xref: /freebsd/sys/net80211/ieee80211_output.c (revision 3901c6c9af7b100cf09bc4f009c08898a6079435)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_wlan.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/endian.h>
39 
40 #include <sys/socket.h>
41 
42 #include <net/bpf.h>
43 #include <net/ethernet.h>
44 #include <net/if.h>
45 #include <net/if_var.h>
46 #include <net/if_llc.h>
47 #include <net/if_media.h>
48 #include <net/if_vlan_var.h>
49 
50 #include <net80211/ieee80211_var.h>
51 #include <net80211/ieee80211_regdomain.h>
52 #ifdef IEEE80211_SUPPORT_SUPERG
53 #include <net80211/ieee80211_superg.h>
54 #endif
55 #ifdef IEEE80211_SUPPORT_TDMA
56 #include <net80211/ieee80211_tdma.h>
57 #endif
58 #include <net80211/ieee80211_wds.h>
59 #include <net80211/ieee80211_mesh.h>
60 
61 #if defined(INET) || defined(INET6)
62 #include <netinet/in.h>
63 #endif
64 
65 #ifdef INET
66 #include <netinet/if_ether.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/ip.h>
69 #endif
70 #ifdef INET6
71 #include <netinet/ip6.h>
72 #endif
73 
74 #include <security/mac/mac_framework.h>
75 
76 #define	ETHER_HEADER_COPY(dst, src) \
77 	memcpy(dst, src, sizeof(struct ether_header))
78 
79 /* unalligned little endian access */
80 #define LE_WRITE_2(p, v) do {				\
81 	((uint8_t *)(p))[0] = (v) & 0xff;		\
82 	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
83 } while (0)
84 #define LE_WRITE_4(p, v) do {				\
85 	((uint8_t *)(p))[0] = (v) & 0xff;		\
86 	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
87 	((uint8_t *)(p))[2] = ((v) >> 16) & 0xff;	\
88 	((uint8_t *)(p))[3] = ((v) >> 24) & 0xff;	\
89 } while (0)
90 
91 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
92 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
93 static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
94 
95 #ifdef IEEE80211_DEBUG
96 /*
97  * Decide if an outbound management frame should be
98  * printed when debugging is enabled.  This filters some
99  * of the less interesting frames that come frequently
100  * (e.g. beacons).
101  */
102 static __inline int
103 doprint(struct ieee80211vap *vap, int subtype)
104 {
105 	switch (subtype) {
106 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
107 		return (vap->iv_opmode == IEEE80211_M_IBSS);
108 	}
109 	return 1;
110 }
111 #endif
112 
113 /*
114  * Transmit a frame to the given destination on the given VAP.
115  *
116  * It's up to the caller to figure out the details of who this
117  * is going to and resolving the node.
118  *
119  * This routine takes care of queuing it for power save,
120  * A-MPDU state stuff, fast-frames state stuff, encapsulation
121  * if required, then passing it up to the driver layer.
122  *
123  * This routine (for now) consumes the mbuf and frees the node
124  * reference; it ideally will return a TX status which reflects
125  * whether the mbuf was consumed or not, so the caller can
126  * free the mbuf (if appropriate) and the node reference (again,
127  * if appropriate.)
128  */
129 int
130 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
131     struct ieee80211_node *ni)
132 {
133 	struct ieee80211com *ic = vap->iv_ic;
134 	struct ifnet *ifp = vap->iv_ifp;
135 	int error;
136 
137 	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
138 	    (m->m_flags & M_PWR_SAV) == 0) {
139 		/*
140 		 * Station in power save mode; pass the frame
141 		 * to the 802.11 layer and continue.  We'll get
142 		 * the frame back when the time is right.
143 		 * XXX lose WDS vap linkage?
144 		 */
145 		(void) ieee80211_pwrsave(ni, m);
146 		ieee80211_free_node(ni);
147 		/* XXX better status? */
148 		return (ENOBUFS);
149 	}
150 	/* calculate priority so drivers can find the tx queue */
151 	if (ieee80211_classify(ni, m)) {
152 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
153 		    ni->ni_macaddr, NULL,
154 		    "%s", "classification failure");
155 		vap->iv_stats.is_tx_classify++;
156 		ifp->if_oerrors++;
157 		m_freem(m);
158 		ieee80211_free_node(ni);
159 		/* XXX better status? */
160 		return (ENOBUFS);
161 	}
162 	/*
163 	 * Stash the node pointer.  Note that we do this after
164 	 * any call to ieee80211_dwds_mcast because that code
165 	 * uses any existing value for rcvif to identify the
166 	 * interface it (might have been) received on.
167 	 */
168 	m->m_pkthdr.rcvif = (void *)ni;
169 
170 	BPF_MTAP(ifp, m);		/* 802.3 tx */
171 
172 
173 	/*
174 	 * Check if A-MPDU tx aggregation is setup or if we
175 	 * should try to enable it.  The sta must be associated
176 	 * with HT and A-MPDU enabled for use.  When the policy
177 	 * routine decides we should enable A-MPDU we issue an
178 	 * ADDBA request and wait for a reply.  The frame being
179 	 * encapsulated will go out w/o using A-MPDU, or possibly
180 	 * it might be collected by the driver and held/retransmit.
181 	 * The default ic_ampdu_enable routine handles staggering
182 	 * ADDBA requests in case the receiver NAK's us or we are
183 	 * otherwise unable to establish a BA stream.
184 	 */
185 	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
186 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) &&
187 	    (m->m_flags & M_EAPOL) == 0) {
188 		int tid = WME_AC_TO_TID(M_WME_GETAC(m));
189 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
190 
191 		ieee80211_txampdu_count_packet(tap);
192 		if (IEEE80211_AMPDU_RUNNING(tap)) {
193 			/*
194 			 * Operational, mark frame for aggregation.
195 			 *
196 			 * XXX do tx aggregation here
197 			 */
198 			m->m_flags |= M_AMPDU_MPDU;
199 		} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
200 		    ic->ic_ampdu_enable(ni, tap)) {
201 			/*
202 			 * Not negotiated yet, request service.
203 			 */
204 			ieee80211_ampdu_request(ni, tap);
205 			/* XXX hold frame for reply? */
206 		}
207 	}
208 
209 #ifdef IEEE80211_SUPPORT_SUPERG
210 	else if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) {
211 		m = ieee80211_ff_check(ni, m);
212 		if (m == NULL) {
213 			/* NB: any ni ref held on stageq */
214 			return (0);
215 		}
216 	}
217 #endif /* IEEE80211_SUPPORT_SUPERG */
218 
219 	/*
220 	 * Grab the TX lock - serialise the TX process from this
221 	 * point (where TX state is being checked/modified)
222 	 * through to driver queue.
223 	 */
224 	IEEE80211_TX_LOCK(ic);
225 
226 	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
227 		/*
228 		 * Encapsulate the packet in prep for transmission.
229 		 */
230 		m = ieee80211_encap(vap, ni, m);
231 		if (m == NULL) {
232 			/* NB: stat+msg handled in ieee80211_encap */
233 			IEEE80211_TX_UNLOCK(ic);
234 			ieee80211_free_node(ni);
235 			/* XXX better status? */
236 			return (ENOBUFS);
237 		}
238 	}
239 	error = ieee80211_parent_xmitpkt(ic, m);
240 
241 	/*
242 	 * Unlock at this point - no need to hold it across
243 	 * ieee80211_free_node() (ie, the comlock)
244 	 */
245 	IEEE80211_TX_UNLOCK(ic);
246 	if (error != 0) {
247 		/* NB: IFQ_HANDOFF reclaims mbuf */
248 		ieee80211_free_node(ni);
249 	} else {
250 		ifp->if_opackets++;
251 	}
252 	ic->ic_lastdata = ticks;
253 
254 	return (0);
255 }
256 
257 
258 
259 /*
260  * Send the given mbuf through the given vap.
261  *
262  * This consumes the mbuf regardless of whether the transmit
263  * was successful or not.
264  *
265  * This does none of the initial checks that ieee80211_start()
266  * does (eg CAC timeout, interface wakeup) - the caller must
267  * do this first.
268  */
269 static int
270 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
271 {
272 #define	IS_DWDS(vap) \
273 	(vap->iv_opmode == IEEE80211_M_WDS && \
274 	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
275 	struct ieee80211com *ic = vap->iv_ic;
276 	struct ifnet *ifp = vap->iv_ifp;
277 	struct ieee80211_node *ni;
278 	struct ether_header *eh;
279 
280 	/*
281 	 * Cancel any background scan.
282 	 */
283 	if (ic->ic_flags & IEEE80211_F_SCAN)
284 		ieee80211_cancel_anyscan(vap);
285 	/*
286 	 * Find the node for the destination so we can do
287 	 * things like power save and fast frames aggregation.
288 	 *
289 	 * NB: past this point various code assumes the first
290 	 *     mbuf has the 802.3 header present (and contiguous).
291 	 */
292 	ni = NULL;
293 	if (m->m_len < sizeof(struct ether_header) &&
294 	   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
295 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
296 		    "discard frame, %s\n", "m_pullup failed");
297 		vap->iv_stats.is_tx_nobuf++;	/* XXX */
298 		ifp->if_oerrors++;
299 		return (ENOBUFS);
300 	}
301 	eh = mtod(m, struct ether_header *);
302 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
303 		if (IS_DWDS(vap)) {
304 			/*
305 			 * Only unicast frames from the above go out
306 			 * DWDS vaps; multicast frames are handled by
307 			 * dispatching the frame as it comes through
308 			 * the AP vap (see below).
309 			 */
310 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
311 			    eh->ether_dhost, "mcast", "%s", "on DWDS");
312 			vap->iv_stats.is_dwds_mcast++;
313 			m_freem(m);
314 			/* XXX better status? */
315 			return (ENOBUFS);
316 		}
317 		if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
318 			/*
319 			 * Spam DWDS vap's w/ multicast traffic.
320 			 */
321 			/* XXX only if dwds in use? */
322 			ieee80211_dwds_mcast(vap, m);
323 		}
324 	}
325 #ifdef IEEE80211_SUPPORT_MESH
326 	if (vap->iv_opmode != IEEE80211_M_MBSS) {
327 #endif
328 		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
329 		if (ni == NULL) {
330 			/* NB: ieee80211_find_txnode does stat+msg */
331 			ifp->if_oerrors++;
332 			m_freem(m);
333 			/* XXX better status? */
334 			return (ENOBUFS);
335 		}
336 		if (ni->ni_associd == 0 &&
337 		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
338 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
339 			    eh->ether_dhost, NULL,
340 			    "sta not associated (type 0x%04x)",
341 			    htons(eh->ether_type));
342 			vap->iv_stats.is_tx_notassoc++;
343 			ifp->if_oerrors++;
344 			m_freem(m);
345 			ieee80211_free_node(ni);
346 			/* XXX better status? */
347 			return (ENOBUFS);
348 		}
349 #ifdef IEEE80211_SUPPORT_MESH
350 	} else {
351 		if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
352 			/*
353 			 * Proxy station only if configured.
354 			 */
355 			if (!ieee80211_mesh_isproxyena(vap)) {
356 				IEEE80211_DISCARD_MAC(vap,
357 				    IEEE80211_MSG_OUTPUT |
358 				    IEEE80211_MSG_MESH,
359 				    eh->ether_dhost, NULL,
360 				    "%s", "proxy not enabled");
361 				vap->iv_stats.is_mesh_notproxy++;
362 				ifp->if_oerrors++;
363 				m_freem(m);
364 				/* XXX better status? */
365 				return (ENOBUFS);
366 			}
367 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
368 			    "forward frame from DS SA(%6D), DA(%6D)\n",
369 			    eh->ether_shost, ":",
370 			    eh->ether_dhost, ":");
371 			ieee80211_mesh_proxy_check(vap, eh->ether_shost);
372 		}
373 		ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
374 		if (ni == NULL) {
375 			/*
376 			 * NB: ieee80211_mesh_discover holds/disposes
377 			 * frame (e.g. queueing on path discovery).
378 			 */
379 			ifp->if_oerrors++;
380 			/* XXX better status? */
381 			return (ENOBUFS);
382 		}
383 	}
384 #endif
385 
386 	/*
387 	 * We've resolved the sender, so attempt to transmit it.
388 	 */
389 	if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
390 		return (ENOBUFS);
391 	return (0);
392 #undef	IS_DWDS
393 }
394 
395 /*
396  * Start method for vap's.  All packets from the stack come
397  * through here.  We handle common processing of the packets
398  * before dispatching them to the underlying device.
399  *
400  * if_transmit() requires that the mbuf be consumed by this call
401  * regardless of the return condition.
402  */
403 int
404 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
405 {
406 	struct ieee80211vap *vap = ifp->if_softc;
407 	struct ieee80211com *ic = vap->iv_ic;
408 	struct ifnet *parent = ic->ic_ifp;
409 
410 	/* NB: parent must be up and running */
411 	if (!IFNET_IS_UP_RUNNING(parent)) {
412 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
413 		    "%s: ignore queue, parent %s not up+running\n",
414 		    __func__, parent->if_xname);
415 		/* XXX stat */
416 		m_freem(m);
417 		return (EINVAL);
418 	}
419 	if (vap->iv_state == IEEE80211_S_SLEEP) {
420 		/*
421 		 * In power save, wakeup device for transmit.
422 		 */
423 		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
424 		m_freem(m);
425 		return (0);
426 	}
427 	/*
428 	 * No data frames go out unless we're running.
429 	 * Note in particular this covers CAC and CSA
430 	 * states (though maybe we should check muting
431 	 * for CSA).
432 	 */
433 	if (vap->iv_state != IEEE80211_S_RUN) {
434 		IEEE80211_LOCK(ic);
435 		/* re-check under the com lock to avoid races */
436 		if (vap->iv_state != IEEE80211_S_RUN) {
437 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
438 			    "%s: ignore queue, in %s state\n",
439 			    __func__, ieee80211_state_name[vap->iv_state]);
440 			vap->iv_stats.is_tx_badstate++;
441 			IEEE80211_UNLOCK(ic);
442 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
443 			m_freem(m);
444 			return (EINVAL);
445 		}
446 		IEEE80211_UNLOCK(ic);
447 	}
448 
449 	/*
450 	 * Sanitize mbuf flags for net80211 use.  We cannot
451 	 * clear M_PWR_SAV or M_MORE_DATA because these may
452 	 * be set for frames that are re-submitted from the
453 	 * power save queue.
454 	 *
455 	 * NB: This must be done before ieee80211_classify as
456 	 *     it marks EAPOL in frames with M_EAPOL.
457 	 */
458 	m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
459 
460 	/*
461 	 * Bump to the packet transmission path.
