicated.
1719  */
1720 static int
1721 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1722 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1723 {
1724 	struct ieee80211com *ic = vap->iv_ic;
1725 	struct ieee80211_frame *wh, *whf;
1726 	struct mbuf *m, *prev;
1727 	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1728 	u_int hdrspace;
1729 
1730 	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1731 	KASSERT(m0->m_pkthdr.len > mtu,
1732 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1733 
1734 	/*
1735 	 * Honor driver DATAPAD requirement.
1736 	 */
1737 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1738 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1739 	else
1740 		hdrspace = hdrsize;
1741 
1742 	wh = mtod(m0, struct ieee80211_frame *);
1743 	/* NB: mark the first frag; it will be propagated below */
1744 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1745 	totalhdrsize = hdrspace + ciphdrsize;
1746 	fragno = 1;
1747 	off = mtu - ciphdrsize;
1748 	remainder = m0->m_pkthdr.len - off;
1749 	prev = m0;
1750 	do {
1751 		fragsize = MIN(totalhdrsize + remainder, mtu);
1752 		m = m_get2(fragsize, M_NOWAIT, MT_DATA, M_PKTHDR);
1753 		if (m == NULL)
1754 			goto bad;
1755 		/* leave room to prepend any cipher header */
1756 		m_align(m, fragsize - ciphdrsize);
1757 
1758 		/*
1759 		 * Form the header in the fragment.  Note that since
1760 		 * we mark the first fragment with the MORE_FRAG bit
1761 		 * it automatically is propagated to each fragment; we
1762 		 * need only clear it on the last fragment (done below).
1763 		 * NB: frag 1+ dont have Mesh Control field present.
1764 		 */
1765 		whf = mtod(m, struct ieee80211_frame *);
1766 		memcpy(whf, wh, hdrsize);
1767 #ifdef IEEE80211_SUPPORT_MESH
1768 		if (vap->iv_opmode == IEEE80211_M_MBSS) {
1769 			if (IEEE80211_IS_DSTODS(wh))
1770 				((struct ieee80211_qosframe_addr4 *)
1771 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1772 			else
1773 				((struct ieee80211_qosframe *)
1774 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1775 		}
1776 #endif
1777 		*(uint16_t *)&whf->i_seq[0] |= htole16(
1778 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1779 				IEEE80211_SEQ_FRAG_SHIFT);
1780 		fragno++;
1781 
1782 		payload = fragsize - totalhdrsize;
1783 		/* NB: destination is known to be contiguous */
1784 
1785 		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
1786 		m->m_len = hdrspace + payload;
1787 		m->m_pkthdr.len = hdrspace + payload;
1788 		m->m_flags |= M_FRAG;
1789 
1790 		/* chain up the fragment */
1791 		prev->m_nextpkt = m;
1792 		prev = m;
1793 
1794 		/* deduct fragment just formed */
1795 		remainder -= payload;
1796 		off += payload;
1797 	} while (remainder != 0);
1798 
1799 	/* set the last fragment */
1800 	m->m_flags |= M_LASTFRAG;
1801 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1802 
1803 	/* strip first mbuf now that everything has been copied */
1804 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1805 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1806 
1807 	vap->iv_stats.is_tx_fragframes++;
1808 	vap->iv_stats.is_tx_frags += fragno-1;
1809 
1810 	return 1;
1811 bad:
1812 	/* reclaim fragments but leave original frame for caller to free */
1813 	ieee80211_free_mbuf(m0->m_nextpkt);
1814 	m0->m_nextpkt = NULL;
1815 	return 0;
1816 }
1817 
1818 /*
1819  * Add a supported rates element id to a frame.
1820  */
1821 uint8_t *
1822 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1823 {
1824 	int nrates;
1825 
1826 	*frm++ = IEEE80211_ELEMID_RATES;
1827 	nrates = rs->rs_nrates;
1828 	if (nrates > IEEE80211_RATE_SIZE)
1829 		nrates = IEEE80211_RATE_SIZE;
1830 	*frm++ = nrates;
1831 	memcpy(frm, rs->rs_rates, nrates);
1832 	return frm + nrates;
1833 }
1834 
1835 /*
1836  * Add an extended supported rates element id to a frame.
1837  */
1838 uint8_t *
1839 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1840 {
1841 	/*
1842 	 * Add an extended supported rates element if operating in 11g mode.
1843 	 */
1844 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1845 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1846 		*frm++ = IEEE80211_ELEMID_XRATES;
1847 		*frm++ = nrates;
1848 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1849 		frm += nrates;
1850 	}
1851 	return frm;
1852 }
1853 
1854 /*
1855  * Add an ssid element to a frame.
1856  */
1857 uint8_t *
1858 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1859 {
1860 	*frm++ = IEEE80211_ELEMID_SSID;
1861 	*frm++ = len;
1862 	memcpy(frm, ssid, len);
1863 	return frm + len;
1864 }
1865 
1866 /*
1867  * Add an erp element to a frame.
1868  */
1869 static uint8_t *
1870 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1871 {
1872 	uint8_t erp;
1873 
1874 	*frm++ = IEEE80211_ELEMID_ERP;
1875 	*frm++ = 1;
1876 	erp = 0;
1877 	if (ic->ic_nonerpsta != 0)
1878 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1879 	if (ic->ic_flags & IEEE80211_F_USEPROT)
1880 		erp |= IEEE80211_ERP_USE_PROTECTION;
1881 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1882 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1883 	*frm++ = erp;
1884 	return frm;
1885 }
1886 
1887 /*
1888  * Add a CFParams element to a frame.
1889  */
1890 static uint8_t *
1891 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1892 {
1893 #define	ADDSHORT(frm, v) do {	\
1894 	le16enc(frm, v);	\
1895 	frm += 2;		\
1896 } while (0)
1897 	*frm++ = IEEE80211_ELEMID_CFPARMS;
1898 	*frm++ = 6;
1899 	*frm++ = 0;		/* CFP count */
1900 	*frm++ = 2;		/* CFP period */
1901 	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1902 	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1903 	return frm;
1904 #undef ADDSHORT
1905 }
1906 
1907 static __inline uint8_t *
1908 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1909 {
1910 	memcpy(frm, ie->ie_data, ie->ie_len);
1911 	return frm + ie->ie_len;
1912 }
1913 
1914 static __inline uint8_t *
1915 add_ie(uint8_t *frm, const uint8_t *ie)
1916 {
1917 	memcpy(frm, ie, 2 + ie[1]);
1918 	return frm + 2 + ie[1];
1919 }
1920 
1921 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1922 /*
1923  * Add a WME information element to a frame.
1924  */
1925 uint8_t *
1926 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1927 {
1928 	static const struct ieee80211_wme_info info = {
1929 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1930 		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1931 		.wme_oui	= { WME_OUI_BYTES },
1932 		.wme_type	= WME_OUI_TYPE,
1933 		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1934 		.wme_version	= WME_VERSION,
1935 		.wme_info	= 0,
1936 	};
1937 	memcpy(frm, &info, sizeof(info));
1938 	return frm + sizeof(info);
1939 }
1940 
1941 /*
1942  * Add a WME parameters element to a frame.
1943  */
1944 static uint8_t *
1945 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1946 {
1947 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1948 #define	ADDSHORT(frm, v) do {	\
1949 	le16enc(frm, v);	\
1950 	frm += 2;		\
1951 } while (0)
1952 	/* NB: this works 'cuz a param has an info at the front */
1953 	static const struct ieee80211_wme_info param = {
1954 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1955 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1956 		.wme_oui	= { WME_OUI_BYTES },
1957 		.wme_type	= WME_OUI_TYPE,
1958 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1959 		.wme_version	= WME_VERSION,
1960 	};
1961 	int i;
1962 
1963 	memcpy(frm, &param, sizeof(param));
1964 	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1965 	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1966 	*frm++ = 0;					/* reserved field */
1967 	for (i = 0; i < WME_NUM_AC; i++) {
1968 		const struct wmeParams *ac =
1969 		       &wme->wme_bssChanParams.cap_wmeParams[i];
1970 		*frm++ = SM(i, WME_PARAM_ACI)
1971 		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1972 		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1973 		       ;
1974 		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1975 		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1976 		       ;
1977 		ADDSHORT(frm, ac->wmep_txopLimit);
1978 	}
1979 	return frm;
1980 #undef SM
1981 #undef ADDSHORT
1982 }
1983 #undef WME_OUI_BYTES
1984 
1985 /*
1986  * Add an 11h Power Constraint element to a frame.
1987  */
1988 static uint8_t *
1989 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1990 {
1991 	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1992 	/* XXX per-vap tx power limit? */
1993 	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1994 
1995 	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1996 	frm[1] = 1;
1997 	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1998 	return frm + 3;
1999 }
2000 
2001 /*
2002  * Add an 11h Power Capability element to a frame.
2003  */
2004 static uint8_t *
2005 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
2006 {
2007 	frm[0] = IEEE80211_ELEMID_PWRCAP;
2008 	frm[1] = 2;
2009 	frm[2] = c->ic_minpower;
2010 	frm[3] = c->ic_maxpower;
2011 	return frm + 4;
2012 }
2013 
2014 /*
2015  * Add an 11h Supported Channels element to a frame.
2016  */
2017 static uint8_t *
2018 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
2019 {
2020 	static const int ielen = 26;
2021 
2022 	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
2023 	frm[1] = ielen;
2024 	/* XXX not correct */
2025 	memcpy(frm+2, ic->ic_chan_avail, ielen);
2026 	return frm + 2 + ielen;
2027 }
2028 
2029 /*
2030  * Add an 11h Quiet time element to a frame.
