1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_inet.h" 31 #include "opt_wlan.h" 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/mbuf.h> 36 #include <sys/kernel.h> 37 #include <sys/endian.h> 38 39 #include <sys/socket.h> 40 41 #include <net/bpf.h> 42 #include <net/ethernet.h> 43 #include <net/if.h> 44 #include <net/if_llc.h> 45 #include <net/if_media.h> 46 #include <net/if_vlan_var.h> 47 48 #include <net80211/ieee80211_var.h> 49 #include <net80211/ieee80211_regdomain.h> 50 #include <net80211/ieee80211_wds.h> 51 52 #ifdef INET 53 #include <netinet/in.h> 54 #include <netinet/if_ether.h> 55 #include <netinet/in_systm.h> 56 #include <netinet/ip.h> 57 #endif 58 59 #define ETHER_HEADER_COPY(dst, src) \ 60 memcpy(dst, src, sizeof(struct ether_header)) 61 62 static struct mbuf *ieee80211_encap_fastframe(struct ieee80211vap *, 63 struct mbuf *m1, const struct ether_header *eh1, 64 struct mbuf *m2, const struct ether_header *eh2); 65 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *, 66 u_int hdrsize, u_int ciphdrsize, u_int mtu); 67 static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int); 68 69 #ifdef IEEE80211_DEBUG 70 /* 71 * Decide if an outbound management frame should be 72 * printed when debugging is enabled. This filters some 73 * of the less interesting frames that come frequently 74 * (e.g. beacons). 75 */ 76 static __inline int 77 doprint(struct ieee80211vap *vap, int subtype) 78 { 79 switch (subtype) { 80 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 81 return (vap->iv_opmode == IEEE80211_M_IBSS); 82 } 83 return 1; 84 } 85 #endif 86 87 /* 88 * Start method for vap's. All packets from the stack come 89 * through here. We handle common processing of the packets 90 * before dispatching them to the underlying device. 91 */ 92 void 93 ieee80211_start(struct ifnet *ifp) 94 { 95 #define IS_DWDS(vap) \ 96 (vap->iv_opmode == IEEE80211_M_WDS && \ 97 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0) 98 struct ieee80211vap *vap = ifp->if_softc; 99 struct ieee80211com *ic = vap->iv_ic; 100 struct ifnet *parent = ic->ic_ifp; 101 struct ieee80211_node *ni; 102 struct mbuf *m; 103 struct ether_header *eh; 104 int error; 105 106 /* NB: parent must be up and running */ 107 if (!IFNET_IS_UP_RUNNING(parent)) { 108 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 109 "%s: ignore queue, parent %s not up+running\n", 110 __func__, parent->if_xname); 111 /* XXX stat */ 112 return; 113 } 114 if (vap->iv_state == IEEE80211_S_SLEEP) { 115 /* 116 * In power save, wakeup device for transmit. 117 */ 118 ieee80211_new_state(vap, IEEE80211_S_RUN, 0); 119 return; 120 } 121 /* 122 * No data frames go out unless we're running. 123 * Note in particular this covers CAC and CSA 124 * states (though maybe we should check muting 125 * for CSA). 126 */ 127 if (vap->iv_state != IEEE80211_S_RUN) { 128 IEEE80211_LOCK(ic); 129 /* re-check under the com lock to avoid races */ 130 if (vap->iv_state != IEEE80211_S_RUN) { 131 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 132 "%s: ignore queue, in %s state\n", 133 __func__, ieee80211_state_name[vap->iv_state]); 134 vap->iv_stats.is_tx_badstate++; 135 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 136 IEEE80211_UNLOCK(ic); 137 return; 138 } 139 IEEE80211_UNLOCK(ic); 140 } 141 for (;;) { 142 IFQ_DEQUEUE(&ifp->if_snd, m); 143 if (m == NULL) 144 break; 145 /* 146 * Sanitize mbuf flags for net80211 use. We cannot 147 * clear M_PWR_SAV because this may be set for frames 148 * that are re-submitted from the power save queue. 149 * 150 * NB: This must be done before ieee80211_classify as 151 * it marks EAPOL in frames with M_EAPOL. 152 */ 153 m->m_flags &= ~(M_80211_TX - M_PWR_SAV); 154 /* 155 * Cancel any background scan. 156 */ 157 if (ic->ic_flags & IEEE80211_F_SCAN) 158 ieee80211_cancel_anyscan(vap); 159 /* 160 * Find the node for the destination so we can do 161 * things like power save and fast frames aggregation. 162 * 163 * NB: past this point various code assumes the first 164 * mbuf has the 802.3 header present (and contiguous). 165 */ 166 ni = NULL; 167 if (m->m_len < sizeof(struct ether_header) && 168 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 169 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 170 "discard frame, %s\n", "m_pullup failed"); 171 vap->iv_stats.is_tx_nobuf++; /* XXX */ 172 ifp->if_oerrors++; 173 continue; 174 } 175 eh = mtod(m, struct ether_header *); 176 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 177 if (IS_DWDS(vap)) { 178 /* 179 * Only unicast frames from the above go out 180 * DWDS vaps; multicast frames are handled by 181 * dispatching the frame as it comes through 182 * the AP vap (see below). 183 */ 184 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS, 185 eh->ether_dhost, "mcast", "%s", "on DWDS"); 186 vap->iv_stats.is_dwds_mcast++; 187 m_freem(m); 188 continue; 189 } 190 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { 191 /* 192 * Spam DWDS vap's w/ multicast traffic. 193 */ 194 /* XXX only if dwds in use? */ 195 ieee80211_dwds_mcast(vap, m); 196 } 197 } 198 ni = ieee80211_find_txnode(vap, eh->ether_dhost); 199 if (ni == NULL) { 200 /* NB: ieee80211_find_txnode does stat+msg */ 201 ifp->if_oerrors++; 202 m_freem(m); 203 continue; 204 } 205 /* XXX AUTH'd */ 206 /* XXX mark vap to identify if associd is required */ 207 if (ni->ni_associd == 0 && 208 (vap->iv_opmode == IEEE80211_M_STA || 209 vap->iv_opmode == IEEE80211_M_HOSTAP || IS_DWDS(vap))) { 210 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 211 eh->ether_dhost, NULL, 212 "sta not associated (type 0x%04x)", 213 htons(eh->ether_type)); 214 vap->iv_stats.is_tx_notassoc++; 215 ifp->if_oerrors++; 216 m_freem(m); 217 ieee80211_free_node(ni); 218 continue; 219 } 220 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 221 (m->m_flags & M_PWR_SAV) == 0) { 222 /* 223 * Station in power save mode; pass the frame 224 * to the 802.11 layer and continue. We'll get 225 * the frame back when the time is right. 226 * XXX lose WDS vap linkage? 227 */ 228 (void) ieee80211_pwrsave(ni, m); 229 ieee80211_free_node(ni); 230 continue; 231 } 232 /* calculate priority so drivers can find the tx queue */ 233 if (ieee80211_classify(ni, m)) { 234 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 235 eh->ether_dhost, NULL, 236 "%s", "classification failure"); 237 vap->iv_stats.is_tx_classify++; 238 ifp->if_oerrors++; 239 m_freem(m); 240 ieee80211_free_node(ni); 241 continue; 242 } 243 244 BPF_MTAP(ifp, m); /* 802.11 tx path */ 245 246 /* 247 * XXX When ni is associated with a WDS link then 248 * the vap will be the WDS vap but ni_vap will point 249 * to the ap vap the station associated to. Once 250 * we handoff the packet to the driver the callback 251 * to ieee80211_encap won't be able to tell if the 252 * packet should be encapsulated for WDS or not (e.g. 253 * multicast frames will not be handled correctly). 254 * We hack this by marking the mbuf so ieee80211_encap 255 * can do the right thing. 256 */ 257 if (vap->iv_opmode == IEEE80211_M_WDS) 258 m->m_flags |= M_WDS; 259 else 260 m->m_flags &= ~M_WDS; 261 262 /* 263 * Stash the node pointer and hand the frame off to 264 * the underlying device. Note that we do this after 265 * any call to ieee80211_dwds_mcast because that code 266 * uses any existing value for rcvif. 267 */ 268 m->m_pkthdr.rcvif = (void *)ni; 269 270 /* XXX defer if_start calls? */ 271 error = (parent->if_transmit)(parent, m); 272 if (error != 0) { 273 /* NB: IFQ_HANDOFF reclaims mbuf */ 274 ieee80211_free_node(ni); 275 } else { 276 ifp->if_opackets++; 277 } 278 ic->ic_lastdata = ticks; 279 } 280 #undef IS_DWDS 281 } 282 283 /* 284 * 802.11 output routine. This is (currently) used only to 285 * connect bpf write calls to the 802.11 layer for injecting 286 * raw 802.11 frames. Note we locate the ieee80211com from 287 * the ifnet using a spare field setup at attach time. This 288 * will go away when the virtual ap support comes in. 289 */ 290 int 291 ieee80211_output(struct ifnet *ifp, struct mbuf *m, 292 struct sockaddr *dst, struct rtentry *rt0) 293 { 294 #define senderr(e) do { error = (e); goto bad;} while (0) 295 struct ieee80211_node *ni = NULL; 296 struct ieee80211vap *vap; 297 struct ieee80211_frame *wh; 298 int error; 299 300 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 301 /* 302 * Short-circuit requests if the vap is marked OACTIVE 303 * as this is used when tearing down state to indicate 304 * the vap may be gone. This can also happen because a 305 * packet came down through ieee80211_start before the 306 * vap entered RUN state in which case it's also ok to 307 * just drop the frame. This should not be necessary 308 * but callers of if_output don't check OACTIVE. 309 */ 310 senderr(ENETDOWN); 311 } 312 vap = ifp->if_softc; 313 /* 314 * Hand to the 802.3 code if not tagged as 315 * a raw 802.11 frame. 316 */ 317 if (dst->sa_family != AF_IEEE80211) 318 return vap->iv_output(ifp, m, dst, rt0); 319 #ifdef MAC 320 error = mac_check_ifnet_transmit(ifp, m); 321 if (error) 322 senderr(error); 323 #endif 324 if (ifp->if_flags & IFF_MONITOR) 325 senderr(ENETDOWN); 326 if (!IFNET_IS_UP_RUNNING(ifp)) 327 senderr(ENETDOWN); 328 if (vap->iv_state == IEEE80211_S_CAC) { 329 IEEE80211_DPRINTF(vap, 330 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 331 "block %s frame in CAC state\n", "raw data"); 332 vap->iv_stats.is_tx_badstate++; 333 senderr(EIO); /* XXX */ 334 } 335 /* XXX bypass bridge, pfil, carp, etc. */ 336 337 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack)) 338 senderr(EIO); /* XXX */ 339 wh = mtod(m, struct ieee80211_frame *); 340 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) != 341 IEEE80211_FC0_VERSION_0) 342 senderr(EIO); /* XXX */ 343 344 /* locate destination node */ 345 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 346 case IEEE80211_FC1_DIR_NODS: 347 case IEEE80211_FC1_DIR_FROMDS: 348 ni = ieee80211_find_txnode(vap, wh->i_addr1); 349 break; 350 case IEEE80211_FC1_DIR_TODS: 351 case IEEE80211_FC1_DIR_DSTODS: 352 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame)) 353 senderr(EIO); /* XXX */ 354 ni = ieee80211_find_txnode(vap, wh->i_addr3); 355 break; 356 default: 357 senderr(EIO); /* XXX */ 358 } 359 if (ni == NULL) { 360 /* 361 * Permit packets w/ bpf params through regardless 362 * (see below about sa_len). 363 */ 364 if (dst->sa_len == 0) 365 senderr(EHOSTUNREACH); 366 ni = ieee80211_ref_node(vap->iv_bss); 367 } 368 369 /* 370 * Sanitize mbuf for net80211 flags leaked from above. 371 * 372 * NB: This must be done before ieee80211_classify as 373 * it marks EAPOL in frames with M_EAPOL. 374 */ 375 m->m_flags &= ~M_80211_TX; 376 377 /* calculate priority so drivers can find the tx queue */ 378 /* XXX assumes an 802.3 frame */ 379 if (ieee80211_classify(ni, m)) 380 senderr(EIO); /* XXX */ 381 382 BPF_MTAP(ifp, m); 383 384 /* 385 * NB: DLT_IEEE802_11_RADIO identifies the parameters are 386 * present by setting the sa_len field of the sockaddr (yes, 387 * this is a hack). 388 * NB: we assume sa_data is suitably aligned to cast. 389 */ 390 return vap->iv_ic->ic_raw_xmit(ni, m, 391 (const struct ieee80211_bpf_params *)(dst->sa_len ? 