1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_inet.h" 31 #include "opt_inet6.h" 32 #include "opt_wlan.h" 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/kernel.h> 37 #include <sys/malloc.h> 38 #include <sys/mbuf.h> 39 #include <sys/endian.h> 40 41 #include <sys/socket.h> 42 43 #include <net/bpf.h> 44 #include <net/ethernet.h> 45 #include <net/if.h> 46 #include <net/if_var.h> 47 #include <net/if_llc.h> 48 #include <net/if_media.h> 49 #include <net/if_vlan_var.h> 50 51 #include <net80211/ieee80211_var.h> 52 #include <net80211/ieee80211_regdomain.h> 53 #ifdef IEEE80211_SUPPORT_SUPERG 54 #include <net80211/ieee80211_superg.h> 55 #endif 56 #ifdef IEEE80211_SUPPORT_TDMA 57 #include <net80211/ieee80211_tdma.h> 58 #endif 59 #include <net80211/ieee80211_wds.h> 60 #include <net80211/ieee80211_mesh.h> 61 62 #if defined(INET) || defined(INET6) 63 #include <netinet/in.h> 64 #endif 65 66 #ifdef INET 67 #include <netinet/if_ether.h> 68 #include <netinet/in_systm.h> 69 #include <netinet/ip.h> 70 #endif 71 #ifdef INET6 72 #include <netinet/ip6.h> 73 #endif 74 75 #include <security/mac/mac_framework.h> 76 77 #define ETHER_HEADER_COPY(dst, src) \ 78 memcpy(dst, src, sizeof(struct ether_header)) 79 80 /* unalligned little endian access */ 81 #define LE_WRITE_2(p, v) do { \ 82 ((uint8_t *)(p))[0] = (v) & 0xff; \ 83 ((uint8_t *)(p))[1] = ((v) >> 8) & 0xff; \ 84 } while (0) 85 #define LE_WRITE_4(p, v) do { \ 86 ((uint8_t *)(p))[0] = (v) & 0xff; \ 87 ((uint8_t *)(p))[1] = ((v) >> 8) & 0xff; \ 88 ((uint8_t *)(p))[2] = ((v) >> 16) & 0xff; \ 89 ((uint8_t *)(p))[3] = ((v) >> 24) & 0xff; \ 90 } while (0) 91 92 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *, 93 u_int hdrsize, u_int ciphdrsize, u_int mtu); 94 static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int); 95 96 #ifdef IEEE80211_DEBUG 97 /* 98 * Decide if an outbound management frame should be 99 * printed when debugging is enabled. This filters some 100 * of the less interesting frames that come frequently 101 * (e.g. beacons). 102 */ 103 static __inline int 104 doprint(struct ieee80211vap *vap, int subtype) 105 { 106 switch (subtype) { 107 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 108 return (vap->iv_opmode == IEEE80211_M_IBSS); 109 } 110 return 1; 111 } 112 #endif 113 114 /* 115 * Transmit a frame to the given destination on the given VAP. 116 * 117 * It's up to the caller to figure out the details of who this 118 * is going to and resolving the node. 119 * 120 * This routine takes care of queuing it for power save, 121 * A-MPDU state stuff, fast-frames state stuff, encapsulation 122 * if required, then passing it up to the driver layer. 123 * 124 * This routine (for now) consumes the mbuf and frees the node 125 * reference; it ideally will return a TX status which reflects 126 * whether the mbuf was consumed or not, so the caller can 127 * free the mbuf (if appropriate) and the node reference (again, 128 * if appropriate.) 129 */ 130 int 131 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m, 132 struct ieee80211_node *ni) 133 { 134 struct ieee80211com *ic = vap->iv_ic; 135 struct ifnet *ifp = vap->iv_ifp; 136 int len, mcast; 137 138 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 139 (m->m_flags & M_PWR_SAV) == 0) { 140 /* 141 * Station in power save mode; pass the frame 142 * to the 802.11 layer and continue. We'll get 143 * the frame back when the time is right. 144 * XXX lose WDS vap linkage? 145 */ 146 if (ieee80211_pwrsave(ni, m) != 0) 147 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 148 ieee80211_free_node(ni); 149 150 /* 151 * We queued it fine, so tell the upper layer 152 * that we consumed it. 153 */ 154 return (0); 155 } 156 /* calculate priority so drivers can find the tx queue */ 157 if (ieee80211_classify(ni, m)) { 158 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 159 ni->ni_macaddr, NULL, 160 "%s", "classification failure"); 161 vap->iv_stats.is_tx_classify++; 162 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 163 m_freem(m); 164 ieee80211_free_node(ni); 165 166 /* XXX better status? */ 167 return (0); 168 } 169 /* 170 * Stash the node pointer. Note that we do this after 171 * any call to ieee80211_dwds_mcast because that code 172 * uses any existing value for rcvif to identify the 173 * interface it (might have been) received on. 174 */ 175 m->m_pkthdr.rcvif = (void *)ni; 176 mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0; 177 len = m->m_pkthdr.len; 178 179 BPF_MTAP(ifp, m); /* 802.3 tx */ 180 181 /* 182 * Check if A-MPDU tx aggregation is setup or if we 183 * should try to enable it. The sta must be associated 184 * with HT and A-MPDU enabled for use. When the policy 185 * routine decides we should enable A-MPDU we issue an 186 * ADDBA request and wait for a reply. The frame being 187 * encapsulated will go out w/o using A-MPDU, or possibly 188 * it might be collected by the driver and held/retransmit. 189 * The default ic_ampdu_enable routine handles staggering 190 * ADDBA requests in case the receiver NAK's us or we are 191 * otherwise unable to establish a BA stream. 192 */ 193 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) && 194 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) && 195 (m->m_flags & M_EAPOL) == 0) { 196 int tid = WME_AC_TO_TID(M_WME_GETAC(m)); 197 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; 198 199 ieee80211_txampdu_count_packet(tap); 200 if (IEEE80211_AMPDU_RUNNING(tap)) { 201 /* 202 * Operational, mark frame for aggregation. 203 * 204 * XXX do tx aggregation here 205 */ 206 m->m_flags |= M_AMPDU_MPDU; 207 } else if (!IEEE80211_AMPDU_REQUESTED(tap) && 208 ic->ic_ampdu_enable(ni, tap)) { 209 /* 210 * Not negotiated yet, request service. 211 */ 212 ieee80211_ampdu_request(ni, tap); 213 /* XXX hold frame for reply? */ 214 } 215 } 216 217 /* 218 * XXX If we aren't doing AMPDU TX then we /could/ do 219 * fast-frames encapsulation, however right now this 220 * output logic doesn't handle that case. 221 * 222 * So we'll be limited to "fast-frames" xmit for non-11n STA 223 * and "no fast frames" xmit for 11n STAs. 224 * It'd be nice to eventually test fast-frames out by 225 * gracefully falling from failing A-MPDU transmission 226 * (driver says no, fail to negotiate it with peer) to 227 * using fast-frames. 228 * 229 * Note: we can actually put A-MSDU's inside an A-MPDU, 230 * so hopefully we can figure out how to make that particular 231 * combination work right. 232 */ 233 #ifdef IEEE80211_SUPPORT_SUPERG 234 else if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) { 235 m = ieee80211_ff_check(ni, m); 236 if (m == NULL) { 237 /* NB: any ni ref held on stageq */ 238 return (0); 239 } 240 } 241 #endif /* IEEE80211_SUPPORT_SUPERG */ 242 243 /* 244 * Grab the TX lock - serialise the TX process from this 245 * point (where TX state is being checked/modified) 246 * through to driver queue. 247 */ 248 IEEE80211_TX_LOCK(ic); 249 250 /* 251 * XXX make the encap and transmit code a separate function 252 * so things like the FF (and later A-MSDU) path can just call 253 * it for flushed frames. 254 */ 255 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 256 /* 257 * Encapsulate the packet in prep for transmission. 258 */ 259 m = ieee80211_encap(vap, ni, m); 260 if (m == NULL) { 261 /* NB: stat+msg handled in ieee80211_encap */ 262 IEEE80211_TX_UNLOCK(ic); 263 ieee80211_free_node(ni); 264 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 265 return (ENOBUFS); 266 } 267 } 268 (void) ieee80211_parent_xmitpkt(ic, m); 269 270 /* 271 * Unlock at this point - no need to hold it across 272 * ieee80211_free_node() (ie, the comlock) 273 */ 274 IEEE80211_TX_UNLOCK(ic); 275 ic->ic_lastdata = ticks; 276 277 return (0); 278 } 279 280 281 282 /* 283 * Send the given mbuf through the given vap. 284 * 285 * This consumes the mbuf regardless of whether the transmit 286 * was successful or not. 287 * 288 * This does none of the initial checks that ieee80211_start() 289 * does (eg CAC timeout, interface wakeup) - the caller must 290 * do this first. 291 */ 292 static int 293 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m) 294 { 295 #define IS_DWDS(vap) \ 296 (vap->iv_opmode == IEEE80211_M_WDS && \ 297 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0) 298 struct ieee80211com *ic = vap->iv_ic; 299 struct ifnet *ifp = vap->iv_ifp; 300 struct ieee80211_node *ni; 301 struct ether_header *eh; 302 303 /* 304 * Cancel any background scan. 305 */ 306 if (ic->ic_flags & IEEE80211_F_SCAN) 307 ieee80211_cancel_anyscan(vap); 308 /* 309 * Find the node for the destination so we can do 310 * things like power save and fast frames aggregation. 311 * 312 * NB: past this point various code assumes the first 313 * mbuf has the 802.3 header present (and contiguous). 314 */ 315 ni = NULL; 316 if (m->m_len < sizeof(struct ether_header) && 317 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 318 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 319 "discard frame, %s\n", "m_pullup failed"); 320 vap->iv_stats.is_tx_nobuf++; /* XXX */ 321 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 322 return (ENOBUFS); 323 } 324 eh = mtod(m, struct ether_header *); 325 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 326 if (IS_DWDS(vap)) { 327 /* 328 * Only unicast frames from the above go out 329 * DWDS vaps; multicast frames are handled by 330 * dispatching the frame as it comes through 331 * the AP vap (see below). 332 */ 333 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS, 334 eh->ether_dhost, "mcast", "%s", "on DWDS"); 335 vap->iv_stats.is_dwds_mcast++; 336 m_freem(m); 337 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 338 /* XXX better status? */ 339 return (ENOBUFS); 340 } 341 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { 342 /* 343 * Spam DWDS vap's w/ multicast traffic. 344 */ 345 /* XXX only if dwds in use? */ 346 ieee80211_dwds_mcast(vap, m); 347 } 348 } 349 #ifdef IEEE80211_SUPPORT_MESH 350 if (vap->iv_opmode != IEEE80211_M_MBSS) { 351 #endif 352 ni = ieee80211_find_txnode(vap, eh->ether_dhost); 353 if (ni == NULL) { 354 /* NB: ieee80211_find_txnode does stat+msg */ 355 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 356 m_freem(m); 357 /* XXX better status? */ 358 return (ENOBUFS); 359 } 360 if (ni->ni_associd == 0 && 361 (ni->ni_flags & IEEE80211_NODE_ASSOCID)) { 362 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 363 eh->ether_dhost, NULL, 364 "sta not associated (type 0x%04x)", 365 htons(eh->ether_type)); 366 vap->iv_stats.is_tx_notassoc++; 367 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 368 m_freem(m); 369 ieee80211_free_node(ni); 370 /* XXX better status? */ 371 return (ENOBUFS); 372 } 373 #ifdef IEEE80211_SUPPORT_MESH 374 } else { 375 if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) { 376 /* 377 * Proxy station only if configured. 