462 	 * The mbuf will be consumed here.
463 	 */
464 	return (ieee80211_start_pkt(vap, m));
465 }
466 
467 void
468 ieee80211_vap_qflush(struct ifnet *ifp)
469 {
470 
471 	/* Empty for now */
472 }
473 
474 /*
475  * 802.11 raw output routine.
476  */
477 int
478 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
479     struct mbuf *m, const struct ieee80211_bpf_params *params)
480 {
481 	struct ieee80211com *ic = vap->iv_ic;
482 
483 	return (ic->ic_raw_xmit(ni, m, params));
484 }
485 
486 /*
487  * 802.11 output routine. This is (currently) used only to
488  * connect bpf write calls to the 802.11 layer for injecting
489  * raw 802.11 frames.
490  */
491 #if __FreeBSD_version >= 1000031
492 int
493 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
494 	const struct sockaddr *dst, struct route *ro)
495 #else
496 int
497 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
498 	struct sockaddr *dst, struct route *ro)
499 #endif
500 {
501 #define senderr(e) do { error = (e); goto bad;} while (0)
502 	struct ieee80211_node *ni = NULL;
503 	struct ieee80211vap *vap;
504 	struct ieee80211_frame *wh;
505 	struct ieee80211com *ic = NULL;
506 	int error;
507 	int ret;
508 
509 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
510 		/*
511 		 * Short-circuit requests if the vap is marked OACTIVE
512 		 * as this can happen because a packet came down through
513 		 * ieee80211_start before the vap entered RUN state in
514 		 * which case it's ok to just drop the frame.  This
515 		 * should not be necessary but callers of if_output don't
516 		 * check OACTIVE.
517 		 */
518 		senderr(ENETDOWN);
519 	}
520 	vap = ifp->if_softc;
521 	ic = vap->iv_ic;
522 	/*
523 	 * Hand to the 802.3 code if not tagged as
524 	 * a raw 802.11 frame.
525 	 */
526 	if (dst->sa_family != AF_IEEE80211)
527 		return vap->iv_output(ifp, m, dst, ro);
528 #ifdef MAC
529 	error = mac_ifnet_check_transmit(ifp, m);
530 	if (error)
531 		senderr(error);
532 #endif
533 	if (ifp->if_flags & IFF_MONITOR)
534 		senderr(ENETDOWN);
535 	if (!IFNET_IS_UP_RUNNING(ifp))
536 		senderr(ENETDOWN);
537 	if (vap->iv_state == IEEE80211_S_CAC) {
538 		IEEE80211_DPRINTF(vap,
539 		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
540 		    "block %s frame in CAC state\n", "raw data");
541 		vap->iv_stats.is_tx_badstate++;
542 		senderr(EIO);		/* XXX */
543 	} else if (vap->iv_state == IEEE80211_S_SCAN)
544 		senderr(EIO);
545 	/* XXX bypass bridge, pfil, carp, etc. */
546 
547 	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
548 		senderr(EIO);	/* XXX */
549 	wh = mtod(m, struct ieee80211_frame *);
550 	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
551 	    IEEE80211_FC0_VERSION_0)
552 		senderr(EIO);	/* XXX */
553 
554 	/* locate destination node */
555 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
556 	case IEEE80211_FC1_DIR_NODS:
557 	case IEEE80211_FC1_DIR_FROMDS:
558 		ni = ieee80211_find_txnode(vap, wh->i_addr1);
559 		break;
560 	case IEEE80211_FC1_DIR_TODS:
561 	case IEEE80211_FC1_DIR_DSTODS:
562 		if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
563 			senderr(EIO);	/* XXX */
564 		ni = ieee80211_find_txnode(vap, wh->i_addr3);
565 		break;
566 	default:
567 		senderr(EIO);	/* XXX */
568 	}
569 	if (ni == NULL) {
570 		/*
571 		 * Permit packets w/ bpf params through regardless
572 		 * (see below about sa_len).
573 		 */
574 		if (dst->sa_len == 0)
575 			senderr(EHOSTUNREACH);
576 		ni = ieee80211_ref_node(vap->iv_bss);
577 	}
578 
579 	/*
580 	 * Sanitize mbuf for net80211 flags leaked from above.
581 	 *
582 	 * NB: This must be done before ieee80211_classify as
583 	 *     it marks EAPOL in frames with M_EAPOL.
584 	 */
585 	m->m_flags &= ~M_80211_TX;
586 
587 	/* calculate priority so drivers can find the tx queue */
588 	/* XXX assumes an 802.3 frame */
589 	if (ieee80211_classify(ni, m))
590 		senderr(EIO);		/* XXX */
591 
592 	ifp->if_opackets++;
593 	IEEE80211_NODE_STAT(ni, tx_data);
594 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
595 		IEEE80211_NODE_STAT(ni, tx_mcast);
596 		m->m_flags |= M_MCAST;
597 	} else
598 		IEEE80211_NODE_STAT(ni, tx_ucast);
599 	/* NB: ieee80211_encap does not include 802.11 header */
600 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len);
601 
602 	IEEE80211_TX_LOCK(ic);
603 
604 	/*
605 	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
606 	 * present by setting the sa_len field of the sockaddr (yes,
607 	 * this is a hack).
608 	 * NB: we assume sa_data is suitably aligned to cast.
609 	 */
610 	ret = ieee80211_raw_output(vap, ni, m,
611 	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
612 		dst->sa_data : NULL));
613 	IEEE80211_TX_UNLOCK(ic);
614 	return (ret);
615 bad:
616 	if (m != NULL)
617 		m_freem(m);
618 	if (ni != NULL)
619 		ieee80211_free_node(ni);
620 	ifp->if_oerrors++;
621 	return error;
622 #undef senderr
623 }
624 
625 /*
626  * Set the direction field and address fields of an outgoing
627  * frame.  Note this should be called early on in constructing
628  * a frame as it sets i_fc[1]; other bits can then be or'd in.
629  */
630 void
631 ieee80211_send_setup(
632 	struct ieee80211_node *ni,
633 	struct mbuf *m,
634 	int type, int tid,
635 	const uint8_t sa[IEEE80211_ADDR_LEN],
636 	const uint8_t da[IEEE80211_ADDR_LEN],
637 	const uint8_t bssid[IEEE80211_ADDR_LEN])
638 {
639 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
640 	struct ieee80211vap *vap = ni->ni_vap;
641 	struct ieee80211_tx_ampdu *tap;
642 	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
643 	ieee80211_seq seqno;
644 
645 	IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
646 
647 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
648 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
649 		switch (vap->iv_opmode) {
650 		case IEEE80211_M_STA:
651 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
652 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
653 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
654 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
655 			break;
656 		case IEEE80211_M_IBSS:
657 		case IEEE80211_M_AHDEMO:
658 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
659 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
660 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
661 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
662 			break;
663 		case IEEE80211_M_HOSTAP:
664 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
665 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
666 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
667 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
668 			break;
669 		case IEEE80211_M_WDS:
670 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
671 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
672 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
673 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
674 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
675 			break;
676 		case IEEE80211_M_MBSS:
677 #ifdef IEEE80211_SUPPORT_MESH
678 			if (IEEE80211_IS_MULTICAST(da)) {
679 				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
680 				/* XXX next hop */
681 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
682 				IEEE80211_ADDR_COPY(wh->i_addr2,
683 				    vap->iv_myaddr);
684 			} else {
685 				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
686 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
687 				IEEE80211_ADDR_COPY(wh->i_addr2,
688 				    vap->iv_myaddr);
689 				IEEE80211_ADDR_COPY(wh->i_addr3, da);
690 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
691 			}
692 #endif
693 			break;
694 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
695 			break;
696 		}
697 	} else {
698 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
699 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
700 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
701 #ifdef IEEE80211_SUPPORT_MESH
702 		if (vap->iv_opmode == IEEE80211_M_MBSS)
703 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
704 		else
705 #endif
706 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
707 	}
708 	*(uint16_t *)&wh->i_dur[0] = 0;
709 
710 	tap = &ni->ni_tx_ampdu[tid];
711 	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap))
712 		m->m_flags |= M_AMPDU_MPDU;
713 	else {
714 		seqno = ni->ni_txseqs[tid]++;
715 		*(uint16_t *)&wh->i_seq[0] =
716 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
717 		M_SEQNO_SET(m, seqno);
718 	}
719 
720 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
721 		m->m_flags |= M_MCAST;
722 #undef WH4
723 }
724 
725 /*
726  * Send a management frame to the specified node.  The node pointer
727  * must have a reference as the pointer will be passed to the driver
728  * and potentially held for a long time.  If the frame is successfully
729  * dispatched to the driver, then it is responsible for freeing the
730  * reference (and potentially free'ing up any associated storage);
731  * otherwise deal with reclaiming any reference (on error).
732  */
733 int
734 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
735 	struct ieee80211_bpf_params *params)
736 {
737 	struct ieee80211vap *vap = ni->ni_vap;
738 	struct ieee80211com *ic = ni->ni_ic;
739 	struct ieee80211_frame *wh;
740 	int ret;
741 
742 	KASSERT(ni != NULL, ("null node"));
743 
744 	if (vap->iv_state == IEEE80211_S_CAC) {
745 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
746 		    ni, "block %s frame in CAC state",
747 			ieee80211_mgt_subtype_name[
748 			    (type & IEEE80211_FC0_SUBTYPE_MASK) >>
749 				IEEE80211_FC0_SUBTYPE_SHIFT]);
750 		vap->iv_stats.is_tx_badstate++;
751 		ieee80211_free_node(ni);
752 		m_freem(m);
753 		return EIO;		/* XXX */
754 	}
755 
756 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
757 	if (m == NULL) {
758 		ieee80211_free_node(ni);
759 		return ENOMEM;
760 	}
761 
762 	IEEE80211_TX_LOCK(ic);
763 
764 	wh = mtod(m, struct ieee80211_frame *);
765 	ieee80211_send_setup(ni, m,
766 	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
767 	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
768 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
769 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
770 		    "encrypting frame (%s)", __func__);
771 		wh->i_fc[1] |= IEEE80211_FC1_WEP;
772 	}
773 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
774 
775 	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
776 	M_WME_SETAC(m, params->ibp_pri);
777 
778 #ifdef IEEE80211_DEBUG
779 	/* avoid printing too many frames */
780 	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
781 	    ieee80211_msg_dumppkts(vap)) {
782 		printf("[%s] send %s on channel %u\n",
783 		    ether_sprintf(wh->i_addr1),
784 		    ieee80211_mgt_subtype_name[
785 			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
786 				IEEE80211_FC0_SUBTYPE_SHIFT],
787 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
788 	}
789 #endif
790 	IEEE80211_NODE_STAT(ni, tx_mgmt);
791 
792 	ret = ieee80211_raw_output(vap, ni, m, params);
793 	IEEE80211_TX_UNLOCK(ic);
794 	return (ret);
795 }
796 
797 /*
798  * Send a null data frame to the specified node.  If the station
799  * is setup for QoS then a QoS Null Data frame is constructed.
800  * If this is a WDS station then a 4-address frame is constructed.
801  *
802  * NB: the caller is assumed to have setup a node reference
803  *     for use; this is necessary to deal with a race condition
804  *     when probing for inactive stations.  Like ieee80211_mgmt_output
805  *     we must cleanup any node reference on error;  however we
806  *     can safely just unref it as we know it will never be the
807  *     last reference to the node.
808  */
809 int
810 ieee80211_send_nulldata(struct ieee80211_node *ni)
811 {
812 	struct ieee80211vap *vap = ni->ni_vap;
813 	struct ieee80211com *ic = ni->ni_ic;
814 	struct mbuf *m;
815 	struct ieee80211_frame *wh;
816 	int hdrlen;
817 	uint8_t *frm;
818 	int ret;
819 
820 	if (vap->iv_state == IEEE80211_S_CAC) {
821 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
822 		    ni, "block %s frame in CAC state", "null data");
823 		ieee80211_unref_node(&ni);
824 		vap->iv_stats.is_tx_badstate++;
825 		return EIO;		/* XXX */
826 	}
827 
828 	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
829 		hdrlen = sizeof(struct ieee80211_qosframe);
830 	else
831 		hdrlen = sizeof(struct ieee80211_frame);
832 	/* NB: only WDS vap's get 4-address frames */
833 	if (vap->iv_opmode == IEEE80211_M_WDS)
834 		hdrlen += IEEE80211_ADDR_LEN;
835 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
836 		hdrlen = roundup(hdrlen, sizeof(uint32_t));
837 
838 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
839 	if (m == NULL) {
840 		/* XXX debug msg */
841 		ieee80211_unref_node(&ni);
842 		vap->iv_stats.is_tx_nobuf++;
843 		return ENOMEM;
844 	}
845 	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
846 	    ("leading space %zd", M_LEADINGSPACE(m)));
847 	M_PREPEND(m, hdrlen, M_NOWAIT);
848 	if (m == NULL) {
849 		/* NB: cannot happen */
850 		ieee80211_free_node(ni);
851 		return ENOMEM;
852 	}
853 
854 	IEEE80211_TX_LOCK(ic);
855 
856 	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
857 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
858 		const int tid = WME_AC_TO_TID(WME_AC_BE);
859 		uint8_t *qos;
860 
861 		ieee80211_send_setup(ni, m,
862 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
863 		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
864 
865 		if (vap->iv_opmode == IEEE80211_M_WDS)
866 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
867 		else
868 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
869 		qos[0] = tid & IEEE80211_QOS_TID;
870 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
871 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
872 		qos[1] = 0;
873 	} else {
874 		ieee80211_send_setup(ni, m,
875 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
876 		    IEEE80211_NONQOS_TID,
877 		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
878 	}
879 	if (vap->iv_opmode != IEEE80211_M_WDS) {
880 		/* NB: power management bit is never sent by an AP */
881 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
882 		    vap->iv_opmode != IEEE80211_M_HOSTAP)
883 			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
884 	}
885 	m->m_len = m->m_pkthdr.len = hdrlen;
886 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
887 
888 	M_WME_SETAC(m, WME_AC_BE);
889 
890 	IEEE80211_NODE_STAT(ni, tx_data);
891 
892 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
893 	    "send %snull data frame on channel %u, pwr mgt %s",
894 	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
895 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
896 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
897 
898 	ret = ieee80211_raw_output(vap, ni, m, NULL);
899 	IEEE80211_TX_UNLOCK(ic);
900 	return (ret);
901 }
902 
903 /*
904  * Assign priority to a frame based on any vlan tag assigned
905  * to the station and/or any Diffserv setting in an IP header.
906  * Finally, if an ACM policy is setup (in station mode) it's
907  * applied.
