xref: /freebsd/sys/net80211/ieee80211_output.c (revision 28f4385e45a2681c14bd04b83fe1796eaefe8265)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2001 Atsushi Onoe
5  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 #include "opt_wlan.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/kernel.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/endian.h>
42 
43 #include <sys/socket.h>
44 
45 #include <net/bpf.h>
46 #include <net/ethernet.h>
47 #include <net/if.h>
48 #include <net/if_var.h>
49 #include <net/if_llc.h>
50 #include <net/if_media.h>
51 #include <net/if_vlan_var.h>
52 
53 #include <net80211/ieee80211_var.h>
54 #include <net80211/ieee80211_regdomain.h>
55 #ifdef IEEE80211_SUPPORT_SUPERG
56 #include <net80211/ieee80211_superg.h>
57 #endif
58 #ifdef IEEE80211_SUPPORT_TDMA
59 #include <net80211/ieee80211_tdma.h>
60 #endif
61 #include <net80211/ieee80211_wds.h>
62 #include <net80211/ieee80211_mesh.h>
63 #include <net80211/ieee80211_vht.h>
64 
65 #if defined(INET) || defined(INET6)
66 #include <netinet/in.h>
67 #endif
68 
69 #ifdef INET
70 #include <netinet/if_ether.h>
71 #include <netinet/in_systm.h>
72 #include <netinet/ip.h>
73 #endif
74 #ifdef INET6
75 #include <netinet/ip6.h>
76 #endif
77 
78 #include <security/mac/mac_framework.h>
79 
80 #define	ETHER_HEADER_COPY(dst, src) \
81 	memcpy(dst, src, sizeof(struct ether_header))
82 
83 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
84 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
85 static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
86 
87 #ifdef IEEE80211_DEBUG
88 /*
89  * Decide if an outbound management frame should be
90  * printed when debugging is enabled.  This filters some
91  * of the less interesting frames that come frequently
92  * (e.g. beacons).
93  */
94 static __inline int
95 doprint(struct ieee80211vap *vap, int subtype)
96 {
97 	switch (subtype) {
98 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
99 		return (vap->iv_opmode == IEEE80211_M_IBSS);
100 	}
101 	return 1;
102 }
103 #endif
104 
105 /*
106  * Transmit a frame to the given destination on the given VAP.
107  *
108  * It's up to the caller to figure out the details of who this
109  * is going to and resolving the node.
110  *
111  * This routine takes care of queuing it for power save,
112  * A-MPDU state stuff, fast-frames state stuff, encapsulation
113  * if required, then passing it up to the driver layer.
114  *
115  * This routine (for now) consumes the mbuf and frees the node
116  * reference; it ideally will return a TX status which reflects
117  * whether the mbuf was consumed or not, so the caller can
118  * free the mbuf (if appropriate) and the node reference (again,
119  * if appropriate.)
120  */
121 int
122 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
123     struct ieee80211_node *ni)
124 {
125 	struct ieee80211com *ic = vap->iv_ic;
126 	struct ifnet *ifp = vap->iv_ifp;
127 	int mcast;
128 
129 	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
130 	    (m->m_flags & M_PWR_SAV) == 0) {
131 		/*
132 		 * Station in power save mode; pass the frame
133 		 * to the 802.11 layer and continue.  We'll get
134 		 * the frame back when the time is right.
135 		 * XXX lose WDS vap linkage?
136 		 */
137 		if (ieee80211_pwrsave(ni, m) != 0)
138 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
139 		ieee80211_free_node(ni);
140 
141 		/*
142 		 * We queued it fine, so tell the upper layer
143 		 * that we consumed it.
144 		 */
145 		return (0);
146 	}
147 	/* calculate priority so drivers can find the tx queue */
148 	if (ieee80211_classify(ni, m)) {
149 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
150 		    ni->ni_macaddr, NULL,
151 		    "%s", "classification failure");
152 		vap->iv_stats.is_tx_classify++;
153 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
154 		m_freem(m);
155 		ieee80211_free_node(ni);
156 
157 		/* XXX better status? */
158 		return (0);
159 	}
160 	/*
161 	 * Stash the node pointer.  Note that we do this after
162 	 * any call to ieee80211_dwds_mcast because that code
163 	 * uses any existing value for rcvif to identify the
164 	 * interface it (might have been) received on.
165 	 */
166 	m->m_pkthdr.rcvif = (void *)ni;
167 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
168 
169 	BPF_MTAP(ifp, m);		/* 802.3 tx */
170 
171 	/*
172 	 * Check if A-MPDU tx aggregation is setup or if we
173 	 * should try to enable it.  The sta must be associated
174 	 * with HT and A-MPDU enabled for use.  When the policy
175 	 * routine decides we should enable A-MPDU we issue an
176 	 * ADDBA request and wait for a reply.  The frame being
177 	 * encapsulated will go out w/o using A-MPDU, or possibly
178 	 * it might be collected by the driver and held/retransmit.
179 	 * The default ic_ampdu_enable routine handles staggering
180 	 * ADDBA requests in case the receiver NAK's us or we are
181 	 * otherwise unable to establish a BA stream.
182 	 *
183 	 * Don't treat group-addressed frames as candidates for aggregation;
184 	 * net80211 doesn't support 802.11aa-2012 and so group addressed
185 	 * frames will always have sequence numbers allocated from the NON_QOS
186 	 * TID.
187 	 */
188 	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
189 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)) {
190 		if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) {
191 			int tid = WME_AC_TO_TID(M_WME_GETAC(m));
192 			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
193 
194 			ieee80211_txampdu_count_packet(tap);
195 			if (IEEE80211_AMPDU_RUNNING(tap)) {
196 				/*
197 				 * Operational, mark frame for aggregation.
198 				 *
199 				 * XXX do tx aggregation here
200 				 */
201 				m->m_flags |= M_AMPDU_MPDU;
202 			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
203 			    ic->ic_ampdu_enable(ni, tap)) {
204 				/*
205 				 * Not negotiated yet, request service.
206 				 */
207 				ieee80211_ampdu_request(ni, tap);
208 				/* XXX hold frame for reply? */
209 			}
210 		}
211 	}
212 
213 #ifdef IEEE80211_SUPPORT_SUPERG
214 	/*
215 	 * Check for AMSDU/FF; queue for aggregation
216 	 *
217 	 * Note: we don't bother trying to do fast frames or
218 	 * A-MSDU encapsulation for 802.3 drivers.  Now, we
219 	 * likely could do it for FF (because it's a magic
220 	 * atheros tunnel LLC type) but I don't think we're going
221 	 * to really need to.  For A-MSDU we'd have to set the
222 	 * A-MSDU QoS bit in the wifi header, so we just plain
223 	 * can't do it.
224 	 *
225 	 * Strictly speaking, we could actually /do/ A-MSDU / FF
226 	 * with A-MPDU together which for certain circumstances
227 	 * is beneficial (eg A-MSDU of TCK ACKs.)  However,
228 	 * I'll ignore that for now so existing behaviour is maintained.
229 	 * Later on it would be good to make "amsdu + ampdu" configurable.
230 	 */
231 	else if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
232 		if ((! mcast) && ieee80211_amsdu_tx_ok(ni)) {
233 			m = ieee80211_amsdu_check(ni, m);
234 			if (m == NULL) {
235 				/* NB: any ni ref held on stageq */
236 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
237 				    "%s: amsdu_check queued frame\n",
238 				    __func__);
239 				return (0);
240 			}
241 		} else if ((! mcast) && IEEE80211_ATH_CAP(vap, ni,
242 		    IEEE80211_NODE_FF)) {
243 			m = ieee80211_ff_check(ni, m);
244 			if (m == NULL) {
245 				/* NB: any ni ref held on stageq */
246 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
247 				    "%s: ff_check queued frame\n",
248 				    __func__);
249 				return (0);
250 			}
251 		}
252 	}
253 #endif /* IEEE80211_SUPPORT_SUPERG */
254 
255 	/*
256 	 * Grab the TX lock - serialise the TX process from this
257 	 * point (where TX state is being checked/modified)
258 	 * through to driver queue.
259 	 */
260 	IEEE80211_TX_LOCK(ic);
261 
262 	/*
263 	 * XXX make the encap and transmit code a separate function
264 	 * so things like the FF (and later A-MSDU) path can just call
265 	 * it for flushed frames.
266 	 */
267 	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
268 		/*
269 		 * Encapsulate the packet in prep for transmission.
270 		 */
271 		m = ieee80211_encap(vap, ni, m);
272 		if (m == NULL) {
273 			/* NB: stat+msg handled in ieee80211_encap */
274 			IEEE80211_TX_UNLOCK(ic);
275 			ieee80211_free_node(ni);
276 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
277 			return (ENOBUFS);
278 		}
279 	}
280 	(void) ieee80211_parent_xmitpkt(ic, m);
281 
282 	/*
283 	 * Unlock at this point - no need to hold it across
284 	 * ieee80211_free_node() (ie, the comlock)
285 	 */
286 	IEEE80211_TX_UNLOCK(ic);
287 	ic->ic_lastdata = ticks;
288 
289 	return (0);
290 }
291 
292 
293 
294 /*
295  * Send the given mbuf through the given vap.
296  *
297  * This consumes the mbuf regardless of whether the transmit
298  * was successful or not.
299  *
300  * This does none of the initial checks that ieee80211_start()
301  * does (eg CAC timeout, interface wakeup) - the caller must
302  * do this first.
303  */
304 static int
305 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
306 {
307 #define	IS_DWDS(vap) \
308 	(vap->iv_opmode == IEEE80211_M_WDS && \
309 	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
310 	struct ieee80211com *ic = vap->iv_ic;
311 	struct ifnet *ifp = vap->iv_ifp;
312 	struct ieee80211_node *ni;
313 	struct ether_header *eh;
314 
315 	/*
316 	 * Cancel any background scan.
317 	 */
318 	if (ic->ic_flags & IEEE80211_F_SCAN)
319 		ieee80211_cancel_anyscan(vap);
320 	/*
321 	 * Find the node for the destination so we can do
322 	 * things like power save and fast frames aggregation.
323 	 *
324 	 * NB: past this point various code assumes the first
325 	 *     mbuf has the 802.3 header present (and contiguous).
326 	 */
327 	ni = NULL;
328 	if (m->m_len < sizeof(struct ether_header) &&
329 	   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
330 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
331 		    "discard frame, %s\n", "m_pullup failed");
332 		vap->iv_stats.is_tx_nobuf++;	/* XXX */
333 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
334 		return (ENOBUFS);
335 	}
336 	eh = mtod(m, struct ether_header *);
337 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
338 		if (IS_DWDS(vap)) {
339 			/*
340 			 * Only unicast frames from the above go out
341 			 * DWDS vaps; multicast frames are handled by
342 			 * dispatching the frame as it comes through
343 			 * the AP vap (see below).
344 			 */
345 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
346 			    eh->ether_dhost, "mcast", "%s", "on DWDS");
347 			vap->iv_stats.is_dwds_mcast++;
348 			m_freem(m);
349 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
350 			/* XXX better status? */
351 			return (ENOBUFS);
352 		}
353 		if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
354 			/*
355 			 * Spam DWDS vap's w/ multicast traffic.
356 			 */
357 			/* XXX only if dwds in use? */
358 			ieee80211_dwds_mcast(vap, m);
359 		}
360 	}
361 #ifdef IEEE80211_SUPPORT_MESH
362 	if (vap->iv_opmode != IEEE80211_M_MBSS) {
363 #endif
364 		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
365 		if (ni == NULL) {
366 			/* NB: ieee80211_find_txnode does stat+msg */
367 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
368 			m_freem(m);
369 			/* XXX better status? */
370 			return (ENOBUFS);
371 		}
372 		if (ni->ni_associd == 0 &&
373 		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
374 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
375 			    eh->ether_dhost, NULL,
376 			    "sta not associated (type 0x%04x)",
377 			    htons(eh->ether_type));
378 			vap->iv_stats.is_tx_notassoc++;
379 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
380 			m_freem(m);
381 			ieee80211_free_node(ni);
382 			/* XXX better status? */
383 			return (ENOBUFS);
384 		}
385 #ifdef IEEE80211_SUPPORT_MESH
386 	} else {
387 		if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
388 			/*
389 			 * Proxy station only if configured.
390 			 */
391 			if (!ieee80211_mesh_isproxyena(vap)) {
392 				IEEE80211_DISCARD_MAC(vap,
393 				    IEEE80211_MSG_OUTPUT |
394 				    IEEE80211_MSG_MESH,
395 				    eh->ether_dhost, NULL,
396 				    "%s", "proxy not enabled");
397 				vap->iv_stats.is_mesh_notproxy++;
398 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
399 				m_freem(m);
400 				/* XXX better status? */
401 				return (ENOBUFS);
402 			}
403 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
404 			    "forward frame from DS SA(%6D), DA(%6D)\n",
405 			    eh->ether_shost, ":",
406 			    eh->ether_dhost, ":");
407 			ieee80211_mesh_proxy_check(vap, eh->ether_shost);
408 		}
409 		ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
410 		if (ni == NULL) {
411 			/*
412 			 * NB: ieee80211_mesh_discover holds/disposes
413 			 * frame (e.g. queueing on path discovery).
414 			 */
415 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
416 			/* XXX better status? */
417 			return (ENOBUFS);
418 		}
419 	}
420 #endif
421 
422 	/*
423 	 * We've resolved the sender, so attempt to transmit it.
424 	 */
425 
426 	if (vap->iv_state == IEEE80211_S_SLEEP) {
427 		/*
428 		 * In power save; queue frame and then  wakeup device
429 		 * for transmit.
430 		 */
431 		ic->ic_lastdata = ticks;
432 		if (ieee80211_pwrsave(ni, m) != 0)
433 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
434 		ieee80211_free_node(ni);
435 		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
436 		return (0);
437 	}
438 
439 	if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
440 		return (ENOBUFS);
441 	return (0);
442 #undef	IS_DWDS
443 }
444 
445 /*
446  * Start method for vap's.  All packets from the stack come
447  * through here.  We handle common processing of the packets
448  * before dispatching them to the underlying device.
449  *
450  * if_transmit() requires that the mbuf be consumed by this call
451  * regardless of the return condition.
452  */
453 int
454 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
455 {
456 	struct ieee80211vap *vap = ifp->if_softc;
457 	struct ieee80211com *ic = vap->iv_ic;
458 
459 	/*
460 	 * No data frames go out unless we're running.
461 	 * Note in particular this covers CAC and CSA
462 	 * states (though maybe we should check muting
463 	 * for CSA).
464 	 */
465 	if (vap->iv_state != IEEE80211_S_RUN &&
466 	    vap->iv_state != IEEE80211_S_SLEEP) {
467 		IEEE80211_LOCK(ic);
468 		/* re-check under the com lock to avoid races */
469 		if (vap->iv_state != IEEE80211_S_RUN &&
470 		    vap->iv_state != IEEE80211_S_SLEEP) {
471 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
472 			    "%s: ignore queue, in %s state\n",
473 			    __func__, ieee80211_state_name[vap->iv_state]);
474 			vap->iv_stats.is_tx_badstate++;
475 			IEEE80211_UNLOCK(ic);
476 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
477 			m_freem(m);
478 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
479 			return (ENETDOWN);
480 		}
481 		IEEE80211_UNLOCK(ic);
482 	}
483 
484 	/*
485 	 * Sanitize mbuf flags for net80211 use.  We cannot
486 	 * clear M_PWR_SAV or M_MORE_DATA because these may
487 	 * be set for frames that are re-submitted from the
488 	 * power save queue.
489 	 *
490 	 * NB: This must be done before ieee80211_classify as
491 	 *     it marks EAPOL in frames with M_EAPOL.
492 	 */
493 	m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
494 
495 	/*
496 	 * Bump to the packet transmission path.
497 	 * The mbuf will be consumed here.
498 	 */
499 	return (ieee80211_start_pkt(vap, m));
500 }
501 
502 void
503 ieee80211_vap_qflush(struct ifnet *ifp)
504 {
505 
506 	/* Empty for now */
507 }
508 
509 /*
510  * 802.11 raw output routine.
511  *
512  * XXX TODO: this (and other send routines) should correctly
513  * XXX keep the pwr mgmt bit set if it decides to call into the
514  * XXX driver to send a frame whilst the state is SLEEP.
515  *
516  * Otherwise the peer may decide that we're awake and flood us
517  * with traffic we are still too asleep to receive!
518  */
519 int
520 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
521     struct mbuf *m, const struct ieee80211_bpf_params *params)
522 {
523 	struct ieee80211com *ic = vap->iv_ic;
524 	int error;
525 
526 	/*
527 	 * Set node - the caller has taken a reference, so ensure
528 	 * that the mbuf has the same node value that
529 	 * it would if it were going via the normal path.
530 	 */
531 	m->m_pkthdr.rcvif = (void *)ni;
532 
533 	/*
534 	 * Attempt to add bpf transmit parameters.
535 	 *
536 	 * For now it's ok to fail; the raw_xmit api still takes
537 	 * them as an option.
538 	 *
539 	 * Later on when ic_raw_xmit() has params removed,
540 	 * they'll have to be added - so fail the transmit if
541 	 * they can't be.
