1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_inet.h" 33 #include "opt_inet6.h" 34 #include "opt_wlan.h" 35 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/kernel.h> 39 #include <sys/malloc.h> 40 #include <sys/mbuf.h> 41 #include <sys/endian.h> 42 43 #include <sys/socket.h> 44 45 #include <net/bpf.h> 46 #include <net/ethernet.h> 47 #include <net/if.h> 48 #include <net/if_var.h> 49 #include <net/if_llc.h> 50 #include <net/if_media.h> 51 #include <net/if_vlan_var.h> 52 53 #include <net80211/ieee80211_var.h> 54 #include <net80211/ieee80211_regdomain.h> 55 #ifdef IEEE80211_SUPPORT_SUPERG 56 #include <net80211/ieee80211_superg.h> 57 #endif 58 #ifdef IEEE80211_SUPPORT_TDMA 59 #include <net80211/ieee80211_tdma.h> 60 #endif 61 #include <net80211/ieee80211_wds.h> 62 #include <net80211/ieee80211_mesh.h> 63 #include <net80211/ieee80211_vht.h> 64 65 #if defined(INET) || defined(INET6) 66 #include <netinet/in.h> 67 #endif 68 69 #ifdef INET 70 #include <netinet/if_ether.h> 71 #include <netinet/in_systm.h> 72 #include <netinet/ip.h> 73 #endif 74 #ifdef INET6 75 #include <netinet/ip6.h> 76 #endif 77 78 #include <security/mac/mac_framework.h> 79 80 #define ETHER_HEADER_COPY(dst, src) \ 81 memcpy(dst, src, sizeof(struct ether_header)) 82 83 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *, 84 u_int hdrsize, u_int ciphdrsize, u_int mtu); 85 static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int); 86 87 #ifdef IEEE80211_DEBUG 88 /* 89 * Decide if an outbound management frame should be 90 * printed when debugging is enabled. This filters some 91 * of the less interesting frames that come frequently 92 * (e.g. beacons). 93 */ 94 static __inline int 95 doprint(struct ieee80211vap *vap, int subtype) 96 { 97 switch (subtype) { 98 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 99 return (vap->iv_opmode == IEEE80211_M_IBSS); 100 } 101 return 1; 102 } 103 #endif 104 105 /* 106 * Transmit a frame to the given destination on the given VAP. 107 * 108 * It's up to the caller to figure out the details of who this 109 * is going to and resolving the node. 110 * 111 * This routine takes care of queuing it for power save, 112 * A-MPDU state stuff, fast-frames state stuff, encapsulation 113 * if required, then passing it up to the driver layer. 114 * 115 * This routine (for now) consumes the mbuf and frees the node 116 * reference; it ideally will return a TX status which reflects 117 * whether the mbuf was consumed or not, so the caller can 118 * free the mbuf (if appropriate) and the node reference (again, 119 * if appropriate.) 120 */ 121 int 122 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m, 123 struct ieee80211_node *ni) 124 { 125 struct ieee80211com *ic = vap->iv_ic; 126 struct ifnet *ifp = vap->iv_ifp; 127 int mcast; 128 129 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 130 (m->m_flags & M_PWR_SAV) == 0) { 131 /* 132 * Station in power save mode; pass the frame 133 * to the 802.11 layer and continue. We'll get 134 * the frame back when the time is right. 135 * XXX lose WDS vap linkage? 136 */ 137 if (ieee80211_pwrsave(ni, m) != 0) 138 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 139 ieee80211_free_node(ni); 140 141 /* 142 * We queued it fine, so tell the upper layer 143 * that we consumed it. 144 */ 145 return (0); 146 } 147 /* calculate priority so drivers can find the tx queue */ 148 if (ieee80211_classify(ni, m)) { 149 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 150 ni->ni_macaddr, NULL, 151 "%s", "classification failure"); 152 vap->iv_stats.is_tx_classify++; 153 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 154 m_freem(m); 155 ieee80211_free_node(ni); 156 157 /* XXX better status? */ 158 return (0); 159 } 160 /* 161 * Stash the node pointer. Note that we do this after 162 * any call to ieee80211_dwds_mcast because that code 163 * uses any existing value for rcvif to identify the 164 * interface it (might have been) received on. 165 */ 166 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 167 m->m_pkthdr.rcvif = (void *)ni; 168 mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0; 169 170 BPF_MTAP(ifp, m); /* 802.3 tx */ 171 172 /* 173 * Check if A-MPDU tx aggregation is setup or if we 174 * should try to enable it. The sta must be associated 175 * with HT and A-MPDU enabled for use. When the policy 176 * routine decides we should enable A-MPDU we issue an 177 * ADDBA request and wait for a reply. The frame being 178 * encapsulated will go out w/o using A-MPDU, or possibly 179 * it might be collected by the driver and held/retransmit. 180 * The default ic_ampdu_enable routine handles staggering 181 * ADDBA requests in case the receiver NAK's us or we are 182 * otherwise unable to establish a BA stream. 183 * 184 * Don't treat group-addressed frames as candidates for aggregation; 185 * net80211 doesn't support 802.11aa-2012 and so group addressed 186 * frames will always have sequence numbers allocated from the NON_QOS 187 * TID. 188 */ 189 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) && 190 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)) { 191 if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) { 192 int tid = WME_AC_TO_TID(M_WME_GETAC(m)); 193 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; 194 195 ieee80211_txampdu_count_packet(tap); 196 if (IEEE80211_AMPDU_RUNNING(tap)) { 197 /* 198 * Operational, mark frame for aggregation. 199 * 200 * XXX do tx aggregation here 201 */ 202 m->m_flags |= M_AMPDU_MPDU; 203 } else if (!IEEE80211_AMPDU_REQUESTED(tap) && 204 ic->ic_ampdu_enable(ni, tap)) { 205 /* 206 * Not negotiated yet, request service. 207 */ 208 ieee80211_ampdu_request(ni, tap); 209 /* XXX hold frame for reply? */ 210 } 211 } 212 } 213 214 #ifdef IEEE80211_SUPPORT_SUPERG 215 /* 216 * Check for AMSDU/FF; queue for aggregation 217 * 218 * Note: we don't bother trying to do fast frames or 219 * A-MSDU encapsulation for 802.3 drivers. Now, we 220 * likely could do it for FF (because it's a magic 221 * atheros tunnel LLC type) but I don't think we're going 222 * to really need to. For A-MSDU we'd have to set the 223 * A-MSDU QoS bit in the wifi header, so we just plain 224 * can't do it. 225 * 226 * Strictly speaking, we could actually /do/ A-MSDU / FF 227 * with A-MPDU together which for certain circumstances 228 * is beneficial (eg A-MSDU of TCK ACKs.) However, 229 * I'll ignore that for now so existing behaviour is maintained. 230 * Later on it would be good to make "amsdu + ampdu" configurable. 231 */ 232 else if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 233 if ((! mcast) && ieee80211_amsdu_tx_ok(ni)) { 234 m = ieee80211_amsdu_check(ni, m); 235 if (m == NULL) { 236 /* NB: any ni ref held on stageq */ 237 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 238 "%s: amsdu_check queued frame\n", 239 __func__); 240 return (0); 241 } 242 } else if ((! mcast) && IEEE80211_ATH_CAP(vap, ni, 243 IEEE80211_NODE_FF)) { 244 m = ieee80211_ff_check(ni, m); 245 if (m == NULL) { 246 /* NB: any ni ref held on stageq */ 247 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 248 "%s: ff_check queued frame\n", 249 __func__); 250 return (0); 251 } 252 } 253 } 254 #endif /* IEEE80211_SUPPORT_SUPERG */ 255 256 /* 257 * Grab the TX lock - serialise the TX process from this 258 * point (where TX state is being checked/modified) 259 * through to driver queue. 260 */ 261 IEEE80211_TX_LOCK(ic); 262 263 /* 264 * XXX make the encap and transmit code a separate function 265 * so things like the FF (and later A-MSDU) path can just call 266 * it for flushed frames. 267 */ 268 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 269 /* 270 * Encapsulate the packet in prep for transmission. 271 */ 272 m = ieee80211_encap(vap, ni, m); 273 if (m == NULL) { 274 /* NB: stat+msg handled in ieee80211_encap */ 275 IEEE80211_TX_UNLOCK(ic); 276 ieee80211_free_node(ni); 277 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 278 return (ENOBUFS); 279 } 280 } 281 (void) ieee80211_parent_xmitpkt(ic, m); 282 283 /* 284 * Unlock at this point - no need to hold it across 285 * ieee80211_free_node() (ie, the comlock) 286 */ 287 IEEE80211_TX_UNLOCK(ic); 288 ic->ic_lastdata = ticks; 289 290 return (0); 291 } 292 293 294 295 /* 296 * Send the given mbuf through the given vap. 297 * 298 * This consumes the mbuf regardless of whether the transmit 299 * was successful or not. 300 * 301 * This does none of the initial checks that ieee80211_start() 302 * does (eg CAC timeout, interface wakeup) - the caller must 303 * do this first. 304 */ 305 static int 306 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m) 307 { 308 #define IS_DWDS(vap) \ 309 (vap->iv_opmode == IEEE80211_M_WDS && \ 310 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0) 311 struct ieee80211com *ic = vap->iv_ic; 312 struct ifnet *ifp = vap->iv_ifp; 313 struct ieee80211_node *ni; 314 struct ether_header *eh; 315 316 /* 317 * Cancel any background scan. 318 */ 319 if (ic->ic_flags & IEEE80211_F_SCAN) 320 ieee80211_cancel_anyscan(vap); 321 /* 322 * Find the node for the destination so we can do 323 * things like power save and fast frames aggregation. 324 * 325 * NB: past this point various code assumes the first 326 * mbuf has the 802.3 header present (and contiguous). 327 */ 328 ni = NULL; 329 if (m->m_len < sizeof(struct ether_header) && 330 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 331 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 332 "discard frame, %s\n", "m_pullup failed"); 333 vap->iv_stats.is_tx_nobuf++; /* XXX */ 334 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 335 return (ENOBUFS); 336 } 337 eh = mtod(m, struct ether_header *); 338 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 339 if (IS_DWDS(vap)) { 340 /* 341 * Only unicast frames from the above go out 342 * DWDS vaps; multicast frames are handled by 343 * dispatching the frame as it comes through 344 * the AP vap (see below). 345 */ 346 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS, 347 eh->ether_dhost, "mcast", "%s", "on DWDS"); 348 vap->iv_stats.is_dwds_mcast++; 349 m_freem(m); 350 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 351 /* XXX better status? */ 352 return (ENOBUFS); 353 } 354 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { 355 /* 356 * Spam DWDS vap's w/ multicast traffic. 357 */ 358 /* XXX only if dwds in use? */ 359 ieee80211_dwds_mcast(vap, m); 360 } 361 } 362 #ifdef IEEE80211_SUPPORT_MESH 363 if (vap->iv_opmode != IEEE80211_M_MBSS) { 364 #endif 365 ni = ieee80211_find_txnode(vap, eh->ether_dhost); 366 if (ni == NULL) { 367 /* NB: ieee80211_find_txnode does stat+msg */ 368 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 369 m_freem(m); 370 /* XXX better status? */ 371 return (ENOBUFS); 372 } 373 if (ni->ni_associd == 0 && 374 (ni->ni_flags & IEEE80211_NODE_ASSOCID)) { 375 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 376 eh->ether_dhost, NULL, 377 "sta not associated (type 0x%04x)", 378 htons(eh->ether_type)); 379 vap->iv_stats.is_tx_notassoc++; 380 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 381 m_freem(m); 382 ieee80211_free_node(ni); 383 /* XXX better status? */ 384 return (ENOBUFS); 385 } 386 #ifdef IEEE80211_SUPPORT_MESH 387 } else { 388 if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) { 389 /* 390 * Proxy station only if configured. 391 */ 392 if (!ieee80211_mesh_isproxyena(vap)) { 393 IEEE80211_DISCARD_MAC(vap, 394 IEEE80211_MSG_OUTPUT | 395 IEEE80211_MSG_MESH, 396 eh->ether_dhost, NULL, 397 "%s", "proxy not enabled"); 398 vap->iv_stats.is_mesh_notproxy++; 399 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 400 m_freem(m); 401 /* XXX better status? */ 402 return (ENOBUFS); 403 } 404 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 405 "forward frame from DS SA(%6D), DA(%6D)\n", 406 eh->ether_shost, ":", 407 eh->ether_dhost, ":"); 408 ieee80211_mesh_proxy_check(vap, eh->ether_shost); 409 } 410 ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m); 411 if (ni == NULL) { 412 /* 413 * NB: ieee80211_mesh_discover holds/disposes 414 * frame (e.g. queueing on path discovery). 415 */ 416 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 417 /* XXX better status? */ 418 return (ENOBUFS); 419 } 420 } 421 #endif 422 423 /* 424 * We've resolved the sender, so attempt to transmit it. 425 */ 426 427 if (vap->iv_state == IEEE80211_S_SLEEP) { 428 /* 429 * In power save; queue frame and then wakeup device 430 * for transmit. 431 */ 432 ic->ic_lastdata = ticks; 433 if (ieee80211_pwrsave(ni, m) != 0) 434 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 435 ieee80211_free_node(ni); 436 ieee80211_new_state(vap, IEEE80211_S_RUN, 0); 437 return (0); 438 } 439 440 if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0) 441 return (ENOBUFS); 442 return (0); 443 #undef IS_DWDS 444 } 445 446 /* 447 * Start method for vap's. All packets from the stack come 448 * through here. We handle common processing of the packets 449 * before dispatching them to the underlying device. 450 * 451 * if_transmit() requires that the mbuf be consumed by this call 452 * regardless of the return condition. 453 */ 454 int 455 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m) 456 { 457 struct ieee80211vap *vap = ifp->if_softc; 458 struct ieee80211com *ic = vap->iv_ic; 459 460 /* 461 * No data frames go out unless we're running. 462 * Note in particular this covers CAC and CSA 463 * states (though maybe we should check muting 464 * for CSA). 465 */ 466 if (vap->iv_state != IEEE80211_S_RUN && 467 vap->iv_state != IEEE80211_S_SLEEP) { 468 IEEE80211_LOCK(ic); 469 /* re-check under the com lock to avoid races */ 470 if (vap->iv_state != IEEE80211_S_RUN && 471 vap->iv_state != IEEE80211_S_SLEEP) { 472 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 473 "%s: ignore queue, in %s state\n", 474 __func__, ieee80211_state_name[vap->iv_state]); 475 vap->iv_stats.is_tx_badstate++; 476 IEEE80211_UNLOCK(ic); 477 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 478 m_freem(m); 479 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 480 return (ENETDOWN); 481 } 482 IEEE80211_UNLOCK(ic); 483 } 484 485 /* 486 * Sanitize mbuf flags for net80211 use. We cannot 487 * clear M_PWR_SAV or M_MORE_DATA because these may 488 * be set for frames that are re-submitted from the 489 * power save queue. 490 * 491 * NB: This must be done before ieee80211_classify as 492 * it marks EAPOL in frames with M_EAPOL. 493 */ 494 m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA); 495 496 /* 497 * Bump to the packet transmission path. 498 * The mbuf will be consumed here. 499 */ 500 return (ieee80211_start_pkt(vap, m)); 501 } 502 503 void 504 ieee80211_vap_qflush(struct ifnet *ifp) 505 { 506 507 /* Empty for now */ 508 } 509 510 /* 511 * 802.11 raw output routine. 512 * 513 * XXX TODO: this (and other send routines) should correctly 514 * XXX keep the pwr mgmt bit set if it decides to call into the 515 * XXX driver to send a frame whilst the state is SLEEP. 516 * 517 * Otherwise the peer may decide that we're awake and flood us 518 * with traffic we are still too asleep to receive! 519 */ 520 int 521 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni, 522 struct mbuf *m, const struct ieee80211_bpf_params *params) 523 { 524 struct ieee80211com *ic = vap->iv_ic; 525 int error; 526 527 /* 528 * Set node - the caller has taken a reference, so ensure 529 * that the mbuf has the same node value that 530 * it would if it were going via the normal path. 531 */ 532 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 533 m->m_pkthdr.rcvif = (void *)ni; 534 535 /* 536 * Attempt to add bpf transmit parameters. 537 * 538 * For now it's ok to fail; the raw_xmit api still takes 539 * them as an option. 540 * 541 * Later on when ic_raw_xmit() has params removed, 542 * they'll have to be added - so fail the transmit if 543 * they can't be. 544 */ 545 if (params) 546 (void) ieee80211_add_xmit_params(m, params); 547 548 error = ic->ic_raw_xmit(ni, m, params); 549 if (error) { 550 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1); 551 ieee80211_free_node(ni); 552 } 553 return (error); 554 } 555 556 static int 557 ieee80211_validate_frame(struct mbuf *m, 558 const struct ieee80211_bpf_params *params) 559 { 560 struct ieee80211_frame *wh; 561 int type; 562 563 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack)) 564 return (EINVAL); 565 566 wh = mtod(m, struct ieee80211_frame *); 567 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) != 568 IEEE80211_FC0_VERSION_0) 569 return (EINVAL); 570 571 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 572 if (type != IEEE80211_FC0_TYPE_DATA) { 573 if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != 574 IEEE80211_FC1_DIR_NODS) 575 return (EINVAL); 576 577 if (type != IEEE80211_FC0_TYPE_MGT && 578 (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) != 0) 579 return (EINVAL); 580 581 /* XXX skip other field checks? */ 582 } 583 584 if ((params && (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0) || 585 (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) != 0) { 586 int subtype; 587 588 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 589 590 /* 591 * See IEEE Std 802.11-2012, 592 * 8.2.4.1.9 'Protected Frame field' 593 */ 594 /* XXX no support for robust management frames yet. */ 595 if (!(type == IEEE80211_FC0_TYPE_DATA || 596 (type == IEEE80211_FC0_TYPE_MGT && 597 subtype == IEEE80211_FC0_SUBTYPE_AUTH))) 598 return (EINVAL); 599 600 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 601 } 602 603 if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh)) 604 return (EINVAL); 605 606 return (0); 607 } 608 609 static int 610 ieee80211_validate_rate(struct ieee80211_node *ni, uint8_t rate) 611 { 612 struct ieee80211com *ic = ni->ni_ic; 613 614 if (IEEE80211_IS_HT_RATE(rate)) { 615 if ((ic->ic_htcaps & IEEE80211_HTC_HT) == 0) 616 return (EINVAL); 617 618 rate = IEEE80211_RV(rate); 619 if (rate <= 31) { 620 if (rate > ic->ic_txstream * 8 - 1) 621 return (EINVAL); 622 623 return (0); 624 } 625 626 if (rate == 32) { 627 if ((ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0) 628 return (EINVAL); 629 630 return (0); 631 } 632 633 if ((ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) == 0) 634 return (EINVAL); 635 636 switch (ic->ic_txstream) { 637 case 0: 638 case 1: 639 return (EINVAL); 640 case 2: 641 if (rate > 38) 642 return (EINVAL); 643 644 return (0); 645 case 3: 646 if (rate > 52) 647 return (EINVAL); 648 649 return (0); 650 case 4: 651 default: 652 if (rate > 76) 653 return (EINVAL); 654 655 return (0); 656 } 657 } 658 659 if (!ieee80211_isratevalid(ic->ic_rt, rate)) 660 return (EINVAL); 661 662 return (0); 663 } 664 665 static int 666 ieee80211_sanitize_rates(struct ieee80211_node *ni, struct mbuf *m, 667 const struct ieee80211_bpf_params *params) 668 { 669 int error; 670 671 if (!params) 672 return (0); /* nothing to do */ 673 674 /* NB: most drivers assume that ibp_rate0 is set (!= 0). */ 675 if (params->ibp_rate0 != 0) { 676 error = ieee80211_validate_rate(ni, params->ibp_rate0); 677 if (error != 0) 678 return (error); 679 } else { 680 /* XXX pre-setup some default (e.g., mgmt / mcast) rate */ 681 /* XXX __DECONST? */ 682 (void) m; 683 } 684 685 if (params->ibp_rate1 != 0 && 686 (error = ieee80211_validate_rate(ni, params->ibp_rate1)) != 0) 687 return (error); 688 689 if (params->ibp_rate2 != 0 && 690 (error = ieee80211_validate_rate(ni, params->ibp_rate2)) != 0) 691 return (error); 692 693 if (params->ibp_rate3 != 0 && 694 (error = ieee80211_validate_rate(ni, params->ibp_rate3)) != 0) 695 return (error); 696 697 return (0); 698 } 699 700 /* 701 * 802.11 output routine. This is (currently) used only to 702 * connect bpf write calls to the 802.11 layer for injecting 703 * raw 802.11 frames. 704 */ 705 int 706 ieee80211_output(struct ifnet *ifp, struct mbuf *m, 707 const struct sockaddr *dst, struct route *ro) 708 { 709 #define senderr(e) do { error = (e); goto bad;} while (0) 710 const struct ieee80211_bpf_params *params = NULL; 711 struct ieee80211_node *ni = NULL; 712 struct ieee80211vap *vap; 713 struct ieee80211_frame *wh; 714 struct ieee80211com *ic = NULL; 715 int error; 716 int ret; 717 718 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 719 /* 720 * Short-circuit requests if the vap is marked OACTIVE 721 * as this can happen because a packet came down through 722 * ieee80211_start before the vap entered RUN state in 723 * which case it's ok to just drop the frame. This 724 * should not be necessary but callers of if_output don't 725 * check OACTIVE. 726 */ 727 senderr(ENETDOWN); 728 } 729 vap = ifp->if_softc; 730 ic = vap->iv_ic; 731 /* 732 * Hand to the 802.3 code if not tagged as 733 * a raw 802.11 frame. 734 */ 735 if (dst->sa_family != AF_IEEE80211) 736 return vap->iv_output(ifp, m, dst, ro); 737 #ifdef MAC 738 error = mac_ifnet_check_transmit(ifp, m); 739 if (error) 740 senderr(error); 741 #endif 742 if (ifp->if_flags & IFF_MONITOR) 743 senderr(ENETDOWN); 744 if (!IFNET_IS_UP_RUNNING(ifp)) 745 senderr(ENETDOWN); 746 if (vap->iv_state == IEEE80211_S_CAC) { 747 IEEE80211_DPRINTF(vap, 748 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 749 "block %s frame in CAC state\n", "raw data"); 750 vap->iv_stats.is_tx_badstate++; 751 senderr(EIO); /* XXX */ 752 } else if (vap->iv_state == IEEE80211_S_SCAN) 753 senderr(EIO); 754 /* XXX bypass bridge, pfil, carp, etc. */ 755 756 /* 757 * NB: DLT_IEEE802_11_RADIO identifies the parameters are 758 * present by setting the sa_len field of the sockaddr (yes, 759 * this is a hack). 760 * NB: we assume sa_data is suitably aligned to cast. 761 */ 762 if (dst->sa_len != 0) 763 params = (const struct ieee80211_bpf_params *)dst->sa_data; 764 765 error = ieee80211_validate_frame(m, params); 766 if (error != 0) 767 senderr(error); 768 769 wh = mtod(m, struct ieee80211_frame *); 770 771 /* locate destination node */ 772 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 773 case IEEE80211_FC1_DIR_NODS: 774 case IEEE80211_FC1_DIR_FROMDS: 775 ni = ieee80211_find_txnode(vap, wh->i_addr1); 776 break; 777 case IEEE80211_FC1_DIR_TODS: 778 case IEEE80211_FC1_DIR_DSTODS: 779 ni = ieee80211_find_txnode(vap, wh->i_addr3); 780 break; 781 default: 782 senderr(EDOOFUS); 783 } 784 if (ni == NULL) { 785 /* 786 * Permit packets w/ bpf params through regardless 787 * (see below about sa_len). 788 */ 789 if (dst->sa_len == 0) 790 senderr(EHOSTUNREACH); 791 ni = ieee80211_ref_node(vap->iv_bss); 792 } 793 794 /* 795 * Sanitize mbuf for net80211 flags leaked from above. 796 * 797 * NB: This must be done before ieee80211_classify as 798 * it marks EAPOL in frames with M_EAPOL. 799 */ 800 m->m_flags &= ~M_80211_TX; 801 m->m_flags |= M_ENCAP; /* mark encapsulated */ 802 803 if (IEEE80211_IS_DATA(wh)) { 804 /* calculate priority so drivers can find the tx queue */ 805 if (ieee80211_classify(ni, m)) 806 senderr(EIO); /* XXX */ 807 808 /* NB: ieee80211_encap does not include 802.11 header */ 809 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, 810 m->m_pkthdr.len - ieee80211_hdrsize(wh)); 811 } else 812 M_WME_SETAC(m, WME_AC_BE); 813 814 error = ieee80211_sanitize_rates(ni, m, params); 815 if (error != 0) 816 senderr(error); 817 818 IEEE80211_NODE_STAT(ni, tx_data); 819 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 820 IEEE80211_NODE_STAT(ni, tx_mcast); 821 m->m_flags |= M_MCAST; 822 } else 823 IEEE80211_NODE_STAT(ni, tx_ucast); 824 825 IEEE80211_TX_LOCK(ic); 826 ret = ieee80211_raw_output(vap, ni, m, params); 827 IEEE80211_TX_UNLOCK(ic); 828 return (ret); 829 bad: 830 if (m != NULL) 831 m_freem(m); 832 if (ni != NULL) 833 ieee80211_free_node(ni); 834 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 835 return error; 836 #undef senderr 837 } 838 839 /* 840 * Set the direction field and address fields of an outgoing 841 * frame. Note this should be called early on in constructing 842 * a frame as it sets i_fc[1]; other bits can then be or'd in. 843 */ 844 void 845 ieee80211_send_setup( 846 struct ieee80211_node *ni, 847 struct mbuf *m, 848 int type, int tid, 849 const uint8_t sa[IEEE80211_ADDR_LEN], 850 const uint8_t da[IEEE80211_ADDR_LEN], 851 const uint8_t bssid[IEEE80211_ADDR_LEN]) 852 { 853 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 854 struct ieee80211vap *vap = ni->ni_vap; 855 struct ieee80211_tx_ampdu *tap; 856 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 857 ieee80211_seq seqno; 858 859 IEEE80211_TX_LOCK_ASSERT(ni->ni_ic); 860 861 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 862 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 863 switch (vap->iv_opmode) { 864 case IEEE80211_M_STA: 865 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 866 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 867 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 868 IEEE80211_ADDR_COPY(wh->i_addr3, da); 869 break; 870 case IEEE80211_M_IBSS: 871 case IEEE80211_M_AHDEMO: 872 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 873 IEEE80211_ADDR_COPY(wh->i_addr1, da); 874 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 875 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 876 break; 877 case IEEE80211_M_HOSTAP: 878 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 879 IEEE80211_ADDR_COPY(wh->i_addr1, da); 880 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 881 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 882 break; 883 case IEEE80211_M_WDS: 884 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 885 IEEE80211_ADDR_COPY(wh->i_addr1, da); 886 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 887 IEEE80211_ADDR_COPY(wh->i_addr3, da); 888 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 889 break; 890 case IEEE80211_M_MBSS: 891 #ifdef IEEE80211_SUPPORT_MESH 892 if (IEEE80211_IS_MULTICAST(da)) { 893 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 894 /* XXX next hop */ 895 IEEE80211_ADDR_COPY(wh->i_addr1, da); 896 IEEE80211_ADDR_COPY(wh->i_addr2, 897 vap->iv_myaddr); 898 } else { 899 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 900 IEEE80211_ADDR_COPY(wh->i_addr1, da); 901 IEEE80211_ADDR_COPY(wh->i_addr2, 902 vap->iv_myaddr); 903 IEEE80211_ADDR_COPY(wh->i_addr3, da); 904 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 905 } 906 #endif 907 break; 908 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 909 break; 910 } 911 } else { 912 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 913 IEEE80211_ADDR_COPY(wh->i_addr1, da); 914 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 915 #ifdef IEEE80211_SUPPORT_MESH 916 if (vap->iv_opmode == IEEE80211_M_MBSS) 917 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 918 else 919 #endif 920 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 921 } 922 *(uint16_t *)&wh->i_dur[0] = 0; 923 924 /* 925 * XXX TODO: this is what the TX lock is for. 926 * Here we're incrementing sequence numbers, and they 927 * need to be in lock-step with what the driver is doing 928 * both in TX ordering and crypto encap (IV increment.) 929 * 930 * If the driver does seqno itself, then we can skip 931 * assigning sequence numbers here, and we can avoid 932 * requiring the TX lock. 933 */ 934 tap = &ni->ni_tx_ampdu[tid]; 935 if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) { 936 m->m_flags |= M_AMPDU_MPDU; 937 938 /* NB: zero out i_seq field (for s/w encryption etc) */ 939 *(uint16_t *)&wh->i_seq[0] = 0; 940 } else { 941 if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK, 942 type & IEEE80211_FC0_SUBTYPE_MASK)) 943 /* 944 * 802.11-2012 9.3.2.10 - QoS multicast frames 945 * come out of a different seqno space. 946 */ 947 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 948 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 949 } else { 950 seqno = ni->ni_txseqs[tid]++; 951 } 952 else 953 seqno = 0; 954 955 *(uint16_t *)&wh->i_seq[0] = 956 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 957 M_SEQNO_SET(m, seqno); 958 } 959 960 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 961 m->m_flags |= M_MCAST; 962 #undef WH4 963 } 964 965 /* 966 * Send a management frame to the specified node. The node pointer 967 * must have a reference as the pointer will be passed to the driver 968 * and potentially held for a long time. If the frame is successfully 969 * dispatched to the driver, then it is responsible for freeing the 970 * reference (and potentially free'ing up any associated storage); 971 * otherwise deal with reclaiming any reference (on error). 972 */ 973 int 974 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type, 975 struct ieee80211_bpf_params *params) 976 { 977 struct ieee80211vap *vap = ni->ni_vap; 978 struct ieee80211com *ic = ni->ni_ic; 979 struct ieee80211_frame *wh; 980 int ret; 981 982 KASSERT(ni != NULL, ("null node")); 983 984 if (vap->iv_state == IEEE80211_S_CAC) { 985 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 986 ni, "block %s frame in CAC state", 987 ieee80211_mgt_subtype_name(type)); 988 vap->iv_stats.is_tx_badstate++; 989 ieee80211_free_node(ni); 990 m_freem(m); 991 return EIO; /* XXX */ 992 } 993 994 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 995 if (m == NULL) { 996 ieee80211_free_node(ni); 997 return ENOMEM; 998 } 999 1000 IEEE80211_TX_LOCK(ic); 1001 1002 wh = mtod(m, struct ieee80211_frame *); 1003 ieee80211_send_setup(ni, m, 1004 IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID, 1005 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 1006 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { 1007 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1, 1008 "encrypting frame (%s)", __func__); 1009 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 1010 } 1011 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1012 1013 KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?")); 1014 M_WME_SETAC(m, params->ibp_pri); 1015 1016 #ifdef IEEE80211_DEBUG 1017 /* avoid printing too many frames */ 1018 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) || 1019 ieee80211_msg_dumppkts(vap)) { 1020 printf("[%s] send %s on channel %u\n", 1021 ether_sprintf(wh->i_addr1), 1022 ieee80211_mgt_subtype_name(type), 1023 ieee80211_chan2ieee(ic, ic->ic_curchan)); 1024 } 1025 #endif 1026 IEEE80211_NODE_STAT(ni, tx_mgmt); 1027 1028 ret = ieee80211_raw_output(vap, ni, m, params); 1029 IEEE80211_TX_UNLOCK(ic); 1030 return (ret); 1031 } 1032 1033 static void 1034 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg, 1035 int status) 1036 { 1037 struct ieee80211vap *vap = ni->ni_vap; 1038 1039 wakeup(vap); 1040 } 1041 1042 /* 1043 * Send a null data frame to the specified node. If the station 1044 * is setup for QoS then a QoS Null Data frame is constructed. 1045 * If this is a WDS station then a 4-address frame is constructed. 