xref: /freebsd/sys/net80211/ieee80211_output.c (revision 35c0a8c449fd2b7f75029ebed5e10852240f0865)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2001 Atsushi Onoe
5  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_wlan.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/malloc.h>
38 #include <sys/mbuf.h>
39 #include <sys/endian.h>
40 
41 #include <sys/socket.h>
42 
43 #include <net/bpf.h>
44 #include <net/ethernet.h>
45 #include <net/if.h>
46 #include <net/if_var.h>
47 #include <net/if_llc.h>
48 #include <net/if_media.h>
49 #include <net/if_private.h>
50 #include <net/if_vlan_var.h>
51 
52 #include <net80211/ieee80211_var.h>
53 #include <net80211/ieee80211_regdomain.h>
54 #ifdef IEEE80211_SUPPORT_SUPERG
55 #include <net80211/ieee80211_superg.h>
56 #endif
57 #ifdef IEEE80211_SUPPORT_TDMA
58 #include <net80211/ieee80211_tdma.h>
59 #endif
60 #include <net80211/ieee80211_wds.h>
61 #include <net80211/ieee80211_mesh.h>
62 #include <net80211/ieee80211_vht.h>
63 
64 #if defined(INET) || defined(INET6)
65 #include <netinet/in.h>
66 #endif
67 
68 #ifdef INET
69 #include <netinet/if_ether.h>
70 #include <netinet/in_systm.h>
71 #include <netinet/ip.h>
72 #endif
73 #ifdef INET6
74 #include <netinet/ip6.h>
75 #endif
76 
77 #include <security/mac/mac_framework.h>
78 
79 #define	ETHER_HEADER_COPY(dst, src) \
80 	memcpy(dst, src, sizeof(struct ether_header))
81 
82 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
83 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
84 static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
85 
86 #ifdef IEEE80211_DEBUG
87 /*
88  * Decide if an outbound management frame should be
89  * printed when debugging is enabled.  This filters some
90  * of the less interesting frames that come frequently
91  * (e.g. beacons).
92  */
93 static __inline int
94 doprint(struct ieee80211vap *vap, int subtype)
95 {
96 	switch (subtype) {
97 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
98 		return (vap->iv_opmode == IEEE80211_M_IBSS);
99 	}
100 	return 1;
101 }
102 #endif
103 
104 /*
105  * Transmit a frame to the given destination on the given VAP.
106  *
107  * It's up to the caller to figure out the details of who this
108  * is going to and resolving the node.
109  *
110  * This routine takes care of queuing it for power save,
111  * A-MPDU state stuff, fast-frames state stuff, encapsulation
112  * if required, then passing it up to the driver layer.
113  *
114  * This routine (for now) consumes the mbuf and frees the node
115  * reference; it ideally will return a TX status which reflects
116  * whether the mbuf was consumed or not, so the caller can
117  * free the mbuf (if appropriate) and the node reference (again,
118  * if appropriate.)
119  */
120 int
121 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
122     struct ieee80211_node *ni)
123 {
124 	struct ieee80211com *ic = vap->iv_ic;
125 	struct ifnet *ifp = vap->iv_ifp;
126 	int mcast;
127 	int do_ampdu = 0;
128 #ifdef IEEE80211_SUPPORT_SUPERG
129 	int do_amsdu = 0;
130 	int do_ampdu_amsdu = 0;
131 	int no_ampdu = 1; /* Will be set to 0 if ampdu is active */
132 	int do_ff = 0;
133 #endif
134 
135 	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
136 	    (m->m_flags & M_PWR_SAV) == 0) {
137 		/*
138 		 * Station in power save mode; pass the frame
139 		 * to the 802.11 layer and continue.  We'll get
140 		 * the frame back when the time is right.
141 		 * XXX lose WDS vap linkage?
142 		 */
143 		if (ieee80211_pwrsave(ni, m) != 0)
144 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
145 		ieee80211_free_node(ni);
146 
147 		/*
148 		 * We queued it fine, so tell the upper layer
149 		 * that we consumed it.
150 		 */
151 		return (0);
152 	}
153 	/* calculate priority so drivers can find the tx queue */
154 	if (ieee80211_classify(ni, m)) {
155 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
156 		    ni->ni_macaddr, NULL,
157 		    "%s", "classification failure");
158 		vap->iv_stats.is_tx_classify++;
159 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
160 		m_freem(m);
161 		ieee80211_free_node(ni);
162 
163 		/* XXX better status? */
164 		return (0);
165 	}
166 	/*
167 	 * Stash the node pointer.  Note that we do this after
168 	 * any call to ieee80211_dwds_mcast because that code
169 	 * uses any existing value for rcvif to identify the
170 	 * interface it (might have been) received on.
171 	 */
172 	MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
173 	m->m_pkthdr.rcvif = (void *)ni;
174 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
175 
176 	BPF_MTAP(ifp, m);		/* 802.3 tx */
177 
178 	/*
179 	 * Figure out if we can do A-MPDU, A-MSDU or FF.
180 	 *
181 	 * A-MPDU depends upon vap/node config.
182 	 * A-MSDU depends upon vap/node config.
183 	 * FF depends upon vap config, IE and whether
184 	 *  it's 11abg (and not 11n/11ac/etc.)
185 	 *
186 	 * Note that these flags indiciate whether we can do
187 	 * it at all, rather than the situation (eg traffic type.)
188 	 */
189 	do_ampdu = ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
190 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX));
191 #ifdef IEEE80211_SUPPORT_SUPERG
192 	do_amsdu = ((ni->ni_flags & IEEE80211_NODE_AMSDU_TX) &&
193 	    (vap->iv_flags_ht & IEEE80211_FHT_AMSDU_TX));
194 	do_ff =
195 	    ((ni->ni_flags & IEEE80211_NODE_HT) == 0) &&
196 	    ((ni->ni_flags & IEEE80211_NODE_VHT) == 0) &&
197 	    (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF));
198 #endif
199 
200 	/*
201 	 * Check if A-MPDU tx aggregation is setup or if we
202 	 * should try to enable it.  The sta must be associated
203 	 * with HT and A-MPDU enabled for use.  When the policy
204 	 * routine decides we should enable A-MPDU we issue an
205 	 * ADDBA request and wait for a reply.  The frame being
206 	 * encapsulated will go out w/o using A-MPDU, or possibly
207 	 * it might be collected by the driver and held/retransmit.
208 	 * The default ic_ampdu_enable routine handles staggering
209 	 * ADDBA requests in case the receiver NAK's us or we are
210 	 * otherwise unable to establish a BA stream.
211 	 *
212 	 * Don't treat group-addressed frames as candidates for aggregation;
213 	 * net80211 doesn't support 802.11aa-2012 and so group addressed
214 	 * frames will always have sequence numbers allocated from the NON_QOS
215 	 * TID.
216 	 */
217 	if (do_ampdu) {
218 		if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) {
219 			int tid = WME_AC_TO_TID(M_WME_GETAC(m));
220 			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
221 
222 			ieee80211_txampdu_count_packet(tap);
223 			if (IEEE80211_AMPDU_RUNNING(tap)) {
224 				/*
225 				 * Operational, mark frame for aggregation.
226 				 *
227 				 * XXX do tx aggregation here
228 				 */
229 				m->m_flags |= M_AMPDU_MPDU;
230 			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
231 			    ic->ic_ampdu_enable(ni, tap)) {
232 				/*
233 				 * Not negotiated yet, request service.
234 				 */
235 				ieee80211_ampdu_request(ni, tap);
236 				/* XXX hold frame for reply? */
237 			}
238 			/*
239 			 * Now update the no-ampdu flag.  A-MPDU may have been
240 			 * started or administratively disabled above; so now we
241 			 * know whether we're running yet or not.
242 			 *
243 			 * This will let us know whether we should be doing A-MSDU
244 			 * at this point.  We only do A-MSDU if we're either not
245 			 * doing A-MPDU, or A-MPDU is NACKed, or A-MPDU + A-MSDU
246 			 * is available.
247 			 *
248 			 * Whilst here, update the amsdu-ampdu flag.  The above may
249 			 * have also set or cleared the amsdu-in-ampdu txa_flags
250 			 * combination so we can correctly do A-MPDU + A-MSDU.
251 			 */
252 #ifdef IEEE80211_SUPPORT_SUPERG
253 			no_ampdu = (! IEEE80211_AMPDU_RUNNING(tap)
254 			    || (IEEE80211_AMPDU_NACKED(tap)));
255 			do_ampdu_amsdu = IEEE80211_AMPDU_RUNNING_AMSDU(tap);
256 #endif
257 		}
258 	}
259 
260 #ifdef IEEE80211_SUPPORT_SUPERG
261 	/*
262 	 * Check for AMSDU/FF; queue for aggregation
263 	 *
264 	 * Note: we don't bother trying to do fast frames or
265 	 * A-MSDU encapsulation for 802.3 drivers.  Now, we
266 	 * likely could do it for FF (because it's a magic
267 	 * atheros tunnel LLC type) but I don't think we're going
268 	 * to really need to.  For A-MSDU we'd have to set the
269 	 * A-MSDU QoS bit in the wifi header, so we just plain
270 	 * can't do it.
271 	 */
272 	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
273 		if ((! mcast) &&
274 		    (do_ampdu_amsdu || (no_ampdu && do_amsdu)) &&
275 		    ieee80211_amsdu_tx_ok(ni)) {
276 			m = ieee80211_amsdu_check(ni, m);
277 			if (m == NULL) {
278 				/* NB: any ni ref held on stageq */
279 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
280 				    "%s: amsdu_check queued frame\n",
281 				    __func__);
282 				return (0);
283 			}
284 		} else if ((! mcast) && do_ff) {
285 			m = ieee80211_ff_check(ni, m);
286 			if (m == NULL) {
287 				/* NB: any ni ref held on stageq */
288 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
289 				    "%s: ff_check queued frame\n",
290 				    __func__);
291 				return (0);
292 			}
293 		}
294 	}
295 #endif /* IEEE80211_SUPPORT_SUPERG */
296 
297 	/*
298 	 * Grab the TX lock - serialise the TX process from this
299 	 * point (where TX state is being checked/modified)
300 	 * through to driver queue.
301 	 */
302 	IEEE80211_TX_LOCK(ic);
303 
304 	/*
305 	 * XXX make the encap and transmit code a separate function
306 	 * so things like the FF (and later A-MSDU) path can just call
307 	 * it for flushed frames.
308 	 */
309 	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
310 		/*
311 		 * Encapsulate the packet in prep for transmission.
312 		 */
313 		m = ieee80211_encap(vap, ni, m);
314 		if (m == NULL) {
315 			/* NB: stat+msg handled in ieee80211_encap */
316 			IEEE80211_TX_UNLOCK(ic);
317 			ieee80211_free_node(ni);
318 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
319 			return (ENOBUFS);
320 		}
321 	}
322 	(void) ieee80211_parent_xmitpkt(ic, m);
323 
324 	/*
325 	 * Unlock at this point - no need to hold it across
326 	 * ieee80211_free_node() (ie, the comlock)
327 	 */
328 	IEEE80211_TX_UNLOCK(ic);
329 	ic->ic_lastdata = ticks;
330 
331 	return (0);
332 }
333 
334 /*
335  * Send the given mbuf through the given vap.
336  *
337  * This consumes the mbuf regardless of whether the transmit
338  * was successful or not.
339  *
340  * This does none of the initial checks that ieee80211_start()
341  * does (eg CAC timeout, interface wakeup) - the caller must
342  * do this first.
343  */
344 static int
345 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
346 {
347 #define	IS_DWDS(vap) \
348 	(vap->iv_opmode == IEEE80211_M_WDS && \
349 	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
350 	struct ieee80211com *ic = vap->iv_ic;
351 	struct ifnet *ifp = vap->iv_ifp;
352 	struct ieee80211_node *ni;
353 	struct ether_header *eh;
354 
355 	/*
356 	 * Cancel any background scan.
357 	 */
358 	if (ic->ic_flags & IEEE80211_F_SCAN)
359 		ieee80211_cancel_anyscan(vap);
360 	/*
361 	 * Find the node for the destination so we can do
362 	 * things like power save and fast frames aggregation.
363 	 *
364 	 * NB: past this point various code assumes the first
365 	 *     mbuf has the 802.3 header present (and contiguous).
366 	 */
367 	ni = NULL;
368 	if (m->m_len < sizeof(struct ether_header) &&
369 	   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
370 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
371 		    "discard frame, %s\n", "m_pullup failed");
372 		vap->iv_stats.is_tx_nobuf++;	/* XXX */
373 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
374 		return (ENOBUFS);
375 	}
376 	eh = mtod(m, struct ether_header *);
377 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
378 		if (IS_DWDS(vap)) {
379 			/*
380 			 * Only unicast frames from the above go out
381 			 * DWDS vaps; multicast frames are handled by
382 			 * dispatching the frame as it comes through
383 			 * the AP vap (see below).
384 			 */
385 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
386 			    eh->ether_dhost, "mcast", "%s", "on DWDS");
387 			vap->iv_stats.is_dwds_mcast++;
388 			m_freem(m);
389 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
390 			/* XXX better status? */
391 			return (ENOBUFS);
392 		}
393 		if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
394 			/*
395 			 * Spam DWDS vap's w/ multicast traffic.
396 			 */
397 			/* XXX only if dwds in use? */
398 			ieee80211_dwds_mcast(vap, m);
399 		}
400 	}
401 #ifdef IEEE80211_SUPPORT_MESH
402 	if (vap->iv_opmode != IEEE80211_M_MBSS) {
403 #endif
404 		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
405 		if (ni == NULL) {
406 			/* NB: ieee80211_find_txnode does stat+msg */
407 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
408 			m_freem(m);
409 			/* XXX better status? */
410 			return (ENOBUFS);
411 		}
412 		if (ni->ni_associd == 0 &&
413 		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
414 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
415 			    eh->ether_dhost, NULL,
416 			    "sta not associated (type 0x%04x)",
417 			    htons(eh->ether_type));
418 			vap->iv_stats.is_tx_notassoc++;
419 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
420 			m_freem(m);
421 			ieee80211_free_node(ni);
422 			/* XXX better status? */
423 			return (ENOBUFS);
424 		}
425 #ifdef IEEE80211_SUPPORT_MESH
426 	} else {
427 		if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
428 			/*
429 			 * Proxy station only if configured.
430 			 */
431 			if (!ieee80211_mesh_isproxyena(vap)) {
432 				IEEE80211_DISCARD_MAC(vap,
433 				    IEEE80211_MSG_OUTPUT |
434 				    IEEE80211_MSG_MESH,
435 				    eh->ether_dhost, NULL,
436 				    "%s", "proxy not enabled");
437 				vap->iv_stats.is_mesh_notproxy++;
438 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
439 				m_freem(m);
440 				/* XXX better status? */
441 				return (ENOBUFS);
442 			}
443 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
444 			    "forward frame from DS SA(%6D), DA(%6D)\n",
445 			    eh->ether_shost, ":",
446 			    eh->ether_dhost, ":");
447 			ieee80211_mesh_proxy_check(vap, eh->ether_shost);
448 		}
449 		ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
450 		if (ni == NULL) {
451 			/*
452 			 * NB: ieee80211_mesh_discover holds/disposes
453 			 * frame (e.g. queueing on path discovery).
454 			 */
455 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
456 			/* XXX better status? */
457 			return (ENOBUFS);
458 		}
459 	}
460 #endif
461 
462 	/*
463 	 * We've resolved the sender, so attempt to transmit it.
464 	 */
465 
466 	if (vap->iv_state == IEEE80211_S_SLEEP) {
467 		/*
468 		 * In power save; queue frame and then  wakeup device
469 		 * for transmit.
470 		 */
471 		ic->ic_lastdata = ticks;
472 		if (ieee80211_pwrsave(ni, m) != 0)
473 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
474 		ieee80211_free_node(ni);
475 		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
476 		return (0);
477 	}
478 
479 	if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
480 		return (ENOBUFS);
481 	return (0);
482 #undef	IS_DWDS
483 }
484 
485 /*
486  * Start method for vap's.  All packets from the stack come
487  * through here.  We handle common processing of the packets
488  * before dispatching them to the underlying device.
489  *
490  * if_transmit() requires that the mbuf be consumed by this call
491  * regardless of the return condition.
492  */
493 int
494 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
495 {
496 	struct ieee80211vap *vap = ifp->if_softc;
497 	struct ieee80211com *ic = vap->iv_ic;
498 
499 	/*
500 	 * No data frames go out unless we're running.
501 	 * Note in particular this covers CAC and CSA
502 	 * states (though maybe we should check muting
503 	 * for CSA).
504 	 */
505 	if (vap->iv_state != IEEE80211_S_RUN &&
506 	    vap->iv_state != IEEE80211_S_SLEEP) {
507 		IEEE80211_LOCK(ic);
508 		/* re-check under the com lock to avoid races */
509 		if (vap->iv_state != IEEE80211_S_RUN &&
510 		    vap->iv_state != IEEE80211_S_SLEEP) {
511 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
512 			    "%s: ignore queue, in %s state\n",
513 			    __func__, ieee80211_state_name[vap->iv_state]);
514 			vap->iv_stats.is_tx_badstate++;
515 			IEEE80211_UNLOCK(ic);
516 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
517 			m_freem(m);
518 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
519 			return (ENETDOWN);
520 		}
521 		IEEE80211_UNLOCK(ic);
522 	}
523 
524 	/*
525 	 * Sanitize mbuf flags for net80211 use.  We cannot
526 	 * clear M_PWR_SAV or M_MORE_DATA because these may
527 	 * be set for frames that are re-submitted from the
528 	 * power save queue.
529 	 *
530 	 * NB: This must be done before ieee80211_classify as
531 	 *     it marks EAPOL in frames with M_EAPOL.
532 	 */
533 	m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
534 
535 	/*
536 	 * Bump to the packet transmission path.
537 	 * The mbuf will be consumed here.
538 	 */
539 	return (ieee80211_start_pkt(vap, m));
540 }
541 
542 void
543 ieee80211_vap_qflush(struct ifnet *ifp)
544 {
545 
546 	/* Empty for now */
547 }
548 
549 /*
550  * 802.11 raw output routine.
551  *
552  * XXX TODO: this (and other send routines) should correctly
553  * XXX keep the pwr mgmt bit set if it decides to call into the
554  * XXX driver to send a frame whilst the state is SLEEP.
555  *
556  * Otherwise the peer may decide that we're awake and flood us
557  * with traffic we are still too asleep to receive!
558  */
559 int
560 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
561     struct mbuf *m, const struct ieee80211_bpf_params *params)
562 {
563 	struct ieee80211com *ic = vap->iv_ic;
564 	int error;
565 
566 	/*
567 	 * Set node - the caller has taken a reference, so ensure
568 	 * that the mbuf has the same node value that
569 	 * it would if it were going via the normal path.