378 */ 379 if (!ieee80211_mesh_isproxyena(vap)) { 380 IEEE80211_DISCARD_MAC(vap, 381 IEEE80211_MSG_OUTPUT | 382 IEEE80211_MSG_MESH, 383 eh->ether_dhost, NULL, 384 "%s", "proxy not enabled"); 385 vap->iv_stats.is_mesh_notproxy++; 386 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 387 m_freem(m); 388 /* XXX better status? */ 389 return (ENOBUFS); 390 } 391 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 392 "forward frame from DS SA(%6D), DA(%6D)\n", 393 eh->ether_shost, ":", 394 eh->ether_dhost, ":"); 395 ieee80211_mesh_proxy_check(vap, eh->ether_shost); 396 } 397 ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m); 398 if (ni == NULL) { 399 /* 400 * NB: ieee80211_mesh_discover holds/disposes 401 * frame (e.g. queueing on path discovery). 402 */ 403 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 404 /* XXX better status? */ 405 return (ENOBUFS); 406 } 407 } 408 #endif 409 410 /* 411 * We've resolved the sender, so attempt to transmit it. 412 */ 413 414 if (vap->iv_state == IEEE80211_S_SLEEP) { 415 /* 416 * In power save; queue frame and then wakeup device 417 * for transmit. 418 */ 419 ic->ic_lastdata = ticks; 420 if (ieee80211_pwrsave(ni, m) != 0) 421 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 422 ieee80211_free_node(ni); 423 ieee80211_new_state(vap, IEEE80211_S_RUN, 0); 424 return (0); 425 } 426 427 if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0) 428 return (ENOBUFS); 429 return (0); 430 #undef IS_DWDS 431 } 432 433 /* 434 * Start method for vap's. All packets from the stack come 435 * through here. We handle common processing of the packets 436 * before dispatching them to the underlying device. 437 * 438 * if_transmit() requires that the mbuf be consumed by this call 439 * regardless of the return condition. 440 */ 441 int 442 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m) 443 { 444 struct ieee80211vap *vap = ifp->if_softc; 445 struct ieee80211com *ic = vap->iv_ic; 446 447 /* 448 * No data frames go out unless we're running. 449 * Note in particular this covers CAC and CSA 450 * states (though maybe we should check muting 451 * for CSA). 452 */ 453 if (vap->iv_state != IEEE80211_S_RUN && 454 vap->iv_state != IEEE80211_S_SLEEP) { 455 IEEE80211_LOCK(ic); 456 /* re-check under the com lock to avoid races */ 457 if (vap->iv_state != IEEE80211_S_RUN && 458 vap->iv_state != IEEE80211_S_SLEEP) { 459 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 460 "%s: ignore queue, in %s state\n", 461 __func__, ieee80211_state_name[vap->iv_state]); 462 vap->iv_stats.is_tx_badstate++; 463 IEEE80211_UNLOCK(ic); 464 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 465 m_freem(m); 466 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 467 return (ENETDOWN); 468 } 469 IEEE80211_UNLOCK(ic); 470 } 471 472 /* 473 * Sanitize mbuf flags for net80211 use. We cannot 474 * clear M_PWR_SAV or M_MORE_DATA because these may 475 * be set for frames that are re-submitted from the 476 * power save queue. 477 * 478 * NB: This must be done before ieee80211_classify as 479 * it marks EAPOL in frames with M_EAPOL. 480 */ 481 m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA); 482 483 /* 484 * Bump to the packet transmission path. 485 * The mbuf will be consumed here. 486 */ 487 return (ieee80211_start_pkt(vap, m)); 488 } 489 490 void 491 ieee80211_vap_qflush(struct ifnet *ifp) 492 { 493 494 /* Empty for now */ 495 } 496 497 /* 498 * 802.11 raw output routine. 499 * 500 * XXX TODO: this (and other send routines) should correctly 501 * XXX keep the pwr mgmt bit set if it decides to call into the 502 * XXX driver to send a frame whilst the state is SLEEP. 503 * 504 * Otherwise the peer may decide that we're awake and flood us 505 * with traffic we are still too asleep to receive! 506 */ 507 int 508 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni, 509 struct mbuf *m, const struct ieee80211_bpf_params *params) 510 { 511 struct ieee80211com *ic = vap->iv_ic; 512 int error; 513 514 /* 515 * Set node - the caller has taken a reference, so ensure 516 * that the mbuf has the same node value that 517 * it would if it were going via the normal path. 518 */ 519 m->m_pkthdr.rcvif = (void *)ni; 520 521 /* 522 * Attempt to add bpf transmit parameters. 523 * 524 * For now it's ok to fail; the raw_xmit api still takes 525 * them as an option. 526 * 527 * Later on when ic_raw_xmit() has params removed, 528 * they'll have to be added - so fail the transmit if 529 * they can't be. 530 */ 531 if (params) 532 (void) ieee80211_add_xmit_params(m, params); 533 534 error = ic->ic_raw_xmit(ni, m, params); 535 if (error) { 536 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1); 537 ieee80211_free_node(ni); 538 } 539 return (error); 540 } 541 542 /* 543 * 802.11 output routine. This is (currently) used only to 544 * connect bpf write calls to the 802.11 layer for injecting 545 * raw 802.11 frames. 546 */ 547 int 548 ieee80211_output(struct ifnet *ifp, struct mbuf *m, 549 const struct sockaddr *dst, struct route *ro) 550 { 551 #define senderr(e) do { error = (e); goto bad;} while (0) 552 struct ieee80211_node *ni = NULL; 553 struct ieee80211vap *vap; 554 struct ieee80211_frame *wh; 555 struct ieee80211com *ic = NULL; 556 int error; 557 int ret; 558 559 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 560 /* 561 * Short-circuit requests if the vap is marked OACTIVE 562 * as this can happen because a packet came down through 563 * ieee80211_start before the vap entered RUN state in 564 * which case it's ok to just drop the frame. This 565 * should not be necessary but callers of if_output don't 566 * check OACTIVE. 567 */ 568 senderr(ENETDOWN); 569 } 570 vap = ifp->if_softc; 571 ic = vap->iv_ic; 572 /* 573 * Hand to the 802.3 code if not tagged as 574 * a raw 802.11 frame. 575 */ 576 if (dst->sa_family != AF_IEEE80211) 577 return vap->iv_output(ifp, m, dst, ro); 578 #ifdef MAC 579 error = mac_ifnet_check_transmit(ifp, m); 580 if (error) 581 senderr(error); 582 #endif 583 if (ifp->if_flags & IFF_MONITOR) 584 senderr(ENETDOWN); 585 if (!IFNET_IS_UP_RUNNING(ifp)) 586 senderr(ENETDOWN); 587 if (vap->iv_state == IEEE80211_S_CAC) { 588 IEEE80211_DPRINTF(vap, 589 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 590 "block %s frame in CAC state\n", "raw data"); 591 vap->iv_stats.is_tx_badstate++; 592 senderr(EIO); /* XXX */ 593 } else if (vap->iv_state == IEEE80211_S_SCAN) 594 senderr(EIO); 595 /* XXX bypass bridge, pfil, carp, etc. */ 596 597 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack)) 598 senderr(EIO); /* XXX */ 599 wh = mtod(m, struct ieee80211_frame *); 600 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) != 601 IEEE80211_FC0_VERSION_0) 602 senderr(EIO); /* XXX */ 603 604 /* locate destination node */ 605 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 606 case IEEE80211_FC1_DIR_NODS: 607 case IEEE80211_FC1_DIR_FROMDS: 608 ni = ieee80211_find_txnode(vap, wh->i_addr1); 609 break; 610 case IEEE80211_FC1_DIR_TODS: 611 case IEEE80211_FC1_DIR_DSTODS: 612 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame)) 613 senderr(EIO); /* XXX */ 614 ni = ieee80211_find_txnode(vap, wh->i_addr3); 615 break; 616 default: 617 senderr(EIO); /* XXX */ 618 } 619 if (ni == NULL) { 620 /* 621 * Permit packets w/ bpf params through regardless 622 * (see below about sa_len). 623 */ 624 if (dst->sa_len == 0) 625 senderr(EHOSTUNREACH); 626 ni = ieee80211_ref_node(vap->iv_bss); 627 } 628 629 /* 630 * Sanitize mbuf for net80211 flags leaked from above. 631 * 632 * NB: This must be done before ieee80211_classify as 633 * it marks EAPOL in frames with M_EAPOL. 634 */ 635 m->m_flags &= ~M_80211_TX; 636 637 /* calculate priority so drivers can find the tx queue */ 638 /* XXX assumes an 802.3 frame */ 639 if (ieee80211_classify(ni, m)) 640 senderr(EIO); /* XXX */ 641 642 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 643 IEEE80211_NODE_STAT(ni, tx_data); 644 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 645 IEEE80211_NODE_STAT(ni, tx_mcast); 646 m->m_flags |= M_MCAST; 647 } else 648 IEEE80211_NODE_STAT(ni, tx_ucast); 649 /* NB: ieee80211_encap does not include 802.11 header */ 650 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len); 651 652 IEEE80211_TX_LOCK(ic); 653 654 /* 655 * NB: DLT_IEEE802_11_RADIO identifies the parameters are 656 * present by setting the sa_len field of the sockaddr (yes, 657 * this is a hack). 658 * NB: we assume sa_data is suitably aligned to cast. 659 */ 660 ret = ieee80211_raw_output(vap, ni, m, 661 (const struct ieee80211_bpf_params *)(dst->sa_len ? 662 dst->sa_data : NULL)); 663 IEEE80211_TX_UNLOCK(ic); 664 return (ret); 665 bad: 666 if (m != NULL) 667 m_freem(m); 668 if (ni != NULL) 669 ieee80211_free_node(ni); 670 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 671 return error; 672 #undef senderr 673 } 674 675 /* 676 * Set the direction field and address fields of an outgoing 677 * frame. Note this should be called early on in constructing 678 * a frame as it sets i_fc[1]; other bits can then be or'd in. 679 */ 680 void 681 ieee80211_send_setup( 682 struct ieee80211_node *ni, 683 struct mbuf *m, 684 int type, int tid, 685 const uint8_t sa[IEEE80211_ADDR_LEN], 686 const uint8_t da[IEEE80211_ADDR_LEN], 687 const uint8_t bssid[IEEE80211_ADDR_LEN]) 688 { 689 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 690 struct ieee80211vap *vap = ni->ni_vap; 691 struct ieee80211_tx_ampdu *tap; 692 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 693 ieee80211_seq seqno; 694 695 IEEE80211_TX_LOCK_ASSERT(ni->ni_ic); 696 697 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 698 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 699 switch (vap->iv_opmode) { 700 case IEEE80211_M_STA: 701 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 702 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 703 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 704 IEEE80211_ADDR_COPY(wh->i_addr3, da); 705 break; 706 case IEEE80211_M_IBSS: 707 case IEEE80211_M_AHDEMO: 708 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 709 IEEE80211_ADDR_COPY(wh->i_addr1, da); 710 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 711 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 712 break; 713 case IEEE80211_M_HOSTAP: 714 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 715 IEEE80211_ADDR_COPY(wh->i_addr1, da); 716 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 717 