1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_inet.h" 33 #include "opt_inet6.h" 34 #include "opt_wlan.h" 35 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/kernel.h> 39 #include <sys/malloc.h> 40 #include <sys/mbuf.h> 41 #include <sys/endian.h> 42 43 #include <sys/socket.h> 44 45 #include <net/bpf.h> 46 #include <net/ethernet.h> 47 #include <net/if.h> 48 #include <net/if_var.h> 49 #include <net/if_llc.h> 50 #include <net/if_media.h> 51 #include <net/if_vlan_var.h> 52 53 #include <net80211/ieee80211_var.h> 54 #include <net80211/ieee80211_regdomain.h> 55 #ifdef IEEE80211_SUPPORT_SUPERG 56 #include <net80211/ieee80211_superg.h> 57 #endif 58 #ifdef IEEE80211_SUPPORT_TDMA 59 #include <net80211/ieee80211_tdma.h> 60 #endif 61 #include <net80211/ieee80211_wds.h> 62 #include <net80211/ieee80211_mesh.h> 63 #include <net80211/ieee80211_vht.h> 64 65 #if defined(INET) || defined(INET6) 66 #include <netinet/in.h> 67 #endif 68 69 #ifdef INET 70 #include <netinet/if_ether.h> 71 #include <netinet/in_systm.h> 72 #include <netinet/ip.h> 73 #endif 74 #ifdef INET6 75 #include <netinet/ip6.h> 76 #endif 77 78 #include <security/mac/mac_framework.h> 79 80 #define ETHER_HEADER_COPY(dst, src) \ 81 memcpy(dst, src, sizeof(struct ether_header)) 82 83 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *, 84 u_int hdrsize, u_int ciphdrsize, u_int mtu); 85 static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int); 86 87 #ifdef IEEE80211_DEBUG 88 /* 89 * Decide if an outbound management frame should be 90 * printed when debugging is enabled. This filters some 91 * of the less interesting frames that come frequently 92 * (e.g. beacons). 93 */ 94 static __inline int 95 doprint(struct ieee80211vap *vap, int subtype) 96 { 97 switch (subtype) { 98 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 99 return (vap->iv_opmode == IEEE80211_M_IBSS); 100 } 101 return 1; 102 } 103 #endif 104 105 /* 106 * Transmit a frame to the given destination on the given VAP. 107 * 108 * It's up to the caller to figure out the details of who this 109 * is going to and resolving the node. 110 * 111 * This routine takes care of queuing it for power save, 112 * A-MPDU state stuff, fast-frames state stuff, encapsulation 113 * if required, then passing it up to the driver layer. 114 * 115 * This routine (for now) consumes the mbuf and frees the node 116 * reference; it ideally will return a TX status which reflects 117 * whether the mbuf was consumed or not, so the caller can 118 * free the mbuf (if appropriate) and the node reference (again, 119 * if appropriate.) 120 */ 121 int 122 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m, 123 struct ieee80211_node *ni) 124 { 125 struct ieee80211com *ic = vap->iv_ic; 126 struct ifnet *ifp = vap->iv_ifp; 127 int mcast; 128 129 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 130 (m->m_flags & M_PWR_SAV) == 0) { 131 /* 132 * Station in power save mode; pass the frame 133 * to the 802.11 layer and continue. We'll get 134 * the frame back when the time is right. 135 * XXX lose WDS vap linkage? 136 */ 137 if (ieee80211_pwrsave(ni, m) != 0) 138 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 139 ieee80211_free_node(ni); 140 141 /* 142 * We queued it fine, so tell the upper layer 143 * that we consumed it. 144 */ 145 return (0); 146 } 147 /* calculate priority so drivers can find the tx queue */ 148 if (ieee80211_classify(ni, m)) { 149 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 150 ni->ni_macaddr, NULL, 151 "%s", "classification failure"); 152 vap->iv_stats.is_tx_classify++; 153 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 154 m_freem(m); 155 ieee80211_free_node(ni); 156 157 /* XXX better status? */ 158 return (0); 159 } 160 /* 161 * Stash the node pointer. Note that we do this after 162 * any call to ieee80211_dwds_mcast because that code 163 * uses any existing value for rcvif to identify the 164 * interface it (might have been) received on. 165 */ 166 m->m_pkthdr.rcvif = (void *)ni; 167 mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0; 168 169 BPF_MTAP(ifp, m); /* 802.3 tx */ 170 171 /* 172 * Check if A-MPDU tx aggregation is setup or if we 173 * should try to enable it. The sta must be associated 174 * with HT and A-MPDU enabled for use. When the policy 175 * routine decides we should enable A-MPDU we issue an 176 * ADDBA request and wait for a reply. The frame being 177 * encapsulated will go out w/o using A-MPDU, or possibly 178 * it might be collected by the driver and held/retransmit. 179 * The default ic_ampdu_enable routine handles staggering 180 * ADDBA requests in case the receiver NAK's us or we are 181 * otherwise unable to establish a BA stream. 182 * 183 * Don't treat group-addressed frames as candidates for aggregation; 184 * net80211 doesn't support 802.11aa-2012 and so group addressed 185 * frames will always have sequence numbers allocated from the NON_QOS 186 * TID. 187 */ 188 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) && 189 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)) { 190 if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) { 191 int tid = WME_AC_TO_TID(M_WME_GETAC(m)); 192 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; 193 194 ieee80211_txampdu_count_packet(tap); 195 if (IEEE80211_AMPDU_RUNNING(tap)) { 196 /* 197 * Operational, mark frame for aggregation. 198 * 199 * XXX do tx aggregation here 200 */ 201 m->m_flags |= M_AMPDU_MPDU; 202 } else if (!IEEE80211_AMPDU_REQUESTED(tap) && 203 ic->ic_ampdu_enable(ni, tap)) { 204 /* 205 * Not negotiated yet, request service. 206 */ 207 ieee80211_ampdu_request(ni, tap); 208 /* XXX hold frame for reply? */ 209 } 210 } 211 } 212 213 #ifdef IEEE80211_SUPPORT_SUPERG 214 /* 215 * Check for AMSDU/FF; queue for aggregation 216 * 217 * Note: we don't bother trying to do fast frames or 218 * A-MSDU encapsulation for 802.3 drivers. Now, we 219 * likely could do it for FF (because it's a magic 220 * atheros tunnel LLC type) but I don't think we're going 221 * to really need to. For A-MSDU we'd have to set the 222 * A-MSDU QoS bit in the wifi header, so we just plain 223 * can't do it. 224 * 225 * Strictly speaking, we could actually /do/ A-MSDU / FF 226 * with A-MPDU together which for certain circumstances 227 * is beneficial (eg A-MSDU of TCK ACKs.) However, 228 * I'll ignore that for now so existing behaviour is maintained. 229 * Later on it would be good to make "amsdu + ampdu" configurable. 230 */ 231 else if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 232 if ((! mcast) && ieee80211_amsdu_tx_ok(ni)) { 233 m = ieee80211_amsdu_check(ni, m); 234 if (m == NULL) { 235 /* NB: any ni ref held on stageq */ 236 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 237 "%s: amsdu_check queued frame\n", 238 __func__); 239 return (0); 240 } 241 } else if ((! mcast) && IEEE80211_ATH_CAP(vap, ni, 242 IEEE80211_NODE_FF)) { 243 m = ieee80211_ff_check(ni, m); 244 if (m == NULL) { 245 /* NB: any ni ref held on stageq */ 246 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 247 "%s: ff_check queued frame\n", 248 __func__); 249 return (0); 250 } 251 } 252 } 253 #endif /* IEEE80211_SUPPORT_SUPERG */ 254 255 /* 256 * Grab the TX lock - serialise the TX process from this 257 * point (where TX state is being checked/modified) 258 * through to driver queue. 259 */ 260 IEEE80211_TX_LOCK(ic); 261 262 /* 263 * XXX make the encap and transmit code a separate function 264 * so things like the FF (and later A-MSDU) path can just call 265 * it for flushed frames. 266 */ 267 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 268 /* 269 * Encapsulate the packet in prep for transmission. 270 */ 271 m = ieee80211_encap(vap, ni, m); 272 if (m == NULL) { 273 /* NB: stat+msg handled in ieee80211_encap */ 274 IEEE80211_TX_UNLOCK(ic); 275 ieee80211_free_node(ni); 276 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 277 return (ENOBUFS); 278 } 279 } 280 (void) ieee80211_parent_xmitpkt(ic, m); 281 282 /* 283 * Unlock at this point - no need to hold it across 284 * ieee80211_free_node() (ie, the comlock) 285 */ 286 IEEE80211_TX_UNLOCK(ic); 287 ic->ic_lastdata = ticks; 288 289 return (0); 290 } 291 292 293 294 /* 295 * Send the given mbuf through the given vap. 296 * 297 * This consumes the mbuf regardless of whether the transmit 298 * was successful or not. 299 * 300 * This does none of the initial checks that ieee80211_start() 301 * does (eg CAC timeout, interface wakeup) - the caller must 302 * do this first. 303 */ 304 static int 305 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m) 306 { 307 #define IS_DWDS(vap) \ 308 (vap->iv_opmode == IEEE80211_M_WDS && \ 309 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0) 310 struct ieee80211com *ic = vap->iv_ic; 311 struct ifnet *ifp = vap->iv_ifp; 312 struct ieee80211_node *ni; 313 struct ether_header *eh; 314 315 /* 316 * Cancel any background scan. 317 */ 318 if (ic->ic_flags & IEEE80211_F_SCAN) 319 ieee80211_cancel_anyscan(vap); 320 /* 321 * Find the node for the destination so we can do 322 * things like power save and fast frames aggregation. 323 * 324 * NB: past this point various code assumes the first 325 * mbuf has the 802.3 header present (and contiguous). 326 */ 327 ni = NULL; 328 if (m->m_len < sizeof(struct ether_header) && 329 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 330 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 331 "discard frame, %s\n", "m_pullup failed"); 332 vap->iv_stats.is_tx_nobuf++; /* XXX */ 333 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 334 return (ENOBUFS); 335 } 336 eh = mtod(m, struct ether_header *); 337 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 338 if (IS_DWDS(vap)) { 339 /* 340 * Only unicast frames from the above go out 341 * DWDS vaps; multicast frames are handled by 342 * dispatching the frame as it comes through 343 * the AP vap (see below). 344 */ 345 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS, 346 eh->ether_dhost, "mcast", "%s", "on DWDS"); 347 vap->iv_stats.is_dwds_mcast++; 348 m_freem(m); 349 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 350 /* XXX better status? */ 351 return (ENOBUFS); 352 } 353 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { 354 /* 355 * Spam DWDS vap's w/ multicast traffic. 356 */ 357 /* XXX only if dwds in use? */ 358 ieee80211_dwds_mcast(vap, m); 359 } 360 } 361 #ifdef IEEE80211_SUPPORT_MESH 362 if (vap->iv_opmode != IEEE80211_M_MBSS) { 363 #endif 364 ni = ieee80211_find_txnode(vap, eh->ether_dhost); 365 if (ni == NULL) { 366 /* NB: ieee80211_find_txnode does stat+msg */ 367 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 368 m_freem(m); 369 /* XXX better status? */ 370 return (ENOBUFS); 371 } 372 if (ni->ni_associd == 0 && 373 (ni->ni_flags & IEEE80211_NODE_ASSOCID)) { 374 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 375 eh->ether_dhost, NULL, 376 "sta not associated (type 0x%04x)", 377 htons(eh->ether_type)); 378 vap->iv_stats.is_tx_notassoc++; 379 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 380 m_freem(m); 381 ieee80211_free_node(ni); 382 /* XXX better status? */ 383 return (ENOBUFS); 384 } 385 #ifdef IEEE80211_SUPPORT_MESH 386 } else { 387 if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) { 388 /* 389 * Proxy station only if configured. 390 */ 391 if (!ieee80211_mesh_isproxyena(vap)) { 392 IEEE80211_DISCARD_MAC(vap, 393 IEEE80211_MSG_OUTPUT | 394 IEEE80211_MSG_MESH, 395 eh->ether_dhost, NULL, 396 "%s", "proxy not enabled"); 397 vap->iv_stats.is_mesh_notproxy++; 398 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 399 m_freem(m); 400 /* XXX better status? */ 401 return (ENOBUFS); 402 } 403 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 404 "forward frame from DS SA(%6D), DA(%6D)\n", 405 eh->ether_shost, ":", 406 eh->ether_dhost, ":"); 407 ieee80211_mesh_proxy_check(vap, eh->ether_shost); 408 } 409 ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m); 410 if (ni == NULL) { 411 /* 412 * NB: ieee80211_mesh_discover holds/disposes 413 * frame (e.g. queueing on path discovery). 414 */ 415 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 416 /* XXX better status? */ 417 return (ENOBUFS); 418 } 419 } 420 #endif 421 422 /* 423 * We've resolved the sender, so attempt to transmit it. 424 */ 425 426 if (vap->iv_state == IEEE80211_S_SLEEP) { 427 /* 428 * In power save; queue frame and then wakeup device 429 * for transmit. 430 */ 431 ic->ic_lastdata = ticks; 432 if (ieee80211_pwrsave(ni, m) != 0) 433 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 434 ieee80211_free_node(ni); 435 ieee80211_new_state(vap, IEEE80211_S_RUN, 0); 436 return (0); 437 } 438 439 if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0) 440 return (ENOBUFS); 441 return (0); 442 #undef IS_DWDS 443 } 444 445 /* 446 * Start method for vap's. All packets from the stack come 447 * through here. We handle common processing of the packets 448 * before dispatching them to the underlying device. 449 * 450 * if_transmit() requires that the mbuf be consumed by this call 451 * regardless of the return condition. 452 */ 453 int 454 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m) 455 { 456 struct ieee80211vap *vap = ifp->if_softc; 457 struct ieee80211com *ic = vap->iv_ic; 458 459 /* 460 * No data frames go out unless we're running. 461 * Note in particular this covers CAC and CSA 462 * states (though maybe we should check muting 463 * for CSA). 464 */ 465 if (vap->iv_state != IEEE80211_S_RUN && 466 vap->iv_state != IEEE80211_S_SLEEP) { 467 IEEE80211_LOCK(ic); 468 /* re-check under the com lock to avoid races */ 469 if (vap->iv_state != IEEE80211_S_RUN && 470 vap->iv_state != IEEE80211_S_SLEEP) { 471 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 472 "%s: ignore queue, in %s state\n", 473 __func__, ieee80211_state_name[vap->iv_state]); 474 vap->iv_stats.is_tx_badstate++; 475 IEEE80211_UNLOCK(ic); 476 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 477 m_freem(m); 478 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 479 return (ENETDOWN); 480 } 481 IEEE80211_UNLOCK(ic); 482 } 483 484 /* 485 * Sanitize mbuf flags for net80211 use. We cannot 486 * clear M_PWR_SAV or M_MORE_DATA because these may 487 * be set for frames that are re-submitted from the 488 * power save queue. 489 * 490 * NB: This must be done before ieee80211_classify as 491 * it marks EAPOL in frames with M_EAPOL. 492 */ 493 m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA); 494 495 /* 496 * Bump to the packet transmission path. 497 * The mbuf will be consumed here. 498 */ 499 return (ieee80211_start_pkt(vap, m)); 500 } 501 502 void 503 ieee80211_vap_qflush(struct ifnet *ifp) 504 { 505 506 /* Empty for now */ 507 } 508 509 /* 510 * 802.11 raw output routine. 511 * 512 * XXX TODO: this (and other send routines) should correctly 513 * XXX keep the pwr mgmt bit set if it decides to call into the 514 * XXX driver to send a frame whilst the state is SLEEP. 515 * 516 * Otherwise the peer may decide that we're awake and flood us 517 * with traffic we are still too asleep to receive! 518 */ 519 int 520 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni, 521 struct mbuf *m, const struct ieee80211_bpf_params *params) 522 { 523 struct ieee80211com *ic = vap->iv_ic; 524 int error; 525 526 /* 527 * Set node - the caller has taken a reference, so ensure 528 * that the mbuf has the same node value that 529 * it would if it were going via the normal path. 530 */ 531 m->m_pkthdr.rcvif = (void *)ni; 532 533 /* 534 * Attempt to add bpf transmit parameters. 535 * 536 * For now it's ok to fail; the raw_xmit api still takes 537 * them as an option. 538 * 539 * Later on when ic_raw_xmit() has params removed, 540 * they'll have to be added - so fail the transmit if 541 * they can't be. 542 */ 543 if (params) 544 (void) ieee80211_add_xmit_params(m, params); 545 546 error = ic->ic_raw_xmit(ni, m, params); 547 if (error) { 548 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1); 549 ieee80211_free_node(ni); 550 } 551 return (error); 552 } 553 554 static int 555 ieee80211_validate_frame(struct mbuf *m, 556 const struct ieee80211_bpf_params *params) 557 { 558 struct ieee80211_frame *wh; 559 int type; 560 561 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack)) 562 return (EINVAL); 563 564 wh = mtod(m, struct ieee80211_frame *); 565 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) != 566 IEEE80211_FC0_VERSION_0) 567 return (EINVAL); 568 569 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 570 if (type != IEEE80211_FC0_TYPE_DATA) { 571 if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != 572 IEEE80211_FC1_DIR_NODS) 573 return (EINVAL); 574 575 if (type != IEEE80211_FC0_TYPE_MGT && 576 (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) != 0) 577 return (EINVAL); 578 579 /* XXX skip other field checks? */ 580 } 581 582 if ((params && (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0) || 583 (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) != 0) { 584 int subtype; 585 586 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 587 588 /* 589 * See IEEE Std 802.11-2012, 590 * 8.2.4.1.9 'Protected Frame field' 591 */ 592 /* XXX no support for robust management frames yet. */ 593 if (!(type == IEEE80211_FC0_TYPE_DATA || 594 (type == IEEE80211_FC0_TYPE_MGT && 595 subtype == IEEE80211_FC0_SUBTYPE_AUTH))) 596 return (EINVAL); 597 598 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 599 } 600 601 if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh)) 602 return (EINVAL); 603 604 return (0); 605 } 606 607 static int 608 ieee80211_validate_rate(struct ieee80211_node *ni, uint8_t rate) 609 { 610 struct ieee80211com *ic = ni->ni_ic; 611 612 if (IEEE80211_IS_HT_RATE(rate)) { 613 if ((ic->ic_htcaps & IEEE80211_HTC_HT) == 0) 614 return (EINVAL); 615 616 rate = IEEE80211_RV(rate); 617 if (rate <= 31) { 618 if (rate > ic->ic_txstream * 8 - 1) 619 return (EINVAL); 620 621 return (0); 622 } 623 624 if (rate == 32) { 625 if ((ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0) 626 return (EINVAL); 627 628 return (0); 629 } 630 631 if ((ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) == 0) 632 return (EINVAL); 633 634 switch (ic->ic_txstream) { 635 case 0: 636 case 1: 637 return (EINVAL); 638 case 2: 639 if (rate > 38) 640 return (EINVAL); 641 642 return (0); 643 case 3: 644 if (rate > 52) 645 return (EINVAL); 646 647 return (0); 648 case 4: 649 default: 650 if (rate > 76) 651 return (EINVAL); 652 653 return (0); 654 } 655 } 656 657 if (!ieee80211_isratevalid(ic->ic_rt, rate)) 658 return (EINVAL); 659 660 return (0); 661 } 662 663 static int 664 ieee80211_sanitize_rates(struct ieee80211_node *ni, struct mbuf *m, 665 const struct ieee80211_bpf_params *params) 666 { 667 int error; 668 669 if (!params) 670 return (0); /* nothing to do */ 671 672 /* NB: most drivers assume that ibp_rate0 is set (!= 0). */ 673 if (params->ibp_rate0 != 0) { 674 error = ieee80211_validate_rate(ni, params->ibp_rate0); 675 if (error != 0) 676 return (error); 677 } else { 678 /* XXX pre-setup some default (e.g., mgmt / mcast) rate */ 679 /* XXX __DECONST? */ 680 (void) m; 681 } 682 683 if (params->ibp_rate1 != 0 && 684 (error = ieee80211_validate_rate(ni, params->ibp_rate1)) != 0) 685 return (error); 686 687 if (params->ibp_rate2 != 0 && 688 (error = ieee80211_validate_rate(ni, params->ibp_rate2)) != 0) 689 return (error); 690 691 if (params->ibp_rate3 != 0 && 692 (error = ieee80211_validate_rate(ni, params->ibp_rate3)) != 0) 693 return (error); 694 695 return (0); 696 } 697 698 /* 699 * 802.11 output routine. This is (currently) used only to 700 * connect bpf write calls to the 802.11 layer for injecting 701 * raw 802.11 frames. 702 */ 703 int 704 ieee80211_output(struct ifnet *ifp, struct mbuf *m, 705 const struct sockaddr *dst, struct route *ro) 706 { 707 #define senderr(e) do { error = (e); goto bad;} while (0) 708 const struct ieee80211_bpf_params *params = NULL; 709 struct ieee80211_node *ni = NULL; 710 struct ieee80211vap *vap; 711 struct ieee80211_frame *wh; 712 struct ieee80211com *ic = NULL; 713 int error; 714 int ret; 715 716 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 717 /* 718 * Short-circuit requests if the vap is marked OACTIVE 719 * as this can happen because a packet came down through 720 * ieee80211_start before the vap entered RUN state in 721 * which case it's ok to just drop the frame. This 722 * should not be necessary but callers of if_output don't 723 * check OACTIVE. 724 */ 725 senderr(ENETDOWN); 726 } 727 vap = ifp->if_softc; 728 ic = vap->iv_ic; 729 /* 730 * Hand to the 802.3 code if not tagged as 731 * a raw 802.11 frame. 732 */ 733 if (dst->sa_family != AF_IEEE80211) 734 return vap->iv_output(ifp, m, dst, ro); 735 #ifdef MAC 736 error = mac_ifnet_check_transmit(ifp, m); 737 if (error) 738 senderr(error); 739 #endif 740 if (ifp->if_flags & IFF_MONITOR) 741 senderr(ENETDOWN); 742 if (!IFNET_IS_UP_RUNNING(ifp)) 743 senderr(ENETDOWN); 744 if (vap->iv_state == IEEE80211_S_CAC) { 745 IEEE80211_DPRINTF(vap, 746 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 747 "block %s frame in CAC state\n", "raw data"); 748 vap->iv_stats.is_tx_badstate++; 749 senderr(EIO); /* XXX */ 750 } else if (vap->iv_state == IEEE80211_S_SCAN) 751 senderr(EIO); 752 /* XXX bypass bridge, pfil, carp, etc. */ 753 754 /* 755 * NB: DLT_IEEE802_11_RADIO identifies the parameters are 756 * present by setting the sa_len field of the sockaddr (yes, 757 * this is a hack). 758 * NB: we assume sa_data is suitably aligned to cast. 759 */ 760 if (dst->sa_len != 0) 761 params = (const struct ieee80211_bpf_params *)dst->sa_data; 762 763 error = ieee80211_validate_frame(m, params); 764 if (error != 0) 765 senderr(error); 766 767 wh = mtod(m, struct ieee80211_frame *); 768 769 /* locate destination node */ 770 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 771 case IEEE80211_FC1_DIR_NODS: 772 case IEEE80211_FC1_DIR_FROMDS: 773 ni = ieee80211_find_txnode(vap, wh->i_addr1); 774 break; 775 case IEEE80211_FC1_DIR_TODS: 776 case IEEE80211_FC1_DIR_DSTODS: 777 ni = ieee80211_find_txnode(vap, wh->i_addr3); 778 break; 779 default: 780 senderr(EDOOFUS); 781 } 782 if (ni == NULL) { 783 /* 784 * Permit packets w/ bpf params through regardless 785 * (see below about sa_len). 786 */ 787 if (dst->sa_len == 0) 788 senderr(EHOSTUNREACH); 789 ni = ieee80211_ref_node(vap->iv_bss); 790 } 791 792 /* 793 * Sanitize mbuf for net80211 flags leaked from above. 794 * 795 * NB: This must be done before ieee80211_classify as 796 * it marks EAPOL in frames with M_EAPOL. 797 */ 798 m->m_flags &= ~M_80211_TX; 799 m->m_flags |= M_ENCAP; /* mark encapsulated */ 800 801 if (IEEE80211_IS_DATA(wh)) { 802 /* calculate priority so drivers can find the tx queue */ 803 if (ieee80211_classify(ni, m)) 804 senderr(EIO); /* XXX */ 805 806 /* NB: ieee80211_encap does not include 802.11 header */ 807 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, 808 m->m_pkthdr.len - ieee80211_hdrsize(wh)); 809 } else 810 M_WME_SETAC(m, WME_AC_BE); 811 812 error = ieee80211_sanitize_rates(ni, m, params); 813 if (error != 0) 814 senderr(error); 815 816 IEEE80211_NODE_STAT(ni, tx_data); 817 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 818 IEEE80211_NODE_STAT(ni, tx_mcast); 819 m->m_flags |= M_MCAST; 820 } else 821 IEEE80211_NODE_STAT(ni, tx_ucast); 822 823 IEEE80211_TX_LOCK(ic); 824 ret = ieee80211_raw_output(vap, ni, m, params); 825 IEEE80211_TX_UNLOCK(ic); 826 return (ret); 827 bad: 828 if (m != NULL) 829 m_freem(m); 830 if (ni != NULL) 831 ieee80211_free_node(ni); 832 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 833 return error; 834 #undef senderr 835 } 836 837 /* 838 * Set the direction field and address fields of an outgoing 839 * frame. Note this should be called early on in constructing 840 * a frame as it sets i_fc[1]; other bits can then be or'd in. 841 */ 842 void 843 ieee80211_send_setup( 844 struct ieee80211_node *ni, 845 struct mbuf *m, 846 int type, int tid, 847 const uint8_t sa[IEEE80211_ADDR_LEN], 848 const uint8_t da[IEEE80211_ADDR_LEN], 849 const uint8_t bssid[IEEE80211_ADDR_LEN]) 850 { 851 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 852 struct ieee80211vap *vap = ni->ni_vap; 853 struct ieee80211_tx_ampdu *tap; 854 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 855 ieee80211_seq seqno; 856 857 IEEE80211_TX_LOCK_ASSERT(ni->ni_ic); 858 859 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 860 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 861 switch (vap->iv_opmode) { 862 case IEEE80211_M_STA: 863 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 864 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 865 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 866 IEEE80211_ADDR_COPY(wh->i_addr3, da); 867 break; 868 case IEEE80211_M_IBSS: 869 case IEEE80211_M_AHDEMO: 870 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 871 IEEE80211_ADDR_COPY(wh->i_addr1, da); 872 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 873 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 874 break; 875 case IEEE80211_M_HOSTAP: 876 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 877 IEEE80211_ADDR_COPY(wh->i_addr1, da); 878 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 879 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 880 break; 881 case IEEE80211_M_WDS: 882 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 883 IEEE80211_ADDR_COPY(wh->i_addr1, da); 884 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 885 IEEE80211_ADDR_COPY(wh->i_addr3, da); 886 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 887 break; 888 case IEEE80211_M_MBSS: 889 #ifdef IEEE80211_SUPPORT_MESH 890 if (IEEE80211_IS_MULTICAST(da)) { 891 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 892 /* XXX next hop */ 893 IEEE80211_ADDR_COPY(wh->i_addr1, da); 894 IEEE80211_ADDR_COPY(wh->i_addr2, 895 vap->iv_myaddr); 896 } else { 897 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 898 IEEE80211_ADDR_COPY(wh->i_addr1, da); 899 IEEE80211_ADDR_COPY(wh->i_addr2, 900 vap->iv_myaddr); 901 IEEE80211_ADDR_COPY(wh->i_addr3, da); 902 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 903 } 904 #endif 905 break; 906 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 907 break; 908 } 909 } else { 910 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 911 IEEE80211_ADDR_COPY(wh->i_addr1, da); 912 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 913 #ifdef IEEE80211_SUPPORT_MESH 914 if (vap->iv_opmode == IEEE80211_M_MBSS) 915 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 916 else 917 #endif 918 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 919 } 920 *(uint16_t *)&wh->i_dur[0] = 0; 921 922 /* 923 * XXX TODO: this is what the TX lock is for. 924 * Here we're incrementing sequence numbers, and they 925 * need to be in lock-step with what the driver is doing 926 * both in TX ordering and crypto encap (IV increment.) 927 * 928 * If the driver does seqno itself, then we can skip 929 * assigning sequence numbers here, and we can avoid 930 * requiring the TX lock. 931 */ 932 tap = &ni->ni_tx_ampdu[tid]; 933 if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) { 934 m->m_flags |= M_AMPDU_MPDU; 935 936 /* NB: zero out i_seq field (for s/w encryption etc) */ 937 *(uint16_t *)&wh->i_seq[0] = 0; 938 } else { 939 if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK, 940 type & IEEE80211_FC0_SUBTYPE_MASK)) 941 /* 942 * 802.11-2012 9.3.2.10 - QoS multicast frames 943 * come out of a different seqno space. 944 */ 945 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 946 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 947 } else { 948 seqno = ni->ni_txseqs[tid]++; 949 } 950 else 951 seqno = 0; 952 953 *(uint16_t *)&wh->i_seq[0] = 954 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 955 M_SEQNO_SET(m, seqno); 956 } 957 958 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 959 m->m_flags |= M_MCAST; 960 #undef WH4 961 } 962 963 /* 964 * Send a management frame to the specified node. The node pointer 965 * must have a reference as the pointer will be passed to the driver 966 * and potentially held for a long time. If the frame is successfully 967 * dispatched to the driver, then it is responsible for freeing the 968 * reference (and potentially free'ing up any associated storage); 969 * otherwise deal with reclaiming any reference (on error). 970 */ 971 int 972 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type, 973 struct ieee80211_bpf_params *params) 974 { 975 struct ieee80211vap *vap = ni->ni_vap; 976 struct ieee80211com *ic = ni->ni_ic; 977 struct ieee80211_frame *wh; 978 int ret; 979 980 KASSERT(ni != NULL, ("null node")); 981 982 if (vap->iv_state == IEEE80211_S_CAC) { 983 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 984 ni, "block %s frame in CAC state", 985 ieee80211_mgt_subtype_name(type)); 986 vap->iv_stats.is_tx_badstate++; 987 ieee80211_free_node(ni); 988 m_freem(m); 989 return EIO; /* XXX */ 990 } 991 992 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 993 if (m == NULL) { 994 ieee80211_free_node(ni); 995 return ENOMEM; 996 } 997 998 IEEE80211_TX_LOCK(ic); 999 1000 wh = mtod(m, struct ieee80211_frame *); 1001 ieee80211_send_setup(ni, m, 1002 IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID, 1003 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 1004 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { 1005 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1, 1006 "encrypting frame (%s)", __func__); 1007 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 1008 } 1009 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1010 1011 KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?")); 1012 M_WME_SETAC(m, params->ibp_pri); 1013 1014 #ifdef IEEE80211_DEBUG 1015 /* avoid printing too many frames */ 1016 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) || 1017 ieee80211_msg_dumppkts(vap)) { 1018 printf("[%s] send %s on channel %u\n", 1019 ether_sprintf(wh->i_addr1), 1020 ieee80211_mgt_subtype_name(type), 1021 ieee80211_chan2ieee(ic, ic->ic_curchan)); 1022 } 1023 #endif 1024 IEEE80211_NODE_STAT(ni, tx_mgmt); 1025 1026 ret = ieee80211_raw_output(vap, ni, m, params); 1027 IEEE80211_TX_UNLOCK(ic); 1028 return (ret); 1029 } 1030 1031 static void 1032 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg, 1033 int status) 1034 { 1035 struct ieee80211vap *vap = ni->ni_vap; 1036 1037 wakeup(vap); 1038 } 1039 1040 /* 1041 * Send a null data frame to the specified node. If the station 1042 * is setup for QoS then a QoS Null Data frame is constructed. 1043 * If this is a WDS station then a 4-address frame is constructed. 