908  */
909 int
910 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
911 {
912 	const struct ether_header *eh = mtod(m, struct ether_header *);
913 	int v_wme_ac, d_wme_ac, ac;
914 
915 	/*
916 	 * Always promote PAE/EAPOL frames to high priority.
917 	 */
918 	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
919 		/* NB: mark so others don't need to check header */
920 		m->m_flags |= M_EAPOL;
921 		ac = WME_AC_VO;
922 		goto done;
923 	}
924 	/*
925 	 * Non-qos traffic goes to BE.
926 	 */
927 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
928 		ac = WME_AC_BE;
929 		goto done;
930 	}
931 
932 	/*
933 	 * If node has a vlan tag then all traffic
934 	 * to it must have a matching tag.
935 	 */
936 	v_wme_ac = 0;
937 	if (ni->ni_vlan != 0) {
938 		 if ((m->m_flags & M_VLANTAG) == 0) {
939 			IEEE80211_NODE_STAT(ni, tx_novlantag);
940 			return 1;
941 		}
942 		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
943 		    EVL_VLANOFTAG(ni->ni_vlan)) {
944 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
945 			return 1;
946 		}
947 		/* map vlan priority to AC */
948 		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
949 	}
950 
951 	/* XXX m_copydata may be too slow for fast path */
952 #ifdef INET
953 	if (eh->ether_type == htons(ETHERTYPE_IP)) {
954 		uint8_t tos;
955 		/*
956 		 * IP frame, map the DSCP bits from the TOS field.
957 		 */
958 		/* NB: ip header may not be in first mbuf */
959 		m_copydata(m, sizeof(struct ether_header) +
960 		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
961 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
962 		d_wme_ac = TID_TO_WME_AC(tos);
963 	} else {
964 #endif /* INET */
965 #ifdef INET6
966 	if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
967 		uint32_t flow;
968 		uint8_t tos;
969 		/*
970 		 * IPv6 frame, map the DSCP bits from the traffic class field.
971 		 */
972 		m_copydata(m, sizeof(struct ether_header) +
973 		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
974 		    (caddr_t) &flow);
975 		tos = (uint8_t)(ntohl(flow) >> 20);
976 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
977 		d_wme_ac = TID_TO_WME_AC(tos);
978 	} else {
979 #endif /* INET6 */
980 		d_wme_ac = WME_AC_BE;
981 #ifdef INET6
982 	}
983 #endif
984 #ifdef INET
985 	}
986 #endif
987 	/*
988 	 * Use highest priority AC.
989 	 */
990 	if (v_wme_ac > d_wme_ac)
991 		ac = v_wme_ac;
992 	else
993 		ac = d_wme_ac;
994 
995 	/*
996 	 * Apply ACM policy.
997 	 */
998 	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
999 		static const int acmap[4] = {
1000 			WME_AC_BK,	/* WME_AC_BE */
1001 			WME_AC_BK,	/* WME_AC_BK */
1002 			WME_AC_BE,	/* WME_AC_VI */
1003 			WME_AC_VI,	/* WME_AC_VO */
1004 		};
1005 		struct ieee80211com *ic = ni->ni_ic;
1006 
1007 		while (ac != WME_AC_BK &&
1008 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1009 			ac = acmap[ac];
1010 	}
1011 done:
1012 	M_WME_SETAC(m, ac);
1013 	return 0;
1014 }
1015 
1016 /*
1017  * Insure there is sufficient contiguous space to encapsulate the
1018  * 802.11 data frame.  If room isn't already there, arrange for it.
1019  * Drivers and cipher modules assume we have done the necessary work
1020  * and fail rudely if they don't find the space they need.
1021  */
1022 struct mbuf *
1023 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1024 	struct ieee80211_key *key, struct mbuf *m)
1025 {
1026 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
1027 	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1028 
1029 	if (key != NULL) {
1030 		/* XXX belongs in crypto code? */
1031 		needed_space += key->wk_cipher->ic_header;
1032 		/* XXX frags */
1033 		/*
1034 		 * When crypto is being done in the host we must insure
1035 		 * the data are writable for the cipher routines; clone
1036 		 * a writable mbuf chain.
1037 		 * XXX handle SWMIC specially
1038 		 */
1039 		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1040 			m = m_unshare(m, M_NOWAIT);
1041 			if (m == NULL) {
1042 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1043 				    "%s: cannot get writable mbuf\n", __func__);
1044 				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1045 				return NULL;
1046 			}
1047 		}
1048 	}
1049 	/*
1050 	 * We know we are called just before stripping an Ethernet
1051 	 * header and prepending an LLC header.  This means we know
1052 	 * there will be
1053 	 *	sizeof(struct ether_header) - sizeof(struct llc)
1054 	 * bytes recovered to which we need additional space for the
1055 	 * 802.11 header and any crypto header.
1056 	 */
1057 	/* XXX check trailing space and copy instead? */
1058 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1059 		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
1060 		if (n == NULL) {
1061 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1062 			    "%s: cannot expand storage\n", __func__);
1063 			vap->iv_stats.is_tx_nobuf++;
1064 			m_freem(m);
1065 			return NULL;
1066 		}
1067 		KASSERT(needed_space <= MHLEN,
1068 		    ("not enough room, need %u got %d\n", needed_space, MHLEN));
1069 		/*
1070 		 * Setup new mbuf to have leading space to prepend the
1071 		 * 802.11 header and any crypto header bits that are
1072 		 * required (the latter are added when the driver calls
1073 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
1074 		 */
1075 		/* NB: must be first 'cuz it clobbers m_data */
1076 		m_move_pkthdr(n, m);
1077 		n->m_len = 0;			/* NB: m_gethdr does not set */
1078 		n->m_data += needed_space;
1079 		/*
1080 		 * Pull up Ethernet header to create the expected layout.
1081 		 * We could use m_pullup but that's overkill (i.e. we don't
1082 		 * need the actual data) and it cannot fail so do it inline
1083 		 * for speed.
1084 		 */
1085 		/* NB: struct ether_header is known to be contiguous */
1086 		n->m_len += sizeof(struct ether_header);
1087 		m->m_len -= sizeof(struct ether_header);
1088 		m->m_data += sizeof(struct ether_header);
1089 		/*
1090 		 * Replace the head of the chain.
1091 		 */
1092 		n->m_next = m;
1093 		m = n;
1094 	}
1095 	return m;
1096 #undef TO_BE_RECLAIMED
1097 }
1098 
1099 /*
1100  * Return the transmit key to use in sending a unicast frame.
1101  * If a unicast key is set we use that.  When no unicast key is set
1102  * we fall back to the default transmit key.
1103  */
1104 static __inline struct ieee80211_key *
1105 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1106 	struct ieee80211_node *ni)
1107 {
1108 	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1109 		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1110 		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1111 			return NULL;
1112 		return &vap->iv_nw_keys[vap->iv_def_txkey];
1113 	} else {
1114 		return &ni->ni_ucastkey;
1115 	}
1116 }
1117 
1118 /*
1119  * Return the transmit key to use in sending a multicast frame.
1120  * Multicast traffic always uses the group key which is installed as
1121  * the default tx key.
1122  */
1123 static __inline struct ieee80211_key *
1124 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1125 	struct ieee80211_node *ni)
1126 {
1127 	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1128 	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1129 		return NULL;
1130 	return &vap->iv_nw_keys[vap->iv_def_txkey];
1131 }
1132 
1133 /*
1134  * Encapsulate an outbound data frame.  The mbuf chain is updated.
1135  * If an error is encountered NULL is returned.  The caller is required
1136  * to provide a node reference and pullup the ethernet header in the
1137  * first mbuf.
1138  *
1139  * NB: Packet is assumed to be processed by ieee80211_classify which
1140  *     marked EAPOL frames w/ M_EAPOL.
1141  */
1142 struct mbuf *
1143 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1144     struct mbuf *m)
1145 {
1146 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1147 #define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
1148 	struct ieee80211com *ic = ni->ni_ic;
1149 #ifdef IEEE80211_SUPPORT_MESH
1150 	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1151 	struct ieee80211_meshcntl_ae10 *mc;
1152 	struct ieee80211_mesh_route *rt = NULL;
1153 	int dir = -1;
1154 #endif
1155 	struct ether_header eh;
1156 	struct ieee80211_frame *wh;
1157 	struct ieee80211_key *key;
1158 	struct llc *llc;
1159 	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr;
1160 	ieee80211_seq seqno;
1161 	int meshhdrsize, meshae;
1162 	uint8_t *qos;
1163 
1164 	IEEE80211_TX_LOCK_ASSERT(ic);
1165 
1166 	/*
1167 	 * Copy existing Ethernet header to a safe place.  The
1168 	 * rest of the code assumes it's ok to strip it when
1169 	 * reorganizing state for the final encapsulation.
1170 	 */
1171 	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1172 	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1173 
1174 	/*
1175 	 * Insure space for additional headers.  First identify
1176 	 * transmit key to use in calculating any buffer adjustments
1177 	 * required.  This is also used below to do privacy
1178 	 * encapsulation work.  Then calculate the 802.11 header
1179 	 * size and any padding required by the driver.
1180 	 *
1181 	 * Note key may be NULL if we fall back to the default
1182 	 * transmit key and that is not set.  In that case the
1183 	 * buffer may not be expanded as needed by the cipher
1184 	 * routines, but they will/should discard it.
1185 	 */
1186 	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1187 		if (vap->iv_opmode == IEEE80211_M_STA ||
1188 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1189 		    (vap->iv_opmode == IEEE80211_M_WDS &&
1190 		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1191 			key = ieee80211_crypto_getucastkey(vap, ni);
1192 		else
1193 			key = ieee80211_crypto_getmcastkey(vap, ni);
1194 		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1195 			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1196 			    eh.ether_dhost,
1197 			    "no default transmit key (%s) deftxkey %u",
1198 			    __func__, vap->iv_def_txkey);
1199 			vap->iv_stats.is_tx_nodefkey++;
1200 			goto bad;
1201 		}
1202 	} else
1203 		key = NULL;
1204 	/*
1205 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1206 	 * frames so suppress use.  This may be an issue if other
1207 	 * ap's require all data frames to be QoS-encapsulated
1208 	 * once negotiated in which case we'll need to make this
1209 	 * configurable.
1210 	 * NB: mesh data frames are QoS.
1211 	 */
1212 	addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) ||
1213 	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1214 	    (m->m_flags & M_EAPOL) == 0;
1215 	if (addqos)
1216 		hdrsize = sizeof(struct ieee80211_qosframe);
1217 	else
1218 		hdrsize = sizeof(struct ieee80211_frame);
1219 #ifdef IEEE80211_SUPPORT_MESH
1220 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1221 		/*
1222 		 * Mesh data frames are encapsulated according to the
1223 		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1224 		 * o Group Addressed data (aka multicast) originating
1225 		 *   at the local sta are sent w/ 3-address format and
1226 		 *   address extension mode 00
1227 		 * o Individually Addressed data (aka unicast) originating
1228 		 *   at the local sta are sent w/ 4-address format and
1229 		 *   address extension mode 00
1230 		 * o Group Addressed data forwarded from a non-mesh sta are
1231 		 *   sent w/ 3-address format and address extension mode 01
1232 		 * o Individually Address data from another sta are sent
1233 		 *   w/ 4-address format and address extension mode 10
1234 		 */
1235 		is4addr = 0;		/* NB: don't use, disable */
1236 		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1237 			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1238 			KASSERT(rt != NULL, ("route is NULL"));
1239 			dir = IEEE80211_FC1_DIR_DSTODS;
1240 			hdrsize += IEEE80211_ADDR_LEN;
1241 			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1242 				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1243 				    vap->iv_myaddr)) {
1244 					IEEE80211_NOTE_MAC(vap,
1245 					    IEEE80211_MSG_MESH,
1246 					    eh.ether_dhost,
1247 					    "%s", "trying to send to ourself");
1248 					goto bad;
1249 				}
1250 				meshae = IEEE80211_MESH_AE_10;
1251 				meshhdrsize =
1252 				    sizeof(struct ieee80211_meshcntl_ae10);
1253 			} else {
1254 				meshae = IEEE80211_MESH_AE_00;
1255 				meshhdrsize =
1256 				    sizeof(struct ieee80211_meshcntl);
1257 			}
1258 		} else {
1259 			dir = IEEE80211_FC1_DIR_FROMDS;
1260 			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1261 				/* proxy group */
1262 				meshae = IEEE80211_MESH_AE_01;
1263 				meshhdrsize =
1264 				    sizeof(struct ieee80211_meshcntl_ae01);
1265 			} else {
1266 				/* group */
1267 				meshae = IEEE80211_MESH_AE_00;
1268 				meshhdrsize = sizeof(struct ieee80211_meshcntl);
1269 			}
1270 		}
1271 	} else {
1272 #endif
1273 		/*
1274 		 * 4-address frames need to be generated for:
1275 		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1276 		 * o packets sent through a vap marked for relaying
1277 		 *   (e.g. a station operating with dynamic WDS)
1278 		 */
1279 		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1280 		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1281 		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1282 		if (is4addr)
1283 			hdrsize += IEEE80211_ADDR_LEN;
1284 		meshhdrsize = meshae = 0;
1285 #ifdef IEEE80211_SUPPORT_MESH
1286 	}
1287 #endif
1288 	/*
1289 	 * Honor driver DATAPAD requirement.
1290 	 */
1291 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1292 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1293 	else
1294 		hdrspace = hdrsize;
1295 
1296 	if (__predict_true((m->m_flags & M_FF) == 0)) {
1297 		/*
1298 		 * Normal frame.
1299 		 */
1300 		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1301 		if (m == NULL) {
1302 			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1303 			goto bad;
1304 		}
1305 		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1306 		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1307 		llc = mtod(m, struct llc *);
1308 		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1309 		llc->llc_control = LLC_UI;
1310 		llc->llc_snap.org_code[0] = 0;
1311 		llc->llc_snap.org_code[1] = 0;
1312 		llc->llc_snap.org_code[2] = 0;
1313 		llc->llc_snap.ether_type = eh.ether_type;
1314 	} else {
1315 #ifdef IEEE80211_SUPPORT_SUPERG
1316 		/*
1317 		 * Aggregated frame.