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 718 break; 719 case IEEE80211_M_WDS: 720 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 721 IEEE80211_ADDR_COPY(wh->i_addr1, da); 722 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 723 IEEE80211_ADDR_COPY(wh->i_addr3, da); 724 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 725 break; 726 case IEEE80211_M_MBSS: 727 #ifdef IEEE80211_SUPPORT_MESH 728 if (IEEE80211_IS_MULTICAST(da)) { 729 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 730 /* XXX next hop */ 731 IEEE80211_ADDR_COPY(wh->i_addr1, da); 732 IEEE80211_ADDR_COPY(wh->i_addr2, 733 vap->iv_myaddr); 734 } else { 735 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 736 IEEE80211_ADDR_COPY(wh->i_addr1, da); 737 IEEE80211_ADDR_COPY(wh->i_addr2, 738 vap->iv_myaddr); 739 IEEE80211_ADDR_COPY(wh->i_addr3, da); 740 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 741 } 742 #endif 743 break; 744 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 745 break; 746 } 747 } else { 748 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 749 IEEE80211_ADDR_COPY(wh->i_addr1, da); 750 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 751 #ifdef IEEE80211_SUPPORT_MESH 752 if (vap->iv_opmode == IEEE80211_M_MBSS) 753 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 754 else 755 #endif 756 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 757 } 758 *(uint16_t *)&wh->i_dur[0] = 0; 759 760 tap = &ni->ni_tx_ampdu[tid]; 761 if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) 762 m->m_flags |= M_AMPDU_MPDU; 763 else { 764 if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK, 765 type & IEEE80211_FC0_SUBTYPE_MASK)) 766 seqno = ni->ni_txseqs[tid]++; 767 else 768 seqno = 0; 769 770 *(uint16_t *)&wh->i_seq[0] = 771 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 772 M_SEQNO_SET(m, seqno); 773 } 774 775 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 776 m->m_flags |= M_MCAST; 777 #undef WH4 778 } 779 780 /* 781 * Send a management frame to the specified node. The node pointer 782 * must have a reference as the pointer will be passed to the driver 783 * and potentially held for a long time. If the frame is successfully 784 * dispatched to the driver, then it is responsible for freeing the 785 * reference (and potentially free'ing up any associated storage); 786 * otherwise deal with reclaiming any reference (on error). 787 */ 788 int 789 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type, 790 struct ieee80211_bpf_params *params) 791 { 792 struct ieee80211vap *vap = ni->ni_vap; 793 struct ieee80211com *ic = ni->ni_ic; 794 struct ieee80211_frame *wh; 795 int ret; 796 797 KASSERT(ni != NULL, ("null node")); 798 799 if (vap->iv_state == IEEE80211_S_CAC) { 800 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 801 ni, "block %s frame in CAC state", 802 ieee80211_mgt_subtype_name[ 803 (type & IEEE80211_FC0_SUBTYPE_MASK) >> 804 IEEE80211_FC0_SUBTYPE_SHIFT]); 805 vap->iv_stats.is_tx_badstate++; 806 ieee80211_free_node(ni); 807 m_freem(m); 808 return EIO; /* XXX */ 809 } 810 811 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 812 if (m == NULL) { 813 ieee80211_free_node(ni); 814 return ENOMEM; 815 } 816 817 IEEE80211_TX_LOCK(ic); 818 819 wh = mtod(m, struct ieee80211_frame *); 820 ieee80211_send_setup(ni, m, 821 IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID, 822 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 823 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { 824 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1, 825 "encrypting frame (%s)", __func__); 826 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 827 } 828 m->m_flags |= M_ENCAP; /* mark encapsulated */ 829 830 KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?")); 831 M_WME_SETAC(m, params->ibp_pri); 832 833 #ifdef IEEE80211_DEBUG 834 /* avoid printing too many frames */ 835 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) || 836 ieee80211_msg_dumppkts(vap)) { 837 printf("[%s] send %s on channel %u\n", 838 ether_sprintf(wh->i_addr1), 839 ieee80211_mgt_subtype_name[ 840 (type & IEEE80211_FC0_SUBTYPE_MASK) >> 841 IEEE80211_FC0_SUBTYPE_SHIFT], 842 ieee80211_chan2ieee(ic, ic->ic_curchan)); 843 } 844 #endif 845 IEEE80211_NODE_STAT(ni, tx_mgmt); 846 847 ret = ieee80211_raw_output(vap, ni, m, params); 848 IEEE80211_TX_UNLOCK(ic); 849 return (ret); 850 } 851 852 /* 853 * Send a null data frame to the specified node. If the station 854 * is setup for QoS then a QoS Null Data frame is constructed. 855 * If this is a WDS station then a 4-address frame is constructed. 856 * 857 * NB: the caller is assumed to have setup a node reference 858 * for use; this is necessary to deal with a race condition 859 * when probing for inactive stations. Like ieee80211_mgmt_output 860 * we must cleanup any node reference on error; however we 861 * can safely just unref it as we know it will never be the 862 * last reference to the node. 863 */ 864 int 865 ieee80211_send_nulldata(struct ieee80211_node *ni) 866 { 867 struct ieee80211vap *vap = ni->ni_vap; 868 struct ieee80211com *ic = ni->ni_ic; 869 struct mbuf *m; 870 struct ieee80211_frame *wh; 871 int hdrlen; 872 uint8_t *frm; 873 int ret; 874 875 if (vap->iv_state == IEEE80211_S_CAC) { 876 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 877 ni, "block %s frame in CAC state", "null data"); 878 ieee80211_unref_node(&ni); 879 vap->iv_stats.is_tx_badstate++; 880 return EIO; /* XXX */ 881 } 882 883 if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) 884 hdrlen = sizeof(struct ieee80211_qosframe); 885 else 886 hdrlen = sizeof(struct ieee80211_frame); 887 /* NB: only WDS vap's get 4-address frames */ 888 if (vap->iv_opmode == IEEE80211_M_WDS) 889 hdrlen += IEEE80211_ADDR_LEN; 890 if (ic->ic_flags & IEEE80211_F_DATAPAD) 891 hdrlen = roundup(hdrlen, sizeof(uint32_t)); 892 893 m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0); 894 if (m == NULL) { 895 /* XXX debug msg */ 896 ieee80211_unref_node(&ni); 897 vap->iv_stats.is_tx_nobuf++; 898 return ENOMEM; 899 } 900 KASSERT(M_LEADINGSPACE(m) >= hdrlen, 901 ("leading space %zd", M_LEADINGSPACE(m))); 902 M_PREPEND(m, hdrlen, M_NOWAIT); 903 if (m == NULL) { 904 /* NB: cannot happen */ 905 ieee80211_free_node(ni); 906 return ENOMEM; 907 } 908 909 IEEE80211_TX_LOCK(ic); 910 911 wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */ 912 if (ni->ni_flags & IEEE80211_NODE_QOS) { 913 const int tid = WME_AC_TO_TID(WME_AC_BE); 914 uint8_t *qos; 915 916 ieee80211_send_setup(ni, m, 917 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL, 918 tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 919 920 if (vap->iv_opmode == IEEE80211_M_WDS) 921 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 922 else 923 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 924 qos[0] = tid & IEEE80211_QOS_TID; 925 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy) 926 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 927 qos[1] = 0; 928 } else { 929 ieee80211_send_setup(ni, m, 930 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 931 IEEE80211_NONQOS_TID, 932 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 933 } 934 if (vap->iv_opmode != IEEE80211_M_WDS) { 935 /* NB: power management bit is never sent by an AP */ 936 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 937 vap->iv_opmode != IEEE80211_M_HOSTAP) 938 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 939 } 940 m->m_len = m->m_pkthdr.len = hdrlen; 941 m->m_flags |= M_ENCAP; /* mark encapsulated */ 942 943 M_WME_SETAC(m, WME_AC_BE); 944 945 IEEE80211_NODE_STAT(ni, tx_data); 946 947 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni, 948 "send %snull data frame on channel %u, pwr mgt %s", 949 ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "", 950 ieee80211_chan2ieee(ic, ic->ic_curchan), 951 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 952 953 ret = ieee80211_raw_output(vap, ni, m, NULL); 954 IEEE80211_TX_UNLOCK(ic); 955 return (ret); 956 } 957 958 /* 959 * Assign priority to a frame based on any vlan tag assigned 960 * to the station and/or any Diffserv setting in an IP header. 961 * Finally, if an ACM policy is setup (in station mode) it's 962 * applied. 963 */ 964 int 965 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m) 966 { 967 const struct ether_header *eh = mtod(m, struct ether_header *); 968 int v_wme_ac, d_wme_ac, ac; 969 970 /* 971 * Always promote PAE/EAPOL frames to high priority. 972 */ 973 if (eh->ether_type == htons(ETHERTYPE_PAE)) { 974 /* NB: mark so others don't need to check header */ 975 m->m_flags |= M_EAPOL; 976 ac = WME_AC_VO; 977 goto done; 978 } 979 /* 980 * Non-qos traffic goes to BE. 981 */ 982 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 983 ac = WME_AC_BE; 984 goto done; 985 } 986 987 /* 988 * If node has a vlan tag then all traffic 989 * to it must have a matching tag. 990 */ 991 v_wme_ac = 0; 992 if (ni->ni_vlan != 0) { 993 if ((m->m_flags & M_VLANTAG) == 0) { 994 IEEE80211_NODE_STAT(ni, tx_novlantag); 995 return 1; 996 } 997 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 998 EVL_VLANOFTAG(ni->ni_vlan)) { 999 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 1000 return 1; 1001 } 1002 /* map vlan priority to AC */ 1003 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan)); 1004 } 1005 1006 /* XXX m_copydata may be too slow for fast path */ 1007 #ifdef INET 1008 if (eh->ether_type == htons(ETHERTYPE_IP)) { 1009 uint8_t tos; 1010 /* 1011 * IP frame, map the DSCP bits from the TOS field. 1012 */ 1013 /* NB: ip header may not be in first mbuf */ 1014 m_copydata(m, sizeof(struct ether_header) + 1015 offsetof(struct ip, ip_tos), sizeof(tos), &tos); 1016 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1017 d_wme_ac = TID_TO_WME_AC(tos); 1018 } else { 1019 #endif /* INET */ 1020 #ifdef INET6 1021 if (eh->ether_type == htons(ETHERTYPE_IPV6)) { 1022 uint32_t flow; 1023 uint8_t tos; 1024 /* 1025 * IPv6 frame, map the DSCP bits from the traffic class field. 1026 */ 1027 m_copydata(m, sizeof(struct ether_header) + 1028 offsetof(struct ip6_hdr, ip6_flow), sizeof(flow), 1029 (caddr_t) &flow); 1030 tos = (uint8_t)(ntohl(flow) >> 20); 1031 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1032 d_wme_ac = TID_TO_WME_AC(tos); 1033 } else { 1034 #endif /* INET6 */ 1035 d_wme_ac = WME_AC_BE; 1036 #ifdef INET6 1037 } 1038 #endif 1039 #ifdef INET 1040 } 1041 #endif 1042 /* 1043 * Use highest priority AC. 1044 */ 1045 if (v_wme_ac > d_wme_ac) 1046 ac = v_wme_ac; 1047 else 1048 ac = d_wme_ac; 1049 1050 /* 1051 * Apply ACM policy. 