1044 * 1045 * NB: the caller is assumed to have setup a node reference 1046 * for use; this is necessary to deal with a race condition 1047 * when probing for inactive stations. Like ieee80211_mgmt_output 1048 * we must cleanup any node reference on error; however we 1049 * can safely just unref it as we know it will never be the 1050 * last reference to the node. 1051 */ 1052 int 1053 ieee80211_send_nulldata(struct ieee80211_node *ni) 1054 { 1055 struct ieee80211vap *vap = ni->ni_vap; 1056 struct ieee80211com *ic = ni->ni_ic; 1057 struct mbuf *m; 1058 struct ieee80211_frame *wh; 1059 int hdrlen; 1060 uint8_t *frm; 1061 int ret; 1062 1063 if (vap->iv_state == IEEE80211_S_CAC) { 1064 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 1065 ni, "block %s frame in CAC state", "null data"); 1066 ieee80211_unref_node(&ni); 1067 vap->iv_stats.is_tx_badstate++; 1068 return EIO; /* XXX */ 1069 } 1070 1071 if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) 1072 hdrlen = sizeof(struct ieee80211_qosframe); 1073 else 1074 hdrlen = sizeof(struct ieee80211_frame); 1075 /* NB: only WDS vap's get 4-address frames */ 1076 if (vap->iv_opmode == IEEE80211_M_WDS) 1077 hdrlen += IEEE80211_ADDR_LEN; 1078 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1079 hdrlen = roundup(hdrlen, sizeof(uint32_t)); 1080 1081 m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0); 1082 if (m == NULL) { 1083 /* XXX debug msg */ 1084 ieee80211_unref_node(&ni); 1085 vap->iv_stats.is_tx_nobuf++; 1086 return ENOMEM; 1087 } 1088 KASSERT(M_LEADINGSPACE(m) >= hdrlen, 1089 ("leading space %zd", M_LEADINGSPACE(m))); 1090 M_PREPEND(m, hdrlen, M_NOWAIT); 1091 if (m == NULL) { 1092 /* NB: cannot happen */ 1093 ieee80211_free_node(ni); 1094 return ENOMEM; 1095 } 1096 1097 IEEE80211_TX_LOCK(ic); 1098 1099 wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */ 1100 if (ni->ni_flags & IEEE80211_NODE_QOS) { 1101 const int tid = WME_AC_TO_TID(WME_AC_BE); 1102 uint8_t *qos; 1103 1104 ieee80211_send_setup(ni, m, 1105 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL, 1106 tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 1107 1108 if (vap->iv_opmode == IEEE80211_M_WDS) 1109 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1110 else 1111 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1112 qos[0] = tid & IEEE80211_QOS_TID; 1113 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy) 1114 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1115 qos[1] = 0; 1116 } else { 1117 ieee80211_send_setup(ni, m, 1118 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 1119 IEEE80211_NONQOS_TID, 1120 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 1121 } 1122 if (vap->iv_opmode != IEEE80211_M_WDS) { 1123 /* NB: power management bit is never sent by an AP */ 1124 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 1125 vap->iv_opmode != IEEE80211_M_HOSTAP) 1126 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 1127 } 1128 if ((ic->ic_flags & IEEE80211_F_SCAN) && 1129 (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) { 1130 ieee80211_add_callback(m, ieee80211_nulldata_transmitted, 1131 NULL); 1132 } 1133 m->m_len = m->m_pkthdr.len = hdrlen; 1134 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1135 1136 M_WME_SETAC(m, WME_AC_BE); 1137 1138 IEEE80211_NODE_STAT(ni, tx_data); 1139 1140 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni, 1141 "send %snull data frame on channel %u, pwr mgt %s", 1142 ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "", 1143 ieee80211_chan2ieee(ic, ic->ic_curchan), 1144 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 1145 1146 ret = ieee80211_raw_output(vap, ni, m, NULL); 1147 IEEE80211_TX_UNLOCK(ic); 1148 return (ret); 1149 } 1150 1151 /* 1152 * Assign priority to a frame based on any vlan tag assigned 1153 * to the station and/or any Diffserv setting in an IP header. 1154 * Finally, if an ACM policy is setup (in station mode) it's 1155 * applied. 1156 */ 1157 int 1158 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m) 1159 { 1160 const struct ether_header *eh = NULL; 1161 uint16_t ether_type; 1162 int v_wme_ac, d_wme_ac, ac; 1163 1164 if (__predict_false(m->m_flags & M_ENCAP)) { 1165 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 1166 struct llc *llc; 1167 int hdrlen, subtype; 1168 1169 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1170 if (subtype & IEEE80211_FC0_SUBTYPE_NODATA) { 1171 ac = WME_AC_BE; 1172 goto done; 1173 } 1174 1175 hdrlen = ieee80211_hdrsize(wh); 1176 if (m->m_pkthdr.len < hdrlen + sizeof(*llc)) 1177 return 1; 1178 1179 llc = (struct llc *)mtodo(m, hdrlen); 1180 if (llc->llc_dsap != LLC_SNAP_LSAP || 1181 llc->llc_ssap != LLC_SNAP_LSAP || 1182 llc->llc_control != LLC_UI || 1183 llc->llc_snap.org_code[0] != 0 || 1184 llc->llc_snap.org_code[1] != 0 || 1185 llc->llc_snap.org_code[2] != 0) 1186 return 1; 1187 1188 ether_type = llc->llc_snap.ether_type; 1189 } else { 1190 eh = mtod(m, struct ether_header *); 1191 ether_type = eh->ether_type; 1192 } 1193 1194 /* 1195 * Always promote PAE/EAPOL frames to high priority. 1196 */ 1197 if (ether_type == htons(ETHERTYPE_PAE)) { 1198 /* NB: mark so others don't need to check header */ 1199 m->m_flags |= M_EAPOL; 1200 ac = WME_AC_VO; 1201 goto done; 1202 } 1203 /* 1204 * Non-qos traffic goes to BE. 1205 */ 1206 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 1207 ac = WME_AC_BE; 1208 goto done; 1209 } 1210 1211 /* 1212 * If node has a vlan tag then all traffic 1213 * to it must have a matching tag. 1214 */ 1215 v_wme_ac = 0; 1216 if (ni->ni_vlan != 0) { 1217 if ((m->m_flags & M_VLANTAG) == 0) { 1218 IEEE80211_NODE_STAT(ni, tx_novlantag); 1219 return 1; 1220 } 1221 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 1222 EVL_VLANOFTAG(ni->ni_vlan)) { 1223 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 1224 return 1; 1225 } 1226 /* map vlan priority to AC */ 1227 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan)); 1228 } 1229 1230 /* XXX m_copydata may be too slow for fast path */ 1231 #ifdef INET 1232 if (eh && eh->ether_type == htons(ETHERTYPE_IP)) { 1233 uint8_t tos; 1234 /* 1235 * IP frame, map the DSCP bits from the TOS field. 1236 */ 1237 /* NB: ip header may not be in first mbuf */ 1238 m_copydata(m, sizeof(struct ether_header) + 1239 offsetof(struct ip, ip_tos), sizeof(tos), &tos); 1240 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1241 d_wme_ac = TID_TO_WME_AC(tos); 1242 } else { 1243 #endif /* INET */ 1244 #ifdef INET6 1245 if (eh && eh->ether_type == htons(ETHERTYPE_IPV6)) { 1246 uint32_t flow; 1247 uint8_t tos; 1248 /* 1249 * IPv6 frame, map the DSCP bits from the traffic class field. 1250 */ 1251 m_copydata(m, sizeof(struct ether_header) + 1252 offsetof(struct ip6_hdr, ip6_flow), sizeof(flow), 1253 (caddr_t) &flow); 1254 tos = (uint8_t)(ntohl(flow) >> 20); 1255 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1256 d_wme_ac = TID_TO_WME_AC(tos); 1257 } else { 1258 #endif /* INET6 */ 1259 d_wme_ac = WME_AC_BE; 1260 #ifdef INET6 1261 } 1262 #endif 1263 #ifdef INET 1264 } 1265 #endif 1266 /* 1267 * Use highest priority AC. 1268 */ 1269 if (v_wme_ac > d_wme_ac) 1270 ac = v_wme_ac; 1271 else 1272 ac = d_wme_ac; 1273 1274 /* 1275 * Apply ACM policy. 1276 */ 1277 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) { 1278 static const int acmap[4] = { 1279 WME_AC_BK, /* WME_AC_BE */ 1280 WME_AC_BK, /* WME_AC_BK */ 1281 WME_AC_BE, /* WME_AC_VI */ 1282 WME_AC_VI, /* WME_AC_VO */ 1283 }; 1284 struct ieee80211com *ic = ni->ni_ic; 1285 1286 while (ac != WME_AC_BK && 1287 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 1288 ac = acmap[ac]; 1289 } 1290 done: 1291 M_WME_SETAC(m, ac); 1292 return 0; 1293 } 1294 1295 /* 1296 * Insure there is sufficient contiguous space to encapsulate the 1297 * 802.11 data frame. If room isn't already there, arrange for it. 1298 * Drivers and cipher modules assume we have done the necessary work 1299 * and fail rudely if they don't find the space they need. 1300 */ 1301 struct mbuf * 1302 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize, 1303 struct ieee80211_key *key, struct mbuf *m) 1304 { 1305 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 1306 int needed_space = vap->iv_ic->ic_headroom + hdrsize; 1307 1308 if (key != NULL) { 1309 /* XXX belongs in crypto code? */ 1310 needed_space += key->wk_cipher->ic_header; 1311 /* XXX frags */ 1312 /* 1313 * When crypto is being done in the host we must insure 1314 * the data are writable for the cipher routines; clone 1315 * a writable mbuf chain. 1316 * XXX handle SWMIC specially 1317 */ 1318 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) { 1319 m = m_unshare(m, M_NOWAIT); 1320 if (m == NULL) { 1321 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1322 "%s: cannot get writable mbuf\n", __func__); 1323 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */ 1324 return NULL; 1325 } 1326 } 1327 } 1328 /* 1329 * We know we are called just before stripping an Ethernet 1330 * header and prepending an LLC header. This means we know 1331 * there will be 1332 * sizeof(struct ether_header) - sizeof(struct llc) 1333 * bytes recovered to which we need additional space for the 1334 * 802.11 header and any crypto header. 1335 */ 1336 /* XXX check trailing space and copy instead? */ 1337 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 1338 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); 1339 if (n == NULL) { 1340 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1341 "%s: cannot expand storage\n", __func__); 1342 vap->iv_stats.is_tx_nobuf++; 1343 m_freem(m); 1344 return NULL; 1345 } 1346 KASSERT(needed_space <= MHLEN, 1347 ("not enough room, need %u got %d\n", needed_space, MHLEN)); 1348 /* 1349 * Setup new mbuf to have leading space to prepend the 1350 * 802.11 header and any crypto header bits that are 1351 * required (the latter are added when the driver calls 1352 * back to ieee80211_crypto_encap to do crypto encapsulation). 1353 */ 1354 /* NB: must be first 'cuz it clobbers m_data */ 1355 m_move_pkthdr(n, m); 1356 n->m_len = 0; /* NB: m_gethdr does not set */ 1357 n->m_data += needed_space; 1358 /* 1359 * Pull up Ethernet header to create the expected layout. 1360 * We could use m_pullup but that's overkill (i.e. we don't 1361 * need the actual data) and it cannot fail so do it inline 1362 * for speed. 1363 */ 1364 /* NB: struct ether_header is known to be contiguous */ 1365 n->m_len += sizeof(struct ether_header); 1366 m->m_len -= sizeof(struct ether_header); 1367 m->m_data += sizeof(struct ether_header); 1368 /* 1369 * Replace the head of the chain. 1370 */ 1371 n->m_next = m; 1372 m = n; 1373 } 1374 return m; 1375 #undef TO_BE_RECLAIMED 1376 } 1377 1378 /* 1379 * Return the transmit key to use in sending a unicast frame. 1380 * If a unicast key is set we use that. When no unicast key is set 1381 * we fall back to the default transmit key. 1382 */ 1383 static __inline struct ieee80211_key * 1384 ieee80211_crypto_getucastkey(struct ieee80211vap *vap, 1385 struct ieee80211_node *ni) 1386 { 1387 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) { 1388 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1389 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1390 return NULL; 1391 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1392 } else { 1393 return &ni->ni_ucastkey; 1394 } 1395 } 1396 1397 /* 1398 * Return the transmit key to use in sending a multicast frame. 1399 * Multicast traffic always uses the group key which is installed as 1400 * the default tx key. 1401 */ 1402 static __inline struct ieee80211_key * 1403 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap, 1404 struct ieee80211_node *ni) 1405 { 1406 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1407 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1408 return NULL; 1409 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1410 } 1411 1412 /* 1413 * Encapsulate an outbound data frame. The mbuf chain is updated. 1414 * If an error is encountered NULL is returned. The caller is required 1415 * to provide a node reference and pullup the ethernet header in the 1416 * first mbuf. 1417 * 1418 * NB: Packet is assumed to be processed by ieee80211_classify which 1419 * marked EAPOL frames w/ M_EAPOL. 1420 */ 1421 struct mbuf * 1422 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni, 1423 struct mbuf *m) 1424 { 1425 #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh)) 1426 #define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc) 1427 struct ieee80211com *ic = ni->ni_ic; 1428 #ifdef IEEE80211_SUPPORT_MESH 1429 struct ieee80211_mesh_state *ms = vap->iv_mesh; 1430 struct ieee80211_meshcntl_ae10 *mc; 1431 struct ieee80211_mesh_route *rt = NULL; 1432 int dir = -1; 1433 #endif 1434 struct ether_header eh; 1435 struct ieee80211_frame *wh; 1436 struct ieee80211_key *key; 1437 struct llc *llc; 1438 int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast; 1439 ieee80211_seq seqno; 1440 int meshhdrsize, meshae; 1441 uint8_t *qos; 1442 int is_amsdu = 0; 1443 1444 IEEE80211_TX_LOCK_ASSERT(ic); 1445 1446 is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST)); 1447 1448 /* 1449 * Copy existing Ethernet header to a safe place. The 1450 * rest of the code assumes it's ok to strip it when 1451 * reorganizing state for the final encapsulation. 1452 */ 1453 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 1454 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t)); 1455 1456 /* 1457 * Insure space for additional headers. First identify 1458 * transmit key to use in calculating any buffer adjustments 1459 * required. This is also used below to do privacy 1460 * encapsulation work. Then calculate the 802.11 header 1461 * size and any padding required by the driver. 1462 * 1463 * Note key may be NULL if we fall back to the default 1464 * transmit key and that is not set. In that case the 1465 * buffer may not be expanded as needed by the cipher 1466 * routines, but they will/should discard it. 1467 */ 1468 if (vap->iv_flags & IEEE80211_F_PRIVACY) { 1469 if (vap->iv_opmode == IEEE80211_M_STA || 1470 !IEEE80211_IS_MULTICAST(eh.ether_dhost) || 1471 (vap->iv_opmode == IEEE80211_M_WDS && 1472 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) 1473 key = ieee80211_crypto_getucastkey(vap, ni); 1474 else 1475 key = ieee80211_crypto_getmcastkey(vap, ni); 1476 if (key == NULL && (m->m_flags & M_EAPOL) == 0) { 1477 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, 1478 eh.ether_dhost, 1479 "no default transmit key (%s) deftxkey %u", 1480 __func__, vap->iv_def_txkey); 1481 vap->iv_stats.is_tx_nodefkey++; 1482 goto bad; 1483 } 1484 } else 1485 key = NULL; 1486 /* 1487 * XXX Some ap's don't handle QoS-encapsulated EAPOL 1488 * frames so suppress use. This may be an issue if other 1489 * ap's require all data frames to be QoS-encapsulated 1490 * once negotiated in which case we'll need to make this 1491 * configurable. 1492 * 1493 * Don't send multicast QoS frames. 1494 * Technically multicast frames can be QoS if all stations in the 1495 * BSS are also QoS. 1496 * 1497 * NB: mesh data frames are QoS, including multicast frames. 1498 */ 1499 addqos = 1500 (((is_mcast == 0) && (ni->ni_flags & 1501 (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) || 1502 (vap->iv_opmode == IEEE80211_M_MBSS)) && 1503 (m->m_flags & M_EAPOL) == 0; 1504 1505 if (addqos) 1506 hdrsize = sizeof(struct ieee80211_qosframe); 1507 else 1508 hdrsize = sizeof(struct ieee80211_frame); 1509 #ifdef IEEE80211_SUPPORT_MESH 1510 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1511 /* 1512 * Mesh data frames are encapsulated according to the 1513 * rules of Section 11B.8.5 (p.139 of D3.0 spec). 1514 * o Group Addressed data (aka multicast) originating 1515 * at the local sta are sent w/ 3-address format and 1516 * address extension mode 00 1517 * o Individually Addressed data (aka unicast) originating 1518 * at the local sta are sent w/ 4-address format and 1519 * address extension mode 00 1520 * o Group Addressed data forwarded from a non-mesh sta are 1521 * sent w/ 3-address format and address extension mode 01 1522 * o Individually Address data from another sta are sent 1523 * w/ 4-address format and address extension mode 10 1524 */ 1525 is4addr = 0; /* NB: don't use, disable */ 1526 if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) { 1527 rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost); 1528 KASSERT(rt != NULL, ("route is NULL")); 1529 dir = IEEE80211_FC1_DIR_DSTODS; 1530 hdrsize += IEEE80211_ADDR_LEN; 1531 if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) { 1532 if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate, 1533 vap->iv_myaddr)) { 1534 IEEE80211_NOTE_MAC(vap, 1535 IEEE80211_MSG_MESH, 1536 eh.ether_dhost, 1537 "%s", "trying to send to ourself"); 1538 goto bad; 1539 } 1540 meshae = IEEE80211_MESH_AE_10; 1541 meshhdrsize = 1542 sizeof(struct ieee80211_meshcntl_ae10); 1543 } else { 1544 meshae = IEEE80211_MESH_AE_00; 1545 meshhdrsize = 1546 sizeof(struct ieee80211_meshcntl); 1547 } 1548 } else { 1549 dir = IEEE80211_FC1_DIR_FROMDS; 1550 if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) { 1551 /* proxy group */ 1552 meshae = IEEE80211_MESH_AE_01; 1553 meshhdrsize = 1554 sizeof(struct ieee80211_meshcntl_ae01); 1555 } else { 1556 /* group */ 1557 meshae = IEEE80211_MESH_AE_00; 1558 meshhdrsize = sizeof(struct ieee80211_meshcntl); 1559 } 1560 } 1561 } else { 1562 #endif 1563 /* 1564 * 4-address frames need to be generated for: 1565 * o packets sent through a WDS vap (IEEE80211_M_WDS) 1566 * o packets sent through a vap marked for relaying 1567 * (e.g. a station operating with dynamic WDS) 1568 */ 1569 is4addr = vap->iv_opmode == IEEE80211_M_WDS || 1570 ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) && 1571 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)); 1572 if (is4addr) 1573 hdrsize += IEEE80211_ADDR_LEN; 1574 meshhdrsize = meshae = 0; 1575 #ifdef IEEE80211_SUPPORT_MESH 1576 } 1577 #endif 1578 /* 1579 * Honor driver DATAPAD requirement. 1580 */ 1581 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1582 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1583 else 1584 hdrspace = hdrsize; 1585 1586 if (__predict_true((m->m_flags & M_FF) == 0)) { 1587 /* 1588 * Normal frame. 