542 	 */
543 	if (params)
544 		(void) ieee80211_add_xmit_params(m, params);
545 
546 	error = ic->ic_raw_xmit(ni, m, params);
547 	if (error) {
548 		if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
549 		ieee80211_free_node(ni);
550 	}
551 	return (error);
552 }
553 
554 static int
555 ieee80211_validate_frame(struct mbuf *m,
556     const struct ieee80211_bpf_params *params)
557 {
558 	struct ieee80211_frame *wh;
559 	int type;
560 
561 	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
562 		return (EINVAL);
563 
564 	wh = mtod(m, struct ieee80211_frame *);
565 	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
566 	    IEEE80211_FC0_VERSION_0)
567 		return (EINVAL);
568 
569 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
570 	if (type != IEEE80211_FC0_TYPE_DATA) {
571 		if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) !=
572 		    IEEE80211_FC1_DIR_NODS)
573 			return (EINVAL);
574 
575 		if (type != IEEE80211_FC0_TYPE_MGT &&
576 		    (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) != 0)
577 			return (EINVAL);
578 
579 		/* XXX skip other field checks? */
580 	}
581 
582 	if ((params && (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0) ||
583 	    (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) != 0) {
584 		int subtype;
585 
586 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
587 
588 		/*
589 		 * See IEEE Std 802.11-2012,
590 		 * 8.2.4.1.9 'Protected Frame field'
591 		 */
592 		/* XXX no support for robust management frames yet. */
593 		if (!(type == IEEE80211_FC0_TYPE_DATA ||
594 		    (type == IEEE80211_FC0_TYPE_MGT &&
595 		     subtype == IEEE80211_FC0_SUBTYPE_AUTH)))
596 			return (EINVAL);
597 
598 		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
599 	}
600 
601 	if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh))
602 		return (EINVAL);
603 
604 	return (0);
605 }
606 
607 static int
608 ieee80211_validate_rate(struct ieee80211_node *ni, uint8_t rate)
609 {
610 	struct ieee80211com *ic = ni->ni_ic;
611 
612 	if (IEEE80211_IS_HT_RATE(rate)) {
613 		if ((ic->ic_htcaps & IEEE80211_HTC_HT) == 0)
614 			return (EINVAL);
615 
616 		rate = IEEE80211_RV(rate);
617 		if (rate <= 31) {
618 			if (rate > ic->ic_txstream * 8 - 1)
619 				return (EINVAL);
620 
621 			return (0);
622 		}
623 
624 		if (rate == 32) {
625 			if ((ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0)
626 				return (EINVAL);
627 
628 			return (0);
629 		}
630 
631 		if ((ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) == 0)
632 			return (EINVAL);
633 
634 		switch (ic->ic_txstream) {
635 		case 0:
636 		case 1:
637 			return (EINVAL);
638 		case 2:
639 			if (rate > 38)
640 				return (EINVAL);
641 
642 			return (0);
643 		case 3:
644 			if (rate > 52)
645 				return (EINVAL);
646 
647 			return (0);
648 		case 4:
649 		default:
650 			if (rate > 76)
651 				return (EINVAL);
652 
653 			return (0);
654 		}
655 	}
656 
657 	if (!ieee80211_isratevalid(ic->ic_rt, rate))
658 		return (EINVAL);
659 
660 	return (0);
661 }
662 
663 static int
664 ieee80211_sanitize_rates(struct ieee80211_node *ni, struct mbuf *m,
665     const struct ieee80211_bpf_params *params)
666 {
667 	int error;
668 
669 	if (!params)
670 		return (0);	/* nothing to do */
671 
672 	/* NB: most drivers assume that ibp_rate0 is set (!= 0). */
673 	if (params->ibp_rate0 != 0) {
674 		error = ieee80211_validate_rate(ni, params->ibp_rate0);
675 		if (error != 0)
676 			return (error);
677 	} else {
678 		/* XXX pre-setup some default (e.g., mgmt / mcast) rate */
679 		/* XXX __DECONST? */
680 		(void) m;
681 	}
682 
683 	if (params->ibp_rate1 != 0 &&
684 	    (error = ieee80211_validate_rate(ni, params->ibp_rate1)) != 0)
685 		return (error);
686 
687 	if (params->ibp_rate2 != 0 &&
688 	    (error = ieee80211_validate_rate(ni, params->ibp_rate2)) != 0)
689 		return (error);
690 
691 	if (params->ibp_rate3 != 0 &&
692 	    (error = ieee80211_validate_rate(ni, params->ibp_rate3)) != 0)
693 		return (error);
694 
695 	return (0);
696 }
697 
698 /*
699  * 802.11 output routine. This is (currently) used only to
700  * connect bpf write calls to the 802.11 layer for injecting
701  * raw 802.11 frames.
702  */
703 int
704 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
705 	const struct sockaddr *dst, struct route *ro)
706 {
707 #define senderr(e) do { error = (e); goto bad;} while (0)
708 	const struct ieee80211_bpf_params *params = NULL;
709 	struct ieee80211_node *ni = NULL;
710 	struct ieee80211vap *vap;
711 	struct ieee80211_frame *wh;
712 	struct ieee80211com *ic = NULL;
713 	int error;
714 	int ret;
715 
716 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
717 		/*
718 		 * Short-circuit requests if the vap is marked OACTIVE
719 		 * as this can happen because a packet came down through
720 		 * ieee80211_start before the vap entered RUN state in
721 		 * which case it's ok to just drop the frame.  This
722 		 * should not be necessary but callers of if_output don't
723 		 * check OACTIVE.
724 		 */
725 		senderr(ENETDOWN);
726 	}
727 	vap = ifp->if_softc;
728 	ic = vap->iv_ic;
729 	/*
730 	 * Hand to the 802.3 code if not tagged as
731 	 * a raw 802.11 frame.
732 	 */
733 	if (dst->sa_family != AF_IEEE80211)
734 		return vap->iv_output(ifp, m, dst, ro);
735 #ifdef MAC
736 	error = mac_ifnet_check_transmit(ifp, m);
737 	if (error)
738 		senderr(error);
739 #endif
740 	if (ifp->if_flags & IFF_MONITOR)
741 		senderr(ENETDOWN);
742 	if (!IFNET_IS_UP_RUNNING(ifp))
743 		senderr(ENETDOWN);
744 	if (vap->iv_state == IEEE80211_S_CAC) {
745 		IEEE80211_DPRINTF(vap,
746 		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
747 		    "block %s frame in CAC state\n", "raw data");
748 		vap->iv_stats.is_tx_badstate++;
749 		senderr(EIO);		/* XXX */
750 	} else if (vap->iv_state == IEEE80211_S_SCAN)
751 		senderr(EIO);
752 	/* XXX bypass bridge, pfil, carp, etc. */
753 
754 	/*
755 	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
756 	 * present by setting the sa_len field of the sockaddr (yes,
757 	 * this is a hack).
758 	 * NB: we assume sa_data is suitably aligned to cast.
759 	 */
760 	if (dst->sa_len != 0)
761 		params = (const struct ieee80211_bpf_params *)dst->sa_data;
762 
763 	error = ieee80211_validate_frame(m, params);
764 	if (error != 0)
765 		senderr(error);
766 
767 	wh = mtod(m, struct ieee80211_frame *);
768 
769 	/* locate destination node */
770 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
771 	case IEEE80211_FC1_DIR_NODS:
772 	case IEEE80211_FC1_DIR_FROMDS:
773 		ni = ieee80211_find_txnode(vap, wh->i_addr1);
774 		break;
775 	case IEEE80211_FC1_DIR_TODS:
776 	case IEEE80211_FC1_DIR_DSTODS:
777 		ni = ieee80211_find_txnode(vap, wh->i_addr3);
778 		break;
779 	default:
780 		senderr(EDOOFUS);
781 	}
782 	if (ni == NULL) {
783 		/*
784 		 * Permit packets w/ bpf params through regardless
785 		 * (see below about sa_len).
786 		 */
787 		if (dst->sa_len == 0)
788 			senderr(EHOSTUNREACH);
789 		ni = ieee80211_ref_node(vap->iv_bss);
790 	}
791 
792 	/*
793 	 * Sanitize mbuf for net80211 flags leaked from above.
794 	 *
795 	 * NB: This must be done before ieee80211_classify as
796 	 *     it marks EAPOL in frames with M_EAPOL.
797 	 */
798 	m->m_flags &= ~M_80211_TX;
799 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
800 
801 	if (IEEE80211_IS_DATA(wh)) {
802 		/* calculate priority so drivers can find the tx queue */
803 		if (ieee80211_classify(ni, m))
804 			senderr(EIO);		/* XXX */
805 
806 		/* NB: ieee80211_encap does not include 802.11 header */
807 		IEEE80211_NODE_STAT_ADD(ni, tx_bytes,
808 		    m->m_pkthdr.len - ieee80211_hdrsize(wh));
809 	} else
810 		M_WME_SETAC(m, WME_AC_BE);
811 
812 	error = ieee80211_sanitize_rates(ni, m, params);
813 	if (error != 0)
814 		senderr(error);
815 
816 	IEEE80211_NODE_STAT(ni, tx_data);
817 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
818 		IEEE80211_NODE_STAT(ni, tx_mcast);
819 		m->m_flags |= M_MCAST;
820 	} else
821 		IEEE80211_NODE_STAT(ni, tx_ucast);
822 
823 	IEEE80211_TX_LOCK(ic);
824 	ret = ieee80211_raw_output(vap, ni, m, params);
825 	IEEE80211_TX_UNLOCK(ic);
826 	return (ret);
827 bad:
828 	if (m != NULL)
829 		m_freem(m);
830 	if (ni != NULL)
831 		ieee80211_free_node(ni);
832 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
833 	return error;
834 #undef senderr
835 }
836 
837 /*
838  * Set the direction field and address fields of an outgoing
839  * frame.  Note this should be called early on in constructing
840  * a frame as it sets i_fc[1]; other bits can then be or'd in.
841  */
842 void
843 ieee80211_send_setup(
844 	struct ieee80211_node *ni,
845 	struct mbuf *m,
846 	int type, int tid,
847 	const uint8_t sa[IEEE80211_ADDR_LEN],
848 	const uint8_t da[IEEE80211_ADDR_LEN],
849 	const uint8_t bssid[IEEE80211_ADDR_LEN])
850 {
851 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
852 	struct ieee80211vap *vap = ni->ni_vap;
853 	struct ieee80211_tx_ampdu *tap;
854 	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
855 	ieee80211_seq seqno;
856 
857 	IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
858 
859 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
860 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
861 		switch (vap->iv_opmode) {
862 		case IEEE80211_M_STA:
863 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
864 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
865 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
866 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
867 			break;
868 		case IEEE80211_M_IBSS:
869 		case IEEE80211_M_AHDEMO:
870 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
871 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
872 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
873 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
874 			break;
875 		case IEEE80211_M_HOSTAP:
876 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
877 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
878 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
879 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
880 			break;
881 		case IEEE80211_M_WDS:
882 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
883 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
884 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
885 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
886 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
887 			break;
888 		case IEEE80211_M_MBSS:
889 #ifdef IEEE80211_SUPPORT_MESH
890 			if (IEEE80211_IS_MULTICAST(da)) {
891 				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
892 				/* XXX next hop */
893 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
894 				IEEE80211_ADDR_COPY(wh->i_addr2,
895 				    vap->iv_myaddr);
896 			} else {
897 				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
898 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
899 				IEEE80211_ADDR_COPY(wh->i_addr2,
900 				    vap->iv_myaddr);
901 				IEEE80211_ADDR_COPY(wh->i_addr3, da);
902 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
903 			}
904 #endif
905 			break;
906 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
907 			break;
908 		}
909 	} else {
910 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
911 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
912 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
913 #ifdef IEEE80211_SUPPORT_MESH
914 		if (vap->iv_opmode == IEEE80211_M_MBSS)
915 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
916 		else
917 #endif
918 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
919 	}
920 	*(uint16_t *)&wh->i_dur[0] = 0;
921 
922 	/*
923 	 * XXX TODO: this is what the TX lock is for.
924 	 * Here we're incrementing sequence numbers, and they
925 	 * need to be in lock-step with what the driver is doing
926 	 * both in TX ordering and crypto encap (IV increment.)
927 	 *
928 	 * If the driver does seqno itself, then we can skip
929 	 * assigning sequence numbers here, and we can avoid
930 	 * requiring the TX lock.
931 	 */
932 	tap = &ni->ni_tx_ampdu[tid];
933 	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) {
934 		m->m_flags |= M_AMPDU_MPDU;
935 
936 		/* NB: zero out i_seq field (for s/w encryption etc) */
937 		*(uint16_t *)&wh->i_seq[0] = 0;
938 	} else {
939 		if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
940 				      type & IEEE80211_FC0_SUBTYPE_MASK))
941 			/*
942 			 * 802.11-2012 9.3.2.10 - QoS multicast frames
943 			 * come out of a different seqno space.
944 			 */
945 			if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
946 				seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
947 			} else {
948 				seqno = ni->ni_txseqs[tid]++;
949 			}
950 		else
951 			seqno = 0;
952 
953 		*(uint16_t *)&wh->i_seq[0] =
954 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
955 		M_SEQNO_SET(m, seqno);
956 	}
957 
958 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
959 		m->m_flags |= M_MCAST;
960 #undef WH4
961 }
962 
963 /*
964  * Send a management frame to the specified node.  The node pointer
965  * must have a reference as the pointer will be passed to the driver
966  * and potentially held for a long time.  If the frame is successfully
967  * dispatched to the driver, then it is responsible for freeing the
968  * reference (and potentially free'ing up any associated storage);
969  * otherwise deal with reclaiming any reference (on error).
970  */
971 int
972 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
973 	struct ieee80211_bpf_params *params)
974 {
975 	struct ieee80211vap *vap = ni->ni_vap;
976 	struct ieee80211com *ic = ni->ni_ic;
977 	struct ieee80211_frame *wh;
978 	int ret;
979 
980 	KASSERT(ni != NULL, ("null node"));
981 
982 	if (vap->iv_state == IEEE80211_S_CAC) {
983 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
984 		    ni, "block %s frame in CAC state",
985 			ieee80211_mgt_subtype_name(type));
986 		vap->iv_stats.is_tx_badstate++;
987 		ieee80211_free_node(ni);
988 		m_freem(m);
989 		return EIO;		/* XXX */
990 	}
991 
992 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
993 	if (m == NULL) {
994 		ieee80211_free_node(ni);
995 		return ENOMEM;
996 	}
997 
998 	IEEE80211_TX_LOCK(ic);
999 
1000 	wh = mtod(m, struct ieee80211_frame *);
1001 	ieee80211_send_setup(ni, m,
1002 	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
1003 	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1004 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
1005 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
1006 		    "encrypting frame (%s)", __func__);
1007 		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1008 	}
1009 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1010 
1011 	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
1012 	M_WME_SETAC(m, params->ibp_pri);
1013 
1014 #ifdef IEEE80211_DEBUG
1015 	/* avoid printing too many frames */
1016 	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
1017 	    ieee80211_msg_dumppkts(vap)) {
1018 		printf("[%s] send %s on channel %u\n",
1019 		    ether_sprintf(wh->i_addr1),
1020 		    ieee80211_mgt_subtype_name(type),
1021 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
1022 	}
1023 #endif
1024 	IEEE80211_NODE_STAT(ni, tx_mgmt);
1025 
1026 	ret = ieee80211_raw_output(vap, ni, m, params);
1027 	IEEE80211_TX_UNLOCK(ic);
1028 	return (ret);
1029 }
1030 
1031 static void
1032 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg,
1033     int status)
1034 {
1035 	struct ieee80211vap *vap = ni->ni_vap;
1036 
1037 	wakeup(vap);
1038 }
1039 
1040 /*
1041  * Send a null data frame to the specified node.  If the station
1042  * is setup for QoS then a QoS Null Data frame is constructed.
1043  * If this is a WDS station then a 4-address frame is constructed.
1044  *
1045  * NB: the caller is assumed to have setup a node reference
1046  *     for use; this is necessary to deal with a race condition
1047  *     when probing for inactive stations.  Like ieee80211_mgmt_output
1048  *     we must cleanup any node reference on error;  however we
1049  *     can safely just unref it as we know it will never be the
1050  *     last reference to the node.