2031  */
2032 static uint8_t *
2033 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap, int update)
2034 {
2035 	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
2036 
2037 	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
2038 	quiet->len = 6;
2039 
2040 	/*
2041 	 * Only update every beacon interval - otherwise probe responses
2042 	 * would update the quiet count value.
2043 	 */
2044 	if (update) {
2045 		if (vap->iv_quiet_count_value == 1)
2046 			vap->iv_quiet_count_value = vap->iv_quiet_count;
2047 		else if (vap->iv_quiet_count_value > 1)
2048 			vap->iv_quiet_count_value--;
2049 	}
2050 
2051 	if (vap->iv_quiet_count_value == 0) {
2052 		/* value 0 is reserved as per 802.11h standerd */
2053 		vap->iv_quiet_count_value = 1;
2054 	}
2055 
2056 	quiet->tbttcount = vap->iv_quiet_count_value;
2057 	quiet->period = vap->iv_quiet_period;
2058 	quiet->duration = htole16(vap->iv_quiet_duration);
2059 	quiet->offset = htole16(vap->iv_quiet_offset);
2060 	return frm + sizeof(*quiet);
2061 }
2062 
2063 /*
2064  * Add an 11h Channel Switch Announcement element to a frame.
2065  * Note that we use the per-vap CSA count to adjust the global
2066  * counter so we can use this routine to form probe response
2067  * frames and get the current count.
2068  */
2069 static uint8_t *
2070 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
2071 {
2072 	struct ieee80211com *ic = vap->iv_ic;
2073 	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
2074 
2075 	csa->csa_ie = IEEE80211_ELEMID_CSA;
2076 	csa->csa_len = 3;
2077 	csa->csa_mode = 1;		/* XXX force quiet on channel */
2078 	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
2079 	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
2080 	return frm + sizeof(*csa);
2081 }
2082 
2083 /*
2084  * Add an 11h country information element to a frame.
2085  */
2086 static uint8_t *
2087 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
2088 {
2089 
2090 	if (ic->ic_countryie == NULL ||
2091 	    ic->ic_countryie_chan != ic->ic_bsschan) {
2092 		/*
2093 		 * Handle lazy construction of ie.  This is done on
2094 		 * first use and after a channel change that requires
2095 		 * re-calculation.
2096 		 */
2097 		if (ic->ic_countryie != NULL)
2098 			IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
2099 		ic->ic_countryie = ieee80211_alloc_countryie(ic);
2100 		if (ic->ic_countryie == NULL)
2101 			return frm;
2102 		ic->ic_countryie_chan = ic->ic_bsschan;
2103 	}
2104 	return add_appie(frm, ic->ic_countryie);
2105 }
2106 
2107 uint8_t *
2108 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
2109 {
2110 	if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
2111 		return (add_ie(frm, vap->iv_wpa_ie));
2112 	else {
2113 		/* XXX else complain? */
2114 		return (frm);
2115 	}
2116 }
2117 
2118 uint8_t *
2119 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
2120 {
2121 	if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
2122 		return (add_ie(frm, vap->iv_rsn_ie));
2123 	else {
2124 		/* XXX else complain? */
2125 		return (frm);
2126 	}
2127 }
2128 
2129 uint8_t *
2130 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
2131 {
2132 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
2133 		*frm++ = IEEE80211_ELEMID_QOS;
2134 		*frm++ = 1;
2135 		*frm++ = 0;
2136 	}
2137 
2138 	return (frm);
2139 }
2140 
2141 /*
2142  * Send a probe request frame with the specified ssid
2143  * and any optional information element data.
2144  */
2145 int
2146 ieee80211_send_probereq(struct ieee80211_node *ni,
2147 	const uint8_t sa[IEEE80211_ADDR_LEN],
2148 	const uint8_t da[IEEE80211_ADDR_LEN],
2149 	const uint8_t bssid[IEEE80211_ADDR_LEN],
2150 	const uint8_t *ssid, size_t ssidlen)
2151 {
2152 	struct ieee80211vap *vap = ni->ni_vap;
2153 	struct ieee80211com *ic = ni->ni_ic;
2154 	struct ieee80211_node *bss;
2155 	const struct ieee80211_txparam *tp;
2156 	struct ieee80211_bpf_params params;
2157 	const struct ieee80211_rateset *rs;
2158 	struct mbuf *m;
2159 	uint8_t *frm;
2160 	int ret;
2161 
2162 	bss = ieee80211_ref_node(vap->iv_bss);
2163 
2164 	if (vap->iv_state == IEEE80211_S_CAC) {
2165 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
2166 		    "block %s frame in CAC state", "probe request");
2167 		vap->iv_stats.is_tx_badstate++;
2168 		ieee80211_free_node(bss);
2169 		return EIO;		/* XXX */
2170 	}
2171 
2172 	/*
2173 	 * Hold a reference on the node so it doesn't go away until after
2174 	 * the xmit is complete all the way in the driver.  On error we
2175 	 * will remove our reference.
2176 	 */
2177 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2178 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2179 		__func__, __LINE__,
2180 		ni, ether_sprintf(ni->ni_macaddr),
2181 		ieee80211_node_refcnt(ni)+1);
2182 	ieee80211_ref_node(ni);
2183 
2184 	/*
2185 	 * prreq frame format
2186 	 *	[tlv] ssid
2187 	 *	[tlv] supported rates
2188 	 *	[tlv] RSN (optional)
2189 	 *	[tlv] extended supported rates
2190 	 *	[tlv] HT cap (optional)
2191 	 *	[tlv] VHT cap (optional)
2192 	 *	[tlv] WPA (optional)
2193 	 *	[tlv] user-specified ie's
2194 	 */
2195 	m = ieee80211_getmgtframe(&frm,
2196 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2197 	       	 2 + IEEE80211_NWID_LEN
2198 	       + 2 + IEEE80211_RATE_SIZE
2199 	       + sizeof(struct ieee80211_ie_htcap)
2200 	       + sizeof(struct ieee80211_ie_vhtcap)
2201 	       + sizeof(struct ieee80211_ie_htinfo)	/* XXX not needed? */
2202 	       + sizeof(struct ieee80211_ie_wpa)
2203 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2204 	       + sizeof(struct ieee80211_ie_wpa)
2205 	       + (vap->iv_appie_probereq != NULL ?
2206 		   vap->iv_appie_probereq->ie_len : 0)
2207 	);
2208 	if (m == NULL) {
2209 		vap->iv_stats.is_tx_nobuf++;
2210 		ieee80211_free_node(ni);
2211 		ieee80211_free_node(bss);
2212 		return ENOMEM;
2213 	}
2214 
2215 	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2216 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2217 	frm = ieee80211_add_rates(frm, rs);
2218 	frm = ieee80211_add_rsn(frm, vap);
2219 	frm = ieee80211_add_xrates(frm, rs);
2220 
2221 	/*
2222 	 * Note: we can't use bss; we don't have one yet.
2223 	 *
2224 	 * So, we should announce our capabilities
2225 	 * in this channel mode (2g/5g), not the
2226 	 * channel details itself.
2227 	 */
2228 	if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
2229 	    (vap->iv_flags_ht & IEEE80211_FHT_HT)) {
2230 		struct ieee80211_channel *c;
2231 
2232 		/*
2233 		 * Get the HT channel that we should try upgrading to.
2234 		 * If we can do 40MHz then this'll upgrade it appropriately.
2235 		 */
2236 		c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2237 		    vap->iv_flags_ht);
2238 		frm = ieee80211_add_htcap_ch(frm, vap, c);
2239 	}
2240 
2241 	/*
2242 	 * XXX TODO: need to figure out what/how to update the
2243 	 * VHT channel.
2244 	 */
2245 #if 0
2246 	(vap->iv_flags_vht & IEEE80211_FVHT_VHT) {
2247 		struct ieee80211_channel *c;
2248 
2249 		c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2250 		    vap->iv_flags_ht);
2251 		c = ieee80211_vht_adjust_channel(ic, c, vap->iv_flags_vht);
2252 		frm = ieee80211_add_vhtcap_ch(frm, vap, c);
2253 	}
2254 #endif
2255 
2256 	frm = ieee80211_add_wpa(frm, vap);
2257 	if (vap->iv_appie_probereq != NULL)
2258 		frm = add_appie(frm, vap->iv_appie_probereq);
2259 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2260 
2261 	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2262 	    ("leading space %zd", M_LEADINGSPACE(m)));
2263 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2264 	if (m == NULL) {
2265 		/* NB: cannot happen */
2266 		ieee80211_free_node(ni);
2267 		ieee80211_free_node(bss);
2268 		return ENOMEM;
2269 	}
2270 
2271 	IEEE80211_TX_LOCK(ic);
2272 	ieee80211_send_setup(ni, m,
2273 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2274 	     IEEE80211_NONQOS_TID, sa, da, bssid);
2275 	/* XXX power management? */
2276 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2277 
2278 	M_WME_SETAC(m, WME_AC_BE);
2279 
2280 	IEEE80211_NODE_STAT(ni, tx_probereq);
2281 	IEEE80211_NODE_STAT(ni, tx_mgmt);
2282 
2283 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2284 	    "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n",
2285 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
2286 	    ether_sprintf(bssid),
2287 	    sa, ":",
2288 	    da, ":",
2289 	    ssidlen, ssid);
2290 
2291 	memset(&params, 0, sizeof(params));
2292 	params.ibp_pri = M_WME_GETAC(m);
2293 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2294 	params.ibp_rate0 = tp->mgmtrate;
2295 	if (IEEE80211_IS_MULTICAST(da)) {
2296 		params.ibp_flags |= IEEE80211_BPF_NOACK;
2297 		params.ibp_try0 = 1;
2298 	} else
2299 		params.ibp_try0 = tp->maxretry;
2300 	params.ibp_power = ni->ni_txpower;
2301 	ret = ieee80211_raw_output(vap, ni, m, &params);
2302 	IEEE80211_TX_UNLOCK(ic);
2303 	ieee80211_free_node(bss);
2304 	return (ret);
2305 }
2306 
2307 /*
2308  * Calculate capability information for mgt frames.