1589 */ 1590 m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m); 1591 if (m == NULL) { 1592 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 1593 goto bad; 1594 } 1595 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */ 1596 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 1597 llc = mtod(m, struct llc *); 1598 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 1599 llc->llc_control = LLC_UI; 1600 llc->llc_snap.org_code[0] = 0; 1601 llc->llc_snap.org_code[1] = 0; 1602 llc->llc_snap.org_code[2] = 0; 1603 llc->llc_snap.ether_type = eh.ether_type; 1604 } else { 1605 #ifdef IEEE80211_SUPPORT_SUPERG 1606 /* 1607 * Aggregated frame. Check if it's for AMSDU or FF. 1608 * 1609 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented 1610 * anywhere for some reason. But, since 11n requires 1611 * AMSDU RX, we can just assume "11n" == "AMSDU". 1612 */ 1613 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__); 1614 if (ieee80211_amsdu_tx_ok(ni)) { 1615 m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key); 1616 is_amsdu = 1; 1617 } else { 1618 m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key); 1619 } 1620 if (m == NULL) 1621 #endif 1622 goto bad; 1623 } 1624 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 1625 1626 M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT); 1627 if (m == NULL) { 1628 vap->iv_stats.is_tx_nobuf++; 1629 goto bad; 1630 } 1631 wh = mtod(m, struct ieee80211_frame *); 1632 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 1633 *(uint16_t *)wh->i_dur = 0; 1634 qos = NULL; /* NB: quiet compiler */ 1635 if (is4addr) { 1636 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 1637 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); 1638 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1639 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1640 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); 1641 } else switch (vap->iv_opmode) { 1642 case IEEE80211_M_STA: 1643 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 1644 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 1645 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1646 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1647 break; 1648 case IEEE80211_M_IBSS: 1649 case IEEE80211_M_AHDEMO: 1650 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1651 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1652 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1653 /* 1654 * NB: always use the bssid from iv_bss as the 1655 * neighbor's may be stale after an ibss merge 1656 */ 1657 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid); 1658 break; 1659 case IEEE80211_M_HOSTAP: 1660 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1661 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1662 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 1663 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 1664 break; 1665 #ifdef IEEE80211_SUPPORT_MESH 1666 case IEEE80211_M_MBSS: 1667 /* NB: offset by hdrspace to deal with DATAPAD */ 1668 mc = (struct ieee80211_meshcntl_ae10 *) 1669 (mtod(m, uint8_t *) + hdrspace); 1670 wh->i_fc[1] = dir; 1671 switch (meshae) { 1672 case IEEE80211_MESH_AE_00: /* no proxy */ 1673 mc->mc_flags = 0; 1674 if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */ 1675 IEEE80211_ADDR_COPY(wh->i_addr1, 1676 ni->ni_macaddr); 1677 IEEE80211_ADDR_COPY(wh->i_addr2, 1678 vap->iv_myaddr); 1679 IEEE80211_ADDR_COPY(wh->i_addr3, 1680 eh.ether_dhost); 1681 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, 1682 eh.ether_shost); 1683 qos =((struct ieee80211_qosframe_addr4 *) 1684 wh)->i_qos; 1685 } else if (dir == IEEE80211_FC1_DIR_FROMDS) { 1686 /* mcast */ 1687 IEEE80211_ADDR_COPY(wh->i_addr1, 1688 eh.ether_dhost); 1689 IEEE80211_ADDR_COPY(wh->i_addr2, 1690 vap->iv_myaddr); 1691 IEEE80211_ADDR_COPY(wh->i_addr3, 1692 eh.ether_shost); 1693 qos = ((struct ieee80211_qosframe *) 1694 wh)->i_qos; 1695 } 1696 break; 1697 case IEEE80211_MESH_AE_01: /* mcast, proxy */ 1698 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1699 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1700 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1701 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr); 1702 mc->mc_flags = 1; 1703 IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4, 1704 eh.ether_shost); 1705 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1706 break; 1707 case IEEE80211_MESH_AE_10: /* ucast, proxy */ 1708 KASSERT(rt != NULL, ("route is NULL")); 1709 IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop); 1710 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1711 IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate); 1712 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr); 1713 mc->mc_flags = IEEE80211_MESH_AE_10; 1714 IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost); 1715 IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost); 1716 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1717 break; 1718 default: 1719 KASSERT(0, ("meshae %d", meshae)); 1720 break; 1721 } 1722 mc->mc_ttl = ms->ms_ttl; 1723 ms->ms_seq++; 1724 le32enc(mc->mc_seq, ms->ms_seq); 1725 break; 1726 #endif 1727 case IEEE80211_M_WDS: /* NB: is4addr should always be true */ 1728 default: 1729 goto bad; 1730 } 1731 if (m->m_flags & M_MORE_DATA) 1732 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 1733 if (addqos) { 1734 int ac, tid; 1735 1736 if (is4addr) { 1737 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1738 /* NB: mesh case handled earlier */ 1739 } else if (vap->iv_opmode != IEEE80211_M_MBSS) 1740 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1741 ac = M_WME_GETAC(m); 1742 /* map from access class/queue to 11e header priorty value */ 1743 tid = WME_AC_TO_TID(ac); 1744 qos[0] = tid & IEEE80211_QOS_TID; 1745 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 1746 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1747 #ifdef IEEE80211_SUPPORT_MESH 1748 if (vap->iv_opmode == IEEE80211_M_MBSS) 1749 qos[1] = IEEE80211_QOS_MC; 1750 else 1751 #endif 1752 qos[1] = 0; 1753 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 1754 1755 /* 1756 * If this is an A-MSDU then ensure we set the 1757 * relevant field. 1758 */ 1759 if (is_amsdu) 1760 qos[0] |= IEEE80211_QOS_AMSDU; 1761 1762 /* 1763 * XXX TODO TX lock is needed for atomic updates of sequence 1764 * numbers. If the driver does it, then don't do it here; 1765 * and we don't need the TX lock held. 1766 */ 1767 if ((m->m_flags & M_AMPDU_MPDU) == 0) { 1768 /* 1769 * 802.11-2012 9.3.2.10 - 1770 * 1771 * If this is a multicast frame then we need 1772 * to ensure that the sequence number comes from 1773 * a separate seqno space and not the TID space. 1774 * 1775 * Otherwise multicast frames may actually cause 1776 * holes in the TX blockack window space and 1777 * upset various things. 1778 */ 1779 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1780 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1781 else 1782 seqno = ni->ni_txseqs[tid]++; 1783 1784 /* 1785 * NB: don't assign a sequence # to potential 1786 * aggregates; we expect this happens at the 1787 * point the frame comes off any aggregation q 1788 * as otherwise we may introduce holes in the 1789 * BA sequence space and/or make window accouting 1790 * more difficult. 1791 * 1792 * XXX may want to control this with a driver 1793 * capability; this may also change when we pull 1794 * aggregation up into net80211 1795 */ 1796 *(uint16_t *)wh->i_seq = 1797 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1798 M_SEQNO_SET(m, seqno); 1799 } else { 1800 /* NB: zero out i_seq field (for s/w encryption etc) */ 1801 *(uint16_t *)wh->i_seq = 0; 1802 } 1803 } else { 1804 /* 1805 * XXX TODO TX lock is needed for atomic updates of sequence 1806 * numbers. If the driver does it, then don't do it here; 1807 * and we don't need the TX lock held. 1808 */ 1809 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1810 *(uint16_t *)wh->i_seq = 1811 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1812 M_SEQNO_SET(m, seqno); 1813 1814 /* 1815 * XXX TODO: we shouldn't allow EAPOL, etc that would 1816 * be forced to be non-QoS traffic to be A-MSDU encapsulated. 1817 */ 1818 if (is_amsdu) 1819 printf("%s: XXX ERROR: is_amsdu set; not QoS!\n", 1820 __func__); 1821 } 1822 1823 /* 1824 * Check if xmit fragmentation is required. 1825 * 1826 * If the hardware does fragmentation offload, then don't bother 1827 * doing it here. 1828 */ 1829 if (IEEE80211_CONF_FRAG_OFFLOAD(ic)) 1830 txfrag = 0; 1831 else 1832 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold && 1833 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 1834 (vap->iv_caps & IEEE80211_C_TXFRAG) && 1835 (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0); 1836 1837 if (key != NULL) { 1838 /* 1839 * IEEE 802.1X: send EAPOL frames always in the clear. 1840 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 1841 */ 1842 if ((m->m_flags & M_EAPOL) == 0 || 1843 ((vap->iv_flags & IEEE80211_F_WPA) && 1844 (vap->iv_opmode == IEEE80211_M_STA ? 1845 !IEEE80211_KEY_UNDEFINED(key) : 1846 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) { 1847 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 1848 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) { 1849 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT, 1850 eh.ether_dhost, 1851 "%s", "enmic failed, discard frame"); 1852 vap->iv_stats.is_crypto_enmicfail++; 1853 goto bad; 1854 } 1855 } 1856 } 1857 if (txfrag && !ieee80211_fragment(vap, m, hdrsize, 1858 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold)) 1859 goto bad; 1860 1861 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1862 1863 IEEE80211_NODE_STAT(ni, tx_data); 1864 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1865 IEEE80211_NODE_STAT(ni, tx_mcast); 1866 m->m_flags |= M_MCAST; 1867 } else 1868 IEEE80211_NODE_STAT(ni, tx_ucast); 1869 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 1870 1871 return m; 1872 bad: 1873 if (m != NULL) 1874 m_freem(m); 1875 return NULL; 1876 #undef WH4 1877 #undef MC01 1878 } 1879 1880 void 1881 ieee80211_free_mbuf(struct mbuf *m) 1882 { 1883 struct mbuf *next; 1884 1885 if (m == NULL) 1886 return; 1887 1888 do { 1889 next = m->m_nextpkt; 1890 m->m_nextpkt = NULL; 1891 m_freem(m); 1892 } while ((m = next) != NULL); 1893 } 1894 1895 /* 1896 * Fragment the frame according to the specified mtu. 1897 * The size of the 802.11 header (w/o padding) is provided 1898 * so we don't need to recalculate it. We create a new 1899 * mbuf for each fragment and chain it through m_nextpkt; 1900 * we might be able to optimize this by reusing the original 1901 * packet's mbufs but that is significantly more complicated. 1902 */ 1903 static int 1904 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0, 1905 u_int hdrsize, u_int ciphdrsize, u_int mtu) 1906 { 1907 struct ieee80211com *ic = vap->iv_ic; 1908 struct ieee80211_frame *wh, *whf; 1909 struct mbuf *m, *prev; 1910 u_int totalhdrsize, fragno, fragsize, off, remainder, payload; 1911 u_int hdrspace; 1912 1913 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); 1914 KASSERT(m0->m_pkthdr.len > mtu, 1915 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); 1916 1917 /* 1918 * Honor driver DATAPAD requirement. 1919 */ 1920 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1921 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1922 else 1923 hdrspace = hdrsize; 1924 1925 wh = mtod(m0, struct ieee80211_frame *); 1926 /* NB: mark the first frag; it will be propagated below */ 1927 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; 1928 totalhdrsize = hdrspace + ciphdrsize; 1929 fragno = 1; 1930 off = mtu - ciphdrsize; 1931 remainder = m0->m_pkthdr.len - off; 1932 prev = m0; 1933 do { 1934 fragsize = MIN(totalhdrsize + remainder, mtu); 1935 m = m_get2(fragsize, M_NOWAIT, MT_DATA, M_PKTHDR); 1936 if (m == NULL) 1937 goto bad; 1938 /* leave room to prepend any cipher header */ 1939 m_align(m, fragsize - ciphdrsize); 1940 1941 /* 1942 * Form the header in the fragment. Note that since 1943 * we mark the first fragment with the MORE_FRAG bit 1944 * it automatically is propagated to each fragment; we 1945 * need only clear it on the last fragment (done below). 1946 * NB: frag 1+ dont have Mesh Control field present. 1947 */ 1948 whf = mtod(m, struct ieee80211_frame *); 1949 memcpy(whf, wh, hdrsize); 1950 #ifdef IEEE80211_SUPPORT_MESH 1951 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1952 if (IEEE80211_IS_DSTODS(wh)) 1953 ((struct ieee80211_qosframe_addr4 *) 1954 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1955 else 1956 ((struct ieee80211_qosframe *) 1957 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1958 } 1959 #endif 1960 *(uint16_t *)&whf->i_seq[0] |= htole16( 1961 (fragno & IEEE80211_SEQ_FRAG_MASK) << 1962 IEEE80211_SEQ_FRAG_SHIFT); 1963 fragno++; 1964 1965 payload = fragsize - totalhdrsize; 1966 /* NB: destination is known to be contiguous */ 1967 1968 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace); 1969 m->m_len = hdrspace + payload; 1970 m->m_pkthdr.len = hdrspace + payload; 1971 m->m_flags |= M_FRAG; 1972 1973 /* chain up the fragment */ 1974 prev->m_nextpkt = m; 1975 prev = m; 1976 1977 /* deduct fragment just formed */ 1978 remainder -= payload; 1979 off += payload; 1980 } while (remainder != 0); 1981 1982 /* set the last fragment */ 1983 m->m_flags |= M_LASTFRAG; 1984 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; 1985 1986 /* strip first mbuf now that everything has been copied */ 1987 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); 1988 m0->m_flags |= M_FIRSTFRAG | M_FRAG; 1989 1990 vap->iv_stats.is_tx_fragframes++; 1991 vap->iv_stats.is_tx_frags += fragno-1; 1992 1993 return 1; 1994 bad: 1995 /* reclaim fragments but leave original frame for caller to free */ 1996 ieee80211_free_mbuf(m0->m_nextpkt); 1997 m0->m_nextpkt = NULL; 1998 return 0; 1999 } 2000 2001 /* 2002 * Add a supported rates element id to a frame. 2003 */ 2004 uint8_t * 2005 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs) 2006 { 2007 int nrates; 2008 2009 *frm++ = IEEE80211_ELEMID_RATES; 2010 nrates = rs->rs_nrates; 2011 if (nrates > IEEE80211_RATE_SIZE) 2012 nrates = IEEE80211_RATE_SIZE; 2013 *frm++ = nrates; 2014 memcpy(frm, rs->rs_rates, nrates); 2015 return frm + nrates; 2016 } 2017 2018 /* 2019 * Add an extended supported rates element id to a frame. 2020 */ 2021 uint8_t * 2022 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs) 2023 { 2024 /* 2025 * Add an extended supported rates element if operating in 11g mode. 2026 */ 2027 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 2028 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 2029 *frm++ = IEEE80211_ELEMID_XRATES; 2030 *frm++ = nrates; 2031 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 2032 frm += nrates; 2033 } 2034 return frm; 2035 } 2036 2037 /* 2038 * Add an ssid element to a frame. 2039 */ 2040 uint8_t * 2041 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) 2042 { 2043 *frm++ = IEEE80211_ELEMID_SSID; 2044 *frm++ = len; 2045 memcpy(frm, ssid, len); 2046 return frm + len; 2047 } 2048 2049 /* 2050 * Add an erp element to a frame. 2051 */ 2052 static uint8_t * 2053 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic) 2054 { 2055 uint8_t erp; 2056 2057 *frm++ = IEEE80211_ELEMID_ERP; 2058 *frm++ = 1; 2059 erp = 0; 2060 if (ic->ic_nonerpsta != 0) 2061 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 2062 if (ic->ic_flags & IEEE80211_F_USEPROT) 2063 erp |= IEEE80211_ERP_USE_PROTECTION; 2064 if (ic->ic_flags & IEEE80211_F_USEBARKER) 2065 erp |= IEEE80211_ERP_LONG_PREAMBLE; 2066 *frm++ = erp; 2067 return frm; 2068 } 2069 2070 /* 2071 * Add a CFParams element to a frame. 