1052 */ 1053 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) { 1054 static const int acmap[4] = { 1055 WME_AC_BK, /* WME_AC_BE */ 1056 WME_AC_BK, /* WME_AC_BK */ 1057 WME_AC_BE, /* WME_AC_VI */ 1058 WME_AC_VI, /* WME_AC_VO */ 1059 }; 1060 struct ieee80211com *ic = ni->ni_ic; 1061 1062 while (ac != WME_AC_BK && 1063 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 1064 ac = acmap[ac]; 1065 } 1066 done: 1067 M_WME_SETAC(m, ac); 1068 return 0; 1069 } 1070 1071 /* 1072 * Insure there is sufficient contiguous space to encapsulate the 1073 * 802.11 data frame. If room isn't already there, arrange for it. 1074 * Drivers and cipher modules assume we have done the necessary work 1075 * and fail rudely if they don't find the space they need. 1076 */ 1077 struct mbuf * 1078 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize, 1079 struct ieee80211_key *key, struct mbuf *m) 1080 { 1081 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 1082 int needed_space = vap->iv_ic->ic_headroom + hdrsize; 1083 1084 if (key != NULL) { 1085 /* XXX belongs in crypto code? */ 1086 needed_space += key->wk_cipher->ic_header; 1087 /* XXX frags */ 1088 /* 1089 * When crypto is being done in the host we must insure 1090 * the data are writable for the cipher routines; clone 1091 * a writable mbuf chain. 1092 * XXX handle SWMIC specially 1093 */ 1094 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) { 1095 m = m_unshare(m, M_NOWAIT); 1096 if (m == NULL) { 1097 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1098 "%s: cannot get writable mbuf\n", __func__); 1099 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */ 1100 return NULL; 1101 } 1102 } 1103 } 1104 /* 1105 * We know we are called just before stripping an Ethernet 1106 * header and prepending an LLC header. This means we know 1107 * there will be 1108 * sizeof(struct ether_header) - sizeof(struct llc) 1109 * bytes recovered to which we need additional space for the 1110 * 802.11 header and any crypto header. 1111 */ 1112 /* XXX check trailing space and copy instead? */ 1113 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 1114 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); 1115 if (n == NULL) { 1116 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1117 "%s: cannot expand storage\n", __func__); 1118 vap->iv_stats.is_tx_nobuf++; 1119 m_freem(m); 1120 return NULL; 1121 } 1122 KASSERT(needed_space <= MHLEN, 1123 ("not enough room, need %u got %d\n", needed_space, MHLEN)); 1124 /* 1125 * Setup new mbuf to have leading space to prepend the 1126 * 802.11 header and any crypto header bits that are 1127 * required (the latter are added when the driver calls 1128 * back to ieee80211_crypto_encap to do crypto encapsulation). 1129 */ 1130 /* NB: must be first 'cuz it clobbers m_data */ 1131 m_move_pkthdr(n, m); 1132 n->m_len = 0; /* NB: m_gethdr does not set */ 1133 n->m_data += needed_space; 1134 /* 1135 * Pull up Ethernet header to create the expected layout. 1136 * We could use m_pullup but that's overkill (i.e. we don't 1137 * need the actual data) and it cannot fail so do it inline 1138 * for speed. 1139 */ 1140 /* NB: struct ether_header is known to be contiguous */ 1141 n->m_len += sizeof(struct ether_header); 1142 m->m_len -= sizeof(struct ether_header); 1143 m->m_data += sizeof(struct ether_header); 1144 /* 1145 * Replace the head of the chain. 1146 */ 1147 n->m_next = m; 1148 m = n; 1149 } 1150 return m; 1151 #undef TO_BE_RECLAIMED 1152 } 1153 1154 /* 1155 * Return the transmit key to use in sending a unicast frame. 1156 * If a unicast key is set we use that. When no unicast key is set 1157 * we fall back to the default transmit key. 1158 */ 1159 static __inline struct ieee80211_key * 1160 ieee80211_crypto_getucastkey(struct ieee80211vap *vap, 1161 struct ieee80211_node *ni) 1162 { 1163 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) { 1164 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1165 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1166 return NULL; 1167 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1168 } else { 1169 return &ni->ni_ucastkey; 1170 } 1171 } 1172 1173 /* 1174 * Return the transmit key to use in sending a multicast frame. 1175 * Multicast traffic always uses the group key which is installed as 1176 * the default tx key. 1177 */ 1178 static __inline struct ieee80211_key * 1179 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap, 1180 struct ieee80211_node *ni) 1181 { 1182 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1183 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1184 return NULL; 1185 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1186 } 1187 1188 /* 1189 * Encapsulate an outbound data frame. The mbuf chain is updated. 1190 * If an error is encountered NULL is returned. The caller is required 1191 * to provide a node reference and pullup the ethernet header in the 1192 * first mbuf. 1193 * 1194 * NB: Packet is assumed to be processed by ieee80211_classify which 1195 * marked EAPOL frames w/ M_EAPOL. 1196 */ 1197 struct mbuf * 1198 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni, 1199 struct mbuf *m) 1200 { 1201 #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh)) 1202 #define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc) 1203 struct ieee80211com *ic = ni->ni_ic; 1204 #ifdef IEEE80211_SUPPORT_MESH 1205 struct ieee80211_mesh_state *ms = vap->iv_mesh; 1206 struct ieee80211_meshcntl_ae10 *mc; 1207 struct ieee80211_mesh_route *rt = NULL; 1208 int dir = -1; 1209 #endif 1210 struct ether_header eh; 1211 struct ieee80211_frame *wh; 1212 struct ieee80211_key *key; 1213 struct llc *llc; 1214 int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr; 1215 ieee80211_seq seqno; 1216 int meshhdrsize, meshae; 1217 uint8_t *qos; 1218 1219 IEEE80211_TX_LOCK_ASSERT(ic); 1220 1221 /* 1222 * Copy existing Ethernet header to a safe place. The 1223 * rest of the code assumes it's ok to strip it when 1224 * reorganizing state for the final encapsulation. 1225 */ 1226 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 1227 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t)); 1228 1229 /* 1230 * Insure space for additional headers. First identify 1231 * transmit key to use in calculating any buffer adjustments 1232 * required. This is also used below to do privacy 1233 * encapsulation work. Then calculate the 802.11 header 1234 * size and any padding required by the driver. 1235 * 1236 * Note key may be NULL if we fall back to the default 1237 * transmit key and that is not set. In that case the 1238 * buffer may not be expanded as needed by the cipher 1239 * routines, but they will/should discard it. 1240 */ 1241 if (vap->iv_flags & IEEE80211_F_PRIVACY) { 1242 if (vap->iv_opmode == IEEE80211_M_STA || 1243 !IEEE80211_IS_MULTICAST(eh.ether_dhost) || 1244 (vap->iv_opmode == IEEE80211_M_WDS && 1245 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) 1246 key = ieee80211_crypto_getucastkey(vap, ni); 1247 else 1248 key = ieee80211_crypto_getmcastkey(vap, ni); 1249 if (key == NULL && (m->m_flags & M_EAPOL) == 0) { 1250 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, 1251 eh.ether_dhost, 1252 "no default transmit key (%s) deftxkey %u", 1253 __func__, vap->iv_def_txkey); 1254 vap->iv_stats.is_tx_nodefkey++; 1255 goto bad; 1256 } 1257 } else 1258 key = NULL; 1259 /* 1260 * XXX Some ap's don't handle QoS-encapsulated EAPOL 1261 * frames so suppress use. This may be an issue if other 1262 * ap's require all data frames to be QoS-encapsulated 1263 * once negotiated in which case we'll need to make this 1264 * configurable. 1265 * NB: mesh data frames are QoS. 1266 */ 1267 addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) || 1268 (vap->iv_opmode == IEEE80211_M_MBSS)) && 1269 (m->m_flags & M_EAPOL) == 0; 1270 if (addqos) 1271 hdrsize = sizeof(struct ieee80211_qosframe); 1272 else 1273 hdrsize = sizeof(struct ieee80211_frame); 1274 #ifdef IEEE80211_SUPPORT_MESH 1275 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1276 /* 1277 * Mesh data frames are encapsulated according to the 1278 * rules of Section 11B.8.5 (p.139 of D3.0 spec). 1279 * o Group Addressed data (aka multicast) originating 1280 * at the local sta are sent w/ 3-address format and 1281 * address extension mode 00 1282 * o Individually Addressed data (aka unicast) originating 1283 * at the local sta are sent w/ 4-address format and 1284 * address extension mode 00 1285 * o Group Addressed data forwarded from a non-mesh sta are 1286 * sent w/ 3-address format and address extension mode 01 1287 * o Individually Address data from another sta are sent 1288 * w/ 4-address format and address extension mode 10 1289 */ 1290 is4addr = 0; /* NB: don't use, disable */ 1291 if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) { 1292 rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost); 1293 KASSERT(rt != NULL, ("route is NULL")); 1294 dir = IEEE80211_FC1_DIR_DSTODS; 1295 hdrsize += IEEE80211_ADDR_LEN; 1296 if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) { 1297 if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate, 1298 vap->iv_myaddr)) { 1299 IEEE80211_NOTE_MAC(vap, 1300 IEEE80211_MSG_MESH, 1301 eh.ether_dhost, 1302 "%s", "trying to send to ourself"); 1303 goto bad; 1304 } 1305 meshae = IEEE80211_MESH_AE_10; 1306 meshhdrsize = 1307 sizeof(struct ieee80211_meshcntl_ae10); 1308 } else { 1309 meshae = IEEE80211_MESH_AE_00; 1310 meshhdrsize = 1311 sizeof(struct ieee80211_meshcntl); 1312 } 1313 } else { 1314 dir = IEEE80211_FC1_DIR_FROMDS; 1315 if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) { 1316 /* proxy group */ 1317 meshae = IEEE80211_MESH_AE_01; 1318 meshhdrsize = 1319 sizeof(struct ieee80211_meshcntl_ae01); 1320 } else { 1321 /* group */ 1322 meshae = IEEE80211_MESH_AE_00; 1323 meshhdrsize = sizeof(struct ieee80211_meshcntl); 1324 } 1325 } 1326 } else { 1327 #endif 1328 /* 1329 * 4-address frames need to be generated for: 1330 * o packets sent through a WDS vap (IEEE80211_M_WDS) 1331 * o packets sent through a vap marked for relaying 1332 * (e.g. a station operating with dynamic WDS) 1333 */ 1334 is4addr = vap->iv_opmode == IEEE80211_M_WDS || 1335 ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) && 1336 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)); 1337 if (is4addr) 1338 hdrsize += IEEE80211_ADDR_LEN; 1339 meshhdrsize = meshae = 0; 1340 #ifdef IEEE80211_SUPPORT_MESH 1341 } 1342 #endif 1343 /* 1344 * Honor driver DATAPAD requirement. 1345 */ 1346 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1347 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1348 else 1349 hdrspace = hdrsize; 1350 1351 if (__predict_true((m->m_flags & M_FF) == 0)) { 1352 /* 1353 * Normal frame. 