2309  */
2310 uint16_t
2311 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2312 {
2313 	struct ieee80211com *ic = vap->iv_ic;
2314 	uint16_t capinfo;
2315 
2316 	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2317 
2318 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2319 		capinfo = IEEE80211_CAPINFO_ESS;
2320 	else if (vap->iv_opmode == IEEE80211_M_IBSS)
2321 		capinfo = IEEE80211_CAPINFO_IBSS;
2322 	else
2323 		capinfo = 0;
2324 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2325 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2326 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2327 	    IEEE80211_IS_CHAN_2GHZ(chan))
2328 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2329 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2330 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2331 	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2332 		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2333 	return capinfo;
2334 }
2335 
2336 /*
2337  * Send a management frame.  The node is for the destination (or ic_bss
2338  * when in station mode).  Nodes other than ic_bss have their reference
2339  * count bumped to reflect our use for an indeterminant time.
2340  */
2341 int
2342 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2343 {
2344 #define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2345 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2346 	struct ieee80211vap *vap = ni->ni_vap;
2347 	struct ieee80211com *ic = ni->ni_ic;
2348 	struct ieee80211_node *bss = vap->iv_bss;
2349 	struct ieee80211_bpf_params params;
2350 	struct mbuf *m;
2351 	uint8_t *frm;
2352 	uint16_t capinfo;
2353 	int has_challenge, is_shared_key, ret, status;
2354 
2355 	KASSERT(ni != NULL, ("null node"));
2356 
2357 	/*
2358 	 * Hold a reference on the node so it doesn't go away until after
2359 	 * the xmit is complete all the way in the driver.  On error we
2360 	 * will remove our reference.
2361 	 */
2362 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2363 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2364 		__func__, __LINE__,
2365 		ni, ether_sprintf(ni->ni_macaddr),
2366 		ieee80211_node_refcnt(ni)+1);
2367 	ieee80211_ref_node(ni);
2368 
2369 	memset(&params, 0, sizeof(params));
2370 	switch (type) {
2371 
2372 	case IEEE80211_FC0_SUBTYPE_AUTH:
2373 		status = arg >> 16;
2374 		arg &= 0xffff;
2375 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2376 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2377 		    ni->ni_challenge != NULL);
2378 
2379 		/*
2380 		 * Deduce whether we're doing open authentication or
2381 		 * shared key authentication.  We do the latter if
2382 		 * we're in the middle of a shared key authentication
2383 		 * handshake or if we're initiating an authentication
2384 		 * request and configured to use shared key.
2385 		 */
2386 		is_shared_key = has_challenge ||
2387 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2388 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2389 		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
2390 
2391 		m = ieee80211_getmgtframe(&frm,
2392 			  ic->ic_headroom + sizeof(struct ieee80211_frame),
2393 			  3 * sizeof(uint16_t)
2394 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2395 				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
2396 		);
2397 		if (m == NULL)
2398 			senderr(ENOMEM, is_tx_nobuf);
2399 
2400 		((uint16_t *)frm)[0] =
2401 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2402 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
2403 		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
2404 		((uint16_t *)frm)[2] = htole16(status);/* status */
2405 
2406 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2407 			((uint16_t *)frm)[3] =
2408 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
2409 			    IEEE80211_ELEMID_CHALLENGE);
2410 			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2411 			    IEEE80211_CHALLENGE_LEN);
2412 			m->m_pkthdr.len = m->m_len =
2413 				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2414 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2415 				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2416 				    "request encrypt frame (%s)", __func__);
2417 				/* mark frame for encryption */
2418 				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2419 			}
2420 		} else
2421 			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2422 
2423 		/* XXX not right for shared key */
2424 		if (status == IEEE80211_STATUS_SUCCESS)
2425 			IEEE80211_NODE_STAT(ni, tx_auth);
2426 		else
2427 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
2428 
2429 		if (vap->iv_opmode == IEEE80211_M_STA)
2430 			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2431 				(void *) vap->iv_state);
2432 		break;
2433 
2434 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2435 		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2436 		    "send station deauthenticate (reason: %d (%s))", arg,
2437 		    ieee80211_reason_to_string(arg));
2438 		m = ieee80211_getmgtframe(&frm,
2439 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2440 			sizeof(uint16_t));
2441 		if (m == NULL)
2442 			senderr(ENOMEM, is_tx_nobuf);
2443 		*(uint16_t *)frm = htole16(arg);	/* reason */
2444 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2445 
2446 		IEEE80211_NODE_STAT(ni, tx_deauth);
2447 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2448 
2449 		ieee80211_node_unauthorize(ni);		/* port closed */
2450 		break;
2451 
2452 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2453 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2454 		/*
2455 		 * asreq frame format
2456 		 *	[2] capability information
2457 		 *	[2] listen interval
2458 		 *	[6*] current AP address (reassoc only)
2459 		 *	[tlv] ssid
2460 		 *	[tlv] supported rates
2461 		 *	[tlv] extended supported rates
2462 		 *	[4] power capability (optional)
2463 		 *	[28] supported channels (optional)
2464 		 *	[tlv] HT capabilities
2465 		 *	[tlv] VHT capabilities
2466 		 *	[tlv] WME (optional)
2467 		 *	[tlv] Vendor OUI HT capabilities (optional)
2468 		 *	[tlv] Atheros capabilities (if negotiated)
2469 		 *	[tlv] AppIE's (optional)
2470 		 */
2471 		m = ieee80211_getmgtframe(&frm,
2472 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2473 			 sizeof(uint16_t)
2474 		       + sizeof(uint16_t)
2475 		       + IEEE80211_ADDR_LEN
2476 		       + 2 + IEEE80211_NWID_LEN
2477 		       + 2 + IEEE80211_RATE_SIZE
2478 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2479 		       + 4
2480 		       + 2 + 26
2481 		       + sizeof(struct ieee80211_wme_info)
2482 		       + sizeof(struct ieee80211_ie_htcap)
2483 		       + sizeof(struct ieee80211_ie_vhtcap)
2484 		       + 4 + sizeof(struct ieee80211_ie_htcap)
2485 #ifdef IEEE80211_SUPPORT_SUPERG
2486 		       + sizeof(struct ieee80211_ath_ie)
2487 #endif
2488 		       + (vap->iv_appie_wpa != NULL ?
2489 				vap->iv_appie_wpa->ie_len : 0)
2490 		       + (vap->iv_appie_assocreq != NULL ?
2491 				vap->iv_appie_assocreq->ie_len : 0)
2492 		);
2493 		if (m == NULL)
2494 			senderr(ENOMEM, is_tx_nobuf);
2495 
2496 		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2497 		    ("wrong mode %u", vap->iv_opmode));
2498 		capinfo = IEEE80211_CAPINFO_ESS;
2499 		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2500 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2501 		/*
2502 		 * NB: Some 11a AP's reject the request when
2503 		 *     short preamble is set.
2504 		 */
2505 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2506 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2507 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2508 		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2509 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2510 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2511 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2512 		    (vap->iv_flags & IEEE80211_F_DOTH))
2513 			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2514 		*(uint16_t *)frm = htole16(capinfo);
2515 		frm += 2;
2516 
2517 		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2518 		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2519 						    bss->ni_intval));
2520 		frm += 2;
2521 
2522 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2523 			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2524 			frm += IEEE80211_ADDR_LEN;
2525 		}
2526 
2527 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2528 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2529 		frm = ieee80211_add_rsn(frm, vap);
2530 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2531 		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2532 			frm = ieee80211_add_powercapability(frm,
2533 			    ic->ic_curchan);
2534 			frm = ieee80211_add_supportedchannels(frm, ic);
2535 		}
2536 
2537 		/*
2538 		 * Check the channel - we may be using an 11n NIC with an
2539 		 * 11n capable station, but we're configured to be an 11b
2540 		 * channel.
2541 		 */
2542 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2543 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2544 		    ni->ni_ies.htcap_ie != NULL &&
2545 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
2546 			frm = ieee80211_add_htcap(frm, ni);
2547 		}
2548 
2549 		if ((vap->iv_flags_vht & IEEE80211_FVHT_VHT) &&
2550 		    IEEE80211_IS_CHAN_VHT(ni->ni_chan) &&
2551 		    ni->ni_ies.vhtcap_ie != NULL &&
2552 		    ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) {
2553 			frm = ieee80211_add_vhtcap(frm, ni);
2554 		}
2555 
2556 		frm = ieee80211_add_wpa(frm, vap);
2557 		if ((ic->ic_flags & IEEE80211_F_WME) &&
2558 		    ni->ni_ies.wme_ie != NULL)
2559 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2560 
2561 		/*
2562 		 * Same deal - only send HT info if we're on an 11n
2563 		 * capable channel.