392 dst->sa_data : NULL)); 393 bad: 394 if (m != NULL) 395 m_freem(m); 396 if (ni != NULL) 397 ieee80211_free_node(ni); 398 return error; 399 #undef senderr 400 } 401 402 /* 403 * Set the direction field and address fields of an outgoing 404 * frame. Note this should be called early on in constructing 405 * a frame as it sets i_fc[1]; other bits can then be or'd in. 406 */ 407 static void 408 ieee80211_send_setup( 409 struct ieee80211_node *ni, 410 struct ieee80211_frame *wh, 411 int type, int tid, 412 const uint8_t sa[IEEE80211_ADDR_LEN], 413 const uint8_t da[IEEE80211_ADDR_LEN], 414 const uint8_t bssid[IEEE80211_ADDR_LEN]) 415 { 416 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 417 418 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 419 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 420 struct ieee80211vap *vap = ni->ni_vap; 421 422 switch (vap->iv_opmode) { 423 case IEEE80211_M_STA: 424 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 425 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 426 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 427 IEEE80211_ADDR_COPY(wh->i_addr3, da); 428 break; 429 case IEEE80211_M_IBSS: 430 case IEEE80211_M_AHDEMO: 431 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 432 IEEE80211_ADDR_COPY(wh->i_addr1, da); 433 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 434 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 435 break; 436 case IEEE80211_M_HOSTAP: 437 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 438 IEEE80211_ADDR_COPY(wh->i_addr1, da); 439 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 440 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 441 break; 442 case IEEE80211_M_WDS: 443 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 444 IEEE80211_ADDR_COPY(wh->i_addr1, da); 445 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 446 IEEE80211_ADDR_COPY(wh->i_addr3, da); 447 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 448 break; 449 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 450 break; 451 } 452 } else { 453 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 454 IEEE80211_ADDR_COPY(wh->i_addr1, da); 455 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 456 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 457 } 458 *(uint16_t *)&wh->i_dur[0] = 0; 459 *(uint16_t *)&wh->i_seq[0] = 460 htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT); 461 ni->ni_txseqs[tid]++; 462 #undef WH4 463 } 464 465 /* 466 * Send a management frame to the specified node. The node pointer 467 * must have a reference as the pointer will be passed to the driver 468 * and potentially held for a long time. If the frame is successfully 469 * dispatched to the driver, then it is responsible for freeing the 470 * reference (and potentially free'ing up any associated storage); 471 * otherwise deal with reclaiming any reference (on error). 472 */ 473 int 474 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type, 475 struct ieee80211_bpf_params *params) 476 { 477 struct ieee80211vap *vap = ni->ni_vap; 478 struct ieee80211com *ic = ni->ni_ic; 479 struct ieee80211_frame *wh; 480 481 KASSERT(ni != NULL, ("null node")); 482 483 if (vap->iv_state == IEEE80211_S_CAC) { 484 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 485 ni, "block %s frame in CAC state", 486 ieee80211_mgt_subtype_name[ 487 (type & IEEE80211_FC0_SUBTYPE_MASK) >> 488 IEEE80211_FC0_SUBTYPE_SHIFT]); 489 vap->iv_stats.is_tx_badstate++; 490 ieee80211_free_node(ni); 491 m_freem(m); 492 return EIO; /* XXX */ 493 } 494 495 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT); 496 if (m == NULL) { 497 ieee80211_free_node(ni); 498 return ENOMEM; 499 } 500 501 wh = mtod(m, struct ieee80211_frame *); 502 ieee80211_send_setup(ni, wh, 503 IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID, 504 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 505 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { 506 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1, 507 "encrypting frame (%s)", __func__); 508 wh->i_fc[1] |= IEEE80211_FC1_WEP; 509 } 510 m->m_flags |= M_ENCAP; /* mark encapsulated */ 511 512 KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?")); 513 M_WME_SETAC(m, params->ibp_pri); 514 515 #ifdef IEEE80211_DEBUG 516 /* avoid printing too many frames */ 517 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) || 518 ieee80211_msg_dumppkts(vap)) { 519 printf("[%s] send %s on channel %u\n", 520 ether_sprintf(wh->i_addr1), 521 ieee80211_mgt_subtype_name[ 522 (type & IEEE80211_FC0_SUBTYPE_MASK) >> 523 IEEE80211_FC0_SUBTYPE_SHIFT], 524 ieee80211_chan2ieee(ic, ic->ic_curchan)); 525 } 526 #endif 527 IEEE80211_NODE_STAT(ni, tx_mgmt); 528 529 return ic->ic_raw_xmit(ni, m, params); 530 } 531 532 /* 533 * Send a null data frame to the specified node. If the station 534 * is setup for QoS then a QoS Null Data frame is constructed. 535 * If this is a WDS station then a 4-address frame is constructed. 536 * 537 * NB: the caller is assumed to have setup a node reference 538 * for use; this is necessary to deal with a race condition 539 * when probing for inactive stations. Like ieee80211_mgmt_output 540 * we must cleanup any node reference on error; however we 541 * can safely just unref it as we know it will never be the 542 * last reference to the node. 543 */ 544 int 545 ieee80211_send_nulldata(struct ieee80211_node *ni) 546 { 547 struct ieee80211vap *vap = ni->ni_vap; 548 struct ieee80211com *ic = ni->ni_ic; 549 struct mbuf *m; 550 struct ieee80211_frame *wh; 551 int hdrlen; 552 uint8_t *frm; 553 554 if (vap->iv_state == IEEE80211_S_CAC) { 555 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 556 ni, "block %s frame in CAC state", "null data"); 557 ieee80211_unref_node(&ni); 558 vap->iv_stats.is_tx_badstate++; 559 return EIO; /* XXX */ 560 } 561 562 if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) 563 hdrlen = sizeof(struct ieee80211_qosframe); 564 else 565 hdrlen = sizeof(struct ieee80211_frame); 566 /* NB: only WDS vap's get 4-address frames */ 567 if (vap->iv_opmode == IEEE80211_M_WDS) 568 hdrlen += IEEE80211_ADDR_LEN; 569 if (ic->ic_flags & IEEE80211_F_DATAPAD) 570 hdrlen = roundup(hdrlen, sizeof(uint32_t)); 571 572 m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0); 573 if (m == NULL) { 574 /* XXX debug msg */ 575 ieee80211_unref_node(&ni); 576 vap->iv_stats.is_tx_nobuf++; 577 return ENOMEM; 578 } 579 KASSERT(M_LEADINGSPACE(m) >= hdrlen, 580 ("leading space %zd", M_LEADINGSPACE(m))); 581 M_PREPEND(m, hdrlen, M_DONTWAIT); 582 if (m == NULL) { 583 /* NB: cannot happen */ 584 ieee80211_free_node(ni); 585 return ENOMEM; 586 } 587 588 wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */ 589 if (ni->ni_flags & IEEE80211_NODE_QOS) { 590 const int tid = WME_AC_TO_TID(WME_AC_BE); 591 uint8_t *qos; 592 593 ieee80211_send_setup(ni, wh, 594 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL, 595 tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 596 597 if (vap->iv_opmode == IEEE80211_M_WDS) 598 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 599 else 600 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 601 qos[0] = tid & IEEE80211_QOS_TID; 602 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy) 603 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 604 qos[1] = 0; 605 } else { 606 ieee80211_send_setup(ni, wh, 607 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 608 IEEE80211_NONQOS_TID, 609 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 610 } 611 if (vap->iv_opmode != IEEE80211_M_WDS) { 612 /* NB: power management bit is never sent by an AP */ 613 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 614 vap->iv_opmode != IEEE80211_M_HOSTAP) 615 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 616 } 617 m->m_len = m->m_pkthdr.len = hdrlen; 618 m->m_flags |= M_ENCAP; /* mark encapsulated */ 619 620 M_WME_SETAC(m, WME_AC_BE); 621 622 IEEE80211_NODE_STAT(ni, tx_data); 623 624 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni, 625 "send %snull data frame on channel %u, pwr mgt %s", 626 ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "", 627 ieee80211_chan2ieee(ic, ic->ic_curchan), 628 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 629 630 return ic->ic_raw_xmit(ni, m, NULL); 631 } 632 633 /* 634 * Assign priority to a frame based on any vlan tag assigned 635 * to the station and/or any Diffserv setting in an IP header. 636 * Finally, if an ACM policy is setup (in station mode) it's 637 * applied. 638 */ 639 int 640 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m) 641 { 642 const struct ether_header *eh = mtod(m, struct ether_header *); 643 int v_wme_ac, d_wme_ac, ac; 644 645 /* 646 * Always promote PAE/EAPOL frames to high priority. 647 */ 648 if (eh->ether_type == htons(ETHERTYPE_PAE)) { 649 /* NB: mark so others don't need to check header */ 650 m->m_flags |= M_EAPOL; 651 ac = WME_AC_VO; 652 goto done; 653 } 654 /* 655 * Non-qos traffic goes to BE. 656 */ 657 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 658 ac = WME_AC_BE; 659 goto done; 660 } 661 662 /* 663 * If node has a vlan tag then all traffic 664 * to it must have a matching tag. 665 */ 666 v_wme_ac = 0; 667 if (ni->ni_vlan != 0) { 668 if ((m->m_flags & M_VLANTAG) == 0) { 669 IEEE80211_NODE_STAT(ni, tx_novlantag); 670 return 1; 671 } 672 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 673 EVL_VLANOFTAG(ni->ni_vlan)) { 674 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 675 return 1; 676 } 677 /* map vlan priority to AC */ 678 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan)); 679 } 680 681 #ifdef INET 682 if (eh->ether_type == htons(ETHERTYPE_IP)) { 683 uint8_t tos; 684 /* 685 * IP frame, map the DSCP bits from the TOS field. 686 */ 687 /* XXX m_copydata may be too slow for fast path */ 688 /* NB: ip header may not be in first mbuf */ 689 m_copydata(m, sizeof(struct ether_header) + 690 offsetof(struct ip, ip_tos), sizeof(tos), &tos); 691 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 692 d_wme_ac = TID_TO_WME_AC(tos); 693 } else { 694 #endif /* INET */ 695 d_wme_ac = WME_AC_BE; 696 #ifdef INET 697 } 698 #endif 699 /* 700 * Use highest priority AC. 701 */ 702 if (v_wme_ac > d_wme_ac) 703 ac = v_wme_ac; 704 else 705 ac = d_wme_ac; 706 707 /* 708 * Apply ACM policy. 709 */ 710 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) { 711 static const int acmap[4] = { 712 WME_AC_BK, /* WME_AC_BE */ 713 WME_AC_BK, /* WME_AC_BK */ 714 WME_AC_BE, /* WME_AC_VI */ 715 WME_AC_VI, /* WME_AC_VO */ 716 }; 717 struct ieee80211com *ic = ni->ni_ic; 718 719 while (ac != WME_AC_BK && 720 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 721 ac = acmap[ac]; 722 } 723 done: 724 M_WME_SETAC(m, ac); 725 return 0; 726 } 727 728 /* 729 * Insure there is sufficient contiguous space to encapsulate the 730 * 802.11 data frame. If room isn't already there, arrange for it. 731 * Drivers and cipher modules assume we have done the necessary work 732 * and fail rudely if they don't find the space they need. 733 */ 734 static struct mbuf * 735 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize, 736 struct ieee80211_key *key, struct mbuf *m) 737 { 738 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 739 int needed_space = vap->iv_ic->ic_headroom + hdrsize; 740 741 if (key != NULL) { 742 /* XXX belongs in crypto code? */ 743 needed_space += key->wk_cipher->ic_header; 744 /* XXX frags */ 745 /* 746 * When crypto is being done in the host we must insure 747 * the data are writable for the cipher routines; clone 748 * a writable mbuf chain. 749 * XXX handle SWMIC specially 750 */ 751 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) { 752 m = m_unshare(m, M_NOWAIT); 753 if (m == NULL) { 754 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 755 "%s: cannot get writable mbuf\n", __func__); 756 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */ 757 return NULL; 758 } 759 } 760 } 761 /* 762 * We know we are called just before stripping an Ethernet 763 * header and prepending an LLC header. This means we know 764 * there will be 765 * sizeof(struct ether_header) - sizeof(struct llc) 766 * bytes recovered to which we need additional space for the 767 * 802.11 header and any crypto header. 768 */ 769 /* XXX check trailing space and copy instead? */ 770 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 771 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); 772 if (n == NULL) { 773 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 774 "%s: cannot expand storage\n", __func__); 775 vap->iv_stats.is_tx_nobuf++; 776 m_freem(m); 777 return NULL; 778 } 779 KASSERT(needed_space <= MHLEN, 780 ("not enough room, need %u got %zu\n", needed_space, MHLEN)); 781 /* 782 * Setup new mbuf to have leading space to prepend the 783 * 802.11 header and any crypto header bits that are 784 * required (the latter are added when the driver calls 785 * back to ieee80211_crypto_encap to do crypto encapsulation). 786 */ 787 /* NB: must be first 'cuz it clobbers m_data */ 788 m_move_pkthdr(n, m); 789 n->m_len = 0; /* NB: m_gethdr does not set */ 790 n->m_data += needed_space; 791 /* 792 * Pull up Ethernet header to create the expected layout. 