1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_inet.h" 31 #include "opt_inet6.h" 32 #include "opt_wlan.h" 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/mbuf.h> 37 #include <sys/kernel.h> 38 #include <sys/endian.h> 39 40 #include <sys/socket.h> 41 42 #include <net/bpf.h> 43 #include <net/ethernet.h> 44 #include <net/if.h> 45 #include <net/if_var.h> 46 #include <net/if_llc.h> 47 #include <net/if_media.h> 48 #include <net/if_vlan_var.h> 49 50 #include <net80211/ieee80211_var.h> 51 #include <net80211/ieee80211_regdomain.h> 52 #ifdef IEEE80211_SUPPORT_SUPERG 53 #include <net80211/ieee80211_superg.h> 54 #endif 55 #ifdef IEEE80211_SUPPORT_TDMA 56 #include <net80211/ieee80211_tdma.h> 57 #endif 58 #include <net80211/ieee80211_wds.h> 59 #include <net80211/ieee80211_mesh.h> 60 61 #if defined(INET) || defined(INET6) 62 #include <netinet/in.h> 63 #endif 64 65 #ifdef INET 66 #include <netinet/if_ether.h> 67 #include <netinet/in_systm.h> 68 #include <netinet/ip.h> 69 #endif 70 #ifdef INET6 71 #include <netinet/ip6.h> 72 #endif 73 74 #include <security/mac/mac_framework.h> 75 76 #define ETHER_HEADER_COPY(dst, src) \ 77 memcpy(dst, src, sizeof(struct ether_header)) 78 79 /* unalligned little endian access */ 80 #define LE_WRITE_2(p, v) do { \ 81 ((uint8_t *)(p))[0] = (v) & 0xff; \ 82 ((uint8_t *)(p))[1] = ((v) >> 8) & 0xff; \ 83 } while (0) 84 #define LE_WRITE_4(p, v) do { \ 85 ((uint8_t *)(p))[0] = (v) & 0xff; \ 86 ((uint8_t *)(p))[1] = ((v) >> 8) & 0xff; \ 87 ((uint8_t *)(p))[2] = ((v) >> 16) & 0xff; \ 88 ((uint8_t *)(p))[3] = ((v) >> 24) & 0xff; \ 89 } while (0) 90 91 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *, 92 u_int hdrsize, u_int ciphdrsize, u_int mtu); 93 static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int); 94 95 #ifdef IEEE80211_DEBUG 96 /* 97 * Decide if an outbound management frame should be 98 * printed when debugging is enabled. This filters some 99 * of the less interesting frames that come frequently 100 * (e.g. beacons). 101 */ 102 static __inline int 103 doprint(struct ieee80211vap *vap, int subtype) 104 { 105 switch (subtype) { 106 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 107 return (vap->iv_opmode == IEEE80211_M_IBSS); 108 } 109 return 1; 110 } 111 #endif 112 113 /* 114 * Transmit a frame to the given destination on the given VAP. 115 * 116 * It's up to the caller to figure out the details of who this 117 * is going to and resolving the node. 118 * 119 * This routine takes care of queuing it for power save, 120 * A-MPDU state stuff, fast-frames state stuff, encapsulation 121 * if required, then passing it up to the driver layer. 122 * 123 * This routine (for now) consumes the mbuf and frees the node 124 * reference; it ideally will return a TX status which reflects 125 * whether the mbuf was consumed or not, so the caller can 126 * free the mbuf (if appropriate) and the node reference (again, 127 * if appropriate.) 128 */ 129 int 130 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m, 131 struct ieee80211_node *ni) 132 { 133 struct ieee80211com *ic = vap->iv_ic; 134 struct ifnet *ifp = vap->iv_ifp; 135 int error; 136 137 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 138 (m->m_flags & M_PWR_SAV) == 0) { 139 /* 140 * Station in power save mode; pass the frame 141 * to the 802.11 layer and continue. We'll get 142 * the frame back when the time is right. 143 * XXX lose WDS vap linkage? 144 */ 145 (void) ieee80211_pwrsave(ni, m); 146 ieee80211_free_node(ni); 147 /* XXX better status? */ 148 return (ENOBUFS); 149 } 150 /* calculate priority so drivers can find the tx queue */ 151 if (ieee80211_classify(ni, m)) { 152 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 153 ni->ni_macaddr, NULL, 154 "%s", "classification failure"); 155 vap->iv_stats.is_tx_classify++; 156 ifp->if_oerrors++; 157 m_freem(m); 158 ieee80211_free_node(ni); 159 /* XXX better status? */ 160 return (ENOBUFS); 161 } 162 /* 163 * Stash the node pointer. Note that we do this after 164 * any call to ieee80211_dwds_mcast because that code 165 * uses any existing value for rcvif to identify the 166 * interface it (might have been) received on. 167 */ 168 m->m_pkthdr.rcvif = (void *)ni; 169 170 BPF_MTAP(ifp, m); /* 802.3 tx */ 171 172 173 /* 174 * Check if A-MPDU tx aggregation is setup or if we 175 * should try to enable it. The sta must be associated 176 * with HT and A-MPDU enabled for use. When the policy 177 * routine decides we should enable A-MPDU we issue an 178 * ADDBA request and wait for a reply. The frame being 179 * encapsulated will go out w/o using A-MPDU, or possibly 180 * it might be collected by the driver and held/retransmit. 181 * The default ic_ampdu_enable routine handles staggering 182 * ADDBA requests in case the receiver NAK's us or we are 183 * otherwise unable to establish a BA stream. 184 */ 185 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) && 186 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) && 187 (m->m_flags & M_EAPOL) == 0) { 188 int tid = WME_AC_TO_TID(M_WME_GETAC(m)); 189 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; 190 191 ieee80211_txampdu_count_packet(tap); 192 if (IEEE80211_AMPDU_RUNNING(tap)) { 193 /* 194 * Operational, mark frame for aggregation. 195 * 196 * XXX do tx aggregation here 197 */ 198 m->m_flags |= M_AMPDU_MPDU; 199 } else if (!IEEE80211_AMPDU_REQUESTED(tap) && 200 ic->ic_ampdu_enable(ni, tap)) { 201 /* 202 * Not negotiated yet, request service. 203 */ 204 ieee80211_ampdu_request(ni, tap); 205 /* XXX hold frame for reply? */ 206 } 207 } 208 209 #ifdef IEEE80211_SUPPORT_SUPERG 210 else if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) { 211 m = ieee80211_ff_check(ni, m); 212 if (m == NULL) { 213 /* NB: any ni ref held on stageq */ 214 return (0); 215 } 216 } 217 #endif /* IEEE80211_SUPPORT_SUPERG */ 218 219 /* 220 * Grab the TX lock - serialise the TX process from this 221 * point (where TX state is being checked/modified) 222 * through to driver queue. 223 */ 224 IEEE80211_TX_LOCK(ic); 225 226 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 227 /* 228 * Encapsulate the packet in prep for transmission. 229 */ 230 m = ieee80211_encap(vap, ni, m); 231 if (m == NULL) { 232 /* NB: stat+msg handled in ieee80211_encap */ 233 IEEE80211_TX_UNLOCK(ic); 234 ieee80211_free_node(ni); 235 /* XXX better status? */ 236 return (ENOBUFS); 237 } 238 } 239 error = ieee80211_parent_xmitpkt(ic, m); 240 241 /* 242 * Unlock at this point - no need to hold it across 243 * ieee80211_free_node() (ie, the comlock) 244 */ 245 IEEE80211_TX_UNLOCK(ic); 246 if (error != 0) { 247 /* NB: IFQ_HANDOFF reclaims mbuf */ 248 ieee80211_free_node(ni); 249 } else { 250 ifp->if_opackets++; 251 } 252 ic->ic_lastdata = ticks; 253 254 return (0); 255 } 256 257 258 259 /* 260 * Send the given mbuf through the given vap. 261 * 262 * This consumes the mbuf regardless of whether the transmit 263 * was successful or not. 264 * 265 * This does none of the initial checks that ieee80211_start() 266 * does (eg CAC timeout, interface wakeup) - the caller must 267 * do this first. 268 */ 269 static int 270 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m) 271 { 272 #define IS_DWDS(vap) \ 273 (vap->iv_opmode == IEEE80211_M_WDS && \ 274 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0) 275 struct ieee80211com *ic = vap->iv_ic; 276 struct ifnet *ifp = vap->iv_ifp; 277 struct ieee80211_node *ni; 278 struct ether_header *eh; 279 280 /* 281 * Cancel any background scan. 282 */ 283 if (ic->ic_flags & IEEE80211_F_SCAN) 284 ieee80211_cancel_anyscan(vap); 285 /* 286 * Find the node for the destination so we can do 287 * things like power save and fast frames aggregation. 288 * 289 * NB: past this point various code assumes the first 290 * mbuf has the 802.3 header present (and contiguous). 291 */ 292 ni = NULL; 293 if (m->m_len < sizeof(struct ether_header) && 294 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 295 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 296 "discard frame, %s\n", "m_pullup failed"); 297 vap->iv_stats.is_tx_nobuf++; /* XXX */ 298 ifp->if_oerrors++; 299 return (ENOBUFS); 300 } 301 eh = mtod(m, struct ether_header *); 302 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 303 if (IS_DWDS(vap)) { 304 /* 305 * Only unicast frames from the above go out 306 * DWDS vaps; multicast frames are handled by 307 * dispatching the frame as it comes through 308 * the AP vap (see below). 309 */ 310 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS, 311 eh->ether_dhost, "mcast", "%s", "on DWDS"); 312 vap->iv_stats.is_dwds_mcast++; 313 m_freem(m); 314 /* XXX better status? */ 315 return (ENOBUFS); 316 } 317 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { 318 /* 319 * Spam DWDS vap's w/ multicast traffic. 320 */ 321 /* XXX only if dwds in use? */ 322 ieee80211_dwds_mcast(vap, m); 323 } 324 } 325 #ifdef IEEE80211_SUPPORT_MESH 326 if (vap->iv_opmode != IEEE80211_M_MBSS) { 327 #endif 328 ni = ieee80211_find_txnode(vap, eh->ether_dhost); 329 if (ni == NULL) { 330 /* NB: ieee80211_find_txnode does stat+msg */ 331 ifp->if_oerrors++; 332 m_freem(m); 333 /* XXX better status? */ 334 return (ENOBUFS); 335 } 336 if (ni->ni_associd == 0 && 337 (ni->ni_flags & IEEE80211_NODE_ASSOCID)) { 338 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 339 eh->ether_dhost, NULL, 340 "sta not associated (type 0x%04x)", 341 htons(eh->ether_type)); 342 vap->iv_stats.is_tx_notassoc++; 343 ifp->if_oerrors++; 344 m_freem(m); 345 ieee80211_free_node(ni); 346 /* XXX better status? */ 347 return (ENOBUFS); 348 } 349 #ifdef IEEE80211_SUPPORT_MESH 350 } else { 351 if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) { 352 /* 353 * Proxy station only if configured. 354 */ 355 if (!ieee80211_mesh_isproxyena(vap)) { 356 IEEE80211_DISCARD_MAC(vap, 357 IEEE80211_MSG_OUTPUT | 358 IEEE80211_MSG_MESH, 359 eh->ether_dhost, NULL, 360 "%s", "proxy not enabled"); 361 vap->iv_stats.is_mesh_notproxy++; 362 ifp->if_oerrors++; 363 m_freem(m); 364 /* XXX better status? */ 365 return (ENOBUFS); 366 } 367 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 368 "forward frame from DS SA(%6D), DA(%6D)\n", 369 eh->ether_shost, ":", 370 eh->ether_dhost, ":"); 371 ieee80211_mesh_proxy_check(vap, eh->ether_shost); 372 } 373 ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m); 374 if (ni == NULL) { 375 /* 376 * NB: ieee80211_mesh_discover holds/disposes 377 * frame (e.g. queueing on path discovery). 378 */ 379 ifp->if_oerrors++; 380 /* XXX better status? */ 381 return (ENOBUFS); 382 } 383 } 384 #endif 385 386 /* 387 * We've resolved the sender, so attempt to transmit it. 388 */ 389 if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0) 390 return (ENOBUFS); 391 return (0); 392 #undef IS_DWDS 393 } 394 395 /* 396 * Start method for vap's. All packets from the stack come 397 * through here. We handle common processing of the packets 398 * before dispatching them to the underlying device. 399 * 400 * if_transmit() requires that the mbuf be consumed by this call 401 * regardless of the return condition. 402 */ 403 int 404 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m) 405 { 406 struct ieee80211vap *vap = ifp->if_softc; 407 struct ieee80211com *ic = vap->iv_ic; 408 struct ifnet *parent = ic->ic_ifp; 409 410 /* NB: parent must be up and running */ 411 if (!IFNET_IS_UP_RUNNING(parent)) { 412 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 413 "%s: ignore queue, parent %s not up+running\n", 414 __func__, parent->if_xname); 415 /* XXX stat */ 416 m_freem(m); 417 return (EINVAL); 418 } 419 if (vap->iv_state == IEEE80211_S_SLEEP) { 420 /* 421 * In power save, wakeup device for transmit. 422 */ 423 ieee80211_new_state(vap, IEEE80211_S_RUN, 0); 424 m_freem(m); 425 return (0); 426 } 427 /* 428 * No data frames go out unless we're running. 429 * Note in particular this covers CAC and CSA 430 * states (though maybe we should check muting 431 * for CSA). 432 */ 433 if (vap->iv_state != IEEE80211_S_RUN) { 434 IEEE80211_LOCK(ic); 435 /* re-check under the com lock to avoid races */ 436 if (vap->iv_state != IEEE80211_S_RUN) { 437 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 438 "%s: ignore queue, in %s state\n", 439 __func__, ieee80211_state_name[vap->iv_state]); 440 vap->iv_stats.is_tx_badstate++; 441 IEEE80211_UNLOCK(ic); 442 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 443 m_freem(m); 444 return (EINVAL); 445 } 446 IEEE80211_UNLOCK(ic); 447 } 448 449 /* 450 * Sanitize mbuf flags for net80211 use. We cannot 451 * clear M_PWR_SAV or M_MORE_DATA because these may 452 * be set for frames that are re-submitted from the 453 * power save queue. 454 * 455 * NB: This must be done before ieee80211_classify as 456 * it marks EAPOL in frames with M_EAPOL. 457 */ 458 m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA); 459 460 /* 461 * Bump to the packet transmission path. 462 * The mbuf will be consumed here. 463 */ 464 return (ieee80211_start_pkt(vap, m)); 465 } 466 467 void 468 ieee80211_vap_qflush(struct ifnet *ifp) 469 { 470 471 /* Empty for now */ 472 } 473 474 /* 475 * 802.11 raw output routine. 476 */ 477 int 478 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni, 479 struct mbuf *m, const struct ieee80211_bpf_params *params) 480 { 481 struct ieee80211com *ic = vap->iv_ic; 482 483 return (ic->ic_raw_xmit(ni, m, params)); 484 } 485 486 /* 487 * 802.11 output routine. This is (currently) used only to 488 * connect bpf write calls to the 802.11 layer for injecting 489 * raw 802.11 frames. 