2564 		 */
2565 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2566 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2567 		    ni->ni_ies.htcap_ie != NULL &&
2568 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
2569 			frm = ieee80211_add_htcap_vendor(frm, ni);
2570 		}
2571 #ifdef IEEE80211_SUPPORT_SUPERG
2572 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2573 			frm = ieee80211_add_ath(frm,
2574 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2575 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2576 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2577 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2578 		}
2579 #endif /* IEEE80211_SUPPORT_SUPERG */
2580 		if (vap->iv_appie_assocreq != NULL)
2581 			frm = add_appie(frm, vap->iv_appie_assocreq);
2582 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2583 
2584 		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2585 			(void *) vap->iv_state);
2586 		break;
2587 
2588 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2589 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2590 		/*
2591 		 * asresp frame format
2592 		 *	[2] capability information
2593 		 *	[2] status
2594 		 *	[2] association ID
2595 		 *	[tlv] supported rates
2596 		 *	[tlv] extended supported rates
2597 		 *	[tlv] HT capabilities (standard, if STA enabled)
2598 		 *	[tlv] HT information (standard, if STA enabled)
2599 		 *	[tlv] VHT capabilities (standard, if STA enabled)
2600 		 *	[tlv] VHT information (standard, if STA enabled)
2601 		 *	[tlv] WME (if configured and STA enabled)
2602 		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2603 		 *	[tlv] HT information (vendor OUI, if STA enabled)
2604 		 *	[tlv] Atheros capabilities (if STA enabled)
2605 		 *	[tlv] AppIE's (optional)
2606 		 */
2607 		m = ieee80211_getmgtframe(&frm,
2608 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2609 			 sizeof(uint16_t)
2610 		       + sizeof(uint16_t)
2611 		       + sizeof(uint16_t)
2612 		       + 2 + IEEE80211_RATE_SIZE
2613 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2614 		       + sizeof(struct ieee80211_ie_htcap) + 4
2615 		       + sizeof(struct ieee80211_ie_htinfo) + 4
2616 		       + sizeof(struct ieee80211_ie_vhtcap)
2617 		       + sizeof(struct ieee80211_ie_vht_operation)
2618 		       + sizeof(struct ieee80211_wme_param)
2619 #ifdef IEEE80211_SUPPORT_SUPERG
2620 		       + sizeof(struct ieee80211_ath_ie)
2621 #endif
2622 		       + (vap->iv_appie_assocresp != NULL ?
2623 				vap->iv_appie_assocresp->ie_len : 0)
2624 		);
2625 		if (m == NULL)
2626 			senderr(ENOMEM, is_tx_nobuf);
2627 
2628 		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2629 		*(uint16_t *)frm = htole16(capinfo);
2630 		frm += 2;
2631 
2632 		*(uint16_t *)frm = htole16(arg);	/* status */
2633 		frm += 2;
2634 
2635 		if (arg == IEEE80211_STATUS_SUCCESS) {
2636 			*(uint16_t *)frm = htole16(ni->ni_associd);
2637 			IEEE80211_NODE_STAT(ni, tx_assoc);
2638 		} else
2639 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2640 		frm += 2;
2641 
2642 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2643 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2644 		/* NB: respond according to what we received */
2645 		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2646 			frm = ieee80211_add_htcap(frm, ni);
2647 			frm = ieee80211_add_htinfo(frm, ni);
2648 		}
2649 		if ((vap->iv_flags & IEEE80211_F_WME) &&
2650 		    ni->ni_ies.wme_ie != NULL)
2651 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2652 		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2653 			frm = ieee80211_add_htcap_vendor(frm, ni);
2654 			frm = ieee80211_add_htinfo_vendor(frm, ni);
2655 		}
2656 		if (ni->ni_flags & IEEE80211_NODE_VHT) {
2657 			frm = ieee80211_add_vhtcap(frm, ni);
2658 			frm = ieee80211_add_vhtinfo(frm, ni);
2659 		}
2660 #ifdef IEEE80211_SUPPORT_SUPERG
2661 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2662 			frm = ieee80211_add_ath(frm,
2663 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2664 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2665 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2666 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2667 #endif /* IEEE80211_SUPPORT_SUPERG */
2668 		if (vap->iv_appie_assocresp != NULL)
2669 			frm = add_appie(frm, vap->iv_appie_assocresp);
2670 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2671 		break;
2672 
2673 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2674 		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2675 		    "send station disassociate (reason: %d (%s))", arg,
2676 		    ieee80211_reason_to_string(arg));
2677 		m = ieee80211_getmgtframe(&frm,
2678 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2679 			sizeof(uint16_t));
2680 		if (m == NULL)
2681 			senderr(ENOMEM, is_tx_nobuf);
2682 		*(uint16_t *)frm = htole16(arg);	/* reason */
2683 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2684 
2685 		IEEE80211_NODE_STAT(ni, tx_disassoc);
2686 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2687 		break;
2688 
2689 	default:
2690 		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2691 		    "invalid mgmt frame type %u", type);
2692 		senderr(EINVAL, is_tx_unknownmgt);
2693 		/* NOTREACHED */
2694 	}
2695 
2696 	/* NB: force non-ProbeResp frames to the highest queue */
2697 	params.ibp_pri = WME_AC_VO;
2698 	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2699 	/* NB: we know all frames are unicast */
2700 	params.ibp_try0 = bss->ni_txparms->maxretry;
2701 	params.ibp_power = bss->ni_txpower;
2702 	return ieee80211_mgmt_output(ni, m, type, &params);
2703 bad:
2704 	ieee80211_free_node(ni);
2705 	return ret;
2706 #undef senderr
2707 #undef HTFLAGS
2708 }
2709 
2710 /*
2711  * Return an mbuf with a probe response frame in it.
2712  * Space is left to prepend and 802.11 header at the
2713  * front but it's left to the caller to fill in.
2714  */
2715 struct mbuf *
2716 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2717 {
2718 	struct ieee80211vap *vap = bss->ni_vap;
2719 	struct ieee80211com *ic = bss->ni_ic;
2720 	const struct ieee80211_rateset *rs;
2721 	struct mbuf *m;
2722 	uint16_t capinfo;
2723 	uint8_t *frm;
2724 
2725 	/*
2726 	 * probe response frame format
2727 	 *	[8] time stamp
2728 	 *	[2] beacon interval
2729 	 *	[2] cabability information
2730 	 *	[tlv] ssid
2731 	 *	[tlv] supported rates
2732 	 *	[tlv] parameter set (FH/DS)
2733 	 *	[tlv] parameter set (IBSS)
2734 	 *	[tlv] country (optional)
2735 	 *	[3] power control (optional)
2736 	 *	[5] channel switch announcement (CSA) (optional)
2737 	 *	[tlv] extended rate phy (ERP)
2738 	 *	[tlv] extended supported rates
2739 	 *	[tlv] RSN (optional)
2740 	 *	[tlv] HT capabilities
2741 	 *	[tlv] HT information
2742 	 *	[tlv] VHT capabilities
2743 	 *	[tlv] VHT information
2744 	 *	[tlv] WPA (optional)
2745 	 *	[tlv] WME (optional)
2746 	 *	[tlv] Vendor OUI HT capabilities (optional)
2747 	 *	[tlv] Vendor OUI HT information (optional)
2748 	 *	[tlv] Atheros capabilities
2749 	 *	[tlv] AppIE's (optional)
2750 	 *	[tlv] Mesh ID (MBSS)
2751 	 *	[tlv] Mesh Conf (MBSS)
2752 	 */
2753 	m = ieee80211_getmgtframe(&frm,
2754 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2755 		 8
2756 	       + sizeof(uint16_t)
2757 	       + sizeof(uint16_t)
2758 	       + 2 + IEEE80211_NWID_LEN
2759 	       + 2 + IEEE80211_RATE_SIZE
2760 	       + 7	/* max(7,3) */
2761 	       + IEEE80211_COUNTRY_MAX_SIZE
2762 	       + 3
2763 	       + sizeof(struct ieee80211_csa_ie)
2764 	       + sizeof(struct ieee80211_quiet_ie)
2765 	       + 3
2766 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2767 	       + sizeof(struct ieee80211_ie_wpa)
2768 	       + sizeof(struct ieee80211_ie_htcap)
2769 	       + sizeof(struct ieee80211_ie_htinfo)
2770 	       + sizeof(struct ieee80211_ie_wpa)
2771 	       + sizeof(struct ieee80211_wme_param)
2772 	       + 4 + sizeof(struct ieee80211_ie_htcap)
2773 	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2774 	       +  sizeof(struct ieee80211_ie_vhtcap)
2775 	       +  sizeof(struct ieee80211_ie_vht_operation)
2776 #ifdef IEEE80211_SUPPORT_SUPERG
2777 	       + sizeof(struct ieee80211_ath_ie)
2778 #endif
2779 #ifdef IEEE80211_SUPPORT_MESH
2780 	       + 2 + IEEE80211_MESHID_LEN
2781 	       + sizeof(struct ieee80211_meshconf_ie)
2782 #endif
2783 	       + (vap->iv_appie_proberesp != NULL ?