1046 * 1047 * NB: the caller is assumed to have setup a node reference 1048 * for use; this is necessary to deal with a race condition 1049 * when probing for inactive stations. Like ieee80211_mgmt_output 1050 * we must cleanup any node reference on error; however we 1051 * can safely just unref it as we know it will never be the 1052 * last reference to the node. 1053 */ 1054 int 1055 ieee80211_send_nulldata(struct ieee80211_node *ni) 1056 { 1057 struct ieee80211vap *vap = ni->ni_vap; 1058 struct ieee80211com *ic = ni->ni_ic; 1059 struct mbuf *m; 1060 struct ieee80211_frame *wh; 1061 int hdrlen; 1062 uint8_t *frm; 1063 int ret; 1064 1065 if (vap->iv_state == IEEE80211_S_CAC) { 1066 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 1067 ni, "block %s frame in CAC state", "null data"); 1068 ieee80211_unref_node(&ni); 1069 vap->iv_stats.is_tx_badstate++; 1070 return EIO; /* XXX */ 1071 } 1072 1073 if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) 1074 hdrlen = sizeof(struct ieee80211_qosframe); 1075 else 1076 hdrlen = sizeof(struct ieee80211_frame); 1077 /* NB: only WDS vap's get 4-address frames */ 1078 if (vap->iv_opmode == IEEE80211_M_WDS) 1079 hdrlen += IEEE80211_ADDR_LEN; 1080 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1081 hdrlen = roundup(hdrlen, sizeof(uint32_t)); 1082 1083 m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0); 1084 if (m == NULL) { 1085 /* XXX debug msg */ 1086 ieee80211_unref_node(&ni); 1087 vap->iv_stats.is_tx_nobuf++; 1088 return ENOMEM; 1089 } 1090 KASSERT(M_LEADINGSPACE(m) >= hdrlen, 1091 ("leading space %zd", M_LEADINGSPACE(m))); 1092 M_PREPEND(m, hdrlen, M_NOWAIT); 1093 if (m == NULL) { 1094 /* NB: cannot happen */ 1095 ieee80211_free_node(ni); 1096 return ENOMEM; 1097 } 1098 1099 IEEE80211_TX_LOCK(ic); 1100 1101 wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */ 1102 if (ni->ni_flags & IEEE80211_NODE_QOS) { 1103 const int tid = WME_AC_TO_TID(WME_AC_BE); 1104 uint8_t *qos; 1105 1106 ieee80211_send_setup(ni, m, 1107 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL, 1108 tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 1109 1110 if (vap->iv_opmode == IEEE80211_M_WDS) 1111 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1112 else 1113 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1114 qos[0] = tid & IEEE80211_QOS_TID; 1115 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy) 1116 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1117 qos[1] = 0; 1118 } else { 1119 ieee80211_send_setup(ni, m, 1120 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 1121 IEEE80211_NONQOS_TID, 1122 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 1123 } 1124 if (vap->iv_opmode != IEEE80211_M_WDS) { 1125 /* NB: power management bit is never sent by an AP */ 1126 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 1127 vap->iv_opmode != IEEE80211_M_HOSTAP) 1128 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 1129 } 1130 if ((ic->ic_flags & IEEE80211_F_SCAN) && 1131 (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) { 1132 ieee80211_add_callback(m, ieee80211_nulldata_transmitted, 1133 NULL); 1134 } 1135 m->m_len = m->m_pkthdr.len = hdrlen; 1136 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1137 1138 M_WME_SETAC(m, WME_AC_BE); 1139 1140 IEEE80211_NODE_STAT(ni, tx_data); 1141 1142 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni, 1143 "send %snull data frame on channel %u, pwr mgt %s", 1144 ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "", 1145 ieee80211_chan2ieee(ic, ic->ic_curchan), 1146 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 1147 1148 ret = ieee80211_raw_output(vap, ni, m, NULL); 1149 IEEE80211_TX_UNLOCK(ic); 1150 return (ret); 1151 } 1152 1153 /* 1154 * Assign priority to a frame based on any vlan tag assigned 1155 * to the station and/or any Diffserv setting in an IP header. 1156 * Finally, if an ACM policy is setup (in station mode) it's 1157 * applied. 1158 */ 1159 int 1160 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m) 1161 { 1162 const struct ether_header *eh = NULL; 1163 uint16_t ether_type; 1164 int v_wme_ac, d_wme_ac, ac; 1165 1166 if (__predict_false(m->m_flags & M_ENCAP)) { 1167 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 1168 struct llc *llc; 1169 int hdrlen, subtype; 1170 1171 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1172 if (subtype & IEEE80211_FC0_SUBTYPE_NODATA) { 1173 ac = WME_AC_BE; 1174 goto done; 1175 } 1176 1177 hdrlen = ieee80211_hdrsize(wh); 1178 if (m->m_pkthdr.len < hdrlen + sizeof(*llc)) 1179 return 1; 1180 1181 llc = (struct llc *)mtodo(m, hdrlen); 1182 if (llc->llc_dsap != LLC_SNAP_LSAP || 1183 llc->llc_ssap != LLC_SNAP_LSAP || 1184 llc->llc_control != LLC_UI || 1185 llc->llc_snap.org_code[0] != 0 || 1186 llc->llc_snap.org_code[1] != 0 || 1187 llc->llc_snap.org_code[2] != 0) 1188 return 1; 1189 1190 ether_type = llc->llc_snap.ether_type; 1191 } else { 1192 eh = mtod(m, struct ether_header *); 1193 ether_type = eh->ether_type; 1194 } 1195 1196 /* 1197 * Always promote PAE/EAPOL frames to high priority. 1198 */ 1199 if (ether_type == htons(ETHERTYPE_PAE)) { 1200 /* NB: mark so others don't need to check header */ 1201 m->m_flags |= M_EAPOL; 1202 ac = WME_AC_VO; 1203 goto done; 1204 } 1205 /* 1206 * Non-qos traffic goes to BE. 1207 */ 1208 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 1209 ac = WME_AC_BE; 1210 goto done; 1211 } 1212 1213 /* 1214 * If node has a vlan tag then all traffic 1215 * to it must have a matching tag. 1216 */ 1217 v_wme_ac = 0; 1218 if (ni->ni_vlan != 0) { 1219 if ((m->m_flags & M_VLANTAG) == 0) { 1220 IEEE80211_NODE_STAT(ni, tx_novlantag); 1221 return 1; 1222 } 1223 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 1224 EVL_VLANOFTAG(ni->ni_vlan)) { 1225 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 1226 return 1; 1227 } 1228 /* map vlan priority to AC */ 1229 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan)); 1230 } 1231 1232 /* XXX m_copydata may be too slow for fast path */ 1233 #ifdef INET 1234 if (eh && eh->ether_type == htons(ETHERTYPE_IP)) { 1235 uint8_t tos; 1236 /* 1237 * IP frame, map the DSCP bits from the TOS field. 1238 */ 1239 /* NB: ip header may not be in first mbuf */ 1240 m_copydata(m, sizeof(struct ether_header) + 1241 offsetof(struct ip, ip_tos), sizeof(tos), &tos); 1242 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1243 d_wme_ac = TID_TO_WME_AC(tos); 1244 } else { 1245 #endif /* INET */ 1246 #ifdef INET6 1247 if (eh && eh->ether_type == htons(ETHERTYPE_IPV6)) { 1248 uint32_t flow; 1249 uint8_t tos; 1250 /* 1251 * IPv6 frame, map the DSCP bits from the traffic class field. 1252 */ 1253 m_copydata(m, sizeof(struct ether_header) + 1254 offsetof(struct ip6_hdr, ip6_flow), sizeof(flow), 1255 (caddr_t) &flow); 1256 tos = (uint8_t)(ntohl(flow) >> 20); 1257 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1258 d_wme_ac = TID_TO_WME_AC(tos); 1259 } else { 1260 #endif /* INET6 */ 1261 d_wme_ac = WME_AC_BE; 1262 #ifdef INET6 1263 } 1264 #endif 1265 #ifdef INET 1266 } 1267 #endif 1268 /* 1269 * Use highest priority AC. 1270 */ 1271 if (v_wme_ac > d_wme_ac) 1272 ac = v_wme_ac; 1273 else 1274 ac = d_wme_ac; 1275 1276 /* 1277 * Apply ACM policy. 1278 */ 1279 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) { 1280 static const int acmap[4] = { 1281 WME_AC_BK, /* WME_AC_BE */ 1282 WME_AC_BK, /* WME_AC_BK */ 1283 WME_AC_BE, /* WME_AC_VI */ 1284 WME_AC_VI, /* WME_AC_VO */ 1285 }; 1286 struct ieee80211com *ic = ni->ni_ic; 1287 1288 while (ac != WME_AC_BK && 1289 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 1290 ac = acmap[ac]; 1291 } 1292 done: 1293 M_WME_SETAC(m, ac); 1294 return 0; 1295 } 1296 1297 /* 1298 * Insure there is sufficient contiguous space to encapsulate the 1299 * 802.11 data frame. If room isn't already there, arrange for it. 1300 * Drivers and cipher modules assume we have done the necessary work 1301 * and fail rudely if they don't find the space they need. 1302 */ 1303 struct mbuf * 1304 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize, 1305 struct ieee80211_key *key, struct mbuf *m) 1306 { 1307 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 1308 int needed_space = vap->iv_ic->ic_headroom + hdrsize; 1309 1310 if (key != NULL) { 1311 /* XXX belongs in crypto code? */ 1312 needed_space += key->wk_cipher->ic_header; 1313 /* XXX frags */ 1314 /* 1315 * When crypto is being done in the host we must insure 1316 * the data are writable for the cipher routines; clone 1317 * a writable mbuf chain. 1318 * XXX handle SWMIC specially 1319 */ 1320 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) { 1321 m = m_unshare(m, M_NOWAIT); 1322 if (m == NULL) { 1323 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1324 "%s: cannot get writable mbuf\n", __func__); 1325 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */ 1326 return NULL; 1327 } 1328 } 1329 } 1330 /* 1331 * We know we are called just before stripping an Ethernet 1332 * header and prepending an LLC header. This means we know 1333 * there will be 1334 * sizeof(struct ether_header) - sizeof(struct llc) 1335 * bytes recovered to which we need additional space for the 1336 * 802.11 header and any crypto header. 1337 */ 1338 /* XXX check trailing space and copy instead? */ 1339 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 1340 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); 1341 if (n == NULL) { 1342 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1343 "%s: cannot expand storage\n", __func__); 1344 vap->iv_stats.is_tx_nobuf++; 1345 m_freem(m); 1346 return NULL; 1347 } 1348 KASSERT(needed_space <= MHLEN, 1349 ("not enough room, need %u got %d\n", needed_space, MHLEN)); 1350 /* 1351 * Setup new mbuf to have leading space to prepend the 1352 * 802.11 header and any crypto header bits that are 1353 * required (the latter are added when the driver calls 1354 * back to ieee80211_crypto_encap to do crypto encapsulation). 1355 */ 1356 /* NB: must be first 'cuz it clobbers m_data */ 1357 m_move_pkthdr(n, m); 1358 n->m_len = 0; /* NB: m_gethdr does not set */ 1359 n->m_data += needed_space; 1360 /* 1361 * Pull up Ethernet header to create the expected layout. 1362 * We could use m_pullup but that's overkill (i.e. we don't 1363 * need the actual data) and it cannot fail so do it inline 1364 * for speed. 1365 */ 1366 /* NB: struct ether_header is known to be contiguous */ 1367 n->m_len += sizeof(struct ether_header); 1368 m->m_len -= sizeof(struct ether_header); 1369 m->m_data += sizeof(struct ether_header); 1370 /* 1371 * Replace the head of the chain. 1372 */ 1373 n->m_next = m; 1374 m = n; 1375 } 1376 return m; 1377 #undef TO_BE_RECLAIMED 1378 } 1379 1380 /* 1381 * Return the transmit key to use in sending a unicast frame. 1382 * If a unicast key is set we use that. When no unicast key is set 1383 * we fall back to the default transmit key. 1384 */ 1385 static __inline struct ieee80211_key * 1386 ieee80211_crypto_getucastkey(struct ieee80211vap *vap, 1387 struct ieee80211_node *ni) 1388 { 1389 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) { 1390 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1391 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1392 return NULL; 1393 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1394 } else { 1395 return &ni->ni_ucastkey; 1396 } 1397 } 1398 1399 /* 1400 * Return the transmit key to use in sending a multicast frame. 1401 * Multicast traffic always uses the group key which is installed as 1402 * the default tx key. 1403 */ 1404 static __inline struct ieee80211_key * 1405 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap, 1406 struct ieee80211_node *ni) 1407 { 1408 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1409 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1410 return NULL; 1411 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1412 } 1413 1414 /* 1415 * Encapsulate an outbound data frame. The mbuf chain is updated. 1416 * If an error is encountered NULL is returned. The caller is required 1417 * to provide a node reference and pullup the ethernet header in the 1418 * first mbuf. 1419 * 1420 * NB: Packet is assumed to be processed by ieee80211_classify which 1421 * marked EAPOL frames w/ M_EAPOL. 1422 */ 1423 struct mbuf * 1424 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni, 1425 struct mbuf *m) 1426 { 1427 #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh)) 1428 #define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc) 1429 struct ieee80211com *ic = ni->ni_ic; 1430 #ifdef IEEE80211_SUPPORT_MESH 1431 struct ieee80211_mesh_state *ms = vap->iv_mesh; 1432 struct ieee80211_meshcntl_ae10 *mc; 1433 struct ieee80211_mesh_route *rt = NULL; 1434 int dir = -1; 1435 #endif 1436 struct ether_header eh; 1437 struct ieee80211_frame *wh; 1438 struct ieee80211_key *key; 1439 struct llc *llc; 1440 int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast; 1441 ieee80211_seq seqno; 1442 int meshhdrsize, meshae; 1443 uint8_t *qos; 1444 int is_amsdu = 0; 1445 1446 IEEE80211_TX_LOCK_ASSERT(ic); 1447 1448 is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST)); 1449 1450 /* 1451 * Copy existing Ethernet header to a safe place. The 1452 * rest of the code assumes it's ok to strip it when 1453 * reorganizing state for the final encapsulation. 1454 */ 1455 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 1456 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t)); 1457 1458 /* 1459 * Insure space for additional headers. First identify 1460 * transmit key to use in calculating any buffer adjustments 1461 * required. This is also used below to do privacy 1462 * encapsulation work. Then calculate the 802.11 header 1463 * size and any padding required by the driver. 1464 * 1465 * Note key may be NULL if we fall back to the default 1466 * transmit key and that is not set. In that case the 1467 * buffer may not be expanded as needed by the cipher 1468 * routines, but they will/should discard it. 1469 */ 1470 if (vap->iv_flags & IEEE80211_F_PRIVACY) { 1471 if (vap->iv_opmode == IEEE80211_M_STA || 1472 !IEEE80211_IS_MULTICAST(eh.ether_dhost) || 1473 (vap->iv_opmode == IEEE80211_M_WDS && 1474 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) 1475 key = ieee80211_crypto_getucastkey(vap, ni); 1476 else 1477 key = ieee80211_crypto_getmcastkey(vap, ni); 1478 if (key == NULL && (m->m_flags & M_EAPOL) == 0) { 1479 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, 1480 eh.ether_dhost, 1481 "no default transmit key (%s) deftxkey %u", 1482 __func__, vap->iv_def_txkey); 1483 vap->iv_stats.is_tx_nodefkey++; 1484 goto bad; 1485 } 1486 } else 1487 key = NULL; 1488 /* 1489 * XXX Some ap's don't handle QoS-encapsulated EAPOL 1490 * frames so suppress use. This may be an issue if other 1491 * ap's require all data frames to be QoS-encapsulated 1492 * once negotiated in which case we'll need to make this 1493 * configurable. 1494 * 1495 * Don't send multicast QoS frames. 1496 * Technically multicast frames can be QoS if all stations in the 1497 * BSS are also QoS. 1498 * 1499 * NB: mesh data frames are QoS, including multicast frames. 1500 */ 1501 addqos = 1502 (((is_mcast == 0) && (ni->ni_flags & 1503 (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) || 1504 (vap->iv_opmode == IEEE80211_M_MBSS)) && 1505 (m->m_flags & M_EAPOL) == 0; 1506 1507 if (addqos) 1508 hdrsize = sizeof(struct ieee80211_qosframe); 1509 else 1510 hdrsize = sizeof(struct ieee80211_frame); 1511 #ifdef IEEE80211_SUPPORT_MESH 1512 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1513 /* 1514 * Mesh data frames are encapsulated according to the 1515 * rules of Section 11B.8.5 (p.139 of D3.0 spec). 1516 * o Group Addressed data (aka multicast) originating 1517 * at the local sta are sent w/ 3-address format and 1518 * address extension mode 00 1519 * o Individually Addressed data (aka unicast) originating 1520 * at the local sta are sent w/ 4-address format and 1521 * address extension mode 00 1522 * o Group Addressed data forwarded from a non-mesh sta are 1523 * sent w/ 3-address format and address extension mode 01 1524 * o Individually Address data from another sta are sent 1525 * w/ 4-address format and address extension mode 10 1526 */ 1527 is4addr = 0; /* NB: don't use, disable */ 1528 if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) { 1529 rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost); 1530 KASSERT(rt != NULL, ("route is NULL")); 1531 dir = IEEE80211_FC1_DIR_DSTODS; 1532 hdrsize += IEEE80211_ADDR_LEN; 1533 if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) { 1534 if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate, 1535 vap->iv_myaddr)) { 1536 IEEE80211_NOTE_MAC(vap, 1537 IEEE80211_MSG_MESH, 1538 eh.ether_dhost, 1539 "%s", "trying to send to ourself"); 1540 goto bad; 1541 } 1542 meshae = IEEE80211_MESH_AE_10; 1543 meshhdrsize = 1544 sizeof(struct ieee80211_meshcntl_ae10); 1545 } else { 1546 meshae = IEEE80211_MESH_AE_00; 1547 meshhdrsize = 1548 sizeof(struct ieee80211_meshcntl); 1549 } 1550 } else { 1551 dir = IEEE80211_FC1_DIR_FROMDS; 1552 if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) { 1553 /* proxy group */ 1554 meshae = IEEE80211_MESH_AE_01; 1555 meshhdrsize = 1556 sizeof(struct ieee80211_meshcntl_ae01); 1557 } else { 1558 /* group */ 1559 meshae = IEEE80211_MESH_AE_00; 1560 meshhdrsize = sizeof(struct ieee80211_meshcntl); 1561 } 1562 } 1563 } else { 1564 #endif 1565 /* 1566 * 4-address frames need to be generated for: 1567 * o packets sent through a WDS vap (IEEE80211_M_WDS) 1568 * o packets sent through a vap marked for relaying 1569 * (e.g. a station operating with dynamic WDS) 1570 */ 1571 is4addr = vap->iv_opmode == IEEE80211_M_WDS || 1572 ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) && 1573 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)); 1574 if (is4addr) 1575 hdrsize += IEEE80211_ADDR_LEN; 1576 meshhdrsize = meshae = 0; 1577 #ifdef IEEE80211_SUPPORT_MESH 1578 } 1579 #endif 1580 /* 1581 * Honor driver DATAPAD requirement. 