570 	 */
571 	MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
572 	m->m_pkthdr.rcvif = (void *)ni;
573 
574 	/*
575 	 * Attempt to add bpf transmit parameters.
576 	 *
577 	 * For now it's ok to fail; the raw_xmit api still takes
578 	 * them as an option.
579 	 *
580 	 * Later on when ic_raw_xmit() has params removed,
581 	 * they'll have to be added - so fail the transmit if
582 	 * they can't be.
583 	 */
584 	if (params)
585 		(void) ieee80211_add_xmit_params(m, params);
586 
587 	error = ic->ic_raw_xmit(ni, m, params);
588 	if (error) {
589 		if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
590 		ieee80211_free_node(ni);
591 	}
592 	return (error);
593 }
594 
595 static int
596 ieee80211_validate_frame(struct mbuf *m,
597     const struct ieee80211_bpf_params *params)
598 {
599 	struct ieee80211_frame *wh;
600 	int type;
601 
602 	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
603 		return (EINVAL);
604 
605 	wh = mtod(m, struct ieee80211_frame *);
606 	if (!IEEE80211_IS_FC0_CHECK_VER(wh, IEEE80211_FC0_VERSION_0))
607 		return (EINVAL);
608 
609 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
610 	if (type != IEEE80211_FC0_TYPE_DATA) {
611 		if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) !=
612 		    IEEE80211_FC1_DIR_NODS)
613 			return (EINVAL);
614 
615 		if (type != IEEE80211_FC0_TYPE_MGT &&
616 		    (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) != 0)
617 			return (EINVAL);
618 
619 		/* XXX skip other field checks? */
620 	}
621 
622 	if ((params && (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0) ||
623 	    (IEEE80211_IS_PROTECTED(wh))) {
624 		int subtype;
625 
626 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
627 
628 		/*
629 		 * See IEEE Std 802.11-2012,
630 		 * 8.2.4.1.9 'Protected Frame field'
631 		 */
632 		/* XXX no support for robust management frames yet. */
633 		if (!(type == IEEE80211_FC0_TYPE_DATA ||
634 		    (type == IEEE80211_FC0_TYPE_MGT &&
635 		     subtype == IEEE80211_FC0_SUBTYPE_AUTH)))
636 			return (EINVAL);
637 
638 		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
639 	}
640 
641 	if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh))
642 		return (EINVAL);
643 
644 	return (0);
645 }
646 
647 static int
648 ieee80211_validate_rate(struct ieee80211_node *ni, uint8_t rate)
649 {
650 	struct ieee80211com *ic = ni->ni_ic;
651 
652 	if (IEEE80211_IS_HT_RATE(rate)) {
653 		if ((ic->ic_htcaps & IEEE80211_HTC_HT) == 0)
654 			return (EINVAL);
655 
656 		rate = IEEE80211_RV(rate);
657 		if (rate <= 31) {
658 			if (rate > ic->ic_txstream * 8 - 1)
659 				return (EINVAL);
660 
661 			return (0);
662 		}
663 
664 		if (rate == 32) {
665 			if ((ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0)
666 				return (EINVAL);
667 
668 			return (0);
669 		}
670 
671 		if ((ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) == 0)
672 			return (EINVAL);
673 
674 		switch (ic->ic_txstream) {
675 		case 0:
676 		case 1:
677 			return (EINVAL);
678 		case 2:
679 			if (rate > 38)
680 				return (EINVAL);
681 
682 			return (0);
683 		case 3:
684 			if (rate > 52)
685 				return (EINVAL);
686 
687 			return (0);
688 		case 4:
689 		default:
690 			if (rate > 76)
691 				return (EINVAL);
692 
693 			return (0);
694 		}
695 	}
696 
697 	if (!ieee80211_isratevalid(ic->ic_rt, rate))
698 		return (EINVAL);
699 
700 	return (0);
701 }
702 
703 static int
704 ieee80211_sanitize_rates(struct ieee80211_node *ni, struct mbuf *m,
705     const struct ieee80211_bpf_params *params)
706 {
707 	int error;
708 
709 	if (!params)
710 		return (0);	/* nothing to do */
711 
712 	/* NB: most drivers assume that ibp_rate0 is set (!= 0). */
713 	if (params->ibp_rate0 != 0) {
714 		error = ieee80211_validate_rate(ni, params->ibp_rate0);
715 		if (error != 0)
716 			return (error);
717 	} else {
718 		/* XXX pre-setup some default (e.g., mgmt / mcast) rate */
719 		/* XXX __DECONST? */
720 		(void) m;
721 	}
722 
723 	if (params->ibp_rate1 != 0 &&
724 	    (error = ieee80211_validate_rate(ni, params->ibp_rate1)) != 0)
725 		return (error);
726 
727 	if (params->ibp_rate2 != 0 &&
728 	    (error = ieee80211_validate_rate(ni, params->ibp_rate2)) != 0)
729 		return (error);
730 
731 	if (params->ibp_rate3 != 0 &&
732 	    (error = ieee80211_validate_rate(ni, params->ibp_rate3)) != 0)
733 		return (error);
734 
735 	return (0);
736 }
737 
738 /*
739  * 802.11 output routine. This is (currently) used only to
740  * connect bpf write calls to the 802.11 layer for injecting
741  * raw 802.11 frames.
742  */
743 int
744 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
745 	const struct sockaddr *dst, struct route *ro)
746 {
747 #define senderr(e) do { error = (e); goto bad;} while (0)
748 	const struct ieee80211_bpf_params *params = NULL;
749 	struct ieee80211_node *ni = NULL;
750 	struct ieee80211vap *vap;
751 	struct ieee80211_frame *wh;
752 	struct ieee80211com *ic = NULL;
753 	int error;
754 	int ret;
755 
756 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
757 		/*
758 		 * Short-circuit requests if the vap is marked OACTIVE
759 		 * as this can happen because a packet came down through
760 		 * ieee80211_start before the vap entered RUN state in
761 		 * which case it's ok to just drop the frame.  This
762 		 * should not be necessary but callers of if_output don't
763 		 * check OACTIVE.
764 		 */
765 		senderr(ENETDOWN);
766 	}
767 	vap = ifp->if_softc;
768 	ic = vap->iv_ic;
769 	/*
770 	 * Hand to the 802.3 code if not tagged as
771 	 * a raw 802.11 frame.
772 	 */
773 	if (dst->sa_family != AF_IEEE80211)
774 		return vap->iv_output(ifp, m, dst, ro);
775 #ifdef MAC
776 	error = mac_ifnet_check_transmit(ifp, m);
777 	if (error)
778 		senderr(error);
779 #endif
780 	if (ifp->if_flags & IFF_MONITOR)
781 		senderr(ENETDOWN);
782 	if (!IFNET_IS_UP_RUNNING(ifp))
783 		senderr(ENETDOWN);
784 	if (vap->iv_state == IEEE80211_S_CAC) {
785 		IEEE80211_DPRINTF(vap,
786 		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
787 		    "block %s frame in CAC state\n", "raw data");
788 		vap->iv_stats.is_tx_badstate++;
789 		senderr(EIO);		/* XXX */
790 	} else if (vap->iv_state == IEEE80211_S_SCAN)
791 		senderr(EIO);
792 	/* XXX bypass bridge, pfil, carp, etc. */
793 
794 	/*
795 	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
796 	 * present by setting the sa_len field of the sockaddr (yes,
797 	 * this is a hack).
798 	 * NB: we assume sa_data is suitably aligned to cast.
799 	 */
800 	if (dst->sa_len != 0)
801 		params = (const struct ieee80211_bpf_params *)dst->sa_data;
802 
803 	error = ieee80211_validate_frame(m, params);
804 	if (error != 0)
805 		senderr(error);
806 
807 	wh = mtod(m, struct ieee80211_frame *);
808 
809 	/* locate destination node */
810 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
811 	case IEEE80211_FC1_DIR_NODS:
812 	case IEEE80211_FC1_DIR_FROMDS:
813 		ni = ieee80211_find_txnode(vap, wh->i_addr1);
814 		break;
815 	case IEEE80211_FC1_DIR_TODS:
816 	case IEEE80211_FC1_DIR_DSTODS:
817 		ni = ieee80211_find_txnode(vap, wh->i_addr3);
818 		break;
819 	default:
820 		senderr(EDOOFUS);
821 	}
822 	if (ni == NULL) {
823 		/*
824 		 * Permit packets w/ bpf params through regardless
825 		 * (see below about sa_len).
826 		 */
827 		if (dst->sa_len == 0)
828 			senderr(EHOSTUNREACH);
829 		ni = ieee80211_ref_node(vap->iv_bss);
830 	}
831 
832 	/*
833 	 * Sanitize mbuf for net80211 flags leaked from above.
834 	 *
835 	 * NB: This must be done before ieee80211_classify as
836 	 *     it marks EAPOL in frames with M_EAPOL.
837 	 */
838 	m->m_flags &= ~M_80211_TX;
839 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
840 
841 	if (IEEE80211_IS_DATA(wh)) {
842 		/* calculate priority so drivers can find the tx queue */
843 		if (ieee80211_classify(ni, m))
844 			senderr(EIO);		/* XXX */
845 
846 		/* NB: ieee80211_encap does not include 802.11 header */
847 		IEEE80211_NODE_STAT_ADD(ni, tx_bytes,
848 		    m->m_pkthdr.len - ieee80211_hdrsize(wh));
849 	} else
850 		M_WME_SETAC(m, WME_AC_BE);
851 
852 	error = ieee80211_sanitize_rates(ni, m, params);
853 	if (error != 0)
854 		senderr(error);
855 
856 	IEEE80211_NODE_STAT(ni, tx_data);
857 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
858 		IEEE80211_NODE_STAT(ni, tx_mcast);
859 		m->m_flags |= M_MCAST;
860 	} else
861 		IEEE80211_NODE_STAT(ni, tx_ucast);
862 
863 	IEEE80211_TX_LOCK(ic);
864 	ret = ieee80211_raw_output(vap, ni, m, params);
865 	IEEE80211_TX_UNLOCK(ic);
866 	return (ret);
867 bad:
868 	if (m != NULL)
869 		m_freem(m);
870 	if (ni != NULL)
871 		ieee80211_free_node(ni);
872 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
873 	return error;
874 #undef senderr
875 }
876 
877 /*
878  * Set the direction field and address fields of an outgoing
879  * frame.  Note this should be called early on in constructing
880  * a frame as it sets i_fc[1]; other bits can then be or'd in.
881  */
882 void
883 ieee80211_send_setup(
884 	struct ieee80211_node *ni,
885 	struct mbuf *m,
886 	int type, int tid,
887 	const uint8_t sa[IEEE80211_ADDR_LEN],
888 	const uint8_t da[IEEE80211_ADDR_LEN],
889 	const uint8_t bssid[IEEE80211_ADDR_LEN])
890 {
891 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
892 	struct ieee80211vap *vap = ni->ni_vap;
893 	struct ieee80211_tx_ampdu *tap;
894 	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
895 	ieee80211_seq seqno;
896 
897 	IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
898 
899 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
900 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
901 		switch (vap->iv_opmode) {
902 		case IEEE80211_M_STA:
903 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
904 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
905 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
906 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
907 			break;
908 		case IEEE80211_M_IBSS:
909 		case IEEE80211_M_AHDEMO:
910 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
911 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
912 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
913 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
914 			break;
915 		case IEEE80211_M_HOSTAP:
916 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
917 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
918 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
919 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
920 			break;
921 		case IEEE80211_M_WDS:
922 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
923 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
924 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
925 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
926 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
927 			break;
928 		case IEEE80211_M_MBSS:
929 #ifdef IEEE80211_SUPPORT_MESH
930 			if (IEEE80211_IS_MULTICAST(da)) {
931 				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
932 				/* XXX next hop */
933 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
934 				IEEE80211_ADDR_COPY(wh->i_addr2,
935 				    vap->iv_myaddr);
936 			} else {
937 				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
938 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
939 				IEEE80211_ADDR_COPY(wh->i_addr2,
940 				    vap->iv_myaddr);
941 				IEEE80211_ADDR_COPY(wh->i_addr3, da);
942 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
943 			}
944 #endif
945 			break;
946 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
947 			break;
948 		}
949 	} else {
950 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
951 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
952 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
953 #ifdef IEEE80211_SUPPORT_MESH
954 		if (vap->iv_opmode == IEEE80211_M_MBSS)
955 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
956 		else
957 #endif
958 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
959 	}
960 	*(uint16_t *)&wh->i_dur[0] = 0;
961 
962 	/*
963 	 * XXX TODO: this is what the TX lock is for.
964 	 * Here we're incrementing sequence numbers, and they
965 	 * need to be in lock-step with what the driver is doing
966 	 * both in TX ordering and crypto encap (IV increment.)
967 	 *
968 	 * If the driver does seqno itself, then we can skip
969 	 * assigning sequence numbers here, and we can avoid
970 	 * requiring the TX lock.
971 	 */
972 	tap = &ni->ni_tx_ampdu[tid];
973 	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) {
974 		m->m_flags |= M_AMPDU_MPDU;
975 
976 		/* NB: zero out i_seq field (for s/w encryption etc) */
977 		*(uint16_t *)&wh->i_seq[0] = 0;
978 	} else {
979 		if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
980 				      type & IEEE80211_FC0_SUBTYPE_MASK))
981 			/*
982 			 * 802.11-2012 9.3.2.10 - QoS multicast frames
983 			 * come out of a different seqno space.
984 			 */
985 			if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
986 				seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
987 			} else {
988 				seqno = ni->ni_txseqs[tid]++;
989 			}
990 		else
991 			seqno = 0;
992 
993 		*(uint16_t *)&wh->i_seq[0] =
994 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
995 		M_SEQNO_SET(m, seqno);
996 	}
997 
998 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
999 		m->m_flags |= M_MCAST;
1000 #undef WH4
1001 }
1002 
1003 /*
1004  * Send a management frame to the specified node.  The node pointer
1005  * must have a reference as the pointer will be passed to the driver
1006  * and potentially held for a long time.  If the frame is successfully
1007  * dispatched to the driver, then it is responsible for freeing the
1008  * reference (and potentially free'ing up any associated storage);
1009  * otherwise deal with reclaiming any reference (on error).
1010  */
1011 int
1012 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
1013 	struct ieee80211_bpf_params *params)
1014 {
1015 	struct ieee80211vap *vap = ni->ni_vap;
1016 	struct ieee80211com *ic = ni->ni_ic;
1017 	struct ieee80211_frame *wh;
1018 	int ret;
1019 
1020 	KASSERT(ni != NULL, ("null node"));
1021 
1022 	if (vap->iv_state == IEEE80211_S_CAC) {
1023 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
1024 		    ni, "block %s frame in CAC state",
1025 			ieee80211_mgt_subtype_name(type));
1026 		vap->iv_stats.is_tx_badstate++;
1027 		ieee80211_free_node(ni);
1028 		m_freem(m);
1029 		return EIO;		/* XXX */
1030 	}
1031 
1032 	M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
1033 	if (m == NULL) {
1034 		ieee80211_free_node(ni);
1035 		return ENOMEM;
1036 	}
1037 
1038 	IEEE80211_TX_LOCK(ic);
1039 
1040 	wh = mtod(m, struct ieee80211_frame *);
1041 	ieee80211_send_setup(ni, m,
1042 	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
1043 	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1044 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
1045 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
1046 		    "encrypting frame (%s)", __func__);
1047 		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1048 	}
1049 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1050 
1051 	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
1052 	M_WME_SETAC(m, params->ibp_pri);
1053 
1054 #ifdef IEEE80211_DEBUG
1055 	/* avoid printing too many frames */
1056 	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
1057 	    ieee80211_msg_dumppkts(vap)) {
1058 		ieee80211_note(vap, "[%s] send %s on channel %u\n",
1059 		    ether_sprintf(wh->i_addr1),
1060 		    ieee80211_mgt_subtype_name(type),
1061 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
1062 	}
1063 #endif
1064 	IEEE80211_NODE_STAT(ni, tx_mgmt);
1065 
1066 	ret = ieee80211_raw_output(vap, ni, m, params);
1067 	IEEE80211_TX_UNLOCK(ic);
1068 	return (ret);
1069 }
1070 
1071 static void
1072 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg,
1073     int status)
1074 {
1075 	struct ieee80211vap *vap = ni->ni_vap;
1076 
1077 	wakeup(vap);
1078 }
1079 
1080 /*
1081  * Send a null data frame to the specified node.  If the station
1082  * is setup for QoS then a QoS Null Data frame is constructed.
1083  * If this is a WDS station then a 4-address frame is constructed.
1084  *
1085  * NB: the caller is assumed to have setup a node reference
1086  *     for use; this is necessary to deal with a race condition
1087  *     when probing for inactive stations.  Like ieee80211_mgmt_output
1088  *     we must cleanup any node reference on error;  however we
1089  *     can safely just unref it as we know it will never be the
1090  *     last reference to the node.