1354 */ 1355 m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m); 1356 if (m == NULL) { 1357 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 1358 goto bad; 1359 } 1360 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */ 1361 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 1362 llc = mtod(m, struct llc *); 1363 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 1364 llc->llc_control = LLC_UI; 1365 llc->llc_snap.org_code[0] = 0; 1366 llc->llc_snap.org_code[1] = 0; 1367 llc->llc_snap.org_code[2] = 0; 1368 llc->llc_snap.ether_type = eh.ether_type; 1369 } else { 1370 #ifdef IEEE80211_SUPPORT_SUPERG 1371 /* 1372 * Aggregated frame. 1373 */ 1374 m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key); 1375 if (m == NULL) 1376 #endif 1377 goto bad; 1378 } 1379 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 1380 1381 M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT); 1382 if (m == NULL) { 1383 vap->iv_stats.is_tx_nobuf++; 1384 goto bad; 1385 } 1386 wh = mtod(m, struct ieee80211_frame *); 1387 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 1388 *(uint16_t *)wh->i_dur = 0; 1389 qos = NULL; /* NB: quiet compiler */ 1390 if (is4addr) { 1391 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 1392 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); 1393 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1394 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1395 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); 1396 } else switch (vap->iv_opmode) { 1397 case IEEE80211_M_STA: 1398 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 1399 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 1400 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1401 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1402 break; 1403 case IEEE80211_M_IBSS: 1404 case IEEE80211_M_AHDEMO: 1405 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1406 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1407 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1408 /* 1409 * NB: always use the bssid from iv_bss as the 1410 * neighbor's may be stale after an ibss merge 1411 */ 1412 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid); 1413 break; 1414 case IEEE80211_M_HOSTAP: 1415 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1416 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1417 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 1418 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 1419 break; 1420 #ifdef IEEE80211_SUPPORT_MESH 1421 case IEEE80211_M_MBSS: 1422 /* NB: offset by hdrspace to deal with DATAPAD */ 1423 mc = (struct ieee80211_meshcntl_ae10 *) 1424 (mtod(m, uint8_t *) + hdrspace); 1425 wh->i_fc[1] = dir; 1426 switch (meshae) { 1427 case IEEE80211_MESH_AE_00: /* no proxy */ 1428 mc->mc_flags = 0; 1429 if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */ 1430 IEEE80211_ADDR_COPY(wh->i_addr1, 1431 ni->ni_macaddr); 1432 IEEE80211_ADDR_COPY(wh->i_addr2, 1433 vap->iv_myaddr); 1434 IEEE80211_ADDR_COPY(wh->i_addr3, 1435 eh.ether_dhost); 1436 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, 1437 eh.ether_shost); 1438 qos =((struct ieee80211_qosframe_addr4 *) 1439 wh)->i_qos; 1440 } else if (dir == IEEE80211_FC1_DIR_FROMDS) { 1441 /* mcast */ 1442 IEEE80211_ADDR_COPY(wh->i_addr1, 1443 eh.ether_dhost); 1444 IEEE80211_ADDR_COPY(wh->i_addr2, 1445 vap->iv_myaddr); 1446 IEEE80211_ADDR_COPY(wh->i_addr3, 1447 eh.ether_shost); 1448 qos = ((struct ieee80211_qosframe *) 1449 wh)->i_qos; 1450 } 1451 break; 1452 case IEEE80211_MESH_AE_01: /* mcast, proxy */ 1453 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1454 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1455 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1456 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr); 1457 mc->mc_flags = 1; 1458 IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4, 1459 eh.ether_shost); 1460 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1461 break; 1462 case IEEE80211_MESH_AE_10: /* ucast, proxy */ 1463 KASSERT(rt != NULL, ("route is NULL")); 1464 IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop); 1465 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1466 IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate); 1467 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr); 1468 mc->mc_flags = IEEE80211_MESH_AE_10; 1469 IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost); 1470 IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost); 1471 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1472 break; 1473 default: 1474 KASSERT(0, ("meshae %d", meshae)); 1475 break; 1476 } 1477 mc->mc_ttl = ms->ms_ttl; 1478 ms->ms_seq++; 1479 LE_WRITE_4(mc->mc_seq, ms->ms_seq); 1480 break; 1481 #endif 1482 case IEEE80211_M_WDS: /* NB: is4addr should always be true */ 1483 default: 1484 goto bad; 1485 } 1486 if (m->m_flags & M_MORE_DATA) 1487 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 1488 if (addqos) { 1489 int ac, tid; 1490 1491 if (is4addr) { 1492 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1493 /* NB: mesh case handled earlier */ 1494 } else if (vap->iv_opmode != IEEE80211_M_MBSS) 1495 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1496 ac = M_WME_GETAC(m); 1497 /* map from access class/queue to 11e header priorty value */ 1498 tid = WME_AC_TO_TID(ac); 1499 qos[0] = tid & IEEE80211_QOS_TID; 1500 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 1501 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1502 #ifdef IEEE80211_SUPPORT_MESH 1503 if (vap->iv_opmode == IEEE80211_M_MBSS) 1504 qos[1] = IEEE80211_QOS_MC; 1505 else 1506 #endif 1507 qos[1] = 0; 1508 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 1509 1510 if ((m->m_flags & M_AMPDU_MPDU) == 0) { 1511 /* 1512 * NB: don't assign a sequence # to potential 1513 * aggregates; we expect this happens at the 1514 * point the frame comes off any aggregation q 1515 * as otherwise we may introduce holes in the 1516 * BA sequence space and/or make window accouting 1517 * more difficult. 1518 * 1519 * XXX may want to control this with a driver 1520 * capability; this may also change when we pull 1521 * aggregation up into net80211 1522 */ 1523 seqno = ni->ni_txseqs[tid]++; 1524 *(uint16_t *)wh->i_seq = 1525 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1526 M_SEQNO_SET(m, seqno); 1527 } 1528 } else { 1529 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1530 *(uint16_t *)wh->i_seq = 1531 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1532 M_SEQNO_SET(m, seqno); 1533 } 1534 1535 1536 /* check if xmit fragmentation is required */ 1537 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold && 1538 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 1539 (vap->iv_caps & IEEE80211_C_TXFRAG) && 1540 (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0); 1541 if (key != NULL) { 1542 /* 1543 * IEEE 802.1X: send EAPOL frames always in the clear. 1544 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 1545 */ 1546 if ((m->m_flags & M_EAPOL) == 0 || 1547 ((vap->iv_flags & IEEE80211_F_WPA) && 1548 (vap->iv_opmode == IEEE80211_M_STA ? 1549 !IEEE80211_KEY_UNDEFINED(key) : 1550 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) { 1551 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 1552 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) { 1553 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT, 1554 eh.ether_dhost, 1555 "%s", "enmic failed, discard frame"); 1556 vap->iv_stats.is_crypto_enmicfail++; 1557 goto bad; 1558 } 1559 } 1560 } 1561 if (txfrag && !ieee80211_fragment(vap, m, hdrsize, 1562 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold)) 1563 goto bad; 1564 1565 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1566 1567 IEEE80211_NODE_STAT(ni, tx_data); 1568 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1569 IEEE80211_NODE_STAT(ni, tx_mcast); 1570 m->m_flags |= M_MCAST; 1571 } else 1572 IEEE80211_NODE_STAT(ni, tx_ucast); 1573 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 1574 1575 return m; 1576 bad: 1577 if (m != NULL) 1578 m_freem(m); 1579 return NULL; 1580 #undef WH4 1581 #undef MC01 1582 } 1583 1584 void 1585 ieee80211_free_mbuf(struct mbuf *m) 1586 { 1587 struct mbuf *next; 1588 1589 if (m == NULL) 1590 return; 1591 1592 do { 1593 next = m->m_nextpkt; 1594 m->m_nextpkt = NULL; 1595 m_freem(m); 1596 } while ((m = next) != NULL); 1597 } 1598 1599 /* 1600 * Fragment the frame according to the specified mtu. 1601 * The size of the 802.11 header (w/o padding) is provided 1602 * so we don't need to recalculate it. We create a new 1603 * mbuf for each fragment and chain it through m_nextpkt; 1604 * we might be able to optimize this by reusing the original 1605 * packet's mbufs but that is significantly more complicated. 1606 */ 1607 static int 1608 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0, 1609 u_int hdrsize, u_int ciphdrsize, u_int mtu) 1610 { 1611 struct ieee80211com *ic = vap->iv_ic; 1612 struct ieee80211_frame *wh, *whf; 1613 struct mbuf *m, *prev; 1614 u_int totalhdrsize, fragno, fragsize, off, remainder, payload; 1615 u_int hdrspace; 1616 1617 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); 1618 KASSERT(m0->m_pkthdr.len > mtu, 1619 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); 1620 1621 /* 1622 * Honor driver DATAPAD requirement. 1623 */ 1624 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1625 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1626 else 1627 hdrspace = hdrsize; 1628 1629 wh = mtod(m0, struct ieee80211_frame *); 1630 /* NB: mark the first frag; it will be propagated below */ 1631 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; 1632 totalhdrsize = hdrspace + ciphdrsize; 1633 fragno = 1; 1634 off = mtu - ciphdrsize; 1635 remainder = m0->m_pkthdr.len - off; 1636 prev = m0; 1637 do { 1638 fragsize = totalhdrsize + remainder; 1639 if (fragsize > mtu) 1640 fragsize = mtu; 1641 /* XXX fragsize can be >2048! */ 1642 KASSERT(fragsize < MCLBYTES, 1643 ("fragment size %u too big!", fragsize)); 1644 if (fragsize > MHLEN) 1645 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1646 else 1647 m = m_gethdr(M_NOWAIT, MT_DATA); 1648 if (m == NULL) 1649 goto bad; 1650 /* leave room to prepend any cipher header */ 1651 m_align(m, fragsize - ciphdrsize); 1652 1653 /* 1654 * Form the header in the fragment. Note that since 1655 * we mark the first fragment with the MORE_FRAG bit 1656 * it automatically is propagated to each fragment; we 1657 * need only clear it on the last fragment (done below). 1658 * NB: frag 1+ dont have Mesh Control field present. 