1582 */ 1583 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1584 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1585 else 1586 hdrspace = hdrsize; 1587 1588 if (__predict_true((m->m_flags & M_FF) == 0)) { 1589 /* 1590 * Normal frame. 1591 */ 1592 m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m); 1593 if (m == NULL) { 1594 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 1595 goto bad; 1596 } 1597 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */ 1598 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 1599 llc = mtod(m, struct llc *); 1600 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 1601 llc->llc_control = LLC_UI; 1602 llc->llc_snap.org_code[0] = 0; 1603 llc->llc_snap.org_code[1] = 0; 1604 llc->llc_snap.org_code[2] = 0; 1605 llc->llc_snap.ether_type = eh.ether_type; 1606 } else { 1607 #ifdef IEEE80211_SUPPORT_SUPERG 1608 /* 1609 * Aggregated frame. Check if it's for AMSDU or FF. 1610 * 1611 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented 1612 * anywhere for some reason. But, since 11n requires 1613 * AMSDU RX, we can just assume "11n" == "AMSDU". 1614 */ 1615 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__); 1616 if (ieee80211_amsdu_tx_ok(ni)) { 1617 m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key); 1618 is_amsdu = 1; 1619 } else { 1620 m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key); 1621 } 1622 if (m == NULL) 1623 #endif 1624 goto bad; 1625 } 1626 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 1627 1628 M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT); 1629 if (m == NULL) { 1630 vap->iv_stats.is_tx_nobuf++; 1631 goto bad; 1632 } 1633 wh = mtod(m, struct ieee80211_frame *); 1634 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 1635 *(uint16_t *)wh->i_dur = 0; 1636 qos = NULL; /* NB: quiet compiler */ 1637 if (is4addr) { 1638 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 1639 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); 1640 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1641 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1642 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); 1643 } else switch (vap->iv_opmode) { 1644 case IEEE80211_M_STA: 1645 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 1646 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 1647 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1648 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1649 break; 1650 case IEEE80211_M_IBSS: 1651 case IEEE80211_M_AHDEMO: 1652 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1653 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1654 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1655 /* 1656 * NB: always use the bssid from iv_bss as the 1657 * neighbor's may be stale after an ibss merge 1658 */ 1659 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid); 1660 break; 1661 case IEEE80211_M_HOSTAP: 1662 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1663 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1664 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 1665 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 1666 break; 1667 #ifdef IEEE80211_SUPPORT_MESH 1668 case IEEE80211_M_MBSS: 1669 /* NB: offset by hdrspace to deal with DATAPAD */ 1670 mc = (struct ieee80211_meshcntl_ae10 *) 1671 (mtod(m, uint8_t *) + hdrspace); 1672 wh->i_fc[1] = dir; 1673 switch (meshae) { 1674 case IEEE80211_MESH_AE_00: /* no proxy */ 1675 mc->mc_flags = 0; 1676 if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */ 1677 IEEE80211_ADDR_COPY(wh->i_addr1, 1678 ni->ni_macaddr); 1679 IEEE80211_ADDR_COPY(wh->i_addr2, 1680 vap->iv_myaddr); 1681 IEEE80211_ADDR_COPY(wh->i_addr3, 1682 eh.ether_dhost); 1683 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, 1684 eh.ether_shost); 1685 qos =((struct ieee80211_qosframe_addr4 *) 1686 wh)->i_qos; 1687 } else if (dir == IEEE80211_FC1_DIR_FROMDS) { 1688 /* mcast */ 1689 IEEE80211_ADDR_COPY(wh->i_addr1, 1690 eh.ether_dhost); 1691 IEEE80211_ADDR_COPY(wh->i_addr2, 1692 vap->iv_myaddr); 1693 IEEE80211_ADDR_COPY(wh->i_addr3, 1694 eh.ether_shost); 1695 qos = ((struct ieee80211_qosframe *) 1696 wh)->i_qos; 1697 } 1698 break; 1699 case IEEE80211_MESH_AE_01: /* mcast, proxy */ 1700 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1701 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1702 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1703 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr); 1704 mc->mc_flags = 1; 1705 IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4, 1706 eh.ether_shost); 1707 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1708 break; 1709 case IEEE80211_MESH_AE_10: /* ucast, proxy */ 1710 KASSERT(rt != NULL, ("route is NULL")); 1711 IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop); 1712 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1713 IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate); 1714 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr); 1715 mc->mc_flags = IEEE80211_MESH_AE_10; 1716 IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost); 1717 IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost); 1718 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1719 break; 1720 default: 1721 KASSERT(0, ("meshae %d", meshae)); 1722 break; 1723 } 1724 mc->mc_ttl = ms->ms_ttl; 1725 ms->ms_seq++; 1726 le32enc(mc->mc_seq, ms->ms_seq); 1727 break; 1728 #endif 1729 case IEEE80211_M_WDS: /* NB: is4addr should always be true */ 1730 default: 1731 goto bad; 1732 } 1733 if (m->m_flags & M_MORE_DATA) 1734 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 1735 if (addqos) { 1736 int ac, tid; 1737 1738 if (is4addr) { 1739 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1740 /* NB: mesh case handled earlier */ 1741 } else if (vap->iv_opmode != IEEE80211_M_MBSS) 1742 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1743 ac = M_WME_GETAC(m); 1744 /* map from access class/queue to 11e header priorty value */ 1745 tid = WME_AC_TO_TID(ac); 1746 qos[0] = tid & IEEE80211_QOS_TID; 1747 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 1748 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1749 #ifdef IEEE80211_SUPPORT_MESH 1750 if (vap->iv_opmode == IEEE80211_M_MBSS) 1751 qos[1] = IEEE80211_QOS_MC; 1752 else 1753 #endif 1754 qos[1] = 0; 1755 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 1756 1757 /* 1758 * If this is an A-MSDU then ensure we set the 1759 * relevant field. 1760 */ 1761 if (is_amsdu) 1762 qos[0] |= IEEE80211_QOS_AMSDU; 1763 1764 /* 1765 * XXX TODO TX lock is needed for atomic updates of sequence 1766 * numbers. If the driver does it, then don't do it here; 1767 * and we don't need the TX lock held. 1768 */ 1769 if ((m->m_flags & M_AMPDU_MPDU) == 0) { 1770 /* 1771 * 802.11-2012 9.3.2.10 - 1772 * 1773 * If this is a multicast frame then we need 1774 * to ensure that the sequence number comes from 1775 * a separate seqno space and not the TID space. 1776 * 1777 * Otherwise multicast frames may actually cause 1778 * holes in the TX blockack window space and 1779 * upset various things. 1780 */ 1781 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1782 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1783 else 1784 seqno = ni->ni_txseqs[tid]++; 1785 1786 /* 1787 * NB: don't assign a sequence # to potential 1788 * aggregates; we expect this happens at the 1789 * point the frame comes off any aggregation q 1790 * as otherwise we may introduce holes in the 1791 * BA sequence space and/or make window accouting 1792 * more difficult. 1793 * 1794 * XXX may want to control this with a driver 1795 * capability; this may also change when we pull 1796 * aggregation up into net80211 1797 */ 1798 *(uint16_t *)wh->i_seq = 1799 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1800 M_SEQNO_SET(m, seqno); 1801 } else { 1802 /* NB: zero out i_seq field (for s/w encryption etc) */ 1803 *(uint16_t *)wh->i_seq = 0; 1804 } 1805 } else { 1806 /* 1807 * XXX TODO TX lock is needed for atomic updates of sequence 1808 * numbers. If the driver does it, then don't do it here; 1809 * and we don't need the TX lock held. 1810 */ 1811 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1812 *(uint16_t *)wh->i_seq = 1813 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1814 M_SEQNO_SET(m, seqno); 1815 1816 /* 1817 * XXX TODO: we shouldn't allow EAPOL, etc that would 1818 * be forced to be non-QoS traffic to be A-MSDU encapsulated. 1819 */ 1820 if (is_amsdu) 1821 printf("%s: XXX ERROR: is_amsdu set; not QoS!\n", 1822 __func__); 1823 } 1824 1825 /* 1826 * Check if xmit fragmentation is required. 1827 * 1828 * If the hardware does fragmentation offload, then don't bother 1829 * doing it here. 1830 */ 1831 if (IEEE80211_CONF_FRAG_OFFLOAD(ic)) 1832 txfrag = 0; 1833 else 1834 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold && 1835 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 1836 (vap->iv_caps & IEEE80211_C_TXFRAG) && 1837 (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0); 1838 1839 if (key != NULL) { 1840 /* 1841 * IEEE 802.1X: send EAPOL frames always in the clear. 1842 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 1843 */ 1844 if ((m->m_flags & M_EAPOL) == 0 || 1845 ((vap->iv_flags & IEEE80211_F_WPA) && 1846 (vap->iv_opmode == IEEE80211_M_STA ? 1847 !IEEE80211_KEY_UNDEFINED(key) : 1848 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) { 1849 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 1850 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) { 1851 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT, 1852 eh.ether_dhost, 1853 "%s", "enmic failed, discard frame"); 1854 vap->iv_stats.is_crypto_enmicfail++; 1855 goto bad; 1856 } 1857 } 1858 } 1859 if (txfrag && !ieee80211_fragment(vap, m, hdrsize, 1860 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold)) 1861 goto bad; 1862 1863 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1864 1865 IEEE80211_NODE_STAT(ni, tx_data); 1866 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1867 IEEE80211_NODE_STAT(ni, tx_mcast); 1868 m->m_flags |= M_MCAST; 1869 } else 1870 IEEE80211_NODE_STAT(ni, tx_ucast); 1871 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 1872 1873 return m; 1874 bad: 1875 if (m != NULL) 1876 m_freem(m); 1877 return NULL; 1878 #undef WH4 1879 #undef MC01 1880 } 1881 1882 void 1883 ieee80211_free_mbuf(struct mbuf *m) 1884 { 1885 struct mbuf *next; 1886 1887 if (m == NULL) 1888 return; 1889 1890 do { 1891 next = m->m_nextpkt; 1892 m->m_nextpkt = NULL; 1893 m_freem(m); 1894 } while ((m = next) != NULL); 1895 } 1896 1897 /* 1898 * Fragment the frame according to the specified mtu. 1899 * The size of the 802.11 header (w/o padding) is provided 1900 * so we don't need to recalculate it. We create a new 1901 * mbuf for each fragment and chain it through m_nextpkt; 1902 * we might be able to optimize this by reusing the original 1903 * packet's mbufs but that is significantly more complicated. 1904 */ 1905 static int 1906 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0, 1907 u_int hdrsize, u_int ciphdrsize, u_int mtu) 1908 { 1909 struct ieee80211com *ic = vap->iv_ic; 1910 struct ieee80211_frame *wh, *whf; 1911 struct mbuf *m, *prev; 1912 u_int totalhdrsize, fragno, fragsize, off, remainder, payload; 1913 u_int hdrspace; 1914 1915 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); 1916 KASSERT(m0->m_pkthdr.len > mtu, 1917 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); 1918 1919 /* 1920 * Honor driver DATAPAD requirement. 1921 */ 1922 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1923 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1924 else 1925 hdrspace = hdrsize; 1926 1927 wh = mtod(m0, struct ieee80211_frame *); 1928 /* NB: mark the first frag; it will be propagated below */ 1929 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; 1930 totalhdrsize = hdrspace + ciphdrsize; 1931 fragno = 1; 1932 off = mtu - ciphdrsize; 1933 remainder = m0->m_pkthdr.len - off; 1934 prev = m0; 1935 do { 1936 fragsize = MIN(totalhdrsize + remainder, mtu); 1937 m = m_get2(fragsize, M_NOWAIT, MT_DATA, M_PKTHDR); 1938 if (m == NULL) 1939 goto bad; 1940 /* leave room to prepend any cipher header */ 1941 m_align(m, fragsize - ciphdrsize); 1942 1943 /* 1944 * Form the header in the fragment. Note that since 1945 * we mark the first fragment with the MORE_FRAG bit 1946 * it automatically is propagated to each fragment; we 1947 * need only clear it on the last fragment (done below). 1948 * NB: frag 1+ dont have Mesh Control field present. 1949 */ 1950 whf = mtod(m, struct ieee80211_frame *); 1951 memcpy(whf, wh, hdrsize); 1952 #ifdef IEEE80211_SUPPORT_MESH 1953 if (vap->iv_opmode == IEEE80211_M_MBSS) 1954 ieee80211_getqos(wh)[1] &= ~IEEE80211_QOS_MC; 1955 #endif 1956 *(uint16_t *)&whf->i_seq[0] |= htole16( 1957 (fragno & IEEE80211_SEQ_FRAG_MASK) << 1958 IEEE80211_SEQ_FRAG_SHIFT); 1959 fragno++; 1960 1961 payload = fragsize - totalhdrsize; 1962 /* NB: destination is known to be contiguous */ 1963 1964 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace); 1965 m->m_len = hdrspace + payload; 1966 m->m_pkthdr.len = hdrspace + payload; 1967 m->m_flags |= M_FRAG; 1968 1969 /* chain up the fragment */ 1970 prev->m_nextpkt = m; 1971 prev = m; 1972 1973 /* deduct fragment just formed */ 1974 remainder -= payload; 1975 off += payload; 1976 } while (remainder != 0); 1977 1978 /* set the last fragment */ 1979 m->m_flags |= M_LASTFRAG; 1980 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; 1981 1982 /* strip first mbuf now that everything has been copied */ 1983 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); 1984 m0->m_flags |= M_FIRSTFRAG | M_FRAG; 1985 1986 vap->iv_stats.is_tx_fragframes++; 1987 vap->iv_stats.is_tx_frags += fragno-1; 1988 1989 return 1; 1990 bad: 1991 /* reclaim fragments but leave original frame for caller to free */ 1992 ieee80211_free_mbuf(m0->m_nextpkt); 1993 m0->m_nextpkt = NULL; 1994 return 0; 1995 } 1996 1997 /* 1998 * Add a supported rates element id to a frame. 1999 */ 2000 uint8_t * 2001 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs) 2002 { 2003 int nrates; 2004 2005 *frm++ = IEEE80211_ELEMID_RATES; 2006 nrates = rs->rs_nrates; 2007 if (nrates > IEEE80211_RATE_SIZE) 2008 nrates = IEEE80211_RATE_SIZE; 2009 *frm++ = nrates; 2010 memcpy(frm, rs->rs_rates, nrates); 2011 return frm + nrates; 2012 } 2013 2014 /* 2015 * Add an extended supported rates element id to a frame. 2016 */ 2017 uint8_t * 2018 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs) 2019 { 2020 /* 2021 * Add an extended supported rates element if operating in 11g mode. 2022 */ 2023 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 2024 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 2025 *frm++ = IEEE80211_ELEMID_XRATES; 2026 *frm++ = nrates; 2027 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 2028 frm += nrates; 2029 } 2030 return frm; 2031 } 2032 2033 /* 2034 * Add an ssid element to a frame. 2035 */ 2036 uint8_t * 2037 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) 2038 { 2039 *frm++ = IEEE80211_ELEMID_SSID; 2040 *frm++ = len; 2041 memcpy(frm, ssid, len); 2042 return frm + len; 2043 } 2044 2045 /* 2046 * Add an erp element to a frame. 2047 */ 2048 static uint8_t * 2049 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic) 2050 { 2051 uint8_t erp; 2052 2053 *frm++ = IEEE80211_ELEMID_ERP; 2054 *frm++ = 1; 2055 erp = 0; 2056 if (ic->ic_nonerpsta != 0) 2057 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 2058 if (ic->ic_flags & IEEE80211_F_USEPROT) 2059 erp |= IEEE80211_ERP_USE_PROTECTION; 2060 if (ic->ic_flags & IEEE80211_F_USEBARKER) 2061 erp |= IEEE80211_ERP_LONG_PREAMBLE; 2062 *frm++ = erp; 2063 return frm; 2064 } 2065 2066 /* 2067 * Add a CFParams element to a frame. 2068 */ 2069 static uint8_t * 2070 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic) 2071 { 2072 #define ADDSHORT(frm, v) do { \ 2073 le16enc(frm, v); \ 2074 frm += 2; \ 2075 } while (0) 2076 *frm++ = IEEE80211_ELEMID_CFPARMS; 2077 *frm++ = 6; 2078 *frm++ = 0; /* CFP count */ 2079 *frm++ = 2; /* CFP period */ 2080 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */ 2081 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */ 2082 return frm; 2083 #undef ADDSHORT 2084 } 2085 2086 static __inline uint8_t * 2087 add_appie(uint8_t *frm, const struct ieee80211_appie *ie) 2088 { 2089 memcpy(frm, ie->ie_data, ie->ie_len); 2090 return frm + ie->ie_len; 2091 } 2092 2093 static __inline uint8_t * 2094 add_ie(uint8_t *frm, const uint8_t *ie) 2095 { 2096 memcpy(frm, ie, 2 + ie[1]); 2097 return frm + 2 + ie[1]; 2098 } 2099 2100 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 2101 /* 2102 * Add a WME information element to a frame. 