1318 		 */
1319 		m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1320 		if (m == NULL)
1321 #endif
1322 			goto bad;
1323 	}
1324 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1325 
1326 	M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT);
1327 	if (m == NULL) {
1328 		vap->iv_stats.is_tx_nobuf++;
1329 		goto bad;
1330 	}
1331 	wh = mtod(m, struct ieee80211_frame *);
1332 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1333 	*(uint16_t *)wh->i_dur = 0;
1334 	qos = NULL;	/* NB: quiet compiler */
1335 	if (is4addr) {
1336 		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1337 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1338 		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1339 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1340 		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1341 	} else switch (vap->iv_opmode) {
1342 	case IEEE80211_M_STA:
1343 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1344 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1345 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1346 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1347 		break;
1348 	case IEEE80211_M_IBSS:
1349 	case IEEE80211_M_AHDEMO:
1350 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1351 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1352 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1353 		/*
1354 		 * NB: always use the bssid from iv_bss as the
1355 		 *     neighbor's may be stale after an ibss merge
1356 		 */
1357 		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1358 		break;
1359 	case IEEE80211_M_HOSTAP:
1360 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1361 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1362 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1363 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1364 		break;
1365 #ifdef IEEE80211_SUPPORT_MESH
1366 	case IEEE80211_M_MBSS:
1367 		/* NB: offset by hdrspace to deal with DATAPAD */
1368 		mc = (struct ieee80211_meshcntl_ae10 *)
1369 		     (mtod(m, uint8_t *) + hdrspace);
1370 		wh->i_fc[1] = dir;
1371 		switch (meshae) {
1372 		case IEEE80211_MESH_AE_00:	/* no proxy */
1373 			mc->mc_flags = 0;
1374 			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1375 				IEEE80211_ADDR_COPY(wh->i_addr1,
1376 				    ni->ni_macaddr);
1377 				IEEE80211_ADDR_COPY(wh->i_addr2,
1378 				    vap->iv_myaddr);
1379 				IEEE80211_ADDR_COPY(wh->i_addr3,
1380 				    eh.ether_dhost);
1381 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1382 				    eh.ether_shost);
1383 				qos =((struct ieee80211_qosframe_addr4 *)
1384 				    wh)->i_qos;
1385 			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1386 				 /* mcast */
1387 				IEEE80211_ADDR_COPY(wh->i_addr1,
1388 				    eh.ether_dhost);
1389 				IEEE80211_ADDR_COPY(wh->i_addr2,
1390 				    vap->iv_myaddr);
1391 				IEEE80211_ADDR_COPY(wh->i_addr3,
1392 				    eh.ether_shost);
1393 				qos = ((struct ieee80211_qosframe *)
1394 				    wh)->i_qos;
1395 			}
1396 			break;
1397 		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
1398 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1399 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1400 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1401 			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1402 			mc->mc_flags = 1;
1403 			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1404 			    eh.ether_shost);
1405 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1406 			break;
1407 		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
1408 			KASSERT(rt != NULL, ("route is NULL"));
1409 			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1410 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1411 			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1412 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1413 			mc->mc_flags = IEEE80211_MESH_AE_10;
1414 			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1415 			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1416 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1417 			break;
1418 		default:
1419 			KASSERT(0, ("meshae %d", meshae));
1420 			break;
1421 		}
1422 		mc->mc_ttl = ms->ms_ttl;
1423 		ms->ms_seq++;
1424 		LE_WRITE_4(mc->mc_seq, ms->ms_seq);
1425 		break;
1426 #endif
1427 	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1428 	default:
1429 		goto bad;
1430 	}
1431 	if (m->m_flags & M_MORE_DATA)
1432 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1433 	if (addqos) {
1434 		int ac, tid;
1435 
1436 		if (is4addr) {
1437 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1438 		/* NB: mesh case handled earlier */
1439 		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1440 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1441 		ac = M_WME_GETAC(m);
1442 		/* map from access class/queue to 11e header priorty value */
1443 		tid = WME_AC_TO_TID(ac);
1444 		qos[0] = tid & IEEE80211_QOS_TID;
1445 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1446 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1447 #ifdef IEEE80211_SUPPORT_MESH
1448 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1449 			qos[1] = IEEE80211_QOS_MC;
1450 		else
1451 #endif
1452 			qos[1] = 0;
1453 		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1454 
1455 		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1456 			/*
1457 			 * NB: don't assign a sequence # to potential
1458 			 * aggregates; we expect this happens at the
1459 			 * point the frame comes off any aggregation q
1460 			 * as otherwise we may introduce holes in the
1461 			 * BA sequence space and/or make window accouting
1462 			 * more difficult.
1463 			 *
1464 			 * XXX may want to control this with a driver
1465 			 * capability; this may also change when we pull
1466 			 * aggregation up into net80211
1467 			 */
1468 			seqno = ni->ni_txseqs[tid]++;
1469 			*(uint16_t *)wh->i_seq =
1470 			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1471 			M_SEQNO_SET(m, seqno);
1472 		}
1473 	} else {
1474 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1475 		*(uint16_t *)wh->i_seq =
1476 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1477 		M_SEQNO_SET(m, seqno);
1478 	}
1479 
1480 
1481 	/* check if xmit fragmentation is required */
1482 	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1483 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1484 	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1485 	    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1486 	if (key != NULL) {
1487 		/*
1488 		 * IEEE 802.1X: send EAPOL frames always in the clear.
1489 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1490 		 */
1491 		if ((m->m_flags & M_EAPOL) == 0 ||
1492 		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1493 		     (vap->iv_opmode == IEEE80211_M_STA ?
1494 		      !IEEE80211_KEY_UNDEFINED(key) :
1495 		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1496 			wh->i_fc[1] |= IEEE80211_FC1_WEP;
1497 			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1498 				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1499 				    eh.ether_dhost,
1500 				    "%s", "enmic failed, discard frame");
1501 				vap->iv_stats.is_crypto_enmicfail++;
1502 				goto bad;
1503 			}
1504 		}
1505 	}
1506 	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1507 	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1508 		goto bad;
1509 
1510 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1511 
1512 	IEEE80211_NODE_STAT(ni, tx_data);
1513 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1514 		IEEE80211_NODE_STAT(ni, tx_mcast);
1515 		m->m_flags |= M_MCAST;
1516 	} else
1517 		IEEE80211_NODE_STAT(ni, tx_ucast);
1518 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1519 
1520 	return m;
1521 bad:
1522 	if (m != NULL)
1523 		m_freem(m);
1524 	return NULL;
1525 #undef WH4
1526 #undef MC01
1527 }
1528 
1529 /*
1530  * Fragment the frame according to the specified mtu.
1531  * The size of the 802.11 header (w/o padding) is provided
1532  * so we don't need to recalculate it.  We create a new
1533  * mbuf for each fragment and chain it through m_nextpkt;
1534  * we might be able to optimize this by reusing the original
1535  * packet's mbufs but that is significantly more complicated.
1536  */
1537 static int
1538 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1539 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1540 {
1541 	struct ieee80211com *ic = vap->iv_ic;
1542 	struct ieee80211_frame *wh, *whf;
1543 	struct mbuf *m, *prev, *next;
1544 	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1545 	u_int hdrspace;
1546 
1547 	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1548 	KASSERT(m0->m_pkthdr.len > mtu,
1549 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1550 
1551 	/*
1552 	 * Honor driver DATAPAD requirement.
1553 	 */
1554 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1555 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1556 	else
1557 		hdrspace = hdrsize;
1558 
1559 	wh = mtod(m0, struct ieee80211_frame *);
1560 	/* NB: mark the first frag; it will be propagated below */
1561 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1562 	totalhdrsize = hdrspace + ciphdrsize;
1563 	fragno = 1;
1564 	off = mtu - ciphdrsize;
1565 	remainder = m0->m_pkthdr.len - off;
1566 	prev = m0;
1567 	do {
1568 		fragsize = totalhdrsize + remainder;
1569 		if (fragsize > mtu)
1570 			fragsize = mtu;
1571 		/* XXX fragsize can be >2048! */
1572 		KASSERT(fragsize < MCLBYTES,
1573 			("fragment size %u too big!", fragsize));
1574 		if (fragsize > MHLEN)
1575 			m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1576 		else
1577 			m = m_gethdr(M_NOWAIT, MT_DATA);
1578 		if (m == NULL)
1579 			goto bad;
1580 		/* leave room to prepend any cipher header */
1581 		m_align(m, fragsize - ciphdrsize);
1582 
1583 		/*
1584 		 * Form the header in the fragment.  Note that since
1585 		 * we mark the first fragment with the MORE_FRAG bit
1586 		 * it automatically is propagated to each fragment; we
1587 		 * need only clear it on the last fragment (done below).
1588 		 * NB: frag 1+ dont have Mesh Control field present.
1589 		 */
1590 		whf = mtod(m, struct ieee80211_frame *);
1591 		memcpy(whf, wh, hdrsize);
1592 #ifdef IEEE80211_SUPPORT_MESH
1593 		if (vap->iv_opmode == IEEE80211_M_MBSS) {
1594 			if (IEEE80211_IS_DSTODS(wh))
1595 				((struct ieee80211_qosframe_addr4 *)
1596 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1597 			else
1598 				((struct ieee80211_qosframe *)
1599 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1600 		}
1601 #endif
1602 		*(uint16_t *)&whf->i_seq[0] |= htole16(
1603 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1604 				IEEE80211_SEQ_FRAG_SHIFT);
1605 		fragno++;
1606 
1607 		payload = fragsize - totalhdrsize;
1608 		/* NB: destination is known to be contiguous */
1609 
1610 		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
1611 		m->m_len = hdrspace + payload;
1612 		m->m_pkthdr.len = hdrspace + payload;
1613 		m->m_flags |= M_FRAG;
1614 
1615 		/* chain up the fragment */
1616 		prev->m_nextpkt = m;
1617 		prev = m;
1618 
1619 		/* deduct fragment just formed */
1620 		remainder -= payload;
1621 		off += payload;
1622 	} while (remainder != 0);
1623 
1624 	/* set the last fragment */
1625 	m->m_flags |= M_LASTFRAG;
1626 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1627 
1628 	/* strip first mbuf now that everything has been copied */
1629 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1630 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1631 
1632 	vap->iv_stats.is_tx_fragframes++;
1633 	vap->iv_stats.is_tx_frags += fragno-1;
1634 
1635 	return 1;
1636 bad:
1637 	/* reclaim fragments but leave original frame for caller to free */
1638 	for (m = m0->m_nextpkt; m != NULL; m = next) {
1639 		next = m->m_nextpkt;
1640 		m->m_nextpkt = NULL;		/* XXX paranoid */
1641 		m_freem(m);
1642 	}
1643 	m0->m_nextpkt = NULL;
1644 	return 0;
1645 }
1646 
1647 /*
1648  * Add a supported rates element id to a frame.
1649  */
1650 uint8_t *
1651 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1652 {
1653 	int nrates;
1654 
1655 	*frm++ = IEEE80211_ELEMID_RATES;
1656 	nrates = rs->rs_nrates;
1657 	if (nrates > IEEE80211_RATE_SIZE)
1658 		nrates = IEEE80211_RATE_SIZE;
1659 	*frm++ = nrates;
1660 	memcpy(frm, rs->rs_rates, nrates);
1661 	return frm + nrates;
1662 }
1663 
1664 /*
1665  * Add an extended supported rates element id to a frame.
1666  */
1667 uint8_t *
1668 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1669 {
1670 	/*
1671 	 * Add an extended supported rates element if operating in 11g mode.
1672 	 */
1673 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1674 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1675 		*frm++ = IEEE80211_ELEMID_XRATES;
1676 		*frm++ = nrates;
1677 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1678 		frm += nrates;
1679 	}
1680 	return frm;
1681 }
1682 
1683 /*
1684  * Add an ssid element to a frame.
1685  */
1686 static uint8_t *
1687 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1688 {
1689 	*frm++ = IEEE80211_ELEMID_SSID;
1690 	*frm++ = len;
1691 	memcpy(frm, ssid, len);
1692 	return frm + len;
1693 }
1694 
1695 /*
1696  * Add an erp element to a frame.
1697  */
1698 static uint8_t *
1699 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1700 {
1701 	uint8_t erp;
1702 
1703 	*frm++ = IEEE80211_ELEMID_ERP;
1704 	*frm++ = 1;
1705 	erp = 0;
1706 	if (ic->ic_nonerpsta != 0)
1707 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1708 	if (ic->ic_flags & IEEE80211_F_USEPROT)
1709 		erp |= IEEE80211_ERP_USE_PROTECTION;
1710 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1711 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1712 	*frm++ = erp;
1713 	return frm;
1714 }
1715 
1716 /*
1717  * Add a CFParams element to a frame.
1718  */
1719 static uint8_t *
1720 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1721 {
1722 #define	ADDSHORT(frm, v) do {	\
1723 	LE_WRITE_2(frm, v);	\
1724 	frm += 2;		\
1725 } while (0)
1726 	*frm++ = IEEE80211_ELEMID_CFPARMS;
1727 	*frm++ = 6;
1728 	*frm++ = 0;		/* CFP count */
1729 	*frm++ = 2;		/* CFP period */
1730 	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1731 	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1732 	return frm;
1733 #undef ADDSHORT
1734 }
1735 
1736 static __inline uint8_t *
1737 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1738 {
1739 	memcpy(frm, ie->ie_data, ie->ie_len);
1740 	return frm + ie->ie_len;
1741 }
1742 
1743 static __inline uint8_t *
1744 add_ie(uint8_t *frm, const uint8_t *ie)
1745 {
1746 	memcpy(frm, ie, 2 + ie[1]);
1747 	return frm + 2 + ie[1];
1748 }
1749 
1750 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1751 /*
1752  * Add a WME information element to a frame.
1753  */
1754 static uint8_t *
1755 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1756 {
1757 	static const struct ieee80211_wme_info info = {
1758 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1759 		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1760 		.wme_oui	= { WME_OUI_BYTES },
1761 		.wme_type	= WME_OUI_TYPE,
1762 		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1763 		.wme_version	= WME_VERSION,
1764 		.wme_info	= 0,
1765 	};
1766 	memcpy(frm, &info, sizeof(info));
1767 	return frm + sizeof(info);
1768 }
1769 
1770 /*
1771  * Add a WME parameters element to a frame.
1772  */
1773 static uint8_t *
1774 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1775 {
1776 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1777 #define	ADDSHORT(frm, v) do {	\
1778 	LE_WRITE_2(frm, v);	\
1779 	frm += 2;		\
1780 } while (0)
1781 	/* NB: this works 'cuz a param has an info at the front */
1782 	static const struct ieee80211_wme_info param = {
1783 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1784 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1785 		.wme_oui	= { WME_OUI_BYTES },
1786 		.wme_type	= WME_OUI_TYPE,
1787 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1788 		.wme_version	= WME_VERSION,
1789 	};
1790 	int i;
1791 
1792 	memcpy(frm, &param, sizeof(param));
1793 	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1794 	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1795 	*frm++ = 0;					/* reserved field */
1796 	for (i = 0; i < WME_NUM_AC; i++) {
1797 		const struct wmeParams *ac =
1798 		       &wme->wme_bssChanParams.cap_wmeParams[i];
1799 		*frm++ = SM(i, WME_PARAM_ACI)
1800 		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1801 		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1802 		       ;
1803 		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1804 		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1805 		       ;
1806 		ADDSHORT(frm, ac->wmep_txopLimit);
1807 	}
1808 	return frm;
1809 #undef SM
1810 #undef ADDSHORT
1811 }
1812 #undef WME_OUI_BYTES
1813 
1814 /*
1815  * Add an 11h Power Constraint element to a frame.