1051  */
1052 int
1053 ieee80211_send_nulldata(struct ieee80211_node *ni)
1054 {
1055 	struct ieee80211vap *vap = ni->ni_vap;
1056 	struct ieee80211com *ic = ni->ni_ic;
1057 	struct mbuf *m;
1058 	struct ieee80211_frame *wh;
1059 	int hdrlen;
1060 	uint8_t *frm;
1061 	int ret;
1062 
1063 	if (vap->iv_state == IEEE80211_S_CAC) {
1064 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
1065 		    ni, "block %s frame in CAC state", "null data");
1066 		ieee80211_unref_node(&ni);
1067 		vap->iv_stats.is_tx_badstate++;
1068 		return EIO;		/* XXX */
1069 	}
1070 
1071 	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
1072 		hdrlen = sizeof(struct ieee80211_qosframe);
1073 	else
1074 		hdrlen = sizeof(struct ieee80211_frame);
1075 	/* NB: only WDS vap's get 4-address frames */
1076 	if (vap->iv_opmode == IEEE80211_M_WDS)
1077 		hdrlen += IEEE80211_ADDR_LEN;
1078 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1079 		hdrlen = roundup(hdrlen, sizeof(uint32_t));
1080 
1081 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
1082 	if (m == NULL) {
1083 		/* XXX debug msg */
1084 		ieee80211_unref_node(&ni);
1085 		vap->iv_stats.is_tx_nobuf++;
1086 		return ENOMEM;
1087 	}
1088 	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
1089 	    ("leading space %zd", M_LEADINGSPACE(m)));
1090 	M_PREPEND(m, hdrlen, M_NOWAIT);
1091 	if (m == NULL) {
1092 		/* NB: cannot happen */
1093 		ieee80211_free_node(ni);
1094 		return ENOMEM;
1095 	}
1096 
1097 	IEEE80211_TX_LOCK(ic);
1098 
1099 	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
1100 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
1101 		const int tid = WME_AC_TO_TID(WME_AC_BE);
1102 		uint8_t *qos;
1103 
1104 		ieee80211_send_setup(ni, m,
1105 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
1106 		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1107 
1108 		if (vap->iv_opmode == IEEE80211_M_WDS)
1109 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1110 		else
1111 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1112 		qos[0] = tid & IEEE80211_QOS_TID;
1113 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
1114 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1115 		qos[1] = 0;
1116 	} else {
1117 		ieee80211_send_setup(ni, m,
1118 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
1119 		    IEEE80211_NONQOS_TID,
1120 		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1121 	}
1122 	if (vap->iv_opmode != IEEE80211_M_WDS) {
1123 		/* NB: power management bit is never sent by an AP */
1124 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1125 		    vap->iv_opmode != IEEE80211_M_HOSTAP)
1126 			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
1127 	}
1128 	if ((ic->ic_flags & IEEE80211_F_SCAN) &&
1129 	    (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) {
1130 		ieee80211_add_callback(m, ieee80211_nulldata_transmitted,
1131 		    NULL);
1132 	}
1133 	m->m_len = m->m_pkthdr.len = hdrlen;
1134 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1135 
1136 	M_WME_SETAC(m, WME_AC_BE);
1137 
1138 	IEEE80211_NODE_STAT(ni, tx_data);
1139 
1140 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
1141 	    "send %snull data frame on channel %u, pwr mgt %s",
1142 	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
1143 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
1144 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
1145 
1146 	ret = ieee80211_raw_output(vap, ni, m, NULL);
1147 	IEEE80211_TX_UNLOCK(ic);
1148 	return (ret);
1149 }
1150 
1151 /*
1152  * Assign priority to a frame based on any vlan tag assigned
1153  * to the station and/or any Diffserv setting in an IP header.
1154  * Finally, if an ACM policy is setup (in station mode) it's
1155  * applied.
1156  */
1157 int
1158 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
1159 {
1160 	const struct ether_header *eh = NULL;
1161 	uint16_t ether_type;
1162 	int v_wme_ac, d_wme_ac, ac;
1163 
1164 	if (__predict_false(m->m_flags & M_ENCAP)) {
1165 		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
1166 		struct llc *llc;
1167 		int hdrlen, subtype;
1168 
1169 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1170 		if (subtype & IEEE80211_FC0_SUBTYPE_NODATA) {
1171 			ac = WME_AC_BE;
1172 			goto done;
1173 		}
1174 
1175 		hdrlen = ieee80211_hdrsize(wh);
1176 		if (m->m_pkthdr.len < hdrlen + sizeof(*llc))
1177 			return 1;
1178 
1179 		llc = (struct llc *)mtodo(m, hdrlen);
1180 		if (llc->llc_dsap != LLC_SNAP_LSAP ||
1181 		    llc->llc_ssap != LLC_SNAP_LSAP ||
1182 		    llc->llc_control != LLC_UI ||
1183 		    llc->llc_snap.org_code[0] != 0 ||
1184 		    llc->llc_snap.org_code[1] != 0 ||
1185 		    llc->llc_snap.org_code[2] != 0)
1186 			return 1;
1187 
1188 		ether_type = llc->llc_snap.ether_type;
1189 	} else {
1190 		eh = mtod(m, struct ether_header *);
1191 		ether_type = eh->ether_type;
1192 	}
1193 
1194 	/*
1195 	 * Always promote PAE/EAPOL frames to high priority.
1196 	 */
1197 	if (ether_type == htons(ETHERTYPE_PAE)) {
1198 		/* NB: mark so others don't need to check header */
1199 		m->m_flags |= M_EAPOL;
1200 		ac = WME_AC_VO;
1201 		goto done;
1202 	}
1203 	/*
1204 	 * Non-qos traffic goes to BE.
1205 	 */
1206 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
1207 		ac = WME_AC_BE;
1208 		goto done;
1209 	}
1210 
1211 	/*
1212 	 * If node has a vlan tag then all traffic
1213 	 * to it must have a matching tag.
1214 	 */
1215 	v_wme_ac = 0;
1216 	if (ni->ni_vlan != 0) {
1217 		 if ((m->m_flags & M_VLANTAG) == 0) {
1218 			IEEE80211_NODE_STAT(ni, tx_novlantag);
1219 			return 1;
1220 		}
1221 		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
1222 		    EVL_VLANOFTAG(ni->ni_vlan)) {
1223 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
1224 			return 1;
1225 		}
1226 		/* map vlan priority to AC */
1227 		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
1228 	}
1229 
1230 	/* XXX m_copydata may be too slow for fast path */
1231 #ifdef INET
1232 	if (eh && eh->ether_type == htons(ETHERTYPE_IP)) {
1233 		uint8_t tos;
1234 		/*
1235 		 * IP frame, map the DSCP bits from the TOS field.
1236 		 */
1237 		/* NB: ip header may not be in first mbuf */
1238 		m_copydata(m, sizeof(struct ether_header) +
1239 		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
1240 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1241 		d_wme_ac = TID_TO_WME_AC(tos);
1242 	} else {
1243 #endif /* INET */
1244 #ifdef INET6
1245 	if (eh && eh->ether_type == htons(ETHERTYPE_IPV6)) {
1246 		uint32_t flow;
1247 		uint8_t tos;
1248 		/*
1249 		 * IPv6 frame, map the DSCP bits from the traffic class field.
1250 		 */
1251 		m_copydata(m, sizeof(struct ether_header) +
1252 		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
1253 		    (caddr_t) &flow);
1254 		tos = (uint8_t)(ntohl(flow) >> 20);
1255 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1256 		d_wme_ac = TID_TO_WME_AC(tos);
1257 	} else {
1258 #endif /* INET6 */
1259 		d_wme_ac = WME_AC_BE;
1260 #ifdef INET6
1261 	}
1262 #endif
1263 #ifdef INET
1264 	}
1265 #endif
1266 	/*
1267 	 * Use highest priority AC.
1268 	 */
1269 	if (v_wme_ac > d_wme_ac)
1270 		ac = v_wme_ac;
1271 	else
1272 		ac = d_wme_ac;
1273 
1274 	/*
1275 	 * Apply ACM policy.
1276 	 */
1277 	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1278 		static const int acmap[4] = {
1279 			WME_AC_BK,	/* WME_AC_BE */
1280 			WME_AC_BK,	/* WME_AC_BK */
1281 			WME_AC_BE,	/* WME_AC_VI */
1282 			WME_AC_VI,	/* WME_AC_VO */
1283 		};
1284 		struct ieee80211com *ic = ni->ni_ic;
1285 
1286 		while (ac != WME_AC_BK &&
1287 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1288 			ac = acmap[ac];
1289 	}
1290 done:
1291 	M_WME_SETAC(m, ac);
1292 	return 0;
1293 }
1294 
1295 /*
1296  * Insure there is sufficient contiguous space to encapsulate the
1297  * 802.11 data frame.  If room isn't already there, arrange for it.
1298  * Drivers and cipher modules assume we have done the necessary work
1299  * and fail rudely if they don't find the space they need.
1300  */
1301 struct mbuf *
1302 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1303 	struct ieee80211_key *key, struct mbuf *m)
1304 {
1305 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
1306 	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1307 
1308 	if (key != NULL) {
1309 		/* XXX belongs in crypto code? */
1310 		needed_space += key->wk_cipher->ic_header;
1311 		/* XXX frags */
1312 		/*
1313 		 * When crypto is being done in the host we must insure
1314 		 * the data are writable for the cipher routines; clone
1315 		 * a writable mbuf chain.
1316 		 * XXX handle SWMIC specially
1317 		 */
1318 		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1319 			m = m_unshare(m, M_NOWAIT);
1320 			if (m == NULL) {
1321 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1322 				    "%s: cannot get writable mbuf\n", __func__);
1323 				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1324 				return NULL;
1325 			}
1326 		}
1327 	}
1328 	/*
1329 	 * We know we are called just before stripping an Ethernet
1330 	 * header and prepending an LLC header.  This means we know
1331 	 * there will be
1332 	 *	sizeof(struct ether_header) - sizeof(struct llc)
1333 	 * bytes recovered to which we need additional space for the
1334 	 * 802.11 header and any crypto header.
1335 	 */
1336 	/* XXX check trailing space and copy instead? */
1337 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1338 		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
1339 		if (n == NULL) {
1340 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1341 			    "%s: cannot expand storage\n", __func__);
1342 			vap->iv_stats.is_tx_nobuf++;
1343 			m_freem(m);
1344 			return NULL;
1345 		}
1346 		KASSERT(needed_space <= MHLEN,
1347 		    ("not enough room, need %u got %d\n", needed_space, MHLEN));
1348 		/*
1349 		 * Setup new mbuf to have leading space to prepend the
1350 		 * 802.11 header and any crypto header bits that are
1351 		 * required (the latter are added when the driver calls
1352 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
1353 		 */
1354 		/* NB: must be first 'cuz it clobbers m_data */
1355 		m_move_pkthdr(n, m);
1356 		n->m_len = 0;			/* NB: m_gethdr does not set */
1357 		n->m_data += needed_space;
1358 		/*
1359 		 * Pull up Ethernet header to create the expected layout.
1360 		 * We could use m_pullup but that's overkill (i.e. we don't
1361 		 * need the actual data) and it cannot fail so do it inline
1362 		 * for speed.
1363 		 */
1364 		/* NB: struct ether_header is known to be contiguous */
1365 		n->m_len += sizeof(struct ether_header);
1366 		m->m_len -= sizeof(struct ether_header);
1367 		m->m_data += sizeof(struct ether_header);
1368 		/*
1369 		 * Replace the head of the chain.
1370 		 */
1371 		n->m_next = m;
1372 		m = n;
1373 	}
1374 	return m;
1375 #undef TO_BE_RECLAIMED
1376 }
1377 
1378 /*
1379  * Return the transmit key to use in sending a unicast frame.
1380  * If a unicast key is set we use that.  When no unicast key is set
1381  * we fall back to the default transmit key.
1382  */
1383 static __inline struct ieee80211_key *
1384 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1385 	struct ieee80211_node *ni)
1386 {
1387 	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1388 		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1389 		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1390 			return NULL;
1391 		return &vap->iv_nw_keys[vap->iv_def_txkey];
1392 	} else {
1393 		return &ni->ni_ucastkey;
1394 	}
1395 }
1396 
1397 /*
1398  * Return the transmit key to use in sending a multicast frame.
1399  * Multicast traffic always uses the group key which is installed as
1400  * the default tx key.
1401  */
1402 static __inline struct ieee80211_key *
1403 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1404 	struct ieee80211_node *ni)
1405 {
1406 	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1407 	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1408 		return NULL;
1409 	return &vap->iv_nw_keys[vap->iv_def_txkey];
1410 }
1411 
1412 /*
1413  * Encapsulate an outbound data frame.  The mbuf chain is updated.
1414  * If an error is encountered NULL is returned.  The caller is required
1415  * to provide a node reference and pullup the ethernet header in the
1416  * first mbuf.
1417  *
1418  * NB: Packet is assumed to be processed by ieee80211_classify which
1419  *     marked EAPOL frames w/ M_EAPOL.
1420  */
1421 struct mbuf *
1422 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1423     struct mbuf *m)
1424 {
1425 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1426 #define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
1427 	struct ieee80211com *ic = ni->ni_ic;
1428 #ifdef IEEE80211_SUPPORT_MESH
1429 	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1430 	struct ieee80211_meshcntl_ae10 *mc;
1431 	struct ieee80211_mesh_route *rt = NULL;
1432 	int dir = -1;
1433 #endif
1434 	struct ether_header eh;
1435 	struct ieee80211_frame *wh;
1436 	struct ieee80211_key *key;
1437 	struct llc *llc;
1438 	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast;
1439 	ieee80211_seq seqno;
1440 	int meshhdrsize, meshae;
1441 	uint8_t *qos;
1442 	int is_amsdu = 0;
1443 
1444 	IEEE80211_TX_LOCK_ASSERT(ic);
1445 
1446 	is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST));
1447 
1448 	/*
1449 	 * Copy existing Ethernet header to a safe place.  The
1450 	 * rest of the code assumes it's ok to strip it when
1451 	 * reorganizing state for the final encapsulation.
1452 	 */
1453 	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1454 	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1455 
1456 	/*
1457 	 * Insure space for additional headers.  First identify
1458 	 * transmit key to use in calculating any buffer adjustments
1459 	 * required.  This is also used below to do privacy
1460 	 * encapsulation work.  Then calculate the 802.11 header
1461 	 * size and any padding required by the driver.
1462 	 *
1463 	 * Note key may be NULL if we fall back to the default
1464 	 * transmit key and that is not set.  In that case the
1465 	 * buffer may not be expanded as needed by the cipher
1466 	 * routines, but they will/should discard it.
1467 	 */
1468 	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1469 		if (vap->iv_opmode == IEEE80211_M_STA ||
1470 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1471 		    (vap->iv_opmode == IEEE80211_M_WDS &&
1472 		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1473 			key = ieee80211_crypto_getucastkey(vap, ni);
1474 		else
1475 			key = ieee80211_crypto_getmcastkey(vap, ni);
1476 		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1477 			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1478 			    eh.ether_dhost,
1479 			    "no default transmit key (%s) deftxkey %u",
1480 			    __func__, vap->iv_def_txkey);
1481 			vap->iv_stats.is_tx_nodefkey++;
1482 			goto bad;
1483 		}
1484 	} else
1485 		key = NULL;
1486 	/*
1487 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1488 	 * frames so suppress use.  This may be an issue if other
1489 	 * ap's require all data frames to be QoS-encapsulated
1490 	 * once negotiated in which case we'll need to make this
1491 	 * configurable.
1492 	 *
1493 	 * Don't send multicast QoS frames.
1494 	 * Technically multicast frames can be QoS if all stations in the
1495 	 * BSS are also QoS.
1496 	 *
1497 	 * NB: mesh data frames are QoS, including multicast frames.
1498 	 */
1499 	addqos =
1500 	    (((is_mcast == 0) && (ni->ni_flags &
1501 	     (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) ||
1502 	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1503 	    (m->m_flags & M_EAPOL) == 0;
1504 
1505 	if (addqos)
1506 		hdrsize = sizeof(struct ieee80211_qosframe);
1507 	else
1508 		hdrsize = sizeof(struct ieee80211_frame);
1509 #ifdef IEEE80211_SUPPORT_MESH
1510 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1511 		/*
1512 		 * Mesh data frames are encapsulated according to the
1513 		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1514 		 * o Group Addressed data (aka multicast) originating
1515 		 *   at the local sta are sent w/ 3-address format and
1516 		 *   address extension mode 00
1517 		 * o Individually Addressed data (aka unicast) originating
1518 		 *   at the local sta are sent w/ 4-address format and
1519 		 *   address extension mode 00
1520 		 * o Group Addressed data forwarded from a non-mesh sta are
1521 		 *   sent w/ 3-address format and address extension mode 01
1522 		 * o Individually Address data from another sta are sent
1523 		 *   w/ 4-address format and address extension mode 10
1524 		 */
1525 		is4addr = 0;		/* NB: don't use, disable */
1526 		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1527 			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1528 			KASSERT(rt != NULL, ("route is NULL"));
1529 			dir = IEEE80211_FC1_DIR_DSTODS;
1530 			hdrsize += IEEE80211_ADDR_LEN;
1531 			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1532 				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1533 				    vap->iv_myaddr)) {
1534 					IEEE80211_NOTE_MAC(vap,
1535 					    IEEE80211_MSG_MESH,
1536 					    eh.ether_dhost,
1537 					    "%s", "trying to send to ourself");
1538 					goto bad;
1539 				}
1540 				meshae = IEEE80211_MESH_AE_10;
1541 				meshhdrsize =
1542 				    sizeof(struct ieee80211_meshcntl_ae10);
1543 			} else {
1544 				meshae = IEEE80211_MESH_AE_00;
1545 				meshhdrsize =
1546 				    sizeof(struct ieee80211_meshcntl);
1547 			}
1548 		} else {
1549 			dir = IEEE80211_FC1_DIR_FROMDS;
1550 			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1551 				/* proxy group */
1552 				meshae = IEEE80211_MESH_AE_01;
1553 				meshhdrsize =
1554 				    sizeof(struct ieee80211_meshcntl_ae01);
1555 			} else {
1556 				/* group */
1557 				meshae = IEEE80211_MESH_AE_00;
1558 				meshhdrsize = sizeof(struct ieee80211_meshcntl);
1559 			}
1560 		}
1561 	} else {
1562 #endif
1563 		/*
1564 		 * 4-address frames need to be generated for:
1565 		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1566 		 * o packets sent through a vap marked for relaying
1567 		 *   (e.g. a station operating with dynamic WDS)
1568 		 */
1569 		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1570 		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1571 		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1572 		if (is4addr)
1573 			hdrsize += IEEE80211_ADDR_LEN;
1574 		meshhdrsize = meshae = 0;
1575 #ifdef IEEE80211_SUPPORT_MESH
1576 	}
1577 #endif
1578 	/*
1579 	 * Honor driver DATAPAD requirement.