2103 */ 2104 uint8_t * 2105 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme) 2106 { 2107 static const struct ieee80211_wme_info info = { 2108 .wme_id = IEEE80211_ELEMID_VENDOR, 2109 .wme_len = sizeof(struct ieee80211_wme_info) - 2, 2110 .wme_oui = { WME_OUI_BYTES }, 2111 .wme_type = WME_OUI_TYPE, 2112 .wme_subtype = WME_INFO_OUI_SUBTYPE, 2113 .wme_version = WME_VERSION, 2114 .wme_info = 0, 2115 }; 2116 memcpy(frm, &info, sizeof(info)); 2117 return frm + sizeof(info); 2118 } 2119 2120 /* 2121 * Add a WME parameters element to a frame. 2122 */ 2123 static uint8_t * 2124 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme) 2125 { 2126 #define SM(_v, _f) (((_v) << _f##_S) & _f) 2127 #define ADDSHORT(frm, v) do { \ 2128 le16enc(frm, v); \ 2129 frm += 2; \ 2130 } while (0) 2131 /* NB: this works 'cuz a param has an info at the front */ 2132 static const struct ieee80211_wme_info param = { 2133 .wme_id = IEEE80211_ELEMID_VENDOR, 2134 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 2135 .wme_oui = { WME_OUI_BYTES }, 2136 .wme_type = WME_OUI_TYPE, 2137 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 2138 .wme_version = WME_VERSION, 2139 }; 2140 int i; 2141 2142 memcpy(frm, ¶m, sizeof(param)); 2143 frm += __offsetof(struct ieee80211_wme_info, wme_info); 2144 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ 2145 *frm++ = 0; /* reserved field */ 2146 for (i = 0; i < WME_NUM_AC; i++) { 2147 const struct wmeParams *ac = 2148 &wme->wme_bssChanParams.cap_wmeParams[i]; 2149 *frm++ = SM(i, WME_PARAM_ACI) 2150 | SM(ac->wmep_acm, WME_PARAM_ACM) 2151 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) 2152 ; 2153 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) 2154 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) 2155 ; 2156 ADDSHORT(frm, ac->wmep_txopLimit); 2157 } 2158 return frm; 2159 #undef SM 2160 #undef ADDSHORT 2161 } 2162 #undef WME_OUI_BYTES 2163 2164 /* 2165 * Add an 11h Power Constraint element to a frame. 2166 */ 2167 static uint8_t * 2168 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap) 2169 { 2170 const struct ieee80211_channel *c = vap->iv_bss->ni_chan; 2171 /* XXX per-vap tx power limit? */ 2172 int8_t limit = vap->iv_ic->ic_txpowlimit / 2; 2173 2174 frm[0] = IEEE80211_ELEMID_PWRCNSTR; 2175 frm[1] = 1; 2176 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0; 2177 return frm + 3; 2178 } 2179 2180 /* 2181 * Add an 11h Power Capability element to a frame. 2182 */ 2183 static uint8_t * 2184 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c) 2185 { 2186 frm[0] = IEEE80211_ELEMID_PWRCAP; 2187 frm[1] = 2; 2188 frm[2] = c->ic_minpower; 2189 frm[3] = c->ic_maxpower; 2190 return frm + 4; 2191 } 2192 2193 /* 2194 * Add an 11h Supported Channels element to a frame. 2195 */ 2196 static uint8_t * 2197 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic) 2198 { 2199 static const int ielen = 26; 2200 2201 frm[0] = IEEE80211_ELEMID_SUPPCHAN; 2202 frm[1] = ielen; 2203 /* XXX not correct */ 2204 memcpy(frm+2, ic->ic_chan_avail, ielen); 2205 return frm + 2 + ielen; 2206 } 2207 2208 /* 2209 * Add an 11h Quiet time element to a frame. 2210 */ 2211 static uint8_t * 2212 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap, int update) 2213 { 2214 struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm; 2215 2216 quiet->quiet_ie = IEEE80211_ELEMID_QUIET; 2217 quiet->len = 6; 2218 2219 /* 2220 * Only update every beacon interval - otherwise probe responses 2221 * would update the quiet count value. 2222 */ 2223 if (update) { 2224 if (vap->iv_quiet_count_value == 1) 2225 vap->iv_quiet_count_value = vap->iv_quiet_count; 2226 else if (vap->iv_quiet_count_value > 1) 2227 vap->iv_quiet_count_value--; 2228 } 2229 2230 if (vap->iv_quiet_count_value == 0) { 2231 /* value 0 is reserved as per 802.11h standerd */ 2232 vap->iv_quiet_count_value = 1; 2233 } 2234 2235 quiet->tbttcount = vap->iv_quiet_count_value; 2236 quiet->period = vap->iv_quiet_period; 2237 quiet->duration = htole16(vap->iv_quiet_duration); 2238 quiet->offset = htole16(vap->iv_quiet_offset); 2239 return frm + sizeof(*quiet); 2240 } 2241 2242 /* 2243 * Add an 11h Channel Switch Announcement element to a frame. 2244 * Note that we use the per-vap CSA count to adjust the global 2245 * counter so we can use this routine to form probe response 2246 * frames and get the current count. 2247 */ 2248 static uint8_t * 2249 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap) 2250 { 2251 struct ieee80211com *ic = vap->iv_ic; 2252 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm; 2253 2254 csa->csa_ie = IEEE80211_ELEMID_CSA; 2255 csa->csa_len = 3; 2256 csa->csa_mode = 1; /* XXX force quiet on channel */ 2257 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan); 2258 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count; 2259 return frm + sizeof(*csa); 2260 } 2261 2262 /* 2263 * Add an 11h country information element to a frame. 2264 */ 2265 static uint8_t * 2266 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic) 2267 { 2268 2269 if (ic->ic_countryie == NULL || 2270 ic->ic_countryie_chan != ic->ic_bsschan) { 2271 /* 2272 * Handle lazy construction of ie. This is done on 2273 * first use and after a channel change that requires 2274 * re-calculation. 2275 */ 2276 if (ic->ic_countryie != NULL) 2277 IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE); 2278 ic->ic_countryie = ieee80211_alloc_countryie(ic); 2279 if (ic->ic_countryie == NULL) 2280 return frm; 2281 ic->ic_countryie_chan = ic->ic_bsschan; 2282 } 2283 return add_appie(frm, ic->ic_countryie); 2284 } 2285 2286 uint8_t * 2287 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap) 2288 { 2289 if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) 2290 return (add_ie(frm, vap->iv_wpa_ie)); 2291 else { 2292 /* XXX else complain? */ 2293 return (frm); 2294 } 2295 } 2296 2297 uint8_t * 2298 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap) 2299 { 2300 if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL) 2301 return (add_ie(frm, vap->iv_rsn_ie)); 2302 else { 2303 /* XXX else complain? */ 2304 return (frm); 2305 } 2306 } 2307 2308 uint8_t * 2309 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni) 2310 { 2311 if (ni->ni_flags & IEEE80211_NODE_QOS) { 2312 *frm++ = IEEE80211_ELEMID_QOS; 2313 *frm++ = 1; 2314 *frm++ = 0; 2315 } 2316 2317 return (frm); 2318 } 2319 2320 /* 2321 * Send a probe request frame with the specified ssid 2322 * and any optional information element data. 2323 */ 2324 int 2325 ieee80211_send_probereq(struct ieee80211_node *ni, 2326 const uint8_t sa[IEEE80211_ADDR_LEN], 2327 const uint8_t da[IEEE80211_ADDR_LEN], 2328 const uint8_t bssid[IEEE80211_ADDR_LEN], 2329 const uint8_t *ssid, size_t ssidlen) 2330 { 2331 struct ieee80211vap *vap = ni->ni_vap; 2332 struct ieee80211com *ic = ni->ni_ic; 2333 struct ieee80211_node *bss; 2334 const struct ieee80211_txparam *tp; 2335 struct ieee80211_bpf_params params; 2336 const struct ieee80211_rateset *rs; 2337 struct mbuf *m; 2338 uint8_t *frm; 2339 int ret; 2340 2341 bss = ieee80211_ref_node(vap->iv_bss); 2342 2343 if (vap->iv_state == IEEE80211_S_CAC) { 2344 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni, 2345 "block %s frame in CAC state", "probe request"); 2346 vap->iv_stats.is_tx_badstate++; 2347 ieee80211_free_node(bss); 2348 return EIO; /* XXX */ 2349 } 2350 2351 /* 2352 * Hold a reference on the node so it doesn't go away until after 2353 * the xmit is complete all the way in the driver. On error we 2354 * will remove our reference. 2355 */ 2356 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2357 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2358 __func__, __LINE__, 2359 ni, ether_sprintf(ni->ni_macaddr), 2360 ieee80211_node_refcnt(ni)+1); 2361 ieee80211_ref_node(ni); 2362 2363 /* 2364 * prreq frame format 2365 * [tlv] ssid 2366 * [tlv] supported rates 2367 * [tlv] RSN (optional) 2368 * [tlv] extended supported rates 2369 * [tlv] HT cap (optional) 2370 * [tlv] VHT cap (optional) 2371 * [tlv] WPA (optional) 2372 * [tlv] user-specified ie's 2373 */ 2374 m = ieee80211_getmgtframe(&frm, 2375 ic->ic_headroom + sizeof(struct ieee80211_frame), 2376 2 + IEEE80211_NWID_LEN 2377 + 2 + IEEE80211_RATE_SIZE 2378 + sizeof(struct ieee80211_ie_htcap) 2379 + sizeof(struct ieee80211_ie_vhtcap) 2380 + sizeof(struct ieee80211_ie_htinfo) /* XXX not needed? */ 2381 + sizeof(struct ieee80211_ie_wpa) 2382 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2383 + sizeof(struct ieee80211_ie_wpa) 2384 + (vap->iv_appie_probereq != NULL ? 2385 vap->iv_appie_probereq->ie_len : 0) 2386 ); 2387 if (m == NULL) { 2388 vap->iv_stats.is_tx_nobuf++; 2389 ieee80211_free_node(ni); 2390 ieee80211_free_node(bss); 2391 return ENOMEM; 2392 } 2393 2394 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 2395 rs = ieee80211_get_suprates(ic, ic->ic_curchan); 2396 frm = ieee80211_add_rates(frm, rs); 2397 frm = ieee80211_add_rsn(frm, vap); 2398 frm = ieee80211_add_xrates(frm, rs); 2399 2400 /* 2401 * Note: we can't use bss; we don't have one yet. 2402 * 2403 * So, we should announce our capabilities 2404 * in this channel mode (2g/5g), not the 2405 * channel details itself. 2406 */ 2407 if ((vap->iv_opmode == IEEE80211_M_IBSS) && 2408 (vap->iv_flags_ht & IEEE80211_FHT_HT)) { 2409 struct ieee80211_channel *c; 2410 2411 /* 2412 * Get the HT channel that we should try upgrading to. 2413 * If we can do 40MHz then this'll upgrade it appropriately. 2414 */ 2415 c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan, 2416 vap->iv_flags_ht); 2417 frm = ieee80211_add_htcap_ch(frm, vap, c); 2418 } 2419 2420 /* 2421 * XXX TODO: need to figure out what/how to update the 2422 * VHT channel. 2423 */ 2424 #if 0 2425 (vap->iv_flags_vht & IEEE80211_FVHT_VHT) { 2426 struct ieee80211_channel *c; 2427 2428 c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan, 2429 vap->iv_flags_ht); 2430 c = ieee80211_vht_adjust_channel(ic, c, vap->iv_flags_vht); 2431 frm = ieee80211_add_vhtcap_ch(frm, vap, c); 2432 } 2433 #endif 2434 2435 frm = ieee80211_add_wpa(frm, vap); 2436 if (vap->iv_appie_probereq != NULL) 2437 frm = add_appie(frm, vap->iv_appie_probereq); 2438 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2439 2440 KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame), 2441 ("leading space %zd", M_LEADINGSPACE(m))); 2442 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2443 if (m == NULL) { 2444 /* NB: cannot happen */ 2445 ieee80211_free_node(ni); 2446 ieee80211_free_node(bss); 2447 return ENOMEM; 2448 } 2449 2450 IEEE80211_TX_LOCK(ic); 2451 ieee80211_send_setup(ni, m, 2452 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 2453 IEEE80211_NONQOS_TID, sa, da, bssid); 2454 /* XXX power management? */ 2455 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2456 2457 M_WME_SETAC(m, WME_AC_BE); 2458 2459 IEEE80211_NODE_STAT(ni, tx_probereq); 2460 IEEE80211_NODE_STAT(ni, tx_mgmt); 2461 2462 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2463 "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n", 2464 ieee80211_chan2ieee(ic, ic->ic_curchan), 2465 ether_sprintf(bssid), 2466 sa, ":", 2467 da, ":", 2468 ssidlen, ssid); 2469 2470 memset(¶ms, 0, sizeof(params)); 2471 params.ibp_pri = M_WME_GETAC(m); 2472 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 2473 params.ibp_rate0 = tp->mgmtrate; 2474 if (IEEE80211_IS_MULTICAST(da)) { 2475 params.ibp_flags |= IEEE80211_BPF_NOACK; 2476 params.ibp_try0 = 1; 2477 } else 2478 params.ibp_try0 = tp->maxretry; 2479 params.ibp_power = ni->ni_txpower; 2480 ret = ieee80211_raw_output(vap, ni, m, ¶ms); 2481 IEEE80211_TX_UNLOCK(ic); 2482 ieee80211_free_node(bss); 2483 return (ret); 2484 } 2485 2486 /* 2487 * Calculate capability information for mgt frames. 2488 */ 2489 uint16_t 2490 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan) 2491 { 2492 struct ieee80211com *ic = vap->iv_ic; 2493 uint16_t capinfo; 2494 2495 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode")); 2496 2497 if (vap->iv_opmode == IEEE80211_M_HOSTAP) 2498 capinfo = IEEE80211_CAPINFO_ESS; 2499 else if (vap->iv_opmode == IEEE80211_M_IBSS) 2500 capinfo = IEEE80211_CAPINFO_IBSS; 2501 else 2502 capinfo = 0; 2503 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2504 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2505 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2506 IEEE80211_IS_CHAN_2GHZ(chan)) 2507 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2508 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2509 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2510 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH)) 2511 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2512 return capinfo; 2513 } 2514 2515 /* 2516 * Send a management frame. The node is for the destination (or ic_bss 2517 * when in station mode). Nodes other than ic_bss have their reference 2518 * count bumped to reflect our use for an indeterminant time. 2519 */ 2520 int 2521 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg) 2522 { 2523 #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT) 2524 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2525 struct ieee80211vap *vap = ni->ni_vap; 2526 struct ieee80211com *ic = ni->ni_ic; 2527 struct ieee80211_node *bss = vap->iv_bss; 2528 struct ieee80211_bpf_params params; 2529 struct mbuf *m; 2530 uint8_t *frm; 2531 uint16_t capinfo; 2532 int has_challenge, is_shared_key, ret, status; 2533 2534 KASSERT(ni != NULL, ("null node")); 2535 2536 /* 2537 * Hold a reference on the node so it doesn't go away until after 2538 * the xmit is complete all the way in the driver. On error we 2539 * will remove our reference. 2540 */ 2541 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2542 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2543 __func__, __LINE__, 2544 ni, ether_sprintf(ni->ni_macaddr), 2545 ieee80211_node_refcnt(ni)+1); 2546 ieee80211_ref_node(ni); 2547 2548 memset(¶ms, 0, sizeof(params)); 2549 switch (type) { 2550 2551 case IEEE80211_FC0_SUBTYPE_AUTH: 2552 status = arg >> 16; 2553 arg &= 0xffff; 2554 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || 2555 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 2556 ni->ni_challenge != NULL); 2557 2558 /* 2559 * Deduce whether we're doing open authentication or 2560 * shared key authentication. We do the latter if 2561 * we're in the middle of a shared key authentication 2562 * handshake or if we're initiating an authentication 2563 * request and configured to use shared key. 2564 */ 2565 is_shared_key = has_challenge || 2566 arg >= IEEE80211_AUTH_SHARED_RESPONSE || 2567 (arg == IEEE80211_AUTH_SHARED_REQUEST && 2568 bss->ni_authmode == IEEE80211_AUTH_SHARED); 2569 2570 m = ieee80211_getmgtframe(&frm, 2571 ic->ic_headroom + sizeof(struct ieee80211_frame), 2572 3 * sizeof(uint16_t) 2573 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? 