490 */ 491 #if __FreeBSD_version >= 1000031 492 int 493 ieee80211_output(struct ifnet *ifp, struct mbuf *m, 494 const struct sockaddr *dst, struct route *ro) 495 #else 496 int 497 ieee80211_output(struct ifnet *ifp, struct mbuf *m, 498 struct sockaddr *dst, struct route *ro) 499 #endif 500 { 501 #define senderr(e) do { error = (e); goto bad;} while (0) 502 struct ieee80211_node *ni = NULL; 503 struct ieee80211vap *vap; 504 struct ieee80211_frame *wh; 505 struct ieee80211com *ic = NULL; 506 int error; 507 int ret; 508 509 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 510 /* 511 * Short-circuit requests if the vap is marked OACTIVE 512 * as this can happen because a packet came down through 513 * ieee80211_start before the vap entered RUN state in 514 * which case it's ok to just drop the frame. This 515 * should not be necessary but callers of if_output don't 516 * check OACTIVE. 517 */ 518 senderr(ENETDOWN); 519 } 520 vap = ifp->if_softc; 521 ic = vap->iv_ic; 522 /* 523 * Hand to the 802.3 code if not tagged as 524 * a raw 802.11 frame. 525 */ 526 if (dst->sa_family != AF_IEEE80211) 527 return vap->iv_output(ifp, m, dst, ro); 528 #ifdef MAC 529 error = mac_ifnet_check_transmit(ifp, m); 530 if (error) 531 senderr(error); 532 #endif 533 if (ifp->if_flags & IFF_MONITOR) 534 senderr(ENETDOWN); 535 if (!IFNET_IS_UP_RUNNING(ifp)) 536 senderr(ENETDOWN); 537 if (vap->iv_state == IEEE80211_S_CAC) { 538 IEEE80211_DPRINTF(vap, 539 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 540 "block %s frame in CAC state\n", "raw data"); 541 vap->iv_stats.is_tx_badstate++; 542 senderr(EIO); /* XXX */ 543 } else if (vap->iv_state == IEEE80211_S_SCAN) 544 senderr(EIO); 545 /* XXX bypass bridge, pfil, carp, etc. */ 546 547 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack)) 548 senderr(EIO); /* XXX */ 549 wh = mtod(m, struct ieee80211_frame *); 550 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) != 551 IEEE80211_FC0_VERSION_0) 552 senderr(EIO); /* XXX */ 553 554 /* locate destination node */ 555 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 556 case IEEE80211_FC1_DIR_NODS: 557 case IEEE80211_FC1_DIR_FROMDS: 558 ni = ieee80211_find_txnode(vap, wh->i_addr1); 559 break; 560 case IEEE80211_FC1_DIR_TODS: 561 case IEEE80211_FC1_DIR_DSTODS: 562 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame)) 563 senderr(EIO); /* XXX */ 564 ni = ieee80211_find_txnode(vap, wh->i_addr3); 565 break; 566 default: 567 senderr(EIO); /* XXX */ 568 } 569 if (ni == NULL) { 570 /* 571 * Permit packets w/ bpf params through regardless 572 * (see below about sa_len). 573 */ 574 if (dst->sa_len == 0) 575 senderr(EHOSTUNREACH); 576 ni = ieee80211_ref_node(vap->iv_bss); 577 } 578 579 /* 580 * Sanitize mbuf for net80211 flags leaked from above. 581 * 582 * NB: This must be done before ieee80211_classify as 583 * it marks EAPOL in frames with M_EAPOL. 584 */ 585 m->m_flags &= ~M_80211_TX; 586 587 /* calculate priority so drivers can find the tx queue */ 588 /* XXX assumes an 802.3 frame */ 589 if (ieee80211_classify(ni, m)) 590 senderr(EIO); /* XXX */ 591 592 ifp->if_opackets++; 593 IEEE80211_NODE_STAT(ni, tx_data); 594 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 595 IEEE80211_NODE_STAT(ni, tx_mcast); 596 m->m_flags |= M_MCAST; 597 } else 598 IEEE80211_NODE_STAT(ni, tx_ucast); 599 /* NB: ieee80211_encap does not include 802.11 header */ 600 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len); 601 602 IEEE80211_TX_LOCK(ic); 603 604 /* 605 * NB: DLT_IEEE802_11_RADIO identifies the parameters are 606 * present by setting the sa_len field of the sockaddr (yes, 607 * this is a hack). 608 * NB: we assume sa_data is suitably aligned to cast. 609 */ 610 ret = ieee80211_raw_output(vap, ni, m, 611 (const struct ieee80211_bpf_params *)(dst->sa_len ? 612 dst->sa_data : NULL)); 613 IEEE80211_TX_UNLOCK(ic); 614 return (ret); 615 bad: 616 if (m != NULL) 617 m_freem(m); 618 if (ni != NULL) 619 ieee80211_free_node(ni); 620 ifp->if_oerrors++; 621 return error; 622 #undef senderr 623 } 624 625 /* 626 * Set the direction field and address fields of an outgoing 627 * frame. Note this should be called early on in constructing 628 * a frame as it sets i_fc[1]; other bits can then be or'd in. 629 */ 630 void 631 ieee80211_send_setup( 632 struct ieee80211_node *ni, 633 struct mbuf *m, 634 int type, int tid, 635 const uint8_t sa[IEEE80211_ADDR_LEN], 636 const uint8_t da[IEEE80211_ADDR_LEN], 637 const uint8_t bssid[IEEE80211_ADDR_LEN]) 638 { 639 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 640 struct ieee80211vap *vap = ni->ni_vap; 641 struct ieee80211_tx_ampdu *tap; 642 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 643 ieee80211_seq seqno; 644 645 IEEE80211_TX_LOCK_ASSERT(ni->ni_ic); 646 647 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 648 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 649 switch (vap->iv_opmode) { 650 case IEEE80211_M_STA: 651 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 652 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 653 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 654 IEEE80211_ADDR_COPY(wh->i_addr3, da); 655 break; 656 case IEEE80211_M_IBSS: 657 case IEEE80211_M_AHDEMO: 658 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 659 IEEE80211_ADDR_COPY(wh->i_addr1, da); 660 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 661 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 662 break; 663 case IEEE80211_M_HOSTAP: 664 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 665 IEEE80211_ADDR_COPY(wh->i_addr1, da); 666 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 667 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 668 break; 669 case IEEE80211_M_WDS: 670 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 671 IEEE80211_ADDR_COPY(wh->i_addr1, da); 672 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 673 IEEE80211_ADDR_COPY(wh->i_addr3, da); 674 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 675 break; 676 case IEEE80211_M_MBSS: 677 #ifdef IEEE80211_SUPPORT_MESH 678 if (IEEE80211_IS_MULTICAST(da)) { 679 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 680 /* XXX next hop */ 681 IEEE80211_ADDR_COPY(wh->i_addr1, da); 682 IEEE80211_ADDR_COPY(wh->i_addr2, 683 vap->iv_myaddr); 684 } else { 685 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 686 IEEE80211_ADDR_COPY(wh->i_addr1, da); 687 IEEE80211_ADDR_COPY(wh->i_addr2, 688 vap->iv_myaddr); 689 IEEE80211_ADDR_COPY(wh->i_addr3, da); 690 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 691 } 692 #endif 693 break; 694 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 695 break; 696 } 697 } else { 698 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 699 IEEE80211_ADDR_COPY(wh->i_addr1, da); 700 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 701 #ifdef IEEE80211_SUPPORT_MESH 702 if (vap->iv_opmode == IEEE80211_M_MBSS) 703 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 704 else 705 #endif 706 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 707 } 708 *(uint16_t *)&wh->i_dur[0] = 0; 709 710 tap = &ni->ni_tx_ampdu[tid]; 711 if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) 712 m->m_flags |= M_AMPDU_MPDU; 713 else { 714 seqno = ni->ni_txseqs[tid]++; 715 *(uint16_t *)&wh->i_seq[0] = 716 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 717 M_SEQNO_SET(m, seqno); 718 } 719 720 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 721 m->m_flags |= M_MCAST; 722 #undef WH4 723 } 724 725 /* 726 * Send a management frame to the specified node. The node pointer 727 * must have a reference as the pointer will be passed to the driver 728 * and potentially held for a long time. If the frame is successfully 729 * dispatched to the driver, then it is responsible for freeing the 730 * reference (and potentially free'ing up any associated storage); 731 * otherwise deal with reclaiming any reference (on error). 732 */ 733 int 734 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type, 735 struct ieee80211_bpf_params *params) 736 { 737 struct ieee80211vap *vap = ni->ni_vap; 738 struct ieee80211com *ic = ni->ni_ic; 739 struct ieee80211_frame *wh; 740 int ret; 741 742 KASSERT(ni != NULL, ("null node")); 743 744 if (vap->iv_state == IEEE80211_S_CAC) { 745 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 746 ni, "block %s frame in CAC state", 747 ieee80211_mgt_subtype_name[ 748 (type & IEEE80211_FC0_SUBTYPE_MASK) >> 749 IEEE80211_FC0_SUBTYPE_SHIFT]); 750 vap->iv_stats.is_tx_badstate++; 751 ieee80211_free_node(ni); 752 m_freem(m); 753 return EIO; /* XXX */ 754 } 755 756 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 757 if (m == NULL) { 758 ieee80211_free_node(ni); 759 return ENOMEM; 760 } 761 762 IEEE80211_TX_LOCK(ic); 763 764 wh = mtod(m, struct ieee80211_frame *); 765 ieee80211_send_setup(ni, m, 766 IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID, 767 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 768 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { 769 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1, 770 "encrypting frame (%s)", __func__); 771 wh->i_fc[1] |= IEEE80211_FC1_WEP; 772 } 773 m->m_flags |= M_ENCAP; /* mark encapsulated */ 774 775 KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?")); 776 M_WME_SETAC(m, params->ibp_pri); 777 778 #ifdef IEEE80211_DEBUG 779 /* avoid printing too many frames */ 780 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) || 781 ieee80211_msg_dumppkts(vap)) { 782 printf("[%s] send %s on channel %u\n", 783 ether_sprintf(wh->i_addr1), 784 ieee80211_mgt_subtype_name[ 785 (type & IEEE80211_FC0_SUBTYPE_MASK) >> 786 IEEE80211_FC0_SUBTYPE_SHIFT], 787 ieee80211_chan2ieee(ic, ic->ic_curchan)); 788 } 789 #endif 790 IEEE80211_NODE_STAT(ni, tx_mgmt); 791 792 ret = ieee80211_raw_output(vap, ni, m, params); 793 IEEE80211_TX_UNLOCK(ic); 794 return (ret); 795 } 796 797 /* 798 * Send a null data frame to the specified node. If the station 799 * is setup for QoS then a QoS Null Data frame is constructed. 800 * If this is a WDS station then a 4-address frame is constructed. 801 * 802 * NB: the caller is assumed to have setup a node reference 803 * for use; this is necessary to deal with a race condition 804 * when probing for inactive stations. Like ieee80211_mgmt_output 805 * we must cleanup any node reference on error; however we 806 * can safely just unref it as we know it will never be the 807 * last reference to the node. 808 */ 809 int 810 ieee80211_send_nulldata(struct ieee80211_node *ni) 811 { 812 struct ieee80211vap *vap = ni->ni_vap; 813 struct ieee80211com *ic = ni->ni_ic; 814 struct mbuf *m; 815 struct ieee80211_frame *wh; 816 int hdrlen; 817 uint8_t *frm; 818 int ret; 819 820 if (vap->iv_state == IEEE80211_S_CAC) { 821 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 822 ni, "block %s frame in CAC state", "null data"); 823 ieee80211_unref_node(&ni); 824 vap->iv_stats.is_tx_badstate++; 825 return EIO; /* XXX */ 826 } 827 828 if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) 829 hdrlen = sizeof(struct ieee80211_qosframe); 830 else 831 hdrlen = sizeof(struct ieee80211_frame); 832 /* NB: only WDS vap's get 4-address frames */ 833 if (vap->iv_opmode == IEEE80211_M_WDS) 834 hdrlen += IEEE80211_ADDR_LEN; 835 if (ic->ic_flags & IEEE80211_F_DATAPAD) 836 hdrlen = roundup(hdrlen, sizeof(uint32_t)); 837 838 m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0); 839 if (m == NULL) { 840 /* XXX debug msg */ 841 ieee80211_unref_node(&ni); 842 vap->iv_stats.is_tx_nobuf++; 843 return ENOMEM; 844 } 845 KASSERT(M_LEADINGSPACE(m) >= hdrlen, 846 ("leading space %zd", M_LEADINGSPACE(m))); 847 M_PREPEND(m, hdrlen, M_NOWAIT); 848 if (m == NULL) { 849 /* NB: cannot happen */ 850 ieee80211_free_node(ni); 851 return ENOMEM; 852 } 853 854 IEEE80211_TX_LOCK(ic); 855 856 wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */ 857 if (ni->ni_flags & IEEE80211_NODE_QOS) { 858 const int tid = WME_AC_TO_TID(WME_AC_BE); 859 uint8_t *qos; 860 861 ieee80211_send_setup(ni, m, 862 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL, 863 tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 864 865 if (vap->iv_opmode == IEEE80211_M_WDS) 866 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 867 else 868 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 869 qos[0] = tid & IEEE80211_QOS_TID; 870 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy) 871 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 872 qos[1] = 0; 873 } else { 874 ieee80211_send_setup(ni, m, 875 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 876 IEEE80211_NONQOS_TID, 877 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 878 } 879 if (vap->iv_opmode != IEEE80211_M_WDS) { 880 /* NB: power management bit is never sent by an AP */ 881 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 882 vap->iv_opmode != IEEE80211_M_HOSTAP) 883 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 884 } 885 m->m_len = m->m_pkthdr.len = hdrlen; 886 m->m_flags |= M_ENCAP; /* mark encapsulated */ 887 888 M_WME_SETAC(m, WME_AC_BE); 889 890 IEEE80211_NODE_STAT(ni, tx_data); 891 892 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni, 893 "send %snull data frame on channel %u, pwr mgt %s", 894 ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "", 895 ieee80211_chan2ieee(ic, ic->ic_curchan), 896 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 897 898 ret = ieee80211_raw_output(vap, ni, m, NULL); 899 IEEE80211_TX_UNLOCK(ic); 900 return (ret); 901 } 902 903 /* 904 * Assign priority to a frame based on any vlan tag assigned 905 * to the station and/or any Diffserv setting in an IP header. 906 * Finally, if an ACM policy is setup (in station mode) it's 907 * applied. 908 */ 909 int 910 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m) 911 { 912 const struct ether_header *eh = mtod(m, struct ether_header *); 913 int v_wme_ac, d_wme_ac, ac; 914 915 /* 916 * Always promote PAE/EAPOL frames to high priority. 