1816  */
1817 static uint8_t *
1818 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1819 {
1820 	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1821 	/* XXX per-vap tx power limit? */
1822 	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1823 
1824 	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1825 	frm[1] = 1;
1826 	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1827 	return frm + 3;
1828 }
1829 
1830 /*
1831  * Add an 11h Power Capability element to a frame.
1832  */
1833 static uint8_t *
1834 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1835 {
1836 	frm[0] = IEEE80211_ELEMID_PWRCAP;
1837 	frm[1] = 2;
1838 	frm[2] = c->ic_minpower;
1839 	frm[3] = c->ic_maxpower;
1840 	return frm + 4;
1841 }
1842 
1843 /*
1844  * Add an 11h Supported Channels element to a frame.
1845  */
1846 static uint8_t *
1847 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1848 {
1849 	static const int ielen = 26;
1850 
1851 	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1852 	frm[1] = ielen;
1853 	/* XXX not correct */
1854 	memcpy(frm+2, ic->ic_chan_avail, ielen);
1855 	return frm + 2 + ielen;
1856 }
1857 
1858 /*
1859  * Add an 11h Quiet time element to a frame.
1860  */
1861 static uint8_t *
1862 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap)
1863 {
1864 	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
1865 
1866 	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
1867 	quiet->len = 6;
1868 	if (vap->iv_quiet_count_value == 1)
1869 		vap->iv_quiet_count_value = vap->iv_quiet_count;
1870 	else if (vap->iv_quiet_count_value > 1)
1871 		vap->iv_quiet_count_value--;
1872 
1873 	if (vap->iv_quiet_count_value == 0) {
1874 		/* value 0 is reserved as per 802.11h standerd */
1875 		vap->iv_quiet_count_value = 1;
1876 	}
1877 
1878 	quiet->tbttcount = vap->iv_quiet_count_value;
1879 	quiet->period = vap->iv_quiet_period;
1880 	quiet->duration = htole16(vap->iv_quiet_duration);
1881 	quiet->offset = htole16(vap->iv_quiet_offset);
1882 	return frm + sizeof(*quiet);
1883 }
1884 
1885 /*
1886  * Add an 11h Channel Switch Announcement element to a frame.
1887  * Note that we use the per-vap CSA count to adjust the global
1888  * counter so we can use this routine to form probe response
1889  * frames and get the current count.
1890  */
1891 static uint8_t *
1892 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
1893 {
1894 	struct ieee80211com *ic = vap->iv_ic;
1895 	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
1896 
1897 	csa->csa_ie = IEEE80211_ELEMID_CSA;
1898 	csa->csa_len = 3;
1899 	csa->csa_mode = 1;		/* XXX force quiet on channel */
1900 	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
1901 	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
1902 	return frm + sizeof(*csa);
1903 }
1904 
1905 /*
1906  * Add an 11h country information element to a frame.
1907  */
1908 static uint8_t *
1909 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
1910 {
1911 
1912 	if (ic->ic_countryie == NULL ||
1913 	    ic->ic_countryie_chan != ic->ic_bsschan) {
1914 		/*
1915 		 * Handle lazy construction of ie.  This is done on
1916 		 * first use and after a channel change that requires
1917 		 * re-calculation.
1918 		 */
1919 		if (ic->ic_countryie != NULL)
1920 			free(ic->ic_countryie, M_80211_NODE_IE);
1921 		ic->ic_countryie = ieee80211_alloc_countryie(ic);
1922 		if (ic->ic_countryie == NULL)
1923 			return frm;
1924 		ic->ic_countryie_chan = ic->ic_bsschan;
1925 	}
1926 	return add_appie(frm, ic->ic_countryie);
1927 }
1928 
1929 uint8_t *
1930 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
1931 {
1932 	if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
1933 		return (add_ie(frm, vap->iv_wpa_ie));
1934 	else {
1935 		/* XXX else complain? */
1936 		return (frm);
1937 	}
1938 }
1939 
1940 uint8_t *
1941 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
1942 {
1943 	if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
1944 		return (add_ie(frm, vap->iv_rsn_ie));
1945 	else {
1946 		/* XXX else complain? */
1947 		return (frm);
1948 	}
1949 }
1950 
1951 uint8_t *
1952 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
1953 {
1954 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
1955 		*frm++ = IEEE80211_ELEMID_QOS;
1956 		*frm++ = 1;
1957 		*frm++ = 0;
1958 	}
1959 
1960 	return (frm);
1961 }
1962 
1963 /*
1964  * Send a probe request frame with the specified ssid
1965  * and any optional information element data.
1966  */
1967 int
1968 ieee80211_send_probereq(struct ieee80211_node *ni,
1969 	const uint8_t sa[IEEE80211_ADDR_LEN],
1970 	const uint8_t da[IEEE80211_ADDR_LEN],
1971 	const uint8_t bssid[IEEE80211_ADDR_LEN],
1972 	const uint8_t *ssid, size_t ssidlen)
1973 {
1974 	struct ieee80211vap *vap = ni->ni_vap;
1975 	struct ieee80211com *ic = ni->ni_ic;
1976 	const struct ieee80211_txparam *tp;
1977 	struct ieee80211_bpf_params params;
1978 	struct ieee80211_frame *wh;
1979 	const struct ieee80211_rateset *rs;
1980 	struct mbuf *m;
1981 	uint8_t *frm;
1982 	int ret;
1983 
1984 	if (vap->iv_state == IEEE80211_S_CAC) {
1985 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
1986 		    "block %s frame in CAC state", "probe request");
1987 		vap->iv_stats.is_tx_badstate++;
1988 		return EIO;		/* XXX */
1989 	}
1990 
1991 	/*
1992 	 * Hold a reference on the node so it doesn't go away until after
1993 	 * the xmit is complete all the way in the driver.  On error we
1994 	 * will remove our reference.
1995 	 */
1996 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1997 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1998 		__func__, __LINE__,
1999 		ni, ether_sprintf(ni->ni_macaddr),
2000 		ieee80211_node_refcnt(ni)+1);
2001 	ieee80211_ref_node(ni);
2002 
2003 	/*
2004 	 * prreq frame format
2005 	 *	[tlv] ssid
2006 	 *	[tlv] supported rates
2007 	 *	[tlv] RSN (optional)
2008 	 *	[tlv] extended supported rates
2009 	 *	[tlv] WPA (optional)
2010 	 *	[tlv] user-specified ie's
2011 	 */
2012 	m = ieee80211_getmgtframe(&frm,
2013 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2014 	       	 2 + IEEE80211_NWID_LEN
2015 	       + 2 + IEEE80211_RATE_SIZE
2016 	       + sizeof(struct ieee80211_ie_wpa)
2017 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2018 	       + sizeof(struct ieee80211_ie_wpa)
2019 	       + (vap->iv_appie_probereq != NULL ?
2020 		   vap->iv_appie_probereq->ie_len : 0)
2021 	);
2022 	if (m == NULL) {
2023 		vap->iv_stats.is_tx_nobuf++;
2024 		ieee80211_free_node(ni);
2025 		return ENOMEM;
2026 	}
2027 
2028 	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2029 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2030 	frm = ieee80211_add_rates(frm, rs);
2031 	frm = ieee80211_add_rsn(frm, vap);
2032 	frm = ieee80211_add_xrates(frm, rs);
2033 	frm = ieee80211_add_wpa(frm, vap);
2034 	if (vap->iv_appie_probereq != NULL)
2035 		frm = add_appie(frm, vap->iv_appie_probereq);
2036 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2037 
2038 	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2039 	    ("leading space %zd", M_LEADINGSPACE(m)));
2040 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2041 	if (m == NULL) {
2042 		/* NB: cannot happen */
2043 		ieee80211_free_node(ni);
2044 		return ENOMEM;
2045 	}
2046 
2047 	IEEE80211_TX_LOCK(ic);
2048 	wh = mtod(m, struct ieee80211_frame *);
2049 	ieee80211_send_setup(ni, m,
2050 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2051 	     IEEE80211_NONQOS_TID, sa, da, bssid);
2052 	/* XXX power management? */
2053 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2054 
2055 	M_WME_SETAC(m, WME_AC_BE);
2056 
2057 	IEEE80211_NODE_STAT(ni, tx_probereq);
2058 	IEEE80211_NODE_STAT(ni, tx_mgmt);
2059 
2060 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2061 	    "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
2062 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
2063 	    ssidlen, ssid);
2064 
2065 	memset(&params, 0, sizeof(params));
2066 	params.ibp_pri = M_WME_GETAC(m);
2067 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2068 	params.ibp_rate0 = tp->mgmtrate;
2069 	if (IEEE80211_IS_MULTICAST(da)) {
2070 		params.ibp_flags |= IEEE80211_BPF_NOACK;
2071 		params.ibp_try0 = 1;
2072 	} else
2073 		params.ibp_try0 = tp->maxretry;
2074 	params.ibp_power = ni->ni_txpower;
2075 	ret = ieee80211_raw_output(vap, ni, m, &params);
2076 	IEEE80211_TX_UNLOCK(ic);
2077 	return (ret);
2078 }
2079 
2080 /*
2081  * Calculate capability information for mgt frames.
2082  */
2083 uint16_t
2084 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2085 {
2086 	struct ieee80211com *ic = vap->iv_ic;
2087 	uint16_t capinfo;
2088 
2089 	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2090 
2091 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2092 		capinfo = IEEE80211_CAPINFO_ESS;
2093 	else if (vap->iv_opmode == IEEE80211_M_IBSS)
2094 		capinfo = IEEE80211_CAPINFO_IBSS;
2095 	else
2096 		capinfo = 0;
2097 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2098 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2099 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2100 	    IEEE80211_IS_CHAN_2GHZ(chan))
2101 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2102 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2103 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2104 	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2105 		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2106 	return capinfo;
2107 }
2108 
2109 /*
2110  * Send a management frame.  The node is for the destination (or ic_bss
2111  * when in station mode).  Nodes other than ic_bss have their reference
2112  * count bumped to reflect our use for an indeterminant time.
2113  */
2114 int
2115 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2116 {
2117 #define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2118 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2119 	struct ieee80211vap *vap = ni->ni_vap;
2120 	struct ieee80211com *ic = ni->ni_ic;
2121 	struct ieee80211_node *bss = vap->iv_bss;
2122 	struct ieee80211_bpf_params params;
2123 	struct mbuf *m;
2124 	uint8_t *frm;
2125 	uint16_t capinfo;
2126 	int has_challenge, is_shared_key, ret, status;
2127 
2128 	KASSERT(ni != NULL, ("null node"));
2129 
2130 	/*
2131 	 * Hold a reference on the node so it doesn't go away until after
2132 	 * the xmit is complete all the way in the driver.  On error we
2133 	 * will remove our reference.
2134 	 */
2135 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2136 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2137 		__func__, __LINE__,
2138 		ni, ether_sprintf(ni->ni_macaddr),
2139 		ieee80211_node_refcnt(ni)+1);
2140 	ieee80211_ref_node(ni);
2141 
2142 	memset(&params, 0, sizeof(params));
2143 	switch (type) {
2144 
2145 	case IEEE80211_FC0_SUBTYPE_AUTH:
2146 		status = arg >> 16;
2147 		arg &= 0xffff;
2148 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2149 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2150 		    ni->ni_challenge != NULL);
2151 
2152 		/*
2153 		 * Deduce whether we're doing open authentication or
2154 		 * shared key authentication.  We do the latter if
2155 		 * we're in the middle of a shared key authentication
2156 		 * handshake or if we're initiating an authentication
2157 		 * request and configured to use shared key.
2158 		 */
2159 		is_shared_key = has_challenge ||
2160 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2161 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2162 		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
2163 
2164 		m = ieee80211_getmgtframe(&frm,
2165 			  ic->ic_headroom + sizeof(struct ieee80211_frame),
2166 			  3 * sizeof(uint16_t)
2167 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2168 				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
2169 		);
2170 		if (m == NULL)
2171 			senderr(ENOMEM, is_tx_nobuf);
2172 
2173 		((uint16_t *)frm)[0] =
2174 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2175 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
2176 		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
2177 		((uint16_t *)frm)[2] = htole16(status);/* status */
2178 
2179 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2180 			((uint16_t *)frm)[3] =
2181 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
2182 			    IEEE80211_ELEMID_CHALLENGE);
2183 			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2184 			    IEEE80211_CHALLENGE_LEN);
2185 			m->m_pkthdr.len = m->m_len =
2186 				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2187 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2188 				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2189 				    "request encrypt frame (%s)", __func__);
2190 				/* mark frame for encryption */
2191 				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2192 			}
2193 		} else
2194 			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2195 
2196 		/* XXX not right for shared key */
2197 		if (status == IEEE80211_STATUS_SUCCESS)
2198 			IEEE80211_NODE_STAT(ni, tx_auth);
2199 		else
2200 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
2201 
2202 		if (vap->iv_opmode == IEEE80211_M_STA)
2203 			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2204 				(void *) vap->iv_state);
2205 		break;
2206 
2207 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2208 		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2209 		    "send station deauthenticate (reason %d)", arg);
2210 		m = ieee80211_getmgtframe(&frm,
2211 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2212 			sizeof(uint16_t));
2213 		if (m == NULL)
2214 			senderr(ENOMEM, is_tx_nobuf);
2215 		*(uint16_t *)frm = htole16(arg);	/* reason */
2216 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2217 
2218 		IEEE80211_NODE_STAT(ni, tx_deauth);
2219 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2220 
2221 		ieee80211_node_unauthorize(ni);		/* port closed */
2222 		break;
2223 
2224 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2225 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2226 		/*
2227 		 * asreq frame format
2228 		 *	[2] capability information
2229 		 *	[2] listen interval
2230 		 *	[6*] current AP address (reassoc only)
2231 		 *	[tlv] ssid
2232 		 *	[tlv] supported rates
2233 		 *	[tlv] extended supported rates
2234 		 *	[4] power capability (optional)
2235 		 *	[28] supported channels (optional)
2236 		 *	[tlv] HT capabilities
2237 		 *	[tlv] WME (optional)
2238 		 *	[tlv] Vendor OUI HT capabilities (optional)
2239 		 *	[tlv] Atheros capabilities (if negotiated)
2240 		 *	[tlv] AppIE's (optional)
2241 		 */
2242 		m = ieee80211_getmgtframe(&frm,
2243 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2244 			 sizeof(uint16_t)
2245 		       + sizeof(uint16_t)
2246 		       + IEEE80211_ADDR_LEN
2247 		       + 2 + IEEE80211_NWID_LEN
2248 		       + 2 + IEEE80211_RATE_SIZE
2249 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2250 		       + 4
2251 		       + 2 + 26
2252 		       + sizeof(struct ieee80211_wme_info)
2253 		       + sizeof(struct ieee80211_ie_htcap)
2254 		       + 4 + sizeof(struct ieee80211_ie_htcap)
2255 #ifdef IEEE80211_SUPPORT_SUPERG
2256 		       + sizeof(struct ieee80211_ath_ie)
2257 #endif
2258 		       + (vap->iv_appie_wpa != NULL ?