2574 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0) 2575 ); 2576 if (m == NULL) 2577 senderr(ENOMEM, is_tx_nobuf); 2578 2579 ((uint16_t *)frm)[0] = 2580 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) 2581 : htole16(IEEE80211_AUTH_ALG_OPEN); 2582 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */ 2583 ((uint16_t *)frm)[2] = htole16(status);/* status */ 2584 2585 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { 2586 ((uint16_t *)frm)[3] = 2587 htole16((IEEE80211_CHALLENGE_LEN << 8) | 2588 IEEE80211_ELEMID_CHALLENGE); 2589 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge, 2590 IEEE80211_CHALLENGE_LEN); 2591 m->m_pkthdr.len = m->m_len = 2592 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN; 2593 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 2594 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2595 "request encrypt frame (%s)", __func__); 2596 /* mark frame for encryption */ 2597 params.ibp_flags |= IEEE80211_BPF_CRYPTO; 2598 } 2599 } else 2600 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t); 2601 2602 /* XXX not right for shared key */ 2603 if (status == IEEE80211_STATUS_SUCCESS) 2604 IEEE80211_NODE_STAT(ni, tx_auth); 2605 else 2606 IEEE80211_NODE_STAT(ni, tx_auth_fail); 2607 2608 if (vap->iv_opmode == IEEE80211_M_STA) 2609 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2610 (void *) vap->iv_state); 2611 break; 2612 2613 case IEEE80211_FC0_SUBTYPE_DEAUTH: 2614 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2615 "send station deauthenticate (reason: %d (%s))", arg, 2616 ieee80211_reason_to_string(arg)); 2617 m = ieee80211_getmgtframe(&frm, 2618 ic->ic_headroom + sizeof(struct ieee80211_frame), 2619 sizeof(uint16_t)); 2620 if (m == NULL) 2621 senderr(ENOMEM, is_tx_nobuf); 2622 *(uint16_t *)frm = htole16(arg); /* reason */ 2623 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2624 2625 IEEE80211_NODE_STAT(ni, tx_deauth); 2626 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 2627 2628 ieee80211_node_unauthorize(ni); /* port closed */ 2629 break; 2630 2631 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 2632 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 2633 /* 2634 * asreq frame format 2635 * [2] capability information 2636 * [2] listen interval 2637 * [6*] current AP address (reassoc only) 2638 * [tlv] ssid 2639 * [tlv] supported rates 2640 * [tlv] extended supported rates 2641 * [4] power capability (optional) 2642 * [28] supported channels (optional) 2643 * [tlv] HT capabilities 2644 * [tlv] VHT capabilities 2645 * [tlv] WME (optional) 2646 * [tlv] Vendor OUI HT capabilities (optional) 2647 * [tlv] Atheros capabilities (if negotiated) 2648 * [tlv] AppIE's (optional) 2649 */ 2650 m = ieee80211_getmgtframe(&frm, 2651 ic->ic_headroom + sizeof(struct ieee80211_frame), 2652 sizeof(uint16_t) 2653 + sizeof(uint16_t) 2654 + IEEE80211_ADDR_LEN 2655 + 2 + IEEE80211_NWID_LEN 2656 + 2 + IEEE80211_RATE_SIZE 2657 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2658 + 4 2659 + 2 + 26 2660 + sizeof(struct ieee80211_wme_info) 2661 + sizeof(struct ieee80211_ie_htcap) 2662 + sizeof(struct ieee80211_ie_vhtcap) 2663 + 4 + sizeof(struct ieee80211_ie_htcap) 2664 #ifdef IEEE80211_SUPPORT_SUPERG 2665 + sizeof(struct ieee80211_ath_ie) 2666 #endif 2667 + (vap->iv_appie_wpa != NULL ? 2668 vap->iv_appie_wpa->ie_len : 0) 2669 + (vap->iv_appie_assocreq != NULL ? 2670 vap->iv_appie_assocreq->ie_len : 0) 2671 ); 2672 if (m == NULL) 2673 senderr(ENOMEM, is_tx_nobuf); 2674 2675 KASSERT(vap->iv_opmode == IEEE80211_M_STA, 2676 ("wrong mode %u", vap->iv_opmode)); 2677 capinfo = IEEE80211_CAPINFO_ESS; 2678 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2679 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2680 /* 2681 * NB: Some 11a AP's reject the request when 2682 * short preamble is set. 2683 */ 2684 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2685 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2686 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2687 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 2688 (ic->ic_caps & IEEE80211_C_SHSLOT)) 2689 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2690 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) && 2691 (vap->iv_flags & IEEE80211_F_DOTH)) 2692 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2693 *(uint16_t *)frm = htole16(capinfo); 2694 frm += 2; 2695 2696 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!")); 2697 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval, 2698 bss->ni_intval)); 2699 frm += 2; 2700 2701 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 2702 IEEE80211_ADDR_COPY(frm, bss->ni_bssid); 2703 frm += IEEE80211_ADDR_LEN; 2704 } 2705 2706 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 2707 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2708 frm = ieee80211_add_rsn(frm, vap); 2709 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2710 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) { 2711 frm = ieee80211_add_powercapability(frm, 2712 ic->ic_curchan); 2713 frm = ieee80211_add_supportedchannels(frm, ic); 2714 } 2715 2716 /* 2717 * Check the channel - we may be using an 11n NIC with an 2718 * 11n capable station, but we're configured to be an 11b 2719 * channel. 2720 */ 2721 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2722 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2723 ni->ni_ies.htcap_ie != NULL && 2724 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) { 2725 frm = ieee80211_add_htcap(frm, ni); 2726 } 2727 2728 if ((vap->iv_flags_vht & IEEE80211_FVHT_VHT) && 2729 IEEE80211_IS_CHAN_VHT(ni->ni_chan) && 2730 ni->ni_ies.vhtcap_ie != NULL && 2731 ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) { 2732 frm = ieee80211_add_vhtcap(frm, ni); 2733 } 2734 2735 frm = ieee80211_add_wpa(frm, vap); 2736 if ((ic->ic_flags & IEEE80211_F_WME) && 2737 ni->ni_ies.wme_ie != NULL) 2738 frm = ieee80211_add_wme_info(frm, &ic->ic_wme); 2739 2740 /* 2741 * Same deal - only send HT info if we're on an 11n 2742 * capable channel. 2743 */ 2744 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2745 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2746 ni->ni_ies.htcap_ie != NULL && 2747 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) { 2748 frm = ieee80211_add_htcap_vendor(frm, ni); 2749 } 2750 #ifdef IEEE80211_SUPPORT_SUPERG 2751 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) { 2752 frm = ieee80211_add_ath(frm, 2753 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2754 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2755 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2756 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2757 } 2758 #endif /* IEEE80211_SUPPORT_SUPERG */ 2759 if (vap->iv_appie_assocreq != NULL) 2760 frm = add_appie(frm, vap->iv_appie_assocreq); 2761 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2762 2763 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2764 (void *) vap->iv_state); 2765 break; 2766 2767 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 2768 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 2769 /* 2770 * asresp frame format 2771 * [2] capability information 2772 * [2] status 2773 * [2] association ID 2774 * [tlv] supported rates 2775 * [tlv] extended supported rates 2776 * [tlv] HT capabilities (standard, if STA enabled) 2777 * [tlv] HT information (standard, if STA enabled) 2778 * [tlv] VHT capabilities (standard, if STA enabled) 2779 * [tlv] VHT information (standard, if STA enabled) 2780 * [tlv] WME (if configured and STA enabled) 2781 * [tlv] HT capabilities (vendor OUI, if STA enabled) 2782 * [tlv] HT information (vendor OUI, if STA enabled) 2783 * [tlv] Atheros capabilities (if STA enabled) 2784 * [tlv] AppIE's (optional) 2785 */ 2786 m = ieee80211_getmgtframe(&frm, 2787 ic->ic_headroom + sizeof(struct ieee80211_frame), 2788 sizeof(uint16_t) 2789 + sizeof(uint16_t) 2790 + sizeof(uint16_t) 2791 + 2 + IEEE80211_RATE_SIZE 2792 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2793 + sizeof(struct ieee80211_ie_htcap) + 4 2794 + sizeof(struct ieee80211_ie_htinfo) + 4 2795 + sizeof(struct ieee80211_ie_vhtcap) 2796 + sizeof(struct ieee80211_ie_vht_operation) 2797 + sizeof(struct ieee80211_wme_param) 2798 #ifdef IEEE80211_SUPPORT_SUPERG 2799 + sizeof(struct ieee80211_ath_ie) 2800 #endif 2801 + (vap->iv_appie_assocresp != NULL ? 2802 vap->iv_appie_assocresp->ie_len : 0) 2803 ); 2804 if (m == NULL) 2805 senderr(ENOMEM, is_tx_nobuf); 2806 2807 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2808 *(uint16_t *)frm = htole16(capinfo); 2809 frm += 2; 2810 2811 *(uint16_t *)frm = htole16(arg); /* status */ 2812 frm += 2; 2813 2814 if (arg == IEEE80211_STATUS_SUCCESS) { 2815 *(uint16_t *)frm = htole16(ni->ni_associd); 2816 IEEE80211_NODE_STAT(ni, tx_assoc); 2817 } else 2818 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 2819 frm += 2; 2820 2821 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2822 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2823 /* NB: respond according to what we received */ 2824 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) { 2825 frm = ieee80211_add_htcap(frm, ni); 2826 frm = ieee80211_add_htinfo(frm, ni); 2827 } 2828 if ((vap->iv_flags & IEEE80211_F_WME) && 2829 ni->ni_ies.wme_ie != NULL) 2830 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2831 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) { 2832 frm = ieee80211_add_htcap_vendor(frm, ni); 2833 frm = ieee80211_add_htinfo_vendor(frm, ni); 2834 } 2835 if (ni->ni_flags & IEEE80211_NODE_VHT) { 2836 frm = ieee80211_add_vhtcap(frm, ni); 2837 frm = ieee80211_add_vhtinfo(frm, ni); 2838 } 2839 #ifdef IEEE80211_SUPPORT_SUPERG 2840 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) 2841 frm = ieee80211_add_ath(frm, 2842 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2843 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2844 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2845 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2846 #endif /* IEEE80211_SUPPORT_SUPERG */ 2847 if (vap->iv_appie_assocresp != NULL) 2848 frm = add_appie(frm, vap->iv_appie_assocresp); 2849 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2850 break; 2851 2852 case IEEE80211_FC0_SUBTYPE_DISASSOC: 2853 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, 2854 "send station disassociate (reason: %d (%s))", arg, 2855 ieee80211_reason_to_string(arg)); 2856 m = ieee80211_getmgtframe(&frm, 2857 ic->ic_headroom + sizeof(struct ieee80211_frame), 2858 sizeof(uint16_t)); 2859 if (m == NULL) 2860 senderr(ENOMEM, is_tx_nobuf); 2861 *(uint16_t *)frm = htole16(arg); /* reason */ 2862 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2863 2864 IEEE80211_NODE_STAT(ni, tx_disassoc); 2865 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 2866 break; 2867 2868 default: 2869 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni, 2870 "invalid mgmt frame type %u", type); 2871 senderr(EINVAL, is_tx_unknownmgt); 2872 /* NOTREACHED */ 2873 } 2874 2875 /* NB: force non-ProbeResp frames to the highest queue */ 2876 params.ibp_pri = WME_AC_VO; 2877 params.ibp_rate0 = bss->ni_txparms->mgmtrate; 2878 /* NB: we know all frames are unicast */ 2879 params.ibp_try0 = bss->ni_txparms->maxretry; 2880 params.ibp_power = bss->ni_txpower; 2881 return ieee80211_mgmt_output(ni, m, type, ¶ms); 2882 bad: 2883 ieee80211_free_node(ni); 2884 return ret; 2885 #undef senderr 2886 #undef HTFLAGS 2887 } 2888 2889 /* 2890 * Return an mbuf with a probe response frame in it. 2891 * Space is left to prepend and 802.11 header at the 2892 * front but it's left to the caller to fill in. 2893 */ 2894 struct mbuf * 2895 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy) 2896 { 2897 struct ieee80211vap *vap = bss->ni_vap; 2898 struct ieee80211com *ic = bss->ni_ic; 2899 const struct ieee80211_rateset *rs; 2900 struct mbuf *m; 2901 uint16_t capinfo; 2902 uint8_t *frm; 2903 2904 /* 2905 * probe response frame format 2906 * [8] time stamp 2907 * [2] beacon interval 2908 * [2] cabability information 2909 * [tlv] ssid 2910 * [tlv] supported rates 2911 * [tlv] parameter set (FH/DS) 2912 * [tlv] parameter set (IBSS) 2913 * [tlv] country (optional) 2914 * [3] power control (optional) 2915 * [5] channel switch announcement (CSA) (optional) 2916 * [tlv] extended rate phy (ERP) 2917 * [tlv] extended supported rates 2918 * [tlv] RSN (optional) 2919 * [tlv] HT capabilities 2920 * [tlv] HT information 2921 * [tlv] VHT capabilities 2922 * [tlv] VHT information 2923 * [tlv] WPA (optional) 2924 * [tlv] WME (optional) 2925 * [tlv] Vendor OUI HT capabilities (optional) 2926 * [tlv] Vendor OUI HT information (optional) 2927 * [tlv] Atheros capabilities 2928 * [tlv] AppIE's (optional) 2929 * [tlv] Mesh ID (MBSS) 2930 * [tlv] Mesh Conf (MBSS) 2931 */ 2932 m = ieee80211_getmgtframe(&frm, 2933 ic->ic_headroom + sizeof(struct ieee80211_frame), 2934 8 2935 + sizeof(uint16_t) 2936 + sizeof(uint16_t) 2937 + 2 + IEEE80211_NWID_LEN 2938 + 2 + IEEE80211_RATE_SIZE 2939 + 7 /* max(7,3) */ 2940 + IEEE80211_COUNTRY_MAX_SIZE 2941 + 3 2942 + sizeof(struct ieee80211_csa_ie) 2943 + sizeof(struct ieee80211_quiet_ie) 2944 + 3 2945 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2946 + sizeof(struct ieee80211_ie_wpa) 2947 + sizeof(struct ieee80211_ie_htcap) 2948 + sizeof(struct ieee80211_ie_htinfo) 2949 + sizeof(struct ieee80211_ie_wpa) 2950 + sizeof(struct ieee80211_wme_param) 2951 + 4 + sizeof(struct ieee80211_ie_htcap) 2952 + 4 + sizeof(struct ieee80211_ie_htinfo) 2953 + sizeof(struct ieee80211_ie_vhtcap) 2954 + sizeof(struct ieee80211_ie_vht_operation) 2955 #ifdef IEEE80211_SUPPORT_SUPERG 2956 + sizeof(struct ieee80211_ath_ie) 2957 #endif 2958 #ifdef IEEE80211_SUPPORT_MESH 2959 + 2 + IEEE80211_MESHID_LEN 2960 + sizeof(struct ieee80211_meshconf_ie) 2961 #endif 2962 + (vap->iv_appie_proberesp != NULL ? 2963 vap->iv_appie_proberesp->ie_len : 0) 2964 ); 2965 if (m == NULL) { 2966 vap->iv_stats.is_tx_nobuf++; 2967 return NULL; 2968 } 2969 2970 memset(frm, 0, 8); /* timestamp should be filled later */ 2971 frm += 8; 2972 *(uint16_t *)frm = htole16(bss->ni_intval); 2973 frm += 2; 2974 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2975 *(uint16_t *)frm = htole16(capinfo); 2976 frm += 2; 2977 2978 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen); 2979 rs = ieee80211_get_suprates(ic, bss->ni_chan); 2980 frm = ieee80211_add_rates(frm, rs); 2981 2982 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) { 2983 *frm++ = IEEE80211_ELEMID_FHPARMS; 2984 *frm++ = 5; 2985 *frm++ = bss->ni_fhdwell & 0x00ff; 2986 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff; 2987 *frm++ = IEEE80211_FH_CHANSET( 2988 ieee80211_chan2ieee(ic, bss->ni_chan)); 2989 *frm++ = IEEE80211_FH_CHANPAT( 2990 ieee80211_chan2ieee(ic, bss->ni_chan)); 2991 *frm++ = bss->ni_fhindex; 2992 } else { 2993 *frm++ = IEEE80211_ELEMID_DSPARMS; 2994 *frm++ = 1; 2995 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan); 2996 } 2997 2998 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2999 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 3000 *frm++ = 2; 3001 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 3002 } 3003 if ((vap->iv_flags & IEEE80211_F_DOTH) || 3004 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 3005 frm = ieee80211_add_countryie(frm, ic); 3006 if (vap->iv_flags & IEEE80211_F_DOTH) { 3007 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan)) 3008 frm = ieee80211_add_powerconstraint(frm, vap); 3009 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 3010 frm = ieee80211_add_csa(frm, vap); 3011 } 3012 if (vap->iv_flags & IEEE80211_F_DOTH) { 3013 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3014 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 3015 if (vap->iv_quiet) 3016 frm = ieee80211_add_quiet(frm, vap, 0); 3017 } 3018 } 3019 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan)) 3020 frm = ieee80211_add_erp(frm, ic); 3021 frm = ieee80211_add_xrates(frm, rs); 3022 frm = ieee80211_add_rsn(frm, vap); 3023 /* 3024 * NB: legacy 11b clients do not get certain ie's. 3025 * The caller identifies such clients by passing 3026 * a token in legacy to us. Could expand this to be 3027 * any legacy client for stuff like HT ie's. 3028 */ 3029 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 3030 legacy != IEEE80211_SEND_LEGACY_11B) { 3031 frm = ieee80211_add_htcap(frm, bss); 3032 frm = ieee80211_add_htinfo(frm, bss); 3033 } 3034 if (IEEE80211_IS_CHAN_VHT(bss->ni_chan) && 3035 legacy != IEEE80211_SEND_LEGACY_11B) { 3036 frm = ieee80211_add_vhtcap(frm, bss); 3037 frm = ieee80211_add_vhtinfo(frm, bss); 3038 } 3039 frm = ieee80211_add_wpa(frm, vap); 3040 if (vap->iv_flags & IEEE80211_F_WME) 3041 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 3042 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 3043 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) && 3044 legacy != IEEE80211_SEND_LEGACY_11B) { 3045 frm = ieee80211_add_htcap_vendor(frm, bss); 3046 frm = ieee80211_add_htinfo_vendor(frm, bss); 3047 } 3048 #ifdef IEEE80211_SUPPORT_SUPERG 3049 if ((vap->iv_flags & IEEE80211_F_ATHEROS) && 3050 legacy != IEEE80211_SEND_LEGACY_11B) 3051 frm = ieee80211_add_athcaps(frm, bss); 3052 #endif 3053 if (vap->iv_appie_proberesp != NULL) 3054 frm = add_appie(frm, vap->iv_appie_proberesp); 3055 #ifdef IEEE80211_SUPPORT_MESH 3056 if (vap->iv_opmode == IEEE80211_M_MBSS) { 3057 frm = ieee80211_add_meshid(frm, vap); 3058 frm = ieee80211_add_meshconf(frm, vap); 3059 } 3060 #endif 3061 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3062 3063 return m; 3064 } 3065 3066 /* 3067 * Send a probe response frame to the specified mac address. 