917 */ 918 if (eh->ether_type == htons(ETHERTYPE_PAE)) { 919 /* NB: mark so others don't need to check header */ 920 m->m_flags |= M_EAPOL; 921 ac = WME_AC_VO; 922 goto done; 923 } 924 /* 925 * Non-qos traffic goes to BE. 926 */ 927 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 928 ac = WME_AC_BE; 929 goto done; 930 } 931 932 /* 933 * If node has a vlan tag then all traffic 934 * to it must have a matching tag. 935 */ 936 v_wme_ac = 0; 937 if (ni->ni_vlan != 0) { 938 if ((m->m_flags & M_VLANTAG) == 0) { 939 IEEE80211_NODE_STAT(ni, tx_novlantag); 940 return 1; 941 } 942 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 943 EVL_VLANOFTAG(ni->ni_vlan)) { 944 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 945 return 1; 946 } 947 /* map vlan priority to AC */ 948 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan)); 949 } 950 951 /* XXX m_copydata may be too slow for fast path */ 952 #ifdef INET 953 if (eh->ether_type == htons(ETHERTYPE_IP)) { 954 uint8_t tos; 955 /* 956 * IP frame, map the DSCP bits from the TOS field. 957 */ 958 /* NB: ip header may not be in first mbuf */ 959 m_copydata(m, sizeof(struct ether_header) + 960 offsetof(struct ip, ip_tos), sizeof(tos), &tos); 961 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 962 d_wme_ac = TID_TO_WME_AC(tos); 963 } else { 964 #endif /* INET */ 965 #ifdef INET6 966 if (eh->ether_type == htons(ETHERTYPE_IPV6)) { 967 uint32_t flow; 968 uint8_t tos; 969 /* 970 * IPv6 frame, map the DSCP bits from the traffic class field. 971 */ 972 m_copydata(m, sizeof(struct ether_header) + 973 offsetof(struct ip6_hdr, ip6_flow), sizeof(flow), 974 (caddr_t) &flow); 975 tos = (uint8_t)(ntohl(flow) >> 20); 976 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 977 d_wme_ac = TID_TO_WME_AC(tos); 978 } else { 979 #endif /* INET6 */ 980 d_wme_ac = WME_AC_BE; 981 #ifdef INET6 982 } 983 #endif 984 #ifdef INET 985 } 986 #endif 987 /* 988 * Use highest priority AC. 989 */ 990 if (v_wme_ac > d_wme_ac) 991 ac = v_wme_ac; 992 else 993 ac = d_wme_ac; 994 995 /* 996 * Apply ACM policy. 997 */ 998 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) { 999 static const int acmap[4] = { 1000 WME_AC_BK, /* WME_AC_BE */ 1001 WME_AC_BK, /* WME_AC_BK */ 1002 WME_AC_BE, /* WME_AC_VI */ 1003 WME_AC_VI, /* WME_AC_VO */ 1004 }; 1005 struct ieee80211com *ic = ni->ni_ic; 1006 1007 while (ac != WME_AC_BK && 1008 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 1009 ac = acmap[ac]; 1010 } 1011 done: 1012 M_WME_SETAC(m, ac); 1013 return 0; 1014 } 1015 1016 /* 1017 * Insure there is sufficient contiguous space to encapsulate the 1018 * 802.11 data frame. If room isn't already there, arrange for it. 1019 * Drivers and cipher modules assume we have done the necessary work 1020 * and fail rudely if they don't find the space they need. 1021 */ 1022 struct mbuf * 1023 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize, 1024 struct ieee80211_key *key, struct mbuf *m) 1025 { 1026 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 1027 int needed_space = vap->iv_ic->ic_headroom + hdrsize; 1028 1029 if (key != NULL) { 1030 /* XXX belongs in crypto code? */ 1031 needed_space += key->wk_cipher->ic_header; 1032 /* XXX frags */ 1033 /* 1034 * When crypto is being done in the host we must insure 1035 * the data are writable for the cipher routines; clone 1036 * a writable mbuf chain. 1037 * XXX handle SWMIC specially 1038 */ 1039 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) { 1040 m = m_unshare(m, M_NOWAIT); 1041 if (m == NULL) { 1042 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1043 "%s: cannot get writable mbuf\n", __func__); 1044 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */ 1045 return NULL; 1046 } 1047 } 1048 } 1049 /* 1050 * We know we are called just before stripping an Ethernet 1051 * header and prepending an LLC header. This means we know 1052 * there will be 1053 * sizeof(struct ether_header) - sizeof(struct llc) 1054 * bytes recovered to which we need additional space for the 1055 * 802.11 header and any crypto header. 1056 */ 1057 /* XXX check trailing space and copy instead? */ 1058 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 1059 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); 1060 if (n == NULL) { 1061 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1062 "%s: cannot expand storage\n", __func__); 1063 vap->iv_stats.is_tx_nobuf++; 1064 m_freem(m); 1065 return NULL; 1066 } 1067 KASSERT(needed_space <= MHLEN, 1068 ("not enough room, need %u got %d\n", needed_space, MHLEN)); 1069 /* 1070 * Setup new mbuf to have leading space to prepend the 1071 * 802.11 header and any crypto header bits that are 1072 * required (the latter are added when the driver calls 1073 * back to ieee80211_crypto_encap to do crypto encapsulation). 1074 */ 1075 /* NB: must be first 'cuz it clobbers m_data */ 1076 m_move_pkthdr(n, m); 1077 n->m_len = 0; /* NB: m_gethdr does not set */ 1078 n->m_data += needed_space; 1079 /* 1080 * Pull up Ethernet header to create the expected layout. 1081 * We could use m_pullup but that's overkill (i.e. we don't 1082 * need the actual data) and it cannot fail so do it inline 1083 * for speed. 1084 */ 1085 /* NB: struct ether_header is known to be contiguous */ 1086 n->m_len += sizeof(struct ether_header); 1087 m->m_len -= sizeof(struct ether_header); 1088 m->m_data += sizeof(struct ether_header); 1089 /* 1090 * Replace the head of the chain. 1091 */ 1092 n->m_next = m; 1093 m = n; 1094 } 1095 return m; 1096 #undef TO_BE_RECLAIMED 1097 } 1098 1099 /* 1100 * Return the transmit key to use in sending a unicast frame. 1101 * If a unicast key is set we use that. When no unicast key is set 1102 * we fall back to the default transmit key. 1103 */ 1104 static __inline struct ieee80211_key * 1105 ieee80211_crypto_getucastkey(struct ieee80211vap *vap, 1106 struct ieee80211_node *ni) 1107 { 1108 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) { 1109 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1110 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1111 return NULL; 1112 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1113 } else { 1114 return &ni->ni_ucastkey; 1115 } 1116 } 1117 1118 /* 1119 * Return the transmit key to use in sending a multicast frame. 1120 * Multicast traffic always uses the group key which is installed as 1121 * the default tx key. 1122 */ 1123 static __inline struct ieee80211_key * 1124 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap, 1125 struct ieee80211_node *ni) 1126 { 1127 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1128 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1129 return NULL; 1130 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1131 } 1132 1133 /* 1134 * Encapsulate an outbound data frame. The mbuf chain is updated. 1135 * If an error is encountered NULL is returned. The caller is required 1136 * to provide a node reference and pullup the ethernet header in the 1137 * first mbuf. 1138 * 1139 * NB: Packet is assumed to be processed by ieee80211_classify which 1140 * marked EAPOL frames w/ M_EAPOL. 1141 */ 1142 struct mbuf * 1143 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni, 1144 struct mbuf *m) 1145 { 1146 #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh)) 1147 #define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc) 1148 struct ieee80211com *ic = ni->ni_ic; 1149 #ifdef IEEE80211_SUPPORT_MESH 1150 struct ieee80211_mesh_state *ms = vap->iv_mesh; 1151 struct ieee80211_meshcntl_ae10 *mc; 1152 struct ieee80211_mesh_route *rt = NULL; 1153 int dir = -1; 1154 #endif 1155 struct ether_header eh; 1156 struct ieee80211_frame *wh; 1157 struct ieee80211_key *key; 1158 struct llc *llc; 1159 int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr; 1160 ieee80211_seq seqno; 1161 int meshhdrsize, meshae; 1162 uint8_t *qos; 1163 1164 IEEE80211_TX_LOCK_ASSERT(ic); 1165 1166 /* 1167 * Copy existing Ethernet header to a safe place. The 1168 * rest of the code assumes it's ok to strip it when 1169 * reorganizing state for the final encapsulation. 1170 */ 1171 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 1172 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t)); 1173 1174 /* 1175 * Insure space for additional headers. First identify 1176 * transmit key to use in calculating any buffer adjustments 1177 * required. This is also used below to do privacy 1178 * encapsulation work. Then calculate the 802.11 header 1179 * size and any padding required by the driver. 1180 * 1181 * Note key may be NULL if we fall back to the default 1182 * transmit key and that is not set. In that case the 1183 * buffer may not be expanded as needed by the cipher 1184 * routines, but they will/should discard it. 1185 */ 1186 if (vap->iv_flags & IEEE80211_F_PRIVACY) { 1187 if (vap->iv_opmode == IEEE80211_M_STA || 1188 !IEEE80211_IS_MULTICAST(eh.ether_dhost) || 1189 (vap->iv_opmode == IEEE80211_M_WDS && 1190 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) 1191 key = ieee80211_crypto_getucastkey(vap, ni); 1192 else 1193 key = ieee80211_crypto_getmcastkey(vap, ni); 1194 if (key == NULL && (m->m_flags & M_EAPOL) == 0) { 1195 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, 1196 eh.ether_dhost, 1197 "no default transmit key (%s) deftxkey %u", 1198 __func__, vap->iv_def_txkey); 1199 vap->iv_stats.is_tx_nodefkey++; 1200 goto bad; 1201 } 1202 } else 1203 key = NULL; 1204 /* 1205 * XXX Some ap's don't handle QoS-encapsulated EAPOL 1206 * frames so suppress use. This may be an issue if other 1207 * ap's require all data frames to be QoS-encapsulated 1208 * once negotiated in which case we'll need to make this 1209 * configurable. 1210 * NB: mesh data frames are QoS. 1211 */ 1212 addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) || 1213 (vap->iv_opmode == IEEE80211_M_MBSS)) && 1214 (m->m_flags & M_EAPOL) == 0; 1215 if (addqos) 1216 hdrsize = sizeof(struct ieee80211_qosframe); 1217 else 1218 hdrsize = sizeof(struct ieee80211_frame); 1219 #ifdef IEEE80211_SUPPORT_MESH 1220 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1221 /* 1222 * Mesh data frames are encapsulated according to the 1223 * rules of Section 11B.8.5 (p.139 of D3.0 spec). 1224 * o Group Addressed data (aka multicast) originating 1225 * at the local sta are sent w/ 3-address format and 1226 * address extension mode 00 1227 * o Individually Addressed data (aka unicast) originating 1228 * at the local sta are sent w/ 4-address format and 1229 * address extension mode 00 1230 * o Group Addressed data forwarded from a non-mesh sta are 1231 * sent w/ 3-address format and address extension mode 01 1232 * o Individually Address data from another sta are sent 1233 * w/ 4-address format and address extension mode 10 1234 */ 1235 is4addr = 0; /* NB: don't use, disable */ 1236 if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) { 1237 rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost); 1238 KASSERT(rt != NULL, ("route is NULL")); 1239 dir = IEEE80211_FC1_DIR_DSTODS; 1240 hdrsize += IEEE80211_ADDR_LEN; 1241 if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) { 1242 if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate, 1243 vap->iv_myaddr)) { 1244 IEEE80211_NOTE_MAC(vap, 1245 IEEE80211_MSG_MESH, 1246 eh.ether_dhost, 1247 "%s", "trying to send to ourself"); 1248 goto bad; 1249 } 1250 meshae = IEEE80211_MESH_AE_10; 1251 meshhdrsize = 1252 sizeof(struct ieee80211_meshcntl_ae10); 1253 } else { 1254 meshae = IEEE80211_MESH_AE_00; 1255 meshhdrsize = 1256 sizeof(struct ieee80211_meshcntl); 1257 } 1258 } else { 1259 dir = IEEE80211_FC1_DIR_FROMDS; 1260 if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) { 1261 /* proxy group */ 1262 meshae = IEEE80211_MESH_AE_01; 1263 meshhdrsize = 1264 sizeof(struct ieee80211_meshcntl_ae01); 1265 } else { 1266 /* group */ 1267 meshae = IEEE80211_MESH_AE_00; 1268 meshhdrsize = sizeof(struct ieee80211_meshcntl); 1269 } 1270 } 1271 } else { 1272 #endif 1273 /* 1274 * 4-address frames need to be generated for: 1275 * o packets sent through a WDS vap (IEEE80211_M_WDS) 1276 * o packets sent through a vap marked for relaying 1277 * (e.g. a station operating with dynamic WDS) 1278 */ 1279 is4addr = vap->iv_opmode == IEEE80211_M_WDS || 1280 ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) && 1281 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)); 1282 if (is4addr) 1283 hdrsize += IEEE80211_ADDR_LEN; 1284 meshhdrsize = meshae = 0; 1285 #ifdef IEEE80211_SUPPORT_MESH 1286 } 1287 #endif 1288 /* 1289 * Honor driver DATAPAD requirement. 1290 */ 1291 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1292 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1293 else 1294 hdrspace = hdrsize; 1295 1296 if (__predict_true((m->m_flags & M_FF) == 0)) { 1297 /* 1298 * Normal frame. 1299 */ 1300 m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m); 1301 if (m == NULL) { 1302 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 1303 goto bad; 1304 } 1305 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */ 1306 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 1307 llc = mtod(m, struct llc *); 1308 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 1309 llc->llc_control = LLC_UI; 1310 llc->llc_snap.org_code[0] = 0; 1311 llc->llc_snap.org_code[1] = 0; 1312 llc->llc_snap.org_code[2] = 0; 1313 llc->llc_snap.ether_type = eh.ether_type; 1314 } else { 1315 #ifdef IEEE80211_SUPPORT_SUPERG 1316 /* 1317 * Aggregated frame. 