1091  */
1092 int
1093 ieee80211_send_nulldata(struct ieee80211_node *ni)
1094 {
1095 	struct ieee80211vap *vap = ni->ni_vap;
1096 	struct ieee80211com *ic = ni->ni_ic;
1097 	struct mbuf *m;
1098 	struct ieee80211_frame *wh;
1099 	int hdrlen;
1100 	uint8_t *frm;
1101 	int ret;
1102 
1103 	if (vap->iv_state == IEEE80211_S_CAC) {
1104 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
1105 		    ni, "block %s frame in CAC state", "null data");
1106 		ieee80211_node_decref(ni);
1107 		vap->iv_stats.is_tx_badstate++;
1108 		return EIO;		/* XXX */
1109 	}
1110 
1111 	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
1112 		hdrlen = sizeof(struct ieee80211_qosframe);
1113 	else
1114 		hdrlen = sizeof(struct ieee80211_frame);
1115 	/* NB: only WDS vap's get 4-address frames */
1116 	if (vap->iv_opmode == IEEE80211_M_WDS)
1117 		hdrlen += IEEE80211_ADDR_LEN;
1118 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1119 		hdrlen = roundup(hdrlen, sizeof(uint32_t));
1120 
1121 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
1122 	if (m == NULL) {
1123 		/* XXX debug msg */
1124 		ieee80211_node_decref(ni);
1125 		vap->iv_stats.is_tx_nobuf++;
1126 		return ENOMEM;
1127 	}
1128 	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
1129 	    ("leading space %zd", M_LEADINGSPACE(m)));
1130 	M_PREPEND(m, hdrlen, IEEE80211_M_NOWAIT);
1131 	if (m == NULL) {
1132 		/* NB: cannot happen */
1133 		ieee80211_free_node(ni);
1134 		return ENOMEM;
1135 	}
1136 
1137 	IEEE80211_TX_LOCK(ic);
1138 
1139 	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
1140 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
1141 		const int tid = WME_AC_TO_TID(WME_AC_BE);
1142 		uint8_t *qos;
1143 
1144 		ieee80211_send_setup(ni, m,
1145 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
1146 		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1147 
1148 		if (vap->iv_opmode == IEEE80211_M_WDS)
1149 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1150 		else
1151 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1152 		qos[0] = tid & IEEE80211_QOS_TID;
1153 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
1154 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1155 		qos[1] = 0;
1156 	} else {
1157 		ieee80211_send_setup(ni, m,
1158 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
1159 		    IEEE80211_NONQOS_TID,
1160 		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1161 	}
1162 	if (vap->iv_opmode != IEEE80211_M_WDS) {
1163 		/* NB: power management bit is never sent by an AP */
1164 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1165 		    vap->iv_opmode != IEEE80211_M_HOSTAP)
1166 			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
1167 	}
1168 	if ((ic->ic_flags & IEEE80211_F_SCAN) &&
1169 	    (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) {
1170 		ieee80211_add_callback(m, ieee80211_nulldata_transmitted,
1171 		    NULL);
1172 	}
1173 	m->m_len = m->m_pkthdr.len = hdrlen;
1174 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1175 
1176 	M_WME_SETAC(m, WME_AC_BE);
1177 
1178 	IEEE80211_NODE_STAT(ni, tx_data);
1179 
1180 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
1181 	    "send %snull data frame on channel %u, pwr mgt %s",
1182 	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
1183 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
1184 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
1185 
1186 	ret = ieee80211_raw_output(vap, ni, m, NULL);
1187 	IEEE80211_TX_UNLOCK(ic);
1188 	return (ret);
1189 }
1190 
1191 /*
1192  * Assign priority to a frame based on any vlan tag assigned
1193  * to the station and/or any Diffserv setting in an IP header.
1194  * Finally, if an ACM policy is setup (in station mode) it's
1195  * applied.
1196  */
1197 int
1198 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
1199 {
1200 	const struct ether_header *eh = NULL;
1201 	uint16_t ether_type;
1202 	int v_wme_ac, d_wme_ac, ac;
1203 
1204 	if (__predict_false(m->m_flags & M_ENCAP)) {
1205 		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
1206 		struct llc *llc;
1207 		int hdrlen, subtype;
1208 
1209 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1210 		if (subtype & IEEE80211_FC0_SUBTYPE_NODATA) {
1211 			ac = WME_AC_BE;
1212 			goto done;
1213 		}
1214 
1215 		hdrlen = ieee80211_hdrsize(wh);
1216 		if (m->m_pkthdr.len < hdrlen + sizeof(*llc))
1217 			return 1;
1218 
1219 		llc = (struct llc *)mtodo(m, hdrlen);
1220 		if (llc->llc_dsap != LLC_SNAP_LSAP ||
1221 		    llc->llc_ssap != LLC_SNAP_LSAP ||
1222 		    llc->llc_control != LLC_UI ||
1223 		    llc->llc_snap.org_code[0] != 0 ||
1224 		    llc->llc_snap.org_code[1] != 0 ||
1225 		    llc->llc_snap.org_code[2] != 0)
1226 			return 1;
1227 
1228 		ether_type = llc->llc_snap.ether_type;
1229 	} else {
1230 		eh = mtod(m, struct ether_header *);
1231 		ether_type = eh->ether_type;
1232 	}
1233 
1234 	/*
1235 	 * Always promote PAE/EAPOL frames to high priority.
1236 	 */
1237 	if (ether_type == htons(ETHERTYPE_PAE)) {
1238 		/* NB: mark so others don't need to check header */
1239 		m->m_flags |= M_EAPOL;
1240 		ac = WME_AC_VO;
1241 		goto done;
1242 	}
1243 	/*
1244 	 * Non-qos traffic goes to BE.
1245 	 */
1246 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
1247 		ac = WME_AC_BE;
1248 		goto done;
1249 	}
1250 
1251 	/*
1252 	 * If node has a vlan tag then all traffic
1253 	 * to it must have a matching tag.
1254 	 */
1255 	v_wme_ac = 0;
1256 	if (ni->ni_vlan != 0) {
1257 		 if ((m->m_flags & M_VLANTAG) == 0) {
1258 			IEEE80211_NODE_STAT(ni, tx_novlantag);
1259 			return 1;
1260 		}
1261 		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
1262 		    EVL_VLANOFTAG(ni->ni_vlan)) {
1263 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
1264 			return 1;
1265 		}
1266 		/* map vlan priority to AC */
1267 		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
1268 	}
1269 
1270 	if (eh == NULL)
1271 		goto no_eh;
1272 
1273 	/* XXX m_copydata may be too slow for fast path */
1274 	switch (ntohs(eh->ether_type)) {
1275 #ifdef INET
1276 	case ETHERTYPE_IP:
1277 	{
1278 		uint8_t tos;
1279 		/*
1280 		 * IP frame, map the DSCP bits from the TOS field.
1281 		 */
1282 		/* NB: ip header may not be in first mbuf */
1283 		m_copydata(m, sizeof(struct ether_header) +
1284 		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
1285 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1286 		d_wme_ac = TID_TO_WME_AC(tos);
1287 		break;
1288 	}
1289 #endif
1290 #ifdef INET6
1291 	case ETHERTYPE_IPV6:
1292 	{
1293 		uint32_t flow;
1294 		uint8_t tos;
1295 		/*
1296 		 * IPv6 frame, map the DSCP bits from the traffic class field.
1297 		 */
1298 		m_copydata(m, sizeof(struct ether_header) +
1299 		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
1300 		    (caddr_t) &flow);
1301 		tos = (uint8_t)(ntohl(flow) >> 20);
1302 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1303 		d_wme_ac = TID_TO_WME_AC(tos);
1304 		break;
1305 	}
1306 #endif
1307 	default:
1308 no_eh:
1309 		d_wme_ac = WME_AC_BE;
1310 		break;
1311 	}
1312 
1313 	/*
1314 	 * Use highest priority AC.
1315 	 */
1316 	if (v_wme_ac > d_wme_ac)
1317 		ac = v_wme_ac;
1318 	else
1319 		ac = d_wme_ac;
1320 
1321 	/*
1322 	 * Apply ACM policy.
1323 	 */
1324 	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1325 		static const int acmap[4] = {
1326 			WME_AC_BK,	/* WME_AC_BE */
1327 			WME_AC_BK,	/* WME_AC_BK */
1328 			WME_AC_BE,	/* WME_AC_VI */
1329 			WME_AC_VI,	/* WME_AC_VO */
1330 		};
1331 		struct ieee80211com *ic = ni->ni_ic;
1332 
1333 		while (ac != WME_AC_BK &&
1334 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1335 			ac = acmap[ac];
1336 	}
1337 done:
1338 	M_WME_SETAC(m, ac);
1339 	return 0;
1340 }
1341 
1342 /*
1343  * Insure there is sufficient contiguous space to encapsulate the
1344  * 802.11 data frame.  If room isn't already there, arrange for it.
1345  * Drivers and cipher modules assume we have done the necessary work
1346  * and fail rudely if they don't find the space they need.
1347  */
1348 struct mbuf *
1349 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1350 	struct ieee80211_key *key, struct mbuf *m)
1351 {
1352 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
1353 	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1354 
1355 	if (key != NULL) {
1356 		/* XXX belongs in crypto code? */
1357 		needed_space += key->wk_cipher->ic_header;
1358 		/* XXX frags */
1359 		/*
1360 		 * When crypto is being done in the host we must insure
1361 		 * the data are writable for the cipher routines; clone
1362 		 * a writable mbuf chain.
1363 		 * XXX handle SWMIC specially
1364 		 */
1365 		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1366 			m = m_unshare(m, IEEE80211_M_NOWAIT);
1367 			if (m == NULL) {
1368 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1369 				    "%s: cannot get writable mbuf\n", __func__);
1370 				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1371 				return NULL;
1372 			}
1373 		}
1374 	}
1375 	/*
1376 	 * We know we are called just before stripping an Ethernet
1377 	 * header and prepending an LLC header.  This means we know
1378 	 * there will be
1379 	 *	sizeof(struct ether_header) - sizeof(struct llc)
1380 	 * bytes recovered to which we need additional space for the
1381 	 * 802.11 header and any crypto header.
1382 	 */
1383 	/* XXX check trailing space and copy instead? */
1384 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1385 		struct mbuf *n = m_gethdr(IEEE80211_M_NOWAIT, m->m_type);
1386 		if (n == NULL) {
1387 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1388 			    "%s: cannot expand storage\n", __func__);
1389 			vap->iv_stats.is_tx_nobuf++;
1390 			m_freem(m);
1391 			return NULL;
1392 		}
1393 		KASSERT(needed_space <= MHLEN,
1394 		    ("not enough room, need %u got %d\n", needed_space, MHLEN));
1395 		/*
1396 		 * Setup new mbuf to have leading space to prepend the
1397 		 * 802.11 header and any crypto header bits that are
1398 		 * required (the latter are added when the driver calls
1399 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
1400 		 */
1401 		/* NB: must be first 'cuz it clobbers m_data */
1402 		m_move_pkthdr(n, m);
1403 		n->m_len = 0;			/* NB: m_gethdr does not set */
1404 		n->m_data += needed_space;
1405 		/*
1406 		 * Pull up Ethernet header to create the expected layout.
1407 		 * We could use m_pullup but that's overkill (i.e. we don't
1408 		 * need the actual data) and it cannot fail so do it inline
1409 		 * for speed.
1410 		 */
1411 		/* NB: struct ether_header is known to be contiguous */
1412 		n->m_len += sizeof(struct ether_header);
1413 		m->m_len -= sizeof(struct ether_header);
1414 		m->m_data += sizeof(struct ether_header);
1415 		/*
1416 		 * Replace the head of the chain.
1417 		 */
1418 		n->m_next = m;
1419 		m = n;
1420 	}
1421 	return m;
1422 #undef TO_BE_RECLAIMED
1423 }
1424 
1425 /*
1426  * Return the transmit key to use in sending a unicast frame.
1427  * If a unicast key is set we use that.  When no unicast key is set
1428  * we fall back to the default transmit key.
1429  */
1430 static __inline struct ieee80211_key *
1431 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1432 	struct ieee80211_node *ni)
1433 {
1434 	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1435 		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1436 		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1437 			return NULL;
1438 		return &vap->iv_nw_keys[vap->iv_def_txkey];
1439 	} else {
1440 		return &ni->ni_ucastkey;
1441 	}
1442 }
1443 
1444 /*
1445  * Return the transmit key to use in sending a multicast frame.
1446  * Multicast traffic always uses the group key which is installed as
1447  * the default tx key.
1448  */
1449 static __inline struct ieee80211_key *
1450 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1451 	struct ieee80211_node *ni)
1452 {
1453 	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1454 	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1455 		return NULL;
1456 	return &vap->iv_nw_keys[vap->iv_def_txkey];
1457 }
1458 
1459 /*
1460  * Encapsulate an outbound data frame.  The mbuf chain is updated.
1461  * If an error is encountered NULL is returned.  The caller is required
1462  * to provide a node reference and pullup the ethernet header in the
1463  * first mbuf.
1464  *
1465  * NB: Packet is assumed to be processed by ieee80211_classify which
1466  *     marked EAPOL frames w/ M_EAPOL.
1467  */
1468 struct mbuf *
1469 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1470     struct mbuf *m)
1471 {
1472 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1473 #define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
1474 	struct ieee80211com *ic = ni->ni_ic;
1475 #ifdef IEEE80211_SUPPORT_MESH
1476 	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1477 	struct ieee80211_meshcntl_ae10 *mc;
1478 	struct ieee80211_mesh_route *rt = NULL;
1479 	int dir = -1;
1480 #endif
1481 	struct ether_header eh;
1482 	struct ieee80211_frame *wh;
1483 	struct ieee80211_key *key;
1484 	struct llc *llc;
1485 	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast;
1486 	ieee80211_seq seqno;
1487 	int meshhdrsize, meshae;
1488 	uint8_t *qos;
1489 	int is_amsdu = 0;
1490 
1491 	IEEE80211_TX_LOCK_ASSERT(ic);
1492 
1493 	is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST));
1494 
1495 	/*
1496 	 * Copy existing Ethernet header to a safe place.  The
1497 	 * rest of the code assumes it's ok to strip it when
1498 	 * reorganizing state for the final encapsulation.
1499 	 */
1500 	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1501 	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1502 
1503 	/*
1504 	 * Insure space for additional headers.  First identify
1505 	 * transmit key to use in calculating any buffer adjustments
1506 	 * required.  This is also used below to do privacy
1507 	 * encapsulation work.  Then calculate the 802.11 header
1508 	 * size and any padding required by the driver.
1509 	 *
1510 	 * Note key may be NULL if we fall back to the default
1511 	 * transmit key and that is not set.  In that case the
1512 	 * buffer may not be expanded as needed by the cipher
1513 	 * routines, but they will/should discard it.
1514 	 */
1515 	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1516 		if (vap->iv_opmode == IEEE80211_M_STA ||
1517 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1518 		    (vap->iv_opmode == IEEE80211_M_WDS &&
1519 		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) {
1520 			key = ieee80211_crypto_getucastkey(vap, ni);
1521 		} else if ((vap->iv_opmode == IEEE80211_M_WDS) &&
1522 		    (! (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) {
1523 			/*
1524 			 * Use ucastkey for DWDS transmit nodes, multicast
1525 			 * or otherwise.
1526 			 *
1527 			 * This is required to ensure that multicast frames
1528 			 * from a DWDS AP to a DWDS STA is encrypted with
1529 			 * a key that can actually work.
1530 			 *
1531 			 * There's no default key for multicast traffic
1532 			 * on a DWDS WDS VAP node (note NOT the DWDS enabled
1533 			 * AP VAP, the dynamically created per-STA WDS node)
1534 			 * so encap fails and transmit fails.
1535 			 */
1536 			key = ieee80211_crypto_getucastkey(vap, ni);
1537 		} else {
1538 			key = ieee80211_crypto_getmcastkey(vap, ni);
1539 		}
1540 		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1541 			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1542 			    eh.ether_dhost,
1543 			    "no default transmit key (%s) deftxkey %u",
1544 			    __func__, vap->iv_def_txkey);
1545 			vap->iv_stats.is_tx_nodefkey++;
1546 			goto bad;
1547 		}
1548 	} else
1549 		key = NULL;
1550 	/*
1551 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1552 	 * frames so suppress use.  This may be an issue if other
1553 	 * ap's require all data frames to be QoS-encapsulated
1554 	 * once negotiated in which case we'll need to make this
1555 	 * configurable.
1556 	 *
1557 	 * Don't send multicast QoS frames.
1558 	 * Technically multicast frames can be QoS if all stations in the
1559 	 * BSS are also QoS.
1560 	 *
1561 	 * NB: mesh data frames are QoS, including multicast frames.
1562 	 */
1563 	addqos =
1564 	    (((is_mcast == 0) && (ni->ni_flags &
1565 	     (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) ||
1566 	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1567 	    (m->m_flags & M_EAPOL) == 0;
1568 
1569 	if (addqos)
1570 		hdrsize = sizeof(struct ieee80211_qosframe);
1571 	else
1572 		hdrsize = sizeof(struct ieee80211_frame);
1573 #ifdef IEEE80211_SUPPORT_MESH
1574 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1575 		/*
1576 		 * Mesh data frames are encapsulated according to the
1577 		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1578 		 * o Group Addressed data (aka multicast) originating
1579 		 *   at the local sta are sent w/ 3-address format and
1580 		 *   address extension mode 00
1581 		 * o Individually Addressed data (aka unicast) originating
1582 		 *   at the local sta are sent w/ 4-address format and
1583 		 *   address extension mode 00
1584 		 * o Group Addressed data forwarded from a non-mesh sta are
1585 		 *   sent w/ 3-address format and address extension mode 01
1586 		 * o Individually Address data from another sta are sent
1587 		 *   w/ 4-address format and address extension mode 10
1588 		 */
1589 		is4addr = 0;		/* NB: don't use, disable */
1590 		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1591 			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1592 			KASSERT(rt != NULL, ("route is NULL"));
1593 			dir = IEEE80211_FC1_DIR_DSTODS;
1594 			hdrsize += IEEE80211_ADDR_LEN;
1595 			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1596 				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1597 				    vap->iv_myaddr)) {
1598 					IEEE80211_NOTE_MAC(vap,
1599 					    IEEE80211_MSG_MESH,
1600 					    eh.ether_dhost,
1601 					    "%s", "trying to send to ourself");
1602 					goto bad;
1603 				}
1604 				meshae = IEEE80211_MESH_AE_10;
1605 				meshhdrsize =
1606 				    sizeof(struct ieee80211_meshcntl_ae10);
1607 			} else {
1608 				meshae = IEEE80211_MESH_AE_00;
1609 				meshhdrsize =
1610 				    sizeof(struct ieee80211_meshcntl);
1611 			}
1612 		} else {
1613 			dir = IEEE80211_FC1_DIR_FROMDS;
1614 			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1615 				/* proxy group */
1616 				meshae = IEEE80211_MESH_AE_01;
1617 				meshhdrsize =
1618 				    sizeof(struct ieee80211_meshcntl_ae01);
1619 			} else {
1620 				/* group */
1621 				meshae = IEEE80211_MESH_AE_00;
1622 				meshhdrsize = sizeof(struct ieee80211_meshcntl);
1623 			}
1624 		}
1625 	} else {
1626 #endif
1627 		/*
1628 		 * 4-address frames need to be generated for:
1629 		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1630 		 * o packets sent through a vap marked for relaying
1631 		 *   (e.g. a station operating with dynamic WDS)
1632 		 */
1633 		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1634 		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1635 		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1636 		if (is4addr)
1637 			hdrsize += IEEE80211_ADDR_LEN;
1638 		meshhdrsize = meshae = 0;
1639 #ifdef IEEE80211_SUPPORT_MESH
1640 	}
1641 #endif
1642 	/*
1643 	 * Honor driver DATAPAD requirement.
1644 	 */
1645 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1646 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1647 	else
1648 		hdrspace = hdrsize;
1649 
1650 	if (__predict_true((m->m_flags & M_FF) == 0)) {
1651 		/*
1652 		 * Normal frame.
1653 		 */
1654 		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1655 		if (m == NULL) {
1656 			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1657 			goto bad;
1658 		}
1659 		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1660 		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1661 		llc = mtod(m, struct llc *);
1662 		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1663 		llc->llc_control = LLC_UI;
1664 		llc->llc_snap.org_code[0] = 0;
1665 		llc->llc_snap.org_code[1] = 0;
1666 		llc->llc_snap.org_code[2] = 0;
1667 		llc->llc_snap.ether_type = eh.ether_type;
1668 	} else {
1669 #ifdef IEEE80211_SUPPORT_SUPERG
1670 		/*
1671 		 * Aggregated frame.  Check if it's for AMSDU or FF.