793 * We could use m_pullup but that's overkill (i.e. we don't 794 * need the actual data) and it cannot fail so do it inline 795 * for speed. 796 */ 797 /* NB: struct ether_header is known to be contiguous */ 798 n->m_len += sizeof(struct ether_header); 799 m->m_len -= sizeof(struct ether_header); 800 m->m_data += sizeof(struct ether_header); 801 /* 802 * Replace the head of the chain. 803 */ 804 n->m_next = m; 805 m = n; 806 } 807 return m; 808 #undef TO_BE_RECLAIMED 809 } 810 811 /* 812 * Return the transmit key to use in sending a unicast frame. 813 * If a unicast key is set we use that. When no unicast key is set 814 * we fall back to the default transmit key. 815 */ 816 static __inline struct ieee80211_key * 817 ieee80211_crypto_getucastkey(struct ieee80211vap *vap, 818 struct ieee80211_node *ni) 819 { 820 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) { 821 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 822 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 823 return NULL; 824 return &vap->iv_nw_keys[vap->iv_def_txkey]; 825 } else { 826 return &ni->ni_ucastkey; 827 } 828 } 829 830 /* 831 * Return the transmit key to use in sending a multicast frame. 832 * Multicast traffic always uses the group key which is installed as 833 * the default tx key. 834 */ 835 static __inline struct ieee80211_key * 836 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap, 837 struct ieee80211_node *ni) 838 { 839 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 840 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 841 return NULL; 842 return &vap->iv_nw_keys[vap->iv_def_txkey]; 843 } 844 845 /* 846 * Encapsulate an outbound data frame. The mbuf chain is updated. 847 * If an error is encountered NULL is returned. The caller is required 848 * to provide a node reference and pullup the ethernet header in the 849 * first mbuf. 850 * 851 * NB: Packet is assumed to be processed by ieee80211_classify which 852 * marked EAPOL frames w/ M_EAPOL. 853 */ 854 struct mbuf * 855 ieee80211_encap(struct ieee80211_node *ni, struct mbuf *m) 856 { 857 #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh)) 858 struct ieee80211vap *vap = ni->ni_vap; 859 struct ieee80211com *ic = ni->ni_ic; 860 struct ether_header eh; 861 struct ieee80211_frame *wh; 862 struct ieee80211_key *key; 863 struct llc *llc; 864 int hdrsize, hdrspace, datalen, addqos, txfrag, isff, is4addr; 865 866 /* 867 * Copy existing Ethernet header to a safe place. The 868 * rest of the code assumes it's ok to strip it when 869 * reorganizing state for the final encapsulation. 870 */ 871 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 872 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t)); 873 874 /* 875 * Insure space for additional headers. First identify 876 * transmit key to use in calculating any buffer adjustments 877 * required. This is also used below to do privacy 878 * encapsulation work. Then calculate the 802.11 header 879 * size and any padding required by the driver. 880 * 881 * Note key may be NULL if we fall back to the default 882 * transmit key and that is not set. In that case the 883 * buffer may not be expanded as needed by the cipher 884 * routines, but they will/should discard it. 885 */ 886 if (vap->iv_flags & IEEE80211_F_PRIVACY) { 887 if (vap->iv_opmode == IEEE80211_M_STA || 888 !IEEE80211_IS_MULTICAST(eh.ether_dhost) || 889 (vap->iv_opmode == IEEE80211_M_WDS && 890 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) 891 key = ieee80211_crypto_getucastkey(vap, ni); 892 else 893 key = ieee80211_crypto_getmcastkey(vap, ni); 894 if (key == NULL && (m->m_flags & M_EAPOL) == 0) { 895 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, 896 eh.ether_dhost, 897 "no default transmit key (%s) deftxkey %u", 898 __func__, vap->iv_def_txkey); 899 vap->iv_stats.is_tx_nodefkey++; 900 goto bad; 901 } 902 } else 903 key = NULL; 904 /* 905 * XXX Some ap's don't handle QoS-encapsulated EAPOL 906 * frames so suppress use. This may be an issue if other 907 * ap's require all data frames to be QoS-encapsulated 908 * once negotiated in which case we'll need to make this 909 * configurable. 910 */ 911 addqos = (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) && 912 (m->m_flags & M_EAPOL) == 0; 913 if (addqos) 914 hdrsize = sizeof(struct ieee80211_qosframe); 915 else 916 hdrsize = sizeof(struct ieee80211_frame); 917 /* 918 * 4-address frames need to be generated for: 919 * o packets sent through a WDS vap (M_WDS || IEEE80211_M_WDS) 920 * o packets relayed by a station operating with dynamic WDS 921 * (IEEE80211_M_STA+IEEE80211_F_DWDS and src address) 922 */ 923 is4addr = (m->m_flags & M_WDS) || 924 vap->iv_opmode == IEEE80211_M_WDS || /* XXX redundant? */ 925 (vap->iv_opmode == IEEE80211_M_STA && 926 (vap->iv_flags & IEEE80211_F_DWDS) && 927 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)); 928 if (is4addr) 929 hdrsize += IEEE80211_ADDR_LEN; 930 /* 931 * Honor driver DATAPAD requirement. 932 */ 933 if (ic->ic_flags & IEEE80211_F_DATAPAD) 934 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 935 else 936 hdrspace = hdrsize; 937 938 if ((isff = m->m_flags & M_FF) != 0) { 939 struct mbuf *m2; 940 struct ether_header eh2; 941 942 /* 943 * Fast frame encapsulation. There must be two packets 944 * chained with m_nextpkt. We do header adjustment for 945 * each, add the tunnel encapsulation, and then concatenate 946 * the mbuf chains to form a single frame for transmission. 947 */ 948 m2 = m->m_nextpkt; 949 if (m2 == NULL) { 950 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 951 "%s: only one frame\n", __func__); 952 goto bad; 953 } 954 m->m_nextpkt = NULL; 955 /* 956 * Include fast frame headers in adjusting header 957 * layout; this allocates space according to what 958 * ieee80211_encap_fastframe will do. 959 */ 960 m = ieee80211_mbuf_adjust(vap, 961 hdrspace + sizeof(struct llc) + sizeof(uint32_t) + 2 + 962 sizeof(struct ether_header), 963 key, m); 964 if (m == NULL) { 965 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 966 m_freem(m2); 967 goto bad; 968 } 969 /* 970 * Copy second frame's Ethernet header out of line 971 * and adjust for encapsulation headers. Note that 972 * we make room for padding in case there isn't room 973 * at the end of first frame. 974 */ 975 KASSERT(m2->m_len >= sizeof(eh2), ("no ethernet header!")); 976 ETHER_HEADER_COPY(&eh2, mtod(m2, caddr_t)); 977 m2 = ieee80211_mbuf_adjust(vap, 978 ATH_FF_MAX_HDR_PAD + sizeof(struct ether_header), 979 NULL, m2); 980 if (m2 == NULL) { 981 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 982 goto bad; 983 } 984 m = ieee80211_encap_fastframe(vap, m, &eh, m2, &eh2); 985 if (m == NULL) 986 goto bad; 987 } else { 988 /* 989 * Normal frame. 990 */ 991 m = ieee80211_mbuf_adjust(vap, hdrspace, key, m); 992 if (m == NULL) { 993 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 994 goto bad; 995 } 996 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */ 997 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 998 llc = mtod(m, struct llc *); 999 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 1000 llc->llc_control = LLC_UI; 1001 llc->llc_snap.org_code[0] = 0; 1002 llc->llc_snap.org_code[1] = 0; 1003 llc->llc_snap.org_code[2] = 0; 1004 llc->llc_snap.ether_type = eh.ether_type; 1005 } 1006 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 1007 1008 M_PREPEND(m, hdrspace, M_DONTWAIT); 1009 if (m == NULL) { 1010 vap->iv_stats.is_tx_nobuf++; 1011 goto bad; 1012 } 1013 wh = mtod(m, struct ieee80211_frame *); 1014 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 1015 *(uint16_t *)wh->i_dur = 0; 1016 if (is4addr) { 1017 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 1018 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); 1019 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1020 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1021 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); 1022 } else switch (vap->iv_opmode) { 1023 case IEEE80211_M_STA: 1024 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 1025 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 1026 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1027 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1028 break; 1029 case IEEE80211_M_IBSS: 1030 case IEEE80211_M_AHDEMO: 1031 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1032 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1033 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1034 /* 1035 * NB: always use the bssid from iv_bss as the 1036 * neighbor's may be stale after an ibss merge 1037 */ 1038 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid); 1039 break; 1040 case IEEE80211_M_HOSTAP: 1041 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1042 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1043 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 1044 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 1045 break; 1046 case IEEE80211_M_MONITOR: 1047 case IEEE80211_M_WDS: /* NB: is4addr should always be true */ 1048 goto bad; 1049 } 1050 if (m->m_flags & M_MORE_DATA) 1051 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 1052 if (addqos) { 1053 uint8_t *qos; 1054 int ac, tid; 1055 1056 if (is4addr) { 1057 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1058 } else 1059 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1060 ac = M_WME_GETAC(m); 1061 /* map from access class/queue to 11e header priorty value */ 1062 tid = WME_AC_TO_TID(ac); 1063 qos[0] = tid & IEEE80211_QOS_TID; 1064 /* 1065 * Check if A-MPDU tx aggregation is setup or if we 1066 * should try to enable it. The sta must be associated 1067 * with HT and A-MPDU enabled for use. When the policy 1068 * routine decides we should enable A-MPDU we issue an 1069 * ADDBA request and wait for a reply. The frame being 1070 * encapsulated will go out w/o using A-MPDU, or possibly 1071 * it might be collected by the driver and held/retransmit. 1072 * The default ic_ampdu_enable routine handles staggering 1073 * ADDBA requests in case the receiver NAK's us or we are 1074 * otherwise unable to establish a BA stream. 1075 */ 1076 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) && 1077 (vap->iv_flags_ext & IEEE80211_FEXT_AMPDU_TX)) { 1078 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac]; 1079 1080 ieee80211_txampdu_count_packet(tap); 1081 if (IEEE80211_AMPDU_RUNNING(tap)) { 1082 /* 1083 * Operational, mark frame for aggregation. 1084 * 1085 * NB: We support only immediate BA's for 1086 * AMPDU which means we set the QoS control 1087 * field to "normal ack" (0) to get "implicit 1088 * block ack" behaviour. 1089 */ 1090 m->m_flags |= M_AMPDU_MPDU; 1091 } else if (!IEEE80211_AMPDU_REQUESTED(tap) && 1092 ic->ic_ampdu_enable(ni, tap)) { 1093 /* 1094 * Not negotiated yet, request service. 1095 */ 1096 ieee80211_ampdu_request(ni, tap); 1097 } 1098 } 1099 /* XXX works even when BA marked above */ 1100 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 1101 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1102 qos[1] = 0; 1103 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 1104 1105 if ((m->m_flags & M_AMPDU_MPDU) == 0) { 1106 /* 1107 * NB: don't assign a sequence # to potential 1108 * aggregates; we expect this happens at the 1109 * point the frame comes off any aggregation q 1110 * as otherwise we may introduce holes in the 1111 * BA sequence space and/or make window accouting 1112 * more difficult. 1113 * 1114 * XXX may want to control this with a driver 1115 * capability; this may also change when we pull 1116 * aggregation up into net80211 1117 */ 1118 *(uint16_t *)wh->i_seq = 1119 htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT); 1120 ni->ni_txseqs[tid]++; 1121 } 1122 } else { 1123 *(uint16_t *)wh->i_seq = 1124 htole16(ni->ni_txseqs[IEEE80211_NONQOS_TID] << IEEE80211_SEQ_SEQ_SHIFT); 1125 ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1126 } 1127 /* check if xmit fragmentation is required */ 1128 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold && 1129 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 1130 (vap->iv_caps & IEEE80211_C_TXFRAG) && 1131 !isff); /* NB: don't fragment ff's */ 1132 if (key != NULL) { 1133 /* 1134 * IEEE 802.1X: send EAPOL frames always in the clear. 