3068 * This does not go through the normal mgt frame api so we 3069 * can specify the destination address and re-use the bss node 3070 * for the sta reference. 3071 */ 3072 int 3073 ieee80211_send_proberesp(struct ieee80211vap *vap, 3074 const uint8_t da[IEEE80211_ADDR_LEN], int legacy) 3075 { 3076 struct ieee80211_node *bss = vap->iv_bss; 3077 struct ieee80211com *ic = vap->iv_ic; 3078 struct mbuf *m; 3079 int ret; 3080 3081 if (vap->iv_state == IEEE80211_S_CAC) { 3082 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss, 3083 "block %s frame in CAC state", "probe response"); 3084 vap->iv_stats.is_tx_badstate++; 3085 return EIO; /* XXX */ 3086 } 3087 3088 /* 3089 * Hold a reference on the node so it doesn't go away until after 3090 * the xmit is complete all the way in the driver. On error we 3091 * will remove our reference. 3092 */ 3093 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 3094 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 3095 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr), 3096 ieee80211_node_refcnt(bss)+1); 3097 ieee80211_ref_node(bss); 3098 3099 m = ieee80211_alloc_proberesp(bss, legacy); 3100 if (m == NULL) { 3101 ieee80211_free_node(bss); 3102 return ENOMEM; 3103 } 3104 3105 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 3106 KASSERT(m != NULL, ("no room for header")); 3107 3108 IEEE80211_TX_LOCK(ic); 3109 ieee80211_send_setup(bss, m, 3110 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP, 3111 IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid); 3112 /* XXX power management? */ 3113 m->m_flags |= M_ENCAP; /* mark encapsulated */ 3114 3115 M_WME_SETAC(m, WME_AC_BE); 3116 3117 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 3118 "send probe resp on channel %u to %s%s\n", 3119 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da), 3120 legacy ? " <legacy>" : ""); 3121 IEEE80211_NODE_STAT(bss, tx_mgmt); 3122 3123 ret = ieee80211_raw_output(vap, bss, m, NULL); 3124 IEEE80211_TX_UNLOCK(ic); 3125 return (ret); 3126 } 3127 3128 /* 3129 * Allocate and build a RTS (Request To Send) control frame. 3130 */ 3131 struct mbuf * 3132 ieee80211_alloc_rts(struct ieee80211com *ic, 3133 const uint8_t ra[IEEE80211_ADDR_LEN], 3134 const uint8_t ta[IEEE80211_ADDR_LEN], 3135 uint16_t dur) 3136 { 3137 struct ieee80211_frame_rts *rts; 3138 struct mbuf *m; 3139 3140 /* XXX honor ic_headroom */ 3141 m = m_gethdr(M_NOWAIT, MT_DATA); 3142 if (m != NULL) { 3143 rts = mtod(m, struct ieee80211_frame_rts *); 3144 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 3145 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS; 3146 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3147 *(u_int16_t *)rts->i_dur = htole16(dur); 3148 IEEE80211_ADDR_COPY(rts->i_ra, ra); 3149 IEEE80211_ADDR_COPY(rts->i_ta, ta); 3150 3151 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); 3152 } 3153 return m; 3154 } 3155 3156 /* 3157 * Allocate and build a CTS (Clear To Send) control frame. 3158 */ 3159 struct mbuf * 3160 ieee80211_alloc_cts(struct ieee80211com *ic, 3161 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur) 3162 { 3163 struct ieee80211_frame_cts *cts; 3164 struct mbuf *m; 3165 3166 /* XXX honor ic_headroom */ 3167 m = m_gethdr(M_NOWAIT, MT_DATA); 3168 if (m != NULL) { 3169 cts = mtod(m, struct ieee80211_frame_cts *); 3170 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 3171 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS; 3172 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3173 *(u_int16_t *)cts->i_dur = htole16(dur); 3174 IEEE80211_ADDR_COPY(cts->i_ra, ra); 3175 3176 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts); 3177 } 3178 return m; 3179 } 3180 3181 /* 3182 * Wrapper for CTS/RTS frame allocation. 3183 */ 3184 struct mbuf * 3185 ieee80211_alloc_prot(struct ieee80211_node *ni, const struct mbuf *m, 3186 uint8_t rate, int prot) 3187 { 3188 struct ieee80211com *ic = ni->ni_ic; 3189 const struct ieee80211_frame *wh; 3190 struct mbuf *mprot; 3191 uint16_t dur; 3192 int pktlen, isshort; 3193 3194 KASSERT(prot == IEEE80211_PROT_RTSCTS || 3195 prot == IEEE80211_PROT_CTSONLY, 3196 ("wrong protection type %d", prot)); 3197 3198 wh = mtod(m, const struct ieee80211_frame *); 3199 pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; 3200 isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0; 3201 dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort) 3202 + ieee80211_ack_duration(ic->ic_rt, rate, isshort); 3203 3204 if (prot == IEEE80211_PROT_RTSCTS) { 3205 /* NB: CTS is the same size as an ACK */ 3206 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); 3207 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); 3208 } else 3209 mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur); 3210 3211 return (mprot); 3212 } 3213 3214 static void 3215 ieee80211_tx_mgt_timeout(void *arg) 3216 { 3217 struct ieee80211vap *vap = arg; 3218 3219 IEEE80211_LOCK(vap->iv_ic); 3220 if (vap->iv_state != IEEE80211_S_INIT && 3221 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) { 3222 /* 3223 * NB: it's safe to specify a timeout as the reason here; 3224 * it'll only be used in the right state. 3225 */ 3226 ieee80211_new_state_locked(vap, IEEE80211_S_SCAN, 3227 IEEE80211_SCAN_FAIL_TIMEOUT); 3228 } 3229 IEEE80211_UNLOCK(vap->iv_ic); 3230 } 3231 3232 /* 3233 * This is the callback set on net80211-sourced transmitted 3234 * authentication request frames. 3235 * 3236 * This does a couple of things: 3237 * 3238 * + If the frame transmitted was a success, it schedules a future 3239 * event which will transition the interface to scan. 3240 * If a state transition _then_ occurs before that event occurs, 3241 * said state transition will cancel this callout. 3242 * 3243 * + If the frame transmit was a failure, it immediately schedules 3244 * the transition back to scan. 3245 */ 3246 static void 3247 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status) 3248 { 3249 struct ieee80211vap *vap = ni->ni_vap; 3250 enum ieee80211_state ostate = (enum ieee80211_state) arg; 3251 3252 /* 3253 * Frame transmit completed; arrange timer callback. If 3254 * transmit was successfully we wait for response. Otherwise 3255 * we arrange an immediate callback instead of doing the 3256 * callback directly since we don't know what state the driver 3257 * is in (e.g. what locks it is holding). This work should 3258 * not be too time-critical and not happen too often so the 3259 * added overhead is acceptable. 3260 * 3261 * XXX what happens if !acked but response shows up before callback? 3262 */ 3263 if (vap->iv_state == ostate) { 3264 callout_reset(&vap->iv_mgtsend, 3265 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0, 3266 ieee80211_tx_mgt_timeout, vap); 3267 } 3268 } 3269 3270 static void 3271 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm, 3272 struct ieee80211_node *ni) 3273 { 3274 struct ieee80211vap *vap = ni->ni_vap; 3275 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 3276 struct ieee80211com *ic = ni->ni_ic; 3277 struct ieee80211_rateset *rs = &ni->ni_rates; 3278 uint16_t capinfo; 3279 3280 /* 3281 * beacon frame format 3282 * 3283 * TODO: update to 802.11-2012; a lot of stuff has changed; 3284 * vendor extensions should be at the end, etc. 3285 * 3286 * [8] time stamp 3287 * [2] beacon interval 3288 * [2] cabability information 3289 * [tlv] ssid 3290 * [tlv] supported rates 3291 * [3] parameter set (DS) 3292 * [8] CF parameter set (optional) 3293 * [tlv] parameter set (IBSS/TIM) 3294 * [tlv] country (optional) 3295 * [3] power control (optional) 3296 * [5] channel switch announcement (CSA) (optional) 3297 * XXX TODO: Quiet 3298 * XXX TODO: IBSS DFS 3299 * XXX TODO: TPC report 3300 * [tlv] extended rate phy (ERP) 3301 * [tlv] extended supported rates 3302 * [tlv] RSN parameters 3303 * XXX TODO: BSSLOAD 3304 * (XXX EDCA parameter set, QoS capability?) 3305 * XXX TODO: AP channel report 3306 * 3307 * [tlv] HT capabilities 3308 * [tlv] HT information 3309 * XXX TODO: 20/40 BSS coexistence 3310 * Mesh: 3311 * XXX TODO: Meshid 3312 * XXX TODO: mesh config 3313 * XXX TODO: mesh awake window 3314 * XXX TODO: beacon timing (mesh, etc) 3315 * XXX TODO: MCCAOP Advertisement Overview 3316 * XXX TODO: MCCAOP Advertisement 3317 * XXX TODO: Mesh channel switch parameters 3318 * VHT: 3319 * XXX TODO: VHT capabilities 3320 * XXX TODO: VHT operation 3321 * XXX TODO: VHT transmit power envelope 3322 * XXX TODO: channel switch wrapper element 3323 * XXX TODO: extended BSS load element 3324 * 3325 * XXX Vendor-specific OIDs (e.g. Atheros) 3326 * [tlv] WPA parameters 3327 * [tlv] WME parameters 3328 * [tlv] Vendor OUI HT capabilities (optional) 3329 * [tlv] Vendor OUI HT information (optional) 3330 * [tlv] Atheros capabilities (optional) 3331 * [tlv] TDMA parameters (optional) 3332 * [tlv] Mesh ID (MBSS) 3333 * [tlv] Mesh Conf (MBSS) 3334 * [tlv] application data (optional) 3335 */ 3336 3337 memset(bo, 0, sizeof(*bo)); 3338 3339 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 3340 frm += 8; 3341 *(uint16_t *)frm = htole16(ni->ni_intval); 3342 frm += 2; 3343 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3344 bo->bo_caps = (uint16_t *)frm; 3345 *(uint16_t *)frm = htole16(capinfo); 3346 frm += 2; 3347 *frm++ = IEEE80211_ELEMID_SSID; 3348 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) { 3349 *frm++ = ni->ni_esslen; 3350 memcpy(frm, ni->ni_essid, ni->ni_esslen); 3351 frm += ni->ni_esslen; 3352 } else 3353 *frm++ = 0; 3354 frm = ieee80211_add_rates(frm, rs); 3355 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) { 3356 *frm++ = IEEE80211_ELEMID_DSPARMS; 3357 *frm++ = 1; 3358 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 3359 } 3360 if (ic->ic_flags & IEEE80211_F_PCF) { 3361 bo->bo_cfp = frm; 3362 frm = ieee80211_add_cfparms(frm, ic); 3363 } 3364 bo->bo_tim = frm; 3365 if (vap->iv_opmode == IEEE80211_M_IBSS) { 3366 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 3367 *frm++ = 2; 3368 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 3369 bo->bo_tim_len = 0; 3370 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3371 vap->iv_opmode == IEEE80211_M_MBSS) { 3372 /* TIM IE is the same for Mesh and Hostap */ 3373 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; 3374 3375 tie->tim_ie = IEEE80211_ELEMID_TIM; 3376 tie->tim_len = 4; /* length */ 3377 tie->tim_count = 0; /* DTIM count */ 3378 tie->tim_period = vap->iv_dtim_period; /* DTIM period */ 3379 tie->tim_bitctl = 0; /* bitmap control */ 3380 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 3381 frm += sizeof(struct ieee80211_tim_ie); 3382 bo->bo_tim_len = 1; 3383 } 3384 bo->bo_tim_trailer = frm; 3385 if ((vap->iv_flags & IEEE80211_F_DOTH) || 3386 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 3387 frm = ieee80211_add_countryie(frm, ic); 3388 if (vap->iv_flags & IEEE80211_F_DOTH) { 3389 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) 3390 frm = ieee80211_add_powerconstraint(frm, vap); 3391 bo->bo_csa = frm; 3392 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 3393 frm = ieee80211_add_csa(frm, vap); 3394 } else 3395 bo->bo_csa = frm; 3396 3397 bo->bo_quiet = NULL; 3398 if (vap->iv_flags & IEEE80211_F_DOTH) { 3399 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3400 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && 3401 (vap->iv_quiet == 1)) { 3402 /* 3403 * We only insert the quiet IE offset if 3404 * the quiet IE is enabled. Otherwise don't 3405 * put it here or we'll just overwrite 3406 * some other beacon contents. 3407 */ 3408 if (vap->iv_quiet) { 3409 bo->bo_quiet = frm; 3410 frm = ieee80211_add_quiet(frm,vap, 0); 3411 } 3412 } 3413 } 3414 3415 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) { 3416 bo->bo_erp = frm; 3417 frm = ieee80211_add_erp(frm, ic); 3418 } 3419 frm = ieee80211_add_xrates(frm, rs); 3420 frm = ieee80211_add_rsn(frm, vap); 3421 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 3422 frm = ieee80211_add_htcap(frm, ni); 3423 bo->bo_htinfo = frm; 3424 frm = ieee80211_add_htinfo(frm, ni); 3425 } 3426 3427 if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) { 3428 frm = ieee80211_add_vhtcap(frm, ni); 3429 bo->bo_vhtinfo = frm; 3430 frm = ieee80211_add_vhtinfo(frm, ni); 3431 /* Transmit power envelope */ 3432 /* Channel switch wrapper element */ 3433 /* Extended bss load element */ 3434 } 3435 3436 frm = ieee80211_add_wpa(frm, vap); 3437 if (vap->iv_flags & IEEE80211_F_WME) { 3438 bo->bo_wme = frm; 3439 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 3440 } 3441 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && 3442 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) { 3443 frm = ieee80211_add_htcap_vendor(frm, ni); 3444 frm = ieee80211_add_htinfo_vendor(frm, ni); 3445 } 3446 3447 #ifdef IEEE80211_SUPPORT_SUPERG 3448 if (vap->iv_flags & IEEE80211_F_ATHEROS) { 3449 bo->bo_ath = frm; 3450 frm = ieee80211_add_athcaps(frm, ni); 3451 } 3452 #endif 3453 #ifdef IEEE80211_SUPPORT_TDMA 3454 if (vap->iv_caps & IEEE80211_C_TDMA) { 3455 bo->bo_tdma = frm; 3456 frm = ieee80211_add_tdma(frm, vap); 3457 } 3458 #endif 3459 if (vap->iv_appie_beacon != NULL) { 3460 bo->bo_appie = frm; 3461 bo->bo_appie_len = vap->iv_appie_beacon->ie_len; 3462 frm = add_appie(frm, vap->iv_appie_beacon); 3463 } 3464 3465 /* XXX TODO: move meshid/meshconf up to before vendor extensions? */ 3466 #ifdef IEEE80211_SUPPORT_MESH 3467 if (vap->iv_opmode == IEEE80211_M_MBSS) { 3468 frm = ieee80211_add_meshid(frm, vap); 3469 bo->bo_meshconf = frm; 3470 frm = ieee80211_add_meshconf(frm, vap); 3471 } 3472 #endif 3473 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer; 3474 bo->bo_csa_trailer_len = frm - bo->bo_csa; 3475 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3476 } 3477 3478 /* 3479 * Allocate a beacon frame and fillin the appropriate bits. 3480 */ 3481 struct mbuf * 3482 ieee80211_beacon_alloc(struct ieee80211_node *ni) 3483 { 3484 struct ieee80211vap *vap = ni->ni_vap; 3485 struct ieee80211com *ic = ni->ni_ic; 3486 struct ifnet *ifp = vap->iv_ifp; 3487 struct ieee80211_frame *wh; 3488 struct mbuf *m; 3489 int pktlen; 3490 uint8_t *frm; 3491 3492 /* 3493 * Update the "We're putting the quiet IE in the beacon" state. 3494 */ 3495 if (vap->iv_quiet == 1) 3496 vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE; 3497 else if (vap->iv_quiet == 0) 3498 vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE; 3499 3500 /* 3501 * beacon frame format 3502 * 3503 * Note: This needs updating for 802.11-2012. 3504 * 3505 * [8] time stamp 3506 * [2] beacon interval 3507 * [2] cabability information 3508 * [tlv] ssid 3509 * [tlv] supported rates 3510 * [3] parameter set (DS) 3511 * [8] CF parameter set (optional) 3512 * [tlv] parameter set (IBSS/TIM) 3513 * [tlv] country (optional) 3514 * [3] power control (optional) 3515 * [5] channel switch announcement (CSA) (optional) 3516 * [tlv] extended rate phy (ERP) 3517 * [tlv] extended supported rates 3518 * [tlv] RSN parameters 3519 * [tlv] HT capabilities 3520 * [tlv] HT information 3521 * [tlv] VHT capabilities 3522 * [tlv] VHT operation 3523 * [tlv] Vendor OUI HT capabilities (optional) 3524 * [tlv] Vendor OUI HT information (optional) 3525 * XXX Vendor-specific OIDs (e.g. Atheros) 3526 * [tlv] WPA parameters 3527 * [tlv] WME parameters 3528 * [tlv] TDMA parameters (optional) 3529 * [tlv] Mesh ID (MBSS) 3530 * [tlv] Mesh Conf (MBSS) 3531 * [tlv] application data (optional) 3532 * NB: we allocate the max space required for the TIM bitmap. 