1318 */ 1319 m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key); 1320 if (m == NULL) 1321 #endif 1322 goto bad; 1323 } 1324 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 1325 1326 M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT); 1327 if (m == NULL) { 1328 vap->iv_stats.is_tx_nobuf++; 1329 goto bad; 1330 } 1331 wh = mtod(m, struct ieee80211_frame *); 1332 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 1333 *(uint16_t *)wh->i_dur = 0; 1334 qos = NULL; /* NB: quiet compiler */ 1335 if (is4addr) { 1336 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 1337 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); 1338 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1339 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1340 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); 1341 } else switch (vap->iv_opmode) { 1342 case IEEE80211_M_STA: 1343 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 1344 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 1345 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1346 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1347 break; 1348 case IEEE80211_M_IBSS: 1349 case IEEE80211_M_AHDEMO: 1350 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1351 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1352 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1353 /* 1354 * NB: always use the bssid from iv_bss as the 1355 * neighbor's may be stale after an ibss merge 1356 */ 1357 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid); 1358 break; 1359 case IEEE80211_M_HOSTAP: 1360 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1361 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1362 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 1363 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 1364 break; 1365 #ifdef IEEE80211_SUPPORT_MESH 1366 case IEEE80211_M_MBSS: 1367 /* NB: offset by hdrspace to deal with DATAPAD */ 1368 mc = (struct ieee80211_meshcntl_ae10 *) 1369 (mtod(m, uint8_t *) + hdrspace); 1370 wh->i_fc[1] = dir; 1371 switch (meshae) { 1372 case IEEE80211_MESH_AE_00: /* no proxy */ 1373 mc->mc_flags = 0; 1374 if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */ 1375 IEEE80211_ADDR_COPY(wh->i_addr1, 1376 ni->ni_macaddr); 1377 IEEE80211_ADDR_COPY(wh->i_addr2, 1378 vap->iv_myaddr); 1379 IEEE80211_ADDR_COPY(wh->i_addr3, 1380 eh.ether_dhost); 1381 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, 1382 eh.ether_shost); 1383 qos =((struct ieee80211_qosframe_addr4 *) 1384 wh)->i_qos; 1385 } else if (dir == IEEE80211_FC1_DIR_FROMDS) { 1386 /* mcast */ 1387 IEEE80211_ADDR_COPY(wh->i_addr1, 1388 eh.ether_dhost); 1389 IEEE80211_ADDR_COPY(wh->i_addr2, 1390 vap->iv_myaddr); 1391 IEEE80211_ADDR_COPY(wh->i_addr3, 1392 eh.ether_shost); 1393 qos = ((struct ieee80211_qosframe *) 1394 wh)->i_qos; 1395 } 1396 break; 1397 case IEEE80211_MESH_AE_01: /* mcast, proxy */ 1398 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1399 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1400 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1401 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr); 1402 mc->mc_flags = 1; 1403 IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4, 1404 eh.ether_shost); 1405 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1406 break; 1407 case IEEE80211_MESH_AE_10: /* ucast, proxy */ 1408 KASSERT(rt != NULL, ("route is NULL")); 1409 IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop); 1410 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1411 IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate); 1412 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr); 1413 mc->mc_flags = IEEE80211_MESH_AE_10; 1414 IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost); 1415 IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost); 1416 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1417 break; 1418 default: 1419 KASSERT(0, ("meshae %d", meshae)); 1420 break; 1421 } 1422 mc->mc_ttl = ms->ms_ttl; 1423 ms->ms_seq++; 1424 LE_WRITE_4(mc->mc_seq, ms->ms_seq); 1425 break; 1426 #endif 1427 case IEEE80211_M_WDS: /* NB: is4addr should always be true */ 1428 default: 1429 goto bad; 1430 } 1431 if (m->m_flags & M_MORE_DATA) 1432 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 1433 if (addqos) { 1434 int ac, tid; 1435 1436 if (is4addr) { 1437 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1438 /* NB: mesh case handled earlier */ 1439 } else if (vap->iv_opmode != IEEE80211_M_MBSS) 1440 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1441 ac = M_WME_GETAC(m); 1442 /* map from access class/queue to 11e header priorty value */ 1443 tid = WME_AC_TO_TID(ac); 1444 qos[0] = tid & IEEE80211_QOS_TID; 1445 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 1446 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1447 #ifdef IEEE80211_SUPPORT_MESH 1448 if (vap->iv_opmode == IEEE80211_M_MBSS) 1449 qos[1] = IEEE80211_QOS_MC; 1450 else 1451 #endif 1452 qos[1] = 0; 1453 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 1454 1455 if ((m->m_flags & M_AMPDU_MPDU) == 0) { 1456 /* 1457 * NB: don't assign a sequence # to potential 1458 * aggregates; we expect this happens at the 1459 * point the frame comes off any aggregation q 1460 * as otherwise we may introduce holes in the 1461 * BA sequence space and/or make window accouting 1462 * more difficult. 1463 * 1464 * XXX may want to control this with a driver 1465 * capability; this may also change when we pull 1466 * aggregation up into net80211 1467 */ 1468 seqno = ni->ni_txseqs[tid]++; 1469 *(uint16_t *)wh->i_seq = 1470 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1471 M_SEQNO_SET(m, seqno); 1472 } 1473 } else { 1474 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1475 *(uint16_t *)wh->i_seq = 1476 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1477 M_SEQNO_SET(m, seqno); 1478 } 1479 1480 1481 /* check if xmit fragmentation is required */ 1482 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold && 1483 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 1484 (vap->iv_caps & IEEE80211_C_TXFRAG) && 1485 (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0); 1486 if (key != NULL) { 1487 /* 1488 * IEEE 802.1X: send EAPOL frames always in the clear. 1489 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 1490 */ 1491 if ((m->m_flags & M_EAPOL) == 0 || 1492 ((vap->iv_flags & IEEE80211_F_WPA) && 1493 (vap->iv_opmode == IEEE80211_M_STA ? 1494 !IEEE80211_KEY_UNDEFINED(key) : 1495 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) { 1496 wh->i_fc[1] |= IEEE80211_FC1_WEP; 1497 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) { 1498 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT, 1499 eh.ether_dhost, 1500 "%s", "enmic failed, discard frame"); 1501 vap->iv_stats.is_crypto_enmicfail++; 1502 goto bad; 1503 } 1504 } 1505 } 1506 if (txfrag && !ieee80211_fragment(vap, m, hdrsize, 1507 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold)) 1508 goto bad; 1509 1510 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1511 1512 IEEE80211_NODE_STAT(ni, tx_data); 1513 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1514 IEEE80211_NODE_STAT(ni, tx_mcast); 1515 m->m_flags |= M_MCAST; 1516 } else 1517 IEEE80211_NODE_STAT(ni, tx_ucast); 1518 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 1519 1520 return m; 1521 bad: 1522 if (m != NULL) 1523 m_freem(m); 1524 return NULL; 1525 #undef WH4 1526 #undef MC01 1527 } 1528 1529 /* 1530 * Fragment the frame according to the specified mtu. 1531 * The size of the 802.11 header (w/o padding) is provided 1532 * so we don't need to recalculate it. We create a new 1533 * mbuf for each fragment and chain it through m_nextpkt; 1534 * we might be able to optimize this by reusing the original 1535 * packet's mbufs but that is significantly more complicated. 1536 */ 1537 static int 1538 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0, 1539 u_int hdrsize, u_int ciphdrsize, u_int mtu) 1540 { 1541 struct ieee80211com *ic = vap->iv_ic; 1542 struct ieee80211_frame *wh, *whf; 1543 struct mbuf *m, *prev, *next; 1544 u_int totalhdrsize, fragno, fragsize, off, remainder, payload; 1545 u_int hdrspace; 1546 1547 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); 1548 KASSERT(m0->m_pkthdr.len > mtu, 1549 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); 1550 1551 /* 1552 * Honor driver DATAPAD requirement. 1553 */ 1554 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1555 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1556 else 1557 hdrspace = hdrsize; 1558 1559 wh = mtod(m0, struct ieee80211_frame *); 1560 /* NB: mark the first frag; it will be propagated below */ 1561 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; 1562 totalhdrsize = hdrspace + ciphdrsize; 1563 fragno = 1; 1564 off = mtu - ciphdrsize; 1565 remainder = m0->m_pkthdr.len - off; 1566 prev = m0; 1567 do { 1568 fragsize = totalhdrsize + remainder; 1569 if (fragsize > mtu) 1570 fragsize = mtu; 1571 /* XXX fragsize can be >2048! */ 1572 KASSERT(fragsize < MCLBYTES, 1573 ("fragment size %u too big!", fragsize)); 1574 if (fragsize > MHLEN) 1575 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1576 else 1577 m = m_gethdr(M_NOWAIT, MT_DATA); 1578 if (m == NULL) 1579 goto bad; 1580 /* leave room to prepend any cipher header */ 1581 m_align(m, fragsize - ciphdrsize); 1582 1583 /* 1584 * Form the header in the fragment. Note that since 1585 * we mark the first fragment with the MORE_FRAG bit 1586 * it automatically is propagated to each fragment; we 1587 * need only clear it on the last fragment (done below). 1588 * NB: frag 1+ dont have Mesh Control field present. 1589 */ 1590 whf = mtod(m, struct ieee80211_frame *); 1591 memcpy(whf, wh, hdrsize); 1592 #ifdef IEEE80211_SUPPORT_MESH 1593 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1594 if (IEEE80211_IS_DSTODS(wh)) 1595 ((struct ieee80211_qosframe_addr4 *) 1596 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1597 else 1598 ((struct ieee80211_qosframe *) 1599 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1600 } 1601 #endif 1602 *(uint16_t *)&whf->i_seq[0] |= htole16( 1603 (fragno & IEEE80211_SEQ_FRAG_MASK) << 1604 IEEE80211_SEQ_FRAG_SHIFT); 1605 fragno++; 1606 1607 payload = fragsize - totalhdrsize; 1608 /* NB: destination is known to be contiguous */ 1609 1610 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace); 1611 m->m_len = hdrspace + payload; 1612 m->m_pkthdr.len = hdrspace + payload; 1613 m->m_flags |= M_FRAG; 1614 1615 /* chain up the fragment */ 1616 prev->m_nextpkt = m; 1617 prev = m; 1618 1619 /* deduct fragment just formed */ 1620 remainder -= payload; 1621 off += payload; 1622 } while (remainder != 0); 1623 1624 /* set the last fragment */ 1625 m->m_flags |= M_LASTFRAG; 1626 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; 1627 1628 /* strip first mbuf now that everything has been copied */ 1629 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); 1630 m0->m_flags |= M_FIRSTFRAG | M_FRAG; 1631 1632 vap->iv_stats.is_tx_fragframes++; 1633 vap->iv_stats.is_tx_frags += fragno-1; 1634 1635 return 1; 1636 bad: 1637 /* reclaim fragments but leave original frame for caller to free */ 1638 for (m = m0->m_nextpkt; m != NULL; m = next) { 1639 next = m->m_nextpkt; 1640 m->m_nextpkt = NULL; /* XXX paranoid */ 1641 m_freem(m); 1642 } 1643 m0->m_nextpkt = NULL; 1644 return 0; 1645 } 1646 1647 /* 1648 * Add a supported rates element id to a frame. 1649 */ 1650 uint8_t * 1651 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs) 1652 { 1653 int nrates; 1654 1655 *frm++ = IEEE80211_ELEMID_RATES; 1656 nrates = rs->rs_nrates; 1657 if (nrates > IEEE80211_RATE_SIZE) 1658 nrates = IEEE80211_RATE_SIZE; 1659 *frm++ = nrates; 1660 memcpy(frm, rs->rs_rates, nrates); 1661 return frm + nrates; 1662 } 1663 1664 /* 1665 * Add an extended supported rates element id to a frame. 1666 */ 1667 uint8_t * 1668 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs) 1669 { 1670 /* 1671 * Add an extended supported rates element if operating in 11g mode. 1672 */ 1673 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 1674 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 1675 *frm++ = IEEE80211_ELEMID_XRATES; 1676 *frm++ = nrates; 1677 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 1678 frm += nrates; 1679 } 1680 return frm; 1681 } 1682 1683 /* 1684 * Add an ssid element to a frame. 1685 */ 1686 static uint8_t * 1687 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) 1688 { 1689 *frm++ = IEEE80211_ELEMID_SSID; 1690 *frm++ = len; 1691 memcpy(frm, ssid, len); 1692 return frm + len; 1693 } 1694 1695 /* 1696 * Add an erp element to a frame. 1697 */ 1698 static uint8_t * 1699 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic) 1700 { 1701 uint8_t erp; 1702 1703 *frm++ = IEEE80211_ELEMID_ERP; 1704 *frm++ = 1; 1705 erp = 0; 1706 if (ic->ic_nonerpsta != 0) 1707 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 1708 if (ic->ic_flags & IEEE80211_F_USEPROT) 1709 erp |= IEEE80211_ERP_USE_PROTECTION; 1710 if (ic->ic_flags & IEEE80211_F_USEBARKER) 1711 erp |= IEEE80211_ERP_LONG_PREAMBLE; 1712 *frm++ = erp; 1713 return frm; 1714 } 1715 1716 /* 1717 * Add a CFParams element to a frame. 1718 */ 1719 static uint8_t * 1720 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic) 1721 { 1722 #define ADDSHORT(frm, v) do { \ 1723 LE_WRITE_2(frm, v); \ 1724 frm += 2; \ 1725 } while (0) 1726 *frm++ = IEEE80211_ELEMID_CFPARMS; 1727 *frm++ = 6; 1728 *frm++ = 0; /* CFP count */ 1729 *frm++ = 2; /* CFP period */ 1730 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */ 1731 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */ 1732 return frm; 1733 #undef ADDSHORT 1734 } 1735 1736 static __inline uint8_t * 1737 add_appie(uint8_t *frm, const struct ieee80211_appie *ie) 1738 { 1739 memcpy(frm, ie->ie_data, ie->ie_len); 1740 return frm + ie->ie_len; 1741 } 1742 1743 static __inline uint8_t * 1744 add_ie(uint8_t *frm, const uint8_t *ie) 1745 { 1746 memcpy(frm, ie, 2 + ie[1]); 1747 return frm + 2 + ie[1]; 1748 } 1749 1750 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 1751 /* 1752 * Add a WME information element to a frame. 1753 */ 1754 static uint8_t * 1755 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme) 1756 { 1757 static const struct ieee80211_wme_info info = { 1758 .wme_id = IEEE80211_ELEMID_VENDOR, 1759 .wme_len = sizeof(struct ieee80211_wme_info) - 2, 1760 .wme_oui = { WME_OUI_BYTES }, 1761 .wme_type = WME_OUI_TYPE, 1762 .wme_subtype = WME_INFO_OUI_SUBTYPE, 1763 .wme_version = WME_VERSION, 1764 .wme_info = 0, 1765 }; 1766 memcpy(frm, &info, sizeof(info)); 1767 return frm + sizeof(info); 1768 } 1769 1770 /* 1771 * Add a WME parameters element to a frame. 