1672 		 *
1673 		 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented
1674 		 * anywhere for some reason.  But, since 11n requires
1675 		 * AMSDU RX, we can just assume "11n" == "AMSDU".
1676 		 */
1677 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__);
1678 		if (ieee80211_amsdu_tx_ok(ni)) {
1679 			m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key);
1680 			is_amsdu = 1;
1681 		} else {
1682 			m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1683 		}
1684 		if (m == NULL)
1685 #endif
1686 			goto bad;
1687 	}
1688 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1689 
1690 	M_PREPEND(m, hdrspace + meshhdrsize, IEEE80211_M_NOWAIT);
1691 	if (m == NULL) {
1692 		vap->iv_stats.is_tx_nobuf++;
1693 		goto bad;
1694 	}
1695 	wh = mtod(m, struct ieee80211_frame *);
1696 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1697 	*(uint16_t *)wh->i_dur = 0;
1698 	qos = NULL;	/* NB: quiet compiler */
1699 	if (is4addr) {
1700 		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1701 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1702 		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1703 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1704 		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1705 	} else switch (vap->iv_opmode) {
1706 	case IEEE80211_M_STA:
1707 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1708 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1709 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1710 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1711 		break;
1712 	case IEEE80211_M_IBSS:
1713 	case IEEE80211_M_AHDEMO:
1714 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1715 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1716 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1717 		/*
1718 		 * NB: always use the bssid from iv_bss as the
1719 		 *     neighbor's may be stale after an ibss merge
1720 		 */
1721 		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1722 		break;
1723 	case IEEE80211_M_HOSTAP:
1724 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1725 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1726 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1727 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1728 		break;
1729 #ifdef IEEE80211_SUPPORT_MESH
1730 	case IEEE80211_M_MBSS:
1731 		/* NB: offset by hdrspace to deal with DATAPAD */
1732 		mc = (struct ieee80211_meshcntl_ae10 *)
1733 		     (mtod(m, uint8_t *) + hdrspace);
1734 		wh->i_fc[1] = dir;
1735 		switch (meshae) {
1736 		case IEEE80211_MESH_AE_00:	/* no proxy */
1737 			mc->mc_flags = 0;
1738 			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1739 				IEEE80211_ADDR_COPY(wh->i_addr1,
1740 				    ni->ni_macaddr);
1741 				IEEE80211_ADDR_COPY(wh->i_addr2,
1742 				    vap->iv_myaddr);
1743 				IEEE80211_ADDR_COPY(wh->i_addr3,
1744 				    eh.ether_dhost);
1745 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1746 				    eh.ether_shost);
1747 				qos =((struct ieee80211_qosframe_addr4 *)
1748 				    wh)->i_qos;
1749 			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1750 				 /* mcast */
1751 				IEEE80211_ADDR_COPY(wh->i_addr1,
1752 				    eh.ether_dhost);
1753 				IEEE80211_ADDR_COPY(wh->i_addr2,
1754 				    vap->iv_myaddr);
1755 				IEEE80211_ADDR_COPY(wh->i_addr3,
1756 				    eh.ether_shost);
1757 				qos = ((struct ieee80211_qosframe *)
1758 				    wh)->i_qos;
1759 			}
1760 			break;
1761 		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
1762 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1763 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1764 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1765 			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1766 			mc->mc_flags = 1;
1767 			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1768 			    eh.ether_shost);
1769 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1770 			break;
1771 		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
1772 			KASSERT(rt != NULL, ("route is NULL"));
1773 			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1774 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1775 			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1776 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1777 			mc->mc_flags = IEEE80211_MESH_AE_10;
1778 			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1779 			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1780 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1781 			break;
1782 		default:
1783 			KASSERT(0, ("meshae %d", meshae));
1784 			break;
1785 		}
1786 		mc->mc_ttl = ms->ms_ttl;
1787 		ms->ms_seq++;
1788 		le32enc(mc->mc_seq, ms->ms_seq);
1789 		break;
1790 #endif
1791 	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1792 	default:
1793 		goto bad;
1794 	}
1795 	if (m->m_flags & M_MORE_DATA)
1796 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1797 	if (addqos) {
1798 		int ac, tid;
1799 
1800 		if (is4addr) {
1801 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1802 		/* NB: mesh case handled earlier */
1803 		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1804 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1805 		ac = M_WME_GETAC(m);
1806 		/* map from access class/queue to 11e header priorty value */
1807 		tid = WME_AC_TO_TID(ac);
1808 		qos[0] = tid & IEEE80211_QOS_TID;
1809 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1810 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1811 #ifdef IEEE80211_SUPPORT_MESH
1812 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1813 			qos[1] = IEEE80211_QOS_MC;
1814 		else
1815 #endif
1816 			qos[1] = 0;
1817 		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS_DATA;
1818 
1819 		/*
1820 		 * If this is an A-MSDU then ensure we set the
1821 		 * relevant field.
1822 		 */
1823 		if (is_amsdu)
1824 			qos[0] |= IEEE80211_QOS_AMSDU;
1825 
1826 		/*
1827 		 * XXX TODO TX lock is needed for atomic updates of sequence
1828 		 * numbers.  If the driver does it, then don't do it here;
1829 		 * and we don't need the TX lock held.
1830 		 */
1831 		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1832 			/*
1833 			 * 802.11-2012 9.3.2.10 -
1834 			 *
1835 			 * If this is a multicast frame then we need
1836 			 * to ensure that the sequence number comes from
1837 			 * a separate seqno space and not the TID space.
1838 			 *
1839 			 * Otherwise multicast frames may actually cause
1840 			 * holes in the TX blockack window space and
1841 			 * upset various things.
1842 			 */
1843 			if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1844 				seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1845 			else
1846 				seqno = ni->ni_txseqs[tid]++;
1847 
1848 			/*
1849 			 * NB: don't assign a sequence # to potential
1850 			 * aggregates; we expect this happens at the
1851 			 * point the frame comes off any aggregation q
1852 			 * as otherwise we may introduce holes in the
1853 			 * BA sequence space and/or make window accouting
1854 			 * more difficult.
1855 			 *
1856 			 * XXX may want to control this with a driver
1857 			 * capability; this may also change when we pull
1858 			 * aggregation up into net80211
1859 			 */
1860 			*(uint16_t *)wh->i_seq =
1861 			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1862 			M_SEQNO_SET(m, seqno);
1863 		} else {
1864 			/* NB: zero out i_seq field (for s/w encryption etc) */
1865 			*(uint16_t *)wh->i_seq = 0;
1866 		}
1867 	} else {
1868 		/*
1869 		 * XXX TODO TX lock is needed for atomic updates of sequence
1870 		 * numbers.  If the driver does it, then don't do it here;
1871 		 * and we don't need the TX lock held.
1872 		 */
1873 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1874 		*(uint16_t *)wh->i_seq =
1875 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1876 		M_SEQNO_SET(m, seqno);
1877 
1878 		/*
1879 		 * XXX TODO: we shouldn't allow EAPOL, etc that would
1880 		 * be forced to be non-QoS traffic to be A-MSDU encapsulated.
1881 		 */
1882 		if (is_amsdu)
1883 			printf("%s: XXX ERROR: is_amsdu set; not QoS!\n",
1884 			    __func__);
1885 	}
1886 
1887 	/*
1888 	 * Check if xmit fragmentation is required.
1889 	 *
1890 	 * If the hardware does fragmentation offload, then don't bother
1891 	 * doing it here.
1892 	 */
1893 	if (IEEE80211_CONF_FRAG_OFFLOAD(ic))
1894 		txfrag = 0;
1895 	else
1896 		txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1897 		    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1898 		    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1899 		    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1900 
1901 	if (key != NULL) {
1902 		/*
1903 		 * IEEE 802.1X: send EAPOL frames always in the clear.
1904 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1905 		 */
1906 		if ((m->m_flags & M_EAPOL) == 0 ||
1907 		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1908 		     (vap->iv_opmode == IEEE80211_M_STA ?
1909 		      !IEEE80211_KEY_UNDEFINED(key) :
1910 		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1911 			wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1912 			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1913 				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1914 				    eh.ether_dhost,
1915 				    "%s", "enmic failed, discard frame");
1916 				vap->iv_stats.is_crypto_enmicfail++;
1917 				goto bad;
1918 			}
1919 		}
1920 	}
1921 	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1922 	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1923 		goto bad;
1924 
1925 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1926 
1927 	IEEE80211_NODE_STAT(ni, tx_data);
1928 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1929 		IEEE80211_NODE_STAT(ni, tx_mcast);
1930 		m->m_flags |= M_MCAST;
1931 	} else
1932 		IEEE80211_NODE_STAT(ni, tx_ucast);
1933 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1934 
1935 	return m;
1936 bad:
1937 	if (m != NULL)
1938 		m_freem(m);
1939 	return NULL;
1940 #undef WH4
1941 #undef MC01
1942 }
1943 
1944 void
1945 ieee80211_free_mbuf(struct mbuf *m)
1946 {
1947 	struct mbuf *next;
1948 
1949 	if (m == NULL)
1950 		return;
1951 
1952 	do {
1953 		next = m->m_nextpkt;
1954 		m->m_nextpkt = NULL;
1955 		m_freem(m);
1956 	} while ((m = next) != NULL);
1957 }
1958 
1959 /*
1960  * Fragment the frame according to the specified mtu.
1961  * The size of the 802.11 header (w/o padding) is provided
1962  * so we don't need to recalculate it.  We create a new
1963  * mbuf for each fragment and chain it through m_nextpkt;
1964  * we might be able to optimize this by reusing the original
1965  * packet's mbufs but that is significantly more complicated.
1966  */
1967 static int
1968 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1969 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1970 {
1971 	struct ieee80211com *ic = vap->iv_ic;
1972 	struct ieee80211_frame *wh, *whf;
1973 	struct mbuf *m, *prev;
1974 	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1975 	u_int hdrspace;
1976 
1977 	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1978 	KASSERT(m0->m_pkthdr.len > mtu,
1979 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1980 
1981 	/*
1982 	 * Honor driver DATAPAD requirement.
1983 	 */
1984 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1985 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1986 	else
1987 		hdrspace = hdrsize;
1988 
1989 	wh = mtod(m0, struct ieee80211_frame *);
1990 	/* NB: mark the first frag; it will be propagated below */
1991 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1992 	totalhdrsize = hdrspace + ciphdrsize;
1993 	fragno = 1;
1994 	off = mtu - ciphdrsize;
1995 	remainder = m0->m_pkthdr.len - off;
1996 	prev = m0;
1997 	do {
1998 		fragsize = MIN(totalhdrsize + remainder, mtu);
1999 		m = m_get2(fragsize, IEEE80211_M_NOWAIT, MT_DATA, M_PKTHDR);
2000 		if (m == NULL)
2001 			goto bad;
2002 		/* leave room to prepend any cipher header */
2003 		m_align(m, fragsize - ciphdrsize);
2004 
2005 		/*
2006 		 * Form the header in the fragment.  Note that since
2007 		 * we mark the first fragment with the MORE_FRAG bit
2008 		 * it automatically is propagated to each fragment; we
2009 		 * need only clear it on the last fragment (done below).
2010 		 * NB: frag 1+ dont have Mesh Control field present.
2011 		 */
2012 		whf = mtod(m, struct ieee80211_frame *);
2013 		memcpy(whf, wh, hdrsize);
2014 #ifdef IEEE80211_SUPPORT_MESH
2015 		if (vap->iv_opmode == IEEE80211_M_MBSS)
2016 			ieee80211_getqos(wh)[1] &= ~IEEE80211_QOS_MC;
2017 #endif
2018 		*(uint16_t *)&whf->i_seq[0] |= htole16(
2019 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
2020 				IEEE80211_SEQ_FRAG_SHIFT);
2021 		fragno++;
2022 
2023 		payload = fragsize - totalhdrsize;
2024 		/* NB: destination is known to be contiguous */
2025 
2026 		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
2027 		m->m_len = hdrspace + payload;
2028 		m->m_pkthdr.len = hdrspace + payload;
2029 		m->m_flags |= M_FRAG;
2030 
2031 		/* chain up the fragment */
2032 		prev->m_nextpkt = m;
2033 		prev = m;
2034 
2035 		/* deduct fragment just formed */
2036 		remainder -= payload;
2037 		off += payload;
2038 	} while (remainder != 0);
2039 
2040 	/* set the last fragment */
2041 	m->m_flags |= M_LASTFRAG;
2042 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
2043 
2044 	/* strip first mbuf now that everything has been copied */
2045 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
2046 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
2047 
2048 	vap->iv_stats.is_tx_fragframes++;
2049 	vap->iv_stats.is_tx_frags += fragno-1;
2050 
2051 	return 1;
2052 bad:
2053 	/* reclaim fragments but leave original frame for caller to free */
2054 	ieee80211_free_mbuf(m0->m_nextpkt);
2055 	m0->m_nextpkt = NULL;
2056 	return 0;
2057 }
2058 
2059 /*
2060  * Add a supported rates element id to a frame.
2061  */
2062 uint8_t *
2063 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
2064 {
2065 	int nrates;
2066 
2067 	*frm++ = IEEE80211_ELEMID_RATES;
2068 	nrates = rs->rs_nrates;
2069 	if (nrates > IEEE80211_RATE_SIZE)
2070 		nrates = IEEE80211_RATE_SIZE;
2071 	*frm++ = nrates;
2072 	memcpy(frm, rs->rs_rates, nrates);
2073 	return frm + nrates;
2074 }
2075 
2076 /*
2077  * Add an extended supported rates element id to a frame.
2078  */
2079 uint8_t *
2080 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
2081 {
2082 	/*
2083 	 * Add an extended supported rates element if operating in 11g mode.
2084 	 */
2085 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2086 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2087 		*frm++ = IEEE80211_ELEMID_XRATES;
2088 		*frm++ = nrates;
2089 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2090 		frm += nrates;
2091 	}
2092 	return frm;
2093 }
2094 
2095 /*
2096  * Add an ssid element to a frame.
2097  */
2098 uint8_t *
2099 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
2100 {
2101 	*frm++ = IEEE80211_ELEMID_SSID;
2102 	*frm++ = len;
2103 	memcpy(frm, ssid, len);
2104 	return frm + len;
2105 }
2106 
2107 /*
2108  * Add an erp element to a frame.
2109  */
2110 static uint8_t *
2111 ieee80211_add_erp(uint8_t *frm, struct ieee80211vap *vap)
2112 {
2113 	struct ieee80211com *ic = vap->iv_ic;
2114 	uint8_t erp;
2115 
2116 	*frm++ = IEEE80211_ELEMID_ERP;
2117 	*frm++ = 1;
2118 	erp = 0;
2119 
2120 	/*
2121 	 * TODO:  This uses the global flags for now because
2122 	 * the per-VAP flags are fine for per-VAP, but don't
2123 	 * take into account which VAPs share the same channel
2124 	 * and which are on different channels.
2125 	 *
2126 	 * ERP and HT/VHT protection mode is a function of
2127 	 * how many stations are on a channel, not specifically
2128 	 * the VAP or global.  But, until we grow that status,
2129 	 * the global flag will have to do.
2130 	 */
2131 	if (ic->ic_flags_ext & IEEE80211_FEXT_NONERP_PR)
2132 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
2133 
2134 	/*
2135 	 * TODO: same as above; these should be based not
2136 	 * on the vap or ic flags, but instead on a combination
2137 	 * of per-VAP and channels.
2138 	 */
2139 	if (ic->ic_flags & IEEE80211_F_USEPROT)
2140 		erp |= IEEE80211_ERP_USE_PROTECTION;
2141 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
2142 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
2143 	*frm++ = erp;
2144 	return frm;
2145 }
2146 
2147 /*
2148  * Add a CFParams element to a frame.
2149  */
2150 static uint8_t *
2151 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
2152 {
2153 #define	ADDSHORT(frm, v) do {	\
2154 	le16enc(frm, v);	\
2155 	frm += 2;		\
2156 } while (0)
2157 	*frm++ = IEEE80211_ELEMID_CFPARMS;
2158 	*frm++ = 6;
2159 	*frm++ = 0;		/* CFP count */
2160 	*frm++ = 2;		/* CFP period */
2161 	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
2162 	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
2163 	return frm;
2164 #undef ADDSHORT
2165 }
2166 
2167 static __inline uint8_t *
2168 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
2169 {
2170 	memcpy(frm, ie->ie_data, ie->ie_len);
2171 	return frm + ie->ie_len;
2172 }
2173 
2174 static __inline uint8_t *
2175 add_ie(uint8_t *frm, const uint8_t *ie)
2176 {
2177 	memcpy(frm, ie, 2 + ie[1]);
2178 	return frm + 2 + ie[1];
2179 }
2180 
2181 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
2182 /*
2183  * Add a WME information element to a frame.
2184  */
2185 uint8_t *
2186 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme,
2187     struct ieee80211_node *ni)
2188 {
2189 	static const uint8_t oui[4] = { WME_OUI_BYTES, WME_OUI_TYPE };
2190 	struct ieee80211vap *vap = ni->ni_vap;
2191 
2192 	*frm++ = IEEE80211_ELEMID_VENDOR;
2193 	*frm++ = sizeof(struct ieee80211_wme_info) - 2;
2194 	memcpy(frm, oui, sizeof(oui));
2195 	frm += sizeof(oui);
2196 	*frm++ = WME_INFO_OUI_SUBTYPE;
2197 	*frm++ = WME_VERSION;
2198 
2199 	/* QoS info field depends upon operating mode */
2200 	switch (vap->iv_opmode) {
2201 	case IEEE80211_M_HOSTAP:
2202 		*frm = wme->wme_bssChanParams.cap_info;
2203 		if (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD)
2204 			*frm |= WME_CAPINFO_UAPSD_EN;
2205 		frm++;
2206 		break;
2207 	case IEEE80211_M_STA:
2208 		/*
2209 		 * NB: UAPSD drivers must set this up in their
2210 		 * VAP creation method.
2211 		 */
2212 		*frm++ = vap->iv_uapsdinfo;
2213 		break;
2214 	default:
2215 		*frm++ = 0;
2216 		break;
2217 	}
2218 
2219 	return frm;
2220 }
2221 
2222 /*
2223  * Add a WME parameters element to a frame.