2259 				vap->iv_appie_wpa->ie_len : 0)
2260 		       + (vap->iv_appie_assocreq != NULL ?
2261 				vap->iv_appie_assocreq->ie_len : 0)
2262 		);
2263 		if (m == NULL)
2264 			senderr(ENOMEM, is_tx_nobuf);
2265 
2266 		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2267 		    ("wrong mode %u", vap->iv_opmode));
2268 		capinfo = IEEE80211_CAPINFO_ESS;
2269 		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2270 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2271 		/*
2272 		 * NB: Some 11a AP's reject the request when
2273 		 *     short premable is set.
2274 		 */
2275 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2276 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2277 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2278 		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2279 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2280 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2281 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2282 		    (vap->iv_flags & IEEE80211_F_DOTH))
2283 			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2284 		*(uint16_t *)frm = htole16(capinfo);
2285 		frm += 2;
2286 
2287 		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2288 		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2289 						    bss->ni_intval));
2290 		frm += 2;
2291 
2292 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2293 			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2294 			frm += IEEE80211_ADDR_LEN;
2295 		}
2296 
2297 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2298 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2299 		frm = ieee80211_add_rsn(frm, vap);
2300 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2301 		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2302 			frm = ieee80211_add_powercapability(frm,
2303 			    ic->ic_curchan);
2304 			frm = ieee80211_add_supportedchannels(frm, ic);
2305 		}
2306 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2307 		    ni->ni_ies.htcap_ie != NULL &&
2308 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP)
2309 			frm = ieee80211_add_htcap(frm, ni);
2310 		frm = ieee80211_add_wpa(frm, vap);
2311 		if ((ic->ic_flags & IEEE80211_F_WME) &&
2312 		    ni->ni_ies.wme_ie != NULL)
2313 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2314 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2315 		    ni->ni_ies.htcap_ie != NULL &&
2316 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR)
2317 			frm = ieee80211_add_htcap_vendor(frm, ni);
2318 #ifdef IEEE80211_SUPPORT_SUPERG
2319 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2320 			frm = ieee80211_add_ath(frm,
2321 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2322 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2323 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2324 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2325 		}
2326 #endif /* IEEE80211_SUPPORT_SUPERG */
2327 		if (vap->iv_appie_assocreq != NULL)
2328 			frm = add_appie(frm, vap->iv_appie_assocreq);
2329 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2330 
2331 		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2332 			(void *) vap->iv_state);
2333 		break;
2334 
2335 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2336 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2337 		/*
2338 		 * asresp frame format
2339 		 *	[2] capability information
2340 		 *	[2] status
2341 		 *	[2] association ID
2342 		 *	[tlv] supported rates
2343 		 *	[tlv] extended supported rates
2344 		 *	[tlv] HT capabilities (standard, if STA enabled)
2345 		 *	[tlv] HT information (standard, if STA enabled)
2346 		 *	[tlv] WME (if configured and STA enabled)
2347 		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2348 		 *	[tlv] HT information (vendor OUI, if STA enabled)
2349 		 *	[tlv] Atheros capabilities (if STA enabled)
2350 		 *	[tlv] AppIE's (optional)
2351 		 */
2352 		m = ieee80211_getmgtframe(&frm,
2353 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2354 			 sizeof(uint16_t)
2355 		       + sizeof(uint16_t)
2356 		       + sizeof(uint16_t)
2357 		       + 2 + IEEE80211_RATE_SIZE
2358 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2359 		       + sizeof(struct ieee80211_ie_htcap) + 4
2360 		       + sizeof(struct ieee80211_ie_htinfo) + 4
2361 		       + sizeof(struct ieee80211_wme_param)
2362 #ifdef IEEE80211_SUPPORT_SUPERG
2363 		       + sizeof(struct ieee80211_ath_ie)
2364 #endif
2365 		       + (vap->iv_appie_assocresp != NULL ?
2366 				vap->iv_appie_assocresp->ie_len : 0)
2367 		);
2368 		if (m == NULL)
2369 			senderr(ENOMEM, is_tx_nobuf);
2370 
2371 		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2372 		*(uint16_t *)frm = htole16(capinfo);
2373 		frm += 2;
2374 
2375 		*(uint16_t *)frm = htole16(arg);	/* status */
2376 		frm += 2;
2377 
2378 		if (arg == IEEE80211_STATUS_SUCCESS) {
2379 			*(uint16_t *)frm = htole16(ni->ni_associd);
2380 			IEEE80211_NODE_STAT(ni, tx_assoc);
2381 		} else
2382 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2383 		frm += 2;
2384 
2385 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2386 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2387 		/* NB: respond according to what we received */
2388 		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2389 			frm = ieee80211_add_htcap(frm, ni);
2390 			frm = ieee80211_add_htinfo(frm, ni);
2391 		}
2392 		if ((vap->iv_flags & IEEE80211_F_WME) &&
2393 		    ni->ni_ies.wme_ie != NULL)
2394 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2395 		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2396 			frm = ieee80211_add_htcap_vendor(frm, ni);
2397 			frm = ieee80211_add_htinfo_vendor(frm, ni);
2398 		}
2399 #ifdef IEEE80211_SUPPORT_SUPERG
2400 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2401 			frm = ieee80211_add_ath(frm,
2402 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2403 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2404 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2405 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2406 #endif /* IEEE80211_SUPPORT_SUPERG */
2407 		if (vap->iv_appie_assocresp != NULL)
2408 			frm = add_appie(frm, vap->iv_appie_assocresp);
2409 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2410 		break;
2411 
2412 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2413 		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2414 		    "send station disassociate (reason %d)", arg);
2415 		m = ieee80211_getmgtframe(&frm,
2416 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2417 			sizeof(uint16_t));
2418 		if (m == NULL)
2419 			senderr(ENOMEM, is_tx_nobuf);
2420 		*(uint16_t *)frm = htole16(arg);	/* reason */
2421 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2422 
2423 		IEEE80211_NODE_STAT(ni, tx_disassoc);
2424 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2425 		break;
2426 
2427 	default:
2428 		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2429 		    "invalid mgmt frame type %u", type);
2430 		senderr(EINVAL, is_tx_unknownmgt);
2431 		/* NOTREACHED */
2432 	}
2433 
2434 	/* NB: force non-ProbeResp frames to the highest queue */
2435 	params.ibp_pri = WME_AC_VO;
2436 	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2437 	/* NB: we know all frames are unicast */
2438 	params.ibp_try0 = bss->ni_txparms->maxretry;
2439 	params.ibp_power = bss->ni_txpower;
2440 	return ieee80211_mgmt_output(ni, m, type, &params);
2441 bad:
2442 	ieee80211_free_node(ni);
2443 	return ret;
2444 #undef senderr
2445 #undef HTFLAGS
2446 }
2447 
2448 /*
2449  * Return an mbuf with a probe response frame in it.
2450  * Space is left to prepend and 802.11 header at the
2451  * front but it's left to the caller to fill in.
2452  */
2453 struct mbuf *
2454 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2455 {
2456 	struct ieee80211vap *vap = bss->ni_vap;
2457 	struct ieee80211com *ic = bss->ni_ic;
2458 	const struct ieee80211_rateset *rs;
2459 	struct mbuf *m;
2460 	uint16_t capinfo;
2461 	uint8_t *frm;
2462 
2463 	/*
2464 	 * probe response frame format
2465 	 *	[8] time stamp
2466 	 *	[2] beacon interval
2467 	 *	[2] cabability information
2468 	 *	[tlv] ssid
2469 	 *	[tlv] supported rates
2470 	 *	[tlv] parameter set (FH/DS)
2471 	 *	[tlv] parameter set (IBSS)
2472 	 *	[tlv] country (optional)
2473 	 *	[3] power control (optional)
2474 	 *	[5] channel switch announcement (CSA) (optional)
2475 	 *	[tlv] extended rate phy (ERP)
2476 	 *	[tlv] extended supported rates
2477 	 *	[tlv] RSN (optional)
2478 	 *	[tlv] HT capabilities
2479 	 *	[tlv] HT information
2480 	 *	[tlv] WPA (optional)
2481 	 *	[tlv] WME (optional)
2482 	 *	[tlv] Vendor OUI HT capabilities (optional)
2483 	 *	[tlv] Vendor OUI HT information (optional)
2484 	 *	[tlv] Atheros capabilities
2485 	 *	[tlv] AppIE's (optional)
2486 	 *	[tlv] Mesh ID (MBSS)
2487 	 *	[tlv] Mesh Conf (MBSS)
2488 	 */
2489 	m = ieee80211_getmgtframe(&frm,
2490 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2491 		 8
2492 	       + sizeof(uint16_t)
2493 	       + sizeof(uint16_t)
2494 	       + 2 + IEEE80211_NWID_LEN
2495 	       + 2 + IEEE80211_RATE_SIZE
2496 	       + 7	/* max(7,3) */
2497 	       + IEEE80211_COUNTRY_MAX_SIZE
2498 	       + 3
2499 	       + sizeof(struct ieee80211_csa_ie)
2500 	       + sizeof(struct ieee80211_quiet_ie)
2501 	       + 3
2502 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2503 	       + sizeof(struct ieee80211_ie_wpa)
2504 	       + sizeof(struct ieee80211_ie_htcap)
2505 	       + sizeof(struct ieee80211_ie_htinfo)
2506 	       + sizeof(struct ieee80211_ie_wpa)
2507 	       + sizeof(struct ieee80211_wme_param)
2508 	       + 4 + sizeof(struct ieee80211_ie_htcap)
2509 	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2510 #ifdef IEEE80211_SUPPORT_SUPERG
2511 	       + sizeof(struct ieee80211_ath_ie)
2512 #endif
2513 #ifdef IEEE80211_SUPPORT_MESH
2514 	       + 2 + IEEE80211_MESHID_LEN
2515 	       + sizeof(struct ieee80211_meshconf_ie)
2516 #endif
2517 	       + (vap->iv_appie_proberesp != NULL ?
2518 			vap->iv_appie_proberesp->ie_len : 0)
2519 	);
2520 	if (m == NULL) {
2521 		vap->iv_stats.is_tx_nobuf++;
2522 		return NULL;
2523 	}
2524 
2525 	memset(frm, 0, 8);	/* timestamp should be filled later */
2526 	frm += 8;
2527 	*(uint16_t *)frm = htole16(bss->ni_intval);
2528 	frm += 2;
2529 	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2530 	*(uint16_t *)frm = htole16(capinfo);
2531 	frm += 2;
2532 
2533 	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2534 	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2535 	frm = ieee80211_add_rates(frm, rs);
2536 
2537 	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2538 		*frm++ = IEEE80211_ELEMID_FHPARMS;
2539 		*frm++ = 5;
2540 		*frm++ = bss->ni_fhdwell & 0x00ff;
2541 		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2542 		*frm++ = IEEE80211_FH_CHANSET(
2543 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2544 		*frm++ = IEEE80211_FH_CHANPAT(
2545 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2546 		*frm++ = bss->ni_fhindex;
2547 	} else {
2548 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2549 		*frm++ = 1;
2550 		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2551 	}
2552 
2553 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2554 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2555 		*frm++ = 2;
2556 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2557 	}
2558 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2559 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2560 		frm = ieee80211_add_countryie(frm, ic);
2561 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2562 		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2563 			frm = ieee80211_add_powerconstraint(frm, vap);
2564 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2565 			frm = ieee80211_add_csa(frm, vap);
2566 	}
2567 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2568 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2569 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2570 			if (vap->iv_quiet)
2571 				frm = ieee80211_add_quiet(frm, vap);
2572 		}
2573 	}
2574 	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2575 		frm = ieee80211_add_erp(frm, ic);
2576 	frm = ieee80211_add_xrates(frm, rs);
2577 	frm = ieee80211_add_rsn(frm, vap);
2578 	/*
2579 	 * NB: legacy 11b clients do not get certain ie's.
2580 	 *     The caller identifies such clients by passing
2581 	 *     a token in legacy to us.  Could expand this to be
2582 	 *     any legacy client for stuff like HT ie's.
2583 	 */
2584 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2585 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2586 		frm = ieee80211_add_htcap(frm, bss);
2587 		frm = ieee80211_add_htinfo(frm, bss);
2588 	}
2589 	frm = ieee80211_add_wpa(frm, vap);
2590 	if (vap->iv_flags & IEEE80211_F_WME)
2591 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2592 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2593 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
2594 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2595 		frm = ieee80211_add_htcap_vendor(frm, bss);
2596 		frm = ieee80211_add_htinfo_vendor(frm, bss);
2597 	}
2598 #ifdef IEEE80211_SUPPORT_SUPERG
2599 	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
2600 	    legacy != IEEE80211_SEND_LEGACY_11B)
2601 		frm = ieee80211_add_athcaps(frm, bss);
2602 #endif
2603 	if (vap->iv_appie_proberesp != NULL)
2604 		frm = add_appie(frm, vap->iv_appie_proberesp);
2605 #ifdef IEEE80211_SUPPORT_MESH
2606 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2607 		frm = ieee80211_add_meshid(frm, vap);
2608 		frm = ieee80211_add_meshconf(frm, vap);
2609 	}
2610 #endif
2611 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2612 
2613 	return m;
2614 }
2615 
2616 /*
2617  * Send a probe response frame to the specified mac address.
2618  * This does not go through the normal mgt frame api so we
2619  * can specify the destination address and re-use the bss node
2620  * for the sta reference.