1580 	 */
1581 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1582 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1583 	else
1584 		hdrspace = hdrsize;
1585 
1586 	if (__predict_true((m->m_flags & M_FF) == 0)) {
1587 		/*
1588 		 * Normal frame.
1589 		 */
1590 		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1591 		if (m == NULL) {
1592 			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1593 			goto bad;
1594 		}
1595 		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1596 		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1597 		llc = mtod(m, struct llc *);
1598 		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1599 		llc->llc_control = LLC_UI;
1600 		llc->llc_snap.org_code[0] = 0;
1601 		llc->llc_snap.org_code[1] = 0;
1602 		llc->llc_snap.org_code[2] = 0;
1603 		llc->llc_snap.ether_type = eh.ether_type;
1604 	} else {
1605 #ifdef IEEE80211_SUPPORT_SUPERG
1606 		/*
1607 		 * Aggregated frame.  Check if it's for AMSDU or FF.
1608 		 *
1609 		 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented
1610 		 * anywhere for some reason.  But, since 11n requires
1611 		 * AMSDU RX, we can just assume "11n" == "AMSDU".
1612 		 */
1613 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__);
1614 		if (ieee80211_amsdu_tx_ok(ni)) {
1615 			m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key);
1616 			is_amsdu = 1;
1617 		} else {
1618 			m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1619 		}
1620 		if (m == NULL)
1621 #endif
1622 			goto bad;
1623 	}
1624 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1625 
1626 	M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT);
1627 	if (m == NULL) {
1628 		vap->iv_stats.is_tx_nobuf++;
1629 		goto bad;
1630 	}
1631 	wh = mtod(m, struct ieee80211_frame *);
1632 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1633 	*(uint16_t *)wh->i_dur = 0;
1634 	qos = NULL;	/* NB: quiet compiler */
1635 	if (is4addr) {
1636 		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1637 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1638 		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1639 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1640 		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1641 	} else switch (vap->iv_opmode) {
1642 	case IEEE80211_M_STA:
1643 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1644 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1645 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1646 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1647 		break;
1648 	case IEEE80211_M_IBSS:
1649 	case IEEE80211_M_AHDEMO:
1650 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1651 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1652 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1653 		/*
1654 		 * NB: always use the bssid from iv_bss as the
1655 		 *     neighbor's may be stale after an ibss merge
1656 		 */
1657 		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1658 		break;
1659 	case IEEE80211_M_HOSTAP:
1660 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1661 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1662 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1663 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1664 		break;
1665 #ifdef IEEE80211_SUPPORT_MESH
1666 	case IEEE80211_M_MBSS:
1667 		/* NB: offset by hdrspace to deal with DATAPAD */
1668 		mc = (struct ieee80211_meshcntl_ae10 *)
1669 		     (mtod(m, uint8_t *) + hdrspace);
1670 		wh->i_fc[1] = dir;
1671 		switch (meshae) {
1672 		case IEEE80211_MESH_AE_00:	/* no proxy */
1673 			mc->mc_flags = 0;
1674 			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1675 				IEEE80211_ADDR_COPY(wh->i_addr1,
1676 				    ni->ni_macaddr);
1677 				IEEE80211_ADDR_COPY(wh->i_addr2,
1678 				    vap->iv_myaddr);
1679 				IEEE80211_ADDR_COPY(wh->i_addr3,
1680 				    eh.ether_dhost);
1681 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1682 				    eh.ether_shost);
1683 				qos =((struct ieee80211_qosframe_addr4 *)
1684 				    wh)->i_qos;
1685 			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1686 				 /* mcast */
1687 				IEEE80211_ADDR_COPY(wh->i_addr1,
1688 				    eh.ether_dhost);
1689 				IEEE80211_ADDR_COPY(wh->i_addr2,
1690 				    vap->iv_myaddr);
1691 				IEEE80211_ADDR_COPY(wh->i_addr3,
1692 				    eh.ether_shost);
1693 				qos = ((struct ieee80211_qosframe *)
1694 				    wh)->i_qos;
1695 			}
1696 			break;
1697 		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
1698 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1699 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1700 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1701 			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1702 			mc->mc_flags = 1;
1703 			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1704 			    eh.ether_shost);
1705 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1706 			break;
1707 		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
1708 			KASSERT(rt != NULL, ("route is NULL"));
1709 			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1710 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1711 			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1712 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1713 			mc->mc_flags = IEEE80211_MESH_AE_10;
1714 			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1715 			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1716 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1717 			break;
1718 		default:
1719 			KASSERT(0, ("meshae %d", meshae));
1720 			break;
1721 		}
1722 		mc->mc_ttl = ms->ms_ttl;
1723 		ms->ms_seq++;
1724 		le32enc(mc->mc_seq, ms->ms_seq);
1725 		break;
1726 #endif
1727 	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1728 	default:
1729 		goto bad;
1730 	}
1731 	if (m->m_flags & M_MORE_DATA)
1732 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1733 	if (addqos) {
1734 		int ac, tid;
1735 
1736 		if (is4addr) {
1737 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1738 		/* NB: mesh case handled earlier */
1739 		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1740 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1741 		ac = M_WME_GETAC(m);
1742 		/* map from access class/queue to 11e header priorty value */
1743 		tid = WME_AC_TO_TID(ac);
1744 		qos[0] = tid & IEEE80211_QOS_TID;
1745 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1746 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1747 #ifdef IEEE80211_SUPPORT_MESH
1748 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1749 			qos[1] = IEEE80211_QOS_MC;
1750 		else
1751 #endif
1752 			qos[1] = 0;
1753 		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1754 
1755 		/*
1756 		 * If this is an A-MSDU then ensure we set the
1757 		 * relevant field.
1758 		 */
1759 		if (is_amsdu)
1760 			qos[0] |= IEEE80211_QOS_AMSDU;
1761 
1762 		/*
1763 		 * XXX TODO TX lock is needed for atomic updates of sequence
1764 		 * numbers.  If the driver does it, then don't do it here;
1765 		 * and we don't need the TX lock held.
1766 		 */
1767 		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1768 			/*
1769 			 * 802.11-2012 9.3.2.10 -
1770 			 *
1771 			 * If this is a multicast frame then we need
1772 			 * to ensure that the sequence number comes from
1773 			 * a separate seqno space and not the TID space.
1774 			 *
1775 			 * Otherwise multicast frames may actually cause
1776 			 * holes in the TX blockack window space and
1777 			 * upset various things.
1778 			 */
1779 			if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1780 				seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1781 			else
1782 				seqno = ni->ni_txseqs[tid]++;
1783 
1784 			/*
1785 			 * NB: don't assign a sequence # to potential
1786 			 * aggregates; we expect this happens at the
1787 			 * point the frame comes off any aggregation q
1788 			 * as otherwise we may introduce holes in the
1789 			 * BA sequence space and/or make window accouting
1790 			 * more difficult.
1791 			 *
1792 			 * XXX may want to control this with a driver
1793 			 * capability; this may also change when we pull
1794 			 * aggregation up into net80211
1795 			 */
1796 			*(uint16_t *)wh->i_seq =
1797 			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1798 			M_SEQNO_SET(m, seqno);
1799 		} else {
1800 			/* NB: zero out i_seq field (for s/w encryption etc) */
1801 			*(uint16_t *)wh->i_seq = 0;
1802 		}
1803 	} else {
1804 		/*
1805 		 * XXX TODO TX lock is needed for atomic updates of sequence
1806 		 * numbers.  If the driver does it, then don't do it here;
1807 		 * and we don't need the TX lock held.
1808 		 */
1809 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1810 		*(uint16_t *)wh->i_seq =
1811 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1812 		M_SEQNO_SET(m, seqno);
1813 
1814 		/*
1815 		 * XXX TODO: we shouldn't allow EAPOL, etc that would
1816 		 * be forced to be non-QoS traffic to be A-MSDU encapsulated.
1817 		 */
1818 		if (is_amsdu)
1819 			printf("%s: XXX ERROR: is_amsdu set; not QoS!\n",
1820 			    __func__);
1821 	}
1822 
1823 	/*
1824 	 * Check if xmit fragmentation is required.
1825 	 *
1826 	 * If the hardware does fragmentation offload, then don't bother
1827 	 * doing it here.
1828 	 */
1829 	if (IEEE80211_CONF_FRAG_OFFLOAD(ic))
1830 		txfrag = 0;
1831 	else
1832 		txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1833 		    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1834 		    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1835 		    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1836 
1837 	if (key != NULL) {
1838 		/*
1839 		 * IEEE 802.1X: send EAPOL frames always in the clear.
1840 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1841 		 */
1842 		if ((m->m_flags & M_EAPOL) == 0 ||
1843 		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1844 		     (vap->iv_opmode == IEEE80211_M_STA ?
1845 		      !IEEE80211_KEY_UNDEFINED(key) :
1846 		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1847 			wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1848 			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1849 				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1850 				    eh.ether_dhost,
1851 				    "%s", "enmic failed, discard frame");
1852 				vap->iv_stats.is_crypto_enmicfail++;
1853 				goto bad;
1854 			}
1855 		}
1856 	}
1857 	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1858 	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1859 		goto bad;
1860 
1861 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1862 
1863 	IEEE80211_NODE_STAT(ni, tx_data);
1864 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1865 		IEEE80211_NODE_STAT(ni, tx_mcast);
1866 		m->m_flags |= M_MCAST;
1867 	} else
1868 		IEEE80211_NODE_STAT(ni, tx_ucast);
1869 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1870 
1871 	return m;
1872 bad:
1873 	if (m != NULL)
1874 		m_freem(m);
1875 	return NULL;
1876 #undef WH4
1877 #undef MC01
1878 }
1879 
1880 void
1881 ieee80211_free_mbuf(struct mbuf *m)
1882 {
1883 	struct mbuf *next;
1884 
1885 	if (m == NULL)
1886 		return;
1887 
1888 	do {
1889 		next = m->m_nextpkt;
1890 		m->m_nextpkt = NULL;
1891 		m_freem(m);
1892 	} while ((m = next) != NULL);
1893 }
1894 
1895 /*
1896  * Fragment the frame according to the specified mtu.
1897  * The size of the 802.11 header (w/o padding) is provided
1898  * so we don't need to recalculate it.  We create a new
1899  * mbuf for each fragment and chain it through m_nextpkt;
1900  * we might be able to optimize this by reusing the original
1901  * packet's mbufs but that is significantly more complicated.
1902  */
1903 static int
1904 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1905 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1906 {
1907 	struct ieee80211com *ic = vap->iv_ic;
1908 	struct ieee80211_frame *wh, *whf;
1909 	struct mbuf *m, *prev;
1910 	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1911 	u_int hdrspace;
1912 
1913 	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1914 	KASSERT(m0->m_pkthdr.len > mtu,
1915 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1916 
1917 	/*
1918 	 * Honor driver DATAPAD requirement.
1919 	 */
1920 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1921 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1922 	else
1923 		hdrspace = hdrsize;
1924 
1925 	wh = mtod(m0, struct ieee80211_frame *);
1926 	/* NB: mark the first frag; it will be propagated below */
1927 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1928 	totalhdrsize = hdrspace + ciphdrsize;
1929 	fragno = 1;
1930 	off = mtu - ciphdrsize;
1931 	remainder = m0->m_pkthdr.len - off;
1932 	prev = m0;
1933 	do {
1934 		fragsize = MIN(totalhdrsize + remainder, mtu);
1935 		m = m_get2(fragsize, M_NOWAIT, MT_DATA, M_PKTHDR);
1936 		if (m == NULL)
1937 			goto bad;
1938 		/* leave room to prepend any cipher header */
1939 		m_align(m, fragsize - ciphdrsize);
1940 
1941 		/*
1942 		 * Form the header in the fragment.  Note that since
1943 		 * we mark the first fragment with the MORE_FRAG bit
1944 		 * it automatically is propagated to each fragment; we
1945 		 * need only clear it on the last fragment (done below).
1946 		 * NB: frag 1+ dont have Mesh Control field present.
1947 		 */
1948 		whf = mtod(m, struct ieee80211_frame *);
1949 		memcpy(whf, wh, hdrsize);
1950 #ifdef IEEE80211_SUPPORT_MESH
1951 		if (vap->iv_opmode == IEEE80211_M_MBSS) {
1952 			if (IEEE80211_IS_DSTODS(wh))
1953 				((struct ieee80211_qosframe_addr4 *)
1954 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1955 			else
1956 				((struct ieee80211_qosframe *)
1957 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1958 		}
1959 #endif
1960 		*(uint16_t *)&whf->i_seq[0] |= htole16(
1961 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1962 				IEEE80211_SEQ_FRAG_SHIFT);
1963 		fragno++;
1964 
1965 		payload = fragsize - totalhdrsize;
1966 		/* NB: destination is known to be contiguous */
1967 
1968 		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
1969 		m->m_len = hdrspace + payload;
1970 		m->m_pkthdr.len = hdrspace + payload;
1971 		m->m_flags |= M_FRAG;
1972 
1973 		/* chain up the fragment */
1974 		prev->m_nextpkt = m;
1975 		prev = m;
1976 
1977 		/* deduct fragment just formed */
1978 		remainder -= payload;
1979 		off += payload;
1980 	} while (remainder != 0);
1981 
1982 	/* set the last fragment */
1983 	m->m_flags |= M_LASTFRAG;
1984 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1985 
1986 	/* strip first mbuf now that everything has been copied */
1987 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1988 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1989 
1990 	vap->iv_stats.is_tx_fragframes++;
1991 	vap->iv_stats.is_tx_frags += fragno-1;
1992 
1993 	return 1;
1994 bad:
1995 	/* reclaim fragments but leave original frame for caller to free */
1996 	ieee80211_free_mbuf(m0->m_nextpkt);
1997 	m0->m_nextpkt = NULL;
1998 	return 0;
1999 }
2000 
2001 /*
2002  * Add a supported rates element id to a frame.
2003  */
2004 uint8_t *
2005 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
2006 {
2007 	int nrates;
2008 
2009 	*frm++ = IEEE80211_ELEMID_RATES;
2010 	nrates = rs->rs_nrates;
2011 	if (nrates > IEEE80211_RATE_SIZE)
2012 		nrates = IEEE80211_RATE_SIZE;
2013 	*frm++ = nrates;
2014 	memcpy(frm, rs->rs_rates, nrates);
2015 	return frm + nrates;
2016 }
2017 
2018 /*
2019  * Add an extended supported rates element id to a frame.
2020  */
2021 uint8_t *
2022 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
2023 {
2024 	/*
2025 	 * Add an extended supported rates element if operating in 11g mode.
2026 	 */
2027 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2028 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2029 		*frm++ = IEEE80211_ELEMID_XRATES;
2030 		*frm++ = nrates;
2031 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2032 		frm += nrates;
2033 	}
2034 	return frm;
2035 }
2036 
2037 /*
2038  * Add an ssid element to a frame.
2039  */
2040 uint8_t *
2041 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
2042 {
2043 	*frm++ = IEEE80211_ELEMID_SSID;
2044 	*frm++ = len;
2045 	memcpy(frm, ssid, len);
2046 	return frm + len;
2047 }
2048 
2049 /*
2050  * Add an erp element to a frame.
2051  */
2052 static uint8_t *
2053 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
2054 {
2055 	uint8_t erp;
2056 
2057 	*frm++ = IEEE80211_ELEMID_ERP;
2058 	*frm++ = 1;
2059 	erp = 0;
2060 	if (ic->ic_nonerpsta != 0)
2061 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
2062 	if (ic->ic_flags & IEEE80211_F_USEPROT)
2063 		erp |= IEEE80211_ERP_USE_PROTECTION;
2064 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
2065 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
2066 	*frm++ = erp;
2067 	return frm;
2068 }
2069 
2070 /*
2071  * Add a CFParams element to a frame.
2072  */
2073 static uint8_t *
2074 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
2075 {
2076 #define	ADDSHORT(frm, v) do {	\
2077 	le16enc(frm, v);	\
2078 	frm += 2;		\
2079 } while (0)
2080 	*frm++ = IEEE80211_ELEMID_CFPARMS;
2081 	*frm++ = 6;
2082 	*frm++ = 0;		/* CFP count */
2083 	*frm++ = 2;		/* CFP period */
2084 	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
2085 	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
2086 	return frm;
2087 #undef ADDSHORT
2088 }
2089 
2090 static __inline uint8_t *
2091 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
2092 {
2093 	memcpy(frm, ie->ie_data, ie->ie_len);
2094 	return frm + ie->ie_len;
2095 }
2096 
2097 static __inline uint8_t *
2098 add_ie(uint8_t *frm, const uint8_t *ie)
2099 {
2100 	memcpy(frm, ie, 2 + ie[1]);
2101 	return frm + 2 + ie[1];
2102 }
2103 
2104 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
2105 /*
2106  * Add a WME information element to a frame.
2107  */
2108 uint8_t *
2109 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
2110 {
2111 	static const struct ieee80211_wme_info info = {
2112 		.wme_id		= IEEE80211_ELEMID_VENDOR,
2113 		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
2114 		.wme_oui	= { WME_OUI_BYTES },
2115 		.wme_type	= WME_OUI_TYPE,
2116 		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
2117 		.wme_version	= WME_VERSION,
2118 		.wme_info	= 0,
2119 	};
2120 	memcpy(frm, &info, sizeof(info));
2121 	return frm + sizeof(info);
2122 }
2123 
2124 /*
2125  * Add a WME parameters element to a frame.