2072 */ 2073 static uint8_t * 2074 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic) 2075 { 2076 #define ADDSHORT(frm, v) do { \ 2077 le16enc(frm, v); \ 2078 frm += 2; \ 2079 } while (0) 2080 *frm++ = IEEE80211_ELEMID_CFPARMS; 2081 *frm++ = 6; 2082 *frm++ = 0; /* CFP count */ 2083 *frm++ = 2; /* CFP period */ 2084 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */ 2085 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */ 2086 return frm; 2087 #undef ADDSHORT 2088 } 2089 2090 static __inline uint8_t * 2091 add_appie(uint8_t *frm, const struct ieee80211_appie *ie) 2092 { 2093 memcpy(frm, ie->ie_data, ie->ie_len); 2094 return frm + ie->ie_len; 2095 } 2096 2097 static __inline uint8_t * 2098 add_ie(uint8_t *frm, const uint8_t *ie) 2099 { 2100 memcpy(frm, ie, 2 + ie[1]); 2101 return frm + 2 + ie[1]; 2102 } 2103 2104 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 2105 /* 2106 * Add a WME information element to a frame. 2107 */ 2108 uint8_t * 2109 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme) 2110 { 2111 static const struct ieee80211_wme_info info = { 2112 .wme_id = IEEE80211_ELEMID_VENDOR, 2113 .wme_len = sizeof(struct ieee80211_wme_info) - 2, 2114 .wme_oui = { WME_OUI_BYTES }, 2115 .wme_type = WME_OUI_TYPE, 2116 .wme_subtype = WME_INFO_OUI_SUBTYPE, 2117 .wme_version = WME_VERSION, 2118 .wme_info = 0, 2119 }; 2120 memcpy(frm, &info, sizeof(info)); 2121 return frm + sizeof(info); 2122 } 2123 2124 /* 2125 * Add a WME parameters element to a frame. 2126 */ 2127 static uint8_t * 2128 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme) 2129 { 2130 #define SM(_v, _f) (((_v) << _f##_S) & _f) 2131 #define ADDSHORT(frm, v) do { \ 2132 le16enc(frm, v); \ 2133 frm += 2; \ 2134 } while (0) 2135 /* NB: this works 'cuz a param has an info at the front */ 2136 static const struct ieee80211_wme_info param = { 2137 .wme_id = IEEE80211_ELEMID_VENDOR, 2138 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 2139 .wme_oui = { WME_OUI_BYTES }, 2140 .wme_type = WME_OUI_TYPE, 2141 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 2142 .wme_version = WME_VERSION, 2143 }; 2144 int i; 2145 2146 memcpy(frm, ¶m, sizeof(param)); 2147 frm += __offsetof(struct ieee80211_wme_info, wme_info); 2148 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ 2149 *frm++ = 0; /* reserved field */ 2150 for (i = 0; i < WME_NUM_AC; i++) { 2151 const struct wmeParams *ac = 2152 &wme->wme_bssChanParams.cap_wmeParams[i]; 2153 *frm++ = SM(i, WME_PARAM_ACI) 2154 | SM(ac->wmep_acm, WME_PARAM_ACM) 2155 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) 2156 ; 2157 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) 2158 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) 2159 ; 2160 ADDSHORT(frm, ac->wmep_txopLimit); 2161 } 2162 return frm; 2163 #undef SM 2164 #undef ADDSHORT 2165 } 2166 #undef WME_OUI_BYTES 2167 2168 /* 2169 * Add an 11h Power Constraint element to a frame. 2170 */ 2171 static uint8_t * 2172 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap) 2173 { 2174 const struct ieee80211_channel *c = vap->iv_bss->ni_chan; 2175 /* XXX per-vap tx power limit? */ 2176 int8_t limit = vap->iv_ic->ic_txpowlimit / 2; 2177 2178 frm[0] = IEEE80211_ELEMID_PWRCNSTR; 2179 frm[1] = 1; 2180 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0; 2181 return frm + 3; 2182 } 2183 2184 /* 2185 * Add an 11h Power Capability element to a frame. 2186 */ 2187 static uint8_t * 2188 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c) 2189 { 2190 frm[0] = IEEE80211_ELEMID_PWRCAP; 2191 frm[1] = 2; 2192 frm[2] = c->ic_minpower; 2193 frm[3] = c->ic_maxpower; 2194 return frm + 4; 2195 } 2196 2197 /* 2198 * Add an 11h Supported Channels element to a frame. 2199 */ 2200 static uint8_t * 2201 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic) 2202 { 2203 static const int ielen = 26; 2204 2205 frm[0] = IEEE80211_ELEMID_SUPPCHAN; 2206 frm[1] = ielen; 2207 /* XXX not correct */ 2208 memcpy(frm+2, ic->ic_chan_avail, ielen); 2209 return frm + 2 + ielen; 2210 } 2211 2212 /* 2213 * Add an 11h Quiet time element to a frame. 2214 */ 2215 static uint8_t * 2216 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap, int update) 2217 { 2218 struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm; 2219 2220 quiet->quiet_ie = IEEE80211_ELEMID_QUIET; 2221 quiet->len = 6; 2222 2223 /* 2224 * Only update every beacon interval - otherwise probe responses 2225 * would update the quiet count value. 2226 */ 2227 if (update) { 2228 if (vap->iv_quiet_count_value == 1) 2229 vap->iv_quiet_count_value = vap->iv_quiet_count; 2230 else if (vap->iv_quiet_count_value > 1) 2231 vap->iv_quiet_count_value--; 2232 } 2233 2234 if (vap->iv_quiet_count_value == 0) { 2235 /* value 0 is reserved as per 802.11h standerd */ 2236 vap->iv_quiet_count_value = 1; 2237 } 2238 2239 quiet->tbttcount = vap->iv_quiet_count_value; 2240 quiet->period = vap->iv_quiet_period; 2241 quiet->duration = htole16(vap->iv_quiet_duration); 2242 quiet->offset = htole16(vap->iv_quiet_offset); 2243 return frm + sizeof(*quiet); 2244 } 2245 2246 /* 2247 * Add an 11h Channel Switch Announcement element to a frame. 2248 * Note that we use the per-vap CSA count to adjust the global 2249 * counter so we can use this routine to form probe response 2250 * frames and get the current count. 2251 */ 2252 static uint8_t * 2253 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap) 2254 { 2255 struct ieee80211com *ic = vap->iv_ic; 2256 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm; 2257 2258 csa->csa_ie = IEEE80211_ELEMID_CSA; 2259 csa->csa_len = 3; 2260 csa->csa_mode = 1; /* XXX force quiet on channel */ 2261 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan); 2262 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count; 2263 return frm + sizeof(*csa); 2264 } 2265 2266 /* 2267 * Add an 11h country information element to a frame. 2268 */ 2269 static uint8_t * 2270 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic) 2271 { 2272 2273 if (ic->ic_countryie == NULL || 2274 ic->ic_countryie_chan != ic->ic_bsschan) { 2275 /* 2276 * Handle lazy construction of ie. This is done on 2277 * first use and after a channel change that requires 2278 * re-calculation. 2279 */ 2280 if (ic->ic_countryie != NULL) 2281 IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE); 2282 ic->ic_countryie = ieee80211_alloc_countryie(ic); 2283 if (ic->ic_countryie == NULL) 2284 return frm; 2285 ic->ic_countryie_chan = ic->ic_bsschan; 2286 } 2287 return add_appie(frm, ic->ic_countryie); 2288 } 2289 2290 uint8_t * 2291 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap) 2292 { 2293 if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) 2294 return (add_ie(frm, vap->iv_wpa_ie)); 2295 else { 2296 /* XXX else complain? */ 2297 return (frm); 2298 } 2299 } 2300 2301 uint8_t * 2302 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap) 2303 { 2304 if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL) 2305 return (add_ie(frm, vap->iv_rsn_ie)); 2306 else { 2307 /* XXX else complain? */ 2308 return (frm); 2309 } 2310 } 2311 2312 uint8_t * 2313 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni) 2314 { 2315 if (ni->ni_flags & IEEE80211_NODE_QOS) { 2316 *frm++ = IEEE80211_ELEMID_QOS; 2317 *frm++ = 1; 2318 *frm++ = 0; 2319 } 2320 2321 return (frm); 2322 } 2323 2324 /* 2325 * Send a probe request frame with the specified ssid 2326 * and any optional information element data. 2327 */ 2328 int 2329 ieee80211_send_probereq(struct ieee80211_node *ni, 2330 const uint8_t sa[IEEE80211_ADDR_LEN], 2331 const uint8_t da[IEEE80211_ADDR_LEN], 2332 const uint8_t bssid[IEEE80211_ADDR_LEN], 2333 const uint8_t *ssid, size_t ssidlen) 2334 { 2335 struct ieee80211vap *vap = ni->ni_vap; 2336 struct ieee80211com *ic = ni->ni_ic; 2337 struct ieee80211_node *bss; 2338 const struct ieee80211_txparam *tp; 2339 struct ieee80211_bpf_params params; 2340 const struct ieee80211_rateset *rs; 2341 struct mbuf *m; 2342 uint8_t *frm; 2343 int ret; 2344 2345 bss = ieee80211_ref_node(vap->iv_bss); 2346 2347 if (vap->iv_state == IEEE80211_S_CAC) { 2348 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni, 2349 "block %s frame in CAC state", "probe request"); 2350 vap->iv_stats.is_tx_badstate++; 2351 ieee80211_free_node(bss); 2352 return EIO; /* XXX */ 2353 } 2354 2355 /* 2356 * Hold a reference on the node so it doesn't go away until after 2357 * the xmit is complete all the way in the driver. On error we 2358 * will remove our reference. 2359 */ 2360 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2361 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2362 __func__, __LINE__, 2363 ni, ether_sprintf(ni->ni_macaddr), 2364 ieee80211_node_refcnt(ni)+1); 2365 ieee80211_ref_node(ni); 2366 2367 /* 2368 * prreq frame format 2369 * [tlv] ssid 2370 * [tlv] supported rates 2371 * [tlv] RSN (optional) 2372 * [tlv] extended supported rates 2373 * [tlv] HT cap (optional) 2374 * [tlv] VHT cap (optional) 2375 * [tlv] WPA (optional) 2376 * [tlv] user-specified ie's 2377 */ 2378 m = ieee80211_getmgtframe(&frm, 2379 ic->ic_headroom + sizeof(struct ieee80211_frame), 2380 2 + IEEE80211_NWID_LEN 2381 + 2 + IEEE80211_RATE_SIZE 2382 + sizeof(struct ieee80211_ie_htcap) 2383 + sizeof(struct ieee80211_ie_vhtcap) 2384 + sizeof(struct ieee80211_ie_htinfo) /* XXX not needed? */ 2385 + sizeof(struct ieee80211_ie_wpa) 2386 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2387 + sizeof(struct ieee80211_ie_wpa) 2388 + (vap->iv_appie_probereq != NULL ? 2389 vap->iv_appie_probereq->ie_len : 0) 2390 ); 2391 if (m == NULL) { 2392 vap->iv_stats.is_tx_nobuf++; 2393 ieee80211_free_node(ni); 2394 ieee80211_free_node(bss); 2395 return ENOMEM; 2396 } 2397 2398 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 2399 rs = ieee80211_get_suprates(ic, ic->ic_curchan); 2400 frm = ieee80211_add_rates(frm, rs); 2401 frm = ieee80211_add_rsn(frm, vap); 2402 frm = ieee80211_add_xrates(frm, rs); 2403 2404 /* 2405 * Note: we can't use bss; we don't have one yet. 2406 * 2407 * So, we should announce our capabilities 2408 * in this channel mode (2g/5g), not the 2409 * channel details itself. 2410 */ 2411 if ((vap->iv_opmode == IEEE80211_M_IBSS) && 2412 (vap->iv_flags_ht & IEEE80211_FHT_HT)) { 2413 struct ieee80211_channel *c; 2414 2415 /* 2416 * Get the HT channel that we should try upgrading to. 2417 * If we can do 40MHz then this'll upgrade it appropriately. 2418 */ 2419 c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan, 2420 vap->iv_flags_ht); 2421 frm = ieee80211_add_htcap_ch(frm, vap, c); 2422 } 2423 2424 /* 2425 * XXX TODO: need to figure out what/how to update the 2426 * VHT channel. 2427 */ 2428 #if 0 2429 (vap->iv_flags_vht & IEEE80211_FVHT_VHT) { 2430 struct ieee80211_channel *c; 2431 2432 c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan, 2433 vap->iv_flags_ht); 2434 c = ieee80211_vht_adjust_channel(ic, c, vap->iv_flags_vht); 2435 frm = ieee80211_add_vhtcap_ch(frm, vap, c); 2436 } 2437 #endif 2438 2439 frm = ieee80211_add_wpa(frm, vap); 2440 if (vap->iv_appie_probereq != NULL) 2441 frm = add_appie(frm, vap->iv_appie_probereq); 2442 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2443 2444 KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame), 2445 ("leading space %zd", M_LEADINGSPACE(m))); 2446 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2447 if (m == NULL) { 2448 /* NB: cannot happen */ 2449 ieee80211_free_node(ni); 2450 ieee80211_free_node(bss); 2451 return ENOMEM; 2452 } 2453 2454 IEEE80211_TX_LOCK(ic); 2455 ieee80211_send_setup(ni, m, 2456 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 2457 IEEE80211_NONQOS_TID, sa, da, bssid); 2458 /* XXX power management? */ 2459 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2460 2461 M_WME_SETAC(m, WME_AC_BE); 2462 2463 IEEE80211_NODE_STAT(ni, tx_probereq); 2464 IEEE80211_NODE_STAT(ni, tx_mgmt); 2465 2466 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2467 "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n", 2468 ieee80211_chan2ieee(ic, ic->ic_curchan), 2469 ether_sprintf(bssid), 2470 sa, ":", 2471 da, ":", 2472 ssidlen, ssid); 2473 2474 memset(¶ms, 0, sizeof(params)); 2475 params.ibp_pri = M_WME_GETAC(m); 2476 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 2477 params.ibp_rate0 = tp->mgmtrate; 2478 if (IEEE80211_IS_MULTICAST(da)) { 2479 params.ibp_flags |= IEEE80211_BPF_NOACK; 2480 params.ibp_try0 = 1; 2481 } else 2482 params.ibp_try0 = tp->maxretry; 2483 params.ibp_power = ni->ni_txpower; 2484 ret = ieee80211_raw_output(vap, ni, m, ¶ms); 2485 IEEE80211_TX_UNLOCK(ic); 2486 ieee80211_free_node(bss); 2487 return (ret); 2488 } 2489 2490 /* 2491 * Calculate capability information for mgt frames. 2492 */ 2493 uint16_t 2494 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan) 2495 { 2496 struct ieee80211com *ic = vap->iv_ic; 2497 uint16_t capinfo; 2498 2499 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode")); 2500 2501 if (vap->iv_opmode == IEEE80211_M_HOSTAP) 2502 capinfo = IEEE80211_CAPINFO_ESS; 2503 else if (vap->iv_opmode == IEEE80211_M_IBSS) 2504 capinfo = IEEE80211_CAPINFO_IBSS; 2505 else 2506 capinfo = 0; 2507 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2508 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2509 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2510 IEEE80211_IS_CHAN_2GHZ(chan)) 2511 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2512 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2513 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2514 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH)) 2515 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2516 return capinfo; 2517 } 2518 2519 /* 2520 * Send a management frame. The node is for the destination (or ic_bss 2521 * when in station mode). Nodes other than ic_bss have their reference 2522 * count bumped to reflect our use for an indeterminant time. 2523 */ 2524 int 2525 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg) 2526 { 2527 #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT) 2528 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2529 struct ieee80211vap *vap = ni->ni_vap; 2530 struct ieee80211com *ic = ni->ni_ic; 2531 struct ieee80211_node *bss = vap->iv_bss; 2532 struct ieee80211_bpf_params params; 2533 struct mbuf *m; 2534 uint8_t *frm; 2535 uint16_t capinfo; 2536 int has_challenge, is_shared_key, ret, status; 2537 2538 KASSERT(ni != NULL, ("null node")); 2539 2540 /* 2541 * Hold a reference on the node so it doesn't go away until after 2542 * the xmit is complete all the way in the driver. On error we 2543 * will remove our reference. 2544 */ 2545 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2546 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2547 __func__, __LINE__, 2548 ni, ether_sprintf(ni->ni_macaddr), 2549 ieee80211_node_refcnt(ni)+1); 2550 ieee80211_ref_node(ni); 2551 2552 memset(¶ms, 0, sizeof(params)); 2553 switch (type) { 2554 2555 case IEEE80211_FC0_SUBTYPE_AUTH: 2556 status = arg >> 16; 2557 arg &= 0xffff; 2558 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || 2559 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 2560 ni->ni_challenge != NULL); 2561 2562 /* 2563 * Deduce whether we're doing open authentication or 2564 * shared key authentication. We do the latter if 2565 * we're in the middle of a shared key authentication 2566 * handshake or if we're initiating an authentication 2567 * request and configured to use shared key. 2568 */ 2569 is_shared_key = has_challenge || 2570 arg >= IEEE80211_AUTH_SHARED_RESPONSE || 2571 (arg == IEEE80211_AUTH_SHARED_REQUEST && 2572 bss->ni_authmode == IEEE80211_AUTH_SHARED); 2573 2574 m = ieee80211_getmgtframe(&frm, 2575 ic->ic_headroom + sizeof(struct ieee80211_frame), 2576 3 * sizeof(uint16_t) 2577 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? 