1772 */ 1773 static uint8_t * 1774 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme) 1775 { 1776 #define SM(_v, _f) (((_v) << _f##_S) & _f) 1777 #define ADDSHORT(frm, v) do { \ 1778 LE_WRITE_2(frm, v); \ 1779 frm += 2; \ 1780 } while (0) 1781 /* NB: this works 'cuz a param has an info at the front */ 1782 static const struct ieee80211_wme_info param = { 1783 .wme_id = IEEE80211_ELEMID_VENDOR, 1784 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 1785 .wme_oui = { WME_OUI_BYTES }, 1786 .wme_type = WME_OUI_TYPE, 1787 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 1788 .wme_version = WME_VERSION, 1789 }; 1790 int i; 1791 1792 memcpy(frm, ¶m, sizeof(param)); 1793 frm += __offsetof(struct ieee80211_wme_info, wme_info); 1794 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ 1795 *frm++ = 0; /* reserved field */ 1796 for (i = 0; i < WME_NUM_AC; i++) { 1797 const struct wmeParams *ac = 1798 &wme->wme_bssChanParams.cap_wmeParams[i]; 1799 *frm++ = SM(i, WME_PARAM_ACI) 1800 | SM(ac->wmep_acm, WME_PARAM_ACM) 1801 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) 1802 ; 1803 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) 1804 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) 1805 ; 1806 ADDSHORT(frm, ac->wmep_txopLimit); 1807 } 1808 return frm; 1809 #undef SM 1810 #undef ADDSHORT 1811 } 1812 #undef WME_OUI_BYTES 1813 1814 /* 1815 * Add an 11h Power Constraint element to a frame. 1816 */ 1817 static uint8_t * 1818 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap) 1819 { 1820 const struct ieee80211_channel *c = vap->iv_bss->ni_chan; 1821 /* XXX per-vap tx power limit? */ 1822 int8_t limit = vap->iv_ic->ic_txpowlimit / 2; 1823 1824 frm[0] = IEEE80211_ELEMID_PWRCNSTR; 1825 frm[1] = 1; 1826 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0; 1827 return frm + 3; 1828 } 1829 1830 /* 1831 * Add an 11h Power Capability element to a frame. 1832 */ 1833 static uint8_t * 1834 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c) 1835 { 1836 frm[0] = IEEE80211_ELEMID_PWRCAP; 1837 frm[1] = 2; 1838 frm[2] = c->ic_minpower; 1839 frm[3] = c->ic_maxpower; 1840 return frm + 4; 1841 } 1842 1843 /* 1844 * Add an 11h Supported Channels element to a frame. 1845 */ 1846 static uint8_t * 1847 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic) 1848 { 1849 static const int ielen = 26; 1850 1851 frm[0] = IEEE80211_ELEMID_SUPPCHAN; 1852 frm[1] = ielen; 1853 /* XXX not correct */ 1854 memcpy(frm+2, ic->ic_chan_avail, ielen); 1855 return frm + 2 + ielen; 1856 } 1857 1858 /* 1859 * Add an 11h Quiet time element to a frame. 1860 */ 1861 static uint8_t * 1862 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap) 1863 { 1864 struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm; 1865 1866 quiet->quiet_ie = IEEE80211_ELEMID_QUIET; 1867 quiet->len = 6; 1868 if (vap->iv_quiet_count_value == 1) 1869 vap->iv_quiet_count_value = vap->iv_quiet_count; 1870 else if (vap->iv_quiet_count_value > 1) 1871 vap->iv_quiet_count_value--; 1872 1873 if (vap->iv_quiet_count_value == 0) { 1874 /* value 0 is reserved as per 802.11h standerd */ 1875 vap->iv_quiet_count_value = 1; 1876 } 1877 1878 quiet->tbttcount = vap->iv_quiet_count_value; 1879 quiet->period = vap->iv_quiet_period; 1880 quiet->duration = htole16(vap->iv_quiet_duration); 1881 quiet->offset = htole16(vap->iv_quiet_offset); 1882 return frm + sizeof(*quiet); 1883 } 1884 1885 /* 1886 * Add an 11h Channel Switch Announcement element to a frame. 1887 * Note that we use the per-vap CSA count to adjust the global 1888 * counter so we can use this routine to form probe response 1889 * frames and get the current count. 1890 */ 1891 static uint8_t * 1892 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap) 1893 { 1894 struct ieee80211com *ic = vap->iv_ic; 1895 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm; 1896 1897 csa->csa_ie = IEEE80211_ELEMID_CSA; 1898 csa->csa_len = 3; 1899 csa->csa_mode = 1; /* XXX force quiet on channel */ 1900 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan); 1901 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count; 1902 return frm + sizeof(*csa); 1903 } 1904 1905 /* 1906 * Add an 11h country information element to a frame. 1907 */ 1908 static uint8_t * 1909 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic) 1910 { 1911 1912 if (ic->ic_countryie == NULL || 1913 ic->ic_countryie_chan != ic->ic_bsschan) { 1914 /* 1915 * Handle lazy construction of ie. This is done on 1916 * first use and after a channel change that requires 1917 * re-calculation. 1918 */ 1919 if (ic->ic_countryie != NULL) 1920 free(ic->ic_countryie, M_80211_NODE_IE); 1921 ic->ic_countryie = ieee80211_alloc_countryie(ic); 1922 if (ic->ic_countryie == NULL) 1923 return frm; 1924 ic->ic_countryie_chan = ic->ic_bsschan; 1925 } 1926 return add_appie(frm, ic->ic_countryie); 1927 } 1928 1929 uint8_t * 1930 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap) 1931 { 1932 if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) 1933 return (add_ie(frm, vap->iv_wpa_ie)); 1934 else { 1935 /* XXX else complain? */ 1936 return (frm); 1937 } 1938 } 1939 1940 uint8_t * 1941 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap) 1942 { 1943 if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL) 1944 return (add_ie(frm, vap->iv_rsn_ie)); 1945 else { 1946 /* XXX else complain? */ 1947 return (frm); 1948 } 1949 } 1950 1951 uint8_t * 1952 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni) 1953 { 1954 if (ni->ni_flags & IEEE80211_NODE_QOS) { 1955 *frm++ = IEEE80211_ELEMID_QOS; 1956 *frm++ = 1; 1957 *frm++ = 0; 1958 } 1959 1960 return (frm); 1961 } 1962 1963 /* 1964 * Send a probe request frame with the specified ssid 1965 * and any optional information element data. 1966 */ 1967 int 1968 ieee80211_send_probereq(struct ieee80211_node *ni, 1969 const uint8_t sa[IEEE80211_ADDR_LEN], 1970 const uint8_t da[IEEE80211_ADDR_LEN], 1971 const uint8_t bssid[IEEE80211_ADDR_LEN], 1972 const uint8_t *ssid, size_t ssidlen) 1973 { 1974 struct ieee80211vap *vap = ni->ni_vap; 1975 struct ieee80211com *ic = ni->ni_ic; 1976 const struct ieee80211_txparam *tp; 1977 struct ieee80211_bpf_params params; 1978 struct ieee80211_frame *wh; 1979 const struct ieee80211_rateset *rs; 1980 struct mbuf *m; 1981 uint8_t *frm; 1982 int ret; 1983 1984 if (vap->iv_state == IEEE80211_S_CAC) { 1985 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni, 1986 "block %s frame in CAC state", "probe request"); 1987 vap->iv_stats.is_tx_badstate++; 1988 return EIO; /* XXX */ 1989 } 1990 1991 /* 1992 * Hold a reference on the node so it doesn't go away until after 1993 * the xmit is complete all the way in the driver. On error we 1994 * will remove our reference. 1995 */ 1996 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 1997 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 1998 __func__, __LINE__, 1999 ni, ether_sprintf(ni->ni_macaddr), 2000 ieee80211_node_refcnt(ni)+1); 2001 ieee80211_ref_node(ni); 2002 2003 /* 2004 * prreq frame format 2005 * [tlv] ssid 2006 * [tlv] supported rates 2007 * [tlv] RSN (optional) 2008 * [tlv] extended supported rates 2009 * [tlv] WPA (optional) 2010 * [tlv] user-specified ie's 2011 */ 2012 m = ieee80211_getmgtframe(&frm, 2013 ic->ic_headroom + sizeof(struct ieee80211_frame), 2014 2 + IEEE80211_NWID_LEN 2015 + 2 + IEEE80211_RATE_SIZE 2016 + sizeof(struct ieee80211_ie_wpa) 2017 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2018 + sizeof(struct ieee80211_ie_wpa) 2019 + (vap->iv_appie_probereq != NULL ? 2020 vap->iv_appie_probereq->ie_len : 0) 2021 ); 2022 if (m == NULL) { 2023 vap->iv_stats.is_tx_nobuf++; 2024 ieee80211_free_node(ni); 2025 return ENOMEM; 2026 } 2027 2028 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 2029 rs = ieee80211_get_suprates(ic, ic->ic_curchan); 2030 frm = ieee80211_add_rates(frm, rs); 2031 frm = ieee80211_add_rsn(frm, vap); 2032 frm = ieee80211_add_xrates(frm, rs); 2033 frm = ieee80211_add_wpa(frm, vap); 2034 if (vap->iv_appie_probereq != NULL) 2035 frm = add_appie(frm, vap->iv_appie_probereq); 2036 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2037 2038 KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame), 2039 ("leading space %zd", M_LEADINGSPACE(m))); 2040 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2041 if (m == NULL) { 2042 /* NB: cannot happen */ 2043 ieee80211_free_node(ni); 2044 return ENOMEM; 2045 } 2046 2047 IEEE80211_TX_LOCK(ic); 2048 wh = mtod(m, struct ieee80211_frame *); 2049 ieee80211_send_setup(ni, m, 2050 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 2051 IEEE80211_NONQOS_TID, sa, da, bssid); 2052 /* XXX power management? */ 2053 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2054 2055 M_WME_SETAC(m, WME_AC_BE); 2056 2057 IEEE80211_NODE_STAT(ni, tx_probereq); 2058 IEEE80211_NODE_STAT(ni, tx_mgmt); 2059 2060 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2061 "send probe req on channel %u bssid %s ssid \"%.*s\"\n", 2062 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid), 2063 ssidlen, ssid); 2064 2065 memset(¶ms, 0, sizeof(params)); 2066 params.ibp_pri = M_WME_GETAC(m); 2067 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 2068 params.ibp_rate0 = tp->mgmtrate; 2069 if (IEEE80211_IS_MULTICAST(da)) { 2070 params.ibp_flags |= IEEE80211_BPF_NOACK; 2071 params.ibp_try0 = 1; 2072 } else 2073 params.ibp_try0 = tp->maxretry; 2074 params.ibp_power = ni->ni_txpower; 2075 ret = ieee80211_raw_output(vap, ni, m, ¶ms); 2076 IEEE80211_TX_UNLOCK(ic); 2077 return (ret); 2078 } 2079 2080 /* 2081 * Calculate capability information for mgt frames. 2082 */ 2083 uint16_t 2084 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan) 2085 { 2086 struct ieee80211com *ic = vap->iv_ic; 2087 uint16_t capinfo; 2088 2089 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode")); 2090 2091 if (vap->iv_opmode == IEEE80211_M_HOSTAP) 2092 capinfo = IEEE80211_CAPINFO_ESS; 2093 else if (vap->iv_opmode == IEEE80211_M_IBSS) 2094 capinfo = IEEE80211_CAPINFO_IBSS; 2095 else 2096 capinfo = 0; 2097 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2098 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2099 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2100 IEEE80211_IS_CHAN_2GHZ(chan)) 2101 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2102 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2103 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2104 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH)) 2105 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2106 return capinfo; 2107 } 2108 2109 /* 2110 * Send a management frame. The node is for the destination (or ic_bss 2111 * when in station mode). Nodes other than ic_bss have their reference 2112 * count bumped to reflect our use for an indeterminant time. 2113 */ 2114 int 2115 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg) 2116 { 2117 #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT) 2118 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2119 struct ieee80211vap *vap = ni->ni_vap; 2120 struct ieee80211com *ic = ni->ni_ic; 2121 struct ieee80211_node *bss = vap->iv_bss; 2122 struct ieee80211_bpf_params params; 2123 struct mbuf *m; 2124 uint8_t *frm; 2125 uint16_t capinfo; 2126 int has_challenge, is_shared_key, ret, status; 2127 2128 KASSERT(ni != NULL, ("null node")); 2129 2130 /* 2131 * Hold a reference on the node so it doesn't go away until after 2132 * the xmit is complete all the way in the driver. On error we 2133 * will remove our reference. 2134 */ 2135 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2136 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2137 __func__, __LINE__, 2138 ni, ether_sprintf(ni->ni_macaddr), 2139 ieee80211_node_refcnt(ni)+1); 2140 ieee80211_ref_node(ni); 2141 2142 memset(¶ms, 0, sizeof(params)); 2143 switch (type) { 2144 2145 case IEEE80211_FC0_SUBTYPE_AUTH: 2146 status = arg >> 16; 2147 arg &= 0xffff; 2148 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || 2149 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 2150 ni->ni_challenge != NULL); 2151 2152 /* 2153 * Deduce whether we're doing open authentication or 2154 * shared key authentication. We do the latter if 2155 * we're in the middle of a shared key authentication 2156 * handshake or if we're initiating an authentication 2157 * request and configured to use shared key. 2158 */ 2159 is_shared_key = has_challenge || 2160 arg >= IEEE80211_AUTH_SHARED_RESPONSE || 2161 (arg == IEEE80211_AUTH_SHARED_REQUEST && 2162 bss->ni_authmode == IEEE80211_AUTH_SHARED); 2163 2164 m = ieee80211_getmgtframe(&frm, 2165 ic->ic_headroom + sizeof(struct ieee80211_frame), 2166 3 * sizeof(uint16_t) 2167 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? 