2126  */
2127 static uint8_t *
2128 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
2129 {
2130 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
2131 #define	ADDSHORT(frm, v) do {	\
2132 	le16enc(frm, v);	\
2133 	frm += 2;		\
2134 } while (0)
2135 	/* NB: this works 'cuz a param has an info at the front */
2136 	static const struct ieee80211_wme_info param = {
2137 		.wme_id		= IEEE80211_ELEMID_VENDOR,
2138 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
2139 		.wme_oui	= { WME_OUI_BYTES },
2140 		.wme_type	= WME_OUI_TYPE,
2141 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
2142 		.wme_version	= WME_VERSION,
2143 	};
2144 	int i;
2145 
2146 	memcpy(frm, &param, sizeof(param));
2147 	frm += __offsetof(struct ieee80211_wme_info, wme_info);
2148 	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
2149 	*frm++ = 0;					/* reserved field */
2150 	for (i = 0; i < WME_NUM_AC; i++) {
2151 		const struct wmeParams *ac =
2152 		       &wme->wme_bssChanParams.cap_wmeParams[i];
2153 		*frm++ = SM(i, WME_PARAM_ACI)
2154 		       | SM(ac->wmep_acm, WME_PARAM_ACM)
2155 		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
2156 		       ;
2157 		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
2158 		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
2159 		       ;
2160 		ADDSHORT(frm, ac->wmep_txopLimit);
2161 	}
2162 	return frm;
2163 #undef SM
2164 #undef ADDSHORT
2165 }
2166 #undef WME_OUI_BYTES
2167 
2168 /*
2169  * Add an 11h Power Constraint element to a frame.
2170  */
2171 static uint8_t *
2172 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
2173 {
2174 	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
2175 	/* XXX per-vap tx power limit? */
2176 	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
2177 
2178 	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
2179 	frm[1] = 1;
2180 	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
2181 	return frm + 3;
2182 }
2183 
2184 /*
2185  * Add an 11h Power Capability element to a frame.
2186  */
2187 static uint8_t *
2188 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
2189 {
2190 	frm[0] = IEEE80211_ELEMID_PWRCAP;
2191 	frm[1] = 2;
2192 	frm[2] = c->ic_minpower;
2193 	frm[3] = c->ic_maxpower;
2194 	return frm + 4;
2195 }
2196 
2197 /*
2198  * Add an 11h Supported Channels element to a frame.
2199  */
2200 static uint8_t *
2201 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
2202 {
2203 	static const int ielen = 26;
2204 
2205 	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
2206 	frm[1] = ielen;
2207 	/* XXX not correct */
2208 	memcpy(frm+2, ic->ic_chan_avail, ielen);
2209 	return frm + 2 + ielen;
2210 }
2211 
2212 /*
2213  * Add an 11h Quiet time element to a frame.
2214  */
2215 static uint8_t *
2216 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap, int update)
2217 {
2218 	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
2219 
2220 	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
2221 	quiet->len = 6;
2222 
2223 	/*
2224 	 * Only update every beacon interval - otherwise probe responses
2225 	 * would update the quiet count value.
2226 	 */
2227 	if (update) {
2228 		if (vap->iv_quiet_count_value == 1)
2229 			vap->iv_quiet_count_value = vap->iv_quiet_count;
2230 		else if (vap->iv_quiet_count_value > 1)
2231 			vap->iv_quiet_count_value--;
2232 	}
2233 
2234 	if (vap->iv_quiet_count_value == 0) {
2235 		/* value 0 is reserved as per 802.11h standerd */
2236 		vap->iv_quiet_count_value = 1;
2237 	}
2238 
2239 	quiet->tbttcount = vap->iv_quiet_count_value;
2240 	quiet->period = vap->iv_quiet_period;
2241 	quiet->duration = htole16(vap->iv_quiet_duration);
2242 	quiet->offset = htole16(vap->iv_quiet_offset);
2243 	return frm + sizeof(*quiet);
2244 }
2245 
2246 /*
2247  * Add an 11h Channel Switch Announcement element to a frame.
2248  * Note that we use the per-vap CSA count to adjust the global
2249  * counter so we can use this routine to form probe response
2250  * frames and get the current count.
2251  */
2252 static uint8_t *
2253 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
2254 {
2255 	struct ieee80211com *ic = vap->iv_ic;
2256 	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
2257 
2258 	csa->csa_ie = IEEE80211_ELEMID_CSA;
2259 	csa->csa_len = 3;
2260 	csa->csa_mode = 1;		/* XXX force quiet on channel */
2261 	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
2262 	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
2263 	return frm + sizeof(*csa);
2264 }
2265 
2266 /*
2267  * Add an 11h country information element to a frame.
2268  */
2269 static uint8_t *
2270 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
2271 {
2272 
2273 	if (ic->ic_countryie == NULL ||
2274 	    ic->ic_countryie_chan != ic->ic_bsschan) {
2275 		/*
2276 		 * Handle lazy construction of ie.  This is done on
2277 		 * first use and after a channel change that requires
2278 		 * re-calculation.
2279 		 */
2280 		if (ic->ic_countryie != NULL)
2281 			IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
2282 		ic->ic_countryie = ieee80211_alloc_countryie(ic);
2283 		if (ic->ic_countryie == NULL)
2284 			return frm;
2285 		ic->ic_countryie_chan = ic->ic_bsschan;
2286 	}
2287 	return add_appie(frm, ic->ic_countryie);
2288 }
2289 
2290 uint8_t *
2291 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
2292 {
2293 	if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
2294 		return (add_ie(frm, vap->iv_wpa_ie));
2295 	else {
2296 		/* XXX else complain? */
2297 		return (frm);
2298 	}
2299 }
2300 
2301 uint8_t *
2302 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
2303 {
2304 	if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
2305 		return (add_ie(frm, vap->iv_rsn_ie));
2306 	else {
2307 		/* XXX else complain? */
2308 		return (frm);
2309 	}
2310 }
2311 
2312 uint8_t *
2313 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
2314 {
2315 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
2316 		*frm++ = IEEE80211_ELEMID_QOS;
2317 		*frm++ = 1;
2318 		*frm++ = 0;
2319 	}
2320 
2321 	return (frm);
2322 }
2323 
2324 /*
2325  * Send a probe request frame with the specified ssid
2326  * and any optional information element data.
2327  */
2328 int
2329 ieee80211_send_probereq(struct ieee80211_node *ni,
2330 	const uint8_t sa[IEEE80211_ADDR_LEN],
2331 	const uint8_t da[IEEE80211_ADDR_LEN],
2332 	const uint8_t bssid[IEEE80211_ADDR_LEN],
2333 	const uint8_t *ssid, size_t ssidlen)
2334 {
2335 	struct ieee80211vap *vap = ni->ni_vap;
2336 	struct ieee80211com *ic = ni->ni_ic;
2337 	struct ieee80211_node *bss;
2338 	const struct ieee80211_txparam *tp;
2339 	struct ieee80211_bpf_params params;
2340 	const struct ieee80211_rateset *rs;
2341 	struct mbuf *m;
2342 	uint8_t *frm;
2343 	int ret;
2344 
2345 	bss = ieee80211_ref_node(vap->iv_bss);
2346 
2347 	if (vap->iv_state == IEEE80211_S_CAC) {
2348 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
2349 		    "block %s frame in CAC state", "probe request");
2350 		vap->iv_stats.is_tx_badstate++;
2351 		ieee80211_free_node(bss);
2352 		return EIO;		/* XXX */
2353 	}
2354 
2355 	/*
2356 	 * Hold a reference on the node so it doesn't go away until after
2357 	 * the xmit is complete all the way in the driver.  On error we
2358 	 * will remove our reference.
2359 	 */
2360 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2361 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2362 		__func__, __LINE__,
2363 		ni, ether_sprintf(ni->ni_macaddr),
2364 		ieee80211_node_refcnt(ni)+1);
2365 	ieee80211_ref_node(ni);
2366 
2367 	/*
2368 	 * prreq frame format
2369 	 *	[tlv] ssid
2370 	 *	[tlv] supported rates
2371 	 *	[tlv] RSN (optional)
2372 	 *	[tlv] extended supported rates
2373 	 *	[tlv] HT cap (optional)
2374 	 *	[tlv] VHT cap (optional)
2375 	 *	[tlv] WPA (optional)
2376 	 *	[tlv] user-specified ie's
2377 	 */
2378 	m = ieee80211_getmgtframe(&frm,
2379 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2380 	       	 2 + IEEE80211_NWID_LEN
2381 	       + 2 + IEEE80211_RATE_SIZE
2382 	       + sizeof(struct ieee80211_ie_htcap)
2383 	       + sizeof(struct ieee80211_ie_vhtcap)
2384 	       + sizeof(struct ieee80211_ie_htinfo)	/* XXX not needed? */
2385 	       + sizeof(struct ieee80211_ie_wpa)
2386 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2387 	       + sizeof(struct ieee80211_ie_wpa)
2388 	       + (vap->iv_appie_probereq != NULL ?
2389 		   vap->iv_appie_probereq->ie_len : 0)
2390 	);
2391 	if (m == NULL) {
2392 		vap->iv_stats.is_tx_nobuf++;
2393 		ieee80211_free_node(ni);
2394 		ieee80211_free_node(bss);
2395 		return ENOMEM;
2396 	}
2397 
2398 	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2399 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2400 	frm = ieee80211_add_rates(frm, rs);
2401 	frm = ieee80211_add_rsn(frm, vap);
2402 	frm = ieee80211_add_xrates(frm, rs);
2403 
2404 	/*
2405 	 * Note: we can't use bss; we don't have one yet.
2406 	 *
2407 	 * So, we should announce our capabilities
2408 	 * in this channel mode (2g/5g), not the
2409 	 * channel details itself.
2410 	 */
2411 	if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
2412 	    (vap->iv_flags_ht & IEEE80211_FHT_HT)) {
2413 		struct ieee80211_channel *c;
2414 
2415 		/*
2416 		 * Get the HT channel that we should try upgrading to.
2417 		 * If we can do 40MHz then this'll upgrade it appropriately.
2418 		 */
2419 		c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2420 		    vap->iv_flags_ht);
2421 		frm = ieee80211_add_htcap_ch(frm, vap, c);
2422 	}
2423 
2424 	/*
2425 	 * XXX TODO: need to figure out what/how to update the
2426 	 * VHT channel.
2427 	 */
2428 #if 0
2429 	(vap->iv_flags_vht & IEEE80211_FVHT_VHT) {
2430 		struct ieee80211_channel *c;
2431 
2432 		c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2433 		    vap->iv_flags_ht);
2434 		c = ieee80211_vht_adjust_channel(ic, c, vap->iv_flags_vht);
2435 		frm = ieee80211_add_vhtcap_ch(frm, vap, c);
2436 	}
2437 #endif
2438 
2439 	frm = ieee80211_add_wpa(frm, vap);
2440 	if (vap->iv_appie_probereq != NULL)
2441 		frm = add_appie(frm, vap->iv_appie_probereq);
2442 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2443 
2444 	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2445 	    ("leading space %zd", M_LEADINGSPACE(m)));
2446 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2447 	if (m == NULL) {
2448 		/* NB: cannot happen */
2449 		ieee80211_free_node(ni);
2450 		ieee80211_free_node(bss);
2451 		return ENOMEM;
2452 	}
2453 
2454 	IEEE80211_TX_LOCK(ic);
2455 	ieee80211_send_setup(ni, m,
2456 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2457 	     IEEE80211_NONQOS_TID, sa, da, bssid);
2458 	/* XXX power management? */
2459 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2460 
2461 	M_WME_SETAC(m, WME_AC_BE);
2462 
2463 	IEEE80211_NODE_STAT(ni, tx_probereq);
2464 	IEEE80211_NODE_STAT(ni, tx_mgmt);
2465 
2466 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2467 	    "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n",
2468 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
2469 	    ether_sprintf(bssid),
2470 	    sa, ":",
2471 	    da, ":",
2472 	    ssidlen, ssid);
2473 
2474 	memset(&params, 0, sizeof(params));
2475 	params.ibp_pri = M_WME_GETAC(m);
2476 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2477 	params.ibp_rate0 = tp->mgmtrate;
2478 	if (IEEE80211_IS_MULTICAST(da)) {
2479 		params.ibp_flags |= IEEE80211_BPF_NOACK;
2480 		params.ibp_try0 = 1;
2481 	} else
2482 		params.ibp_try0 = tp->maxretry;
2483 	params.ibp_power = ni->ni_txpower;
2484 	ret = ieee80211_raw_output(vap, ni, m, &params);
2485 	IEEE80211_TX_UNLOCK(ic);
2486 	ieee80211_free_node(bss);
2487 	return (ret);
2488 }
2489 
2490 /*
2491  * Calculate capability information for mgt frames.
2492  */
2493 uint16_t
2494 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2495 {
2496 	struct ieee80211com *ic = vap->iv_ic;
2497 	uint16_t capinfo;
2498 
2499 	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2500 
2501 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2502 		capinfo = IEEE80211_CAPINFO_ESS;
2503 	else if (vap->iv_opmode == IEEE80211_M_IBSS)
2504 		capinfo = IEEE80211_CAPINFO_IBSS;
2505 	else
2506 		capinfo = 0;
2507 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2508 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2509 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2510 	    IEEE80211_IS_CHAN_2GHZ(chan))
2511 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2512 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2513 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2514 	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2515 		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2516 	return capinfo;
2517 }
2518 
2519 /*
2520  * Send a management frame.  The node is for the destination (or ic_bss
2521  * when in station mode).  Nodes other than ic_bss have their reference
2522  * count bumped to reflect our use for an indeterminant time.
2523  */
2524 int
2525 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2526 {
2527 #define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2528 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2529 	struct ieee80211vap *vap = ni->ni_vap;
2530 	struct ieee80211com *ic = ni->ni_ic;
2531 	struct ieee80211_node *bss = vap->iv_bss;
2532 	struct ieee80211_bpf_params params;
2533 	struct mbuf *m;
2534 	uint8_t *frm;
2535 	uint16_t capinfo;
2536 	int has_challenge, is_shared_key, ret, status;
2537 
2538 	KASSERT(ni != NULL, ("null node"));
2539 
2540 	/*
2541 	 * Hold a reference on the node so it doesn't go away until after
2542 	 * the xmit is complete all the way in the driver.  On error we
2543 	 * will remove our reference.
2544 	 */
2545 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2546 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2547 		__func__, __LINE__,
2548 		ni, ether_sprintf(ni->ni_macaddr),
2549 		ieee80211_node_refcnt(ni)+1);
2550 	ieee80211_ref_node(ni);
2551 
2552 	memset(&params, 0, sizeof(params));
2553 	switch (type) {
2554 
2555 	case IEEE80211_FC0_SUBTYPE_AUTH:
2556 		status = arg >> 16;
2557 		arg &= 0xffff;
2558 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2559 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2560 		    ni->ni_challenge != NULL);
2561 
2562 		/*
2563 		 * Deduce whether we're doing open authentication or
2564 		 * shared key authentication.  We do the latter if
2565 		 * we're in the middle of a shared key authentication
2566 		 * handshake or if we're initiating an authentication
2567 		 * request and configured to use shared key.
2568 		 */
2569 		is_shared_key = has_challenge ||
2570 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2571 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2572 		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
2573 
2574 		m = ieee80211_getmgtframe(&frm,
2575 			  ic->ic_headroom + sizeof(struct ieee80211_frame),
2576 			  3 * sizeof(uint16_t)
2577 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2578 				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
2579 		);
2580 		if (m == NULL)
2581 			senderr(ENOMEM, is_tx_nobuf);
2582 
2583 		((uint16_t *)frm)[0] =
2584 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2585 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
2586 		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
2587 		((uint16_t *)frm)[2] = htole16(status);/* status */
2588 
2589 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2590 			((uint16_t *)frm)[3] =
2591 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
2592 			    IEEE80211_ELEMID_CHALLENGE);
2593 			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2594 			    IEEE80211_CHALLENGE_LEN);
2595 			m->m_pkthdr.len = m->m_len =
2596 				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2597 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2598 				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2599 				    "request encrypt frame (%s)", __func__);
2600 				/* mark frame for encryption */
2601 				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2602 			}
2603 		} else
2604 			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2605 
2606 		/* XXX not right for shared key */
2607 		if (status == IEEE80211_STATUS_SUCCESS)
2608 			IEEE80211_NODE_STAT(ni, tx_auth);
2609 		else
2610 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
2611 
2612 		if (vap->iv_opmode == IEEE80211_M_STA)
2613 			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2614 				(void *) vap->iv_state);
2615 		break;
2616 
2617 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2618 		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2619 		    "send station deauthenticate (reason: %d (%s))", arg,
2620 		    ieee80211_reason_to_string(arg));
2621 		m = ieee80211_getmgtframe(&frm,
2622 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2623 			sizeof(uint16_t));
2624 		if (m == NULL)
2625 			senderr(ENOMEM, is_tx_nobuf);
2626 		*(uint16_t *)frm = htole16(arg);	/* reason */
2627 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2628 
2629 		IEEE80211_NODE_STAT(ni, tx_deauth);
2630 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2631 
2632 		ieee80211_node_unauthorize(ni);		/* port closed */
2633 		break;
2634 
2635 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2636 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2637 		/*
2638 		 * asreq frame format
2639 		 *	[2] capability information
2640 		 *	[2] listen interval
2641 		 *	[6*] current AP address (reassoc only)
2642 		 *	[tlv] ssid
2643 		 *	[tlv] supported rates
2644 		 *	[tlv] extended supported rates
2645 		 *	[4] power capability (optional)
2646 		 *	[28] supported channels (optional)
2647 		 *	[tlv] HT capabilities
2648 		 *	[tlv] VHT capabilities
2649 		 *	[tlv] WME (optional)
2650 		 *	[tlv] Vendor OUI HT capabilities (optional)
2651 		 *	[tlv] Atheros capabilities (if negotiated)
2652 		 *	[tlv] AppIE's (optional)
2653 		 */
2654 		m = ieee80211_getmgtframe(&frm,
2655 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2656 			 sizeof(uint16_t)
2657 		       + sizeof(uint16_t)
2658 		       + IEEE80211_ADDR_LEN
2659 		       + 2 + IEEE80211_NWID_LEN
2660 		       + 2 + IEEE80211_RATE_SIZE
2661 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2662 		       + 4
2663 		       + 2 + 26
2664 		       + sizeof(struct ieee80211_wme_info)
2665 		       + sizeof(struct ieee80211_ie_htcap)
2666 		       + sizeof(struct ieee80211_ie_vhtcap)
2667 		       + 4 + sizeof(struct ieee80211_ie_htcap)
2668 #ifdef IEEE80211_SUPPORT_SUPERG
2669 		       + sizeof(struct ieee80211_ath_ie)
2670 #endif
2671 		       + (vap->iv_appie_wpa != NULL ?