2784 			vap->iv_appie_proberesp->ie_len : 0)
2785 	);
2786 	if (m == NULL) {
2787 		vap->iv_stats.is_tx_nobuf++;
2788 		return NULL;
2789 	}
2790 
2791 	memset(frm, 0, 8);	/* timestamp should be filled later */
2792 	frm += 8;
2793 	*(uint16_t *)frm = htole16(bss->ni_intval);
2794 	frm += 2;
2795 	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2796 	*(uint16_t *)frm = htole16(capinfo);
2797 	frm += 2;
2798 
2799 	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2800 	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2801 	frm = ieee80211_add_rates(frm, rs);
2802 
2803 	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2804 		*frm++ = IEEE80211_ELEMID_FHPARMS;
2805 		*frm++ = 5;
2806 		*frm++ = bss->ni_fhdwell & 0x00ff;
2807 		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2808 		*frm++ = IEEE80211_FH_CHANSET(
2809 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2810 		*frm++ = IEEE80211_FH_CHANPAT(
2811 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2812 		*frm++ = bss->ni_fhindex;
2813 	} else {
2814 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2815 		*frm++ = 1;
2816 		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2817 	}
2818 
2819 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2820 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2821 		*frm++ = 2;
2822 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2823 	}
2824 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2825 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2826 		frm = ieee80211_add_countryie(frm, ic);
2827 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2828 		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2829 			frm = ieee80211_add_powerconstraint(frm, vap);
2830 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2831 			frm = ieee80211_add_csa(frm, vap);
2832 	}
2833 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2834 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2835 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2836 			if (vap->iv_quiet)
2837 				frm = ieee80211_add_quiet(frm, vap, 0);
2838 		}
2839 	}
2840 	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2841 		frm = ieee80211_add_erp(frm, ic);
2842 	frm = ieee80211_add_xrates(frm, rs);
2843 	frm = ieee80211_add_rsn(frm, vap);
2844 	/*
2845 	 * NB: legacy 11b clients do not get certain ie's.
2846 	 *     The caller identifies such clients by passing
2847 	 *     a token in legacy to us.  Could expand this to be
2848 	 *     any legacy client for stuff like HT ie's.
2849 	 */
2850 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2851 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2852 		frm = ieee80211_add_htcap(frm, bss);
2853 		frm = ieee80211_add_htinfo(frm, bss);
2854 	}
2855 	if (IEEE80211_IS_CHAN_VHT(bss->ni_chan) &&
2856 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2857 		frm = ieee80211_add_vhtcap(frm, bss);
2858 		frm = ieee80211_add_vhtinfo(frm, bss);
2859 	}
2860 	frm = ieee80211_add_wpa(frm, vap);
2861 	if (vap->iv_flags & IEEE80211_F_WME)
2862 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2863 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2864 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
2865 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2866 		frm = ieee80211_add_htcap_vendor(frm, bss);
2867 		frm = ieee80211_add_htinfo_vendor(frm, bss);
2868 	}
2869 #ifdef IEEE80211_SUPPORT_SUPERG
2870 	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
2871 	    legacy != IEEE80211_SEND_LEGACY_11B)
2872 		frm = ieee80211_add_athcaps(frm, bss);
2873 #endif
2874 	if (vap->iv_appie_proberesp != NULL)
2875 		frm = add_appie(frm, vap->iv_appie_proberesp);
2876 #ifdef IEEE80211_SUPPORT_MESH
2877 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2878 		frm = ieee80211_add_meshid(frm, vap);
2879 		frm = ieee80211_add_meshconf(frm, vap);
2880 	}
2881 #endif
2882 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2883 
2884 	return m;
2885 }
2886 
2887 /*
2888  * Send a probe response frame to the specified mac address.
2889  * This does not go through the normal mgt frame api so we
2890  * can specify the destination address and re-use the bss node
2891  * for the sta reference.
2892  */
2893 int
2894 ieee80211_send_proberesp(struct ieee80211vap *vap,
2895 	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2896 {
2897 	struct ieee80211_node *bss = vap->iv_bss;
2898 	struct ieee80211com *ic = vap->iv_ic;
2899 	struct mbuf *m;
2900 	int ret;
2901 
2902 	if (vap->iv_state == IEEE80211_S_CAC) {
2903 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2904 		    "block %s frame in CAC state", "probe response");
2905 		vap->iv_stats.is_tx_badstate++;
2906 		return EIO;		/* XXX */
2907 	}
2908 
2909 	/*
2910 	 * Hold a reference on the node so it doesn't go away until after
2911 	 * the xmit is complete all the way in the driver.  On error we
2912 	 * will remove our reference.
2913 	 */
2914 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2915 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2916 	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2917 	    ieee80211_node_refcnt(bss)+1);
2918 	ieee80211_ref_node(bss);
2919 
2920 	m = ieee80211_alloc_proberesp(bss, legacy);
2921 	if (m == NULL) {
2922 		ieee80211_free_node(bss);
2923 		return ENOMEM;
2924 	}
2925 
2926 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2927 	KASSERT(m != NULL, ("no room for header"));
2928 
2929 	IEEE80211_TX_LOCK(ic);
2930 	ieee80211_send_setup(bss, m,
2931 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2932 	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2933 	/* XXX power management? */
2934 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2935 
2936 	M_WME_SETAC(m, WME_AC_BE);
2937 
2938 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2939 	    "send probe resp on channel %u to %s%s\n",
2940 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2941 	    legacy ? " <legacy>" : "");
2942 	IEEE80211_NODE_STAT(bss, tx_mgmt);
2943 
2944 	ret = ieee80211_raw_output(vap, bss, m, NULL);
2945 	IEEE80211_TX_UNLOCK(ic);
2946 	return (ret);
2947 }
2948 
2949 /*
2950  * Allocate and build a RTS (Request To Send) control frame.
2951  */
2952 struct mbuf *
2953 ieee80211_alloc_rts(struct ieee80211com *ic,
2954 	const uint8_t ra[IEEE80211_ADDR_LEN],
2955 	const uint8_t ta[IEEE80211_ADDR_LEN],
2956 	uint16_t dur)
2957 {
2958 	struct ieee80211_frame_rts *rts;
2959 	struct mbuf *m;
2960 
2961 	/* XXX honor ic_headroom */
2962 	m = m_gethdr(M_NOWAIT, MT_DATA);
2963 	if (m != NULL) {
2964 		rts = mtod(m, struct ieee80211_frame_rts *);
2965 		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2966 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2967 		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2968 		*(u_int16_t *)rts->i_dur = htole16(dur);
2969 		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2970 		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2971 
2972 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2973 	}
2974 	return m;
2975 }
2976 
2977 /*
2978  * Allocate and build a CTS (Clear To Send) control frame.
2979  */
2980 struct mbuf *
2981 ieee80211_alloc_cts(struct ieee80211com *ic,
2982 	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2983 {
2984 	struct ieee80211_frame_cts *cts;
2985 	struct mbuf *m;
2986 
2987 	/* XXX honor ic_headroom */
2988 	m = m_gethdr(M_NOWAIT, MT_DATA);
2989 	if (m != NULL) {
2990 		cts = mtod(m, struct ieee80211_frame_cts *);
2991 		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2992 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2993 		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2994 		*(u_int16_t *)cts->i_dur = htole16(dur);
2995 		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2996 
2997 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2998 	}
2999 	return m;
3000 }
3001 
3002 static void
3003 ieee80211_tx_mgt_timeout(void *arg)
3004 {
3005 	struct ieee80211vap *vap = arg;
3006 
3007 	IEEE80211_LOCK(vap->iv_ic);
3008 	if (vap->iv_state != IEEE80211_S_INIT &&
3009 	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3010 		/*
3011 		 * NB: it's safe to specify a timeout as the reason here;
3012 		 *     it'll only be used in the right state.
3013 		 */
3014 		ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
3015 			IEEE80211_SCAN_FAIL_TIMEOUT);
3016 	}
3017 	IEEE80211_UNLOCK(vap->iv_ic);
3018 }
3019 
3020 /*
3021  * This is the callback set on net80211-sourced transmitted
3022  * authentication request frames.
3023  *
3024  * This does a couple of things:
3025  *
3026  * + If the frame transmitted was a success, it schedules a future
3027  *   event which will transition the interface to scan.
3028  *   If a state transition _then_ occurs before that event occurs,
3029  *   said state transition will cancel this callout.
3030  *
3031  * + If the frame transmit was a failure, it immediately schedules
3032  *   the transition back to scan.
3033  */
3034 static void
3035 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
3036 {
3037 	struct ieee80211vap *vap = ni->ni_vap;
3038 	enum ieee80211_state ostate = (enum ieee80211_state) arg;
3039 
3040 	/*
3041 	 * Frame transmit completed; arrange timer callback.  If
3042 	 * transmit was successfully we wait for response.  Otherwise
3043 	 * we arrange an immediate callback instead of doing the
3044 	 * callback directly since we don't know what state the driver
3045 	 * is in (e.g. what locks it is holding).  This work should
3046 	 * not be too time-critical and not happen too often so the
3047 	 * added overhead is acceptable.
3048 	 *
3049 	 * XXX what happens if !acked but response shows up before callback?
3050 	 */
3051 	if (vap->iv_state == ostate) {
3052 		callout_reset(&vap->iv_mgtsend,
3053 			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
3054 			ieee80211_tx_mgt_timeout, vap);
3055 	}
3056 }
3057 
3058 static void
3059 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
3060 	struct ieee80211_node *ni)
3061 {
3062 	struct ieee80211vap *vap = ni->ni_vap;
3063 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3064 	struct ieee80211com *ic = ni->ni_ic;
3065 	struct ieee80211_rateset *rs = &ni->ni_rates;
3066 	uint16_t capinfo;
3067 
3068 	/*
3069 	 * beacon frame format
3070 	 *
3071 	 * TODO: update to 802.11-2012; a lot of stuff has changed;
3072 	 * vendor extensions should be at the end, etc.