2168 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0) 2169 ); 2170 if (m == NULL) 2171 senderr(ENOMEM, is_tx_nobuf); 2172 2173 ((uint16_t *)frm)[0] = 2174 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) 2175 : htole16(IEEE80211_AUTH_ALG_OPEN); 2176 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */ 2177 ((uint16_t *)frm)[2] = htole16(status);/* status */ 2178 2179 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { 2180 ((uint16_t *)frm)[3] = 2181 htole16((IEEE80211_CHALLENGE_LEN << 8) | 2182 IEEE80211_ELEMID_CHALLENGE); 2183 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge, 2184 IEEE80211_CHALLENGE_LEN); 2185 m->m_pkthdr.len = m->m_len = 2186 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN; 2187 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 2188 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2189 "request encrypt frame (%s)", __func__); 2190 /* mark frame for encryption */ 2191 params.ibp_flags |= IEEE80211_BPF_CRYPTO; 2192 } 2193 } else 2194 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t); 2195 2196 /* XXX not right for shared key */ 2197 if (status == IEEE80211_STATUS_SUCCESS) 2198 IEEE80211_NODE_STAT(ni, tx_auth); 2199 else 2200 IEEE80211_NODE_STAT(ni, tx_auth_fail); 2201 2202 if (vap->iv_opmode == IEEE80211_M_STA) 2203 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2204 (void *) vap->iv_state); 2205 break; 2206 2207 case IEEE80211_FC0_SUBTYPE_DEAUTH: 2208 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2209 "send station deauthenticate (reason %d)", arg); 2210 m = ieee80211_getmgtframe(&frm, 2211 ic->ic_headroom + sizeof(struct ieee80211_frame), 2212 sizeof(uint16_t)); 2213 if (m == NULL) 2214 senderr(ENOMEM, is_tx_nobuf); 2215 *(uint16_t *)frm = htole16(arg); /* reason */ 2216 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2217 2218 IEEE80211_NODE_STAT(ni, tx_deauth); 2219 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 2220 2221 ieee80211_node_unauthorize(ni); /* port closed */ 2222 break; 2223 2224 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 2225 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 2226 /* 2227 * asreq frame format 2228 * [2] capability information 2229 * [2] listen interval 2230 * [6*] current AP address (reassoc only) 2231 * [tlv] ssid 2232 * [tlv] supported rates 2233 * [tlv] extended supported rates 2234 * [4] power capability (optional) 2235 * [28] supported channels (optional) 2236 * [tlv] HT capabilities 2237 * [tlv] WME (optional) 2238 * [tlv] Vendor OUI HT capabilities (optional) 2239 * [tlv] Atheros capabilities (if negotiated) 2240 * [tlv] AppIE's (optional) 2241 */ 2242 m = ieee80211_getmgtframe(&frm, 2243 ic->ic_headroom + sizeof(struct ieee80211_frame), 2244 sizeof(uint16_t) 2245 + sizeof(uint16_t) 2246 + IEEE80211_ADDR_LEN 2247 + 2 + IEEE80211_NWID_LEN 2248 + 2 + IEEE80211_RATE_SIZE 2249 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2250 + 4 2251 + 2 + 26 2252 + sizeof(struct ieee80211_wme_info) 2253 + sizeof(struct ieee80211_ie_htcap) 2254 + 4 + sizeof(struct ieee80211_ie_htcap) 2255 #ifdef IEEE80211_SUPPORT_SUPERG 2256 + sizeof(struct ieee80211_ath_ie) 2257 #endif 2258 + (vap->iv_appie_wpa != NULL ? 2259 vap->iv_appie_wpa->ie_len : 0) 2260 + (vap->iv_appie_assocreq != NULL ? 2261 vap->iv_appie_assocreq->ie_len : 0) 2262 ); 2263 if (m == NULL) 2264 senderr(ENOMEM, is_tx_nobuf); 2265 2266 KASSERT(vap->iv_opmode == IEEE80211_M_STA, 2267 ("wrong mode %u", vap->iv_opmode)); 2268 capinfo = IEEE80211_CAPINFO_ESS; 2269 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2270 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2271 /* 2272 * NB: Some 11a AP's reject the request when 2273 * short premable is set. 2274 */ 2275 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2276 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2277 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2278 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 2279 (ic->ic_caps & IEEE80211_C_SHSLOT)) 2280 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2281 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) && 2282 (vap->iv_flags & IEEE80211_F_DOTH)) 2283 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2284 *(uint16_t *)frm = htole16(capinfo); 2285 frm += 2; 2286 2287 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!")); 2288 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval, 2289 bss->ni_intval)); 2290 frm += 2; 2291 2292 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 2293 IEEE80211_ADDR_COPY(frm, bss->ni_bssid); 2294 frm += IEEE80211_ADDR_LEN; 2295 } 2296 2297 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 2298 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2299 frm = ieee80211_add_rsn(frm, vap); 2300 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2301 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) { 2302 frm = ieee80211_add_powercapability(frm, 2303 ic->ic_curchan); 2304 frm = ieee80211_add_supportedchannels(frm, ic); 2305 } 2306 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2307 ni->ni_ies.htcap_ie != NULL && 2308 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) 2309 frm = ieee80211_add_htcap(frm, ni); 2310 frm = ieee80211_add_wpa(frm, vap); 2311 if ((ic->ic_flags & IEEE80211_F_WME) && 2312 ni->ni_ies.wme_ie != NULL) 2313 frm = ieee80211_add_wme_info(frm, &ic->ic_wme); 2314 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2315 ni->ni_ies.htcap_ie != NULL && 2316 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) 2317 frm = ieee80211_add_htcap_vendor(frm, ni); 2318 #ifdef IEEE80211_SUPPORT_SUPERG 2319 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) { 2320 frm = ieee80211_add_ath(frm, 2321 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2322 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2323 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2324 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2325 } 2326 #endif /* IEEE80211_SUPPORT_SUPERG */ 2327 if (vap->iv_appie_assocreq != NULL) 2328 frm = add_appie(frm, vap->iv_appie_assocreq); 2329 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2330 2331 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2332 (void *) vap->iv_state); 2333 break; 2334 2335 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 2336 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 2337 /* 2338 * asresp frame format 2339 * [2] capability information 2340 * [2] status 2341 * [2] association ID 2342 * [tlv] supported rates 2343 * [tlv] extended supported rates 2344 * [tlv] HT capabilities (standard, if STA enabled) 2345 * [tlv] HT information (standard, if STA enabled) 2346 * [tlv] WME (if configured and STA enabled) 2347 * [tlv] HT capabilities (vendor OUI, if STA enabled) 2348 * [tlv] HT information (vendor OUI, if STA enabled) 2349 * [tlv] Atheros capabilities (if STA enabled) 2350 * [tlv] AppIE's (optional) 2351 */ 2352 m = ieee80211_getmgtframe(&frm, 2353 ic->ic_headroom + sizeof(struct ieee80211_frame), 2354 sizeof(uint16_t) 2355 + sizeof(uint16_t) 2356 + sizeof(uint16_t) 2357 + 2 + IEEE80211_RATE_SIZE 2358 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2359 + sizeof(struct ieee80211_ie_htcap) + 4 2360 + sizeof(struct ieee80211_ie_htinfo) + 4 2361 + sizeof(struct ieee80211_wme_param) 2362 #ifdef IEEE80211_SUPPORT_SUPERG 2363 + sizeof(struct ieee80211_ath_ie) 2364 #endif 2365 + (vap->iv_appie_assocresp != NULL ? 2366 vap->iv_appie_assocresp->ie_len : 0) 2367 ); 2368 if (m == NULL) 2369 senderr(ENOMEM, is_tx_nobuf); 2370 2371 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2372 *(uint16_t *)frm = htole16(capinfo); 2373 frm += 2; 2374 2375 *(uint16_t *)frm = htole16(arg); /* status */ 2376 frm += 2; 2377 2378 if (arg == IEEE80211_STATUS_SUCCESS) { 2379 *(uint16_t *)frm = htole16(ni->ni_associd); 2380 IEEE80211_NODE_STAT(ni, tx_assoc); 2381 } else 2382 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 2383 frm += 2; 2384 2385 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2386 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2387 /* NB: respond according to what we received */ 2388 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) { 2389 frm = ieee80211_add_htcap(frm, ni); 2390 frm = ieee80211_add_htinfo(frm, ni); 2391 } 2392 if ((vap->iv_flags & IEEE80211_F_WME) && 2393 ni->ni_ies.wme_ie != NULL) 2394 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2395 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) { 2396 frm = ieee80211_add_htcap_vendor(frm, ni); 2397 frm = ieee80211_add_htinfo_vendor(frm, ni); 2398 } 2399 #ifdef IEEE80211_SUPPORT_SUPERG 2400 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) 2401 frm = ieee80211_add_ath(frm, 2402 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2403 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2404 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2405 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2406 #endif /* IEEE80211_SUPPORT_SUPERG */ 2407 if (vap->iv_appie_assocresp != NULL) 2408 frm = add_appie(frm, vap->iv_appie_assocresp); 2409 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2410 break; 2411 2412 case IEEE80211_FC0_SUBTYPE_DISASSOC: 2413 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, 2414 "send station disassociate (reason %d)", arg); 2415 m = ieee80211_getmgtframe(&frm, 2416 ic->ic_headroom + sizeof(struct ieee80211_frame), 2417 sizeof(uint16_t)); 2418 if (m == NULL) 2419 senderr(ENOMEM, is_tx_nobuf); 2420 *(uint16_t *)frm = htole16(arg); /* reason */ 2421 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2422 2423 IEEE80211_NODE_STAT(ni, tx_disassoc); 2424 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 2425 break; 2426 2427 default: 2428 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni, 2429 "invalid mgmt frame type %u", type); 2430 senderr(EINVAL, is_tx_unknownmgt); 2431 /* NOTREACHED */ 2432 } 2433 2434 /* NB: force non-ProbeResp frames to the highest queue */ 2435 params.ibp_pri = WME_AC_VO; 2436 params.ibp_rate0 = bss->ni_txparms->mgmtrate; 2437 /* NB: we know all frames are unicast */ 2438 params.ibp_try0 = bss->ni_txparms->maxretry; 2439 params.ibp_power = bss->ni_txpower; 2440 return ieee80211_mgmt_output(ni, m, type, ¶ms); 2441 bad: 2442 ieee80211_free_node(ni); 2443 return ret; 2444 #undef senderr 2445 #undef HTFLAGS 2446 } 2447 2448 /* 2449 * Return an mbuf with a probe response frame in it. 2450 * Space is left to prepend and 802.11 header at the 2451 * front but it's left to the caller to fill in. 2452 */ 2453 struct mbuf * 2454 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy) 2455 { 2456 struct ieee80211vap *vap = bss->ni_vap; 2457 struct ieee80211com *ic = bss->ni_ic; 2458 const struct ieee80211_rateset *rs; 2459 struct mbuf *m; 2460 uint16_t capinfo; 2461 uint8_t *frm; 2462 2463 /* 2464 * probe response frame format 2465 * [8] time stamp 2466 * [2] beacon interval 2467 * [2] cabability information 2468 * [tlv] ssid 2469 * [tlv] supported rates 2470 * [tlv] parameter set (FH/DS) 2471 * [tlv] parameter set (IBSS) 2472 * [tlv] country (optional) 2473 * [3] power control (optional) 2474 * [5] channel switch announcement (CSA) (optional) 2475 * [tlv] extended rate phy (ERP) 2476 * [tlv] extended supported rates 2477 * [tlv] RSN (optional) 2478 * [tlv] HT capabilities 2479 * [tlv] HT information 2480 * [tlv] WPA (optional) 2481 * [tlv] WME (optional) 2482 * [tlv] Vendor OUI HT capabilities (optional) 2483 * [tlv] Vendor OUI HT information (optional) 2484 * [tlv] Atheros capabilities 2485 * [tlv] AppIE's (optional) 2486 * [tlv] Mesh ID (MBSS) 2487 * [tlv] Mesh Conf (MBSS) 2488 */ 2489 m = ieee80211_getmgtframe(&frm, 2490 ic->ic_headroom + sizeof(struct ieee80211_frame), 2491 8 2492 + sizeof(uint16_t) 2493 + sizeof(uint16_t) 2494 + 2 + IEEE80211_NWID_LEN 2495 + 2 + IEEE80211_RATE_SIZE 2496 + 7 /* max(7,3) */ 2497 + IEEE80211_COUNTRY_MAX_SIZE 2498 + 3 2499 + sizeof(struct ieee80211_csa_ie) 2500 + sizeof(struct ieee80211_quiet_ie) 2501 + 3 2502 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2503 + sizeof(struct ieee80211_ie_wpa) 2504 + sizeof(struct ieee80211_ie_htcap) 2505 + sizeof(struct ieee80211_ie_htinfo) 2506 + sizeof(struct ieee80211_ie_wpa) 2507 + sizeof(struct ieee80211_wme_param) 2508 + 4 + sizeof(struct ieee80211_ie_htcap) 2509 + 4 + sizeof(struct ieee80211_ie_htinfo) 2510 #ifdef IEEE80211_SUPPORT_SUPERG 2511 + sizeof(struct ieee80211_ath_ie) 2512 #endif 2513 #ifdef IEEE80211_SUPPORT_MESH 2514 + 2 + IEEE80211_MESHID_LEN 2515 + sizeof(struct ieee80211_meshconf_ie) 2516 #endif 2517 + (vap->iv_appie_proberesp != NULL ? 2518 vap->iv_appie_proberesp->ie_len : 0) 2519 ); 2520 if (m == NULL) { 2521 vap->iv_stats.is_tx_nobuf++; 2522 return NULL; 2523 } 2524 2525 memset(frm, 0, 8); /* timestamp should be filled later */ 2526 frm += 8; 2527 *(uint16_t *)frm = htole16(bss->ni_intval); 2528 frm += 2; 2529 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2530 *(uint16_t *)frm = htole16(capinfo); 2531 frm += 2; 2532 2533 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen); 2534 rs = ieee80211_get_suprates(ic, bss->ni_chan); 2535 frm = ieee80211_add_rates(frm, rs); 2536 2537 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) { 2538 *frm++ = IEEE80211_ELEMID_FHPARMS; 2539 *frm++ = 5; 2540 *frm++ = bss->ni_fhdwell & 0x00ff; 2541 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff; 2542 *frm++ = IEEE80211_FH_CHANSET( 2543 ieee80211_chan2ieee(ic, bss->ni_chan)); 2544 *frm++ = IEEE80211_FH_CHANPAT( 2545 ieee80211_chan2ieee(ic, bss->ni_chan)); 2546 *frm++ = bss->ni_fhindex; 2547 } else { 2548 *frm++ = IEEE80211_ELEMID_DSPARMS; 2549 *frm++ = 1; 2550 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan); 2551 } 2552 2553 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2554 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2555 *frm++ = 2; 2556 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2557 } 2558 if ((vap->iv_flags & IEEE80211_F_DOTH) || 2559 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 2560 frm = ieee80211_add_countryie(frm, ic); 2561 if (vap->iv_flags & IEEE80211_F_DOTH) { 2562 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan)) 2563 frm = ieee80211_add_powerconstraint(frm, vap); 2564 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 2565 frm = ieee80211_add_csa(frm, vap); 2566 } 2567 if (vap->iv_flags & IEEE80211_F_DOTH) { 2568 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2569 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 2570 if (vap->iv_quiet) 2571 frm = ieee80211_add_quiet(frm, vap); 2572 } 2573 } 2574 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan)) 2575 frm = ieee80211_add_erp(frm, ic); 2576 frm = ieee80211_add_xrates(frm, rs); 2577 frm = ieee80211_add_rsn(frm, vap); 2578 /* 2579 * NB: legacy 11b clients do not get certain ie's. 2580 * The caller identifies such clients by passing 2581 * a token in legacy to us. Could expand this to be 2582 * any legacy client for stuff like HT ie's. 2583 */ 2584 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2585 legacy != IEEE80211_SEND_LEGACY_11B) { 2586 frm = ieee80211_add_htcap(frm, bss); 2587 frm = ieee80211_add_htinfo(frm, bss); 2588 } 2589 frm = ieee80211_add_wpa(frm, vap); 2590 if (vap->iv_flags & IEEE80211_F_WME) 2591 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2592 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2593 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) && 2594 legacy != IEEE80211_SEND_LEGACY_11B) { 2595 frm = ieee80211_add_htcap_vendor(frm, bss); 2596 frm = ieee80211_add_htinfo_vendor(frm, bss); 2597 } 2598 #ifdef IEEE80211_SUPPORT_SUPERG 2599 if ((vap->iv_flags & IEEE80211_F_ATHEROS) && 2600 legacy != IEEE80211_SEND_LEGACY_11B) 2601 frm = ieee80211_add_athcaps(frm, bss); 2602 #endif 2603 if (vap->iv_appie_proberesp != NULL) 2604 frm = add_appie(frm, vap->iv_appie_proberesp); 2605 #ifdef IEEE80211_SUPPORT_MESH 2606 if (vap->iv_opmode == IEEE80211_M_MBSS) { 2607 frm = ieee80211_add_meshid(frm, vap); 2608 frm = ieee80211_add_meshconf(frm, vap); 2609 } 2610 #endif 2611 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2612 2613 return m; 2614 } 2615 2616 /* 2617 * Send a probe response frame to the specified mac address. 