2621  */
2622 int
2623 ieee80211_send_proberesp(struct ieee80211vap *vap,
2624 	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2625 {
2626 	struct ieee80211_node *bss = vap->iv_bss;
2627 	struct ieee80211com *ic = vap->iv_ic;
2628 	struct ieee80211_frame *wh;
2629 	struct mbuf *m;
2630 	int ret;
2631 
2632 	if (vap->iv_state == IEEE80211_S_CAC) {
2633 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2634 		    "block %s frame in CAC state", "probe response");
2635 		vap->iv_stats.is_tx_badstate++;
2636 		return EIO;		/* XXX */
2637 	}
2638 
2639 	/*
2640 	 * Hold a reference on the node so it doesn't go away until after
2641 	 * the xmit is complete all the way in the driver.  On error we
2642 	 * will remove our reference.
2643 	 */
2644 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2645 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2646 	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2647 	    ieee80211_node_refcnt(bss)+1);
2648 	ieee80211_ref_node(bss);
2649 
2650 	m = ieee80211_alloc_proberesp(bss, legacy);
2651 	if (m == NULL) {
2652 		ieee80211_free_node(bss);
2653 		return ENOMEM;
2654 	}
2655 
2656 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2657 	KASSERT(m != NULL, ("no room for header"));
2658 
2659 	IEEE80211_TX_LOCK(ic);
2660 	wh = mtod(m, struct ieee80211_frame *);
2661 	ieee80211_send_setup(bss, m,
2662 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2663 	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2664 	/* XXX power management? */
2665 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2666 
2667 	M_WME_SETAC(m, WME_AC_BE);
2668 
2669 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2670 	    "send probe resp on channel %u to %s%s\n",
2671 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2672 	    legacy ? " <legacy>" : "");
2673 	IEEE80211_NODE_STAT(bss, tx_mgmt);
2674 
2675 	ret = ieee80211_raw_output(vap, bss, m, NULL);
2676 	IEEE80211_TX_UNLOCK(ic);
2677 	return (ret);
2678 }
2679 
2680 /*
2681  * Allocate and build a RTS (Request To Send) control frame.
2682  */
2683 struct mbuf *
2684 ieee80211_alloc_rts(struct ieee80211com *ic,
2685 	const uint8_t ra[IEEE80211_ADDR_LEN],
2686 	const uint8_t ta[IEEE80211_ADDR_LEN],
2687 	uint16_t dur)
2688 {
2689 	struct ieee80211_frame_rts *rts;
2690 	struct mbuf *m;
2691 
2692 	/* XXX honor ic_headroom */
2693 	m = m_gethdr(M_NOWAIT, MT_DATA);
2694 	if (m != NULL) {
2695 		rts = mtod(m, struct ieee80211_frame_rts *);
2696 		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2697 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2698 		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2699 		*(u_int16_t *)rts->i_dur = htole16(dur);
2700 		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2701 		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2702 
2703 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2704 	}
2705 	return m;
2706 }
2707 
2708 /*
2709  * Allocate and build a CTS (Clear To Send) control frame.
2710  */
2711 struct mbuf *
2712 ieee80211_alloc_cts(struct ieee80211com *ic,
2713 	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2714 {
2715 	struct ieee80211_frame_cts *cts;
2716 	struct mbuf *m;
2717 
2718 	/* XXX honor ic_headroom */
2719 	m = m_gethdr(M_NOWAIT, MT_DATA);
2720 	if (m != NULL) {
2721 		cts = mtod(m, struct ieee80211_frame_cts *);
2722 		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2723 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2724 		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2725 		*(u_int16_t *)cts->i_dur = htole16(dur);
2726 		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2727 
2728 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2729 	}
2730 	return m;
2731 }
2732 
2733 static void
2734 ieee80211_tx_mgt_timeout(void *arg)
2735 {
2736 	struct ieee80211vap *vap = arg;
2737 
2738 	IEEE80211_LOCK(vap->iv_ic);
2739 	if (vap->iv_state != IEEE80211_S_INIT &&
2740 	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2741 		/*
2742 		 * NB: it's safe to specify a timeout as the reason here;
2743 		 *     it'll only be used in the right state.
2744 		 */
2745 		ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
2746 			IEEE80211_SCAN_FAIL_TIMEOUT);
2747 	}
2748 	IEEE80211_UNLOCK(vap->iv_ic);
2749 }
2750 
2751 /*
2752  * This is the callback set on net80211-sourced transmitted
2753  * authentication request frames.
2754  *
2755  * This does a couple of things:
2756  *
2757  * + If the frame transmitted was a success, it schedules a future
2758  *   event which will transition the interface to scan.
2759  *   If a state transition _then_ occurs before that event occurs,
2760  *   said state transition will cancel this callout.
2761  *
2762  * + If the frame transmit was a failure, it immediately schedules
2763  *   the transition back to scan.
2764  */
2765 static void
2766 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2767 {
2768 	struct ieee80211vap *vap = ni->ni_vap;
2769 	enum ieee80211_state ostate = (enum ieee80211_state) arg;
2770 
2771 	/*
2772 	 * Frame transmit completed; arrange timer callback.  If
2773 	 * transmit was successfuly we wait for response.  Otherwise
2774 	 * we arrange an immediate callback instead of doing the
2775 	 * callback directly since we don't know what state the driver
2776 	 * is in (e.g. what locks it is holding).  This work should
2777 	 * not be too time-critical and not happen too often so the
2778 	 * added overhead is acceptable.
2779 	 *
2780 	 * XXX what happens if !acked but response shows up before callback?
2781 	 */
2782 	if (vap->iv_state == ostate) {
2783 		callout_reset(&vap->iv_mgtsend,
2784 			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2785 			ieee80211_tx_mgt_timeout, vap);
2786 	}
2787 }
2788 
2789 static void
2790 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2791 	struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni)
2792 {
2793 	struct ieee80211vap *vap = ni->ni_vap;
2794 	struct ieee80211com *ic = ni->ni_ic;
2795 	struct ieee80211_rateset *rs = &ni->ni_rates;
2796 	uint16_t capinfo;
2797 
2798 	/*
2799 	 * beacon frame format
2800 	 *	[8] time stamp
2801 	 *	[2] beacon interval
2802 	 *	[2] cabability information
2803 	 *	[tlv] ssid
2804 	 *	[tlv] supported rates
2805 	 *	[3] parameter set (DS)
2806 	 *	[8] CF parameter set (optional)
2807 	 *	[tlv] parameter set (IBSS/TIM)
2808 	 *	[tlv] country (optional)
2809 	 *	[3] power control (optional)
2810 	 *	[5] channel switch announcement (CSA) (optional)
2811 	 *	[tlv] extended rate phy (ERP)
2812 	 *	[tlv] extended supported rates
2813 	 *	[tlv] RSN parameters
2814 	 *	[tlv] HT capabilities
2815 	 *	[tlv] HT information
2816 	 * XXX Vendor-specific OIDs (e.g. Atheros)
2817 	 *	[tlv] WPA parameters
2818 	 *	[tlv] WME parameters
2819 	 *	[tlv] Vendor OUI HT capabilities (optional)
2820 	 *	[tlv] Vendor OUI HT information (optional)
2821 	 *	[tlv] Atheros capabilities (optional)
2822 	 *	[tlv] TDMA parameters (optional)
2823 	 *	[tlv] Mesh ID (MBSS)
2824 	 *	[tlv] Mesh Conf (MBSS)
2825 	 *	[tlv] application data (optional)
2826 	 */
2827 
2828 	memset(bo, 0, sizeof(*bo));
2829 
2830 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
2831 	frm += 8;
2832 	*(uint16_t *)frm = htole16(ni->ni_intval);
2833 	frm += 2;
2834 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
2835 	bo->bo_caps = (uint16_t *)frm;
2836 	*(uint16_t *)frm = htole16(capinfo);
2837 	frm += 2;
2838 	*frm++ = IEEE80211_ELEMID_SSID;
2839 	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2840 		*frm++ = ni->ni_esslen;
2841 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
2842 		frm += ni->ni_esslen;
2843 	} else
2844 		*frm++ = 0;
2845 	frm = ieee80211_add_rates(frm, rs);
2846 	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2847 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2848 		*frm++ = 1;
2849 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2850 	}
2851 	if (ic->ic_flags & IEEE80211_F_PCF) {
2852 		bo->bo_cfp = frm;
2853 		frm = ieee80211_add_cfparms(frm, ic);
2854 	}
2855 	bo->bo_tim = frm;
2856 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2857 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2858 		*frm++ = 2;
2859 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2860 		bo->bo_tim_len = 0;
2861 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2862 	    vap->iv_opmode == IEEE80211_M_MBSS) {
2863 		/* TIM IE is the same for Mesh and Hostap */
2864 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2865 
2866 		tie->tim_ie = IEEE80211_ELEMID_TIM;
2867 		tie->tim_len = 4;	/* length */
2868 		tie->tim_count = 0;	/* DTIM count */
2869 		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
2870 		tie->tim_bitctl = 0;	/* bitmap control */
2871 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
2872 		frm += sizeof(struct ieee80211_tim_ie);
2873 		bo->bo_tim_len = 1;
2874 	}
2875 	bo->bo_tim_trailer = frm;
2876 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2877 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2878 		frm = ieee80211_add_countryie(frm, ic);
2879 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2880 		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
2881 			frm = ieee80211_add_powerconstraint(frm, vap);
2882 		bo->bo_csa = frm;
2883 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2884 			frm = ieee80211_add_csa(frm, vap);
2885 	} else
2886 		bo->bo_csa = frm;
2887 
2888 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2889 		bo->bo_quiet = frm;
2890 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2891 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2892 			if (vap->iv_quiet)
2893 				frm = ieee80211_add_quiet(frm,vap);
2894 		}
2895 	} else
2896 		bo->bo_quiet = frm;
2897 
2898 	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
2899 		bo->bo_erp = frm;
2900 		frm = ieee80211_add_erp(frm, ic);
2901 	}
2902 	frm = ieee80211_add_xrates(frm, rs);
2903 	frm = ieee80211_add_rsn(frm, vap);
2904 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2905 		frm = ieee80211_add_htcap(frm, ni);
2906 		bo->bo_htinfo = frm;
2907 		frm = ieee80211_add_htinfo(frm, ni);
2908 	}
2909 	frm = ieee80211_add_wpa(frm, vap);
2910 	if (vap->iv_flags & IEEE80211_F_WME) {
2911 		bo->bo_wme = frm;
2912 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2913 	}
2914 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2915 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
2916 		frm = ieee80211_add_htcap_vendor(frm, ni);
2917 		frm = ieee80211_add_htinfo_vendor(frm, ni);
2918 	}
2919 #ifdef IEEE80211_SUPPORT_SUPERG
2920 	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
2921 		bo->bo_ath = frm;
2922 		frm = ieee80211_add_athcaps(frm, ni);
2923 	}
2924 #endif
2925 #ifdef IEEE80211_SUPPORT_TDMA
2926 	if (vap->iv_caps & IEEE80211_C_TDMA) {
2927 		bo->bo_tdma = frm;
2928 		frm = ieee80211_add_tdma(frm, vap);
2929 	}
2930 #endif
2931 	if (vap->iv_appie_beacon != NULL) {
2932 		bo->bo_appie = frm;
2933 		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
2934 		frm = add_appie(frm, vap->iv_appie_beacon);
2935 	}
2936 #ifdef IEEE80211_SUPPORT_MESH
2937 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2938 		frm = ieee80211_add_meshid(frm, vap);
2939 		bo->bo_meshconf = frm;
2940 		frm = ieee80211_add_meshconf(frm, vap);
2941 	}
2942 #endif
2943 	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
2944 	bo->bo_csa_trailer_len = frm - bo->bo_csa;
2945 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2946 }
2947 
2948 /*
2949  * Allocate a beacon frame and fillin the appropriate bits.
2950  */
2951 struct mbuf *
2952 ieee80211_beacon_alloc(struct ieee80211_node *ni,
2953 	struct ieee80211_beacon_offsets *bo)
2954 {
2955 	struct ieee80211vap *vap = ni->ni_vap;
2956 	struct ieee80211com *ic = ni->ni_ic;
2957 	struct ifnet *ifp = vap->iv_ifp;
2958 	struct ieee80211_frame *wh;
2959 	struct mbuf *m;
2960 	int pktlen;
2961 	uint8_t *frm;
2962 
2963 	/*
2964 	 * beacon frame format
2965 	 *	[8] time stamp
2966 	 *	[2] beacon interval
2967 	 *	[2] cabability information
2968 	 *	[tlv] ssid
2969 	 *	[tlv] supported rates
2970 	 *	[3] parameter set (DS)
2971 	 *	[8] CF parameter set (optional)
2972 	 *	[tlv] parameter set (IBSS/TIM)
2973 	 *	[tlv] country (optional)
2974 	 *	[3] power control (optional)
2975 	 *	[5] channel switch announcement (CSA) (optional)
2976 	 *	[tlv] extended rate phy (ERP)
2977 	 *	[tlv] extended supported rates
2978 	 *	[tlv] RSN parameters
2979 	 *	[tlv] HT capabilities
2980 	 *	[tlv] HT information
2981 	 *	[tlv] Vendor OUI HT capabilities (optional)
2982 	 *	[tlv] Vendor OUI HT information (optional)
2983 	 * XXX Vendor-specific OIDs (e.g. Atheros)
2984 	 *	[tlv] WPA parameters
2985 	 *	[tlv] WME parameters
2986 	 *	[tlv] TDMA parameters (optional)
2987 	 *	[tlv] Mesh ID (MBSS)
2988 	 *	[tlv] Mesh Conf (MBSS)
2989 	 *	[tlv] application data (optional)
2990 	 * NB: we allocate the max space required for the TIM bitmap.
2991 	 * XXX how big is this?
2992 	 */
2993 	pktlen =   8					/* time stamp */
2994 		 + sizeof(uint16_t)			/* beacon interval */
2995 		 + sizeof(uint16_t)			/* capabilities */
2996 		 + 2 + ni->ni_esslen			/* ssid */
2997 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
2998 	         + 2 + 1				/* DS parameters */
2999 		 + 2 + 6				/* CF parameters */
3000 		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
3001 		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
3002 		 + 2 + 1				/* power control */
3003 		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
3004 		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
3005 		 + 2 + 1				/* ERP */
3006 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3007 		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
3008 			2*sizeof(struct ieee80211_ie_wpa) : 0)
3009 		 /* XXX conditional? */
3010 		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3011 		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3012 		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
3013 			sizeof(struct ieee80211_wme_param) : 0)
3014 #ifdef IEEE80211_SUPPORT_SUPERG
3015 		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
3016 #endif
3017 #ifdef IEEE80211_SUPPORT_TDMA
3018 		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
3019 			sizeof(struct ieee80211_tdma_param) : 0)
3020 #endif
3021 #ifdef IEEE80211_SUPPORT_MESH
3022 		 + 2 + ni->ni_meshidlen
3023 		 + sizeof(struct ieee80211_meshconf_ie)
3024 #endif
3025 		 + IEEE80211_MAX_APPIE
3026 		 ;
3027 	m = ieee80211_getmgtframe(&frm,
3028 		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3029 	if (m == NULL) {
3030 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3031 			"%s: cannot get buf; size %u\n", __func__, pktlen);
3032 		vap->iv_stats.is_tx_nobuf++;
3033 		return NULL;
3034 	}
3035 	ieee80211_beacon_construct(m, frm, bo, ni);
3036 
3037 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
3038 	KASSERT(m != NULL, ("no space for 802.11 header?"));
3039 	wh = mtod(m, struct ieee80211_frame *);
3040 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3041 	    IEEE80211_FC0_SUBTYPE_BEACON;
3042 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3043 	*(uint16_t *)wh->i_dur = 0;
3044 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3045 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3046 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3047 	*(uint16_t *)wh->i_seq = 0;
3048 
3049 	return m;
3050 }
3051 
3052 /*
3053  * Update the dynamic parts of a beacon frame based on the current state.