2578 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0) 2579 ); 2580 if (m == NULL) 2581 senderr(ENOMEM, is_tx_nobuf); 2582 2583 ((uint16_t *)frm)[0] = 2584 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) 2585 : htole16(IEEE80211_AUTH_ALG_OPEN); 2586 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */ 2587 ((uint16_t *)frm)[2] = htole16(status);/* status */ 2588 2589 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { 2590 ((uint16_t *)frm)[3] = 2591 htole16((IEEE80211_CHALLENGE_LEN << 8) | 2592 IEEE80211_ELEMID_CHALLENGE); 2593 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge, 2594 IEEE80211_CHALLENGE_LEN); 2595 m->m_pkthdr.len = m->m_len = 2596 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN; 2597 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 2598 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2599 "request encrypt frame (%s)", __func__); 2600 /* mark frame for encryption */ 2601 params.ibp_flags |= IEEE80211_BPF_CRYPTO; 2602 } 2603 } else 2604 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t); 2605 2606 /* XXX not right for shared key */ 2607 if (status == IEEE80211_STATUS_SUCCESS) 2608 IEEE80211_NODE_STAT(ni, tx_auth); 2609 else 2610 IEEE80211_NODE_STAT(ni, tx_auth_fail); 2611 2612 if (vap->iv_opmode == IEEE80211_M_STA) 2613 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2614 (void *) vap->iv_state); 2615 break; 2616 2617 case IEEE80211_FC0_SUBTYPE_DEAUTH: 2618 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2619 "send station deauthenticate (reason: %d (%s))", arg, 2620 ieee80211_reason_to_string(arg)); 2621 m = ieee80211_getmgtframe(&frm, 2622 ic->ic_headroom + sizeof(struct ieee80211_frame), 2623 sizeof(uint16_t)); 2624 if (m == NULL) 2625 senderr(ENOMEM, is_tx_nobuf); 2626 *(uint16_t *)frm = htole16(arg); /* reason */ 2627 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2628 2629 IEEE80211_NODE_STAT(ni, tx_deauth); 2630 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 2631 2632 ieee80211_node_unauthorize(ni); /* port closed */ 2633 break; 2634 2635 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 2636 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 2637 /* 2638 * asreq frame format 2639 * [2] capability information 2640 * [2] listen interval 2641 * [6*] current AP address (reassoc only) 2642 * [tlv] ssid 2643 * [tlv] supported rates 2644 * [tlv] extended supported rates 2645 * [4] power capability (optional) 2646 * [28] supported channels (optional) 2647 * [tlv] HT capabilities 2648 * [tlv] VHT capabilities 2649 * [tlv] WME (optional) 2650 * [tlv] Vendor OUI HT capabilities (optional) 2651 * [tlv] Atheros capabilities (if negotiated) 2652 * [tlv] AppIE's (optional) 2653 */ 2654 m = ieee80211_getmgtframe(&frm, 2655 ic->ic_headroom + sizeof(struct ieee80211_frame), 2656 sizeof(uint16_t) 2657 + sizeof(uint16_t) 2658 + IEEE80211_ADDR_LEN 2659 + 2 + IEEE80211_NWID_LEN 2660 + 2 + IEEE80211_RATE_SIZE 2661 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2662 + 4 2663 + 2 + 26 2664 + sizeof(struct ieee80211_wme_info) 2665 + sizeof(struct ieee80211_ie_htcap) 2666 + sizeof(struct ieee80211_ie_vhtcap) 2667 + 4 + sizeof(struct ieee80211_ie_htcap) 2668 #ifdef IEEE80211_SUPPORT_SUPERG 2669 + sizeof(struct ieee80211_ath_ie) 2670 #endif 2671 + (vap->iv_appie_wpa != NULL ? 2672 vap->iv_appie_wpa->ie_len : 0) 2673 + (vap->iv_appie_assocreq != NULL ? 2674 vap->iv_appie_assocreq->ie_len : 0) 2675 ); 2676 if (m == NULL) 2677 senderr(ENOMEM, is_tx_nobuf); 2678 2679 KASSERT(vap->iv_opmode == IEEE80211_M_STA, 2680 ("wrong mode %u", vap->iv_opmode)); 2681 capinfo = IEEE80211_CAPINFO_ESS; 2682 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2683 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2684 /* 2685 * NB: Some 11a AP's reject the request when 2686 * short preamble is set. 2687 */ 2688 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2689 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2690 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2691 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 2692 (ic->ic_caps & IEEE80211_C_SHSLOT)) 2693 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2694 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) && 2695 (vap->iv_flags & IEEE80211_F_DOTH)) 2696 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2697 *(uint16_t *)frm = htole16(capinfo); 2698 frm += 2; 2699 2700 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!")); 2701 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval, 2702 bss->ni_intval)); 2703 frm += 2; 2704 2705 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 2706 IEEE80211_ADDR_COPY(frm, bss->ni_bssid); 2707 frm += IEEE80211_ADDR_LEN; 2708 } 2709 2710 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 2711 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2712 frm = ieee80211_add_rsn(frm, vap); 2713 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2714 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) { 2715 frm = ieee80211_add_powercapability(frm, 2716 ic->ic_curchan); 2717 frm = ieee80211_add_supportedchannels(frm, ic); 2718 } 2719 2720 /* 2721 * Check the channel - we may be using an 11n NIC with an 2722 * 11n capable station, but we're configured to be an 11b 2723 * channel. 2724 */ 2725 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2726 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2727 ni->ni_ies.htcap_ie != NULL && 2728 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) { 2729 frm = ieee80211_add_htcap(frm, ni); 2730 } 2731 2732 if ((vap->iv_flags_vht & IEEE80211_FVHT_VHT) && 2733 IEEE80211_IS_CHAN_VHT(ni->ni_chan) && 2734 ni->ni_ies.vhtcap_ie != NULL && 2735 ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) { 2736 frm = ieee80211_add_vhtcap(frm, ni); 2737 } 2738 2739 frm = ieee80211_add_wpa(frm, vap); 2740 if ((ic->ic_flags & IEEE80211_F_WME) && 2741 ni->ni_ies.wme_ie != NULL) 2742 frm = ieee80211_add_wme_info(frm, &ic->ic_wme); 2743 2744 /* 2745 * Same deal - only send HT info if we're on an 11n 2746 * capable channel. 2747 */ 2748 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2749 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2750 ni->ni_ies.htcap_ie != NULL && 2751 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) { 2752 frm = ieee80211_add_htcap_vendor(frm, ni); 2753 } 2754 #ifdef IEEE80211_SUPPORT_SUPERG 2755 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) { 2756 frm = ieee80211_add_ath(frm, 2757 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2758 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2759 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2760 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2761 } 2762 #endif /* IEEE80211_SUPPORT_SUPERG */ 2763 if (vap->iv_appie_assocreq != NULL) 2764 frm = add_appie(frm, vap->iv_appie_assocreq); 2765 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2766 2767 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2768 (void *) vap->iv_state); 2769 break; 2770 2771 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 2772 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 2773 /* 2774 * asresp frame format 2775 * [2] capability information 2776 * [2] status 2777 * [2] association ID 2778 * [tlv] supported rates 2779 * [tlv] extended supported rates 2780 * [tlv] HT capabilities (standard, if STA enabled) 2781 * [tlv] HT information (standard, if STA enabled) 2782 * [tlv] VHT capabilities (standard, if STA enabled) 2783 * [tlv] VHT information (standard, if STA enabled) 2784 * [tlv] WME (if configured and STA enabled) 2785 * [tlv] HT capabilities (vendor OUI, if STA enabled) 2786 * [tlv] HT information (vendor OUI, if STA enabled) 2787 * [tlv] Atheros capabilities (if STA enabled) 2788 * [tlv] AppIE's (optional) 2789 */ 2790 m = ieee80211_getmgtframe(&frm, 2791 ic->ic_headroom + sizeof(struct ieee80211_frame), 2792 sizeof(uint16_t) 2793 + sizeof(uint16_t) 2794 + sizeof(uint16_t) 2795 + 2 + IEEE80211_RATE_SIZE 2796 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2797 + sizeof(struct ieee80211_ie_htcap) + 4 2798 + sizeof(struct ieee80211_ie_htinfo) + 4 2799 + sizeof(struct ieee80211_ie_vhtcap) 2800 + sizeof(struct ieee80211_ie_vht_operation) 2801 + sizeof(struct ieee80211_wme_param) 2802 #ifdef IEEE80211_SUPPORT_SUPERG 2803 + sizeof(struct ieee80211_ath_ie) 2804 #endif 2805 + (vap->iv_appie_assocresp != NULL ? 2806 vap->iv_appie_assocresp->ie_len : 0) 2807 ); 2808 if (m == NULL) 2809 senderr(ENOMEM, is_tx_nobuf); 2810 2811 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2812 *(uint16_t *)frm = htole16(capinfo); 2813 frm += 2; 2814 2815 *(uint16_t *)frm = htole16(arg); /* status */ 2816 frm += 2; 2817 2818 if (arg == IEEE80211_STATUS_SUCCESS) { 2819 *(uint16_t *)frm = htole16(ni->ni_associd); 2820 IEEE80211_NODE_STAT(ni, tx_assoc); 2821 } else 2822 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 2823 frm += 2; 2824 2825 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2826 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2827 /* NB: respond according to what we received */ 2828 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) { 2829 frm = ieee80211_add_htcap(frm, ni); 2830 frm = ieee80211_add_htinfo(frm, ni); 2831 } 2832 if ((vap->iv_flags & IEEE80211_F_WME) && 2833 ni->ni_ies.wme_ie != NULL) 2834 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2835 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) { 2836 frm = ieee80211_add_htcap_vendor(frm, ni); 2837 frm = ieee80211_add_htinfo_vendor(frm, ni); 2838 } 2839 if (ni->ni_flags & IEEE80211_NODE_VHT) { 2840 frm = ieee80211_add_vhtcap(frm, ni); 2841 frm = ieee80211_add_vhtinfo(frm, ni); 2842 } 2843 #ifdef IEEE80211_SUPPORT_SUPERG 2844 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) 2845 frm = ieee80211_add_ath(frm, 2846 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2847 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2848 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2849 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2850 #endif /* IEEE80211_SUPPORT_SUPERG */ 2851 if (vap->iv_appie_assocresp != NULL) 2852 frm = add_appie(frm, vap->iv_appie_assocresp); 2853 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2854 break; 2855 2856 case IEEE80211_FC0_SUBTYPE_DISASSOC: 2857 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, 2858 "send station disassociate (reason: %d (%s))", arg, 2859 ieee80211_reason_to_string(arg)); 2860 m = ieee80211_getmgtframe(&frm, 2861 ic->ic_headroom + sizeof(struct ieee80211_frame), 2862 sizeof(uint16_t)); 2863 if (m == NULL) 2864 senderr(ENOMEM, is_tx_nobuf); 2865 *(uint16_t *)frm = htole16(arg); /* reason */ 2866 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2867 2868 IEEE80211_NODE_STAT(ni, tx_disassoc); 2869 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 2870 break; 2871 2872 default: 2873 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni, 2874 "invalid mgmt frame type %u", type); 2875 senderr(EINVAL, is_tx_unknownmgt); 2876 /* NOTREACHED */ 2877 } 2878 2879 /* NB: force non-ProbeResp frames to the highest queue */ 2880 params.ibp_pri = WME_AC_VO; 2881 params.ibp_rate0 = bss->ni_txparms->mgmtrate; 2882 /* NB: we know all frames are unicast */ 2883 params.ibp_try0 = bss->ni_txparms->maxretry; 2884 params.ibp_power = bss->ni_txpower; 2885 return ieee80211_mgmt_output(ni, m, type, ¶ms); 2886 bad: 2887 ieee80211_free_node(ni); 2888 return ret; 2889 #undef senderr 2890 #undef HTFLAGS 2891 } 2892 2893 /* 2894 * Return an mbuf with a probe response frame in it. 2895 * Space is left to prepend and 802.11 header at the 2896 * front but it's left to the caller to fill in. 2897 */ 2898 struct mbuf * 2899 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy) 2900 { 2901 struct ieee80211vap *vap = bss->ni_vap; 2902 struct ieee80211com *ic = bss->ni_ic; 2903 const struct ieee80211_rateset *rs; 2904 struct mbuf *m; 2905 uint16_t capinfo; 2906 uint8_t *frm; 2907 2908 /* 2909 * probe response frame format 2910 * [8] time stamp 2911 * [2] beacon interval 2912 * [2] cabability information 2913 * [tlv] ssid 2914 * [tlv] supported rates 2915 * [tlv] parameter set (FH/DS) 2916 * [tlv] parameter set (IBSS) 2917 * [tlv] country (optional) 2918 * [3] power control (optional) 2919 * [5] channel switch announcement (CSA) (optional) 2920 * [tlv] extended rate phy (ERP) 2921 * [tlv] extended supported rates 2922 * [tlv] RSN (optional) 2923 * [tlv] HT capabilities 2924 * [tlv] HT information 2925 * [tlv] VHT capabilities 2926 * [tlv] VHT information 2927 * [tlv] WPA (optional) 2928 * [tlv] WME (optional) 2929 * [tlv] Vendor OUI HT capabilities (optional) 2930 * [tlv] Vendor OUI HT information (optional) 2931 * [tlv] Atheros capabilities 2932 * [tlv] AppIE's (optional) 2933 * [tlv] Mesh ID (MBSS) 2934 * [tlv] Mesh Conf (MBSS) 2935 */ 2936 m = ieee80211_getmgtframe(&frm, 2937 ic->ic_headroom + sizeof(struct ieee80211_frame), 2938 8 2939 + sizeof(uint16_t) 2940 + sizeof(uint16_t) 2941 + 2 + IEEE80211_NWID_LEN 2942 + 2 + IEEE80211_RATE_SIZE 2943 + 7 /* max(7,3) */ 2944 + IEEE80211_COUNTRY_MAX_SIZE 2945 + 3 2946 + sizeof(struct ieee80211_csa_ie) 2947 + sizeof(struct ieee80211_quiet_ie) 2948 + 3 2949 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2950 + sizeof(struct ieee80211_ie_wpa) 2951 + sizeof(struct ieee80211_ie_htcap) 2952 + sizeof(struct ieee80211_ie_htinfo) 2953 + sizeof(struct ieee80211_ie_wpa) 2954 + sizeof(struct ieee80211_wme_param) 2955 + 4 + sizeof(struct ieee80211_ie_htcap) 2956 + 4 + sizeof(struct ieee80211_ie_htinfo) 2957 + sizeof(struct ieee80211_ie_vhtcap) 2958 + sizeof(struct ieee80211_ie_vht_operation) 2959 #ifdef IEEE80211_SUPPORT_SUPERG 2960 + sizeof(struct ieee80211_ath_ie) 2961 #endif 2962 #ifdef IEEE80211_SUPPORT_MESH 2963 + 2 + IEEE80211_MESHID_LEN 2964 + sizeof(struct ieee80211_meshconf_ie) 2965 #endif 2966 + (vap->iv_appie_proberesp != NULL ? 2967 vap->iv_appie_proberesp->ie_len : 0) 2968 ); 2969 if (m == NULL) { 2970 vap->iv_stats.is_tx_nobuf++; 2971 return NULL; 2972 } 2973 2974 memset(frm, 0, 8); /* timestamp should be filled later */ 2975 frm += 8; 2976 *(uint16_t *)frm = htole16(bss->ni_intval); 2977 frm += 2; 2978 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2979 *(uint16_t *)frm = htole16(capinfo); 2980 frm += 2; 2981 2982 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen); 2983 rs = ieee80211_get_suprates(ic, bss->ni_chan); 2984 frm = ieee80211_add_rates(frm, rs); 2985 2986 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) { 2987 *frm++ = IEEE80211_ELEMID_FHPARMS; 2988 *frm++ = 5; 2989 *frm++ = bss->ni_fhdwell & 0x00ff; 2990 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff; 2991 *frm++ = IEEE80211_FH_CHANSET( 2992 ieee80211_chan2ieee(ic, bss->ni_chan)); 2993 *frm++ = IEEE80211_FH_CHANPAT( 2994 ieee80211_chan2ieee(ic, bss->ni_chan)); 2995 *frm++ = bss->ni_fhindex; 2996 } else { 2997 *frm++ = IEEE80211_ELEMID_DSPARMS; 2998 *frm++ = 1; 2999 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan); 3000 } 3001 3002 if (vap->iv_opmode == IEEE80211_M_IBSS) { 3003 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 3004 *frm++ = 2; 3005 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 3006 } 3007 if ((vap->iv_flags & IEEE80211_F_DOTH) || 3008 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 3009 frm = ieee80211_add_countryie(frm, ic); 3010 if (vap->iv_flags & IEEE80211_F_DOTH) { 3011 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan)) 3012 frm = ieee80211_add_powerconstraint(frm, vap); 3013 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 3014 frm = ieee80211_add_csa(frm, vap); 3015 } 3016 if (vap->iv_flags & IEEE80211_F_DOTH) { 3017 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3018 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 3019 if (vap->iv_quiet) 3020 frm = ieee80211_add_quiet(frm, vap, 0); 3021 } 3022 } 3023 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan)) 3024 frm = ieee80211_add_erp(frm, ic); 3025 frm = ieee80211_add_xrates(frm, rs); 3026 frm = ieee80211_add_rsn(frm, vap); 3027 /* 3028 * NB: legacy 11b clients do not get certain ie's. 3029 * The caller identifies such clients by passing 3030 * a token in legacy to us. Could expand this to be 3031 * any legacy client for stuff like HT ie's. 3032 */ 3033 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 3034 legacy != IEEE80211_SEND_LEGACY_11B) { 3035 frm = ieee80211_add_htcap(frm, bss); 3036 frm = ieee80211_add_htinfo(frm, bss); 3037 } 3038 if (IEEE80211_IS_CHAN_VHT(bss->ni_chan) && 3039 legacy != IEEE80211_SEND_LEGACY_11B) { 3040 frm = ieee80211_add_vhtcap(frm, bss); 3041 frm = ieee80211_add_vhtinfo(frm, bss); 3042 } 3043 frm = ieee80211_add_wpa(frm, vap); 3044 if (vap->iv_flags & IEEE80211_F_WME) 3045 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 3046 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 3047 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) && 3048 legacy != IEEE80211_SEND_LEGACY_11B) { 3049 frm = ieee80211_add_htcap_vendor(frm, bss); 3050 frm = ieee80211_add_htinfo_vendor(frm, bss); 3051 } 3052 #ifdef IEEE80211_SUPPORT_SUPERG 3053 if ((vap->iv_flags & IEEE80211_F_ATHEROS) && 3054 legacy != IEEE80211_SEND_LEGACY_11B) 3055 frm = ieee80211_add_athcaps(frm, bss); 3056 #endif 3057 if (vap->iv_appie_proberesp != NULL) 3058 frm = add_appie(frm, vap->iv_appie_proberesp); 3059 #ifdef IEEE80211_SUPPORT_MESH 3060 if (vap->iv_opmode == IEEE80211_M_MBSS) { 3061 frm = ieee80211_add_meshid(frm, vap); 3062 frm = ieee80211_add_meshconf(frm, vap); 3063 } 3064 #endif 3065 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3066 3067 return m; 3068 } 3069 3070 /* 3071 * Send a probe response frame to the specified mac address. 