1135 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 1136 */ 1137 if ((m->m_flags & M_EAPOL) == 0 || 1138 ((vap->iv_flags & IEEE80211_F_WPA) && 1139 (vap->iv_opmode == IEEE80211_M_STA ? 1140 !IEEE80211_KEY_UNDEFINED(key) : 1141 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) { 1142 wh->i_fc[1] |= IEEE80211_FC1_WEP; 1143 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) { 1144 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT, 1145 eh.ether_dhost, 1146 "%s", "enmic failed, discard frame"); 1147 vap->iv_stats.is_crypto_enmicfail++; 1148 goto bad; 1149 } 1150 } 1151 } 1152 if (txfrag && !ieee80211_fragment(vap, m, hdrsize, 1153 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold)) 1154 goto bad; 1155 1156 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1157 1158 IEEE80211_NODE_STAT(ni, tx_data); 1159 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1160 IEEE80211_NODE_STAT(ni, tx_mcast); 1161 else 1162 IEEE80211_NODE_STAT(ni, tx_ucast); 1163 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 1164 1165 /* XXX fragmented frames not handled */ 1166 if (bpf_peers_present(vap->iv_rawbpf)) 1167 bpf_mtap(vap->iv_rawbpf, m); 1168 1169 return m; 1170 bad: 1171 if (m != NULL) 1172 m_freem(m); 1173 return NULL; 1174 #undef WH4 1175 } 1176 1177 /* 1178 * Do Ethernet-LLC encapsulation for each payload in a fast frame 1179 * tunnel encapsulation. The frame is assumed to have an Ethernet 1180 * header at the front that must be stripped before prepending the 1181 * LLC followed by the Ethernet header passed in (with an Ethernet 1182 * type that specifies the payload size). 1183 */ 1184 static struct mbuf * 1185 ieee80211_encap1(struct ieee80211vap *vap, struct mbuf *m, 1186 const struct ether_header *eh) 1187 { 1188 struct llc *llc; 1189 uint16_t payload; 1190 1191 /* XXX optimize by combining m_adj+M_PREPEND */ 1192 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 1193 llc = mtod(m, struct llc *); 1194 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 1195 llc->llc_control = LLC_UI; 1196 llc->llc_snap.org_code[0] = 0; 1197 llc->llc_snap.org_code[1] = 0; 1198 llc->llc_snap.org_code[2] = 0; 1199 llc->llc_snap.ether_type = eh->ether_type; 1200 payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */ 1201 1202 M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT); 1203 if (m == NULL) { /* XXX cannot happen */ 1204 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 1205 "%s: no space for ether_header\n", __func__); 1206 vap->iv_stats.is_tx_nobuf++; 1207 return NULL; 1208 } 1209 ETHER_HEADER_COPY(mtod(m, void *), eh); 1210 mtod(m, struct ether_header *)->ether_type = htons(payload); 1211 return m; 1212 } 1213 1214 /* 1215 * Do fast frame tunnel encapsulation. The two frames and 1216 * Ethernet headers are supplied. The caller is assumed to 1217 * have arrange for space in the mbuf chains for encapsulating 1218 * headers (to avoid major mbuf fragmentation). 1219 * 1220 * The encapsulated frame is returned or NULL if there is a 1221 * problem (should not happen). 1222 */ 1223 static struct mbuf * 1224 ieee80211_encap_fastframe(struct ieee80211vap *vap, 1225 struct mbuf *m1, const struct ether_header *eh1, 1226 struct mbuf *m2, const struct ether_header *eh2) 1227 { 1228 struct llc *llc; 1229 struct mbuf *m; 1230 int pad; 1231 1232 /* 1233 * First, each frame gets a standard encapsulation. 1234 */ 1235 m1 = ieee80211_encap1(vap, m1, eh1); 1236 if (m1 == NULL) { 1237 m_freem(m2); 1238 return NULL; 1239 } 1240 m2 = ieee80211_encap1(vap, m2, eh2); 1241 if (m2 == NULL) { 1242 m_freem(m1); 1243 return NULL; 1244 } 1245 1246 /* 1247 * Pad leading frame to a 4-byte boundary. If there 1248 * is space at the end of the first frame, put it 1249 * there; otherwise prepend to the front of the second 1250 * frame. We know doing the second will always work 1251 * because we reserve space above. We prefer appending 1252 * as this typically has better DMA alignment properties. 1253 */ 1254 for (m = m1; m->m_next != NULL; m = m->m_next) 1255 ; 1256 pad = roundup2(m1->m_pkthdr.len, 4) - m1->m_pkthdr.len; 1257 if (pad) { 1258 if (M_TRAILINGSPACE(m) < pad) { /* prepend to second */ 1259 m2->m_data -= pad; 1260 m2->m_len += pad; 1261 m2->m_pkthdr.len += pad; 1262 } else { /* append to first */ 1263 m->m_len += pad; 1264 m1->m_pkthdr.len += pad; 1265 } 1266 } 1267 1268 /* 1269 * Now, stick 'em together and prepend the tunnel headers; 1270 * first the Atheros tunnel header (all zero for now) and 1271 * then a special fast frame LLC. 1272 * 1273 * XXX optimize by prepending together 1274 */ 1275 m->m_next = m2; /* NB: last mbuf from above */ 1276 m1->m_pkthdr.len += m2->m_pkthdr.len; 1277 M_PREPEND(m1, sizeof(uint32_t)+2, M_DONTWAIT); 1278 if (m1 == NULL) { /* XXX cannot happen */ 1279 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 1280 "%s: no space for tunnel header\n", __func__); 1281 vap->iv_stats.is_tx_nobuf++; 1282 return NULL; 1283 } 1284 memset(mtod(m1, void *), 0, sizeof(uint32_t)+2); 1285 1286 M_PREPEND(m1, sizeof(struct llc), M_DONTWAIT); 1287 if (m1 == NULL) { /* XXX cannot happen */ 1288 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 1289 "%s: no space for llc header\n", __func__); 1290 vap->iv_stats.is_tx_nobuf++; 1291 return NULL; 1292 } 1293 llc = mtod(m1, struct llc *); 1294 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 1295 llc->llc_control = LLC_UI; 1296 llc->llc_snap.org_code[0] = ATH_FF_SNAP_ORGCODE_0; 1297 llc->llc_snap.org_code[1] = ATH_FF_SNAP_ORGCODE_1; 1298 llc->llc_snap.org_code[2] = ATH_FF_SNAP_ORGCODE_2; 1299 llc->llc_snap.ether_type = htons(ATH_FF_ETH_TYPE); 1300 1301 vap->iv_stats.is_ff_encap++; 1302 1303 return m1; 1304 } 1305 1306 /* 1307 * Fragment the frame according to the specified mtu. 1308 * The size of the 802.11 header (w/o padding) is provided 1309 * so we don't need to recalculate it. We create a new 1310 * mbuf for each fragment and chain it through m_nextpkt; 1311 * we might be able to optimize this by reusing the original 1312 * packet's mbufs but that is significantly more complicated. 1313 */ 1314 static int 1315 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0, 1316 u_int hdrsize, u_int ciphdrsize, u_int mtu) 1317 { 1318 struct ieee80211_frame *wh, *whf; 1319 struct mbuf *m, *prev, *next; 1320 u_int totalhdrsize, fragno, fragsize, off, remainder, payload; 1321 1322 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); 1323 KASSERT(m0->m_pkthdr.len > mtu, 1324 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); 1325 1326 wh = mtod(m0, struct ieee80211_frame *); 1327 /* NB: mark the first frag; it will be propagated below */ 1328 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; 1329 totalhdrsize = hdrsize + ciphdrsize; 1330 fragno = 1; 1331 off = mtu - ciphdrsize; 1332 remainder = m0->m_pkthdr.len - off; 1333 prev = m0; 1334 do { 1335 fragsize = totalhdrsize + remainder; 1336 if (fragsize > mtu) 1337 fragsize = mtu; 1338 /* XXX fragsize can be >2048! */ 1339 KASSERT(fragsize < MCLBYTES, 1340 ("fragment size %u too big!", fragsize)); 1341 if (fragsize > MHLEN) 1342 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 1343 else 1344 m = m_gethdr(M_DONTWAIT, MT_DATA); 1345 if (m == NULL) 1346 goto bad; 1347 /* leave room to prepend any cipher header */ 1348 m_align(m, fragsize - ciphdrsize); 1349 1350 /* 1351 * Form the header in the fragment. Note that since 1352 * we mark the first fragment with the MORE_FRAG bit 1353 * it automatically is propagated to each fragment; we 1354 * need only clear it on the last fragment (done below). 1355 */ 1356 whf = mtod(m, struct ieee80211_frame *); 1357 memcpy(whf, wh, hdrsize); 1358 *(uint16_t *)&whf->i_seq[0] |= htole16( 1359 (fragno & IEEE80211_SEQ_FRAG_MASK) << 1360 IEEE80211_SEQ_FRAG_SHIFT); 1361 fragno++; 1362 1363 payload = fragsize - totalhdrsize; 1364 /* NB: destination is known to be contiguous */ 1365 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrsize); 1366 m->m_len = hdrsize + payload; 1367 m->m_pkthdr.len = hdrsize + payload; 1368 m->m_flags |= M_FRAG; 1369 1370 /* chain up the fragment */ 1371 prev->m_nextpkt = m; 1372 prev = m; 1373 1374 /* deduct fragment just formed */ 1375 remainder -= payload; 1376 off += payload; 1377 } while (remainder != 0); 1378 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; 1379 1380 /* strip first mbuf now that everything has been copied */ 1381 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); 1382 m0->m_flags |= M_FIRSTFRAG | M_FRAG; 1383 1384 vap->iv_stats.is_tx_fragframes++; 1385 vap->iv_stats.is_tx_frags += fragno-1; 1386 1387 return 1; 1388 bad: 1389 /* reclaim fragments but leave original frame for caller to free */ 1390 for (m = m0->m_nextpkt; m != NULL; m = next) { 1391 next = m->m_nextpkt; 1392 m->m_nextpkt = NULL; /* XXX paranoid */ 1393 m_freem(m); 1394 } 1395 m0->m_nextpkt = NULL; 1396 return 0; 1397 } 1398 1399 /* 1400 * Add a supported rates element id to a frame. 1401 */ 1402 static uint8_t * 1403 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs) 1404 { 1405 int nrates; 1406 1407 *frm++ = IEEE80211_ELEMID_RATES; 1408 nrates = rs->rs_nrates; 1409 if (nrates > IEEE80211_RATE_SIZE) 1410 nrates = IEEE80211_RATE_SIZE; 1411 *frm++ = nrates; 1412 memcpy(frm, rs->rs_rates, nrates); 1413 return frm + nrates; 1414 } 1415 1416 /* 1417 * Add an extended supported rates element id to a frame. 1418 */ 1419 static uint8_t * 1420 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs) 1421 { 1422 /* 1423 * Add an extended supported rates element if operating in 11g mode. 1424 */ 1425 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 1426 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 1427 *frm++ = IEEE80211_ELEMID_XRATES; 1428 *frm++ = nrates; 1429 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 1430 frm += nrates; 1431 } 1432 return frm; 1433 } 1434 1435 /* 1436 * Add an ssid element to a frame. 1437 */ 1438 static uint8_t * 1439 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) 1440 { 1441 *frm++ = IEEE80211_ELEMID_SSID; 1442 *frm++ = len; 1443 memcpy(frm, ssid, len); 1444 return frm + len; 1445 } 1446 1447 /* 1448 * Add an erp element to a frame. 1449 */ 1450 static uint8_t * 1451 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic) 1452 { 1453 uint8_t erp; 1454 1455 *frm++ = IEEE80211_ELEMID_ERP; 1456 *frm++ = 1; 1457 erp = 0; 1458 if (ic->ic_nonerpsta != 0) 1459 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 1460 if (ic->ic_flags & IEEE80211_F_USEPROT) 1461 erp |= IEEE80211_ERP_USE_PROTECTION; 1462 if (ic->ic_flags & IEEE80211_F_USEBARKER) 1463 erp |= IEEE80211_ERP_LONG_PREAMBLE; 1464 *frm++ = erp; 1465 return frm; 1466 } 1467 1468 /* 1469 * Add a CFParams element to a frame. 1470 */ 1471 static uint8_t * 1472 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic) 1473 { 1474 #define ADDSHORT(frm, v) do { \ 1475 frm[0] = (v) & 0xff; \ 1476 frm[1] = (v) >> 8; \ 1477 frm += 2; \ 1478 } while (0) 1479 *frm++ = IEEE80211_ELEMID_CFPARMS; 1480 *frm++ = 6; 1481 *frm++ = 0; /* CFP count */ 1482 *frm++ = 2; /* CFP period */ 1483 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */ 1484 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */ 1485 return frm; 1486 #undef ADDSHORT 1487 } 1488 1489 static __inline uint8_t * 1490 add_appie(uint8_t *frm, const struct ieee80211_appie *ie) 1491 { 1492 memcpy(frm, ie->ie_data, ie->ie_len); 1493 return frm + ie->ie_len; 1494 } 1495 1496 static __inline uint8_t * 1497 add_ie(uint8_t *frm, const uint8_t *ie) 1498 { 1499 memcpy(frm, ie, 2 + ie[1]); 1500 return frm + 2 + ie[1]; 1501 } 1502 1503 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 1504 /* 1505 * Add a WME information element to a frame. 