3533 * XXX how big is this? 3534 */ 3535 pktlen = 8 /* time stamp */ 3536 + sizeof(uint16_t) /* beacon interval */ 3537 + sizeof(uint16_t) /* capabilities */ 3538 + 2 + ni->ni_esslen /* ssid */ 3539 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 3540 + 2 + 1 /* DS parameters */ 3541 + 2 + 6 /* CF parameters */ 3542 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */ 3543 + IEEE80211_COUNTRY_MAX_SIZE /* country */ 3544 + 2 + 1 /* power control */ 3545 + sizeof(struct ieee80211_csa_ie) /* CSA */ 3546 + sizeof(struct ieee80211_quiet_ie) /* Quiet */ 3547 + 2 + 1 /* ERP */ 3548 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 3549 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 3550 2*sizeof(struct ieee80211_ie_wpa) : 0) 3551 /* XXX conditional? */ 3552 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */ 3553 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */ 3554 + sizeof(struct ieee80211_ie_vhtcap)/* VHT caps */ 3555 + sizeof(struct ieee80211_ie_vht_operation)/* VHT info */ 3556 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */ 3557 sizeof(struct ieee80211_wme_param) : 0) 3558 #ifdef IEEE80211_SUPPORT_SUPERG 3559 + sizeof(struct ieee80211_ath_ie) /* ATH */ 3560 #endif 3561 #ifdef IEEE80211_SUPPORT_TDMA 3562 + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */ 3563 sizeof(struct ieee80211_tdma_param) : 0) 3564 #endif 3565 #ifdef IEEE80211_SUPPORT_MESH 3566 + 2 + ni->ni_meshidlen 3567 + sizeof(struct ieee80211_meshconf_ie) 3568 #endif 3569 + IEEE80211_MAX_APPIE 3570 ; 3571 m = ieee80211_getmgtframe(&frm, 3572 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen); 3573 if (m == NULL) { 3574 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, 3575 "%s: cannot get buf; size %u\n", __func__, pktlen); 3576 vap->iv_stats.is_tx_nobuf++; 3577 return NULL; 3578 } 3579 ieee80211_beacon_construct(m, frm, ni); 3580 3581 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 3582 KASSERT(m != NULL, ("no space for 802.11 header?")); 3583 wh = mtod(m, struct ieee80211_frame *); 3584 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 3585 IEEE80211_FC0_SUBTYPE_BEACON; 3586 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3587 *(uint16_t *)wh->i_dur = 0; 3588 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 3589 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 3590 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 3591 *(uint16_t *)wh->i_seq = 0; 3592 3593 return m; 3594 } 3595 3596 /* 3597 * Update the dynamic parts of a beacon frame based on the current state. 3598 */ 3599 int 3600 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast) 3601 { 3602 struct ieee80211vap *vap = ni->ni_vap; 3603 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 3604 struct ieee80211com *ic = ni->ni_ic; 3605 int len_changed = 0; 3606 uint16_t capinfo; 3607 struct ieee80211_frame *wh; 3608 ieee80211_seq seqno; 3609 3610 IEEE80211_LOCK(ic); 3611 /* 3612 * Handle 11h channel change when we've reached the count. 3613 * We must recalculate the beacon frame contents to account 3614 * for the new channel. Note we do this only for the first 3615 * vap that reaches this point; subsequent vaps just update 3616 * their beacon state to reflect the recalculated channel. 3617 */ 3618 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) && 3619 vap->iv_csa_count == ic->ic_csa_count) { 3620 vap->iv_csa_count = 0; 3621 /* 3622 * Effect channel change before reconstructing the beacon 3623 * frame contents as many places reference ni_chan. 3624 */ 3625 if (ic->ic_csa_newchan != NULL) 3626 ieee80211_csa_completeswitch(ic); 3627 /* 3628 * NB: ieee80211_beacon_construct clears all pending 3629 * updates in bo_flags so we don't need to explicitly 3630 * clear IEEE80211_BEACON_CSA. 3631 */ 3632 ieee80211_beacon_construct(m, 3633 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3634 3635 /* XXX do WME aggressive mode processing? */ 3636 IEEE80211_UNLOCK(ic); 3637 return 1; /* just assume length changed */ 3638 } 3639 3640 /* 3641 * Handle the quiet time element being added and removed. 3642 * Again, for now we just cheat and reconstruct the whole 3643 * beacon - that way the gap is provided as appropriate. 3644 * 3645 * So, track whether we have already added the IE versus 3646 * whether we want to be adding the IE. 3647 */ 3648 if ((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) && 3649 (vap->iv_quiet == 0)) { 3650 /* 3651 * Quiet time beacon IE enabled, but it's disabled; 3652 * recalc 3653 */ 3654 vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE; 3655 ieee80211_beacon_construct(m, 3656 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3657 /* XXX do WME aggressive mode processing? */ 3658 IEEE80211_UNLOCK(ic); 3659 return 1; /* just assume length changed */ 3660 } 3661 3662 if (((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) == 0) && 3663 (vap->iv_quiet == 1)) { 3664 /* 3665 * Quiet time beacon IE disabled, but it's now enabled; 3666 * recalc 3667 */ 3668 vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE; 3669 ieee80211_beacon_construct(m, 3670 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3671 /* XXX do WME aggressive mode processing? */ 3672 IEEE80211_UNLOCK(ic); 3673 return 1; /* just assume length changed */ 3674 } 3675 3676 wh = mtod(m, struct ieee80211_frame *); 3677 3678 /* 3679 * XXX TODO Strictly speaking this should be incremented with the TX 3680 * lock held so as to serialise access to the non-qos TID sequence 3681 * number space. 3682 * 3683 * If the driver identifies it does its own TX seqno management then 3684 * we can skip this (and still not do the TX seqno.) 3685 */ 3686 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 3687 *(uint16_t *)&wh->i_seq[0] = 3688 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 3689 M_SEQNO_SET(m, seqno); 3690 3691 /* XXX faster to recalculate entirely or just changes? */ 3692 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3693 *bo->bo_caps = htole16(capinfo); 3694 3695 if (vap->iv_flags & IEEE80211_F_WME) { 3696 struct ieee80211_wme_state *wme = &ic->ic_wme; 3697 3698 /* 3699 * Check for aggressive mode change. When there is 3700 * significant high priority traffic in the BSS 3701 * throttle back BE traffic by using conservative 3702 * parameters. Otherwise BE uses aggressive params 3703 * to optimize performance of legacy/non-QoS traffic. 3704 */ 3705 if (wme->wme_flags & WME_F_AGGRMODE) { 3706 if (wme->wme_hipri_traffic > 3707 wme->wme_hipri_switch_thresh) { 3708 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3709 "%s: traffic %u, disable aggressive mode\n", 3710 __func__, wme->wme_hipri_traffic); 3711 wme->wme_flags &= ~WME_F_AGGRMODE; 3712 ieee80211_wme_updateparams_locked(vap); 3713 wme->wme_hipri_traffic = 3714 wme->wme_hipri_switch_hysteresis; 3715 } else 3716 wme->wme_hipri_traffic = 0; 3717 } else { 3718 if (wme->wme_hipri_traffic <= 3719 wme->wme_hipri_switch_thresh) { 3720 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3721 "%s: traffic %u, enable aggressive mode\n", 3722 __func__, wme->wme_hipri_traffic); 3723 wme->wme_flags |= WME_F_AGGRMODE; 3724 ieee80211_wme_updateparams_locked(vap); 3725 wme->wme_hipri_traffic = 0; 3726 } else 3727 wme->wme_hipri_traffic = 3728 wme->wme_hipri_switch_hysteresis; 3729 } 3730 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) { 3731 (void) ieee80211_add_wme_param(bo->bo_wme, wme); 3732 clrbit(bo->bo_flags, IEEE80211_BEACON_WME); 3733 } 3734 } 3735 3736 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) { 3737 ieee80211_ht_update_beacon(vap, bo); 3738 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO); 3739 } 3740 #ifdef IEEE80211_SUPPORT_TDMA 3741 if (vap->iv_caps & IEEE80211_C_TDMA) { 3742 /* 3743 * NB: the beacon is potentially updated every TBTT. 3744 */ 3745 ieee80211_tdma_update_beacon(vap, bo); 3746 } 3747 #endif 3748 #ifdef IEEE80211_SUPPORT_MESH 3749 if (vap->iv_opmode == IEEE80211_M_MBSS) 3750 ieee80211_mesh_update_beacon(vap, bo); 3751 #endif 3752 3753 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3754 vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/ 3755 struct ieee80211_tim_ie *tie = 3756 (struct ieee80211_tim_ie *) bo->bo_tim; 3757 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) { 3758 u_int timlen, timoff, i; 3759 /* 3760 * ATIM/DTIM needs updating. If it fits in the 3761 * current space allocated then just copy in the 3762 * new bits. Otherwise we need to move any trailing 3763 * data to make room. Note that we know there is 3764 * contiguous space because ieee80211_beacon_allocate 3765 * insures there is space in the mbuf to write a 3766 * maximal-size virtual bitmap (based on iv_max_aid). 3767 */ 3768 /* 3769 * Calculate the bitmap size and offset, copy any 3770 * trailer out of the way, and then copy in the 3771 * new bitmap and update the information element. 3772 * Note that the tim bitmap must contain at least 3773 * one byte and any offset must be even. 3774 */ 3775 if (vap->iv_ps_pending != 0) { 3776 timoff = 128; /* impossibly large */ 3777 for (i = 0; i < vap->iv_tim_len; i++) 3778 if (vap->iv_tim_bitmap[i]) { 3779 timoff = i &~ 1; 3780 break; 3781 } 3782 KASSERT(timoff != 128, ("tim bitmap empty!")); 3783 for (i = vap->iv_tim_len-1; i >= timoff; i--) 3784 if (vap->iv_tim_bitmap[i]) 3785 break; 3786 timlen = 1 + (i - timoff); 3787 } else { 3788 timoff = 0; 3789 timlen = 1; 3790 } 3791 3792 /* 3793 * TODO: validate this! 3794 */ 3795 if (timlen != bo->bo_tim_len) { 3796 /* copy up/down trailer */ 3797 int adjust = tie->tim_bitmap+timlen 3798 - bo->bo_tim_trailer; 3799 ovbcopy(bo->bo_tim_trailer, 3800 bo->bo_tim_trailer+adjust, 3801 bo->bo_tim_trailer_len); 3802 bo->bo_tim_trailer += adjust; 3803 bo->bo_erp += adjust; 3804 bo->bo_htinfo += adjust; 3805 bo->bo_vhtinfo += adjust; 3806 #ifdef IEEE80211_SUPPORT_SUPERG 3807 bo->bo_ath += adjust; 3808 #endif 3809 #ifdef IEEE80211_SUPPORT_TDMA 3810 bo->bo_tdma += adjust; 3811 #endif 3812 #ifdef IEEE80211_SUPPORT_MESH 3813 bo->bo_meshconf += adjust; 3814 #endif 3815 bo->bo_appie += adjust; 3816 bo->bo_wme += adjust; 3817 bo->bo_csa += adjust; 3818 bo->bo_quiet += adjust; 3819 bo->bo_tim_len = timlen; 3820 3821 /* update information element */ 3822 tie->tim_len = 3 + timlen; 3823 tie->tim_bitctl = timoff; 3824 len_changed = 1; 3825 } 3826 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff, 3827 bo->bo_tim_len); 3828 3829 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM); 3830 3831 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER, 3832 "%s: TIM updated, pending %u, off %u, len %u\n", 3833 __func__, vap->iv_ps_pending, timoff, timlen); 3834 } 3835 /* count down DTIM period */ 3836 if (tie->tim_count == 0) 3837 tie->tim_count = tie->tim_period - 1; 3838 else 3839 tie->tim_count--; 3840 /* update state for buffered multicast frames on DTIM */ 3841 if (mcast && tie->tim_count == 0) 3842 tie->tim_bitctl |= 1; 3843 else 3844 tie->tim_bitctl &= ~1; 3845 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) { 3846 struct ieee80211_csa_ie *csa = 3847 (struct ieee80211_csa_ie *) bo->bo_csa; 3848 3849 /* 3850 * Insert or update CSA ie. If we're just starting 3851 * to count down to the channel switch then we need 3852 * to insert the CSA ie. Otherwise we just need to 3853 * drop the count. The actual change happens above 3854 * when the vap's count reaches the target count. 3855 */ 3856 if (vap->iv_csa_count == 0) { 3857 memmove(&csa[1], csa, bo->bo_csa_trailer_len); 3858 bo->bo_erp += sizeof(*csa); 3859 bo->bo_htinfo += sizeof(*csa); 3860 bo->bo_vhtinfo += sizeof(*csa); 3861 bo->bo_wme += sizeof(*csa); 3862 #ifdef IEEE80211_SUPPORT_SUPERG 3863 bo->bo_ath += sizeof(*csa); 3864 #endif 3865 #ifdef IEEE80211_SUPPORT_TDMA 3866 bo->bo_tdma += sizeof(*csa); 3867 #endif 3868 #ifdef IEEE80211_SUPPORT_MESH 3869 bo->bo_meshconf += sizeof(*csa); 3870 #endif 3871 bo->bo_appie += sizeof(*csa); 3872 bo->bo_csa_trailer_len += sizeof(*csa); 3873 bo->bo_quiet += sizeof(*csa); 3874 bo->bo_tim_trailer_len += sizeof(*csa); 3875 m->m_len += sizeof(*csa); 3876 m->m_pkthdr.len += sizeof(*csa); 3877 3878 ieee80211_add_csa(bo->bo_csa, vap); 3879 } else 3880 csa->csa_count--; 3881 vap->iv_csa_count++; 3882 /* NB: don't clear IEEE80211_BEACON_CSA */ 3883 } 3884 3885 /* 3886 * Only add the quiet time IE if we've enabled it 3887 * as appropriate. 3888 */ 3889 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3890 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 3891 if (vap->iv_quiet && 3892 (vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE)) { 3893 ieee80211_add_quiet(bo->bo_quiet, vap, 1); 3894 } 3895 } 3896 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) { 3897 /* 3898 * ERP element needs updating. 3899 */ 3900 (void) ieee80211_add_erp(bo->bo_erp, ic); 3901 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP); 3902 } 3903 #ifdef IEEE80211_SUPPORT_SUPERG 3904 if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) { 3905 ieee80211_add_athcaps(bo->bo_ath, ni); 3906 clrbit(bo->bo_flags, IEEE80211_BEACON_ATH); 3907 } 3908 #endif 3909 } 3910 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) { 3911 const struct ieee80211_appie *aie = vap->iv_appie_beacon; 3912 int aielen; 3913 uint8_t *frm; 3914 3915 aielen = 0; 3916 if (aie != NULL) 3917 aielen += aie->ie_len; 3918 if (aielen != bo->bo_appie_len) { 3919 /* copy up/down trailer */ 3920 int adjust = aielen - bo->bo_appie_len; 3921 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust, 3922 bo->bo_tim_trailer_len); 3923 bo->bo_tim_trailer += adjust; 3924 bo->bo_appie += adjust; 3925 bo->bo_appie_len = aielen; 3926 3927 len_changed = 1; 3928 } 3929 frm = bo->bo_appie; 3930 if (aie != NULL) 3931 frm = add_appie(frm, aie); 3932 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE); 3933 } 3934 IEEE80211_UNLOCK(ic); 3935 3936 return len_changed; 3937 } 3938 3939 /* 3940 * Do Ethernet-LLC encapsulation for each payload in a fast frame 3941 * tunnel encapsulation. The frame is assumed to have an Ethernet 3942 * header at the front that must be stripped before prepending the 3943 * LLC followed by the Ethernet header passed in (with an Ethernet 3944 * type that specifies the payload size). 3945 */ 3946 struct mbuf * 3947 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m, 3948 const struct ether_header *eh) 3949 { 3950 struct llc *llc; 3951 uint16_t payload; 3952 3953 /* XXX optimize by combining m_adj+M_PREPEND */ 3954 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 3955 llc = mtod(m, struct llc *); 3956 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 3957 llc->llc_control = LLC_UI; 3958 llc->llc_snap.org_code[0] = 0; 3959 llc->llc_snap.org_code[1] = 0; 3960 llc->llc_snap.org_code[2] = 0; 3961 llc->llc_snap.ether_type = eh->ether_type; 3962 payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */ 3963 3964 M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT); 3965 if (m == NULL) { /* XXX cannot happen */ 3966 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 3967 "%s: no space for ether_header\n", __func__); 3968 vap->iv_stats.is_tx_nobuf++; 3969 return NULL; 3970 } 3971 ETHER_HEADER_COPY(mtod(m, void *), eh); 3972 mtod(m, struct ether_header *)->ether_type = htons(payload); 3973 return m; 3974 } 3975 3976 /* 3977 * Complete an mbuf transmission. 3978 * 3979 * For now, this simply processes a completed frame after the 3980 * driver has completed it's transmission and/or retransmission. 3981 * It assumes the frame is an 802.11 encapsulated frame. 3982 * 3983 * Later on it will grow to become the exit path for a given frame 3984 * from the driver and, depending upon how it's been encapsulated 3985 * and already transmitted, it may end up doing A-MPDU retransmission, 3986 * power save requeuing, etc. 3987 * 3988 * In order for the above to work, the driver entry point to this 3989 * must not hold any driver locks. Thus, the driver needs to delay 3990 * any actual mbuf completion until it can release said locks. 3991 * 3992 * This frees the mbuf and if the mbuf has a node reference, 3993 * the node reference will be freed. 3994 */ 3995 void 3996 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status) 3997 { 3998 3999 if (ni != NULL) { 4000 struct ifnet *ifp = ni->ni_vap->iv_ifp; 4001 4002 if (status == 0) { 4003 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len); 4004 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 4005 if (m->m_flags & M_MCAST) 4006 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 4007 } else 4008 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 4009 if (m->m_flags & M_TXCB) 4010 ieee80211_process_callback(ni, m, status); 4011 ieee80211_free_node(ni); 4012 } 4013 m_freem(m); 4014 } 4015