3072 * This does not go through the normal mgt frame api so we 3073 * can specify the destination address and re-use the bss node 3074 * for the sta reference. 3075 */ 3076 int 3077 ieee80211_send_proberesp(struct ieee80211vap *vap, 3078 const uint8_t da[IEEE80211_ADDR_LEN], int legacy) 3079 { 3080 struct ieee80211_node *bss = vap->iv_bss; 3081 struct ieee80211com *ic = vap->iv_ic; 3082 struct mbuf *m; 3083 int ret; 3084 3085 if (vap->iv_state == IEEE80211_S_CAC) { 3086 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss, 3087 "block %s frame in CAC state", "probe response"); 3088 vap->iv_stats.is_tx_badstate++; 3089 return EIO; /* XXX */ 3090 } 3091 3092 /* 3093 * Hold a reference on the node so it doesn't go away until after 3094 * the xmit is complete all the way in the driver. On error we 3095 * will remove our reference. 3096 */ 3097 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 3098 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 3099 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr), 3100 ieee80211_node_refcnt(bss)+1); 3101 ieee80211_ref_node(bss); 3102 3103 m = ieee80211_alloc_proberesp(bss, legacy); 3104 if (m == NULL) { 3105 ieee80211_free_node(bss); 3106 return ENOMEM; 3107 } 3108 3109 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 3110 KASSERT(m != NULL, ("no room for header")); 3111 3112 IEEE80211_TX_LOCK(ic); 3113 ieee80211_send_setup(bss, m, 3114 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP, 3115 IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid); 3116 /* XXX power management? */ 3117 m->m_flags |= M_ENCAP; /* mark encapsulated */ 3118 3119 M_WME_SETAC(m, WME_AC_BE); 3120 3121 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 3122 "send probe resp on channel %u to %s%s\n", 3123 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da), 3124 legacy ? " <legacy>" : ""); 3125 IEEE80211_NODE_STAT(bss, tx_mgmt); 3126 3127 ret = ieee80211_raw_output(vap, bss, m, NULL); 3128 IEEE80211_TX_UNLOCK(ic); 3129 return (ret); 3130 } 3131 3132 /* 3133 * Allocate and build a RTS (Request To Send) control frame. 3134 */ 3135 struct mbuf * 3136 ieee80211_alloc_rts(struct ieee80211com *ic, 3137 const uint8_t ra[IEEE80211_ADDR_LEN], 3138 const uint8_t ta[IEEE80211_ADDR_LEN], 3139 uint16_t dur) 3140 { 3141 struct ieee80211_frame_rts *rts; 3142 struct mbuf *m; 3143 3144 /* XXX honor ic_headroom */ 3145 m = m_gethdr(M_NOWAIT, MT_DATA); 3146 if (m != NULL) { 3147 rts = mtod(m, struct ieee80211_frame_rts *); 3148 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 3149 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS; 3150 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3151 *(u_int16_t *)rts->i_dur = htole16(dur); 3152 IEEE80211_ADDR_COPY(rts->i_ra, ra); 3153 IEEE80211_ADDR_COPY(rts->i_ta, ta); 3154 3155 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); 3156 } 3157 return m; 3158 } 3159 3160 /* 3161 * Allocate and build a CTS (Clear To Send) control frame. 3162 */ 3163 struct mbuf * 3164 ieee80211_alloc_cts(struct ieee80211com *ic, 3165 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur) 3166 { 3167 struct ieee80211_frame_cts *cts; 3168 struct mbuf *m; 3169 3170 /* XXX honor ic_headroom */ 3171 m = m_gethdr(M_NOWAIT, MT_DATA); 3172 if (m != NULL) { 3173 cts = mtod(m, struct ieee80211_frame_cts *); 3174 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 3175 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS; 3176 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3177 *(u_int16_t *)cts->i_dur = htole16(dur); 3178 IEEE80211_ADDR_COPY(cts->i_ra, ra); 3179 3180 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts); 3181 } 3182 return m; 3183 } 3184 3185 /* 3186 * Wrapper for CTS/RTS frame allocation. 3187 */ 3188 struct mbuf * 3189 ieee80211_alloc_prot(struct ieee80211_node *ni, const struct mbuf *m, 3190 uint8_t rate, int prot) 3191 { 3192 struct ieee80211com *ic = ni->ni_ic; 3193 const struct ieee80211_frame *wh; 3194 struct mbuf *mprot; 3195 uint16_t dur; 3196 int pktlen, isshort; 3197 3198 KASSERT(prot == IEEE80211_PROT_RTSCTS || 3199 prot == IEEE80211_PROT_CTSONLY, 3200 ("wrong protection type %d", prot)); 3201 3202 wh = mtod(m, const struct ieee80211_frame *); 3203 pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; 3204 isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0; 3205 dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort) 3206 + ieee80211_ack_duration(ic->ic_rt, rate, isshort); 3207 3208 if (prot == IEEE80211_PROT_RTSCTS) { 3209 /* NB: CTS is the same size as an ACK */ 3210 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); 3211 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); 3212 } else 3213 mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur); 3214 3215 return (mprot); 3216 } 3217 3218 static void 3219 ieee80211_tx_mgt_timeout(void *arg) 3220 { 3221 struct ieee80211vap *vap = arg; 3222 3223 IEEE80211_LOCK(vap->iv_ic); 3224 if (vap->iv_state != IEEE80211_S_INIT && 3225 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) { 3226 /* 3227 * NB: it's safe to specify a timeout as the reason here; 3228 * it'll only be used in the right state. 3229 */ 3230 ieee80211_new_state_locked(vap, IEEE80211_S_SCAN, 3231 IEEE80211_SCAN_FAIL_TIMEOUT); 3232 } 3233 IEEE80211_UNLOCK(vap->iv_ic); 3234 } 3235 3236 /* 3237 * This is the callback set on net80211-sourced transmitted 3238 * authentication request frames. 3239 * 3240 * This does a couple of things: 3241 * 3242 * + If the frame transmitted was a success, it schedules a future 3243 * event which will transition the interface to scan. 3244 * If a state transition _then_ occurs before that event occurs, 3245 * said state transition will cancel this callout. 3246 * 3247 * + If the frame transmit was a failure, it immediately schedules 3248 * the transition back to scan. 3249 */ 3250 static void 3251 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status) 3252 { 3253 struct ieee80211vap *vap = ni->ni_vap; 3254 enum ieee80211_state ostate = (enum ieee80211_state) arg; 3255 3256 /* 3257 * Frame transmit completed; arrange timer callback. If 3258 * transmit was successfully we wait for response. Otherwise 3259 * we arrange an immediate callback instead of doing the 3260 * callback directly since we don't know what state the driver 3261 * is in (e.g. what locks it is holding). This work should 3262 * not be too time-critical and not happen too often so the 3263 * added overhead is acceptable. 3264 * 3265 * XXX what happens if !acked but response shows up before callback? 3266 */ 3267 if (vap->iv_state == ostate) { 3268 callout_reset(&vap->iv_mgtsend, 3269 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0, 3270 ieee80211_tx_mgt_timeout, vap); 3271 } 3272 } 3273 3274 static void 3275 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm, 3276 struct ieee80211_node *ni) 3277 { 3278 struct ieee80211vap *vap = ni->ni_vap; 3279 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 3280 struct ieee80211com *ic = ni->ni_ic; 3281 struct ieee80211_rateset *rs = &ni->ni_rates; 3282 uint16_t capinfo; 3283 3284 /* 3285 * beacon frame format 3286 * 3287 * TODO: update to 802.11-2012; a lot of stuff has changed; 3288 * vendor extensions should be at the end, etc. 3289 * 3290 * [8] time stamp 3291 * [2] beacon interval 3292 * [2] cabability information 3293 * [tlv] ssid 3294 * [tlv] supported rates 3295 * [3] parameter set (DS) 3296 * [8] CF parameter set (optional) 3297 * [tlv] parameter set (IBSS/TIM) 3298 * [tlv] country (optional) 3299 * [3] power control (optional) 3300 * [5] channel switch announcement (CSA) (optional) 3301 * XXX TODO: Quiet 3302 * XXX TODO: IBSS DFS 3303 * XXX TODO: TPC report 3304 * [tlv] extended rate phy (ERP) 3305 * [tlv] extended supported rates 3306 * [tlv] RSN parameters 3307 * XXX TODO: BSSLOAD 3308 * (XXX EDCA parameter set, QoS capability?) 3309 * XXX TODO: AP channel report 3310 * 3311 * [tlv] HT capabilities 3312 * [tlv] HT information 3313 * XXX TODO: 20/40 BSS coexistence 3314 * Mesh: 3315 * XXX TODO: Meshid 3316 * XXX TODO: mesh config 3317 * XXX TODO: mesh awake window 3318 * XXX TODO: beacon timing (mesh, etc) 3319 * XXX TODO: MCCAOP Advertisement Overview 3320 * XXX TODO: MCCAOP Advertisement 3321 * XXX TODO: Mesh channel switch parameters 3322 * VHT: 3323 * XXX TODO: VHT capabilities 3324 * XXX TODO: VHT operation 3325 * XXX TODO: VHT transmit power envelope 3326 * XXX TODO: channel switch wrapper element 3327 * XXX TODO: extended BSS load element 3328 * 3329 * XXX Vendor-specific OIDs (e.g. Atheros) 3330 * [tlv] WPA parameters 3331 * [tlv] WME parameters 3332 * [tlv] Vendor OUI HT capabilities (optional) 3333 * [tlv] Vendor OUI HT information (optional) 3334 * [tlv] Atheros capabilities (optional) 3335 * [tlv] TDMA parameters (optional) 3336 * [tlv] Mesh ID (MBSS) 3337 * [tlv] Mesh Conf (MBSS) 3338 * [tlv] application data (optional) 3339 */ 3340 3341 memset(bo, 0, sizeof(*bo)); 3342 3343 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 3344 frm += 8; 3345 *(uint16_t *)frm = htole16(ni->ni_intval); 3346 frm += 2; 3347 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3348 bo->bo_caps = (uint16_t *)frm; 3349 *(uint16_t *)frm = htole16(capinfo); 3350 frm += 2; 3351 *frm++ = IEEE80211_ELEMID_SSID; 3352 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) { 3353 *frm++ = ni->ni_esslen; 3354 memcpy(frm, ni->ni_essid, ni->ni_esslen); 3355 frm += ni->ni_esslen; 3356 } else 3357 *frm++ = 0; 3358 frm = ieee80211_add_rates(frm, rs); 3359 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) { 3360 *frm++ = IEEE80211_ELEMID_DSPARMS; 3361 *frm++ = 1; 3362 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 3363 } 3364 if (ic->ic_flags & IEEE80211_F_PCF) { 3365 bo->bo_cfp = frm; 3366 frm = ieee80211_add_cfparms(frm, ic); 3367 } 3368 bo->bo_tim = frm; 3369 if (vap->iv_opmode == IEEE80211_M_IBSS) { 3370 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 3371 *frm++ = 2; 3372 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 3373 bo->bo_tim_len = 0; 3374 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3375 vap->iv_opmode == IEEE80211_M_MBSS) { 3376 /* TIM IE is the same for Mesh and Hostap */ 3377 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; 3378 3379 tie->tim_ie = IEEE80211_ELEMID_TIM; 3380 tie->tim_len = 4; /* length */ 3381 tie->tim_count = 0; /* DTIM count */ 3382 tie->tim_period = vap->iv_dtim_period; /* DTIM period */ 3383 tie->tim_bitctl = 0; /* bitmap control */ 3384 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 3385 frm += sizeof(struct ieee80211_tim_ie); 3386 bo->bo_tim_len = 1; 3387 } 3388 bo->bo_tim_trailer = frm; 3389 if ((vap->iv_flags & IEEE80211_F_DOTH) || 3390 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 3391 frm = ieee80211_add_countryie(frm, ic); 3392 if (vap->iv_flags & IEEE80211_F_DOTH) { 3393 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) 3394 frm = ieee80211_add_powerconstraint(frm, vap); 3395 bo->bo_csa = frm; 3396 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 3397 frm = ieee80211_add_csa(frm, vap); 3398 } else 3399 bo->bo_csa = frm; 3400 3401 bo->bo_quiet = NULL; 3402 if (vap->iv_flags & IEEE80211_F_DOTH) { 3403 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3404 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && 3405 (vap->iv_quiet == 1)) { 3406 /* 3407 * We only insert the quiet IE offset if 3408 * the quiet IE is enabled. Otherwise don't 3409 * put it here or we'll just overwrite 3410 * some other beacon contents. 3411 */ 3412 if (vap->iv_quiet) { 3413 bo->bo_quiet = frm; 3414 frm = ieee80211_add_quiet(frm,vap, 0); 3415 } 3416 } 3417 } 3418 3419 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) { 3420 bo->bo_erp = frm; 3421 frm = ieee80211_add_erp(frm, ic); 3422 } 3423 frm = ieee80211_add_xrates(frm, rs); 3424 frm = ieee80211_add_rsn(frm, vap); 3425 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 3426 frm = ieee80211_add_htcap(frm, ni); 3427 bo->bo_htinfo = frm; 3428 frm = ieee80211_add_htinfo(frm, ni); 3429 } 3430 3431 if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) { 3432 frm = ieee80211_add_vhtcap(frm, ni); 3433 bo->bo_vhtinfo = frm; 3434 frm = ieee80211_add_vhtinfo(frm, ni); 3435 /* Transmit power envelope */ 3436 /* Channel switch wrapper element */ 3437 /* Extended bss load element */ 3438 } 3439 3440 frm = ieee80211_add_wpa(frm, vap); 3441 if (vap->iv_flags & IEEE80211_F_WME) { 3442 bo->bo_wme = frm; 3443 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 3444 } 3445 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && 3446 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) { 3447 frm = ieee80211_add_htcap_vendor(frm, ni); 3448 frm = ieee80211_add_htinfo_vendor(frm, ni); 3449 } 3450 3451 #ifdef IEEE80211_SUPPORT_SUPERG 3452 if (vap->iv_flags & IEEE80211_F_ATHEROS) { 3453 bo->bo_ath = frm; 3454 frm = ieee80211_add_athcaps(frm, ni); 3455 } 3456 #endif 3457 #ifdef IEEE80211_SUPPORT_TDMA 3458 if (vap->iv_caps & IEEE80211_C_TDMA) { 3459 bo->bo_tdma = frm; 3460 frm = ieee80211_add_tdma(frm, vap); 3461 } 3462 #endif 3463 if (vap->iv_appie_beacon != NULL) { 3464 bo->bo_appie = frm; 3465 bo->bo_appie_len = vap->iv_appie_beacon->ie_len; 3466 frm = add_appie(frm, vap->iv_appie_beacon); 3467 } 3468 3469 /* XXX TODO: move meshid/meshconf up to before vendor extensions? */ 3470 #ifdef IEEE80211_SUPPORT_MESH 3471 if (vap->iv_opmode == IEEE80211_M_MBSS) { 3472 frm = ieee80211_add_meshid(frm, vap); 3473 bo->bo_meshconf = frm; 3474 frm = ieee80211_add_meshconf(frm, vap); 3475 } 3476 #endif 3477 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer; 3478 bo->bo_csa_trailer_len = frm - bo->bo_csa; 3479 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3480 } 3481 3482 /* 3483 * Allocate a beacon frame and fillin the appropriate bits. 3484 */ 3485 struct mbuf * 3486 ieee80211_beacon_alloc(struct ieee80211_node *ni) 3487 { 3488 struct ieee80211vap *vap = ni->ni_vap; 3489 struct ieee80211com *ic = ni->ni_ic; 3490 struct ifnet *ifp = vap->iv_ifp; 3491 struct ieee80211_frame *wh; 3492 struct mbuf *m; 3493 int pktlen; 3494 uint8_t *frm; 3495 3496 /* 3497 * Update the "We're putting the quiet IE in the beacon" state. 3498 */ 3499 if (vap->iv_quiet == 1) 3500 vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE; 3501 else if (vap->iv_quiet == 0) 3502 vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE; 3503 3504 /* 3505 * beacon frame format 3506 * 3507 * Note: This needs updating for 802.11-2012. 3508 * 3509 * [8] time stamp 3510 * [2] beacon interval 3511 * [2] cabability information 3512 * [tlv] ssid 3513 * [tlv] supported rates 3514 * [3] parameter set (DS) 3515 * [8] CF parameter set (optional) 3516 * [tlv] parameter set (IBSS/TIM) 3517 * [tlv] country (optional) 3518 * [3] power control (optional) 3519 * [5] channel switch announcement (CSA) (optional) 3520 * [tlv] extended rate phy (ERP) 3521 * [tlv] extended supported rates 3522 * [tlv] RSN parameters 3523 * [tlv] HT capabilities 3524 * [tlv] HT information 3525 * [tlv] VHT capabilities 3526 * [tlv] VHT operation 3527 * [tlv] Vendor OUI HT capabilities (optional) 3528 * [tlv] Vendor OUI HT information (optional) 3529 * XXX Vendor-specific OIDs (e.g. Atheros) 3530 * [tlv] WPA parameters 3531 * [tlv] WME parameters 3532 * [tlv] TDMA parameters (optional) 3533 * [tlv] Mesh ID (MBSS) 3534 * [tlv] Mesh Conf (MBSS) 3535 * [tlv] application data (optional) 3536 * NB: we allocate the max space required for the TIM bitmap. 