1659 */ 1660 whf = mtod(m, struct ieee80211_frame *); 1661 memcpy(whf, wh, hdrsize); 1662 #ifdef IEEE80211_SUPPORT_MESH 1663 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1664 if (IEEE80211_IS_DSTODS(wh)) 1665 ((struct ieee80211_qosframe_addr4 *) 1666 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1667 else 1668 ((struct ieee80211_qosframe *) 1669 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1670 } 1671 #endif 1672 *(uint16_t *)&whf->i_seq[0] |= htole16( 1673 (fragno & IEEE80211_SEQ_FRAG_MASK) << 1674 IEEE80211_SEQ_FRAG_SHIFT); 1675 fragno++; 1676 1677 payload = fragsize - totalhdrsize; 1678 /* NB: destination is known to be contiguous */ 1679 1680 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace); 1681 m->m_len = hdrspace + payload; 1682 m->m_pkthdr.len = hdrspace + payload; 1683 m->m_flags |= M_FRAG; 1684 1685 /* chain up the fragment */ 1686 prev->m_nextpkt = m; 1687 prev = m; 1688 1689 /* deduct fragment just formed */ 1690 remainder -= payload; 1691 off += payload; 1692 } while (remainder != 0); 1693 1694 /* set the last fragment */ 1695 m->m_flags |= M_LASTFRAG; 1696 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; 1697 1698 /* strip first mbuf now that everything has been copied */ 1699 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); 1700 m0->m_flags |= M_FIRSTFRAG | M_FRAG; 1701 1702 vap->iv_stats.is_tx_fragframes++; 1703 vap->iv_stats.is_tx_frags += fragno-1; 1704 1705 return 1; 1706 bad: 1707 /* reclaim fragments but leave original frame for caller to free */ 1708 ieee80211_free_mbuf(m0->m_nextpkt); 1709 m0->m_nextpkt = NULL; 1710 return 0; 1711 } 1712 1713 /* 1714 * Add a supported rates element id to a frame. 1715 */ 1716 uint8_t * 1717 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs) 1718 { 1719 int nrates; 1720 1721 *frm++ = IEEE80211_ELEMID_RATES; 1722 nrates = rs->rs_nrates; 1723 if (nrates > IEEE80211_RATE_SIZE) 1724 nrates = IEEE80211_RATE_SIZE; 1725 *frm++ = nrates; 1726 memcpy(frm, rs->rs_rates, nrates); 1727 return frm + nrates; 1728 } 1729 1730 /* 1731 * Add an extended supported rates element id to a frame. 1732 */ 1733 uint8_t * 1734 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs) 1735 { 1736 /* 1737 * Add an extended supported rates element if operating in 11g mode. 1738 */ 1739 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 1740 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 1741 *frm++ = IEEE80211_ELEMID_XRATES; 1742 *frm++ = nrates; 1743 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 1744 frm += nrates; 1745 } 1746 return frm; 1747 } 1748 1749 /* 1750 * Add an ssid element to a frame. 1751 */ 1752 uint8_t * 1753 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) 1754 { 1755 *frm++ = IEEE80211_ELEMID_SSID; 1756 *frm++ = len; 1757 memcpy(frm, ssid, len); 1758 return frm + len; 1759 } 1760 1761 /* 1762 * Add an erp element to a frame. 1763 */ 1764 static uint8_t * 1765 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic) 1766 { 1767 uint8_t erp; 1768 1769 *frm++ = IEEE80211_ELEMID_ERP; 1770 *frm++ = 1; 1771 erp = 0; 1772 if (ic->ic_nonerpsta != 0) 1773 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 1774 if (ic->ic_flags & IEEE80211_F_USEPROT) 1775 erp |= IEEE80211_ERP_USE_PROTECTION; 1776 if (ic->ic_flags & IEEE80211_F_USEBARKER) 1777 erp |= IEEE80211_ERP_LONG_PREAMBLE; 1778 *frm++ = erp; 1779 return frm; 1780 } 1781 1782 /* 1783 * Add a CFParams element to a frame. 1784 */ 1785 static uint8_t * 1786 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic) 1787 { 1788 #define ADDSHORT(frm, v) do { \ 1789 LE_WRITE_2(frm, v); \ 1790 frm += 2; \ 1791 } while (0) 1792 *frm++ = IEEE80211_ELEMID_CFPARMS; 1793 *frm++ = 6; 1794 *frm++ = 0; /* CFP count */ 1795 *frm++ = 2; /* CFP period */ 1796 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */ 1797 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */ 1798 return frm; 1799 #undef ADDSHORT 1800 } 1801 1802 static __inline uint8_t * 1803 add_appie(uint8_t *frm, const struct ieee80211_appie *ie) 1804 { 1805 memcpy(frm, ie->ie_data, ie->ie_len); 1806 return frm + ie->ie_len; 1807 } 1808 1809 static __inline uint8_t * 1810 add_ie(uint8_t *frm, const uint8_t *ie) 1811 { 1812 memcpy(frm, ie, 2 + ie[1]); 1813 return frm + 2 + ie[1]; 1814 } 1815 1816 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 1817 /* 1818 * Add a WME information element to a frame. 1819 */ 1820 uint8_t * 1821 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme) 1822 { 1823 static const struct ieee80211_wme_info info = { 1824 .wme_id = IEEE80211_ELEMID_VENDOR, 1825 .wme_len = sizeof(struct ieee80211_wme_info) - 2, 1826 .wme_oui = { WME_OUI_BYTES }, 1827 .wme_type = WME_OUI_TYPE, 1828 .wme_subtype = WME_INFO_OUI_SUBTYPE, 1829 .wme_version = WME_VERSION, 1830 .wme_info = 0, 1831 }; 1832 memcpy(frm, &info, sizeof(info)); 1833 return frm + sizeof(info); 1834 } 1835 1836 /* 1837 * Add a WME parameters element to a frame. 1838 */ 1839 static uint8_t * 1840 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme) 1841 { 1842 #define SM(_v, _f) (((_v) << _f##_S) & _f) 1843 #define ADDSHORT(frm, v) do { \ 1844 LE_WRITE_2(frm, v); \ 1845 frm += 2; \ 1846 } while (0) 1847 /* NB: this works 'cuz a param has an info at the front */ 1848 static const struct ieee80211_wme_info param = { 1849 .wme_id = IEEE80211_ELEMID_VENDOR, 1850 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 1851 .wme_oui = { WME_OUI_BYTES }, 1852 .wme_type = WME_OUI_TYPE, 1853 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 1854 .wme_version = WME_VERSION, 1855 }; 1856 int i; 1857 1858 memcpy(frm, ¶m, sizeof(param)); 1859 frm += __offsetof(struct ieee80211_wme_info, wme_info); 1860 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ 1861 *frm++ = 0; /* reserved field */ 1862 for (i = 0; i < WME_NUM_AC; i++) { 1863 const struct wmeParams *ac = 1864 &wme->wme_bssChanParams.cap_wmeParams[i]; 1865 *frm++ = SM(i, WME_PARAM_ACI) 1866 | SM(ac->wmep_acm, WME_PARAM_ACM) 1867 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) 1868 ; 1869 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) 1870 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) 1871 ; 1872 ADDSHORT(frm, ac->wmep_txopLimit); 1873 } 1874 return frm; 1875 #undef SM 1876 #undef ADDSHORT 1877 } 1878 #undef WME_OUI_BYTES 1879 1880 /* 1881 * Add an 11h Power Constraint element to a frame. 1882 */ 1883 static uint8_t * 1884 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap) 1885 { 1886 const struct ieee80211_channel *c = vap->iv_bss->ni_chan; 1887 /* XXX per-vap tx power limit? */ 1888 int8_t limit = vap->iv_ic->ic_txpowlimit / 2; 1889 1890 frm[0] = IEEE80211_ELEMID_PWRCNSTR; 1891 frm[1] = 1; 1892 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0; 1893 return frm + 3; 1894 } 1895 1896 /* 1897 * Add an 11h Power Capability element to a frame. 1898 */ 1899 static uint8_t * 1900 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c) 1901 { 1902 frm[0] = IEEE80211_ELEMID_PWRCAP; 1903 frm[1] = 2; 1904 frm[2] = c->ic_minpower; 1905 frm[3] = c->ic_maxpower; 1906 return frm + 4; 1907 } 1908 1909 /* 1910 * Add an 11h Supported Channels element to a frame. 1911 */ 1912 static uint8_t * 1913 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic) 1914 { 1915 static const int ielen = 26; 1916 1917 frm[0] = IEEE80211_ELEMID_SUPPCHAN; 1918 frm[1] = ielen; 1919 /* XXX not correct */ 1920 memcpy(frm+2, ic->ic_chan_avail, ielen); 1921 return frm + 2 + ielen; 1922 } 1923 1924 /* 1925 * Add an 11h Quiet time element to a frame. 1926 */ 1927 static uint8_t * 1928 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap) 1929 { 1930 struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm; 1931 1932 quiet->quiet_ie = IEEE80211_ELEMID_QUIET; 1933 quiet->len = 6; 1934 if (vap->iv_quiet_count_value == 1) 1935 vap->iv_quiet_count_value = vap->iv_quiet_count; 1936 else if (vap->iv_quiet_count_value > 1) 1937 vap->iv_quiet_count_value--; 1938 1939 if (vap->iv_quiet_count_value == 0) { 1940 /* value 0 is reserved as per 802.11h standerd */ 1941 vap->iv_quiet_count_value = 1; 1942 } 1943 1944 quiet->tbttcount = vap->iv_quiet_count_value; 1945 quiet->period = vap->iv_quiet_period; 1946 quiet->duration = htole16(vap->iv_quiet_duration); 1947 quiet->offset = htole16(vap->iv_quiet_offset); 1948 return frm + sizeof(*quiet); 1949 } 1950 1951 /* 1952 * Add an 11h Channel Switch Announcement element to a frame. 1953 * Note that we use the per-vap CSA count to adjust the global 1954 * counter so we can use this routine to form probe response 1955 * frames and get the current count. 1956 */ 1957 static uint8_t * 1958 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap) 1959 { 1960 struct ieee80211com *ic = vap->iv_ic; 1961 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm; 1962 1963 csa->csa_ie = IEEE80211_ELEMID_CSA; 1964 csa->csa_len = 3; 1965 csa->csa_mode = 1; /* XXX force quiet on channel */ 1966 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan); 1967 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count; 1968 return frm + sizeof(*csa); 1969 } 1970 1971 /* 1972 * Add an 11h country information element to a frame. 1973 */ 1974 static uint8_t * 1975 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic) 1976 { 1977 1978 if (ic->ic_countryie == NULL || 1979 ic->ic_countryie_chan != ic->ic_bsschan) { 1980 /* 1981 * Handle lazy construction of ie. This is done on 1982 * first use and after a channel change that requires 1983 * re-calculation. 1984 */ 1985 if (ic->ic_countryie != NULL) 1986 IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE); 1987 ic->ic_countryie = ieee80211_alloc_countryie(ic); 1988 if (ic->ic_countryie == NULL) 1989 return frm; 1990 ic->ic_countryie_chan = ic->ic_bsschan; 1991 } 1992 return add_appie(frm, ic->ic_countryie); 1993 } 1994 1995 uint8_t * 1996 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap) 1997 { 1998 if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) 1999 return (add_ie(frm, vap->iv_wpa_ie)); 2000 else { 2001 /* XXX else complain? */ 2002 return (frm); 2003 } 2004 } 2005 2006 uint8_t * 2007 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap) 2008 { 2009 if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL) 2010 return (add_ie(frm, vap->iv_rsn_ie)); 2011 else { 2012 /* XXX else complain? */ 2013 return (frm); 2014 } 2015 } 2016 2017 uint8_t * 2018 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni) 2019 { 2020 if (ni->ni_flags & IEEE80211_NODE_QOS) { 2021 *frm++ = IEEE80211_ELEMID_QOS; 2022 *frm++ = 1; 2023 *frm++ = 0; 2024 } 2025 2026 return (frm); 2027 } 2028 2029 /* 2030 * Send a probe request frame with the specified ssid 2031 * and any optional information element data. 2032 */ 2033 int 2034 ieee80211_send_probereq(struct ieee80211_node *ni, 2035 const uint8_t sa[IEEE80211_ADDR_LEN], 2036 const uint8_t da[IEEE80211_ADDR_LEN], 2037 const uint8_t bssid[IEEE80211_ADDR_LEN], 2038 const uint8_t *ssid, size_t ssidlen) 2039 { 2040 struct ieee80211vap *vap = ni->ni_vap; 2041 struct ieee80211com *ic = ni->ni_ic; 2042 const struct ieee80211_txparam *tp; 2043 struct ieee80211_bpf_params params; 2044 struct ieee80211_frame *wh; 2045 const struct ieee80211_rateset *rs; 2046 struct mbuf *m; 2047 uint8_t *frm; 2048 int ret; 2049 2050 if (vap->iv_state == IEEE80211_S_CAC) { 2051 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni, 2052 "block %s frame in CAC state", "probe request"); 2053 vap->iv_stats.is_tx_badstate++; 2054 return EIO; /* XXX */ 2055 } 2056 2057 /* 2058 * Hold a reference on the node so it doesn't go away until after 2059 * the xmit is complete all the way in the driver. On error we 2060 * will remove our reference. 