1506 */ 1507 static uint8_t * 1508 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme) 1509 { 1510 static const struct ieee80211_wme_info info = { 1511 .wme_id = IEEE80211_ELEMID_VENDOR, 1512 .wme_len = sizeof(struct ieee80211_wme_info) - 2, 1513 .wme_oui = { WME_OUI_BYTES }, 1514 .wme_type = WME_OUI_TYPE, 1515 .wme_subtype = WME_INFO_OUI_SUBTYPE, 1516 .wme_version = WME_VERSION, 1517 .wme_info = 0, 1518 }; 1519 memcpy(frm, &info, sizeof(info)); 1520 return frm + sizeof(info); 1521 } 1522 1523 /* 1524 * Add a WME parameters element to a frame. 1525 */ 1526 static uint8_t * 1527 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme) 1528 { 1529 #define SM(_v, _f) (((_v) << _f##_S) & _f) 1530 #define ADDSHORT(frm, v) do { \ 1531 frm[0] = (v) & 0xff; \ 1532 frm[1] = (v) >> 8; \ 1533 frm += 2; \ 1534 } while (0) 1535 /* NB: this works 'cuz a param has an info at the front */ 1536 static const struct ieee80211_wme_info param = { 1537 .wme_id = IEEE80211_ELEMID_VENDOR, 1538 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 1539 .wme_oui = { WME_OUI_BYTES }, 1540 .wme_type = WME_OUI_TYPE, 1541 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 1542 .wme_version = WME_VERSION, 1543 }; 1544 int i; 1545 1546 memcpy(frm, ¶m, sizeof(param)); 1547 frm += __offsetof(struct ieee80211_wme_info, wme_info); 1548 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ 1549 *frm++ = 0; /* reserved field */ 1550 for (i = 0; i < WME_NUM_AC; i++) { 1551 const struct wmeParams *ac = 1552 &wme->wme_bssChanParams.cap_wmeParams[i]; 1553 *frm++ = SM(i, WME_PARAM_ACI) 1554 | SM(ac->wmep_acm, WME_PARAM_ACM) 1555 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) 1556 ; 1557 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) 1558 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) 1559 ; 1560 ADDSHORT(frm, ac->wmep_txopLimit); 1561 } 1562 return frm; 1563 #undef SM 1564 #undef ADDSHORT 1565 } 1566 #undef WME_OUI_BYTES 1567 1568 #define ATH_OUI_BYTES 0x00, 0x03, 0x7f 1569 /* 1570 * Add a WME information element to a frame. 1571 */ 1572 static uint8_t * 1573 ieee80211_add_ath(uint8_t *frm, uint8_t caps, uint16_t defkeyix) 1574 { 1575 static const struct ieee80211_ath_ie info = { 1576 .ath_id = IEEE80211_ELEMID_VENDOR, 1577 .ath_len = sizeof(struct ieee80211_ath_ie) - 2, 1578 .ath_oui = { ATH_OUI_BYTES }, 1579 .ath_oui_type = ATH_OUI_TYPE, 1580 .ath_oui_subtype= ATH_OUI_SUBTYPE, 1581 .ath_version = ATH_OUI_VERSION, 1582 }; 1583 struct ieee80211_ath_ie *ath = (struct ieee80211_ath_ie *) frm; 1584 1585 memcpy(frm, &info, sizeof(info)); 1586 ath->ath_capability = caps; 1587 ath->ath_defkeyix[0] = (defkeyix & 0xff); 1588 ath->ath_defkeyix[1] = ((defkeyix >> 8) & 0xff); 1589 return frm + sizeof(info); 1590 } 1591 #undef ATH_OUI_BYTES 1592 1593 /* 1594 * Add an 11h Power Constraint element to a frame. 1595 */ 1596 static uint8_t * 1597 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap) 1598 { 1599 const struct ieee80211_channel *c = vap->iv_bss->ni_chan; 1600 /* XXX per-vap tx power limit? */ 1601 int8_t limit = vap->iv_ic->ic_txpowlimit / 2; 1602 1603 frm[0] = IEEE80211_ELEMID_PWRCNSTR; 1604 frm[1] = 1; 1605 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0; 1606 return frm + 3; 1607 } 1608 1609 /* 1610 * Add an 11h Power Capability element to a frame. 1611 */ 1612 static uint8_t * 1613 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c) 1614 { 1615 frm[0] = IEEE80211_ELEMID_PWRCAP; 1616 frm[1] = 2; 1617 frm[2] = c->ic_minpower; 1618 frm[3] = c->ic_maxpower; 1619 return frm + 4; 1620 } 1621 1622 /* 1623 * Add an 11h Supported Channels element to a frame. 1624 */ 1625 static uint8_t * 1626 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic) 1627 { 1628 static const int ielen = 26; 1629 1630 frm[0] = IEEE80211_ELEMID_SUPPCHAN; 1631 frm[1] = ielen; 1632 /* XXX not correct */ 1633 memcpy(frm+2, ic->ic_chan_avail, ielen); 1634 return frm + 2 + ielen; 1635 } 1636 1637 /* 1638 * Add an 11h Channel Switch Announcement element to a frame. 1639 * Note that we use the per-vap CSA count to adjust the global 1640 * counter so we can use this routine to form probe response 1641 * frames and get the current count. 1642 */ 1643 static uint8_t * 1644 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap) 1645 { 1646 struct ieee80211com *ic = vap->iv_ic; 1647 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm; 1648 1649 csa->csa_ie = IEEE80211_ELEMID_CHANSWITCHANN; 1650 csa->csa_len = 3; 1651 csa->csa_mode = 1; /* XXX force quiet on channel */ 1652 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan); 1653 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count; 1654 return frm + sizeof(*csa); 1655 } 1656 1657 /* 1658 * Add an 11h country information element to a frame. 1659 */ 1660 static uint8_t * 1661 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic) 1662 { 1663 1664 if (ic->ic_countryie == NULL || 1665 ic->ic_countryie_chan != ic->ic_bsschan) { 1666 /* 1667 * Handle lazy construction of ie. This is done on 1668 * first use and after a channel change that requires 1669 * re-calculation. 1670 */ 1671 if (ic->ic_countryie != NULL) 1672 free(ic->ic_countryie, M_80211_NODE_IE); 1673 ic->ic_countryie = ieee80211_alloc_countryie(ic); 1674 if (ic->ic_countryie == NULL) 1675 return frm; 1676 ic->ic_countryie_chan = ic->ic_bsschan; 1677 } 1678 return add_appie(frm, ic->ic_countryie); 1679 } 1680 1681 /* 1682 * Send a probe request frame with the specified ssid 1683 * and any optional information element data. 1684 */ 1685 int 1686 ieee80211_send_probereq(struct ieee80211_node *ni, 1687 const uint8_t sa[IEEE80211_ADDR_LEN], 1688 const uint8_t da[IEEE80211_ADDR_LEN], 1689 const uint8_t bssid[IEEE80211_ADDR_LEN], 1690 const uint8_t *ssid, size_t ssidlen) 1691 { 1692 struct ieee80211vap *vap = ni->ni_vap; 1693 struct ieee80211com *ic = ni->ni_ic; 1694 const struct ieee80211_txparam *tp; 1695 struct ieee80211_bpf_params params; 1696 struct ieee80211_frame *wh; 1697 const struct ieee80211_rateset *rs; 1698 struct mbuf *m; 1699 uint8_t *frm; 1700 1701 if (vap->iv_state == IEEE80211_S_CAC) { 1702 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni, 1703 "block %s frame in CAC state", "probe request"); 1704 vap->iv_stats.is_tx_badstate++; 1705 return EIO; /* XXX */ 1706 } 1707 1708 /* 1709 * Hold a reference on the node so it doesn't go away until after 1710 * the xmit is complete all the way in the driver. On error we 1711 * will remove our reference. 1712 */ 1713 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 1714 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 1715 __func__, __LINE__, 1716 ni, ether_sprintf(ni->ni_macaddr), 1717 ieee80211_node_refcnt(ni)+1); 1718 ieee80211_ref_node(ni); 1719 1720 /* 1721 * prreq frame format 1722 * [tlv] ssid 1723 * [tlv] supported rates 1724 * [tlv] RSN (optional) 1725 * [tlv] extended supported rates 1726 * [tlv] WPA (optional) 1727 * [tlv] user-specified ie's 1728 */ 1729 m = ieee80211_getmgtframe(&frm, 1730 ic->ic_headroom + sizeof(struct ieee80211_frame), 1731 2 + IEEE80211_NWID_LEN 1732 + 2 + IEEE80211_RATE_SIZE 1733 + sizeof(struct ieee80211_ie_wpa) 1734 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1735 + sizeof(struct ieee80211_ie_wpa) 1736 + (vap->iv_appie_probereq != NULL ? 1737 vap->iv_appie_probereq->ie_len : 0) 1738 ); 1739 if (m == NULL) { 1740 vap->iv_stats.is_tx_nobuf++; 1741 ieee80211_free_node(ni); 1742 return ENOMEM; 1743 } 1744 1745 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 1746 rs = ieee80211_get_suprates(ic, ic->ic_curchan); 1747 frm = ieee80211_add_rates(frm, rs); 1748 if (vap->iv_flags & IEEE80211_F_WPA2) { 1749 if (vap->iv_rsn_ie != NULL) 1750 frm = add_ie(frm, vap->iv_rsn_ie); 1751 /* XXX else complain? */ 1752 } 1753 frm = ieee80211_add_xrates(frm, rs); 1754 if (vap->iv_flags & IEEE80211_F_WPA1) { 1755 if (vap->iv_wpa_ie != NULL) 1756 frm = add_ie(frm, vap->iv_wpa_ie); 1757 /* XXX else complain? */ 1758 } 1759 if (vap->iv_appie_probereq != NULL) 1760 frm = add_appie(frm, vap->iv_appie_probereq); 1761 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 1762 1763 KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame), 1764 ("leading space %zd", M_LEADINGSPACE(m))); 1765 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT); 1766 if (m == NULL) { 1767 /* NB: cannot happen */ 1768 ieee80211_free_node(ni); 1769 return ENOMEM; 1770 } 1771 1772 wh = mtod(m, struct ieee80211_frame *); 1773 ieee80211_send_setup(ni, wh, 1774 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 1775 IEEE80211_NONQOS_TID, sa, da, bssid); 1776 /* XXX power management? */ 1777 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1778 1779 M_WME_SETAC(m, WME_AC_BE); 1780 1781 IEEE80211_NODE_STAT(ni, tx_probereq); 1782 IEEE80211_NODE_STAT(ni, tx_mgmt); 1783 1784 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 1785 "send probe req on channel %u bssid %s ssid \"%.*s\"\n", 1786 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid), 1787 ssidlen, ssid); 1788 1789 memset(¶ms, 0, sizeof(params)); 1790 params.ibp_pri = M_WME_GETAC(m); 1791 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 1792 params.ibp_rate0 = tp->mgmtrate; 1793 if (IEEE80211_IS_MULTICAST(da)) { 1794 params.ibp_flags |= IEEE80211_BPF_NOACK; 1795 params.ibp_try0 = 1; 1796 } else 1797 params.ibp_try0 = tp->maxretry; 1798 params.ibp_power = ni->ni_txpower; 1799 return ic->ic_raw_xmit(ni, m, ¶ms); 1800 } 1801 1802 /* 1803 * Calculate capability information for mgt frames. 1804 */ 1805 static uint16_t 1806 getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan) 1807 { 1808 struct ieee80211com *ic = vap->iv_ic; 1809 uint16_t capinfo; 1810 1811 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode")); 1812 1813 if (vap->iv_opmode == IEEE80211_M_HOSTAP) 1814 capinfo = IEEE80211_CAPINFO_ESS; 1815 else if (vap->iv_opmode == IEEE80211_M_IBSS) 1816 capinfo = IEEE80211_CAPINFO_IBSS; 1817 else 1818 capinfo = 0; 1819 if (vap->iv_flags & IEEE80211_F_PRIVACY) 1820 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1821 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1822 IEEE80211_IS_CHAN_2GHZ(chan)) 1823 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1824 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1825 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1826 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH)) 1827 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 1828 return capinfo; 1829 } 1830 1831 /* 1832 * Send a management frame. The node is for the destination (or ic_bss 1833 * when in station mode). Nodes other than ic_bss have their reference 1834 * count bumped to reflect our use for an indeterminant time. 1835 */ 1836 int 1837 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg) 1838 { 1839 #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT) 1840 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 1841 struct ieee80211vap *vap = ni->ni_vap; 1842 struct ieee80211com *ic = ni->ni_ic; 1843 struct ieee80211_node *bss = vap->iv_bss; 1844 struct ieee80211_bpf_params params; 1845 struct mbuf *m; 1846 uint8_t *frm; 1847 uint16_t capinfo; 1848 int has_challenge, is_shared_key, ret, status; 1849 1850 KASSERT(ni != NULL, ("null node")); 1851 1852 /* 1853 * Hold a reference on the node so it doesn't go away until after 1854 * the xmit is complete all the way in the driver. On error we 1855 * will remove our reference. 1856 */ 1857 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 1858 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 1859 __func__, __LINE__, 1860 ni, ether_sprintf(ni->ni_macaddr), 1861 ieee80211_node_refcnt(ni)+1); 1862 ieee80211_ref_node(ni); 1863 1864 memset(¶ms, 0, sizeof(params)); 1865 switch (type) { 1866 1867 case IEEE80211_FC0_SUBTYPE_AUTH: 1868 status = arg >> 16; 1869 arg &= 0xffff; 1870 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || 1871 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 1872 ni->ni_challenge != NULL); 1873 1874 /* 1875 * Deduce whether we're doing open authentication or 1876 * shared key authentication. We do the latter if 1877 * we're in the middle of a shared key authentication 1878 * handshake or if we're initiating an authentication 1879 * request and configured to use shared key. 1880 */ 1881 is_shared_key = has_challenge || 1882 arg >= IEEE80211_AUTH_SHARED_RESPONSE || 1883 (arg == IEEE80211_AUTH_SHARED_REQUEST && 1884 bss->ni_authmode == IEEE80211_AUTH_SHARED); 1885 1886 m = ieee80211_getmgtframe(&frm, 1887 ic->ic_headroom + sizeof(struct ieee80211_frame), 1888 3 * sizeof(uint16_t) 1889 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? 