3073 	 *
3074 	 *	[8] time stamp
3075 	 *	[2] beacon interval
3076 	 *	[2] cabability information
3077 	 *	[tlv] ssid
3078 	 *	[tlv] supported rates
3079 	 *	[3] parameter set (DS)
3080 	 *	[8] CF parameter set (optional)
3081 	 *	[tlv] parameter set (IBSS/TIM)
3082 	 *	[tlv] country (optional)
3083 	 *	[3] power control (optional)
3084 	 *	[5] channel switch announcement (CSA) (optional)
3085 	 * XXX TODO: Quiet
3086 	 * XXX TODO: IBSS DFS
3087 	 * XXX TODO: TPC report
3088 	 *	[tlv] extended rate phy (ERP)
3089 	 *	[tlv] extended supported rates
3090 	 *	[tlv] RSN parameters
3091 	 * XXX TODO: BSSLOAD
3092 	 * (XXX EDCA parameter set, QoS capability?)
3093 	 * XXX TODO: AP channel report
3094 	 *
3095 	 *	[tlv] HT capabilities
3096 	 *	[tlv] HT information
3097 	 *	XXX TODO: 20/40 BSS coexistence
3098 	 * Mesh:
3099 	 * XXX TODO: Meshid
3100 	 * XXX TODO: mesh config
3101 	 * XXX TODO: mesh awake window
3102 	 * XXX TODO: beacon timing (mesh, etc)
3103 	 * XXX TODO: MCCAOP Advertisement Overview
3104 	 * XXX TODO: MCCAOP Advertisement
3105 	 * XXX TODO: Mesh channel switch parameters
3106 	 * VHT:
3107 	 * XXX TODO: VHT capabilities
3108 	 * XXX TODO: VHT operation
3109 	 * XXX TODO: VHT transmit power envelope
3110 	 * XXX TODO: channel switch wrapper element
3111 	 * XXX TODO: extended BSS load element
3112 	 *
3113 	 * XXX Vendor-specific OIDs (e.g. Atheros)
3114 	 *	[tlv] WPA parameters
3115 	 *	[tlv] WME parameters
3116 	 *	[tlv] Vendor OUI HT capabilities (optional)
3117 	 *	[tlv] Vendor OUI HT information (optional)
3118 	 *	[tlv] Atheros capabilities (optional)
3119 	 *	[tlv] TDMA parameters (optional)
3120 	 *	[tlv] Mesh ID (MBSS)
3121 	 *	[tlv] Mesh Conf (MBSS)
3122 	 *	[tlv] application data (optional)
3123 	 */
3124 
3125 	memset(bo, 0, sizeof(*bo));
3126 
3127 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
3128 	frm += 8;
3129 	*(uint16_t *)frm = htole16(ni->ni_intval);
3130 	frm += 2;
3131 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3132 	bo->bo_caps = (uint16_t *)frm;
3133 	*(uint16_t *)frm = htole16(capinfo);
3134 	frm += 2;
3135 	*frm++ = IEEE80211_ELEMID_SSID;
3136 	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
3137 		*frm++ = ni->ni_esslen;
3138 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
3139 		frm += ni->ni_esslen;
3140 	} else
3141 		*frm++ = 0;
3142 	frm = ieee80211_add_rates(frm, rs);
3143 	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
3144 		*frm++ = IEEE80211_ELEMID_DSPARMS;
3145 		*frm++ = 1;
3146 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
3147 	}
3148 	if (ic->ic_flags & IEEE80211_F_PCF) {
3149 		bo->bo_cfp = frm;
3150 		frm = ieee80211_add_cfparms(frm, ic);
3151 	}
3152 	bo->bo_tim = frm;
3153 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
3154 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
3155 		*frm++ = 2;
3156 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
3157 		bo->bo_tim_len = 0;
3158 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3159 	    vap->iv_opmode == IEEE80211_M_MBSS) {
3160 		/* TIM IE is the same for Mesh and Hostap */
3161 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
3162 
3163 		tie->tim_ie = IEEE80211_ELEMID_TIM;
3164 		tie->tim_len = 4;	/* length */
3165 		tie->tim_count = 0;	/* DTIM count */
3166 		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
3167 		tie->tim_bitctl = 0;	/* bitmap control */
3168 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
3169 		frm += sizeof(struct ieee80211_tim_ie);
3170 		bo->bo_tim_len = 1;
3171 	}
3172 	bo->bo_tim_trailer = frm;
3173 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3174 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3175 		frm = ieee80211_add_countryie(frm, ic);
3176 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3177 		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
3178 			frm = ieee80211_add_powerconstraint(frm, vap);
3179 		bo->bo_csa = frm;
3180 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3181 			frm = ieee80211_add_csa(frm, vap);
3182 	} else
3183 		bo->bo_csa = frm;
3184 
3185 	bo->bo_quiet = NULL;
3186 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3187 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3188 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
3189 		    (vap->iv_quiet == 1)) {
3190 			/*
3191 			 * We only insert the quiet IE offset if
3192 			 * the quiet IE is enabled.  Otherwise don't
3193 			 * put it here or we'll just overwrite
3194 			 * some other beacon contents.
3195 			 */
3196 			if (vap->iv_quiet) {
3197 				bo->bo_quiet = frm;
3198 				frm = ieee80211_add_quiet(frm,vap, 0);
3199 			}
3200 		}
3201 	}
3202 
3203 	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
3204 		bo->bo_erp = frm;
3205 		frm = ieee80211_add_erp(frm, ic);
3206 	}
3207 	frm = ieee80211_add_xrates(frm, rs);
3208 	frm = ieee80211_add_rsn(frm, vap);
3209 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
3210 		frm = ieee80211_add_htcap(frm, ni);
3211 		bo->bo_htinfo = frm;
3212 		frm = ieee80211_add_htinfo(frm, ni);
3213 	}
3214 
3215 	if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) {
3216 		frm = ieee80211_add_vhtcap(frm, ni);
3217 		bo->bo_vhtinfo = frm;
3218 		frm = ieee80211_add_vhtinfo(frm, ni);
3219 		/* Transmit power envelope */
3220 		/* Channel switch wrapper element */
3221 		/* Extended bss load element */
3222 	}
3223 
3224 	frm = ieee80211_add_wpa(frm, vap);
3225 	if (vap->iv_flags & IEEE80211_F_WME) {
3226 		bo->bo_wme = frm;
3227 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
3228 	}
3229 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
3230 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
3231 		frm = ieee80211_add_htcap_vendor(frm, ni);
3232 		frm = ieee80211_add_htinfo_vendor(frm, ni);
3233 	}
3234 
3235 #ifdef IEEE80211_SUPPORT_SUPERG
3236 	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
3237 		bo->bo_ath = frm;
3238 		frm = ieee80211_add_athcaps(frm, ni);
3239 	}
3240 #endif
3241 #ifdef IEEE80211_SUPPORT_TDMA
3242 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3243 		bo->bo_tdma = frm;
3244 		frm = ieee80211_add_tdma(frm, vap);
3245 	}
3246 #endif
3247 	if (vap->iv_appie_beacon != NULL) {
3248 		bo->bo_appie = frm;
3249 		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
3250 		frm = add_appie(frm, vap->iv_appie_beacon);
3251 	}
3252 
3253 	/* XXX TODO: move meshid/meshconf up to before vendor extensions? */
3254 #ifdef IEEE80211_SUPPORT_MESH
3255 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3256 		frm = ieee80211_add_meshid(frm, vap);
3257 		bo->bo_meshconf = frm;
3258 		frm = ieee80211_add_meshconf(frm, vap);
3259 	}
3260 #endif
3261 	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
3262 	bo->bo_csa_trailer_len = frm - bo->bo_csa;
3263 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3264 }
3265 
3266 /*
3267  * Allocate a beacon frame and fillin the appropriate bits.
3268  */
3269 struct mbuf *
3270 ieee80211_beacon_alloc(struct ieee80211_node *ni)
3271 {
3272 	struct ieee80211vap *vap = ni->ni_vap;
3273 	struct ieee80211com *ic = ni->ni_ic;
3274 	struct ifnet *ifp = vap->iv_ifp;
3275 	struct ieee80211_frame *wh;
3276 	struct mbuf *m;
3277 	int pktlen;
3278 	uint8_t *frm;
3279 
3280 	/*
3281 	 * Update the "We're putting the quiet IE in the beacon" state.
3282 	 */
3283 	if (vap->iv_quiet == 1)
3284 		vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
3285 	else if (vap->iv_quiet == 0)
3286 		vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
3287 
3288 	/*
3289 	 * beacon frame format
3290 	 *
3291 	 * Note: This needs updating for 802.11-2012.
3292 	 *
3293 	 *	[8] time stamp
3294 	 *	[2] beacon interval
3295 	 *	[2] cabability information
3296 	 *	[tlv] ssid
3297 	 *	[tlv] supported rates
3298 	 *	[3] parameter set (DS)
3299 	 *	[8] CF parameter set (optional)
3300 	 *	[tlv] parameter set (IBSS/TIM)
3301 	 *	[tlv] country (optional)
3302 	 *	[3] power control (optional)
3303 	 *	[5] channel switch announcement (CSA) (optional)
3304 	 *	[tlv] extended rate phy (ERP)
3305 	 *	[tlv] extended supported rates
3306 	 *	[tlv] RSN parameters
3307 	 *	[tlv] HT capabilities
3308 	 *	[tlv] HT information
3309 	 *	[tlv] VHT capabilities
3310 	 *	[tlv] VHT operation
3311 	 *	[tlv] Vendor OUI HT capabilities (optional)
3312 	 *	[tlv] Vendor OUI HT information (optional)
3313 	 * XXX Vendor-specific OIDs (e.g. Atheros)
3314 	 *	[tlv] WPA parameters
3315 	 *	[tlv] WME parameters
3316 	 *	[tlv] TDMA parameters (optional)
3317 	 *	[tlv] Mesh ID (MBSS)
3318 	 *	[tlv] Mesh Conf (MBSS)
3319 	 *	[tlv] application data (optional)
3320 	 * NB: we allocate the max space required for the TIM bitmap.