2061 */ 2062 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2063 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2064 __func__, __LINE__, 2065 ni, ether_sprintf(ni->ni_macaddr), 2066 ieee80211_node_refcnt(ni)+1); 2067 ieee80211_ref_node(ni); 2068 2069 /* 2070 * prreq frame format 2071 * [tlv] ssid 2072 * [tlv] supported rates 2073 * [tlv] RSN (optional) 2074 * [tlv] extended supported rates 2075 * [tlv] WPA (optional) 2076 * [tlv] user-specified ie's 2077 */ 2078 m = ieee80211_getmgtframe(&frm, 2079 ic->ic_headroom + sizeof(struct ieee80211_frame), 2080 2 + IEEE80211_NWID_LEN 2081 + 2 + IEEE80211_RATE_SIZE 2082 + sizeof(struct ieee80211_ie_wpa) 2083 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2084 + sizeof(struct ieee80211_ie_wpa) 2085 + (vap->iv_appie_probereq != NULL ? 2086 vap->iv_appie_probereq->ie_len : 0) 2087 ); 2088 if (m == NULL) { 2089 vap->iv_stats.is_tx_nobuf++; 2090 ieee80211_free_node(ni); 2091 return ENOMEM; 2092 } 2093 2094 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 2095 rs = ieee80211_get_suprates(ic, ic->ic_curchan); 2096 frm = ieee80211_add_rates(frm, rs); 2097 frm = ieee80211_add_rsn(frm, vap); 2098 frm = ieee80211_add_xrates(frm, rs); 2099 frm = ieee80211_add_wpa(frm, vap); 2100 if (vap->iv_appie_probereq != NULL) 2101 frm = add_appie(frm, vap->iv_appie_probereq); 2102 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2103 2104 KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame), 2105 ("leading space %zd", M_LEADINGSPACE(m))); 2106 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2107 if (m == NULL) { 2108 /* NB: cannot happen */ 2109 ieee80211_free_node(ni); 2110 return ENOMEM; 2111 } 2112 2113 IEEE80211_TX_LOCK(ic); 2114 wh = mtod(m, struct ieee80211_frame *); 2115 ieee80211_send_setup(ni, m, 2116 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 2117 IEEE80211_NONQOS_TID, sa, da, bssid); 2118 /* XXX power management? */ 2119 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2120 2121 M_WME_SETAC(m, WME_AC_BE); 2122 2123 IEEE80211_NODE_STAT(ni, tx_probereq); 2124 IEEE80211_NODE_STAT(ni, tx_mgmt); 2125 2126 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2127 "send probe req on channel %u bssid %s ssid \"%.*s\"\n", 2128 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid), 2129 ssidlen, ssid); 2130 2131 memset(¶ms, 0, sizeof(params)); 2132 params.ibp_pri = M_WME_GETAC(m); 2133 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 2134 params.ibp_rate0 = tp->mgmtrate; 2135 if (IEEE80211_IS_MULTICAST(da)) { 2136 params.ibp_flags |= IEEE80211_BPF_NOACK; 2137 params.ibp_try0 = 1; 2138 } else 2139 params.ibp_try0 = tp->maxretry; 2140 params.ibp_power = ni->ni_txpower; 2141 ret = ieee80211_raw_output(vap, ni, m, ¶ms); 2142 IEEE80211_TX_UNLOCK(ic); 2143 return (ret); 2144 } 2145 2146 /* 2147 * Calculate capability information for mgt frames. 2148 */ 2149 uint16_t 2150 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan) 2151 { 2152 struct ieee80211com *ic = vap->iv_ic; 2153 uint16_t capinfo; 2154 2155 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode")); 2156 2157 if (vap->iv_opmode == IEEE80211_M_HOSTAP) 2158 capinfo = IEEE80211_CAPINFO_ESS; 2159 else if (vap->iv_opmode == IEEE80211_M_IBSS) 2160 capinfo = IEEE80211_CAPINFO_IBSS; 2161 else 2162 capinfo = 0; 2163 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2164 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2165 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2166 IEEE80211_IS_CHAN_2GHZ(chan)) 2167 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2168 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2169 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2170 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH)) 2171 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2172 return capinfo; 2173 } 2174 2175 /* 2176 * Send a management frame. The node is for the destination (or ic_bss 2177 * when in station mode). Nodes other than ic_bss have their reference 2178 * count bumped to reflect our use for an indeterminant time. 2179 */ 2180 int 2181 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg) 2182 { 2183 #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT) 2184 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2185 struct ieee80211vap *vap = ni->ni_vap; 2186 struct ieee80211com *ic = ni->ni_ic; 2187 struct ieee80211_node *bss = vap->iv_bss; 2188 struct ieee80211_bpf_params params; 2189 struct mbuf *m; 2190 uint8_t *frm; 2191 uint16_t capinfo; 2192 int has_challenge, is_shared_key, ret, status; 2193 2194 KASSERT(ni != NULL, ("null node")); 2195 2196 /* 2197 * Hold a reference on the node so it doesn't go away until after 2198 * the xmit is complete all the way in the driver. On error we 2199 * will remove our reference. 2200 */ 2201 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2202 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2203 __func__, __LINE__, 2204 ni, ether_sprintf(ni->ni_macaddr), 2205 ieee80211_node_refcnt(ni)+1); 2206 ieee80211_ref_node(ni); 2207 2208 memset(¶ms, 0, sizeof(params)); 2209 switch (type) { 2210 2211 case IEEE80211_FC0_SUBTYPE_AUTH: 2212 status = arg >> 16; 2213 arg &= 0xffff; 2214 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || 2215 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 2216 ni->ni_challenge != NULL); 2217 2218 /* 2219 * Deduce whether we're doing open authentication or 2220 * shared key authentication. We do the latter if 2221 * we're in the middle of a shared key authentication 2222 * handshake or if we're initiating an authentication 2223 * request and configured to use shared key. 2224 */ 2225 is_shared_key = has_challenge || 2226 arg >= IEEE80211_AUTH_SHARED_RESPONSE || 2227 (arg == IEEE80211_AUTH_SHARED_REQUEST && 2228 bss->ni_authmode == IEEE80211_AUTH_SHARED); 2229 2230 m = ieee80211_getmgtframe(&frm, 2231 ic->ic_headroom + sizeof(struct ieee80211_frame), 2232 3 * sizeof(uint16_t) 2233 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? 2234 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0) 2235 ); 2236 if (m == NULL) 2237 senderr(ENOMEM, is_tx_nobuf); 2238 2239 ((uint16_t *)frm)[0] = 2240 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) 2241 : htole16(IEEE80211_AUTH_ALG_OPEN); 2242 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */ 2243 ((uint16_t *)frm)[2] = htole16(status);/* status */ 2244 2245 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { 2246 ((uint16_t *)frm)[3] = 2247 htole16((IEEE80211_CHALLENGE_LEN << 8) | 2248 IEEE80211_ELEMID_CHALLENGE); 2249 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge, 2250 IEEE80211_CHALLENGE_LEN); 2251 m->m_pkthdr.len = m->m_len = 2252 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN; 2253 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 2254 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2255 "request encrypt frame (%s)", __func__); 2256 /* mark frame for encryption */ 2257 params.ibp_flags |= IEEE80211_BPF_CRYPTO; 2258 } 2259 } else 2260 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t); 2261 2262 /* XXX not right for shared key */ 2263 if (status == IEEE80211_STATUS_SUCCESS) 2264 IEEE80211_NODE_STAT(ni, tx_auth); 2265 else 2266 IEEE80211_NODE_STAT(ni, tx_auth_fail); 2267 2268 if (vap->iv_opmode == IEEE80211_M_STA) 2269 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2270 (void *) vap->iv_state); 2271 break; 2272 2273 case IEEE80211_FC0_SUBTYPE_DEAUTH: 2274 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2275 "send station deauthenticate (reason %d)", arg); 2276 m = ieee80211_getmgtframe(&frm, 2277 ic->ic_headroom + sizeof(struct ieee80211_frame), 2278 sizeof(uint16_t)); 2279 if (m == NULL) 2280 senderr(ENOMEM, is_tx_nobuf); 2281 *(uint16_t *)frm = htole16(arg); /* reason */ 2282 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2283 2284 IEEE80211_NODE_STAT(ni, tx_deauth); 2285 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 2286 2287 ieee80211_node_unauthorize(ni); /* port closed */ 2288 break; 2289 2290 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 2291 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 2292 /* 2293 * asreq frame format 2294 * [2] capability information 2295 * [2] listen interval 2296 * [6*] current AP address (reassoc only) 2297 * [tlv] ssid 2298 * [tlv] supported rates 2299 * [tlv] extended supported rates 2300 * [4] power capability (optional) 2301 * [28] supported channels (optional) 2302 * [tlv] HT capabilities 2303 * [tlv] WME (optional) 2304 * [tlv] Vendor OUI HT capabilities (optional) 2305 * [tlv] Atheros capabilities (if negotiated) 2306 * [tlv] AppIE's (optional) 2307 */ 2308 m = ieee80211_getmgtframe(&frm, 2309 ic->ic_headroom + sizeof(struct ieee80211_frame), 2310 sizeof(uint16_t) 2311 + sizeof(uint16_t) 2312 + IEEE80211_ADDR_LEN 2313 + 2 + IEEE80211_NWID_LEN 2314 + 2 + IEEE80211_RATE_SIZE 2315 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2316 + 4 2317 + 2 + 26 2318 + sizeof(struct ieee80211_wme_info) 2319 + sizeof(struct ieee80211_ie_htcap) 2320 + 4 + sizeof(struct ieee80211_ie_htcap) 2321 #ifdef IEEE80211_SUPPORT_SUPERG 2322 + sizeof(struct ieee80211_ath_ie) 2323 #endif 2324 + (vap->iv_appie_wpa != NULL ? 2325 vap->iv_appie_wpa->ie_len : 0) 2326 + (vap->iv_appie_assocreq != NULL ? 