1890 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0) 1891 ); 1892 if (m == NULL) 1893 senderr(ENOMEM, is_tx_nobuf); 1894 1895 ((uint16_t *)frm)[0] = 1896 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) 1897 : htole16(IEEE80211_AUTH_ALG_OPEN); 1898 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */ 1899 ((uint16_t *)frm)[2] = htole16(status);/* status */ 1900 1901 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { 1902 ((uint16_t *)frm)[3] = 1903 htole16((IEEE80211_CHALLENGE_LEN << 8) | 1904 IEEE80211_ELEMID_CHALLENGE); 1905 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge, 1906 IEEE80211_CHALLENGE_LEN); 1907 m->m_pkthdr.len = m->m_len = 1908 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN; 1909 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 1910 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 1911 "request encrypt frame (%s)", __func__); 1912 /* mark frame for encryption */ 1913 params.ibp_flags |= IEEE80211_BPF_CRYPTO; 1914 } 1915 } else 1916 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t); 1917 1918 /* XXX not right for shared key */ 1919 if (status == IEEE80211_STATUS_SUCCESS) 1920 IEEE80211_NODE_STAT(ni, tx_auth); 1921 else 1922 IEEE80211_NODE_STAT(ni, tx_auth_fail); 1923 1924 if (vap->iv_opmode == IEEE80211_M_STA) 1925 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 1926 (void *) vap->iv_state); 1927 break; 1928 1929 case IEEE80211_FC0_SUBTYPE_DEAUTH: 1930 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 1931 "send station deauthenticate (reason %d)", arg); 1932 m = ieee80211_getmgtframe(&frm, 1933 ic->ic_headroom + sizeof(struct ieee80211_frame), 1934 sizeof(uint16_t)); 1935 if (m == NULL) 1936 senderr(ENOMEM, is_tx_nobuf); 1937 *(uint16_t *)frm = htole16(arg); /* reason */ 1938 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 1939 1940 IEEE80211_NODE_STAT(ni, tx_deauth); 1941 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 1942 1943 ieee80211_node_unauthorize(ni); /* port closed */ 1944 break; 1945 1946 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 1947 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 1948 /* 1949 * asreq frame format 1950 * [2] capability information 1951 * [2] listen interval 1952 * [6*] current AP address (reassoc only) 1953 * [tlv] ssid 1954 * [tlv] supported rates 1955 * [tlv] extended supported rates 1956 * [4] power capability (optional) 1957 * [28] supported channels (optional) 1958 * [tlv] HT capabilities 1959 * [tlv] WME (optional) 1960 * [tlv] Vendor OUI HT capabilities (optional) 1961 * [tlv] Atheros capabilities (if negotiated) 1962 * [tlv] AppIE's (optional) 1963 */ 1964 m = ieee80211_getmgtframe(&frm, 1965 ic->ic_headroom + sizeof(struct ieee80211_frame), 1966 sizeof(uint16_t) 1967 + sizeof(uint16_t) 1968 + IEEE80211_ADDR_LEN 1969 + 2 + IEEE80211_NWID_LEN 1970 + 2 + IEEE80211_RATE_SIZE 1971 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1972 + 4 1973 + 2 + 26 1974 + sizeof(struct ieee80211_wme_info) 1975 + sizeof(struct ieee80211_ie_htcap) 1976 + 4 + sizeof(struct ieee80211_ie_htcap) 1977 + sizeof(struct ieee80211_ath_ie) 1978 + (vap->iv_appie_wpa != NULL ? 1979 vap->iv_appie_wpa->ie_len : 0) 1980 + (vap->iv_appie_assocreq != NULL ? 1981 vap->iv_appie_assocreq->ie_len : 0) 1982 ); 1983 if (m == NULL) 1984 senderr(ENOMEM, is_tx_nobuf); 1985 1986 KASSERT(vap->iv_opmode == IEEE80211_M_STA, 1987 ("wrong mode %u", vap->iv_opmode)); 1988 capinfo = IEEE80211_CAPINFO_ESS; 1989 if (vap->iv_flags & IEEE80211_F_PRIVACY) 1990 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1991 /* 1992 * NB: Some 11a AP's reject the request when 1993 * short premable is set. 1994 */ 1995 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1996 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 1997 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1998 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 1999 (ic->ic_caps & IEEE80211_C_SHSLOT)) 2000 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2001 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) && 2002 (vap->iv_flags & IEEE80211_F_DOTH)) 2003 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2004 *(uint16_t *)frm = htole16(capinfo); 2005 frm += 2; 2006 2007 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!")); 2008 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval, 2009 bss->ni_intval)); 2010 frm += 2; 2011 2012 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 2013 IEEE80211_ADDR_COPY(frm, bss->ni_bssid); 2014 frm += IEEE80211_ADDR_LEN; 2015 } 2016 2017 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 2018 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2019 if (vap->iv_flags & IEEE80211_F_WPA2) { 2020 if (vap->iv_rsn_ie != NULL) 2021 frm = add_ie(frm, vap->iv_rsn_ie); 2022 /* XXX else complain? */ 2023 } 2024 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2025 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) { 2026 frm = ieee80211_add_powercapability(frm, 2027 ic->ic_curchan); 2028 frm = ieee80211_add_supportedchannels(frm, ic); 2029 } 2030 if ((vap->iv_flags_ext & IEEE80211_FEXT_HT) && 2031 ni->ni_ies.htcap_ie != NULL && 2032 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) 2033 frm = ieee80211_add_htcap(frm, ni); 2034 if (vap->iv_flags & IEEE80211_F_WPA1) { 2035 if (vap->iv_wpa_ie != NULL) 2036 frm = add_ie(frm, vap->iv_wpa_ie); 2037 /* XXX else complain */ 2038 } 2039 if ((ic->ic_flags & IEEE80211_F_WME) && 2040 ni->ni_ies.wme_ie != NULL) 2041 frm = ieee80211_add_wme_info(frm, &ic->ic_wme); 2042 if ((vap->iv_flags_ext & IEEE80211_FEXT_HT) && 2043 ni->ni_ies.htcap_ie != NULL && 2044 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) 2045 frm = ieee80211_add_htcap_vendor(frm, ni); 2046 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) 2047 frm = ieee80211_add_ath(frm, 2048 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2049 (vap->iv_flags & IEEE80211_F_WPA) == 0 && 2050 ni->ni_authmode != IEEE80211_AUTH_8021X && 2051 vap->iv_def_txkey != IEEE80211_KEYIX_NONE ? 2052 vap->iv_def_txkey : 0x7fff); 2053 if (vap->iv_appie_assocreq != NULL) 2054 frm = add_appie(frm, vap->iv_appie_assocreq); 2055 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2056 2057 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2058 (void *) vap->iv_state); 2059 break; 2060 2061 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 2062 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 2063 /* 2064 * asresp frame format 2065 * [2] capability information 2066 * [2] status 2067 * [2] association ID 2068 * [tlv] supported rates 2069 * [tlv] extended supported rates 2070 * [tlv] HT capabilities (standard, if STA enabled) 2071 * [tlv] HT information (standard, if STA enabled) 2072 * [tlv] WME (if configured and STA enabled) 2073 * [tlv] HT capabilities (vendor OUI, if STA enabled) 2074 * [tlv] HT information (vendor OUI, if STA enabled) 2075 * [tlv] Atheros capabilities (if STA enabled) 2076 * [tlv] AppIE's (optional) 2077 */ 2078 m = ieee80211_getmgtframe(&frm, 2079 ic->ic_headroom + sizeof(struct ieee80211_frame), 2080 sizeof(uint16_t) 2081 + sizeof(uint16_t) 2082 + sizeof(uint16_t) 2083 + 2 + IEEE80211_RATE_SIZE 2084 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2085 + sizeof(struct ieee80211_ie_htcap) + 4 2086 + sizeof(struct ieee80211_ie_htinfo) + 4 2087 + sizeof(struct ieee80211_wme_param) 2088 + sizeof(struct ieee80211_ath_ie) 2089 + (vap->iv_appie_assocresp != NULL ? 2090 vap->iv_appie_assocresp->ie_len : 0) 2091 ); 2092 if (m == NULL) 2093 senderr(ENOMEM, is_tx_nobuf); 2094 2095 capinfo = getcapinfo(vap, bss->ni_chan); 2096 *(uint16_t *)frm = htole16(capinfo); 2097 frm += 2; 2098 2099 *(uint16_t *)frm = htole16(arg); /* status */ 2100 frm += 2; 2101 2102 if (arg == IEEE80211_STATUS_SUCCESS) { 2103 *(uint16_t *)frm = htole16(ni->ni_associd); 2104 IEEE80211_NODE_STAT(ni, tx_assoc); 2105 } else 2106 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 2107 frm += 2; 2108 2109 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2110 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2111 /* NB: respond according to what we received */ 2112 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) { 2113 frm = ieee80211_add_htcap(frm, ni); 2114 frm = ieee80211_add_htinfo(frm, ni); 2115 } 2116 if ((vap->iv_flags & IEEE80211_F_WME) && 2117 ni->ni_ies.wme_ie != NULL) 2118 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2119 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) { 2120 frm = ieee80211_add_htcap_vendor(frm, ni); 2121 frm = ieee80211_add_htinfo_vendor(frm, ni); 2122 } 2123 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) 2124 frm = ieee80211_add_ath(frm, 2125 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2126 ni->ni_ath_defkeyix); 2127 if (vap->iv_appie_assocresp != NULL) 2128 frm = add_appie(frm, vap->iv_appie_assocresp); 2129 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2130 break; 2131 2132 case IEEE80211_FC0_SUBTYPE_DISASSOC: 2133 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, 2134 "send station disassociate (reason %d)", arg); 2135 m = ieee80211_getmgtframe(&frm, 2136 ic->ic_headroom + sizeof(struct ieee80211_frame), 2137 sizeof(uint16_t)); 2138 if (m == NULL) 2139 senderr(ENOMEM, is_tx_nobuf); 2140 *(uint16_t *)frm = htole16(arg); /* reason */ 2141 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2142 2143 IEEE80211_NODE_STAT(ni, tx_disassoc); 2144 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 2145 break; 2146 2147 default: 2148 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni, 2149 "invalid mgmt frame type %u", type); 2150 senderr(EINVAL, is_tx_unknownmgt); 2151 /* NOTREACHED */ 2152 } 2153 2154 /* NB: force non-ProbeResp frames to the highest queue */ 2155 params.ibp_pri = WME_AC_VO; 2156 params.ibp_rate0 = bss->ni_txparms->mgmtrate; 2157 /* NB: we know all frames are unicast */ 2158 params.ibp_try0 = bss->ni_txparms->maxretry; 2159 params.ibp_power = bss->ni_txpower; 2160 return ieee80211_mgmt_output(ni, m, type, ¶ms); 2161 bad: 2162 ieee80211_free_node(ni); 2163 return ret; 2164 #undef senderr 2165 #undef HTFLAGS 2166 } 2167 2168 /* 2169 * Return an mbuf with a probe response frame in it. 2170 * Space is left to prepend and 802.11 header at the 2171 * front but it's left to the caller to fill in. 2172 */ 2173 struct mbuf * 2174 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy) 2175 { 2176 struct ieee80211vap *vap = bss->ni_vap; 2177 struct ieee80211com *ic = bss->ni_ic; 2178 const struct ieee80211_rateset *rs; 2179 struct mbuf *m; 2180 uint16_t capinfo; 2181 uint8_t *frm; 2182 2183 /* 2184 * probe response frame format 2185 * [8] time stamp 2186 * [2] beacon interval 2187 * [2] cabability information 2188 * [tlv] ssid 2189 * [tlv] supported rates 2190 * [tlv] parameter set (FH/DS) 2191 * [tlv] parameter set (IBSS) 2192 * [tlv] country (optional) 2193 * [3] power control (optional) 2194 * [5] channel switch announcement (CSA) (optional) 2195 * [tlv] extended rate phy (ERP) 2196 * [tlv] extended supported rates 2197 * [tlv] RSN (optional) 2198 * [tlv] HT capabilities 2199 * [tlv] HT information 2200 * [tlv] WPA (optional) 2201 * [tlv] WME (optional) 2202 * [tlv] Vendor OUI HT capabilities (optional) 2203 * [tlv] Vendor OUI HT information (optional) 2204 * [tlv] Atheros capabilities 2205 * [tlv] AppIE's (optional) 2206 */ 2207 m = ieee80211_getmgtframe(&frm, 2208 ic->ic_headroom + sizeof(struct ieee80211_frame), 2209 8 2210 + sizeof(uint16_t) 2211 + sizeof(uint16_t) 2212 + 2 + IEEE80211_NWID_LEN 2213 + 2 + IEEE80211_RATE_SIZE 2214 + 7 /* max(7,3) */ 2215 + IEEE80211_COUNTRY_MAX_SIZE 2216 + 3 2217 + sizeof(struct ieee80211_csa_ie) 2218 + 3 2219 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2220 + sizeof(struct ieee80211_ie_wpa) 2221 + sizeof(struct ieee80211_ie_htcap) 2222 + sizeof(struct ieee80211_ie_htinfo) 2223 + sizeof(struct ieee80211_ie_wpa) 2224 + sizeof(struct ieee80211_wme_param) 2225 + 4 + sizeof(struct ieee80211_ie_htcap) 2226 + 4 + sizeof(struct ieee80211_ie_htinfo) 2227 + sizeof(struct ieee80211_ath_ie) 2228 + (vap->iv_appie_proberesp != NULL ? 