2224  */
2225 static uint8_t *
2226 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme,
2227     int uapsd_enable)
2228 {
2229 #define	ADDSHORT(frm, v) do {	\
2230 	le16enc(frm, v);	\
2231 	frm += 2;		\
2232 } while (0)
2233 	/* NB: this works 'cuz a param has an info at the front */
2234 	static const struct ieee80211_wme_info param = {
2235 		.wme_id		= IEEE80211_ELEMID_VENDOR,
2236 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
2237 		.wme_oui	= { WME_OUI_BYTES },
2238 		.wme_type	= WME_OUI_TYPE,
2239 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
2240 		.wme_version	= WME_VERSION,
2241 	};
2242 	int i;
2243 
2244 	memcpy(frm, &param, sizeof(param));
2245 	frm += __offsetof(struct ieee80211_wme_info, wme_info);
2246 	*frm = wme->wme_bssChanParams.cap_info;	/* AC info */
2247 	if (uapsd_enable)
2248 		*frm |= WME_CAPINFO_UAPSD_EN;
2249 	frm++;
2250 	*frm++ = 0;					/* reserved field */
2251 	/* XXX TODO - U-APSD bits - SP, flags below */
2252 	for (i = 0; i < WME_NUM_AC; i++) {
2253 		const struct wmeParams *ac =
2254 		       &wme->wme_bssChanParams.cap_wmeParams[i];
2255 		*frm++ = _IEEE80211_SHIFTMASK(i, WME_PARAM_ACI)
2256 		       | _IEEE80211_SHIFTMASK(ac->wmep_acm, WME_PARAM_ACM)
2257 		       | _IEEE80211_SHIFTMASK(ac->wmep_aifsn, WME_PARAM_AIFSN)
2258 		       ;
2259 		*frm++ = _IEEE80211_SHIFTMASK(ac->wmep_logcwmax,
2260 			    WME_PARAM_LOGCWMAX)
2261 		       | _IEEE80211_SHIFTMASK(ac->wmep_logcwmin,
2262 			    WME_PARAM_LOGCWMIN)
2263 		       ;
2264 		ADDSHORT(frm, ac->wmep_txopLimit);
2265 	}
2266 	return frm;
2267 #undef ADDSHORT
2268 }
2269 #undef WME_OUI_BYTES
2270 
2271 /*
2272  * Add an 11h Power Constraint element to a frame.
2273  */
2274 static uint8_t *
2275 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
2276 {
2277 	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
2278 	/* XXX per-vap tx power limit? */
2279 	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
2280 
2281 	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
2282 	frm[1] = 1;
2283 	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
2284 	return frm + 3;
2285 }
2286 
2287 /*
2288  * Add an 11h Power Capability element to a frame.
2289  */
2290 static uint8_t *
2291 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
2292 {
2293 	frm[0] = IEEE80211_ELEMID_PWRCAP;
2294 	frm[1] = 2;
2295 	frm[2] = c->ic_minpower;
2296 	frm[3] = c->ic_maxpower;
2297 	return frm + 4;
2298 }
2299 
2300 /*
2301  * Add an 11h Supported Channels element to a frame.
2302  */
2303 static uint8_t *
2304 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
2305 {
2306 	static const int ielen = 26;
2307 
2308 	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
2309 	frm[1] = ielen;
2310 	/* XXX not correct */
2311 	memcpy(frm+2, ic->ic_chan_avail, ielen);
2312 	return frm + 2 + ielen;
2313 }
2314 
2315 /*
2316  * Add an 11h Quiet time element to a frame.
2317  */
2318 static uint8_t *
2319 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap, int update)
2320 {
2321 	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
2322 
2323 	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
2324 	quiet->len = 6;
2325 
2326 	/*
2327 	 * Only update every beacon interval - otherwise probe responses
2328 	 * would update the quiet count value.
2329 	 */
2330 	if (update) {
2331 		if (vap->iv_quiet_count_value == 1)
2332 			vap->iv_quiet_count_value = vap->iv_quiet_count;
2333 		else if (vap->iv_quiet_count_value > 1)
2334 			vap->iv_quiet_count_value--;
2335 	}
2336 
2337 	if (vap->iv_quiet_count_value == 0) {
2338 		/* value 0 is reserved as per 802.11h standerd */
2339 		vap->iv_quiet_count_value = 1;
2340 	}
2341 
2342 	quiet->tbttcount = vap->iv_quiet_count_value;
2343 	quiet->period = vap->iv_quiet_period;
2344 	quiet->duration = htole16(vap->iv_quiet_duration);
2345 	quiet->offset = htole16(vap->iv_quiet_offset);
2346 	return frm + sizeof(*quiet);
2347 }
2348 
2349 /*
2350  * Add an 11h Channel Switch Announcement element to a frame.
2351  * Note that we use the per-vap CSA count to adjust the global
2352  * counter so we can use this routine to form probe response
2353  * frames and get the current count.
2354  */
2355 static uint8_t *
2356 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
2357 {
2358 	struct ieee80211com *ic = vap->iv_ic;
2359 	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
2360 
2361 	csa->csa_ie = IEEE80211_ELEMID_CSA;
2362 	csa->csa_len = 3;
2363 	csa->csa_mode = 1;		/* XXX force quiet on channel */
2364 	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
2365 	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
2366 	return frm + sizeof(*csa);
2367 }
2368 
2369 /*
2370  * Add an 11h country information element to a frame.
2371  */
2372 static uint8_t *
2373 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
2374 {
2375 
2376 	if (ic->ic_countryie == NULL ||
2377 	    ic->ic_countryie_chan != ic->ic_bsschan) {
2378 		/*
2379 		 * Handle lazy construction of ie.  This is done on
2380 		 * first use and after a channel change that requires
2381 		 * re-calculation.
2382 		 */
2383 		if (ic->ic_countryie != NULL)
2384 			IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
2385 		ic->ic_countryie = ieee80211_alloc_countryie(ic);
2386 		if (ic->ic_countryie == NULL)
2387 			return frm;
2388 		ic->ic_countryie_chan = ic->ic_bsschan;
2389 	}
2390 	return add_appie(frm, ic->ic_countryie);
2391 }
2392 
2393 uint8_t *
2394 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
2395 {
2396 	if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
2397 		return (add_ie(frm, vap->iv_wpa_ie));
2398 	else {
2399 		/* XXX else complain? */
2400 		return (frm);
2401 	}
2402 }
2403 
2404 uint8_t *
2405 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
2406 {
2407 	if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
2408 		return (add_ie(frm, vap->iv_rsn_ie));
2409 	else {
2410 		/* XXX else complain? */
2411 		return (frm);
2412 	}
2413 }
2414 
2415 uint8_t *
2416 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
2417 {
2418 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
2419 		*frm++ = IEEE80211_ELEMID_QOS;
2420 		*frm++ = 1;
2421 		*frm++ = 0;
2422 	}
2423 
2424 	return (frm);
2425 }
2426 
2427 /*
2428  * ieee80211_send_probereq(): send a probe request frame with the specified ssid
2429  * and any optional information element data;  some helper functions as FW based
2430  * HW scans need some of that information passed too.
2431  */
2432 static uint32_t
2433 ieee80211_probereq_ie_len(struct ieee80211vap *vap, struct ieee80211com *ic)
2434 {
2435 	const struct ieee80211_rateset *rs;
2436 
2437 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2438 
2439 	/*
2440 	 * prreq frame format
2441 	 *	[tlv] ssid
2442 	 *	[tlv] supported rates
2443 	 *	[tlv] extended supported rates (if needed)
2444 	 *	[tlv] HT cap (optional)
2445 	 *	[tlv] VHT cap (optional)
2446 	 *	[tlv] WPA (optional)
2447 	 *	[tlv] user-specified ie's
2448 	 */
2449 	return ( 2 + IEEE80211_NWID_LEN
2450 	       + 2 + IEEE80211_RATE_SIZE
2451 	       + ((rs->rs_nrates > IEEE80211_RATE_SIZE) ?
2452 	           2 + (rs->rs_nrates - IEEE80211_RATE_SIZE) : 0)
2453 	       + (((vap->iv_opmode == IEEE80211_M_IBSS) &&
2454 		    (vap->iv_flags_ht & IEEE80211_FHT_HT)) ?
2455 	                sizeof(struct ieee80211_ie_htcap) : 0)
2456 #ifdef notyet
2457 	       + sizeof(struct ieee80211_ie_htinfo)	/* XXX not needed? */
2458 	       + 2 + sizeof(struct ieee80211_vht_cap)
2459 #endif
2460 	       + ((vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) ?
2461 	           vap->iv_wpa_ie[1] : 0)
2462 	       + (vap->iv_appie_probereq != NULL ?
2463 		   vap->iv_appie_probereq->ie_len : 0)
2464 	);
2465 }
2466 
2467 int
2468 ieee80211_probereq_ie(struct ieee80211vap *vap, struct ieee80211com *ic,
2469     uint8_t **frmp, uint32_t *frmlen, const uint8_t *ssid, size_t ssidlen,
2470     bool alloc)
2471 {
2472 	const struct ieee80211_rateset *rs;
2473 	uint8_t	*frm;
2474 	uint32_t len;
2475 
2476 	if (!alloc && (frmp == NULL || frmlen == NULL))
2477 		return (EINVAL);
2478 
2479 	len = ieee80211_probereq_ie_len(vap, ic);
2480 	if (!alloc && len > *frmlen)
2481 		return (ENOBUFS);
2482 
2483 	/* For HW scans we usually do not pass in the SSID as IE. */
2484 	if (ssidlen == -1)
2485 		len -= (2 + IEEE80211_NWID_LEN);
2486 
2487 	if (alloc) {
2488 		frm = IEEE80211_MALLOC(len, M_80211_VAP,
2489 		    IEEE80211_M_WAITOK | IEEE80211_M_ZERO);
2490 		*frmp = frm;
2491 		*frmlen = len;
2492 	} else
2493 		frm = *frmp;
2494 
2495 	if (ssidlen != -1)
2496 		frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2497 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2498 	frm = ieee80211_add_rates(frm, rs);
2499 	frm = ieee80211_add_xrates(frm, rs);
2500 
2501 	/*
2502 	 * Note: we can't use bss; we don't have one yet.
2503 	 *
2504 	 * So, we should announce our capabilities
2505 	 * in this channel mode (2g/5g), not the
2506 	 * channel details itself.
2507 	 */
2508 	if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
2509 	    (vap->iv_flags_ht & IEEE80211_FHT_HT)) {
2510 		struct ieee80211_channel *c;
2511 
2512 		/*
2513 		 * Get the HT channel that we should try upgrading to.
2514 		 * If we can do 40MHz then this'll upgrade it appropriately.
2515 		 */
2516 		c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2517 		    vap->iv_flags_ht);
2518 		frm = ieee80211_add_htcap_ch(frm, vap, c);
2519 	}
2520 
2521 	/*
2522 	 * XXX TODO: need to figure out what/how to update the
2523 	 * VHT channel.
2524 	 */
2525 #ifdef notyet
2526 	if (vap->iv_vht_flags & IEEE80211_FVHT_VHT) {
2527 		struct ieee80211_channel *c;
2528 
2529 		c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2530 		    vap->iv_flags_ht);
2531 		c = ieee80211_vht_adjust_channel(ic, c, vap->iv_vht_flags);
2532 		frm = ieee80211_add_vhtcap_ch(frm, vap, c);
2533 	}
2534 #endif
2535 
2536 	frm = ieee80211_add_wpa(frm, vap);
2537 	if (vap->iv_appie_probereq != NULL)
2538 		frm = add_appie(frm, vap->iv_appie_probereq);
2539 
2540 	if (!alloc) {
2541 		*frmp = frm;
2542 		*frmlen = len;
2543 	}
2544 
2545 	return (0);
2546 }
2547 
2548 int
2549 ieee80211_send_probereq(struct ieee80211_node *ni,
2550 	const uint8_t sa[IEEE80211_ADDR_LEN],
2551 	const uint8_t da[IEEE80211_ADDR_LEN],
2552 	const uint8_t bssid[IEEE80211_ADDR_LEN],
2553 	const uint8_t *ssid, size_t ssidlen)
2554 {
2555 	struct ieee80211vap *vap = ni->ni_vap;
2556 	struct ieee80211com *ic = ni->ni_ic;
2557 	struct ieee80211_node *bss;
2558 	const struct ieee80211_txparam *tp;
2559 	struct ieee80211_bpf_params params;
2560 	struct mbuf *m;
2561 	uint8_t *frm;
2562 	uint32_t frmlen;
2563 	int ret;
2564 
2565 	bss = ieee80211_ref_node(vap->iv_bss);
2566 
2567 	if (vap->iv_state == IEEE80211_S_CAC) {
2568 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
2569 		    "block %s frame in CAC state", "probe request");
2570 		vap->iv_stats.is_tx_badstate++;
2571 		ieee80211_free_node(bss);
2572 		return EIO;		/* XXX */
2573 	}
2574 
2575 	/*
2576 	 * Hold a reference on the node so it doesn't go away until after
2577 	 * the xmit is complete all the way in the driver.  On error we
2578 	 * will remove our reference.
2579 	 */
2580 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2581 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2582 		__func__, __LINE__,
2583 		ni, ether_sprintf(ni->ni_macaddr),
2584 		ieee80211_node_refcnt(ni)+1);
2585 	ieee80211_ref_node(ni);
2586 
2587 	/* See comments above for entire frame format. */
2588 	frmlen = ieee80211_probereq_ie_len(vap, ic);
2589 	m = ieee80211_getmgtframe(&frm,
2590 	    ic->ic_headroom + sizeof(struct ieee80211_frame), frmlen);
2591 	if (m == NULL) {
2592 		vap->iv_stats.is_tx_nobuf++;
2593 		ieee80211_free_node(ni);
2594 		ieee80211_free_node(bss);
2595 		return ENOMEM;
2596 	}
2597 
2598 	ret = ieee80211_probereq_ie(vap, ic, &frm, &frmlen, ssid, ssidlen,
2599 	    false);
2600 	KASSERT(ret == 0,
2601 	    ("%s: ieee80211_probereq_ie failed: %d\n", __func__, ret));
2602 
2603 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2604 	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2605 	    ("leading space %zd", M_LEADINGSPACE(m)));
2606 	M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
2607 	if (m == NULL) {
2608 		/* NB: cannot happen */
2609 		ieee80211_free_node(ni);
2610 		ieee80211_free_node(bss);
2611 		return ENOMEM;
2612 	}
2613 
2614 	IEEE80211_TX_LOCK(ic);
2615 	ieee80211_send_setup(ni, m,
2616 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2617 	     IEEE80211_NONQOS_TID, sa, da, bssid);
2618 	/* XXX power management? */
2619 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2620 
2621 	M_WME_SETAC(m, WME_AC_BE);
2622 
2623 	IEEE80211_NODE_STAT(ni, tx_probereq);
2624 	IEEE80211_NODE_STAT(ni, tx_mgmt);
2625 
2626 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2627 	    "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n",
2628 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
2629 	    ether_sprintf(bssid),
2630 	    sa, ":",
2631 	    da, ":",
2632 	    ssidlen, ssid);
2633 
2634 	memset(&params, 0, sizeof(params));
2635 	params.ibp_pri = M_WME_GETAC(m);
2636 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2637 	params.ibp_rate0 = tp->mgmtrate;
2638 	if (IEEE80211_IS_MULTICAST(da)) {
2639 		params.ibp_flags |= IEEE80211_BPF_NOACK;
2640 		params.ibp_try0 = 1;
2641 	} else
2642 		params.ibp_try0 = tp->maxretry;
2643 	params.ibp_power = ni->ni_txpower;
2644 	ret = ieee80211_raw_output(vap, ni, m, &params);
2645 	IEEE80211_TX_UNLOCK(ic);
2646 	ieee80211_free_node(bss);
2647 	return (ret);
2648 }
2649 
2650 /*
2651  * Calculate capability information for mgt frames.
2652  */
2653 uint16_t
2654 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2655 {
2656 	uint16_t capinfo;
2657 
2658 	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2659 
2660 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2661 		capinfo = IEEE80211_CAPINFO_ESS;
2662 	else if (vap->iv_opmode == IEEE80211_M_IBSS)
2663 		capinfo = IEEE80211_CAPINFO_IBSS;
2664 	else
2665 		capinfo = 0;
2666 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2667 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2668 	if ((vap->iv_flags & IEEE80211_F_SHPREAMBLE) &&
2669 	    IEEE80211_IS_CHAN_2GHZ(chan))
2670 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2671 	if (vap->iv_flags & IEEE80211_F_SHSLOT)
2672 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2673 	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2674 		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2675 	return capinfo;
2676 }
2677 
2678 /*
2679  * Send a management frame.  The node is for the destination (or ic_bss
2680  * when in station mode).  Nodes other than ic_bss have their reference
2681  * count bumped to reflect our use for an indeterminant time.
2682  */
2683 int
2684 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2685 {
2686 #define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2687 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2688 	struct ieee80211vap *vap = ni->ni_vap;
2689 	struct ieee80211com *ic = ni->ni_ic;
2690 	struct ieee80211_node *bss = vap->iv_bss;
2691 	struct ieee80211_bpf_params params;
2692 	struct mbuf *m;
2693 	uint8_t *frm;
2694 	uint16_t capinfo;
2695 	int has_challenge, is_shared_key, ret, status;
2696 
2697 	KASSERT(ni != NULL, ("null node"));
2698 
2699 	/*
2700 	 * Hold a reference on the node so it doesn't go away until after
2701 	 * the xmit is complete all the way in the driver.  On error we
2702 	 * will remove our reference.
2703 	 */
2704 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2705 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2706 		__func__, __LINE__,
2707 		ni, ether_sprintf(ni->ni_macaddr),
2708 		ieee80211_node_refcnt(ni)+1);
2709 	ieee80211_ref_node(ni);
2710 
2711 	memset(&params, 0, sizeof(params));
2712 	switch (type) {
2713 	case IEEE80211_FC0_SUBTYPE_AUTH:
2714 		status = arg >> 16;
2715 		arg &= 0xffff;
2716 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2717 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2718 		    ni->ni_challenge != NULL);
2719 
2720 		/*
2721 		 * Deduce whether we're doing open authentication or
2722 		 * shared key authentication.  We do the latter if
2723 		 * we're in the middle of a shared key authentication
2724 		 * handshake or if we're initiating an authentication
2725 		 * request and configured to use shared key.