2618 * This does not go through the normal mgt frame api so we 2619 * can specify the destination address and re-use the bss node 2620 * for the sta reference. 2621 */ 2622 int 2623 ieee80211_send_proberesp(struct ieee80211vap *vap, 2624 const uint8_t da[IEEE80211_ADDR_LEN], int legacy) 2625 { 2626 struct ieee80211_node *bss = vap->iv_bss; 2627 struct ieee80211com *ic = vap->iv_ic; 2628 struct ieee80211_frame *wh; 2629 struct mbuf *m; 2630 int ret; 2631 2632 if (vap->iv_state == IEEE80211_S_CAC) { 2633 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss, 2634 "block %s frame in CAC state", "probe response"); 2635 vap->iv_stats.is_tx_badstate++; 2636 return EIO; /* XXX */ 2637 } 2638 2639 /* 2640 * Hold a reference on the node so it doesn't go away until after 2641 * the xmit is complete all the way in the driver. On error we 2642 * will remove our reference. 2643 */ 2644 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2645 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2646 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr), 2647 ieee80211_node_refcnt(bss)+1); 2648 ieee80211_ref_node(bss); 2649 2650 m = ieee80211_alloc_proberesp(bss, legacy); 2651 if (m == NULL) { 2652 ieee80211_free_node(bss); 2653 return ENOMEM; 2654 } 2655 2656 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2657 KASSERT(m != NULL, ("no room for header")); 2658 2659 IEEE80211_TX_LOCK(ic); 2660 wh = mtod(m, struct ieee80211_frame *); 2661 ieee80211_send_setup(bss, m, 2662 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP, 2663 IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid); 2664 /* XXX power management? */ 2665 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2666 2667 M_WME_SETAC(m, WME_AC_BE); 2668 2669 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2670 "send probe resp on channel %u to %s%s\n", 2671 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da), 2672 legacy ? " <legacy>" : ""); 2673 IEEE80211_NODE_STAT(bss, tx_mgmt); 2674 2675 ret = ieee80211_raw_output(vap, bss, m, NULL); 2676 IEEE80211_TX_UNLOCK(ic); 2677 return (ret); 2678 } 2679 2680 /* 2681 * Allocate and build a RTS (Request To Send) control frame. 2682 */ 2683 struct mbuf * 2684 ieee80211_alloc_rts(struct ieee80211com *ic, 2685 const uint8_t ra[IEEE80211_ADDR_LEN], 2686 const uint8_t ta[IEEE80211_ADDR_LEN], 2687 uint16_t dur) 2688 { 2689 struct ieee80211_frame_rts *rts; 2690 struct mbuf *m; 2691 2692 /* XXX honor ic_headroom */ 2693 m = m_gethdr(M_NOWAIT, MT_DATA); 2694 if (m != NULL) { 2695 rts = mtod(m, struct ieee80211_frame_rts *); 2696 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2697 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS; 2698 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2699 *(u_int16_t *)rts->i_dur = htole16(dur); 2700 IEEE80211_ADDR_COPY(rts->i_ra, ra); 2701 IEEE80211_ADDR_COPY(rts->i_ta, ta); 2702 2703 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); 2704 } 2705 return m; 2706 } 2707 2708 /* 2709 * Allocate and build a CTS (Clear To Send) control frame. 2710 */ 2711 struct mbuf * 2712 ieee80211_alloc_cts(struct ieee80211com *ic, 2713 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur) 2714 { 2715 struct ieee80211_frame_cts *cts; 2716 struct mbuf *m; 2717 2718 /* XXX honor ic_headroom */ 2719 m = m_gethdr(M_NOWAIT, MT_DATA); 2720 if (m != NULL) { 2721 cts = mtod(m, struct ieee80211_frame_cts *); 2722 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2723 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS; 2724 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2725 *(u_int16_t *)cts->i_dur = htole16(dur); 2726 IEEE80211_ADDR_COPY(cts->i_ra, ra); 2727 2728 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts); 2729 } 2730 return m; 2731 } 2732 2733 static void 2734 ieee80211_tx_mgt_timeout(void *arg) 2735 { 2736 struct ieee80211vap *vap = arg; 2737 2738 IEEE80211_LOCK(vap->iv_ic); 2739 if (vap->iv_state != IEEE80211_S_INIT && 2740 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) { 2741 /* 2742 * NB: it's safe to specify a timeout as the reason here; 2743 * it'll only be used in the right state. 2744 */ 2745 ieee80211_new_state_locked(vap, IEEE80211_S_SCAN, 2746 IEEE80211_SCAN_FAIL_TIMEOUT); 2747 } 2748 IEEE80211_UNLOCK(vap->iv_ic); 2749 } 2750 2751 /* 2752 * This is the callback set on net80211-sourced transmitted 2753 * authentication request frames. 2754 * 2755 * This does a couple of things: 2756 * 2757 * + If the frame transmitted was a success, it schedules a future 2758 * event which will transition the interface to scan. 2759 * If a state transition _then_ occurs before that event occurs, 2760 * said state transition will cancel this callout. 2761 * 2762 * + If the frame transmit was a failure, it immediately schedules 2763 * the transition back to scan. 2764 */ 2765 static void 2766 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status) 2767 { 2768 struct ieee80211vap *vap = ni->ni_vap; 2769 enum ieee80211_state ostate = (enum ieee80211_state) arg; 2770 2771 /* 2772 * Frame transmit completed; arrange timer callback. If 2773 * transmit was successfuly we wait for response. Otherwise 2774 * we arrange an immediate callback instead of doing the 2775 * callback directly since we don't know what state the driver 2776 * is in (e.g. what locks it is holding). This work should 2777 * not be too time-critical and not happen too often so the 2778 * added overhead is acceptable. 2779 * 2780 * XXX what happens if !acked but response shows up before callback? 2781 */ 2782 if (vap->iv_state == ostate) { 2783 callout_reset(&vap->iv_mgtsend, 2784 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0, 2785 ieee80211_tx_mgt_timeout, vap); 2786 } 2787 } 2788 2789 static void 2790 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm, 2791 struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni) 2792 { 2793 struct ieee80211vap *vap = ni->ni_vap; 2794 struct ieee80211com *ic = ni->ni_ic; 2795 struct ieee80211_rateset *rs = &ni->ni_rates; 2796 uint16_t capinfo; 2797 2798 /* 2799 * beacon frame format 2800 * [8] time stamp 2801 * [2] beacon interval 2802 * [2] cabability information 2803 * [tlv] ssid 2804 * [tlv] supported rates 2805 * [3] parameter set (DS) 2806 * [8] CF parameter set (optional) 2807 * [tlv] parameter set (IBSS/TIM) 2808 * [tlv] country (optional) 2809 * [3] power control (optional) 2810 * [5] channel switch announcement (CSA) (optional) 2811 * [tlv] extended rate phy (ERP) 2812 * [tlv] extended supported rates 2813 * [tlv] RSN parameters 2814 * [tlv] HT capabilities 2815 * [tlv] HT information 2816 * XXX Vendor-specific OIDs (e.g. Atheros) 2817 * [tlv] WPA parameters 2818 * [tlv] WME parameters 2819 * [tlv] Vendor OUI HT capabilities (optional) 2820 * [tlv] Vendor OUI HT information (optional) 2821 * [tlv] Atheros capabilities (optional) 2822 * [tlv] TDMA parameters (optional) 2823 * [tlv] Mesh ID (MBSS) 2824 * [tlv] Mesh Conf (MBSS) 2825 * [tlv] application data (optional) 2826 */ 2827 2828 memset(bo, 0, sizeof(*bo)); 2829 2830 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 2831 frm += 8; 2832 *(uint16_t *)frm = htole16(ni->ni_intval); 2833 frm += 2; 2834 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 2835 bo->bo_caps = (uint16_t *)frm; 2836 *(uint16_t *)frm = htole16(capinfo); 2837 frm += 2; 2838 *frm++ = IEEE80211_ELEMID_SSID; 2839 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) { 2840 *frm++ = ni->ni_esslen; 2841 memcpy(frm, ni->ni_essid, ni->ni_esslen); 2842 frm += ni->ni_esslen; 2843 } else 2844 *frm++ = 0; 2845 frm = ieee80211_add_rates(frm, rs); 2846 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) { 2847 *frm++ = IEEE80211_ELEMID_DSPARMS; 2848 *frm++ = 1; 2849 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 2850 } 2851 if (ic->ic_flags & IEEE80211_F_PCF) { 2852 bo->bo_cfp = frm; 2853 frm = ieee80211_add_cfparms(frm, ic); 2854 } 2855 bo->bo_tim = frm; 2856 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2857 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2858 *frm++ = 2; 2859 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2860 bo->bo_tim_len = 0; 2861 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 2862 vap->iv_opmode == IEEE80211_M_MBSS) { 2863 /* TIM IE is the same for Mesh and Hostap */ 2864 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; 2865 2866 tie->tim_ie = IEEE80211_ELEMID_TIM; 2867 tie->tim_len = 4; /* length */ 2868 tie->tim_count = 0; /* DTIM count */ 2869 tie->tim_period = vap->iv_dtim_period; /* DTIM period */ 2870 tie->tim_bitctl = 0; /* bitmap control */ 2871 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 2872 frm += sizeof(struct ieee80211_tim_ie); 2873 bo->bo_tim_len = 1; 2874 } 2875 bo->bo_tim_trailer = frm; 2876 if ((vap->iv_flags & IEEE80211_F_DOTH) || 2877 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 2878 frm = ieee80211_add_countryie(frm, ic); 2879 if (vap->iv_flags & IEEE80211_F_DOTH) { 2880 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) 2881 frm = ieee80211_add_powerconstraint(frm, vap); 2882 bo->bo_csa = frm; 2883 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 2884 frm = ieee80211_add_csa(frm, vap); 2885 } else 2886 bo->bo_csa = frm; 2887 2888 if (vap->iv_flags & IEEE80211_F_DOTH) { 2889 bo->bo_quiet = frm; 2890 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2891 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 2892 if (vap->iv_quiet) 2893 frm = ieee80211_add_quiet(frm,vap); 2894 } 2895 } else 2896 bo->bo_quiet = frm; 2897 2898 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) { 2899 bo->bo_erp = frm; 2900 frm = ieee80211_add_erp(frm, ic); 2901 } 2902 frm = ieee80211_add_xrates(frm, rs); 2903 frm = ieee80211_add_rsn(frm, vap); 2904 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 2905 frm = ieee80211_add_htcap(frm, ni); 2906 bo->bo_htinfo = frm; 2907 frm = ieee80211_add_htinfo(frm, ni); 2908 } 2909 frm = ieee80211_add_wpa(frm, vap); 2910 if (vap->iv_flags & IEEE80211_F_WME) { 2911 bo->bo_wme = frm; 2912 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2913 } 2914 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2915 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) { 2916 frm = ieee80211_add_htcap_vendor(frm, ni); 2917 frm = ieee80211_add_htinfo_vendor(frm, ni); 2918 } 2919 #ifdef IEEE80211_SUPPORT_SUPERG 2920 if (vap->iv_flags & IEEE80211_F_ATHEROS) { 2921 bo->bo_ath = frm; 2922 frm = ieee80211_add_athcaps(frm, ni); 2923 } 2924 #endif 2925 #ifdef IEEE80211_SUPPORT_TDMA 2926 if (vap->iv_caps & IEEE80211_C_TDMA) { 2927 bo->bo_tdma = frm; 2928 frm = ieee80211_add_tdma(frm, vap); 2929 } 2930 #endif 2931 if (vap->iv_appie_beacon != NULL) { 2932 bo->bo_appie = frm; 2933 bo->bo_appie_len = vap->iv_appie_beacon->ie_len; 2934 frm = add_appie(frm, vap->iv_appie_beacon); 2935 } 2936 #ifdef IEEE80211_SUPPORT_MESH 2937 if (vap->iv_opmode == IEEE80211_M_MBSS) { 2938 frm = ieee80211_add_meshid(frm, vap); 2939 bo->bo_meshconf = frm; 2940 frm = ieee80211_add_meshconf(frm, vap); 2941 } 2942 #endif 2943 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer; 2944 bo->bo_csa_trailer_len = frm - bo->bo_csa; 2945 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2946 } 2947 2948 /* 2949 * Allocate a beacon frame and fillin the appropriate bits. 2950 */ 2951 struct mbuf * 2952 ieee80211_beacon_alloc(struct ieee80211_node *ni, 2953 struct ieee80211_beacon_offsets *bo) 2954 { 2955 struct ieee80211vap *vap = ni->ni_vap; 2956 struct ieee80211com *ic = ni->ni_ic; 2957 struct ifnet *ifp = vap->iv_ifp; 2958 struct ieee80211_frame *wh; 2959 struct mbuf *m; 2960 int pktlen; 2961 uint8_t *frm; 2962 2963 /* 2964 * beacon frame format 2965 * [8] time stamp 2966 * [2] beacon interval 2967 * [2] cabability information 2968 * [tlv] ssid 2969 * [tlv] supported rates 2970 * [3] parameter set (DS) 2971 * [8] CF parameter set (optional) 2972 * [tlv] parameter set (IBSS/TIM) 2973 * [tlv] country (optional) 2974 * [3] power control (optional) 2975 * [5] channel switch announcement (CSA) (optional) 2976 * [tlv] extended rate phy (ERP) 2977 * [tlv] extended supported rates 2978 * [tlv] RSN parameters 2979 * [tlv] HT capabilities 2980 * [tlv] HT information 2981 * [tlv] Vendor OUI HT capabilities (optional) 2982 * [tlv] Vendor OUI HT information (optional) 2983 * XXX Vendor-specific OIDs (e.g. Atheros) 2984 * [tlv] WPA parameters 2985 * [tlv] WME parameters 2986 * [tlv] TDMA parameters (optional) 2987 * [tlv] Mesh ID (MBSS) 2988 * [tlv] Mesh Conf (MBSS) 2989 * [tlv] application data (optional) 2990 * NB: we allocate the max space required for the TIM bitmap. 