3321 	 * XXX how big is this?
3322 	 */
3323 	pktlen =   8					/* time stamp */
3324 		 + sizeof(uint16_t)			/* beacon interval */
3325 		 + sizeof(uint16_t)			/* capabilities */
3326 		 + 2 + ni->ni_esslen			/* ssid */
3327 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
3328 	         + 2 + 1				/* DS parameters */
3329 		 + 2 + 6				/* CF parameters */
3330 		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
3331 		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
3332 		 + 2 + 1				/* power control */
3333 		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
3334 		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
3335 		 + 2 + 1				/* ERP */
3336 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3337 		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
3338 			2*sizeof(struct ieee80211_ie_wpa) : 0)
3339 		 /* XXX conditional? */
3340 		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3341 		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3342 		 + sizeof(struct ieee80211_ie_vhtcap)/* VHT caps */
3343 		 + sizeof(struct ieee80211_ie_vht_operation)/* VHT info */
3344 		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
3345 			sizeof(struct ieee80211_wme_param) : 0)
3346 #ifdef IEEE80211_SUPPORT_SUPERG
3347 		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
3348 #endif
3349 #ifdef IEEE80211_SUPPORT_TDMA
3350 		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
3351 			sizeof(struct ieee80211_tdma_param) : 0)
3352 #endif
3353 #ifdef IEEE80211_SUPPORT_MESH
3354 		 + 2 + ni->ni_meshidlen
3355 		 + sizeof(struct ieee80211_meshconf_ie)
3356 #endif
3357 		 + IEEE80211_MAX_APPIE
3358 		 ;
3359 	m = ieee80211_getmgtframe(&frm,
3360 		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3361 	if (m == NULL) {
3362 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3363 			"%s: cannot get buf; size %u\n", __func__, pktlen);
3364 		vap->iv_stats.is_tx_nobuf++;
3365 		return NULL;
3366 	}
3367 	ieee80211_beacon_construct(m, frm, ni);
3368 
3369 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
3370 	KASSERT(m != NULL, ("no space for 802.11 header?"));
3371 	wh = mtod(m, struct ieee80211_frame *);
3372 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3373 	    IEEE80211_FC0_SUBTYPE_BEACON;
3374 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3375 	*(uint16_t *)wh->i_dur = 0;
3376 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3377 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3378 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3379 	*(uint16_t *)wh->i_seq = 0;
3380 
3381 	return m;
3382 }
3383 
3384 /*
3385  * Update the dynamic parts of a beacon frame based on the current state.
3386  */
3387 int
3388 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast)
3389 {
3390 	struct ieee80211vap *vap = ni->ni_vap;
3391 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3392 	struct ieee80211com *ic = ni->ni_ic;
3393 	int len_changed = 0;
3394 	uint16_t capinfo;
3395 	struct ieee80211_frame *wh;
3396 	ieee80211_seq seqno;
3397 
3398 	IEEE80211_LOCK(ic);
3399 	/*
3400 	 * Handle 11h channel change when we've reached the count.
3401 	 * We must recalculate the beacon frame contents to account
3402 	 * for the new channel.  Note we do this only for the first
3403 	 * vap that reaches this point; subsequent vaps just update
3404 	 * their beacon state to reflect the recalculated channel.
3405 	 */
3406 	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3407 	    vap->iv_csa_count == ic->ic_csa_count) {
3408 		vap->iv_csa_count = 0;
3409 		/*
3410 		 * Effect channel change before reconstructing the beacon
3411 		 * frame contents as many places reference ni_chan.
3412 		 */
3413 		if (ic->ic_csa_newchan != NULL)
3414 			ieee80211_csa_completeswitch(ic);
3415 		/*
3416 		 * NB: ieee80211_beacon_construct clears all pending
3417 		 * updates in bo_flags so we don't need to explicitly
3418 		 * clear IEEE80211_BEACON_CSA.
3419 		 */
3420 		ieee80211_beacon_construct(m,
3421 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3422 
3423 		/* XXX do WME aggressive mode processing? */
3424 		IEEE80211_UNLOCK(ic);
3425 		return 1;		/* just assume length changed */
3426 	}
3427 
3428 	/*
3429 	 * Handle the quiet time element being added and removed.
3430 	 * Again, for now we just cheat and reconstruct the whole
3431 	 * beacon - that way the gap is provided as appropriate.
3432 	 *
3433 	 * So, track whether we have already added the IE versus
3434 	 * whether we want to be adding the IE.
3435 	 */
3436 	if ((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) &&
3437 	    (vap->iv_quiet == 0)) {
3438 		/*
3439 		 * Quiet time beacon IE enabled, but it's disabled;
3440 		 * recalc
3441 		 */
3442 		vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
3443 		ieee80211_beacon_construct(m,
3444 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3445 		/* XXX do WME aggressive mode processing? */
3446 		IEEE80211_UNLOCK(ic);
3447 		return 1;		/* just assume length changed */
3448 	}
3449 
3450 	if (((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) == 0) &&
3451 	    (vap->iv_quiet == 1)) {
3452 		/*
3453 		 * Quiet time beacon IE disabled, but it's now enabled;
3454 		 * recalc
3455 		 */
3456 		vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
3457 		ieee80211_beacon_construct(m,
3458 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3459 		/* XXX do WME aggressive mode processing? */
3460 		IEEE80211_UNLOCK(ic);
3461 		return 1;		/* just assume length changed */
3462 	}
3463 
3464 	wh = mtod(m, struct ieee80211_frame *);
3465 
3466 	/*
3467 	 * XXX TODO Strictly speaking this should be incremented with the TX
3468 	 * lock held so as to serialise access to the non-qos TID sequence
3469 	 * number space.
3470 	 *
3471 	 * If the driver identifies it does its own TX seqno management then
3472 	 * we can skip this (and still not do the TX seqno.)
3473 	 */
3474 	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3475 	*(uint16_t *)&wh->i_seq[0] =
3476 		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3477 	M_SEQNO_SET(m, seqno);
3478 
3479 	/* XXX faster to recalculate entirely or just changes? */
3480 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3481 	*bo->bo_caps = htole16(capinfo);
3482 
3483 	if (vap->iv_flags & IEEE80211_F_WME) {
3484 		struct ieee80211_wme_state *wme = &ic->ic_wme;
3485 
3486 		/*
3487 		 * Check for aggressive mode change.  When there is
3488 		 * significant high priority traffic in the BSS
3489 		 * throttle back BE traffic by using conservative
3490 		 * parameters.  Otherwise BE uses aggressive params
3491 		 * to optimize performance of legacy/non-QoS traffic.
3492 		 */
3493 		if (wme->wme_flags & WME_F_AGGRMODE) {
3494 			if (wme->wme_hipri_traffic >
3495 			    wme->wme_hipri_switch_thresh) {
3496 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3497 				    "%s: traffic %u, disable aggressive mode\n",
3498 				    __func__, wme->wme_hipri_traffic);
3499 				wme->wme_flags &= ~WME_F_AGGRMODE;
3500 				ieee80211_wme_updateparams_locked(vap);
3501 				wme->wme_hipri_traffic =
3502 					wme->wme_hipri_switch_hysteresis;
3503 			} else
3504 				wme->wme_hipri_traffic = 0;
3505 		} else {
3506 			if (wme->wme_hipri_traffic <=
3507 			    wme->wme_hipri_switch_thresh) {
3508 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3509 				    "%s: traffic %u, enable aggressive mode\n",
3510 				    __func__, wme->wme_hipri_traffic);
3511 				wme->wme_flags |= WME_F_AGGRMODE;
3512 				ieee80211_wme_updateparams_locked(vap);
3513 				wme->wme_hipri_traffic = 0;
3514 			} else
3515 				wme->wme_hipri_traffic =
3516 					wme->wme_hipri_switch_hysteresis;
3517 		}
3518 		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3519 			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
3520 			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3521 		}
3522 	}
3523 
3524 	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
3525 		ieee80211_ht_update_beacon(vap, bo);
3526 		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3527 	}
3528 #ifdef IEEE80211_SUPPORT_TDMA
3529 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3530 		/*
3531 		 * NB: the beacon is potentially updated every TBTT.
3532 		 */
3533 		ieee80211_tdma_update_beacon(vap, bo);
3534 	}
3535 #endif
3536 #ifdef IEEE80211_SUPPORT_MESH
3537 	if (vap->iv_opmode == IEEE80211_M_MBSS)
3538 		ieee80211_mesh_update_beacon(vap, bo);
3539 #endif
3540 
3541 	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3542 	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
3543 		struct ieee80211_tim_ie *tie =
3544 			(struct ieee80211_tim_ie *) bo->bo_tim;
3545 		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3546 			u_int timlen, timoff, i;
3547 			/*
3548 			 * ATIM/DTIM needs updating.  If it fits in the
3549 			 * current space allocated then just copy in the
3550 			 * new bits.  Otherwise we need to move any trailing
3551 			 * data to make room.  Note that we know there is
3552 			 * contiguous space because ieee80211_beacon_allocate
3553 			 * insures there is space in the mbuf to write a
3554 			 * maximal-size virtual bitmap (based on iv_max_aid).