2726 		 */
2727 		is_shared_key = has_challenge ||
2728 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2729 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2730 		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
2731 
2732 		m = ieee80211_getmgtframe(&frm,
2733 			  ic->ic_headroom + sizeof(struct ieee80211_frame),
2734 			  3 * sizeof(uint16_t)
2735 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2736 				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0));
2737 		if (m == NULL)
2738 			senderr(ENOMEM, is_tx_nobuf);
2739 
2740 		((uint16_t *)frm)[0] =
2741 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2742 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
2743 		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
2744 		((uint16_t *)frm)[2] = htole16(status);/* status */
2745 
2746 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2747 			((uint16_t *)frm)[3] =
2748 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
2749 			    IEEE80211_ELEMID_CHALLENGE);
2750 			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2751 			    IEEE80211_CHALLENGE_LEN);
2752 			m->m_pkthdr.len = m->m_len =
2753 				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2754 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2755 				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2756 				    "request encrypt frame (%s)", __func__);
2757 				/* mark frame for encryption */
2758 				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2759 			}
2760 		} else
2761 			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2762 
2763 		/* XXX not right for shared key */
2764 		if (status == IEEE80211_STATUS_SUCCESS)
2765 			IEEE80211_NODE_STAT(ni, tx_auth);
2766 		else
2767 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
2768 
2769 		if (vap->iv_opmode == IEEE80211_M_STA)
2770 			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2771 				(void *) vap->iv_state);
2772 		break;
2773 
2774 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2775 		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2776 		    "send station deauthenticate (reason: %d (%s))", arg,
2777 		    ieee80211_reason_to_string(arg));
2778 		m = ieee80211_getmgtframe(&frm,
2779 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2780 			sizeof(uint16_t));
2781 		if (m == NULL)
2782 			senderr(ENOMEM, is_tx_nobuf);
2783 		*(uint16_t *)frm = htole16(arg);	/* reason */
2784 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2785 
2786 		IEEE80211_NODE_STAT(ni, tx_deauth);
2787 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2788 
2789 		ieee80211_node_unauthorize(ni);		/* port closed */
2790 		break;
2791 
2792 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2793 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2794 		/*
2795 		 * asreq frame format
2796 		 *	[2] capability information
2797 		 *	[2] listen interval
2798 		 *	[6*] current AP address (reassoc only)
2799 		 *	[tlv] ssid
2800 		 *	[tlv] supported rates
2801 		 *	[tlv] extended supported rates
2802 		 *	[4] power capability (optional)
2803 		 *	[28] supported channels (optional)
2804 		 *	[tlv] HT capabilities
2805 		 *	[tlv] VHT capabilities
2806 		 *	[tlv] WME (optional)
2807 		 *	[tlv] Vendor OUI HT capabilities (optional)
2808 		 *	[tlv] Atheros capabilities (if negotiated)
2809 		 *	[tlv] AppIE's (optional)
2810 		 */
2811 		m = ieee80211_getmgtframe(&frm,
2812 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2813 			 sizeof(uint16_t)
2814 		       + sizeof(uint16_t)
2815 		       + IEEE80211_ADDR_LEN
2816 		       + 2 + IEEE80211_NWID_LEN
2817 		       + 2 + IEEE80211_RATE_SIZE
2818 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2819 		       + 4
2820 		       + 2 + 26
2821 		       + sizeof(struct ieee80211_wme_info)
2822 		       + sizeof(struct ieee80211_ie_htcap)
2823 		       + 2 + sizeof(struct ieee80211_vht_cap)
2824 		       + 4 + sizeof(struct ieee80211_ie_htcap)
2825 #ifdef IEEE80211_SUPPORT_SUPERG
2826 		       + sizeof(struct ieee80211_ath_ie)
2827 #endif
2828 		       + (vap->iv_appie_wpa != NULL ?
2829 				vap->iv_appie_wpa->ie_len : 0)
2830 		       + (vap->iv_appie_assocreq != NULL ?
2831 				vap->iv_appie_assocreq->ie_len : 0)
2832 		);
2833 		if (m == NULL)
2834 			senderr(ENOMEM, is_tx_nobuf);
2835 
2836 		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2837 		    ("wrong mode %u", vap->iv_opmode));
2838 		capinfo = IEEE80211_CAPINFO_ESS;
2839 		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2840 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2841 		/*
2842 		 * NB: Some 11a AP's reject the request when
2843 		 *     short preamble is set.
2844 		 */
2845 		if ((vap->iv_flags & IEEE80211_F_SHPREAMBLE) &&
2846 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2847 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2848 		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2849 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2850 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2851 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2852 		    (vap->iv_flags & IEEE80211_F_DOTH))
2853 			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2854 		*(uint16_t *)frm = htole16(capinfo);
2855 		frm += 2;
2856 
2857 		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2858 		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2859 						    bss->ni_intval));
2860 		frm += 2;
2861 
2862 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2863 			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2864 			frm += IEEE80211_ADDR_LEN;
2865 		}
2866 
2867 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2868 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2869 		frm = ieee80211_add_rsn(frm, vap);
2870 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2871 		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2872 			frm = ieee80211_add_powercapability(frm,
2873 			    ic->ic_curchan);
2874 			frm = ieee80211_add_supportedchannels(frm, ic);
2875 		}
2876 
2877 		/*
2878 		 * Check the channel - we may be using an 11n NIC with an
2879 		 * 11n capable station, but we're configured to be an 11b
2880 		 * channel.
2881 		 */
2882 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2883 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2884 		    ni->ni_ies.htcap_ie != NULL &&
2885 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
2886 			frm = ieee80211_add_htcap(frm, ni);
2887 		}
2888 
2889 		if ((vap->iv_vht_flags & IEEE80211_FVHT_VHT) &&
2890 		    IEEE80211_IS_CHAN_VHT(ni->ni_chan) &&
2891 		    ni->ni_ies.vhtcap_ie != NULL &&
2892 		    ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) {
2893 			frm = ieee80211_add_vhtcap(frm, ni);
2894 		}
2895 
2896 		frm = ieee80211_add_wpa(frm, vap);
2897 		if ((vap->iv_flags & IEEE80211_F_WME) &&
2898 		    ni->ni_ies.wme_ie != NULL)
2899 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme, ni);
2900 
2901 		/*
2902 		 * Same deal - only send HT info if we're on an 11n
2903 		 * capable channel.
2904 		 */
2905 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2906 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2907 		    ni->ni_ies.htcap_ie != NULL &&
2908 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
2909 			frm = ieee80211_add_htcap_vendor(frm, ni);
2910 		}
2911 #ifdef IEEE80211_SUPPORT_SUPERG
2912 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2913 			frm = ieee80211_add_ath(frm,
2914 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2915 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2916 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2917 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2918 		}
2919 #endif /* IEEE80211_SUPPORT_SUPERG */
2920 		if (vap->iv_appie_assocreq != NULL)
2921 			frm = add_appie(frm, vap->iv_appie_assocreq);
2922 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2923 
2924 		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2925 			(void *) vap->iv_state);
2926 		break;
2927 
2928 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2929 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2930 		/*
2931 		 * asresp frame format
2932 		 *	[2] capability information
2933 		 *	[2] status
2934 		 *	[2] association ID
2935 		 *	[tlv] supported rates
2936 		 *	[tlv] extended supported rates
2937 		 *	[tlv] HT capabilities (standard, if STA enabled)
2938 		 *	[tlv] HT information (standard, if STA enabled)
2939 		 *	[tlv] VHT capabilities (standard, if STA enabled)
2940 		 *	[tlv] VHT information (standard, if STA enabled)
2941 		 *	[tlv] WME (if configured and STA enabled)
2942 		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2943 		 *	[tlv] HT information (vendor OUI, if STA enabled)
2944 		 *	[tlv] Atheros capabilities (if STA enabled)
2945 		 *	[tlv] AppIE's (optional)
2946 		 */
2947 		m = ieee80211_getmgtframe(&frm,
2948 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2949 			 sizeof(uint16_t)
2950 		       + sizeof(uint16_t)
2951 		       + sizeof(uint16_t)
2952 		       + 2 + IEEE80211_RATE_SIZE
2953 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2954 		       + sizeof(struct ieee80211_ie_htcap) + 4
2955 		       + sizeof(struct ieee80211_ie_htinfo) + 4
2956 		       + 2 + sizeof(struct ieee80211_vht_cap)
2957 		       + 2 + sizeof(struct ieee80211_vht_operation)
2958 		       + sizeof(struct ieee80211_wme_param)
2959 #ifdef IEEE80211_SUPPORT_SUPERG
2960 		       + sizeof(struct ieee80211_ath_ie)
2961 #endif
2962 		       + (vap->iv_appie_assocresp != NULL ?
2963 				vap->iv_appie_assocresp->ie_len : 0)
2964 		);
2965 		if (m == NULL)
2966 			senderr(ENOMEM, is_tx_nobuf);
2967 
2968 		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2969 		*(uint16_t *)frm = htole16(capinfo);
2970 		frm += 2;
2971 
2972 		*(uint16_t *)frm = htole16(arg);	/* status */
2973 		frm += 2;
2974 
2975 		if (arg == IEEE80211_STATUS_SUCCESS) {
2976 			*(uint16_t *)frm = htole16(ni->ni_associd);
2977 			IEEE80211_NODE_STAT(ni, tx_assoc);
2978 		} else
2979 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2980 		frm += 2;
2981 
2982 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2983 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2984 		/* NB: respond according to what we received */
2985 		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2986 			frm = ieee80211_add_htcap(frm, ni);
2987 			frm = ieee80211_add_htinfo(frm, ni);
2988 		}
2989 		if ((vap->iv_flags & IEEE80211_F_WME) &&
2990 		    ni->ni_ies.wme_ie != NULL)
2991 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme,
2992 			    !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD));
2993 		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2994 			frm = ieee80211_add_htcap_vendor(frm, ni);
2995 			frm = ieee80211_add_htinfo_vendor(frm, ni);
2996 		}
2997 		if (ni->ni_flags & IEEE80211_NODE_VHT) {
2998 			frm = ieee80211_add_vhtcap(frm, ni);
2999 			frm = ieee80211_add_vhtinfo(frm, ni);
3000 		}
3001 #ifdef IEEE80211_SUPPORT_SUPERG
3002 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
3003 			frm = ieee80211_add_ath(frm,
3004 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
3005 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
3006 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
3007 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
3008 #endif /* IEEE80211_SUPPORT_SUPERG */
3009 		if (vap->iv_appie_assocresp != NULL)
3010 			frm = add_appie(frm, vap->iv_appie_assocresp);
3011 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3012 		break;
3013 
3014 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
3015 		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
3016 		    "send station disassociate (reason: %d (%s))", arg,
3017 		    ieee80211_reason_to_string(arg));
3018 		m = ieee80211_getmgtframe(&frm,
3019 			ic->ic_headroom + sizeof(struct ieee80211_frame),
3020 			sizeof(uint16_t));
3021 		if (m == NULL)
3022 			senderr(ENOMEM, is_tx_nobuf);
3023 		*(uint16_t *)frm = htole16(arg);	/* reason */
3024 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
3025 
3026 		IEEE80211_NODE_STAT(ni, tx_disassoc);
3027 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
3028 		break;
3029 
3030 	default:
3031 		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
3032 		    "invalid mgmt frame type %u", type);
3033 		senderr(EINVAL, is_tx_unknownmgt);
3034 		/* NOTREACHED */
3035 	}
3036 
3037 	/* NB: force non-ProbeResp frames to the highest queue */
3038 	params.ibp_pri = WME_AC_VO;
3039 	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
3040 	/* NB: we know all frames are unicast */
3041 	params.ibp_try0 = bss->ni_txparms->maxretry;
3042 	params.ibp_power = bss->ni_txpower;
3043 	return ieee80211_mgmt_output(ni, m, type, &params);
3044 bad:
3045 	ieee80211_free_node(ni);
3046 	return ret;
3047 #undef senderr
3048 #undef HTFLAGS
3049 }
3050 
3051 /*
3052  * Return an mbuf with a probe response frame in it.
3053  * Space is left to prepend and 802.11 header at the
3054  * front but it's left to the caller to fill in.
3055  */
3056 struct mbuf *
3057 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
3058 {
3059 	struct ieee80211vap *vap = bss->ni_vap;
3060 	struct ieee80211com *ic = bss->ni_ic;
3061 	const struct ieee80211_rateset *rs;
3062 	struct mbuf *m;
3063 	uint16_t capinfo;
3064 	uint8_t *frm;
3065 
3066 	/*
3067 	 * probe response frame format
3068 	 *	[8] time stamp
3069 	 *	[2] beacon interval
3070 	 *	[2] cabability information
3071 	 *	[tlv] ssid
3072 	 *	[tlv] supported rates
3073 	 *	[tlv] parameter set (FH/DS)
3074 	 *	[tlv] parameter set (IBSS)
3075 	 *	[tlv] country (optional)
3076 	 *	[3] power control (optional)
3077 	 *	[5] channel switch announcement (CSA) (optional)
3078 	 *	[tlv] extended rate phy (ERP)
3079 	 *	[tlv] extended supported rates
3080 	 *	[tlv] RSN (optional)
3081 	 *	[tlv] HT capabilities
3082 	 *	[tlv] HT information
3083 	 *	[tlv] VHT capabilities
3084 	 *	[tlv] VHT information
3085 	 *	[tlv] WPA (optional)
3086 	 *	[tlv] WME (optional)
3087 	 *	[tlv] Vendor OUI HT capabilities (optional)
3088 	 *	[tlv] Vendor OUI HT information (optional)
3089 	 *	[tlv] Atheros capabilities
3090 	 *	[tlv] AppIE's (optional)
3091 	 *	[tlv] Mesh ID (MBSS)
3092 	 *	[tlv] Mesh Conf (MBSS)
3093 	 */
3094 	m = ieee80211_getmgtframe(&frm,
3095 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
3096 		 8
3097 	       + sizeof(uint16_t)
3098 	       + sizeof(uint16_t)
3099 	       + 2 + IEEE80211_NWID_LEN
3100 	       + 2 + IEEE80211_RATE_SIZE
3101 	       + 7	/* max(7,3) */
3102 	       + IEEE80211_COUNTRY_MAX_SIZE
3103 	       + 3
3104 	       + sizeof(struct ieee80211_csa_ie)
3105 	       + sizeof(struct ieee80211_quiet_ie)
3106 	       + 3
3107 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3108 	       + sizeof(struct ieee80211_ie_wpa)
3109 	       + sizeof(struct ieee80211_ie_htcap)
3110 	       + sizeof(struct ieee80211_ie_htinfo)
3111 	       + sizeof(struct ieee80211_ie_wpa)
3112 	       + sizeof(struct ieee80211_wme_param)
3113 	       + 4 + sizeof(struct ieee80211_ie_htcap)
3114 	       + 4 + sizeof(struct ieee80211_ie_htinfo)
3115 	       + 2 + sizeof(struct ieee80211_vht_cap)
3116 	       + 2 + sizeof(struct ieee80211_vht_operation)
3117 #ifdef IEEE80211_SUPPORT_SUPERG
3118 	       + sizeof(struct ieee80211_ath_ie)
3119 #endif
3120 #ifdef IEEE80211_SUPPORT_MESH
3121 	       + 2 + IEEE80211_MESHID_LEN
3122 	       + sizeof(struct ieee80211_meshconf_ie)
3123 #endif
3124 	       + (vap->iv_appie_proberesp != NULL ?
3125 			vap->iv_appie_proberesp->ie_len : 0)
3126 	);
3127 	if (m == NULL) {
3128 		vap->iv_stats.is_tx_nobuf++;
3129 		return NULL;
3130 	}
3131 
3132 	memset(frm, 0, 8);	/* timestamp should be filled later */
3133 	frm += 8;
3134 	*(uint16_t *)frm = htole16(bss->ni_intval);
3135 	frm += 2;
3136 	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
3137 	*(uint16_t *)frm = htole16(capinfo);
3138 	frm += 2;
3139 
3140 	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
3141 	rs = ieee80211_get_suprates(ic, bss->ni_chan);
3142 	frm = ieee80211_add_rates(frm, rs);
3143 
3144 	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
3145 		*frm++ = IEEE80211_ELEMID_FHPARMS;
3146 		*frm++ = 5;
3147 		*frm++ = bss->ni_fhdwell & 0x00ff;
3148 		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
3149 		*frm++ = IEEE80211_FH_CHANSET(
3150 		    ieee80211_chan2ieee(ic, bss->ni_chan));
3151 		*frm++ = IEEE80211_FH_CHANPAT(
3152 		    ieee80211_chan2ieee(ic, bss->ni_chan));
3153 		*frm++ = bss->ni_fhindex;
3154 	} else {
3155 		*frm++ = IEEE80211_ELEMID_DSPARMS;
3156 		*frm++ = 1;
3157 		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
3158 	}
3159 
3160 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
3161 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
3162 		*frm++ = 2;
3163 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
3164 	}
3165 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3166 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3167 		frm = ieee80211_add_countryie(frm, ic);
3168 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3169 		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
3170 			frm = ieee80211_add_powerconstraint(frm, vap);
3171 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3172 			frm = ieee80211_add_csa(frm, vap);
3173 	}
3174 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3175 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3176 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
3177 			if (vap->iv_quiet)
3178 				frm = ieee80211_add_quiet(frm, vap, 0);
3179 		}
3180 	}
3181 	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
3182 		frm = ieee80211_add_erp(frm, vap);
3183 	frm = ieee80211_add_xrates(frm, rs);
3184 	frm = ieee80211_add_rsn(frm, vap);
3185 	/*
3186 	 * NB: legacy 11b clients do not get certain ie's.
3187 	 *     The caller identifies such clients by passing
3188 	 *     a token in legacy to us.  Could expand this to be
3189 	 *     any legacy client for stuff like HT ie's.
3190 	 */
3191 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
3192 	    legacy != IEEE80211_SEND_LEGACY_11B) {
3193 		frm = ieee80211_add_htcap(frm, bss);
3194 		frm = ieee80211_add_htinfo(frm, bss);
3195 	}
3196 	if (IEEE80211_IS_CHAN_VHT(bss->ni_chan) &&
3197 	    legacy != IEEE80211_SEND_LEGACY_11B) {
3198 		frm = ieee80211_add_vhtcap(frm, bss);
3199 		frm = ieee80211_add_vhtinfo(frm, bss);
3200 	}
3201 	frm = ieee80211_add_wpa(frm, vap);
3202 	if (vap->iv_flags & IEEE80211_F_WME)
3203 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme,
3204 		    !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD));
3205 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
3206 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
3207 	    legacy != IEEE80211_SEND_LEGACY_11B) {
3208 		frm = ieee80211_add_htcap_vendor(frm, bss);
3209 		frm = ieee80211_add_htinfo_vendor(frm, bss);
3210 	}
3211 #ifdef IEEE80211_SUPPORT_SUPERG
3212 	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
3213 	    legacy != IEEE80211_SEND_LEGACY_11B)
3214 		frm = ieee80211_add_athcaps(frm, bss);
3215 #endif
3216 	if (vap->iv_appie_proberesp != NULL)
3217 		frm = add_appie(frm, vap->iv_appie_proberesp);
3218 #ifdef IEEE80211_SUPPORT_MESH
3219 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3220 		frm = ieee80211_add_meshid(frm, vap);
3221 		frm = ieee80211_add_meshconf(frm, vap);
3222 	}
3223 #endif
3224 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3225 
3226 	return m;
3227 }
3228 
3229 /*
3230  * Send a probe response frame to the specified mac address.