2672 				vap->iv_appie_wpa->ie_len : 0)
2673 		       + (vap->iv_appie_assocreq != NULL ?
2674 				vap->iv_appie_assocreq->ie_len : 0)
2675 		);
2676 		if (m == NULL)
2677 			senderr(ENOMEM, is_tx_nobuf);
2678 
2679 		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2680 		    ("wrong mode %u", vap->iv_opmode));
2681 		capinfo = IEEE80211_CAPINFO_ESS;
2682 		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2683 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2684 		/*
2685 		 * NB: Some 11a AP's reject the request when
2686 		 *     short preamble is set.
2687 		 */
2688 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2689 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2690 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2691 		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2692 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2693 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2694 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2695 		    (vap->iv_flags & IEEE80211_F_DOTH))
2696 			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2697 		*(uint16_t *)frm = htole16(capinfo);
2698 		frm += 2;
2699 
2700 		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2701 		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2702 						    bss->ni_intval));
2703 		frm += 2;
2704 
2705 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2706 			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2707 			frm += IEEE80211_ADDR_LEN;
2708 		}
2709 
2710 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2711 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2712 		frm = ieee80211_add_rsn(frm, vap);
2713 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2714 		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2715 			frm = ieee80211_add_powercapability(frm,
2716 			    ic->ic_curchan);
2717 			frm = ieee80211_add_supportedchannels(frm, ic);
2718 		}
2719 
2720 		/*
2721 		 * Check the channel - we may be using an 11n NIC with an
2722 		 * 11n capable station, but we're configured to be an 11b
2723 		 * channel.
2724 		 */
2725 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2726 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2727 		    ni->ni_ies.htcap_ie != NULL &&
2728 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
2729 			frm = ieee80211_add_htcap(frm, ni);
2730 		}
2731 
2732 		if ((vap->iv_flags_vht & IEEE80211_FVHT_VHT) &&
2733 		    IEEE80211_IS_CHAN_VHT(ni->ni_chan) &&
2734 		    ni->ni_ies.vhtcap_ie != NULL &&
2735 		    ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) {
2736 			frm = ieee80211_add_vhtcap(frm, ni);
2737 		}
2738 
2739 		frm = ieee80211_add_wpa(frm, vap);
2740 		if ((ic->ic_flags & IEEE80211_F_WME) &&
2741 		    ni->ni_ies.wme_ie != NULL)
2742 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2743 
2744 		/*
2745 		 * Same deal - only send HT info if we're on an 11n
2746 		 * capable channel.
2747 		 */
2748 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2749 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2750 		    ni->ni_ies.htcap_ie != NULL &&
2751 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
2752 			frm = ieee80211_add_htcap_vendor(frm, ni);
2753 		}
2754 #ifdef IEEE80211_SUPPORT_SUPERG
2755 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2756 			frm = ieee80211_add_ath(frm,
2757 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2758 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2759 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2760 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2761 		}
2762 #endif /* IEEE80211_SUPPORT_SUPERG */
2763 		if (vap->iv_appie_assocreq != NULL)
2764 			frm = add_appie(frm, vap->iv_appie_assocreq);
2765 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2766 
2767 		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2768 			(void *) vap->iv_state);
2769 		break;
2770 
2771 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2772 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2773 		/*
2774 		 * asresp frame format
2775 		 *	[2] capability information
2776 		 *	[2] status
2777 		 *	[2] association ID
2778 		 *	[tlv] supported rates
2779 		 *	[tlv] extended supported rates
2780 		 *	[tlv] HT capabilities (standard, if STA enabled)
2781 		 *	[tlv] HT information (standard, if STA enabled)
2782 		 *	[tlv] VHT capabilities (standard, if STA enabled)
2783 		 *	[tlv] VHT information (standard, if STA enabled)
2784 		 *	[tlv] WME (if configured and STA enabled)
2785 		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2786 		 *	[tlv] HT information (vendor OUI, if STA enabled)
2787 		 *	[tlv] Atheros capabilities (if STA enabled)
2788 		 *	[tlv] AppIE's (optional)
2789 		 */
2790 		m = ieee80211_getmgtframe(&frm,
2791 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2792 			 sizeof(uint16_t)
2793 		       + sizeof(uint16_t)
2794 		       + sizeof(uint16_t)
2795 		       + 2 + IEEE80211_RATE_SIZE
2796 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2797 		       + sizeof(struct ieee80211_ie_htcap) + 4
2798 		       + sizeof(struct ieee80211_ie_htinfo) + 4
2799 		       + sizeof(struct ieee80211_ie_vhtcap)
2800 		       + sizeof(struct ieee80211_ie_vht_operation)
2801 		       + sizeof(struct ieee80211_wme_param)
2802 #ifdef IEEE80211_SUPPORT_SUPERG
2803 		       + sizeof(struct ieee80211_ath_ie)
2804 #endif
2805 		       + (vap->iv_appie_assocresp != NULL ?
2806 				vap->iv_appie_assocresp->ie_len : 0)
2807 		);
2808 		if (m == NULL)
2809 			senderr(ENOMEM, is_tx_nobuf);
2810 
2811 		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2812 		*(uint16_t *)frm = htole16(capinfo);
2813 		frm += 2;
2814 
2815 		*(uint16_t *)frm = htole16(arg);	/* status */
2816 		frm += 2;
2817 
2818 		if (arg == IEEE80211_STATUS_SUCCESS) {
2819 			*(uint16_t *)frm = htole16(ni->ni_associd);
2820 			IEEE80211_NODE_STAT(ni, tx_assoc);
2821 		} else
2822 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2823 		frm += 2;
2824 
2825 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2826 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2827 		/* NB: respond according to what we received */
2828 		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2829 			frm = ieee80211_add_htcap(frm, ni);
2830 			frm = ieee80211_add_htinfo(frm, ni);
2831 		}
2832 		if ((vap->iv_flags & IEEE80211_F_WME) &&
2833 		    ni->ni_ies.wme_ie != NULL)
2834 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2835 		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2836 			frm = ieee80211_add_htcap_vendor(frm, ni);
2837 			frm = ieee80211_add_htinfo_vendor(frm, ni);
2838 		}
2839 		if (ni->ni_flags & IEEE80211_NODE_VHT) {
2840 			frm = ieee80211_add_vhtcap(frm, ni);
2841 			frm = ieee80211_add_vhtinfo(frm, ni);
2842 		}
2843 #ifdef IEEE80211_SUPPORT_SUPERG
2844 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2845 			frm = ieee80211_add_ath(frm,
2846 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2847 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2848 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2849 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2850 #endif /* IEEE80211_SUPPORT_SUPERG */
2851 		if (vap->iv_appie_assocresp != NULL)
2852 			frm = add_appie(frm, vap->iv_appie_assocresp);
2853 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2854 		break;
2855 
2856 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2857 		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2858 		    "send station disassociate (reason: %d (%s))", arg,
2859 		    ieee80211_reason_to_string(arg));
2860 		m = ieee80211_getmgtframe(&frm,
2861 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2862 			sizeof(uint16_t));
2863 		if (m == NULL)
2864 			senderr(ENOMEM, is_tx_nobuf);
2865 		*(uint16_t *)frm = htole16(arg);	/* reason */
2866 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2867 
2868 		IEEE80211_NODE_STAT(ni, tx_disassoc);
2869 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2870 		break;
2871 
2872 	default:
2873 		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2874 		    "invalid mgmt frame type %u", type);
2875 		senderr(EINVAL, is_tx_unknownmgt);
2876 		/* NOTREACHED */
2877 	}
2878 
2879 	/* NB: force non-ProbeResp frames to the highest queue */
2880 	params.ibp_pri = WME_AC_VO;
2881 	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2882 	/* NB: we know all frames are unicast */
2883 	params.ibp_try0 = bss->ni_txparms->maxretry;
2884 	params.ibp_power = bss->ni_txpower;
2885 	return ieee80211_mgmt_output(ni, m, type, &params);
2886 bad:
2887 	ieee80211_free_node(ni);
2888 	return ret;
2889 #undef senderr
2890 #undef HTFLAGS
2891 }
2892 
2893 /*
2894  * Return an mbuf with a probe response frame in it.
2895  * Space is left to prepend and 802.11 header at the
2896  * front but it's left to the caller to fill in.
2897  */
2898 struct mbuf *
2899 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2900 {
2901 	struct ieee80211vap *vap = bss->ni_vap;
2902 	struct ieee80211com *ic = bss->ni_ic;
2903 	const struct ieee80211_rateset *rs;
2904 	struct mbuf *m;
2905 	uint16_t capinfo;
2906 	uint8_t *frm;
2907 
2908 	/*
2909 	 * probe response frame format
2910 	 *	[8] time stamp
2911 	 *	[2] beacon interval
2912 	 *	[2] cabability information
2913 	 *	[tlv] ssid
2914 	 *	[tlv] supported rates
2915 	 *	[tlv] parameter set (FH/DS)
2916 	 *	[tlv] parameter set (IBSS)
2917 	 *	[tlv] country (optional)
2918 	 *	[3] power control (optional)
2919 	 *	[5] channel switch announcement (CSA) (optional)
2920 	 *	[tlv] extended rate phy (ERP)
2921 	 *	[tlv] extended supported rates
2922 	 *	[tlv] RSN (optional)
2923 	 *	[tlv] HT capabilities
2924 	 *	[tlv] HT information
2925 	 *	[tlv] VHT capabilities
2926 	 *	[tlv] VHT information
2927 	 *	[tlv] WPA (optional)
2928 	 *	[tlv] WME (optional)
2929 	 *	[tlv] Vendor OUI HT capabilities (optional)
2930 	 *	[tlv] Vendor OUI HT information (optional)
2931 	 *	[tlv] Atheros capabilities
2932 	 *	[tlv] AppIE's (optional)
2933 	 *	[tlv] Mesh ID (MBSS)
2934 	 *	[tlv] Mesh Conf (MBSS)
2935 	 */
2936 	m = ieee80211_getmgtframe(&frm,
2937 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2938 		 8
2939 	       + sizeof(uint16_t)
2940 	       + sizeof(uint16_t)
2941 	       + 2 + IEEE80211_NWID_LEN
2942 	       + 2 + IEEE80211_RATE_SIZE
2943 	       + 7	/* max(7,3) */
2944 	       + IEEE80211_COUNTRY_MAX_SIZE
2945 	       + 3
2946 	       + sizeof(struct ieee80211_csa_ie)
2947 	       + sizeof(struct ieee80211_quiet_ie)
2948 	       + 3
2949 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2950 	       + sizeof(struct ieee80211_ie_wpa)
2951 	       + sizeof(struct ieee80211_ie_htcap)
2952 	       + sizeof(struct ieee80211_ie_htinfo)
2953 	       + sizeof(struct ieee80211_ie_wpa)
2954 	       + sizeof(struct ieee80211_wme_param)
2955 	       + 4 + sizeof(struct ieee80211_ie_htcap)
2956 	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2957 	       +  sizeof(struct ieee80211_ie_vhtcap)
2958 	       +  sizeof(struct ieee80211_ie_vht_operation)
2959 #ifdef IEEE80211_SUPPORT_SUPERG
2960 	       + sizeof(struct ieee80211_ath_ie)
2961 #endif
2962 #ifdef IEEE80211_SUPPORT_MESH
2963 	       + 2 + IEEE80211_MESHID_LEN
2964 	       + sizeof(struct ieee80211_meshconf_ie)
2965 #endif
2966 	       + (vap->iv_appie_proberesp != NULL ?
2967 			vap->iv_appie_proberesp->ie_len : 0)
2968 	);
2969 	if (m == NULL) {
2970 		vap->iv_stats.is_tx_nobuf++;
2971 		return NULL;
2972 	}
2973 
2974 	memset(frm, 0, 8);	/* timestamp should be filled later */
2975 	frm += 8;
2976 	*(uint16_t *)frm = htole16(bss->ni_intval);
2977 	frm += 2;
2978 	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2979 	*(uint16_t *)frm = htole16(capinfo);
2980 	frm += 2;
2981 
2982 	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2983 	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2984 	frm = ieee80211_add_rates(frm, rs);
2985 
2986 	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2987 		*frm++ = IEEE80211_ELEMID_FHPARMS;
2988 		*frm++ = 5;
2989 		*frm++ = bss->ni_fhdwell & 0x00ff;
2990 		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2991 		*frm++ = IEEE80211_FH_CHANSET(
2992 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2993 		*frm++ = IEEE80211_FH_CHANPAT(
2994 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2995 		*frm++ = bss->ni_fhindex;
2996 	} else {
2997 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2998 		*frm++ = 1;
2999 		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
3000 	}
3001 
3002 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
3003 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
3004 		*frm++ = 2;
3005 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
3006 	}
3007 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3008 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3009 		frm = ieee80211_add_countryie(frm, ic);
3010 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3011 		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
3012 			frm = ieee80211_add_powerconstraint(frm, vap);
3013 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3014 			frm = ieee80211_add_csa(frm, vap);
3015 	}
3016 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3017 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3018 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
3019 			if (vap->iv_quiet)
3020 				frm = ieee80211_add_quiet(frm, vap, 0);
3021 		}
3022 	}
3023 	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
3024 		frm = ieee80211_add_erp(frm, ic);
3025 	frm = ieee80211_add_xrates(frm, rs);
3026 	frm = ieee80211_add_rsn(frm, vap);
3027 	/*
3028 	 * NB: legacy 11b clients do not get certain ie's.
3029 	 *     The caller identifies such clients by passing
3030 	 *     a token in legacy to us.  Could expand this to be
3031 	 *     any legacy client for stuff like HT ie's.
3032 	 */
3033 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
3034 	    legacy != IEEE80211_SEND_LEGACY_11B) {
3035 		frm = ieee80211_add_htcap(frm, bss);
3036 		frm = ieee80211_add_htinfo(frm, bss);
3037 	}
3038 	if (IEEE80211_IS_CHAN_VHT(bss->ni_chan) &&
3039 	    legacy != IEEE80211_SEND_LEGACY_11B) {
3040 		frm = ieee80211_add_vhtcap(frm, bss);
3041 		frm = ieee80211_add_vhtinfo(frm, bss);
3042 	}
3043 	frm = ieee80211_add_wpa(frm, vap);
3044 	if (vap->iv_flags & IEEE80211_F_WME)
3045 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
3046 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
3047 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
3048 	    legacy != IEEE80211_SEND_LEGACY_11B) {
3049 		frm = ieee80211_add_htcap_vendor(frm, bss);
3050 		frm = ieee80211_add_htinfo_vendor(frm, bss);
3051 	}
3052 #ifdef IEEE80211_SUPPORT_SUPERG
3053 	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
3054 	    legacy != IEEE80211_SEND_LEGACY_11B)
3055 		frm = ieee80211_add_athcaps(frm, bss);
3056 #endif
3057 	if (vap->iv_appie_proberesp != NULL)
3058 		frm = add_appie(frm, vap->iv_appie_proberesp);
3059 #ifdef IEEE80211_SUPPORT_MESH
3060 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3061 		frm = ieee80211_add_meshid(frm, vap);
3062 		frm = ieee80211_add_meshconf(frm, vap);
3063 	}
3064 #endif
3065 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3066 
3067 	return m;
3068 }
3069 
3070 /*
3071  * Send a probe response frame to the specified mac address.
3072  * This does not go through the normal mgt frame api so we
3073  * can specify the destination address and re-use the bss node
3074  * for the sta reference.
3075  */
3076 int
3077 ieee80211_send_proberesp(struct ieee80211vap *vap,
3078 	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
3079 {
3080 	struct ieee80211_node *bss = vap->iv_bss;
3081 	struct ieee80211com *ic = vap->iv_ic;
3082 	struct mbuf *m;
3083 	int ret;
3084 
3085 	if (vap->iv_state == IEEE80211_S_CAC) {
3086 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
3087 		    "block %s frame in CAC state", "probe response");
3088 		vap->iv_stats.is_tx_badstate++;
3089 		return EIO;		/* XXX */
3090 	}
3091 
3092 	/*
3093 	 * Hold a reference on the node so it doesn't go away until after
3094 	 * the xmit is complete all the way in the driver.  On error we
3095 	 * will remove our reference.