3054  */
3055 int
3056 ieee80211_beacon_update(struct ieee80211_node *ni,
3057 	struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
3058 {
3059 	struct ieee80211vap *vap = ni->ni_vap;
3060 	struct ieee80211com *ic = ni->ni_ic;
3061 	int len_changed = 0;
3062 	uint16_t capinfo;
3063 	struct ieee80211_frame *wh;
3064 	ieee80211_seq seqno;
3065 
3066 	IEEE80211_LOCK(ic);
3067 	/*
3068 	 * Handle 11h channel change when we've reached the count.
3069 	 * We must recalculate the beacon frame contents to account
3070 	 * for the new channel.  Note we do this only for the first
3071 	 * vap that reaches this point; subsequent vaps just update
3072 	 * their beacon state to reflect the recalculated channel.
3073 	 */
3074 	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3075 	    vap->iv_csa_count == ic->ic_csa_count) {
3076 		vap->iv_csa_count = 0;
3077 		/*
3078 		 * Effect channel change before reconstructing the beacon
3079 		 * frame contents as many places reference ni_chan.
3080 		 */
3081 		if (ic->ic_csa_newchan != NULL)
3082 			ieee80211_csa_completeswitch(ic);
3083 		/*
3084 		 * NB: ieee80211_beacon_construct clears all pending
3085 		 * updates in bo_flags so we don't need to explicitly
3086 		 * clear IEEE80211_BEACON_CSA.
3087 		 */
3088 		ieee80211_beacon_construct(m,
3089 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni);
3090 
3091 		/* XXX do WME aggressive mode processing? */
3092 		IEEE80211_UNLOCK(ic);
3093 		return 1;		/* just assume length changed */
3094 	}
3095 
3096 	wh = mtod(m, struct ieee80211_frame *);
3097 	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3098 	*(uint16_t *)&wh->i_seq[0] =
3099 		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3100 	M_SEQNO_SET(m, seqno);
3101 
3102 	/* XXX faster to recalculate entirely or just changes? */
3103 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3104 	*bo->bo_caps = htole16(capinfo);
3105 
3106 	if (vap->iv_flags & IEEE80211_F_WME) {
3107 		struct ieee80211_wme_state *wme = &ic->ic_wme;
3108 
3109 		/*
3110 		 * Check for agressive mode change.  When there is
3111 		 * significant high priority traffic in the BSS
3112 		 * throttle back BE traffic by using conservative
3113 		 * parameters.  Otherwise BE uses agressive params
3114 		 * to optimize performance of legacy/non-QoS traffic.
3115 		 */
3116 		if (wme->wme_flags & WME_F_AGGRMODE) {
3117 			if (wme->wme_hipri_traffic >
3118 			    wme->wme_hipri_switch_thresh) {
3119 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3120 				    "%s: traffic %u, disable aggressive mode\n",
3121 				    __func__, wme->wme_hipri_traffic);
3122 				wme->wme_flags &= ~WME_F_AGGRMODE;
3123 				ieee80211_wme_updateparams_locked(vap);
3124 				wme->wme_hipri_traffic =
3125 					wme->wme_hipri_switch_hysteresis;
3126 			} else
3127 				wme->wme_hipri_traffic = 0;
3128 		} else {
3129 			if (wme->wme_hipri_traffic <=
3130 			    wme->wme_hipri_switch_thresh) {
3131 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3132 				    "%s: traffic %u, enable aggressive mode\n",
3133 				    __func__, wme->wme_hipri_traffic);
3134 				wme->wme_flags |= WME_F_AGGRMODE;
3135 				ieee80211_wme_updateparams_locked(vap);
3136 				wme->wme_hipri_traffic = 0;
3137 			} else
3138 				wme->wme_hipri_traffic =
3139 					wme->wme_hipri_switch_hysteresis;
3140 		}
3141 		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3142 			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
3143 			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3144 		}
3145 	}
3146 
3147 	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
3148 		ieee80211_ht_update_beacon(vap, bo);
3149 		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3150 	}
3151 #ifdef IEEE80211_SUPPORT_TDMA
3152 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3153 		/*
3154 		 * NB: the beacon is potentially updated every TBTT.
3155 		 */
3156 		ieee80211_tdma_update_beacon(vap, bo);
3157 	}
3158 #endif
3159 #ifdef IEEE80211_SUPPORT_MESH
3160 	if (vap->iv_opmode == IEEE80211_M_MBSS)
3161 		ieee80211_mesh_update_beacon(vap, bo);
3162 #endif
3163 
3164 	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3165 	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
3166 		struct ieee80211_tim_ie *tie =
3167 			(struct ieee80211_tim_ie *) bo->bo_tim;
3168 		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3169 			u_int timlen, timoff, i;
3170 			/*
3171 			 * ATIM/DTIM needs updating.  If it fits in the
3172 			 * current space allocated then just copy in the
3173 			 * new bits.  Otherwise we need to move any trailing
3174 			 * data to make room.  Note that we know there is
3175 			 * contiguous space because ieee80211_beacon_allocate
3176 			 * insures there is space in the mbuf to write a
3177 			 * maximal-size virtual bitmap (based on iv_max_aid).
3178 			 */
3179 			/*
3180 			 * Calculate the bitmap size and offset, copy any
3181 			 * trailer out of the way, and then copy in the
3182 			 * new bitmap and update the information element.
3183 			 * Note that the tim bitmap must contain at least
3184 			 * one byte and any offset must be even.
3185 			 */
3186 			if (vap->iv_ps_pending != 0) {
3187 				timoff = 128;		/* impossibly large */
3188 				for (i = 0; i < vap->iv_tim_len; i++)
3189 					if (vap->iv_tim_bitmap[i]) {
3190 						timoff = i &~ 1;
3191 						break;
3192 					}
3193 				KASSERT(timoff != 128, ("tim bitmap empty!"));
3194 				for (i = vap->iv_tim_len-1; i >= timoff; i--)
3195 					if (vap->iv_tim_bitmap[i])
3196 						break;
3197 				timlen = 1 + (i - timoff);
3198 			} else {
3199 				timoff = 0;
3200 				timlen = 1;
3201 			}
3202 			if (timlen != bo->bo_tim_len) {
3203 				/* copy up/down trailer */
3204 				int adjust = tie->tim_bitmap+timlen
3205 					   - bo->bo_tim_trailer;
3206 				ovbcopy(bo->bo_tim_trailer,
3207 				    bo->bo_tim_trailer+adjust,
3208 				    bo->bo_tim_trailer_len);
3209 				bo->bo_tim_trailer += adjust;
3210 				bo->bo_erp += adjust;
3211 				bo->bo_htinfo += adjust;
3212 #ifdef IEEE80211_SUPPORT_SUPERG
3213 				bo->bo_ath += adjust;
3214 #endif
3215 #ifdef IEEE80211_SUPPORT_TDMA
3216 				bo->bo_tdma += adjust;
3217 #endif
3218 #ifdef IEEE80211_SUPPORT_MESH
3219 				bo->bo_meshconf += adjust;
3220 #endif
3221 				bo->bo_appie += adjust;
3222 				bo->bo_wme += adjust;
3223 				bo->bo_csa += adjust;
3224 				bo->bo_quiet += adjust;
3225 				bo->bo_tim_len = timlen;
3226 
3227 				/* update information element */
3228 				tie->tim_len = 3 + timlen;
3229 				tie->tim_bitctl = timoff;
3230 				len_changed = 1;
3231 			}
3232 			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
3233 				bo->bo_tim_len);
3234 
3235 			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
3236 
3237 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
3238 				"%s: TIM updated, pending %u, off %u, len %u\n",
3239 				__func__, vap->iv_ps_pending, timoff, timlen);
3240 		}
3241 		/* count down DTIM period */
3242 		if (tie->tim_count == 0)
3243 			tie->tim_count = tie->tim_period - 1;
3244 		else
3245 			tie->tim_count--;
3246 		/* update state for buffered multicast frames on DTIM */
3247 		if (mcast && tie->tim_count == 0)
3248 			tie->tim_bitctl |= 1;
3249 		else
3250 			tie->tim_bitctl &= ~1;
3251 		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
3252 			struct ieee80211_csa_ie *csa =
3253 			    (struct ieee80211_csa_ie *) bo->bo_csa;
3254 
3255 			/*
3256 			 * Insert or update CSA ie.  If we're just starting
3257 			 * to count down to the channel switch then we need
3258 			 * to insert the CSA ie.  Otherwise we just need to
3259 			 * drop the count.  The actual change happens above
3260 			 * when the vap's count reaches the target count.
3261 			 */
3262 			if (vap->iv_csa_count == 0) {
3263 				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
3264 				bo->bo_erp += sizeof(*csa);
3265 				bo->bo_htinfo += sizeof(*csa);
3266 				bo->bo_wme += sizeof(*csa);
3267 #ifdef IEEE80211_SUPPORT_SUPERG
3268 				bo->bo_ath += sizeof(*csa);
3269 #endif
3270 #ifdef IEEE80211_SUPPORT_TDMA
3271 				bo->bo_tdma += sizeof(*csa);
3272 #endif
3273 #ifdef IEEE80211_SUPPORT_MESH
3274 				bo->bo_meshconf += sizeof(*csa);
3275 #endif
3276 				bo->bo_appie += sizeof(*csa);
3277 				bo->bo_csa_trailer_len += sizeof(*csa);
3278 				bo->bo_quiet += sizeof(*csa);
3279 				bo->bo_tim_trailer_len += sizeof(*csa);
3280 				m->m_len += sizeof(*csa);
3281 				m->m_pkthdr.len += sizeof(*csa);
3282 
3283 				ieee80211_add_csa(bo->bo_csa, vap);
3284 			} else
3285 				csa->csa_count--;
3286 			vap->iv_csa_count++;
3287 			/* NB: don't clear IEEE80211_BEACON_CSA */
3288 		}
3289 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3290 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){
3291 			if (vap->iv_quiet)
3292 				ieee80211_add_quiet(bo->bo_quiet, vap);
3293 		}
3294 		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3295 			/*
3296 			 * ERP element needs updating.
3297 			 */
3298 			(void) ieee80211_add_erp(bo->bo_erp, ic);
3299 			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3300 		}
3301 #ifdef IEEE80211_SUPPORT_SUPERG
3302 		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
3303 			ieee80211_add_athcaps(bo->bo_ath, ni);
3304 			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3305 		}
3306 #endif
3307 	}
3308 	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3309 		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3310 		int aielen;
3311 		uint8_t *frm;
3312 
3313 		aielen = 0;
3314 		if (aie != NULL)
3315 			aielen += aie->ie_len;
3316 		if (aielen != bo->bo_appie_len) {
3317 			/* copy up/down trailer */
3318 			int adjust = aielen - bo->bo_appie_len;
3319 			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3320 				bo->bo_tim_trailer_len);
3321 			bo->bo_tim_trailer += adjust;
3322 			bo->bo_appie += adjust;
3323 			bo->bo_appie_len = aielen;
3324 
3325 			len_changed = 1;
3326 		}
3327 		frm = bo->bo_appie;
3328 		if (aie != NULL)
3329 			frm  = add_appie(frm, aie);
3330 		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3331 	}
3332 	IEEE80211_UNLOCK(ic);
3333 
3334 	return len_changed;
3335 }
3336 
3337 /*
3338  * Do Ethernet-LLC encapsulation for each payload in a fast frame
3339  * tunnel encapsulation.  The frame is assumed to have an Ethernet
3340  * header at the front that must be stripped before prepending the
3341  * LLC followed by the Ethernet header passed in (with an Ethernet
3342  * type that specifies the payload size).
3343  */
3344 struct mbuf *
3345 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
3346 	const struct ether_header *eh)
3347 {
3348 	struct llc *llc;
3349 	uint16_t payload;
3350 
3351 	/* XXX optimize by combining m_adj+M_PREPEND */
3352 	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
3353 	llc = mtod(m, struct llc *);
3354 	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
3355 	llc->llc_control = LLC_UI;
3356 	llc->llc_snap.org_code[0] = 0;
3357 	llc->llc_snap.org_code[1] = 0;
3358 	llc->llc_snap.org_code[2] = 0;
3359 	llc->llc_snap.ether_type = eh->ether_type;
3360 	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
3361 
3362 	M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
3363 	if (m == NULL) {		/* XXX cannot happen */
3364 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
3365 			"%s: no space for ether_header\n", __func__);
3366 		vap->iv_stats.is_tx_nobuf++;
3367 		return NULL;
3368 	}
3369 	ETHER_HEADER_COPY(mtod(m, void *), eh);
3370 	mtod(m, struct ether_header *)->ether_type = htons(payload);
3371 	return m;
3372 }
3373 
3374 /*
3375  * Complete an mbuf transmission.
3376  *
3377  * For now, this simply processes a completed frame after the
3378  * driver has completed it's transmission and/or retransmission.
3379  * It assumes the frame is an 802.11 encapsulated frame.
3380  *
3381  * Later on it will grow to become the exit path for a given frame
3382  * from the driver and, depending upon how it's been encapsulated
3383  * and already transmitted, it may end up doing A-MPDU retransmission,
3384  * power save requeuing, etc.
3385  *
3386  * In order for the above to work, the driver entry point to this
3387  * must not hold any driver locks.  Thus, the driver needs to delay
3388  * any actual mbuf completion until it can release said locks.
3389  *
3390  * This frees the mbuf and if the mbuf has a node reference,
3391  * the node reference will be freed.
3392  */
3393 void
3394 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
3395 {
3396 
3397 	if (ni != NULL) {
3398 		if (m->m_flags & M_TXCB)
3399 			ieee80211_process_callback(ni, m, status);
3400 		ieee80211_free_node(ni);
3401 	}
3402 	m_freem(m);
3403 }
3404