3231  * This does not go through the normal mgt frame api so we
3232  * can specify the destination address and re-use the bss node
3233  * for the sta reference.
3234  */
3235 int
3236 ieee80211_send_proberesp(struct ieee80211vap *vap,
3237 	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
3238 {
3239 	struct ieee80211_node *bss = vap->iv_bss;
3240 	struct ieee80211com *ic = vap->iv_ic;
3241 	struct mbuf *m;
3242 	int ret;
3243 
3244 	if (vap->iv_state == IEEE80211_S_CAC) {
3245 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
3246 		    "block %s frame in CAC state", "probe response");
3247 		vap->iv_stats.is_tx_badstate++;
3248 		return EIO;		/* XXX */
3249 	}
3250 
3251 	/*
3252 	 * Hold a reference on the node so it doesn't go away until after
3253 	 * the xmit is complete all the way in the driver.  On error we
3254 	 * will remove our reference.
3255 	 */
3256 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
3257 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
3258 	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
3259 	    ieee80211_node_refcnt(bss)+1);
3260 	ieee80211_ref_node(bss);
3261 
3262 	m = ieee80211_alloc_proberesp(bss, legacy);
3263 	if (m == NULL) {
3264 		ieee80211_free_node(bss);
3265 		return ENOMEM;
3266 	}
3267 
3268 	M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
3269 	KASSERT(m != NULL, ("no room for header"));
3270 
3271 	IEEE80211_TX_LOCK(ic);
3272 	ieee80211_send_setup(bss, m,
3273 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
3274 	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
3275 	/* XXX power management? */
3276 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
3277 
3278 	M_WME_SETAC(m, WME_AC_BE);
3279 
3280 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
3281 	    "send probe resp on channel %u to %s%s\n",
3282 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
3283 	    legacy ? " <legacy>" : "");
3284 	IEEE80211_NODE_STAT(bss, tx_mgmt);
3285 
3286 	ret = ieee80211_raw_output(vap, bss, m, NULL);
3287 	IEEE80211_TX_UNLOCK(ic);
3288 	return (ret);
3289 }
3290 
3291 /*
3292  * Allocate and build a RTS (Request To Send) control frame.
3293  */
3294 struct mbuf *
3295 ieee80211_alloc_rts(struct ieee80211com *ic,
3296 	const uint8_t ra[IEEE80211_ADDR_LEN],
3297 	const uint8_t ta[IEEE80211_ADDR_LEN],
3298 	uint16_t dur)
3299 {
3300 	struct ieee80211_frame_rts *rts;
3301 	struct mbuf *m;
3302 
3303 	/* XXX honor ic_headroom */
3304 	m = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA);
3305 	if (m != NULL) {
3306 		rts = mtod(m, struct ieee80211_frame_rts *);
3307 		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
3308 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
3309 		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3310 		*(u_int16_t *)rts->i_dur = htole16(dur);
3311 		IEEE80211_ADDR_COPY(rts->i_ra, ra);
3312 		IEEE80211_ADDR_COPY(rts->i_ta, ta);
3313 
3314 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
3315 	}
3316 	return m;
3317 }
3318 
3319 /*
3320  * Allocate and build a CTS (Clear To Send) control frame.
3321  */
3322 struct mbuf *
3323 ieee80211_alloc_cts(struct ieee80211com *ic,
3324 	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
3325 {
3326 	struct ieee80211_frame_cts *cts;
3327 	struct mbuf *m;
3328 
3329 	/* XXX honor ic_headroom */
3330 	m = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA);
3331 	if (m != NULL) {
3332 		cts = mtod(m, struct ieee80211_frame_cts *);
3333 		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
3334 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
3335 		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3336 		*(u_int16_t *)cts->i_dur = htole16(dur);
3337 		IEEE80211_ADDR_COPY(cts->i_ra, ra);
3338 
3339 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
3340 	}
3341 	return m;
3342 }
3343 
3344 /*
3345  * Wrapper for CTS/RTS frame allocation.
3346  */
3347 struct mbuf *
3348 ieee80211_alloc_prot(struct ieee80211_node *ni, const struct mbuf *m,
3349     uint8_t rate, int prot)
3350 {
3351 	struct ieee80211com *ic = ni->ni_ic;
3352 	struct ieee80211vap *vap = ni->ni_vap;
3353 	const struct ieee80211_frame *wh;
3354 	struct mbuf *mprot;
3355 	uint16_t dur;
3356 	int pktlen, isshort;
3357 
3358 	KASSERT(prot == IEEE80211_PROT_RTSCTS ||
3359 	    prot == IEEE80211_PROT_CTSONLY,
3360 	    ("wrong protection type %d", prot));
3361 
3362 	wh = mtod(m, const struct ieee80211_frame *);
3363 	pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3364 	isshort = (vap->iv_flags & IEEE80211_F_SHPREAMBLE) != 0;
3365 	dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
3366 	    + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3367 
3368 	if (prot == IEEE80211_PROT_RTSCTS) {
3369 		/* NB: CTS is the same size as an ACK */
3370 		dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3371 		mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
3372 	} else
3373 		mprot = ieee80211_alloc_cts(ic, vap->iv_myaddr, dur);
3374 
3375 	return (mprot);
3376 }
3377 
3378 static void
3379 ieee80211_tx_mgt_timeout(void *arg)
3380 {
3381 	struct ieee80211vap *vap = arg;
3382 
3383 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
3384 	    "vap %p mode %s state %s flags %#x & %#x\n", vap,
3385 	    ieee80211_opmode_name[vap->iv_opmode],
3386 	    ieee80211_state_name[vap->iv_state],
3387 	    vap->iv_ic->ic_flags, IEEE80211_F_SCAN);
3388 
3389 	IEEE80211_LOCK(vap->iv_ic);
3390 	if (vap->iv_state != IEEE80211_S_INIT &&
3391 	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3392 		/*
3393 		 * NB: it's safe to specify a timeout as the reason here;
3394 		 *     it'll only be used in the right state.
3395 		 */
3396 		ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
3397 			IEEE80211_SCAN_FAIL_TIMEOUT);
3398 	}
3399 	IEEE80211_UNLOCK(vap->iv_ic);
3400 }
3401 
3402 /*
3403  * This is the callback set on net80211-sourced transmitted
3404  * authentication request frames.
3405  *
3406  * This does a couple of things:
3407  *
3408  * + If the frame transmitted was a success, it schedules a future
3409  *   event which will transition the interface to scan.
3410  *   If a state transition _then_ occurs before that event occurs,
3411  *   said state transition will cancel this callout.
3412  *
3413  * + If the frame transmit was a failure, it immediately schedules
3414  *   the transition back to scan.
3415  */
3416 static void
3417 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
3418 {
3419 	struct ieee80211vap *vap = ni->ni_vap;
3420 	enum ieee80211_state ostate = (enum ieee80211_state)(uintptr_t)arg;
3421 
3422 	/*
3423 	 * Frame transmit completed; arrange timer callback.  If
3424 	 * transmit was successfully we wait for response.  Otherwise
3425 	 * we arrange an immediate callback instead of doing the
3426 	 * callback directly since we don't know what state the driver
3427 	 * is in (e.g. what locks it is holding).  This work should
3428 	 * not be too time-critical and not happen too often so the
3429 	 * added overhead is acceptable.
3430 	 *
3431 	 * XXX what happens if !acked but response shows up before callback?
3432 	 */
3433 	if (vap->iv_state == ostate) {
3434 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
3435 		    "ni %p mode %s state %s arg %p status %d\n", ni,
3436 		    ieee80211_opmode_name[vap->iv_opmode],
3437 		    ieee80211_state_name[vap->iv_state], arg, status);
3438 
3439 		callout_reset(&vap->iv_mgtsend,
3440 			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
3441 			ieee80211_tx_mgt_timeout, vap);
3442 	}
3443 }
3444 
3445 static void
3446 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
3447 	struct ieee80211_node *ni)
3448 {
3449 	struct ieee80211vap *vap = ni->ni_vap;
3450 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3451 	struct ieee80211com *ic = ni->ni_ic;
3452 	struct ieee80211_rateset *rs = &ni->ni_rates;
3453 	uint16_t capinfo;
3454 
3455 	/*
3456 	 * beacon frame format
3457 	 *
3458 	 * TODO: update to 802.11-2012; a lot of stuff has changed;
3459 	 * vendor extensions should be at the end, etc.
3460 	 *
3461 	 *	[8] time stamp
3462 	 *	[2] beacon interval
3463 	 *	[2] cabability information
3464 	 *	[tlv] ssid
3465 	 *	[tlv] supported rates
3466 	 *	[3] parameter set (DS)
3467 	 *	[8] CF parameter set (optional)
3468 	 *	[tlv] parameter set (IBSS/TIM)
3469 	 *	[tlv] country (optional)
3470 	 *	[3] power control (optional)
3471 	 *	[5] channel switch announcement (CSA) (optional)
3472 	 * XXX TODO: Quiet
3473 	 * XXX TODO: IBSS DFS
3474 	 * XXX TODO: TPC report
3475 	 *	[tlv] extended rate phy (ERP)
3476 	 *	[tlv] extended supported rates
3477 	 *	[tlv] RSN parameters
3478 	 * XXX TODO: BSSLOAD
3479 	 * (XXX EDCA parameter set, QoS capability?)
3480 	 * XXX TODO: AP channel report
3481 	 *
3482 	 *	[tlv] HT capabilities
3483 	 *	[tlv] HT information
3484 	 *	XXX TODO: 20/40 BSS coexistence
3485 	 * Mesh:
3486 	 * XXX TODO: Meshid
3487 	 * XXX TODO: mesh config
3488 	 * XXX TODO: mesh awake window
3489 	 * XXX TODO: beacon timing (mesh, etc)
3490 	 * XXX TODO: MCCAOP Advertisement Overview
3491 	 * XXX TODO: MCCAOP Advertisement
3492 	 * XXX TODO: Mesh channel switch parameters
3493 	 * VHT:
3494 	 * XXX TODO: VHT capabilities
3495 	 * XXX TODO: VHT operation
3496 	 * XXX TODO: VHT transmit power envelope
3497 	 * XXX TODO: channel switch wrapper element
3498 	 * XXX TODO: extended BSS load element
3499 	 *
3500 	 * XXX Vendor-specific OIDs (e.g. Atheros)
3501 	 *	[tlv] WPA parameters
3502 	 *	[tlv] WME parameters
3503 	 *	[tlv] Vendor OUI HT capabilities (optional)
3504 	 *	[tlv] Vendor OUI HT information (optional)
3505 	 *	[tlv] Atheros capabilities (optional)
3506 	 *	[tlv] TDMA parameters (optional)
3507 	 *	[tlv] Mesh ID (MBSS)
3508 	 *	[tlv] Mesh Conf (MBSS)
3509 	 *	[tlv] application data (optional)
3510 	 */
3511 
3512 	memset(bo, 0, sizeof(*bo));
3513 
3514 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
3515 	frm += 8;
3516 	*(uint16_t *)frm = htole16(ni->ni_intval);
3517 	frm += 2;
3518 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3519 	bo->bo_caps = (uint16_t *)frm;
3520 	*(uint16_t *)frm = htole16(capinfo);
3521 	frm += 2;
3522 	*frm++ = IEEE80211_ELEMID_SSID;
3523 	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
3524 		*frm++ = ni->ni_esslen;
3525 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
3526 		frm += ni->ni_esslen;
3527 	} else
3528 		*frm++ = 0;
3529 	frm = ieee80211_add_rates(frm, rs);
3530 	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
3531 		*frm++ = IEEE80211_ELEMID_DSPARMS;
3532 		*frm++ = 1;
3533 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
3534 	}
3535 	if (ic->ic_flags & IEEE80211_F_PCF) {
3536 		bo->bo_cfp = frm;
3537 		frm = ieee80211_add_cfparms(frm, ic);
3538 	}
3539 	bo->bo_tim = frm;
3540 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
3541 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
3542 		*frm++ = 2;
3543 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
3544 		bo->bo_tim_len = 0;
3545 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3546 	    vap->iv_opmode == IEEE80211_M_MBSS) {
3547 		/* TIM IE is the same for Mesh and Hostap */
3548 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
3549 
3550 		tie->tim_ie = IEEE80211_ELEMID_TIM;
3551 		tie->tim_len = 4;	/* length */
3552 		tie->tim_count = 0;	/* DTIM count */
3553 		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
3554 		tie->tim_bitctl = 0;	/* bitmap control */
3555 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
3556 		frm += sizeof(struct ieee80211_tim_ie);
3557 		bo->bo_tim_len = 1;
3558 	}
3559 	bo->bo_tim_trailer = frm;
3560 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3561 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3562 		frm = ieee80211_add_countryie(frm, ic);
3563 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3564 		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
3565 			frm = ieee80211_add_powerconstraint(frm, vap);
3566 		bo->bo_csa = frm;
3567 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3568 			frm = ieee80211_add_csa(frm, vap);
3569 	} else
3570 		bo->bo_csa = frm;
3571 
3572 	bo->bo_quiet = NULL;
3573 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3574 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3575 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
3576 		    (vap->iv_quiet == 1)) {
3577 			/*
3578 			 * We only insert the quiet IE offset if
3579 			 * the quiet IE is enabled.  Otherwise don't
3580 			 * put it here or we'll just overwrite
3581 			 * some other beacon contents.
3582 			 */
3583 			if (vap->iv_quiet) {
3584 				bo->bo_quiet = frm;
3585 				frm = ieee80211_add_quiet(frm,vap, 0);
3586 			}
3587 		}
3588 	}
3589 
3590 	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
3591 		bo->bo_erp = frm;
3592 		frm = ieee80211_add_erp(frm, vap);
3593 	}
3594 	frm = ieee80211_add_xrates(frm, rs);
3595 	frm = ieee80211_add_rsn(frm, vap);
3596 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
3597 		frm = ieee80211_add_htcap(frm, ni);
3598 		bo->bo_htinfo = frm;
3599 		frm = ieee80211_add_htinfo(frm, ni);
3600 	}
3601 
3602 	if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) {
3603 		frm = ieee80211_add_vhtcap(frm, ni);
3604 		bo->bo_vhtinfo = frm;
3605 		frm = ieee80211_add_vhtinfo(frm, ni);
3606 		/* Transmit power envelope */
3607 		/* Channel switch wrapper element */
3608 		/* Extended bss load element */
3609 	}
3610 
3611 	frm = ieee80211_add_wpa(frm, vap);
3612 	if (vap->iv_flags & IEEE80211_F_WME) {
3613 		bo->bo_wme = frm;
3614 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme,
3615 		    !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD));
3616 	}
3617 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
3618 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
3619 		frm = ieee80211_add_htcap_vendor(frm, ni);
3620 		frm = ieee80211_add_htinfo_vendor(frm, ni);
3621 	}
3622 
3623 #ifdef IEEE80211_SUPPORT_SUPERG
3624 	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
3625 		bo->bo_ath = frm;
3626 		frm = ieee80211_add_athcaps(frm, ni);
3627 	}
3628 #endif
3629 #ifdef IEEE80211_SUPPORT_TDMA
3630 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3631 		bo->bo_tdma = frm;
3632 		frm = ieee80211_add_tdma(frm, vap);
3633 	}
3634 #endif
3635 	if (vap->iv_appie_beacon != NULL) {
3636 		bo->bo_appie = frm;
3637 		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
3638 		frm = add_appie(frm, vap->iv_appie_beacon);
3639 	}
3640 
3641 	/* XXX TODO: move meshid/meshconf up to before vendor extensions? */
3642 #ifdef IEEE80211_SUPPORT_MESH
3643 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3644 		frm = ieee80211_add_meshid(frm, vap);
3645 		bo->bo_meshconf = frm;
3646 		frm = ieee80211_add_meshconf(frm, vap);
3647 	}
3648 #endif
3649 	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
3650 	bo->bo_csa_trailer_len = frm - bo->bo_csa;
3651 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3652 }
3653 
3654 /*
3655  * Allocate a beacon frame and fillin the appropriate bits.
3656  */
3657 struct mbuf *
3658 ieee80211_beacon_alloc(struct ieee80211_node *ni)
3659 {
3660 	struct ieee80211vap *vap = ni->ni_vap;
3661 	struct ieee80211com *ic = ni->ni_ic;
3662 	struct ifnet *ifp = vap->iv_ifp;
3663 	struct ieee80211_frame *wh;
3664 	struct mbuf *m;
3665 	int pktlen;
3666 	uint8_t *frm;
3667 
3668 	/*
3669 	 * Update the "We're putting the quiet IE in the beacon" state.
3670 	 */
3671 	if (vap->iv_quiet == 1)
3672 		vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
3673 	else if (vap->iv_quiet == 0)
3674 		vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
3675 
3676 	/*
3677 	 * beacon frame format
3678 	 *
3679 	 * Note: This needs updating for 802.11-2012.
3680 	 *
3681 	 *	[8] time stamp
3682 	 *	[2] beacon interval
3683 	 *	[2] cabability information
3684 	 *	[tlv] ssid
3685 	 *	[tlv] supported rates
3686 	 *	[3] parameter set (DS)
3687 	 *	[8] CF parameter set (optional)
3688 	 *	[tlv] parameter set (IBSS/TIM)
3689 	 *	[tlv] country (optional)
3690 	 *	[3] power control (optional)
3691 	 *	[5] channel switch announcement (CSA) (optional)
3692 	 *	[tlv] extended rate phy (ERP)
3693 	 *	[tlv] extended supported rates
3694 	 *	[tlv] RSN parameters
3695 	 *	[tlv] HT capabilities
3696 	 *	[tlv] HT information
3697 	 *	[tlv] VHT capabilities
3698 	 *	[tlv] VHT operation
3699 	 *	[tlv] Vendor OUI HT capabilities (optional)
3700 	 *	[tlv] Vendor OUI HT information (optional)
3701 	 * XXX Vendor-specific OIDs (e.g. Atheros)
3702 	 *	[tlv] WPA parameters
3703 	 *	[tlv] WME parameters
3704 	 *	[tlv] TDMA parameters (optional)
3705 	 *	[tlv] Mesh ID (MBSS)
3706 	 *	[tlv] Mesh Conf (MBSS)
3707 	 *	[tlv] application data (optional)
3708 	 * NB: we allocate the max space required for the TIM bitmap.
3709 	 * XXX how big is this?