3096 	 */
3097 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
3098 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
3099 	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
3100 	    ieee80211_node_refcnt(bss)+1);
3101 	ieee80211_ref_node(bss);
3102 
3103 	m = ieee80211_alloc_proberesp(bss, legacy);
3104 	if (m == NULL) {
3105 		ieee80211_free_node(bss);
3106 		return ENOMEM;
3107 	}
3108 
3109 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
3110 	KASSERT(m != NULL, ("no room for header"));
3111 
3112 	IEEE80211_TX_LOCK(ic);
3113 	ieee80211_send_setup(bss, m,
3114 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
3115 	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
3116 	/* XXX power management? */
3117 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
3118 
3119 	M_WME_SETAC(m, WME_AC_BE);
3120 
3121 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
3122 	    "send probe resp on channel %u to %s%s\n",
3123 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
3124 	    legacy ? " <legacy>" : "");
3125 	IEEE80211_NODE_STAT(bss, tx_mgmt);
3126 
3127 	ret = ieee80211_raw_output(vap, bss, m, NULL);
3128 	IEEE80211_TX_UNLOCK(ic);
3129 	return (ret);
3130 }
3131 
3132 /*
3133  * Allocate and build a RTS (Request To Send) control frame.
3134  */
3135 struct mbuf *
3136 ieee80211_alloc_rts(struct ieee80211com *ic,
3137 	const uint8_t ra[IEEE80211_ADDR_LEN],
3138 	const uint8_t ta[IEEE80211_ADDR_LEN],
3139 	uint16_t dur)
3140 {
3141 	struct ieee80211_frame_rts *rts;
3142 	struct mbuf *m;
3143 
3144 	/* XXX honor ic_headroom */
3145 	m = m_gethdr(M_NOWAIT, MT_DATA);
3146 	if (m != NULL) {
3147 		rts = mtod(m, struct ieee80211_frame_rts *);
3148 		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
3149 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
3150 		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3151 		*(u_int16_t *)rts->i_dur = htole16(dur);
3152 		IEEE80211_ADDR_COPY(rts->i_ra, ra);
3153 		IEEE80211_ADDR_COPY(rts->i_ta, ta);
3154 
3155 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
3156 	}
3157 	return m;
3158 }
3159 
3160 /*
3161  * Allocate and build a CTS (Clear To Send) control frame.
3162  */
3163 struct mbuf *
3164 ieee80211_alloc_cts(struct ieee80211com *ic,
3165 	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
3166 {
3167 	struct ieee80211_frame_cts *cts;
3168 	struct mbuf *m;
3169 
3170 	/* XXX honor ic_headroom */
3171 	m = m_gethdr(M_NOWAIT, MT_DATA);
3172 	if (m != NULL) {
3173 		cts = mtod(m, struct ieee80211_frame_cts *);
3174 		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
3175 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
3176 		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3177 		*(u_int16_t *)cts->i_dur = htole16(dur);
3178 		IEEE80211_ADDR_COPY(cts->i_ra, ra);
3179 
3180 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
3181 	}
3182 	return m;
3183 }
3184 
3185 /*
3186  * Wrapper for CTS/RTS frame allocation.
3187  */
3188 struct mbuf *
3189 ieee80211_alloc_prot(struct ieee80211_node *ni, const struct mbuf *m,
3190     uint8_t rate, int prot)
3191 {
3192 	struct ieee80211com *ic = ni->ni_ic;
3193 	const struct ieee80211_frame *wh;
3194 	struct mbuf *mprot;
3195 	uint16_t dur;
3196 	int pktlen, isshort;
3197 
3198 	KASSERT(prot == IEEE80211_PROT_RTSCTS ||
3199 	    prot == IEEE80211_PROT_CTSONLY,
3200 	    ("wrong protection type %d", prot));
3201 
3202 	wh = mtod(m, const struct ieee80211_frame *);
3203 	pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3204 	isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
3205 	dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
3206 	    + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3207 
3208 	if (prot == IEEE80211_PROT_RTSCTS) {
3209 		/* NB: CTS is the same size as an ACK */
3210 		dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3211 		mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
3212 	} else
3213 		mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
3214 
3215 	return (mprot);
3216 }
3217 
3218 static void
3219 ieee80211_tx_mgt_timeout(void *arg)
3220 {
3221 	struct ieee80211vap *vap = arg;
3222 
3223 	IEEE80211_LOCK(vap->iv_ic);
3224 	if (vap->iv_state != IEEE80211_S_INIT &&
3225 	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3226 		/*
3227 		 * NB: it's safe to specify a timeout as the reason here;
3228 		 *     it'll only be used in the right state.
3229 		 */
3230 		ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
3231 			IEEE80211_SCAN_FAIL_TIMEOUT);
3232 	}
3233 	IEEE80211_UNLOCK(vap->iv_ic);
3234 }
3235 
3236 /*
3237  * This is the callback set on net80211-sourced transmitted
3238  * authentication request frames.
3239  *
3240  * This does a couple of things:
3241  *
3242  * + If the frame transmitted was a success, it schedules a future
3243  *   event which will transition the interface to scan.
3244  *   If a state transition _then_ occurs before that event occurs,
3245  *   said state transition will cancel this callout.
3246  *
3247  * + If the frame transmit was a failure, it immediately schedules
3248  *   the transition back to scan.
3249  */
3250 static void
3251 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
3252 {
3253 	struct ieee80211vap *vap = ni->ni_vap;
3254 	enum ieee80211_state ostate = (enum ieee80211_state) arg;
3255 
3256 	/*
3257 	 * Frame transmit completed; arrange timer callback.  If
3258 	 * transmit was successfully we wait for response.  Otherwise
3259 	 * we arrange an immediate callback instead of doing the
3260 	 * callback directly since we don't know what state the driver
3261 	 * is in (e.g. what locks it is holding).  This work should
3262 	 * not be too time-critical and not happen too often so the
3263 	 * added overhead is acceptable.
3264 	 *
3265 	 * XXX what happens if !acked but response shows up before callback?
3266 	 */
3267 	if (vap->iv_state == ostate) {
3268 		callout_reset(&vap->iv_mgtsend,
3269 			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
3270 			ieee80211_tx_mgt_timeout, vap);
3271 	}
3272 }
3273 
3274 static void
3275 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
3276 	struct ieee80211_node *ni)
3277 {
3278 	struct ieee80211vap *vap = ni->ni_vap;
3279 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3280 	struct ieee80211com *ic = ni->ni_ic;
3281 	struct ieee80211_rateset *rs = &ni->ni_rates;
3282 	uint16_t capinfo;
3283 
3284 	/*
3285 	 * beacon frame format
3286 	 *
3287 	 * TODO: update to 802.11-2012; a lot of stuff has changed;
3288 	 * vendor extensions should be at the end, etc.
3289 	 *
3290 	 *	[8] time stamp
3291 	 *	[2] beacon interval
3292 	 *	[2] cabability information
3293 	 *	[tlv] ssid
3294 	 *	[tlv] supported rates
3295 	 *	[3] parameter set (DS)
3296 	 *	[8] CF parameter set (optional)
3297 	 *	[tlv] parameter set (IBSS/TIM)
3298 	 *	[tlv] country (optional)
3299 	 *	[3] power control (optional)
3300 	 *	[5] channel switch announcement (CSA) (optional)
3301 	 * XXX TODO: Quiet
3302 	 * XXX TODO: IBSS DFS
3303 	 * XXX TODO: TPC report
3304 	 *	[tlv] extended rate phy (ERP)
3305 	 *	[tlv] extended supported rates
3306 	 *	[tlv] RSN parameters
3307 	 * XXX TODO: BSSLOAD
3308 	 * (XXX EDCA parameter set, QoS capability?)
3309 	 * XXX TODO: AP channel report
3310 	 *
3311 	 *	[tlv] HT capabilities
3312 	 *	[tlv] HT information
3313 	 *	XXX TODO: 20/40 BSS coexistence
3314 	 * Mesh:
3315 	 * XXX TODO: Meshid
3316 	 * XXX TODO: mesh config
3317 	 * XXX TODO: mesh awake window
3318 	 * XXX TODO: beacon timing (mesh, etc)
3319 	 * XXX TODO: MCCAOP Advertisement Overview
3320 	 * XXX TODO: MCCAOP Advertisement
3321 	 * XXX TODO: Mesh channel switch parameters
3322 	 * VHT:
3323 	 * XXX TODO: VHT capabilities
3324 	 * XXX TODO: VHT operation
3325 	 * XXX TODO: VHT transmit power envelope
3326 	 * XXX TODO: channel switch wrapper element
3327 	 * XXX TODO: extended BSS load element
3328 	 *
3329 	 * XXX Vendor-specific OIDs (e.g. Atheros)
3330 	 *	[tlv] WPA parameters
3331 	 *	[tlv] WME parameters
3332 	 *	[tlv] Vendor OUI HT capabilities (optional)
3333 	 *	[tlv] Vendor OUI HT information (optional)
3334 	 *	[tlv] Atheros capabilities (optional)
3335 	 *	[tlv] TDMA parameters (optional)
3336 	 *	[tlv] Mesh ID (MBSS)
3337 	 *	[tlv] Mesh Conf (MBSS)
3338 	 *	[tlv] application data (optional)
3339 	 */
3340 
3341 	memset(bo, 0, sizeof(*bo));
3342 
3343 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
3344 	frm += 8;
3345 	*(uint16_t *)frm = htole16(ni->ni_intval);
3346 	frm += 2;
3347 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3348 	bo->bo_caps = (uint16_t *)frm;
3349 	*(uint16_t *)frm = htole16(capinfo);
3350 	frm += 2;
3351 	*frm++ = IEEE80211_ELEMID_SSID;
3352 	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
3353 		*frm++ = ni->ni_esslen;
3354 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
3355 		frm += ni->ni_esslen;
3356 	} else
3357 		*frm++ = 0;
3358 	frm = ieee80211_add_rates(frm, rs);
3359 	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
3360 		*frm++ = IEEE80211_ELEMID_DSPARMS;
3361 		*frm++ = 1;
3362 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
3363 	}
3364 	if (ic->ic_flags & IEEE80211_F_PCF) {
3365 		bo->bo_cfp = frm;
3366 		frm = ieee80211_add_cfparms(frm, ic);
3367 	}
3368 	bo->bo_tim = frm;
3369 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
3370 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
3371 		*frm++ = 2;
3372 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
3373 		bo->bo_tim_len = 0;
3374 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3375 	    vap->iv_opmode == IEEE80211_M_MBSS) {
3376 		/* TIM IE is the same for Mesh and Hostap */
3377 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
3378 
3379 		tie->tim_ie = IEEE80211_ELEMID_TIM;
3380 		tie->tim_len = 4;	/* length */
3381 		tie->tim_count = 0;	/* DTIM count */
3382 		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
3383 		tie->tim_bitctl = 0;	/* bitmap control */
3384 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
3385 		frm += sizeof(struct ieee80211_tim_ie);
3386 		bo->bo_tim_len = 1;
3387 	}
3388 	bo->bo_tim_trailer = frm;
3389 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3390 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3391 		frm = ieee80211_add_countryie(frm, ic);
3392 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3393 		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
3394 			frm = ieee80211_add_powerconstraint(frm, vap);
3395 		bo->bo_csa = frm;
3396 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3397 			frm = ieee80211_add_csa(frm, vap);
3398 	} else
3399 		bo->bo_csa = frm;
3400 
3401 	bo->bo_quiet = NULL;
3402 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3403 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3404 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
3405 		    (vap->iv_quiet == 1)) {
3406 			/*
3407 			 * We only insert the quiet IE offset if
3408 			 * the quiet IE is enabled.  Otherwise don't
3409 			 * put it here or we'll just overwrite
3410 			 * some other beacon contents.
3411 			 */
3412 			if (vap->iv_quiet) {
3413 				bo->bo_quiet = frm;
3414 				frm = ieee80211_add_quiet(frm,vap, 0);
3415 			}
3416 		}
3417 	}
3418 
3419 	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
3420 		bo->bo_erp = frm;
3421 		frm = ieee80211_add_erp(frm, ic);
3422 	}
3423 	frm = ieee80211_add_xrates(frm, rs);
3424 	frm = ieee80211_add_rsn(frm, vap);
3425 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
3426 		frm = ieee80211_add_htcap(frm, ni);
3427 		bo->bo_htinfo = frm;
3428 		frm = ieee80211_add_htinfo(frm, ni);
3429 	}
3430 
3431 	if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) {
3432 		frm = ieee80211_add_vhtcap(frm, ni);
3433 		bo->bo_vhtinfo = frm;
3434 		frm = ieee80211_add_vhtinfo(frm, ni);
3435 		/* Transmit power envelope */
3436 		/* Channel switch wrapper element */
3437 		/* Extended bss load element */
3438 	}
3439 
3440 	frm = ieee80211_add_wpa(frm, vap);
3441 	if (vap->iv_flags & IEEE80211_F_WME) {
3442 		bo->bo_wme = frm;
3443 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
3444 	}
3445 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
3446 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
3447 		frm = ieee80211_add_htcap_vendor(frm, ni);
3448 		frm = ieee80211_add_htinfo_vendor(frm, ni);
3449 	}
3450 
3451 #ifdef IEEE80211_SUPPORT_SUPERG
3452 	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
3453 		bo->bo_ath = frm;
3454 		frm = ieee80211_add_athcaps(frm, ni);
3455 	}
3456 #endif
3457 #ifdef IEEE80211_SUPPORT_TDMA
3458 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3459 		bo->bo_tdma = frm;
3460 		frm = ieee80211_add_tdma(frm, vap);
3461 	}
3462 #endif
3463 	if (vap->iv_appie_beacon != NULL) {
3464 		bo->bo_appie = frm;
3465 		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
3466 		frm = add_appie(frm, vap->iv_appie_beacon);
3467 	}
3468 
3469 	/* XXX TODO: move meshid/meshconf up to before vendor extensions? */
3470 #ifdef IEEE80211_SUPPORT_MESH
3471 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3472 		frm = ieee80211_add_meshid(frm, vap);
3473 		bo->bo_meshconf = frm;
3474 		frm = ieee80211_add_meshconf(frm, vap);
3475 	}
3476 #endif
3477 	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
3478 	bo->bo_csa_trailer_len = frm - bo->bo_csa;
3479 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3480 }
3481 
3482 /*
3483  * Allocate a beacon frame and fillin the appropriate bits.
3484  */
3485 struct mbuf *
3486 ieee80211_beacon_alloc(struct ieee80211_node *ni)
3487 {
3488 	struct ieee80211vap *vap = ni->ni_vap;
3489 	struct ieee80211com *ic = ni->ni_ic;
3490 	struct ifnet *ifp = vap->iv_ifp;
3491 	struct ieee80211_frame *wh;
3492 	struct mbuf *m;
3493 	int pktlen;
3494 	uint8_t *frm;
3495 
3496 	/*
3497 	 * Update the "We're putting the quiet IE in the beacon" state.
3498 	 */
3499 	if (vap->iv_quiet == 1)
3500 		vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
3501 	else if (vap->iv_quiet == 0)
3502 		vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
3503 
3504 	/*
3505 	 * beacon frame format
3506 	 *
3507 	 * Note: This needs updating for 802.11-2012.
3508 	 *
3509 	 *	[8] time stamp
3510 	 *	[2] beacon interval
3511 	 *	[2] cabability information
3512 	 *	[tlv] ssid
3513 	 *	[tlv] supported rates
3514 	 *	[3] parameter set (DS)
3515 	 *	[8] CF parameter set (optional)
3516 	 *	[tlv] parameter set (IBSS/TIM)
3517 	 *	[tlv] country (optional)
3518 	 *	[3] power control (optional)
3519 	 *	[5] channel switch announcement (CSA) (optional)
3520 	 *	[tlv] extended rate phy (ERP)
3521 	 *	[tlv] extended supported rates
3522 	 *	[tlv] RSN parameters
3523 	 *	[tlv] HT capabilities
3524 	 *	[tlv] HT information
3525 	 *	[tlv] VHT capabilities
3526 	 *	[tlv] VHT operation
3527 	 *	[tlv] Vendor OUI HT capabilities (optional)
3528 	 *	[tlv] Vendor OUI HT information (optional)
3529 	 * XXX Vendor-specific OIDs (e.g. Atheros)
3530 	 *	[tlv] WPA parameters
3531 	 *	[tlv] WME parameters
3532 	 *	[tlv] TDMA parameters (optional)
3533 	 *	[tlv] Mesh ID (MBSS)
3534 	 *	[tlv] Mesh Conf (MBSS)
3535 	 *	[tlv] application data (optional)
3536 	 * NB: we allocate the max space required for the TIM bitmap.
3537 	 * XXX how big is this?