2229 vap->iv_appie_proberesp->ie_len : 0) 2230 ); 2231 if (m == NULL) { 2232 vap->iv_stats.is_tx_nobuf++; 2233 return NULL; 2234 } 2235 2236 memset(frm, 0, 8); /* timestamp should be filled later */ 2237 frm += 8; 2238 *(uint16_t *)frm = htole16(bss->ni_intval); 2239 frm += 2; 2240 capinfo = getcapinfo(vap, bss->ni_chan); 2241 *(uint16_t *)frm = htole16(capinfo); 2242 frm += 2; 2243 2244 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen); 2245 rs = ieee80211_get_suprates(ic, bss->ni_chan); 2246 frm = ieee80211_add_rates(frm, rs); 2247 2248 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) { 2249 *frm++ = IEEE80211_ELEMID_FHPARMS; 2250 *frm++ = 5; 2251 *frm++ = bss->ni_fhdwell & 0x00ff; 2252 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff; 2253 *frm++ = IEEE80211_FH_CHANSET( 2254 ieee80211_chan2ieee(ic, bss->ni_chan)); 2255 *frm++ = IEEE80211_FH_CHANPAT( 2256 ieee80211_chan2ieee(ic, bss->ni_chan)); 2257 *frm++ = bss->ni_fhindex; 2258 } else { 2259 *frm++ = IEEE80211_ELEMID_DSPARMS; 2260 *frm++ = 1; 2261 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan); 2262 } 2263 2264 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2265 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2266 *frm++ = 2; 2267 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2268 } 2269 if ((vap->iv_flags & IEEE80211_F_DOTH) || 2270 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 2271 frm = ieee80211_add_countryie(frm, ic); 2272 if (vap->iv_flags & IEEE80211_F_DOTH) { 2273 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan)) 2274 frm = ieee80211_add_powerconstraint(frm, vap); 2275 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 2276 frm = ieee80211_add_csa(frm, vap); 2277 } 2278 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan)) 2279 frm = ieee80211_add_erp(frm, ic); 2280 frm = ieee80211_add_xrates(frm, rs); 2281 if (vap->iv_flags & IEEE80211_F_WPA2) { 2282 if (vap->iv_rsn_ie != NULL) 2283 frm = add_ie(frm, vap->iv_rsn_ie); 2284 /* XXX else complain? */ 2285 } 2286 /* 2287 * NB: legacy 11b clients do not get certain ie's. 2288 * The caller identifies such clients by passing 2289 * a token in legacy to us. Could expand this to be 2290 * any legacy client for stuff like HT ie's. 2291 */ 2292 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2293 legacy != IEEE80211_SEND_LEGACY_11B) { 2294 frm = ieee80211_add_htcap(frm, bss); 2295 frm = ieee80211_add_htinfo(frm, bss); 2296 } 2297 if (vap->iv_flags & IEEE80211_F_WPA1) { 2298 if (vap->iv_wpa_ie != NULL) 2299 frm = add_ie(frm, vap->iv_wpa_ie); 2300 /* XXX else complain? */ 2301 } 2302 if (vap->iv_flags & IEEE80211_F_WME) 2303 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2304 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2305 (vap->iv_flags_ext & IEEE80211_FEXT_HTCOMPAT) && 2306 legacy != IEEE80211_SEND_LEGACY_11B) { 2307 frm = ieee80211_add_htcap_vendor(frm, bss); 2308 frm = ieee80211_add_htinfo_vendor(frm, bss); 2309 } 2310 if (bss->ni_ies.ath_ie != NULL && legacy != IEEE80211_SEND_LEGACY_11B) 2311 frm = ieee80211_add_ath(frm, bss->ni_ath_flags, 2312 bss->ni_ath_defkeyix); 2313 if (vap->iv_appie_proberesp != NULL) 2314 frm = add_appie(frm, vap->iv_appie_proberesp); 2315 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2316 2317 return m; 2318 } 2319 2320 /* 2321 * Send a probe response frame to the specified mac address. 2322 * This does not go through the normal mgt frame api so we 2323 * can specify the destination address and re-use the bss node 2324 * for the sta reference. 2325 */ 2326 int 2327 ieee80211_send_proberesp(struct ieee80211vap *vap, 2328 const uint8_t da[IEEE80211_ADDR_LEN], int legacy) 2329 { 2330 struct ieee80211_node *bss = vap->iv_bss; 2331 struct ieee80211com *ic = vap->iv_ic; 2332 struct ieee80211_frame *wh; 2333 struct mbuf *m; 2334 2335 if (vap->iv_state == IEEE80211_S_CAC) { 2336 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss, 2337 "block %s frame in CAC state", "probe response"); 2338 vap->iv_stats.is_tx_badstate++; 2339 return EIO; /* XXX */ 2340 } 2341 2342 /* 2343 * Hold a reference on the node so it doesn't go away until after 2344 * the xmit is complete all the way in the driver. On error we 2345 * will remove our reference. 2346 */ 2347 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2348 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2349 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr), 2350 ieee80211_node_refcnt(bss)+1); 2351 ieee80211_ref_node(bss); 2352 2353 m = ieee80211_alloc_proberesp(bss, legacy); 2354 if (m == NULL) { 2355 ieee80211_free_node(bss); 2356 return ENOMEM; 2357 } 2358 2359 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT); 2360 KASSERT(m != NULL, ("no room for header")); 2361 2362 wh = mtod(m, struct ieee80211_frame *); 2363 ieee80211_send_setup(bss, wh, 2364 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP, 2365 IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid); 2366 /* XXX power management? */ 2367 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2368 2369 M_WME_SETAC(m, WME_AC_BE); 2370 2371 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2372 "send probe resp on channel %u to %s%s\n", 2373 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da), 2374 legacy ? " <legacy>" : ""); 2375 IEEE80211_NODE_STAT(bss, tx_mgmt); 2376 2377 return ic->ic_raw_xmit(bss, m, NULL); 2378 } 2379 2380 /* 2381 * Allocate and build a RTS (Request To Send) control frame. 2382 */ 2383 struct mbuf * 2384 ieee80211_alloc_rts(struct ieee80211com *ic, 2385 const uint8_t ra[IEEE80211_ADDR_LEN], 2386 const uint8_t ta[IEEE80211_ADDR_LEN], 2387 uint16_t dur) 2388 { 2389 struct ieee80211_frame_rts *rts; 2390 struct mbuf *m; 2391 2392 /* XXX honor ic_headroom */ 2393 m = m_gethdr(M_DONTWAIT, MT_DATA); 2394 if (m != NULL) { 2395 rts = mtod(m, struct ieee80211_frame_rts *); 2396 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2397 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS; 2398 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2399 *(u_int16_t *)rts->i_dur = htole16(dur); 2400 IEEE80211_ADDR_COPY(rts->i_ra, ra); 2401 IEEE80211_ADDR_COPY(rts->i_ta, ta); 2402 2403 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); 2404 } 2405 return m; 2406 } 2407 2408 /* 2409 * Allocate and build a CTS (Clear To Send) control frame. 2410 */ 2411 struct mbuf * 2412 ieee80211_alloc_cts(struct ieee80211com *ic, 2413 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur) 2414 { 2415 struct ieee80211_frame_cts *cts; 2416 struct mbuf *m; 2417 2418 /* XXX honor ic_headroom */ 2419 m = m_gethdr(M_DONTWAIT, MT_DATA); 2420 if (m != NULL) { 2421 cts = mtod(m, struct ieee80211_frame_cts *); 2422 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2423 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS; 2424 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2425 *(u_int16_t *)cts->i_dur = htole16(dur); 2426 IEEE80211_ADDR_COPY(cts->i_ra, ra); 2427 2428 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts); 2429 } 2430 return m; 2431 } 2432 2433 static void 2434 ieee80211_tx_mgt_timeout(void *arg) 2435 { 2436 struct ieee80211_node *ni = arg; 2437 struct ieee80211vap *vap = ni->ni_vap; 2438 2439 if (vap->iv_state != IEEE80211_S_INIT && 2440 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) { 2441 /* 2442 * NB: it's safe to specify a timeout as the reason here; 2443 * it'll only be used in the right state. 2444 */ 2445 ieee80211_new_state(vap, IEEE80211_S_SCAN, 2446 IEEE80211_SCAN_FAIL_TIMEOUT); 2447 } 2448 } 2449 2450 static void 2451 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status) 2452 { 2453 struct ieee80211vap *vap = ni->ni_vap; 2454 enum ieee80211_state ostate = (enum ieee80211_state) arg; 2455 2456 /* 2457 * Frame transmit completed; arrange timer callback. If 2458 * transmit was successfuly we wait for response. Otherwise 2459 * we arrange an immediate callback instead of doing the 2460 * callback directly since we don't know what state the driver 2461 * is in (e.g. what locks it is holding). This work should 2462 * not be too time-critical and not happen too often so the 2463 * added overhead is acceptable. 2464 * 2465 * XXX what happens if !acked but response shows up before callback? 2466 */ 2467 if (vap->iv_state == ostate) 2468 callout_reset(&vap->iv_mgtsend, 2469 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0, 2470 ieee80211_tx_mgt_timeout, ni); 2471 } 2472 2473 static void 2474 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm, 2475 struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni) 2476 { 2477 struct ieee80211vap *vap = ni->ni_vap; 2478 struct ieee80211com *ic = ni->ni_ic; 2479 struct ieee80211_rateset *rs = &ni->ni_rates; 2480 uint16_t capinfo; 2481 2482 /* 2483 * beacon frame format 2484 * [8] time stamp 2485 * [2] beacon interval 2486 * [2] cabability information 2487 * [tlv] ssid 2488 * [tlv] supported rates 2489 * [3] parameter set (DS) 2490 * [8] CF parameter set (optional) 2491 * [tlv] parameter set (IBSS/TIM) 2492 * [tlv] country (optional) 2493 * [3] power control (optional) 2494 * [5] channel switch announcement (CSA) (optional) 2495 * [tlv] extended rate phy (ERP) 2496 * [tlv] extended supported rates 2497 * [tlv] RSN parameters 2498 * [tlv] HT capabilities 2499 * [tlv] HT information 2500 * XXX Vendor-specific OIDs (e.g. Atheros) 2501 * [tlv] WPA parameters 2502 * [tlv] WME parameters 2503 * [tlv] Vendor OUI HT capabilities (optional) 2504 * [tlv] Vendor OUI HT information (optional) 2505 * [tlv] application data (optional) 2506 */ 2507 2508 memset(bo, 0, sizeof(*bo)); 2509 2510 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 2511 frm += 8; 2512 *(uint16_t *)frm = htole16(ni->ni_intval); 2513 frm += 2; 2514 capinfo = getcapinfo(vap, ni->ni_chan); 2515 bo->bo_caps = (uint16_t *)frm; 2516 *(uint16_t *)frm = htole16(capinfo); 2517 frm += 2; 2518 *frm++ = IEEE80211_ELEMID_SSID; 2519 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) { 2520 *frm++ = ni->ni_esslen; 2521 memcpy(frm, ni->ni_essid, ni->ni_esslen); 2522 frm += ni->ni_esslen; 2523 } else 2524 *frm++ = 0; 2525 frm = ieee80211_add_rates(frm, rs); 2526 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) { 2527 *frm++ = IEEE80211_ELEMID_DSPARMS; 2528 *frm++ = 1; 2529 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 2530 } 2531 if (ic->ic_flags & IEEE80211_F_PCF) { 2532 bo->bo_cfp = frm; 2533 frm = ieee80211_add_cfparms(frm, ic); 2534 } 2535 bo->bo_tim = frm; 2536 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2537 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2538 *frm++ = 2; 2539 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2540 bo->bo_tim_len = 0; 2541 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP) { 2542 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; 2543 2544 tie->tim_ie = IEEE80211_ELEMID_TIM; 2545 tie->tim_len = 4; /* length */ 2546 tie->tim_count = 0; /* DTIM count */ 2547 tie->tim_period = vap->iv_dtim_period; /* DTIM period */ 2548 tie->tim_bitctl = 0; /* bitmap control */ 2549 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 2550 frm += sizeof(struct ieee80211_tim_ie); 2551 bo->bo_tim_len = 1; 2552 } 2553 bo->bo_tim_trailer = frm; 2554 if ((vap->iv_flags & IEEE80211_F_DOTH) || 2555 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 2556 frm = ieee80211_add_countryie(frm, ic); 2557 if (vap->iv_flags & IEEE80211_F_DOTH) { 2558 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) 2559 frm = ieee80211_add_powerconstraint(frm, vap); 2560 bo->bo_csa = frm; 2561 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 2562 frm = ieee80211_add_csa(frm, vap); 2563 } else 2564 bo->bo_csa = frm; 2565 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) { 2566 bo->bo_erp = frm; 2567 frm = ieee80211_add_erp(frm, ic); 2568 } 2569 frm = ieee80211_add_xrates(frm, rs); 2570 if (vap->iv_flags & IEEE80211_F_WPA2) { 2571 if (vap->iv_rsn_ie != NULL) 2572 