3537 * XXX how big is this? 3538 */ 3539 pktlen = 8 /* time stamp */ 3540 + sizeof(uint16_t) /* beacon interval */ 3541 + sizeof(uint16_t) /* capabilities */ 3542 + 2 + ni->ni_esslen /* ssid */ 3543 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 3544 + 2 + 1 /* DS parameters */ 3545 + 2 + 6 /* CF parameters */ 3546 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */ 3547 + IEEE80211_COUNTRY_MAX_SIZE /* country */ 3548 + 2 + 1 /* power control */ 3549 + sizeof(struct ieee80211_csa_ie) /* CSA */ 3550 + sizeof(struct ieee80211_quiet_ie) /* Quiet */ 3551 + 2 + 1 /* ERP */ 3552 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 3553 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 3554 2*sizeof(struct ieee80211_ie_wpa) : 0) 3555 /* XXX conditional? */ 3556 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */ 3557 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */ 3558 + sizeof(struct ieee80211_ie_vhtcap)/* VHT caps */ 3559 + sizeof(struct ieee80211_ie_vht_operation)/* VHT info */ 3560 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */ 3561 sizeof(struct ieee80211_wme_param) : 0) 3562 #ifdef IEEE80211_SUPPORT_SUPERG 3563 + sizeof(struct ieee80211_ath_ie) /* ATH */ 3564 #endif 3565 #ifdef IEEE80211_SUPPORT_TDMA 3566 + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */ 3567 sizeof(struct ieee80211_tdma_param) : 0) 3568 #endif 3569 #ifdef IEEE80211_SUPPORT_MESH 3570 + 2 + ni->ni_meshidlen 3571 + sizeof(struct ieee80211_meshconf_ie) 3572 #endif 3573 + IEEE80211_MAX_APPIE 3574 ; 3575 m = ieee80211_getmgtframe(&frm, 3576 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen); 3577 if (m == NULL) { 3578 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, 3579 "%s: cannot get buf; size %u\n", __func__, pktlen); 3580 vap->iv_stats.is_tx_nobuf++; 3581 return NULL; 3582 } 3583 ieee80211_beacon_construct(m, frm, ni); 3584 3585 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 3586 KASSERT(m != NULL, ("no space for 802.11 header?")); 3587 wh = mtod(m, struct ieee80211_frame *); 3588 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 3589 IEEE80211_FC0_SUBTYPE_BEACON; 3590 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3591 *(uint16_t *)wh->i_dur = 0; 3592 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 3593 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 3594 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 3595 *(uint16_t *)wh->i_seq = 0; 3596 3597 return m; 3598 } 3599 3600 /* 3601 * Update the dynamic parts of a beacon frame based on the current state. 3602 */ 3603 int 3604 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast) 3605 { 3606 struct ieee80211vap *vap = ni->ni_vap; 3607 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 3608 struct ieee80211com *ic = ni->ni_ic; 3609 int len_changed = 0; 3610 uint16_t capinfo; 3611 struct ieee80211_frame *wh; 3612 ieee80211_seq seqno; 3613 3614 IEEE80211_LOCK(ic); 3615 /* 3616 * Handle 11h channel change when we've reached the count. 3617 * We must recalculate the beacon frame contents to account 3618 * for the new channel. Note we do this only for the first 3619 * vap that reaches this point; subsequent vaps just update 3620 * their beacon state to reflect the recalculated channel. 3621 */ 3622 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) && 3623 vap->iv_csa_count == ic->ic_csa_count) { 3624 vap->iv_csa_count = 0; 3625 /* 3626 * Effect channel change before reconstructing the beacon 3627 * frame contents as many places reference ni_chan. 3628 */ 3629 if (ic->ic_csa_newchan != NULL) 3630 ieee80211_csa_completeswitch(ic); 3631 /* 3632 * NB: ieee80211_beacon_construct clears all pending 3633 * updates in bo_flags so we don't need to explicitly 3634 * clear IEEE80211_BEACON_CSA. 3635 */ 3636 ieee80211_beacon_construct(m, 3637 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3638 3639 /* XXX do WME aggressive mode processing? */ 3640 IEEE80211_UNLOCK(ic); 3641 return 1; /* just assume length changed */ 3642 } 3643 3644 /* 3645 * Handle the quiet time element being added and removed. 3646 * Again, for now we just cheat and reconstruct the whole 3647 * beacon - that way the gap is provided as appropriate. 3648 * 3649 * So, track whether we have already added the IE versus 3650 * whether we want to be adding the IE. 3651 */ 3652 if ((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) && 3653 (vap->iv_quiet == 0)) { 3654 /* 3655 * Quiet time beacon IE enabled, but it's disabled; 3656 * recalc 3657 */ 3658 vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE; 3659 ieee80211_beacon_construct(m, 3660 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3661 /* XXX do WME aggressive mode processing? */ 3662 IEEE80211_UNLOCK(ic); 3663 return 1; /* just assume length changed */ 3664 } 3665 3666 if (((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) == 0) && 3667 (vap->iv_quiet == 1)) { 3668 /* 3669 * Quiet time beacon IE disabled, but it's now enabled; 3670 * recalc 3671 */ 3672 vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE; 3673 ieee80211_beacon_construct(m, 3674 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3675 /* XXX do WME aggressive mode processing? */ 3676 IEEE80211_UNLOCK(ic); 3677 return 1; /* just assume length changed */ 3678 } 3679 3680 wh = mtod(m, struct ieee80211_frame *); 3681 3682 /* 3683 * XXX TODO Strictly speaking this should be incremented with the TX 3684 * lock held so as to serialise access to the non-qos TID sequence 3685 * number space. 3686 * 3687 * If the driver identifies it does its own TX seqno management then 3688 * we can skip this (and still not do the TX seqno.) 3689 */ 3690 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 3691 *(uint16_t *)&wh->i_seq[0] = 3692 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 3693 M_SEQNO_SET(m, seqno); 3694 3695 /* XXX faster to recalculate entirely or just changes? */ 3696 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3697 *bo->bo_caps = htole16(capinfo); 3698 3699 if (vap->iv_flags & IEEE80211_F_WME) { 3700 struct ieee80211_wme_state *wme = &ic->ic_wme; 3701 3702 /* 3703 * Check for aggressive mode change. When there is 3704 * significant high priority traffic in the BSS 3705 * throttle back BE traffic by using conservative 3706 * parameters. Otherwise BE uses aggressive params 3707 * to optimize performance of legacy/non-QoS traffic. 3708 */ 3709 if (wme->wme_flags & WME_F_AGGRMODE) { 3710 if (wme->wme_hipri_traffic > 3711 wme->wme_hipri_switch_thresh) { 3712 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3713 "%s: traffic %u, disable aggressive mode\n", 3714 __func__, wme->wme_hipri_traffic); 3715 wme->wme_flags &= ~WME_F_AGGRMODE; 3716 ieee80211_wme_updateparams_locked(vap); 3717 wme->wme_hipri_traffic = 3718 wme->wme_hipri_switch_hysteresis; 3719 } else 3720 wme->wme_hipri_traffic = 0; 3721 } else { 3722 if (wme->wme_hipri_traffic <= 3723 wme->wme_hipri_switch_thresh) { 3724 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3725 "%s: traffic %u, enable aggressive mode\n", 3726 __func__, wme->wme_hipri_traffic); 3727 wme->wme_flags |= WME_F_AGGRMODE; 3728 ieee80211_wme_updateparams_locked(vap); 3729 wme->wme_hipri_traffic = 0; 3730 } else 3731 wme->wme_hipri_traffic = 3732 wme->wme_hipri_switch_hysteresis; 3733 } 3734 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) { 3735 (void) ieee80211_add_wme_param(bo->bo_wme, wme); 3736 clrbit(bo->bo_flags, IEEE80211_BEACON_WME); 3737 } 3738 } 3739 3740 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) { 3741 ieee80211_ht_update_beacon(vap, bo); 3742 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO); 3743 } 3744 #ifdef IEEE80211_SUPPORT_TDMA 3745 if (vap->iv_caps & IEEE80211_C_TDMA) { 3746 /* 3747 * NB: the beacon is potentially updated every TBTT. 3748 */ 3749 ieee80211_tdma_update_beacon(vap, bo); 3750 } 3751 #endif 3752 #ifdef IEEE80211_SUPPORT_MESH 3753 if (vap->iv_opmode == IEEE80211_M_MBSS) 3754 ieee80211_mesh_update_beacon(vap, bo); 3755 #endif 3756 3757 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3758 vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/ 3759 struct ieee80211_tim_ie *tie = 3760 (struct ieee80211_tim_ie *) bo->bo_tim; 3761 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) { 3762 u_int timlen, timoff, i; 3763 /* 3764 * ATIM/DTIM needs updating. If it fits in the 3765 * current space allocated then just copy in the 3766 * new bits. Otherwise we need to move any trailing 3767 * data to make room. Note that we know there is 3768 * contiguous space because ieee80211_beacon_allocate 3769 * insures there is space in the mbuf to write a 3770 * maximal-size virtual bitmap (based on iv_max_aid). 3771 */ 3772 /* 3773 * Calculate the bitmap size and offset, copy any 3774 * trailer out of the way, and then copy in the 3775 * new bitmap and update the information element. 3776 * Note that the tim bitmap must contain at least 3777 * one byte and any offset must be even. 3778 */ 3779 if (vap->iv_ps_pending != 0) { 3780 timoff = 128; /* impossibly large */ 3781 for (i = 0; i < vap->iv_tim_len; i++) 3782 if (vap->iv_tim_bitmap[i]) { 3783 timoff = i &~ 1; 3784 break; 3785 } 3786 KASSERT(timoff != 128, ("tim bitmap empty!")); 3787 for (i = vap->iv_tim_len-1; i >= timoff; i--) 3788 if (vap->iv_tim_bitmap[i]) 3789 break; 3790 timlen = 1 + (i - timoff); 3791 } else { 3792 timoff = 0; 3793 timlen = 1; 3794 } 3795 3796 /* 3797 * TODO: validate this! 3798 */ 3799 if (timlen != bo->bo_tim_len) { 3800 /* copy up/down trailer */ 3801 int adjust = tie->tim_bitmap+timlen 3802 - bo->bo_tim_trailer; 3803 ovbcopy(bo->bo_tim_trailer, 3804 bo->bo_tim_trailer+adjust, 3805 bo->bo_tim_trailer_len); 3806 bo->bo_tim_trailer += adjust; 3807 bo->bo_erp += adjust; 3808 bo->bo_htinfo += adjust; 3809 bo->bo_vhtinfo += adjust; 3810 #ifdef IEEE80211_SUPPORT_SUPERG 3811 bo->bo_ath += adjust; 3812 #endif 3813 #ifdef IEEE80211_SUPPORT_TDMA 3814 bo->bo_tdma += adjust; 3815 #endif 3816 #ifdef IEEE80211_SUPPORT_MESH 3817 bo->bo_meshconf += adjust; 3818 #endif 3819 bo->bo_appie += adjust; 3820 bo->bo_wme += adjust; 3821 bo->bo_csa += adjust; 3822 bo->bo_quiet += adjust; 3823 bo->bo_tim_len = timlen; 3824 3825 /* update information element */ 3826 tie->tim_len = 3 + timlen; 3827 tie->tim_bitctl = timoff; 3828 len_changed = 1; 3829 } 3830 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff, 3831 bo->bo_tim_len); 3832 3833 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM); 3834 3835 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER, 3836 "%s: TIM updated, pending %u, off %u, len %u\n", 3837 __func__, vap->iv_ps_pending, timoff, timlen); 3838 } 3839 /* count down DTIM period */ 3840 if (tie->tim_count == 0) 3841 tie->tim_count = tie->tim_period - 1; 3842 else 3843 tie->tim_count--; 3844 /* update state for buffered multicast frames on DTIM */ 3845 if (mcast && tie->tim_count == 0) 3846 tie->tim_bitctl |= 1; 3847 else 3848 tie->tim_bitctl &= ~1; 3849 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) { 3850 struct ieee80211_csa_ie *csa = 3851 (struct ieee80211_csa_ie *) bo->bo_csa; 3852 3853 /* 3854 * Insert or update CSA ie. If we're just starting 3855 * to count down to the channel switch then we need 3856 * to insert the CSA ie. Otherwise we just need to 3857 * drop the count. The actual change happens above 3858 * when the vap's count reaches the target count. 3859 */ 3860 if (vap->iv_csa_count == 0) { 3861 memmove(&csa[1], csa, bo->bo_csa_trailer_len); 3862 bo->bo_erp += sizeof(*csa); 3863 bo->bo_htinfo += sizeof(*csa); 3864 bo->bo_vhtinfo += sizeof(*csa); 3865 bo->bo_wme += sizeof(*csa); 3866 #ifdef IEEE80211_SUPPORT_SUPERG 3867 bo->bo_ath += sizeof(*csa); 3868 #endif 3869 #ifdef IEEE80211_SUPPORT_TDMA 3870 bo->bo_tdma += sizeof(*csa); 3871 #endif 3872 #ifdef IEEE80211_SUPPORT_MESH 3873 bo->bo_meshconf += sizeof(*csa); 3874 #endif 3875 bo->bo_appie += sizeof(*csa); 3876 bo->bo_csa_trailer_len += sizeof(*csa); 3877 bo->bo_quiet += sizeof(*csa); 3878 bo->bo_tim_trailer_len += sizeof(*csa); 3879 m->m_len += sizeof(*csa); 3880 m->m_pkthdr.len += sizeof(*csa); 3881 3882 ieee80211_add_csa(bo->bo_csa, vap); 3883 } else 3884 csa->csa_count--; 3885 vap->iv_csa_count++; 3886 /* NB: don't clear IEEE80211_BEACON_CSA */ 3887 } 3888 3889 /* 3890 * Only add the quiet time IE if we've enabled it 3891 * as appropriate. 3892 */ 3893 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3894 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 3895 if (vap->iv_quiet && 3896 (vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE)) { 3897 ieee80211_add_quiet(bo->bo_quiet, vap, 1); 3898 } 3899 } 3900 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) { 3901 /* 3902 * ERP element needs updating. 3903 */ 3904 (void) ieee80211_add_erp(bo->bo_erp, ic); 3905 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP); 3906 } 3907 #ifdef IEEE80211_SUPPORT_SUPERG 3908 if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) { 3909 ieee80211_add_athcaps(bo->bo_ath, ni); 3910 clrbit(bo->bo_flags, IEEE80211_BEACON_ATH); 3911 } 3912 #endif 3913 } 3914 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) { 3915 const struct ieee80211_appie *aie = vap->iv_appie_beacon; 3916 int aielen; 3917 uint8_t *frm; 3918 3919 aielen = 0; 3920 if (aie != NULL) 3921 aielen += aie->ie_len; 3922 if (aielen != bo->bo_appie_len) { 3923 /* copy up/down trailer */ 3924 int adjust = aielen - bo->bo_appie_len; 3925 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust, 3926 bo->bo_tim_trailer_len); 3927 bo->bo_tim_trailer += adjust; 3928 bo->bo_appie += adjust; 3929 bo->bo_appie_len = aielen; 3930 3931 len_changed = 1; 3932 } 3933 frm = bo->bo_appie; 3934 if (aie != NULL) 3935 frm = add_appie(frm, aie); 3936 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE); 3937 } 3938 IEEE80211_UNLOCK(ic); 3939 3940 return len_changed; 3941 } 3942 3943 /* 3944 * Do Ethernet-LLC encapsulation for each payload in a fast frame 3945 * tunnel encapsulation. The frame is assumed to have an Ethernet 3946 * header at the front that must be stripped before prepending the 3947 * LLC followed by the Ethernet header passed in (with an Ethernet 3948 * type that specifies the payload size). 3949 */ 3950 struct mbuf * 3951 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m, 3952 const struct ether_header *eh) 3953 { 3954 struct llc *llc; 3955 uint16_t payload; 3956 3957 /* XXX optimize by combining m_adj+M_PREPEND */ 3958 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 3959 llc = mtod(m, struct llc *); 3960 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 3961 llc->llc_control = LLC_UI; 3962 llc->llc_snap.org_code[0] = 0; 3963 llc->llc_snap.org_code[1] = 0; 3964 llc->llc_snap.org_code[2] = 0; 3965 llc->llc_snap.ether_type = eh->ether_type; 3966 payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */ 3967 3968 M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT); 3969 if (m == NULL) { /* XXX cannot happen */ 3970 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 3971 "%s: no space for ether_header\n", __func__); 3972 vap->iv_stats.is_tx_nobuf++; 3973 return NULL; 3974 } 3975 ETHER_HEADER_COPY(mtod(m, void *), eh); 3976 mtod(m, struct ether_header *)->ether_type = htons(payload); 3977 return m; 3978 } 3979 3980 /* 3981 * Complete an mbuf transmission. 3982 * 3983 * For now, this simply processes a completed frame after the 3984 * driver has completed it's transmission and/or retransmission. 3985 * It assumes the frame is an 802.11 encapsulated frame. 3986 * 3987 * Later on it will grow to become the exit path for a given frame 3988 * from the driver and, depending upon how it's been encapsulated 3989 * and already transmitted, it may end up doing A-MPDU retransmission, 3990 * power save requeuing, etc. 3991 * 3992 * In order for the above to work, the driver entry point to this 3993 * must not hold any driver locks. Thus, the driver needs to delay 3994 * any actual mbuf completion until it can release said locks. 3995 * 3996 * This frees the mbuf and if the mbuf has a node reference, 3997 * the node reference will be freed. 3998 */ 3999 void 4000 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status) 4001 { 4002 4003 if (ni != NULL) { 4004 struct ifnet *ifp = ni->ni_vap->iv_ifp; 4005 4006 if (status == 0) { 4007 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len); 4008 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 4009 if (m->m_flags & M_MCAST) 4010 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 4011 } else 4012 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 4013 if (m->m_flags & M_TXCB) 4014 ieee80211_process_callback(ni, m, status); 4015 ieee80211_free_node(ni); 4016 } 4017 m_freem(m); 4018 } 4019