3538 	 */
3539 	pktlen =   8					/* time stamp */
3540 		 + sizeof(uint16_t)			/* beacon interval */
3541 		 + sizeof(uint16_t)			/* capabilities */
3542 		 + 2 + ni->ni_esslen			/* ssid */
3543 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
3544 	         + 2 + 1				/* DS parameters */
3545 		 + 2 + 6				/* CF parameters */
3546 		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
3547 		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
3548 		 + 2 + 1				/* power control */
3549 		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
3550 		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
3551 		 + 2 + 1				/* ERP */
3552 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3553 		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
3554 			2*sizeof(struct ieee80211_ie_wpa) : 0)
3555 		 /* XXX conditional? */
3556 		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3557 		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3558 		 + sizeof(struct ieee80211_ie_vhtcap)/* VHT caps */
3559 		 + sizeof(struct ieee80211_ie_vht_operation)/* VHT info */
3560 		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
3561 			sizeof(struct ieee80211_wme_param) : 0)
3562 #ifdef IEEE80211_SUPPORT_SUPERG
3563 		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
3564 #endif
3565 #ifdef IEEE80211_SUPPORT_TDMA
3566 		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
3567 			sizeof(struct ieee80211_tdma_param) : 0)
3568 #endif
3569 #ifdef IEEE80211_SUPPORT_MESH
3570 		 + 2 + ni->ni_meshidlen
3571 		 + sizeof(struct ieee80211_meshconf_ie)
3572 #endif
3573 		 + IEEE80211_MAX_APPIE
3574 		 ;
3575 	m = ieee80211_getmgtframe(&frm,
3576 		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3577 	if (m == NULL) {
3578 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3579 			"%s: cannot get buf; size %u\n", __func__, pktlen);
3580 		vap->iv_stats.is_tx_nobuf++;
3581 		return NULL;
3582 	}
3583 	ieee80211_beacon_construct(m, frm, ni);
3584 
3585 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
3586 	KASSERT(m != NULL, ("no space for 802.11 header?"));
3587 	wh = mtod(m, struct ieee80211_frame *);
3588 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3589 	    IEEE80211_FC0_SUBTYPE_BEACON;
3590 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3591 	*(uint16_t *)wh->i_dur = 0;
3592 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3593 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3594 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3595 	*(uint16_t *)wh->i_seq = 0;
3596 
3597 	return m;
3598 }
3599 
3600 /*
3601  * Update the dynamic parts of a beacon frame based on the current state.
3602  */
3603 int
3604 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast)
3605 {
3606 	struct ieee80211vap *vap = ni->ni_vap;
3607 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3608 	struct ieee80211com *ic = ni->ni_ic;
3609 	int len_changed = 0;
3610 	uint16_t capinfo;
3611 	struct ieee80211_frame *wh;
3612 	ieee80211_seq seqno;
3613 
3614 	IEEE80211_LOCK(ic);
3615 	/*
3616 	 * Handle 11h channel change when we've reached the count.
3617 	 * We must recalculate the beacon frame contents to account
3618 	 * for the new channel.  Note we do this only for the first
3619 	 * vap that reaches this point; subsequent vaps just update
3620 	 * their beacon state to reflect the recalculated channel.
3621 	 */
3622 	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3623 	    vap->iv_csa_count == ic->ic_csa_count) {
3624 		vap->iv_csa_count = 0;
3625 		/*
3626 		 * Effect channel change before reconstructing the beacon
3627 		 * frame contents as many places reference ni_chan.
3628 		 */
3629 		if (ic->ic_csa_newchan != NULL)
3630 			ieee80211_csa_completeswitch(ic);
3631 		/*
3632 		 * NB: ieee80211_beacon_construct clears all pending
3633 		 * updates in bo_flags so we don't need to explicitly
3634 		 * clear IEEE80211_BEACON_CSA.
3635 		 */
3636 		ieee80211_beacon_construct(m,
3637 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3638 
3639 		/* XXX do WME aggressive mode processing? */
3640 		IEEE80211_UNLOCK(ic);
3641 		return 1;		/* just assume length changed */
3642 	}
3643 
3644 	/*
3645 	 * Handle the quiet time element being added and removed.
3646 	 * Again, for now we just cheat and reconstruct the whole
3647 	 * beacon - that way the gap is provided as appropriate.
3648 	 *
3649 	 * So, track whether we have already added the IE versus
3650 	 * whether we want to be adding the IE.
3651 	 */
3652 	if ((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) &&
3653 	    (vap->iv_quiet == 0)) {
3654 		/*
3655 		 * Quiet time beacon IE enabled, but it's disabled;
3656 		 * recalc
3657 		 */
3658 		vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
3659 		ieee80211_beacon_construct(m,
3660 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3661 		/* XXX do WME aggressive mode processing? */
3662 		IEEE80211_UNLOCK(ic);
3663 		return 1;		/* just assume length changed */
3664 	}
3665 
3666 	if (((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) == 0) &&
3667 	    (vap->iv_quiet == 1)) {
3668 		/*
3669 		 * Quiet time beacon IE disabled, but it's now enabled;
3670 		 * recalc
3671 		 */
3672 		vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
3673 		ieee80211_beacon_construct(m,
3674 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3675 		/* XXX do WME aggressive mode processing? */
3676 		IEEE80211_UNLOCK(ic);
3677 		return 1;		/* just assume length changed */
3678 	}
3679 
3680 	wh = mtod(m, struct ieee80211_frame *);
3681 
3682 	/*
3683 	 * XXX TODO Strictly speaking this should be incremented with the TX
3684 	 * lock held so as to serialise access to the non-qos TID sequence
3685 	 * number space.
3686 	 *
3687 	 * If the driver identifies it does its own TX seqno management then
3688 	 * we can skip this (and still not do the TX seqno.)
3689 	 */
3690 	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3691 	*(uint16_t *)&wh->i_seq[0] =
3692 		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3693 	M_SEQNO_SET(m, seqno);
3694 
3695 	/* XXX faster to recalculate entirely or just changes? */
3696 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3697 	*bo->bo_caps = htole16(capinfo);
3698 
3699 	if (vap->iv_flags & IEEE80211_F_WME) {
3700 		struct ieee80211_wme_state *wme = &ic->ic_wme;
3701 
3702 		/*
3703 		 * Check for aggressive mode change.  When there is
3704 		 * significant high priority traffic in the BSS
3705 		 * throttle back BE traffic by using conservative
3706 		 * parameters.  Otherwise BE uses aggressive params
3707 		 * to optimize performance of legacy/non-QoS traffic.
3708 		 */
3709 		if (wme->wme_flags & WME_F_AGGRMODE) {
3710 			if (wme->wme_hipri_traffic >
3711 			    wme->wme_hipri_switch_thresh) {
3712 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3713 				    "%s: traffic %u, disable aggressive mode\n",
3714 				    __func__, wme->wme_hipri_traffic);
3715 				wme->wme_flags &= ~WME_F_AGGRMODE;
3716 				ieee80211_wme_updateparams_locked(vap);
3717 				wme->wme_hipri_traffic =
3718 					wme->wme_hipri_switch_hysteresis;
3719 			} else
3720 				wme->wme_hipri_traffic = 0;
3721 		} else {
3722 			if (wme->wme_hipri_traffic <=
3723 			    wme->wme_hipri_switch_thresh) {
3724 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3725 				    "%s: traffic %u, enable aggressive mode\n",
3726 				    __func__, wme->wme_hipri_traffic);
3727 				wme->wme_flags |= WME_F_AGGRMODE;
3728 				ieee80211_wme_updateparams_locked(vap);
3729 				wme->wme_hipri_traffic = 0;
3730 			} else
3731 				wme->wme_hipri_traffic =
3732 					wme->wme_hipri_switch_hysteresis;
3733 		}
3734 		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3735 			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
3736 			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3737 		}
3738 	}
3739 
3740 	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
3741 		ieee80211_ht_update_beacon(vap, bo);
3742 		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3743 	}
3744 #ifdef IEEE80211_SUPPORT_TDMA
3745 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3746 		/*
3747 		 * NB: the beacon is potentially updated every TBTT.
3748 		 */
3749 		ieee80211_tdma_update_beacon(vap, bo);
3750 	}
3751 #endif
3752 #ifdef IEEE80211_SUPPORT_MESH
3753 	if (vap->iv_opmode == IEEE80211_M_MBSS)
3754 		ieee80211_mesh_update_beacon(vap, bo);
3755 #endif
3756 
3757 	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3758 	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
3759 		struct ieee80211_tim_ie *tie =
3760 			(struct ieee80211_tim_ie *) bo->bo_tim;
3761 		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3762 			u_int timlen, timoff, i;
3763 			/*
3764 			 * ATIM/DTIM needs updating.  If it fits in the
3765 			 * current space allocated then just copy in the
3766 			 * new bits.  Otherwise we need to move any trailing
3767 			 * data to make room.  Note that we know there is
3768 			 * contiguous space because ieee80211_beacon_allocate
3769 			 * insures there is space in the mbuf to write a
3770 			 * maximal-size virtual bitmap (based on iv_max_aid).
3771 			 */
3772 			/*
3773 			 * Calculate the bitmap size and offset, copy any
3774 			 * trailer out of the way, and then copy in the
3775 			 * new bitmap and update the information element.
3776 			 * Note that the tim bitmap must contain at least
3777 			 * one byte and any offset must be even.
3778 			 */
3779 			if (vap->iv_ps_pending != 0) {
3780 				timoff = 128;		/* impossibly large */
3781 				for (i = 0; i < vap->iv_tim_len; i++)
3782 					if (vap->iv_tim_bitmap[i]) {
3783 						timoff = i &~ 1;
3784 						break;
3785 					}
3786 				KASSERT(timoff != 128, ("tim bitmap empty!"));
3787 				for (i = vap->iv_tim_len-1; i >= timoff; i--)
3788 					if (vap->iv_tim_bitmap[i])
3789 						break;
3790 				timlen = 1 + (i - timoff);
3791 			} else {
3792 				timoff = 0;
3793 				timlen = 1;
3794 			}
3795 
3796 			/*
3797 			 * TODO: validate this!
3798 			 */
3799 			if (timlen != bo->bo_tim_len) {
3800 				/* copy up/down trailer */
3801 				int adjust = tie->tim_bitmap+timlen
3802 					   - bo->bo_tim_trailer;
3803 				ovbcopy(bo->bo_tim_trailer,
3804 				    bo->bo_tim_trailer+adjust,
3805 				    bo->bo_tim_trailer_len);
3806 				bo->bo_tim_trailer += adjust;
3807 				bo->bo_erp += adjust;
3808 				bo->bo_htinfo += adjust;
3809 				bo->bo_vhtinfo += adjust;
3810 #ifdef IEEE80211_SUPPORT_SUPERG
3811 				bo->bo_ath += adjust;
3812 #endif
3813 #ifdef IEEE80211_SUPPORT_TDMA
3814 				bo->bo_tdma += adjust;
3815 #endif
3816 #ifdef IEEE80211_SUPPORT_MESH
3817 				bo->bo_meshconf += adjust;
3818 #endif
3819 				bo->bo_appie += adjust;
3820 				bo->bo_wme += adjust;
3821 				bo->bo_csa += adjust;
3822 				bo->bo_quiet += adjust;
3823 				bo->bo_tim_len = timlen;
3824 
3825 				/* update information element */
3826 				tie->tim_len = 3 + timlen;
3827 				tie->tim_bitctl = timoff;
3828 				len_changed = 1;
3829 			}
3830 			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
3831 				bo->bo_tim_len);
3832 
3833 			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
3834 
3835 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
3836 				"%s: TIM updated, pending %u, off %u, len %u\n",
3837 				__func__, vap->iv_ps_pending, timoff, timlen);
3838 		}
3839 		/* count down DTIM period */
3840 		if (tie->tim_count == 0)
3841 			tie->tim_count = tie->tim_period - 1;
3842 		else
3843 			tie->tim_count--;
3844 		/* update state for buffered multicast frames on DTIM */
3845 		if (mcast && tie->tim_count == 0)
3846 			tie->tim_bitctl |= 1;
3847 		else
3848 			tie->tim_bitctl &= ~1;
3849 		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
3850 			struct ieee80211_csa_ie *csa =
3851 			    (struct ieee80211_csa_ie *) bo->bo_csa;
3852 
3853 			/*
3854 			 * Insert or update CSA ie.  If we're just starting
3855 			 * to count down to the channel switch then we need
3856 			 * to insert the CSA ie.  Otherwise we just need to
3857 			 * drop the count.  The actual change happens above
3858 			 * when the vap's count reaches the target count.
3859 			 */
3860 			if (vap->iv_csa_count == 0) {
3861 				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
3862 				bo->bo_erp += sizeof(*csa);
3863 				bo->bo_htinfo += sizeof(*csa);
3864 				bo->bo_vhtinfo += sizeof(*csa);
3865 				bo->bo_wme += sizeof(*csa);
3866 #ifdef IEEE80211_SUPPORT_SUPERG
3867 				bo->bo_ath += sizeof(*csa);
3868 #endif
3869 #ifdef IEEE80211_SUPPORT_TDMA
3870 				bo->bo_tdma += sizeof(*csa);
3871 #endif
3872 #ifdef IEEE80211_SUPPORT_MESH
3873 				bo->bo_meshconf += sizeof(*csa);
3874 #endif
3875 				bo->bo_appie += sizeof(*csa);
3876 				bo->bo_csa_trailer_len += sizeof(*csa);
3877 				bo->bo_quiet += sizeof(*csa);
3878 				bo->bo_tim_trailer_len += sizeof(*csa);
3879 				m->m_len += sizeof(*csa);
3880 				m->m_pkthdr.len += sizeof(*csa);
3881 
3882 				ieee80211_add_csa(bo->bo_csa, vap);
3883 			} else
3884 				csa->csa_count--;
3885 			vap->iv_csa_count++;
3886 			/* NB: don't clear IEEE80211_BEACON_CSA */
3887 		}
3888 
3889 		/*
3890 		 * Only add the quiet time IE if we've enabled it
3891 		 * as appropriate.
3892 		 */
3893 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3894 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
3895 			if (vap->iv_quiet &&
3896 			    (vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE)) {
3897 				ieee80211_add_quiet(bo->bo_quiet, vap, 1);
3898 			}
3899 		}
3900 		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3901 			/*
3902 			 * ERP element needs updating.
3903 			 */
3904 			(void) ieee80211_add_erp(bo->bo_erp, ic);
3905 			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3906 		}
3907 #ifdef IEEE80211_SUPPORT_SUPERG
3908 		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
3909 			ieee80211_add_athcaps(bo->bo_ath, ni);
3910 			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3911 		}
3912 #endif
3913 	}
3914 	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3915 		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3916 		int aielen;
3917 		uint8_t *frm;
3918 
3919 		aielen = 0;
3920 		if (aie != NULL)
3921 			aielen += aie->ie_len;
3922 		if (aielen != bo->bo_appie_len) {
3923 			/* copy up/down trailer */
3924 			int adjust = aielen - bo->bo_appie_len;
3925 			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3926 				bo->bo_tim_trailer_len);
3927 			bo->bo_tim_trailer += adjust;
3928 			bo->bo_appie += adjust;
3929 			bo->bo_appie_len = aielen;
3930 
3931 			len_changed = 1;
3932 		}
3933 		frm = bo->bo_appie;
3934 		if (aie != NULL)
3935 			frm  = add_appie(frm, aie);
3936 		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3937 	}
3938 	IEEE80211_UNLOCK(ic);
3939 
3940 	return len_changed;
3941 }
3942 
3943 /*
3944  * Do Ethernet-LLC encapsulation for each payload in a fast frame
3945  * tunnel encapsulation.  The frame is assumed to have an Ethernet
3946  * header at the front that must be stripped before prepending the
3947  * LLC followed by the Ethernet header passed in (with an Ethernet
3948  * type that specifies the payload size).
3949  */
3950 struct mbuf *
3951 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
3952 	const struct ether_header *eh)
3953 {
3954 	struct llc *llc;
3955 	uint16_t payload;
3956 
3957 	/* XXX optimize by combining m_adj+M_PREPEND */
3958 	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
3959 	llc = mtod(m, struct llc *);
3960 	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
3961 	llc->llc_control = LLC_UI;
3962 	llc->llc_snap.org_code[0] = 0;
3963 	llc->llc_snap.org_code[1] = 0;
3964 	llc->llc_snap.org_code[2] = 0;
3965 	llc->llc_snap.ether_type = eh->ether_type;
3966 	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
3967 
3968 	M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
3969 	if (m == NULL) {		/* XXX cannot happen */
3970 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
3971 			"%s: no space for ether_header\n", __func__);
3972 		vap->iv_stats.is_tx_nobuf++;
3973 		return NULL;
3974 	}
3975 	ETHER_HEADER_COPY(mtod(m, void *), eh);
3976 	mtod(m, struct ether_header *)->ether_type = htons(payload);
3977 	return m;
3978 }
3979 
3980 /*
3981  * Complete an mbuf transmission.
3982  *
3983  * For now, this simply processes a completed frame after the
3984  * driver has completed it's transmission and/or retransmission.
3985  * It assumes the frame is an 802.11 encapsulated frame.
3986  *
3987  * Later on it will grow to become the exit path for a given frame
3988  * from the driver and, depending upon how it's been encapsulated
3989  * and already transmitted, it may end up doing A-MPDU retransmission,
3990  * power save requeuing, etc.
3991  *
3992  * In order for the above to work, the driver entry point to this
3993  * must not hold any driver locks.  Thus, the driver needs to delay
3994  * any actual mbuf completion until it can release said locks.
3995  *
3996  * This frees the mbuf and if the mbuf has a node reference,
3997  * the node reference will be freed.
3998  */
3999 void
4000 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
4001 {
4002 
4003 	if (ni != NULL) {
4004 		struct ifnet *ifp = ni->ni_vap->iv_ifp;
4005 
4006 		if (status == 0) {
4007 			if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
4008 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
4009 			if (m->m_flags & M_MCAST)
4010 				if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
4011 		} else
4012 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
4013 		if (m->m_flags & M_TXCB)
4014 			ieee80211_process_callback(ni, m, status);
4015 		ieee80211_free_node(ni);
4016 	}
4017 	m_freem(m);
4018 }
4019