frm = add_ie(frm, vap->iv_rsn_ie); 2573 /* XXX else complain */ 2574 } 2575 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 2576 frm = ieee80211_add_htcap(frm, ni); 2577 bo->bo_htinfo = frm; 2578 frm = ieee80211_add_htinfo(frm, ni); 2579 } 2580 if (vap->iv_flags & IEEE80211_F_WPA1) { 2581 if (vap->iv_wpa_ie != NULL) 2582 frm = add_ie(frm, vap->iv_wpa_ie); 2583 /* XXX else complain */ 2584 } 2585 if (vap->iv_flags & IEEE80211_F_WME) { 2586 bo->bo_wme = frm; 2587 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2588 } 2589 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2590 (vap->iv_flags_ext & IEEE80211_FEXT_HTCOMPAT)) { 2591 frm = ieee80211_add_htcap_vendor(frm, ni); 2592 frm = ieee80211_add_htinfo_vendor(frm, ni); 2593 } 2594 if (vap->iv_appie_beacon != NULL) { 2595 bo->bo_appie = frm; 2596 bo->bo_appie_len = vap->iv_appie_beacon->ie_len; 2597 frm = add_appie(frm, vap->iv_appie_beacon); 2598 } 2599 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer; 2600 bo->bo_csa_trailer_len = frm - bo->bo_csa; 2601 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2602 } 2603 2604 /* 2605 * Allocate a beacon frame and fillin the appropriate bits. 2606 */ 2607 struct mbuf * 2608 ieee80211_beacon_alloc(struct ieee80211_node *ni, 2609 struct ieee80211_beacon_offsets *bo) 2610 { 2611 struct ieee80211vap *vap = ni->ni_vap; 2612 struct ieee80211com *ic = ni->ni_ic; 2613 struct ifnet *ifp = vap->iv_ifp; 2614 struct ieee80211_frame *wh; 2615 struct mbuf *m; 2616 int pktlen; 2617 uint8_t *frm; 2618 2619 /* 2620 * beacon frame format 2621 * [8] time stamp 2622 * [2] beacon interval 2623 * [2] cabability information 2624 * [tlv] ssid 2625 * [tlv] supported rates 2626 * [3] parameter set (DS) 2627 * [8] CF parameter set (optional) 2628 * [tlv] parameter set (IBSS/TIM) 2629 * [tlv] country (optional) 2630 * [3] power control (optional) 2631 * [5] channel switch announcement (CSA) (optional) 2632 * [tlv] extended rate phy (ERP) 2633 * [tlv] extended supported rates 2634 * [tlv] RSN parameters 2635 * [tlv] HT capabilities 2636 * [tlv] HT information 2637 * [tlv] Vendor OUI HT capabilities (optional) 2638 * [tlv] Vendor OUI HT information (optional) 2639 * XXX Vendor-specific OIDs (e.g. Atheros) 2640 * [tlv] WPA parameters 2641 * [tlv] WME parameters 2642 * [tlv] application data (optional) 2643 * NB: we allocate the max space required for the TIM bitmap. 2644 * XXX how big is this? 2645 */ 2646 pktlen = 8 /* time stamp */ 2647 + sizeof(uint16_t) /* beacon interval */ 2648 + sizeof(uint16_t) /* capabilities */ 2649 + 2 + ni->ni_esslen /* ssid */ 2650 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 2651 + 2 + 1 /* DS parameters */ 2652 + 2 + 6 /* CF parameters */ 2653 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */ 2654 + IEEE80211_COUNTRY_MAX_SIZE /* country */ 2655 + 2 + 1 /* power control */ 2656 + sizeof(struct ieee80211_csa_ie) /* CSA */ 2657 + 2 + 1 /* ERP */ 2658 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2659 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 2660 2*sizeof(struct ieee80211_ie_wpa) : 0) 2661 /* XXX conditional? */ 2662 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */ 2663 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */ 2664 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */ 2665 sizeof(struct ieee80211_wme_param) : 0) 2666 + IEEE80211_MAX_APPIE 2667 ; 2668 m = ieee80211_getmgtframe(&frm, 2669 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen); 2670 if (m == NULL) { 2671 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, 2672 "%s: cannot get buf; size %u\n", __func__, pktlen); 2673 vap->iv_stats.is_tx_nobuf++; 2674 return NULL; 2675 } 2676 ieee80211_beacon_construct(m, frm, bo, ni); 2677 2678 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT); 2679 KASSERT(m != NULL, ("no space for 802.11 header?")); 2680 wh = mtod(m, struct ieee80211_frame *); 2681 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 2682 IEEE80211_FC0_SUBTYPE_BEACON; 2683 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2684 *(uint16_t *)wh->i_dur = 0; 2685 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 2686 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 2687 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 2688 *(uint16_t *)wh->i_seq = 0; 2689 2690 return m; 2691 } 2692 2693 /* 2694 * Update the dynamic parts of a beacon frame based on the current state. 2695 */ 2696 int 2697 ieee80211_beacon_update(struct ieee80211_node *ni, 2698 struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast) 2699 { 2700 struct ieee80211vap *vap = ni->ni_vap; 2701 struct ieee80211com *ic = ni->ni_ic; 2702 int len_changed = 0; 2703 uint16_t capinfo; 2704 2705 IEEE80211_LOCK(ic); 2706 /* 2707 * Handle 11h channel change when we've reached the count. 2708 * We must recalculate the beacon frame contents to account 2709 * for the new channel. Note we do this only for the first 2710 * vap that reaches this point; subsequent vaps just update 2711 * their beacon state to reflect the recalculated channel. 2712 */ 2713 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) && 2714 vap->iv_csa_count == ic->ic_csa_count) { 2715 vap->iv_csa_count = 0; 2716 /* 2717 * Effect channel change before reconstructing the beacon 2718 * frame contents as many places reference ni_chan. 2719 */ 2720 if (ic->ic_csa_newchan != NULL) 2721 ieee80211_csa_completeswitch(ic); 2722 /* 2723 * NB: ieee80211_beacon_construct clears all pending 2724 * updates in bo_flags so we don't need to explicitly 2725 * clear IEEE80211_BEACON_CSA. 2726 */ 2727 ieee80211_beacon_construct(m, 2728 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni); 2729 2730 /* XXX do WME aggressive mode processing? */ 2731 IEEE80211_UNLOCK(ic); 2732 return 1; /* just assume length changed */ 2733 } 2734 2735 /* XXX faster to recalculate entirely or just changes? */ 2736 capinfo = getcapinfo(vap, ni->ni_chan); 2737 *bo->bo_caps = htole16(capinfo); 2738 2739 if (vap->iv_flags & IEEE80211_F_WME) { 2740 struct ieee80211_wme_state *wme = &ic->ic_wme; 2741 2742 /* 2743 * Check for agressive mode change. When there is 2744 * significant high priority traffic in the BSS 2745 * throttle back BE traffic by using conservative 2746 * parameters. Otherwise BE uses agressive params 2747 * to optimize performance of legacy/non-QoS traffic. 2748 */ 2749 if (wme->wme_flags & WME_F_AGGRMODE) { 2750 if (wme->wme_hipri_traffic > 2751 wme->wme_hipri_switch_thresh) { 2752 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 2753 "%s: traffic %u, disable aggressive mode\n", 2754 __func__, wme->wme_hipri_traffic); 2755 wme->wme_flags &= ~WME_F_AGGRMODE; 2756 ieee80211_wme_updateparams_locked(vap); 2757 wme->wme_hipri_traffic = 2758 wme->wme_hipri_switch_hysteresis; 2759 } else 2760 wme->wme_hipri_traffic = 0; 2761 } else { 2762 if (wme->wme_hipri_traffic <= 2763 wme->wme_hipri_switch_thresh) { 2764 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 2765 "%s: traffic %u, enable aggressive mode\n", 2766 __func__, wme->wme_hipri_traffic); 2767 wme->wme_flags |= WME_F_AGGRMODE; 2768 ieee80211_wme_updateparams_locked(vap); 2769 wme->wme_hipri_traffic = 0; 2770 } else 2771 wme->wme_hipri_traffic = 2772 wme->wme_hipri_switch_hysteresis; 2773 } 2774 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) { 2775 (void) ieee80211_add_wme_param(bo->bo_wme, wme); 2776 clrbit(bo->bo_flags, IEEE80211_BEACON_WME); 2777 } 2778 } 2779 2780 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) { 2781 ieee80211_ht_update_beacon(vap, bo); 2782 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO); 2783 } 2784 2785 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { /* NB: no IBSS support*/ 2786 struct ieee80211_tim_ie *tie = 2787 (struct ieee80211_tim_ie *) bo->bo_tim; 2788 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) { 2789 u_int timlen, timoff, i; 2790 /* 2791 * ATIM/DTIM needs updating. If it fits in the 2792 * current space allocated then just copy in the 2793 * new bits. Otherwise we need to move any trailing 2794 * data to make room. Note that we know there is 2795 * contiguous space because ieee80211_beacon_allocate 2796 * insures there is space in the mbuf to write a 2797 * maximal-size virtual bitmap (based on iv_max_aid). 2798 */ 2799 /* 2800 * Calculate the bitmap size and offset, copy any 2801 * trailer out of the way, and then copy in the 2802 * new bitmap and update the information element. 2803 * Note that the tim bitmap must contain at least 2804 * one byte and any offset must be even. 2805 */ 2806 if (vap->iv_ps_pending != 0) { 2807 timoff = 128; /* impossibly large */ 2808 for (i = 0; i < vap->iv_tim_len; i++) 2809 if (vap->iv_tim_bitmap[i]) { 2810 timoff = i &~ 1; 2811 break; 2812 } 2813 KASSERT(timoff != 128, ("tim bitmap empty!")); 2814 for (i = vap->iv_tim_len-1; i >= timoff; i--) 2815 if (vap->iv_tim_bitmap[i]) 2816 break; 2817 timlen = 1 + (i - timoff); 2818 } else { 2819 timoff = 0; 2820 timlen = 1; 2821 } 2822 if (timlen != bo->bo_tim_len) { 2823 /* copy up/down trailer */ 2824 int adjust = tie->tim_bitmap+timlen 2825 - bo->bo_tim_trailer; 2826 ovbcopy(bo->bo_tim_trailer, 2827 bo->bo_tim_trailer+adjust, 2828 bo->bo_tim_trailer_len); 2829 bo->bo_tim_trailer += adjust; 2830 bo->bo_erp += adjust; 2831 bo->bo_htinfo += adjust; 2832 bo->bo_appie += adjust; 2833 bo->bo_wme += adjust; 2834 bo->bo_csa += adjust; 2835 bo->bo_tim_len = timlen; 2836 2837 /* update information element */ 2838 tie->tim_len = 3 + timlen; 2839 tie->tim_bitctl = timoff; 2840 len_changed = 1; 2841 } 2842 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff, 2843 bo->bo_tim_len); 2844 2845 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM); 2846 2847 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER, 2848 "%s: TIM updated, pending %u, off %u, len %u\n", 2849 __func__, vap->iv_ps_pending, timoff, timlen); 2850 } 2851 /* count down DTIM period */ 2852 if (tie->tim_count == 0) 2853 tie->tim_count = tie->tim_period - 1; 2854 else 2855 tie->tim_count--; 2856 /* update state for buffered multicast frames on DTIM */ 2857 if (mcast && tie->tim_count == 0) 2858 tie->tim_bitctl |= 1; 2859 else 2860 tie->tim_bitctl &= ~1; 2861 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) { 2862 struct ieee80211_csa_ie *csa = 2863 (struct ieee80211_csa_ie *) bo->bo_csa; 2864 2865 /* 2866 * Insert or update CSA ie. If we're just starting 2867 * to count down to the channel switch then we need 2868 * to insert the CSA ie. Otherwise we just need to 2869 * drop the count. The actual change happens above 2870 * when the vap's count reaches the target count. 2871 */ 2872 if (vap->iv_csa_count == 0) { 2873 memmove(&csa[1], csa, bo->bo_csa_trailer_len); 2874 bo->bo_erp += sizeof(*csa); 2875 bo->bo_wme += sizeof(*csa); 2876 bo->bo_appie += sizeof(*csa); 2877 bo->bo_csa_trailer_len += sizeof(*csa); 2878 bo->bo_tim_trailer_len += sizeof(*csa); 2879 m->m_len += sizeof(*csa); 2880 m->m_pkthdr.len += sizeof(*csa); 2881 2882 ieee80211_add_csa(bo->bo_csa, vap); 2883 } else 2884 csa->csa_count--; 2885 vap->iv_csa_count++; 2886 /* NB: don't clear IEEE80211_BEACON_CSA */ 2887 } 2888 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) { 2889 /* 2890 * ERP element needs updating. 2891 */ 2892 (void) ieee80211_add_erp(bo->bo_erp, ic); 2893 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP); 2894 } 2895 } 2896 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) { 2897 const struct ieee80211_appie *aie = vap->iv_appie_beacon; 2898 int aielen; 2899 uint8_t *frm; 2900 2901 aielen = 0; 2902 if (aie != NULL) 2903 aielen += aie->ie_len; 2904 if (aielen != bo->bo_appie_len) { 2905 /* copy up/down trailer */ 2906 int adjust = aielen - bo->bo_appie_len; 2907 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust, 2908 bo->bo_tim_trailer_len); 2909 bo->bo_tim_trailer += adjust; 2910 bo->bo_appie += adjust; 2911 bo->bo_appie_len = aielen; 2912 2913 len_changed = 1; 2914 } 2915 frm = bo->bo_appie; 2916 if (aie != NULL) 2917 frm = add_appie(frm, aie); 2918 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE); 2919 } 2920 IEEE80211_UNLOCK(ic); 2921 2922 return len_changed; 2923 } 2924