3710 	 */
3711 	pktlen =   8					/* time stamp */
3712 		 + sizeof(uint16_t)			/* beacon interval */
3713 		 + sizeof(uint16_t)			/* capabilities */
3714 		 + 2 + ni->ni_esslen			/* ssid */
3715 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
3716 	         + 2 + 1				/* DS parameters */
3717 		 + 2 + 6				/* CF parameters */
3718 		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
3719 		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
3720 		 + 2 + 1				/* power control */
3721 		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
3722 		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
3723 		 + 2 + 1				/* ERP */
3724 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3725 		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
3726 			2*sizeof(struct ieee80211_ie_wpa) : 0)
3727 		 /* XXX conditional? */
3728 		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3729 		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3730 		 + 2 + sizeof(struct ieee80211_vht_cap)/* VHT caps */
3731 		 + 2 + sizeof(struct ieee80211_vht_operation)/* VHT info */
3732 		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
3733 			sizeof(struct ieee80211_wme_param) : 0)
3734 #ifdef IEEE80211_SUPPORT_SUPERG
3735 		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
3736 #endif
3737 #ifdef IEEE80211_SUPPORT_TDMA
3738 		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
3739 			sizeof(struct ieee80211_tdma_param) : 0)
3740 #endif
3741 #ifdef IEEE80211_SUPPORT_MESH
3742 		 + 2 + ni->ni_meshidlen
3743 		 + sizeof(struct ieee80211_meshconf_ie)
3744 #endif
3745 		 + IEEE80211_MAX_APPIE
3746 		 ;
3747 	m = ieee80211_getmgtframe(&frm,
3748 		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3749 	if (m == NULL) {
3750 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3751 			"%s: cannot get buf; size %u\n", __func__, pktlen);
3752 		vap->iv_stats.is_tx_nobuf++;
3753 		return NULL;
3754 	}
3755 	ieee80211_beacon_construct(m, frm, ni);
3756 
3757 	M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
3758 	KASSERT(m != NULL, ("no space for 802.11 header?"));
3759 	wh = mtod(m, struct ieee80211_frame *);
3760 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3761 	    IEEE80211_FC0_SUBTYPE_BEACON;
3762 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3763 	*(uint16_t *)wh->i_dur = 0;
3764 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3765 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3766 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3767 	*(uint16_t *)wh->i_seq = 0;
3768 
3769 	return m;
3770 }
3771 
3772 /*
3773  * Update the dynamic parts of a beacon frame based on the current state.
3774  */
3775 int
3776 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast)
3777 {
3778 	struct ieee80211vap *vap = ni->ni_vap;
3779 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3780 	struct ieee80211com *ic = ni->ni_ic;
3781 	int len_changed = 0;
3782 	uint16_t capinfo;
3783 	struct ieee80211_frame *wh;
3784 	ieee80211_seq seqno;
3785 
3786 	IEEE80211_LOCK(ic);
3787 	/*
3788 	 * Handle 11h channel change when we've reached the count.
3789 	 * We must recalculate the beacon frame contents to account
3790 	 * for the new channel.  Note we do this only for the first
3791 	 * vap that reaches this point; subsequent vaps just update
3792 	 * their beacon state to reflect the recalculated channel.
3793 	 */
3794 	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3795 	    vap->iv_csa_count == ic->ic_csa_count) {
3796 		vap->iv_csa_count = 0;
3797 		/*
3798 		 * Effect channel change before reconstructing the beacon
3799 		 * frame contents as many places reference ni_chan.
3800 		 */
3801 		if (ic->ic_csa_newchan != NULL)
3802 			ieee80211_csa_completeswitch(ic);
3803 		/*
3804 		 * NB: ieee80211_beacon_construct clears all pending
3805 		 * updates in bo_flags so we don't need to explicitly
3806 		 * clear IEEE80211_BEACON_CSA.
3807 		 */
3808 		ieee80211_beacon_construct(m,
3809 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3810 
3811 		/* XXX do WME aggressive mode processing? */
3812 		IEEE80211_UNLOCK(ic);
3813 		return 1;		/* just assume length changed */
3814 	}
3815 
3816 	/*
3817 	 * Handle the quiet time element being added and removed.
3818 	 * Again, for now we just cheat and reconstruct the whole
3819 	 * beacon - that way the gap is provided as appropriate.
3820 	 *
3821 	 * So, track whether we have already added the IE versus
3822 	 * whether we want to be adding the IE.
3823 	 */
3824 	if ((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) &&
3825 	    (vap->iv_quiet == 0)) {
3826 		/*
3827 		 * Quiet time beacon IE enabled, but it's disabled;
3828 		 * recalc
3829 		 */
3830 		vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
3831 		ieee80211_beacon_construct(m,
3832 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3833 		/* XXX do WME aggressive mode processing? */
3834 		IEEE80211_UNLOCK(ic);
3835 		return 1;		/* just assume length changed */
3836 	}
3837 
3838 	if (((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) == 0) &&
3839 	    (vap->iv_quiet == 1)) {
3840 		/*
3841 		 * Quiet time beacon IE disabled, but it's now enabled;
3842 		 * recalc
3843 		 */
3844 		vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
3845 		ieee80211_beacon_construct(m,
3846 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3847 		/* XXX do WME aggressive mode processing? */
3848 		IEEE80211_UNLOCK(ic);
3849 		return 1;		/* just assume length changed */
3850 	}
3851 
3852 	wh = mtod(m, struct ieee80211_frame *);
3853 
3854 	/*
3855 	 * XXX TODO Strictly speaking this should be incremented with the TX
3856 	 * lock held so as to serialise access to the non-qos TID sequence
3857 	 * number space.
3858 	 *
3859 	 * If the driver identifies it does its own TX seqno management then
3860 	 * we can skip this (and still not do the TX seqno.)
3861 	 */
3862 	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3863 	*(uint16_t *)&wh->i_seq[0] =
3864 		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3865 	M_SEQNO_SET(m, seqno);
3866 
3867 	/* XXX faster to recalculate entirely or just changes? */
3868 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3869 	*bo->bo_caps = htole16(capinfo);
3870 
3871 	if (vap->iv_flags & IEEE80211_F_WME) {
3872 		struct ieee80211_wme_state *wme = &ic->ic_wme;
3873 
3874 		/*
3875 		 * Check for aggressive mode change.  When there is
3876 		 * significant high priority traffic in the BSS
3877 		 * throttle back BE traffic by using conservative
3878 		 * parameters.  Otherwise BE uses aggressive params
3879 		 * to optimize performance of legacy/non-QoS traffic.
3880 		 */
3881 		if (wme->wme_flags & WME_F_AGGRMODE) {
3882 			if (wme->wme_hipri_traffic >
3883 			    wme->wme_hipri_switch_thresh) {
3884 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3885 				    "%s: traffic %u, disable aggressive mode\n",
3886 				    __func__, wme->wme_hipri_traffic);
3887 				wme->wme_flags &= ~WME_F_AGGRMODE;
3888 				ieee80211_wme_updateparams_locked(vap);
3889 				wme->wme_hipri_traffic =
3890 					wme->wme_hipri_switch_hysteresis;
3891 			} else
3892 				wme->wme_hipri_traffic = 0;
3893 		} else {
3894 			if (wme->wme_hipri_traffic <=
3895 			    wme->wme_hipri_switch_thresh) {
3896 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3897 				    "%s: traffic %u, enable aggressive mode\n",
3898 				    __func__, wme->wme_hipri_traffic);
3899 				wme->wme_flags |= WME_F_AGGRMODE;
3900 				ieee80211_wme_updateparams_locked(vap);
3901 				wme->wme_hipri_traffic = 0;
3902 			} else
3903 				wme->wme_hipri_traffic =
3904 					wme->wme_hipri_switch_hysteresis;
3905 		}
3906 		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3907 			(void) ieee80211_add_wme_param(bo->bo_wme, wme,
3908 			  vap->iv_flags_ext & IEEE80211_FEXT_UAPSD);
3909 			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3910 		}
3911 	}
3912 
3913 	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
3914 		ieee80211_ht_update_beacon(vap, bo);
3915 		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3916 	}
3917 #ifdef IEEE80211_SUPPORT_TDMA
3918 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3919 		/*
3920 		 * NB: the beacon is potentially updated every TBTT.
3921 		 */
3922 		ieee80211_tdma_update_beacon(vap, bo);
3923 	}
3924 #endif
3925 #ifdef IEEE80211_SUPPORT_MESH
3926 	if (vap->iv_opmode == IEEE80211_M_MBSS)
3927 		ieee80211_mesh_update_beacon(vap, bo);
3928 #endif
3929 
3930 	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3931 	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
3932 		struct ieee80211_tim_ie *tie =
3933 			(struct ieee80211_tim_ie *) bo->bo_tim;
3934 		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3935 			u_int timlen, timoff, i;
3936 			/*
3937 			 * ATIM/DTIM needs updating.  If it fits in the
3938 			 * current space allocated then just copy in the
3939 			 * new bits.  Otherwise we need to move any trailing
3940 			 * data to make room.  Note that we know there is
3941 			 * contiguous space because ieee80211_beacon_allocate
3942 			 * insures there is space in the mbuf to write a
3943 			 * maximal-size virtual bitmap (based on iv_max_aid).
3944 			 */
3945 			/*
3946 			 * Calculate the bitmap size and offset, copy any
3947 			 * trailer out of the way, and then copy in the
3948 			 * new bitmap and update the information element.
3949 			 * Note that the tim bitmap must contain at least
3950 			 * one byte and any offset must be even.
3951 			 */
3952 			if (vap->iv_ps_pending != 0) {
3953 				timoff = 128;		/* impossibly large */
3954 				for (i = 0; i < vap->iv_tim_len; i++)
3955 					if (vap->iv_tim_bitmap[i]) {
3956 						timoff = i &~ 1;
3957 						break;
3958 					}
3959 				KASSERT(timoff != 128, ("tim bitmap empty!"));
3960 				for (i = vap->iv_tim_len-1; i >= timoff; i--)
3961 					if (vap->iv_tim_bitmap[i])
3962 						break;
3963 				timlen = 1 + (i - timoff);
3964 			} else {
3965 				timoff = 0;
3966 				timlen = 1;
3967 			}
3968 
3969 			/*
3970 			 * TODO: validate this!
3971 			 */
3972 			if (timlen != bo->bo_tim_len) {
3973 				/* copy up/down trailer */
3974 				int adjust = tie->tim_bitmap+timlen
3975 					   - bo->bo_tim_trailer;
3976 				ovbcopy(bo->bo_tim_trailer,
3977 				    bo->bo_tim_trailer+adjust,
3978 				    bo->bo_tim_trailer_len);
3979 				bo->bo_tim_trailer += adjust;
3980 				bo->bo_erp += adjust;
3981 				bo->bo_htinfo += adjust;
3982 				bo->bo_vhtinfo += adjust;
3983 #ifdef IEEE80211_SUPPORT_SUPERG
3984 				bo->bo_ath += adjust;
3985 #endif
3986 #ifdef IEEE80211_SUPPORT_TDMA
3987 				bo->bo_tdma += adjust;
3988 #endif
3989 #ifdef IEEE80211_SUPPORT_MESH
3990 				bo->bo_meshconf += adjust;
3991 #endif
3992 				bo->bo_appie += adjust;
3993 				bo->bo_wme += adjust;
3994 				bo->bo_csa += adjust;
3995 				bo->bo_quiet += adjust;
3996 				bo->bo_tim_len = timlen;
3997 
3998 				/* update information element */
3999 				tie->tim_len = 3 + timlen;
4000 				tie->tim_bitctl = timoff;
4001 				len_changed = 1;
4002 			}
4003 			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
4004 				bo->bo_tim_len);
4005 
4006 			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
4007 
4008 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
4009 				"%s: TIM updated, pending %u, off %u, len %u\n",
4010 				__func__, vap->iv_ps_pending, timoff, timlen);
4011 		}
4012 		/* count down DTIM period */
4013 		if (tie->tim_count == 0)
4014 			tie->tim_count = tie->tim_period - 1;
4015 		else
4016 			tie->tim_count--;
4017 		/* update state for buffered multicast frames on DTIM */
4018 		if (mcast && tie->tim_count == 0)
4019 			tie->tim_bitctl |= 1;
4020 		else
4021 			tie->tim_bitctl &= ~1;
4022 		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
4023 			struct ieee80211_csa_ie *csa =
4024 			    (struct ieee80211_csa_ie *) bo->bo_csa;
4025 
4026 			/*
4027 			 * Insert or update CSA ie.  If we're just starting
4028 			 * to count down to the channel switch then we need
4029 			 * to insert the CSA ie.  Otherwise we just need to
4030 			 * drop the count.  The actual change happens above
4031 			 * when the vap's count reaches the target count.
4032 			 */
4033 			if (vap->iv_csa_count == 0) {
4034 				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
4035 				bo->bo_erp += sizeof(*csa);
4036 				bo->bo_htinfo += sizeof(*csa);
4037 				bo->bo_vhtinfo += sizeof(*csa);
4038 				bo->bo_wme += sizeof(*csa);
4039 #ifdef IEEE80211_SUPPORT_SUPERG
4040 				bo->bo_ath += sizeof(*csa);
4041 #endif
4042 #ifdef IEEE80211_SUPPORT_TDMA
4043 				bo->bo_tdma += sizeof(*csa);
4044 #endif
4045 #ifdef IEEE80211_SUPPORT_MESH
4046 				bo->bo_meshconf += sizeof(*csa);
4047 #endif
4048 				bo->bo_appie += sizeof(*csa);
4049 				bo->bo_csa_trailer_len += sizeof(*csa);
4050 				bo->bo_quiet += sizeof(*csa);
4051 				bo->bo_tim_trailer_len += sizeof(*csa);
4052 				m->m_len += sizeof(*csa);
4053 				m->m_pkthdr.len += sizeof(*csa);
4054 
4055 				ieee80211_add_csa(bo->bo_csa, vap);
4056 			} else
4057 				csa->csa_count--;
4058 			vap->iv_csa_count++;
4059 			/* NB: don't clear IEEE80211_BEACON_CSA */
4060 		}
4061 
4062 		/*
4063 		 * Only add the quiet time IE if we've enabled it
4064 		 * as appropriate.
4065 		 */
4066 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
4067 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
4068 			if (vap->iv_quiet &&
4069 			    (vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE)) {
4070 				ieee80211_add_quiet(bo->bo_quiet, vap, 1);
4071 			}
4072 		}
4073 		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
4074 			/*
4075 			 * ERP element needs updating.
4076 			 */
4077 			(void) ieee80211_add_erp(bo->bo_erp, vap);
4078 			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
4079 		}
4080 #ifdef IEEE80211_SUPPORT_SUPERG
4081 		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
4082 			ieee80211_add_athcaps(bo->bo_ath, ni);
4083 			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
4084 		}
4085 #endif
4086 	}
4087 	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
4088 		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
4089 		int aielen;
4090 		uint8_t *frm;
4091 
4092 		aielen = 0;
4093 		if (aie != NULL)
4094 			aielen += aie->ie_len;
4095 		if (aielen != bo->bo_appie_len) {
4096 			/* copy up/down trailer */
4097 			int adjust = aielen - bo->bo_appie_len;
4098 			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
4099 				bo->bo_tim_trailer_len);
4100 			bo->bo_tim_trailer += adjust;
4101 			bo->bo_appie += adjust;
4102 			bo->bo_appie_len = aielen;
4103 
4104 			len_changed = 1;
4105 		}
4106 		frm = bo->bo_appie;
4107 		if (aie != NULL)
4108 			frm  = add_appie(frm, aie);
4109 		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
4110 	}
4111 	IEEE80211_UNLOCK(ic);
4112 
4113 	return len_changed;
4114 }
4115 
4116 /*
4117  * Do Ethernet-LLC encapsulation for each payload in a fast frame
4118  * tunnel encapsulation.  The frame is assumed to have an Ethernet
4119  * header at the front that must be stripped before prepending the
4120  * LLC followed by the Ethernet header passed in (with an Ethernet
4121  * type that specifies the payload size).
4122  */
4123 struct mbuf *
4124 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
4125 	const struct ether_header *eh)
4126 {
4127 	struct llc *llc;
4128 	uint16_t payload;
4129 
4130 	/* XXX optimize by combining m_adj+M_PREPEND */
4131 	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
4132 	llc = mtod(m, struct llc *);
4133 	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
4134 	llc->llc_control = LLC_UI;
4135 	llc->llc_snap.org_code[0] = 0;
4136 	llc->llc_snap.org_code[1] = 0;
4137 	llc->llc_snap.org_code[2] = 0;
4138 	llc->llc_snap.ether_type = eh->ether_type;
4139 	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
4140 
4141 	M_PREPEND(m, sizeof(struct ether_header), IEEE80211_M_NOWAIT);
4142 	if (m == NULL) {		/* XXX cannot happen */
4143 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
4144 			"%s: no space for ether_header\n", __func__);
4145 		vap->iv_stats.is_tx_nobuf++;
4146 		return NULL;
4147 	}
4148 	ETHER_HEADER_COPY(mtod(m, void *), eh);
4149 	mtod(m, struct ether_header *)->ether_type = htons(payload);
4150 	return m;
4151 }
4152 
4153 /*
4154  * Complete an mbuf transmission.
4155  *
4156  * For now, this simply processes a completed frame after the
4157  * driver has completed it's transmission and/or retransmission.
4158  * It assumes the frame is an 802.11 encapsulated frame.
4159  *
4160  * Later on it will grow to become the exit path for a given frame
4161  * from the driver and, depending upon how it's been encapsulated
4162  * and already transmitted, it may end up doing A-MPDU retransmission,
4163  * power save requeuing, etc.
4164  *
4165  * In order for the above to work, the driver entry point to this
4166  * must not hold any driver locks.  Thus, the driver needs to delay
4167  * any actual mbuf completion until it can release said locks.
4168  *
4169  * This frees the mbuf and if the mbuf has a node reference,
4170  * the node reference will be freed.
4171  */
4172 void
4173 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
4174 {
4175 
4176 	if (ni != NULL) {
4177 		struct ifnet *ifp = ni->ni_vap->iv_ifp;
4178 
4179 		if (status == 0) {
4180 			if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
4181 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
4182 			if (m->m_flags & M_MCAST)
4183 				if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
4184 		} else
4185 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
4186 		if (m->m_flags & M_TXCB) {
4187 			IEEE80211_DPRINTF(ni->ni_vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
4188 			   "ni %p vap %p mode %s state %s m %p status %d\n", ni, ni->ni_vap,
4189 			   ieee80211_opmode_name[ni->ni_vap->iv_opmode],
4190 			   ieee80211_state_name[ni->ni_vap->iv_state], m, status);
4191 			ieee80211_process_callback(ni, m, status);
4192 		}
4193 		ieee80211_free_node(ni);
4194 	}
4195 	m_freem(m);
4196 }
4197