3555 			 */
3556 			/*
3557 			 * Calculate the bitmap size and offset, copy any
3558 			 * trailer out of the way, and then copy in the
3559 			 * new bitmap and update the information element.
3560 			 * Note that the tim bitmap must contain at least
3561 			 * one byte and any offset must be even.
3562 			 */
3563 			if (vap->iv_ps_pending != 0) {
3564 				timoff = 128;		/* impossibly large */
3565 				for (i = 0; i < vap->iv_tim_len; i++)
3566 					if (vap->iv_tim_bitmap[i]) {
3567 						timoff = i &~ 1;
3568 						break;
3569 					}
3570 				KASSERT(timoff != 128, ("tim bitmap empty!"));
3571 				for (i = vap->iv_tim_len-1; i >= timoff; i--)
3572 					if (vap->iv_tim_bitmap[i])
3573 						break;
3574 				timlen = 1 + (i - timoff);
3575 			} else {
3576 				timoff = 0;
3577 				timlen = 1;
3578 			}
3579 
3580 			/*
3581 			 * TODO: validate this!
3582 			 */
3583 			if (timlen != bo->bo_tim_len) {
3584 				/* copy up/down trailer */
3585 				int adjust = tie->tim_bitmap+timlen
3586 					   - bo->bo_tim_trailer;
3587 				ovbcopy(bo->bo_tim_trailer,
3588 				    bo->bo_tim_trailer+adjust,
3589 				    bo->bo_tim_trailer_len);
3590 				bo->bo_tim_trailer += adjust;
3591 				bo->bo_erp += adjust;
3592 				bo->bo_htinfo += adjust;
3593 				bo->bo_vhtinfo += adjust;
3594 #ifdef IEEE80211_SUPPORT_SUPERG
3595 				bo->bo_ath += adjust;
3596 #endif
3597 #ifdef IEEE80211_SUPPORT_TDMA
3598 				bo->bo_tdma += adjust;
3599 #endif
3600 #ifdef IEEE80211_SUPPORT_MESH
3601 				bo->bo_meshconf += adjust;
3602 #endif
3603 				bo->bo_appie += adjust;
3604 				bo->bo_wme += adjust;
3605 				bo->bo_csa += adjust;
3606 				bo->bo_quiet += adjust;
3607 				bo->bo_tim_len = timlen;
3608 
3609 				/* update information element */
3610 				tie->tim_len = 3 + timlen;
3611 				tie->tim_bitctl = timoff;
3612 				len_changed = 1;
3613 			}
3614 			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
3615 				bo->bo_tim_len);
3616 
3617 			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
3618 
3619 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
3620 				"%s: TIM updated, pending %u, off %u, len %u\n",
3621 				__func__, vap->iv_ps_pending, timoff, timlen);
3622 		}
3623 		/* count down DTIM period */
3624 		if (tie->tim_count == 0)
3625 			tie->tim_count = tie->tim_period - 1;
3626 		else
3627 			tie->tim_count--;
3628 		/* update state for buffered multicast frames on DTIM */
3629 		if (mcast && tie->tim_count == 0)
3630 			tie->tim_bitctl |= 1;
3631 		else
3632 			tie->tim_bitctl &= ~1;
3633 		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
3634 			struct ieee80211_csa_ie *csa =
3635 			    (struct ieee80211_csa_ie *) bo->bo_csa;
3636 
3637 			/*
3638 			 * Insert or update CSA ie.  If we're just starting
3639 			 * to count down to the channel switch then we need
3640 			 * to insert the CSA ie.  Otherwise we just need to
3641 			 * drop the count.  The actual change happens above
3642 			 * when the vap's count reaches the target count.
3643 			 */
3644 			if (vap->iv_csa_count == 0) {
3645 				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
3646 				bo->bo_erp += sizeof(*csa);
3647 				bo->bo_htinfo += sizeof(*csa);
3648 				bo->bo_vhtinfo += sizeof(*csa);
3649 				bo->bo_wme += sizeof(*csa);
3650 #ifdef IEEE80211_SUPPORT_SUPERG
3651 				bo->bo_ath += sizeof(*csa);
3652 #endif
3653 #ifdef IEEE80211_SUPPORT_TDMA
3654 				bo->bo_tdma += sizeof(*csa);
3655 #endif
3656 #ifdef IEEE80211_SUPPORT_MESH
3657 				bo->bo_meshconf += sizeof(*csa);
3658 #endif
3659 				bo->bo_appie += sizeof(*csa);
3660 				bo->bo_csa_trailer_len += sizeof(*csa);
3661 				bo->bo_quiet += sizeof(*csa);
3662 				bo->bo_tim_trailer_len += sizeof(*csa);
3663 				m->m_len += sizeof(*csa);
3664 				m->m_pkthdr.len += sizeof(*csa);
3665 
3666 				ieee80211_add_csa(bo->bo_csa, vap);
3667 			} else
3668 				csa->csa_count--;
3669 			vap->iv_csa_count++;
3670 			/* NB: don't clear IEEE80211_BEACON_CSA */
3671 		}
3672 
3673 		/*
3674 		 * Only add the quiet time IE if we've enabled it
3675 		 * as appropriate.
3676 		 */
3677 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3678 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
3679 			if (vap->iv_quiet &&
3680 			    (vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE)) {
3681 				ieee80211_add_quiet(bo->bo_quiet, vap, 1);
3682 			}
3683 		}
3684 		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3685 			/*
3686 			 * ERP element needs updating.
3687 			 */
3688 			(void) ieee80211_add_erp(bo->bo_erp, ic);
3689 			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3690 		}
3691 #ifdef IEEE80211_SUPPORT_SUPERG
3692 		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
3693 			ieee80211_add_athcaps(bo->bo_ath, ni);
3694 			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3695 		}
3696 #endif
3697 	}
3698 	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3699 		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3700 		int aielen;
3701 		uint8_t *frm;
3702 
3703 		aielen = 0;
3704 		if (aie != NULL)
3705 			aielen += aie->ie_len;
3706 		if (aielen != bo->bo_appie_len) {
3707 			/* copy up/down trailer */
3708 			int adjust = aielen - bo->bo_appie_len;
3709 			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3710 				bo->bo_tim_trailer_len);
3711 			bo->bo_tim_trailer += adjust;
3712 			bo->bo_appie += adjust;
3713 			bo->bo_appie_len = aielen;
3714 
3715 			len_changed = 1;
3716 		}
3717 		frm = bo->bo_appie;
3718 		if (aie != NULL)
3719 			frm  = add_appie(frm, aie);
3720 		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3721 	}
3722 	IEEE80211_UNLOCK(ic);
3723 
3724 	return len_changed;
3725 }
3726 
3727 /*
3728  * Do Ethernet-LLC encapsulation for each payload in a fast frame
3729  * tunnel encapsulation.  The frame is assumed to have an Ethernet
3730  * header at the front that must be stripped before prepending the
3731  * LLC followed by the Ethernet header passed in (with an Ethernet
3732  * type that specifies the payload size).
3733  */
3734 struct mbuf *
3735 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
3736 	const struct ether_header *eh)
3737 {
3738 	struct llc *llc;
3739 	uint16_t payload;
3740 
3741 	/* XXX optimize by combining m_adj+M_PREPEND */
3742 	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
3743 	llc = mtod(m, struct llc *);
3744 	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
3745 	llc->llc_control = LLC_UI;
3746 	llc->llc_snap.org_code[0] = 0;
3747 	llc->llc_snap.org_code[1] = 0;
3748 	llc->llc_snap.org_code[2] = 0;
3749 	llc->llc_snap.ether_type = eh->ether_type;
3750 	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
3751 
3752 	M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
3753 	if (m == NULL) {		/* XXX cannot happen */
3754 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
3755 			"%s: no space for ether_header\n", __func__);
3756 		vap->iv_stats.is_tx_nobuf++;
3757 		return NULL;
3758 	}
3759 	ETHER_HEADER_COPY(mtod(m, void *), eh);
3760 	mtod(m, struct ether_header *)->ether_type = htons(payload);
3761 	return m;
3762 }
3763 
3764 /*
3765  * Complete an mbuf transmission.
3766  *
3767  * For now, this simply processes a completed frame after the
3768  * driver has completed it's transmission and/or retransmission.
3769  * It assumes the frame is an 802.11 encapsulated frame.
3770  *
3771  * Later on it will grow to become the exit path for a given frame
3772  * from the driver and, depending upon how it's been encapsulated
3773  * and already transmitted, it may end up doing A-MPDU retransmission,
3774  * power save requeuing, etc.
3775  *
3776  * In order for the above to work, the driver entry point to this
3777  * must not hold any driver locks.  Thus, the driver needs to delay
3778  * any actual mbuf completion until it can release said locks.
3779  *
3780  * This frees the mbuf and if the mbuf has a node reference,
3781  * the node reference will be freed.
3782  */
3783 void
3784 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
3785 {
3786 
3787 	if (ni != NULL) {
3788 		struct ifnet *ifp = ni->ni_vap->iv_ifp;
3789 
3790 		if (status == 0) {
3791 			if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
3792 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3793 			if (m->m_flags & M_MCAST)
3794 				if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
3795 		} else
3796 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3797 		if (m->m_flags & M_TXCB)
3798 			ieee80211_process_callback(ni, m, status);
3799 		ieee80211_free_node(ni);
3800 	}
3801 	m_freem(m);
3802 }
3803