2991 * XXX how big is this? 2992 */ 2993 pktlen = 8 /* time stamp */ 2994 + sizeof(uint16_t) /* beacon interval */ 2995 + sizeof(uint16_t) /* capabilities */ 2996 + 2 + ni->ni_esslen /* ssid */ 2997 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 2998 + 2 + 1 /* DS parameters */ 2999 + 2 + 6 /* CF parameters */ 3000 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */ 3001 + IEEE80211_COUNTRY_MAX_SIZE /* country */ 3002 + 2 + 1 /* power control */ 3003 + sizeof(struct ieee80211_csa_ie) /* CSA */ 3004 + sizeof(struct ieee80211_quiet_ie) /* Quiet */ 3005 + 2 + 1 /* ERP */ 3006 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 3007 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 3008 2*sizeof(struct ieee80211_ie_wpa) : 0) 3009 /* XXX conditional? */ 3010 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */ 3011 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */ 3012 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */ 3013 sizeof(struct ieee80211_wme_param) : 0) 3014 #ifdef IEEE80211_SUPPORT_SUPERG 3015 + sizeof(struct ieee80211_ath_ie) /* ATH */ 3016 #endif 3017 #ifdef IEEE80211_SUPPORT_TDMA 3018 + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */ 3019 sizeof(struct ieee80211_tdma_param) : 0) 3020 #endif 3021 #ifdef IEEE80211_SUPPORT_MESH 3022 + 2 + ni->ni_meshidlen 3023 + sizeof(struct ieee80211_meshconf_ie) 3024 #endif 3025 + IEEE80211_MAX_APPIE 3026 ; 3027 m = ieee80211_getmgtframe(&frm, 3028 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen); 3029 if (m == NULL) { 3030 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, 3031 "%s: cannot get buf; size %u\n", __func__, pktlen); 3032 vap->iv_stats.is_tx_nobuf++; 3033 return NULL; 3034 } 3035 ieee80211_beacon_construct(m, frm, bo, ni); 3036 3037 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 3038 KASSERT(m != NULL, ("no space for 802.11 header?")); 3039 wh = mtod(m, struct ieee80211_frame *); 3040 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 3041 IEEE80211_FC0_SUBTYPE_BEACON; 3042 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3043 *(uint16_t *)wh->i_dur = 0; 3044 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 3045 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 3046 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 3047 *(uint16_t *)wh->i_seq = 0; 3048 3049 return m; 3050 } 3051 3052 /* 3053 * Update the dynamic parts of a beacon frame based on the current state. 3054 */ 3055 int 3056 ieee80211_beacon_update(struct ieee80211_node *ni, 3057 struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast) 3058 { 3059 struct ieee80211vap *vap = ni->ni_vap; 3060 struct ieee80211com *ic = ni->ni_ic; 3061 int len_changed = 0; 3062 uint16_t capinfo; 3063 struct ieee80211_frame *wh; 3064 ieee80211_seq seqno; 3065 3066 IEEE80211_LOCK(ic); 3067 /* 3068 * Handle 11h channel change when we've reached the count. 3069 * We must recalculate the beacon frame contents to account 3070 * for the new channel. Note we do this only for the first 3071 * vap that reaches this point; subsequent vaps just update 3072 * their beacon state to reflect the recalculated channel. 3073 */ 3074 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) && 3075 vap->iv_csa_count == ic->ic_csa_count) { 3076 vap->iv_csa_count = 0; 3077 /* 3078 * Effect channel change before reconstructing the beacon 3079 * frame contents as many places reference ni_chan. 3080 */ 3081 if (ic->ic_csa_newchan != NULL) 3082 ieee80211_csa_completeswitch(ic); 3083 /* 3084 * NB: ieee80211_beacon_construct clears all pending 3085 * updates in bo_flags so we don't need to explicitly 3086 * clear IEEE80211_BEACON_CSA. 3087 */ 3088 ieee80211_beacon_construct(m, 3089 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni); 3090 3091 /* XXX do WME aggressive mode processing? */ 3092 IEEE80211_UNLOCK(ic); 3093 return 1; /* just assume length changed */ 3094 } 3095 3096 wh = mtod(m, struct ieee80211_frame *); 3097 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 3098 *(uint16_t *)&wh->i_seq[0] = 3099 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 3100 M_SEQNO_SET(m, seqno); 3101 3102 /* XXX faster to recalculate entirely or just changes? */ 3103 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3104 *bo->bo_caps = htole16(capinfo); 3105 3106 if (vap->iv_flags & IEEE80211_F_WME) { 3107 struct ieee80211_wme_state *wme = &ic->ic_wme; 3108 3109 /* 3110 * Check for agressive mode change. When there is 3111 * significant high priority traffic in the BSS 3112 * throttle back BE traffic by using conservative 3113 * parameters. Otherwise BE uses agressive params 3114 * to optimize performance of legacy/non-QoS traffic. 3115 */ 3116 if (wme->wme_flags & WME_F_AGGRMODE) { 3117 if (wme->wme_hipri_traffic > 3118 wme->wme_hipri_switch_thresh) { 3119 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3120 "%s: traffic %u, disable aggressive mode\n", 3121 __func__, wme->wme_hipri_traffic); 3122 wme->wme_flags &= ~WME_F_AGGRMODE; 3123 ieee80211_wme_updateparams_locked(vap); 3124 wme->wme_hipri_traffic = 3125 wme->wme_hipri_switch_hysteresis; 3126 } else 3127 wme->wme_hipri_traffic = 0; 3128 } else { 3129 if (wme->wme_hipri_traffic <= 3130 wme->wme_hipri_switch_thresh) { 3131 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3132 "%s: traffic %u, enable aggressive mode\n", 3133 __func__, wme->wme_hipri_traffic); 3134 wme->wme_flags |= WME_F_AGGRMODE; 3135 ieee80211_wme_updateparams_locked(vap); 3136 wme->wme_hipri_traffic = 0; 3137 } else 3138 wme->wme_hipri_traffic = 3139 wme->wme_hipri_switch_hysteresis; 3140 } 3141 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) { 3142 (void) ieee80211_add_wme_param(bo->bo_wme, wme); 3143 clrbit(bo->bo_flags, IEEE80211_BEACON_WME); 3144 } 3145 } 3146 3147 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) { 3148 ieee80211_ht_update_beacon(vap, bo); 3149 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO); 3150 } 3151 #ifdef IEEE80211_SUPPORT_TDMA 3152 if (vap->iv_caps & IEEE80211_C_TDMA) { 3153 /* 3154 * NB: the beacon is potentially updated every TBTT. 3155 */ 3156 ieee80211_tdma_update_beacon(vap, bo); 3157 } 3158 #endif 3159 #ifdef IEEE80211_SUPPORT_MESH 3160 if (vap->iv_opmode == IEEE80211_M_MBSS) 3161 ieee80211_mesh_update_beacon(vap, bo); 3162 #endif 3163 3164 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3165 vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/ 3166 struct ieee80211_tim_ie *tie = 3167 (struct ieee80211_tim_ie *) bo->bo_tim; 3168 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) { 3169 u_int timlen, timoff, i; 3170 /* 3171 * ATIM/DTIM needs updating. If it fits in the 3172 * current space allocated then just copy in the 3173 * new bits. Otherwise we need to move any trailing 3174 * data to make room. Note that we know there is 3175 * contiguous space because ieee80211_beacon_allocate 3176 * insures there is space in the mbuf to write a 3177 * maximal-size virtual bitmap (based on iv_max_aid). 3178 */ 3179 /* 3180 * Calculate the bitmap size and offset, copy any 3181 * trailer out of the way, and then copy in the 3182 * new bitmap and update the information element. 3183 * Note that the tim bitmap must contain at least 3184 * one byte and any offset must be even. 3185 */ 3186 if (vap->iv_ps_pending != 0) { 3187 timoff = 128; /* impossibly large */ 3188 for (i = 0; i < vap->iv_tim_len; i++) 3189 if (vap->iv_tim_bitmap[i]) { 3190 timoff = i &~ 1; 3191 break; 3192 } 3193 KASSERT(timoff != 128, ("tim bitmap empty!")); 3194 for (i = vap->iv_tim_len-1; i >= timoff; i--) 3195 if (vap->iv_tim_bitmap[i]) 3196 break; 3197 timlen = 1 + (i - timoff); 3198 } else { 3199 timoff = 0; 3200 timlen = 1; 3201 } 3202 if (timlen != bo->bo_tim_len) { 3203 /* copy up/down trailer */ 3204 int adjust = tie->tim_bitmap+timlen 3205 - bo->bo_tim_trailer; 3206 ovbcopy(bo->bo_tim_trailer, 3207 bo->bo_tim_trailer+adjust, 3208 bo->bo_tim_trailer_len); 3209 bo->bo_tim_trailer += adjust; 3210 bo->bo_erp += adjust; 3211 bo->bo_htinfo += adjust; 3212 #ifdef IEEE80211_SUPPORT_SUPERG 3213 bo->bo_ath += adjust; 3214 #endif 3215 #ifdef IEEE80211_SUPPORT_TDMA 3216 bo->bo_tdma += adjust; 3217 #endif 3218 #ifdef IEEE80211_SUPPORT_MESH 3219 bo->bo_meshconf += adjust; 3220 #endif 3221 bo->bo_appie += adjust; 3222 bo->bo_wme += adjust; 3223 bo->bo_csa += adjust; 3224 bo->bo_quiet += adjust; 3225 bo->bo_tim_len = timlen; 3226 3227 /* update information element */ 3228 tie->tim_len = 3 + timlen; 3229 tie->tim_bitctl = timoff; 3230 len_changed = 1; 3231 } 3232 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff, 3233 bo->bo_tim_len); 3234 3235 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM); 3236 3237 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER, 3238 "%s: TIM updated, pending %u, off %u, len %u\n", 3239 __func__, vap->iv_ps_pending, timoff, timlen); 3240 } 3241 /* count down DTIM period */ 3242 if (tie->tim_count == 0) 3243 tie->tim_count = tie->tim_period - 1; 3244 else 3245 tie->tim_count--; 3246 /* update state for buffered multicast frames on DTIM */ 3247 if (mcast && tie->tim_count == 0) 3248 tie->tim_bitctl |= 1; 3249 else 3250 tie->tim_bitctl &= ~1; 3251 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) { 3252 struct ieee80211_csa_ie *csa = 3253 (struct ieee80211_csa_ie *) bo->bo_csa; 3254 3255 /* 3256 * Insert or update CSA ie. If we're just starting 3257 * to count down to the channel switch then we need 3258 * to insert the CSA ie. Otherwise we just need to 3259 * drop the count. The actual change happens above 3260 * when the vap's count reaches the target count. 3261 */ 3262 if (vap->iv_csa_count == 0) { 3263 memmove(&csa[1], csa, bo->bo_csa_trailer_len); 3264 bo->bo_erp += sizeof(*csa); 3265 bo->bo_htinfo += sizeof(*csa); 3266 bo->bo_wme += sizeof(*csa); 3267 #ifdef IEEE80211_SUPPORT_SUPERG 3268 bo->bo_ath += sizeof(*csa); 3269 #endif 3270 #ifdef IEEE80211_SUPPORT_TDMA 3271 bo->bo_tdma += sizeof(*csa); 3272 #endif 3273 #ifdef IEEE80211_SUPPORT_MESH 3274 bo->bo_meshconf += sizeof(*csa); 3275 #endif 3276 bo->bo_appie += sizeof(*csa); 3277 bo->bo_csa_trailer_len += sizeof(*csa); 3278 bo->bo_quiet += sizeof(*csa); 3279 bo->bo_tim_trailer_len += sizeof(*csa); 3280 m->m_len += sizeof(*csa); 3281 m->m_pkthdr.len += sizeof(*csa); 3282 3283 ieee80211_add_csa(bo->bo_csa, vap); 3284 } else 3285 csa->csa_count--; 3286 vap->iv_csa_count++; 3287 /* NB: don't clear IEEE80211_BEACON_CSA */ 3288 } 3289 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3290 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){ 3291 if (vap->iv_quiet) 3292 ieee80211_add_quiet(bo->bo_quiet, vap); 3293 } 3294 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) { 3295 /* 3296 * ERP element needs updating. 3297 */ 3298 (void) ieee80211_add_erp(bo->bo_erp, ic); 3299 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP); 3300 } 3301 #ifdef IEEE80211_SUPPORT_SUPERG 3302 if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) { 3303 ieee80211_add_athcaps(bo->bo_ath, ni); 3304 clrbit(bo->bo_flags, IEEE80211_BEACON_ATH); 3305 } 3306 #endif 3307 } 3308 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) { 3309 const struct ieee80211_appie *aie = vap->iv_appie_beacon; 3310 int aielen; 3311 uint8_t *frm; 3312 3313 aielen = 0; 3314 if (aie != NULL) 3315 aielen += aie->ie_len; 3316 if (aielen != bo->bo_appie_len) { 3317 /* copy up/down trailer */ 3318 int adjust = aielen - bo->bo_appie_len; 3319 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust, 3320 bo->bo_tim_trailer_len); 3321 bo->bo_tim_trailer += adjust; 3322 bo->bo_appie += adjust; 3323 bo->bo_appie_len = aielen; 3324 3325 len_changed = 1; 3326 } 3327 frm = bo->bo_appie; 3328 if (aie != NULL) 3329 frm = add_appie(frm, aie); 3330 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE); 3331 } 3332 IEEE80211_UNLOCK(ic); 3333 3334 return len_changed; 3335 } 3336 3337 /* 3338 * Do Ethernet-LLC encapsulation for each payload in a fast frame 3339 * tunnel encapsulation. The frame is assumed to have an Ethernet 3340 * header at the front that must be stripped before prepending the 3341 * LLC followed by the Ethernet header passed in (with an Ethernet 3342 * type that specifies the payload size). 3343 */ 3344 struct mbuf * 3345 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m, 3346 const struct ether_header *eh) 3347 { 3348 struct llc *llc; 3349 uint16_t payload; 3350 3351 /* XXX optimize by combining m_adj+M_PREPEND */ 3352 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 3353 llc = mtod(m, struct llc *); 3354 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 3355 llc->llc_control = LLC_UI; 3356 llc->llc_snap.org_code[0] = 0; 3357 llc->llc_snap.org_code[1] = 0; 3358 llc->llc_snap.org_code[2] = 0; 3359 llc->llc_snap.ether_type = eh->ether_type; 3360 payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */ 3361 3362 M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT); 3363 if (m == NULL) { /* XXX cannot happen */ 3364 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 3365 "%s: no space for ether_header\n", __func__); 3366 vap->iv_stats.is_tx_nobuf++; 3367 return NULL; 3368 } 3369 ETHER_HEADER_COPY(mtod(m, void *), eh); 3370 mtod(m, struct ether_header *)->ether_type = htons(payload); 3371 return m; 3372 } 3373 3374 /* 3375 * Complete an mbuf transmission. 3376 * 3377 * For now, this simply processes a completed frame after the 3378 * driver has completed it's transmission and/or retransmission. 3379 * It assumes the frame is an 802.11 encapsulated frame. 3380 * 3381 * Later on it will grow to become the exit path for a given frame 3382 * from the driver and, depending upon how it's been encapsulated 3383 * and already transmitted, it may end up doing A-MPDU retransmission, 3384 * power save requeuing, etc. 3385 * 3386 * In order for the above to work, the driver entry point to this 3387 * must not hold any driver locks. Thus, the driver needs to delay 3388 * any actual mbuf completion until it can release said locks. 3389 * 3390 * This frees the mbuf and if the mbuf has a node reference, 3391 * the node reference will be freed. 3392 */ 3393 void 3394 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status) 3395 { 3396 3397 if (ni != NULL) { 3398 if (m->m_flags & M_TXCB) 3399 ieee80211_process_callback(ni, m, status); 3400 ieee80211_free_node(ni); 3401 } 3402 m_freem(m); 3403 } 3404