2327 vap->iv_appie_assocreq->ie_len : 0) 2328 ); 2329 if (m == NULL) 2330 senderr(ENOMEM, is_tx_nobuf); 2331 2332 KASSERT(vap->iv_opmode == IEEE80211_M_STA, 2333 ("wrong mode %u", vap->iv_opmode)); 2334 capinfo = IEEE80211_CAPINFO_ESS; 2335 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2336 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2337 /* 2338 * NB: Some 11a AP's reject the request when 2339 * short premable is set. 2340 */ 2341 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2342 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2343 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2344 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 2345 (ic->ic_caps & IEEE80211_C_SHSLOT)) 2346 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2347 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) && 2348 (vap->iv_flags & IEEE80211_F_DOTH)) 2349 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2350 *(uint16_t *)frm = htole16(capinfo); 2351 frm += 2; 2352 2353 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!")); 2354 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval, 2355 bss->ni_intval)); 2356 frm += 2; 2357 2358 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 2359 IEEE80211_ADDR_COPY(frm, bss->ni_bssid); 2360 frm += IEEE80211_ADDR_LEN; 2361 } 2362 2363 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 2364 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2365 frm = ieee80211_add_rsn(frm, vap); 2366 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2367 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) { 2368 frm = ieee80211_add_powercapability(frm, 2369 ic->ic_curchan); 2370 frm = ieee80211_add_supportedchannels(frm, ic); 2371 } 2372 2373 /* 2374 * Check the channel - we may be using an 11n NIC with an 2375 * 11n capable station, but we're configured to be an 11b 2376 * channel. 2377 */ 2378 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2379 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2380 ni->ni_ies.htcap_ie != NULL && 2381 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) { 2382 frm = ieee80211_add_htcap(frm, ni); 2383 } 2384 frm = ieee80211_add_wpa(frm, vap); 2385 if ((ic->ic_flags & IEEE80211_F_WME) && 2386 ni->ni_ies.wme_ie != NULL) 2387 frm = ieee80211_add_wme_info(frm, &ic->ic_wme); 2388 2389 /* 2390 * Same deal - only send HT info if we're on an 11n 2391 * capable channel. 2392 */ 2393 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2394 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2395 ni->ni_ies.htcap_ie != NULL && 2396 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) { 2397 frm = ieee80211_add_htcap_vendor(frm, ni); 2398 } 2399 #ifdef IEEE80211_SUPPORT_SUPERG 2400 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) { 2401 frm = ieee80211_add_ath(frm, 2402 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2403 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2404 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2405 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2406 } 2407 #endif /* IEEE80211_SUPPORT_SUPERG */ 2408 if (vap->iv_appie_assocreq != NULL) 2409 frm = add_appie(frm, vap->iv_appie_assocreq); 2410 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2411 2412 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2413 (void *) vap->iv_state); 2414 break; 2415 2416 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 2417 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 2418 /* 2419 * asresp frame format 2420 * [2] capability information 2421 * [2] status 2422 * [2] association ID 2423 * [tlv] supported rates 2424 * [tlv] extended supported rates 2425 * [tlv] HT capabilities (standard, if STA enabled) 2426 * [tlv] HT information (standard, if STA enabled) 2427 * [tlv] WME (if configured and STA enabled) 2428 * [tlv] HT capabilities (vendor OUI, if STA enabled) 2429 * [tlv] HT information (vendor OUI, if STA enabled) 2430 * [tlv] Atheros capabilities (if STA enabled) 2431 * [tlv] AppIE's (optional) 2432 */ 2433 m = ieee80211_getmgtframe(&frm, 2434 ic->ic_headroom + sizeof(struct ieee80211_frame), 2435 sizeof(uint16_t) 2436 + sizeof(uint16_t) 2437 + sizeof(uint16_t) 2438 + 2 + IEEE80211_RATE_SIZE 2439 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2440 + sizeof(struct ieee80211_ie_htcap) + 4 2441 + sizeof(struct ieee80211_ie_htinfo) + 4 2442 + sizeof(struct ieee80211_wme_param) 2443 #ifdef IEEE80211_SUPPORT_SUPERG 2444 + sizeof(struct ieee80211_ath_ie) 2445 #endif 2446 + (vap->iv_appie_assocresp != NULL ? 2447 vap->iv_appie_assocresp->ie_len : 0) 2448 ); 2449 if (m == NULL) 2450 senderr(ENOMEM, is_tx_nobuf); 2451 2452 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2453 *(uint16_t *)frm = htole16(capinfo); 2454 frm += 2; 2455 2456 *(uint16_t *)frm = htole16(arg); /* status */ 2457 frm += 2; 2458 2459 if (arg == IEEE80211_STATUS_SUCCESS) { 2460 *(uint16_t *)frm = htole16(ni->ni_associd); 2461 IEEE80211_NODE_STAT(ni, tx_assoc); 2462 } else 2463 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 2464 frm += 2; 2465 2466 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2467 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2468 /* NB: respond according to what we received */ 2469 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) { 2470 frm = ieee80211_add_htcap(frm, ni); 2471 frm = ieee80211_add_htinfo(frm, ni); 2472 } 2473 if ((vap->iv_flags & IEEE80211_F_WME) && 2474 ni->ni_ies.wme_ie != NULL) 2475 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2476 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) { 2477 frm = ieee80211_add_htcap_vendor(frm, ni); 2478 frm = ieee80211_add_htinfo_vendor(frm, ni); 2479 } 2480 #ifdef IEEE80211_SUPPORT_SUPERG 2481 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) 2482 frm = ieee80211_add_ath(frm, 2483 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2484 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2485 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2486 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2487 #endif /* IEEE80211_SUPPORT_SUPERG */ 2488 if (vap->iv_appie_assocresp != NULL) 2489 frm = add_appie(frm, vap->iv_appie_assocresp); 2490 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2491 break; 2492 2493 case IEEE80211_FC0_SUBTYPE_DISASSOC: 2494 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, 2495 "send station disassociate (reason %d)", arg); 2496 m = ieee80211_getmgtframe(&frm, 2497 ic->ic_headroom + sizeof(struct ieee80211_frame), 2498 sizeof(uint16_t)); 2499 if (m == NULL) 2500 senderr(ENOMEM, is_tx_nobuf); 2501 *(uint16_t *)frm = htole16(arg); /* reason */ 2502 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2503 2504 IEEE80211_NODE_STAT(ni, tx_disassoc); 2505 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 2506 break; 2507 2508 default: 2509 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni, 2510 "invalid mgmt frame type %u", type); 2511 senderr(EINVAL, is_tx_unknownmgt); 2512 /* NOTREACHED */ 2513 } 2514 2515 /* NB: force non-ProbeResp frames to the highest queue */ 2516 params.ibp_pri = WME_AC_VO; 2517 params.ibp_rate0 = bss->ni_txparms->mgmtrate; 2518 /* NB: we know all frames are unicast */ 2519 params.ibp_try0 = bss->ni_txparms->maxretry; 2520 params.ibp_power = bss->ni_txpower; 2521 return ieee80211_mgmt_output(ni, m, type, ¶ms); 2522 bad: 2523 ieee80211_free_node(ni); 2524 return ret; 2525 #undef senderr 2526 #undef HTFLAGS 2527 } 2528 2529 /* 2530 * Return an mbuf with a probe response frame in it. 2531 * Space is left to prepend and 802.11 header at the 2532 * front but it's left to the caller to fill in. 2533 */ 2534 struct mbuf * 2535 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy) 2536 { 2537 struct ieee80211vap *vap = bss->ni_vap; 2538 struct ieee80211com *ic = bss->ni_ic; 2539 const struct ieee80211_rateset *rs; 2540 struct mbuf *m; 2541 uint16_t capinfo; 2542 uint8_t *frm; 2543 2544 /* 2545 * probe response frame format 2546 * [8] time stamp 2547 * [2] beacon interval 2548 * [2] cabability information 2549 * [tlv] ssid 2550 * [tlv] supported rates 2551 * [tlv] parameter set (FH/DS) 2552 * [tlv] parameter set (IBSS) 2553 * [tlv] country (optional) 2554 * [3] power control (optional) 2555 * [5] channel switch announcement (CSA) (optional) 2556 * [tlv] extended rate phy (ERP) 2557 * [tlv] extended supported rates 2558 * [tlv] RSN (optional) 2559 * [tlv] HT capabilities 2560 * [tlv] HT information 2561 * [tlv] WPA (optional) 2562 * [tlv] WME (optional) 2563 * [tlv] Vendor OUI HT capabilities (optional) 2564 * [tlv] Vendor OUI HT information (optional) 2565 * [tlv] Atheros capabilities 2566 * [tlv] AppIE's (optional) 2567 * [tlv] Mesh ID (MBSS) 2568 * [tlv] Mesh Conf (MBSS) 2569 */ 2570 m = ieee80211_getmgtframe(&frm, 2571 ic->ic_headroom + sizeof(struct ieee80211_frame), 2572 8 2573 + sizeof(uint16_t) 2574 + sizeof(uint16_t) 2575 + 2 + IEEE80211_NWID_LEN 2576 + 2 + IEEE80211_RATE_SIZE 2577 + 7 /* max(7,3) */ 2578 + IEEE80211_COUNTRY_MAX_SIZE 2579 + 3 2580 + sizeof(struct ieee80211_csa_ie) 2581 + sizeof(struct ieee80211_quiet_ie) 2582 + 3 2583 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2584 + sizeof(struct ieee80211_ie_wpa) 2585 + sizeof(struct ieee80211_ie_htcap) 2586 + sizeof(struct ieee80211_ie_htinfo) 2587 + sizeof(struct ieee80211_ie_wpa) 2588 + sizeof(struct ieee80211_wme_param) 2589 + 4 + sizeof(struct ieee80211_ie_htcap) 2590 + 4 + sizeof(struct ieee80211_ie_htinfo) 2591 #ifdef IEEE80211_SUPPORT_SUPERG 2592 + sizeof(struct ieee80211_ath_ie) 2593 #endif 2594 #ifdef IEEE80211_SUPPORT_MESH 2595 + 2 + IEEE80211_MESHID_LEN 2596 + sizeof(struct ieee80211_meshconf_ie) 2597 #endif 2598 + (vap->iv_appie_proberesp != NULL ? 2599 vap->iv_appie_proberesp->ie_len : 0) 2600 ); 2601 if (m == NULL) { 2602 vap->iv_stats.is_tx_nobuf++; 2603 return NULL; 2604 } 2605 2606 memset(frm, 0, 8); /* timestamp should be filled later */ 2607 frm += 8; 2608 *(uint16_t *)frm = htole16(bss->ni_intval); 2609 frm += 2; 2610 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2611 *(uint16_t *)frm = htole16(capinfo); 2612 frm += 2; 2613 2614 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen); 2615 rs = ieee80211_get_suprates(ic, bss->ni_chan); 2616 frm = ieee80211_add_rates(frm, rs); 2617 2618 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) { 2619 *frm++ = IEEE80211_ELEMID_FHPARMS; 2620 *frm++ = 5; 2621 *frm++ = bss->ni_fhdwell & 0x00ff; 2622 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff; 2623 *frm++ = IEEE80211_FH_CHANSET( 2624 ieee80211_chan2ieee(ic, bss->ni_chan)); 2625 *frm++ = IEEE80211_FH_CHANPAT( 2626 ieee80211_chan2ieee(ic, bss->ni_chan)); 2627 *frm++ = bss->ni_fhindex; 2628 } else { 2629 *frm++ = IEEE80211_ELEMID_DSPARMS; 2630 *frm++ = 1; 2631 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan); 2632 } 2633 2634 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2635 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2636 *frm++ = 2; 2637 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2638 } 2639 if ((vap->iv_flags & IEEE80211_F_DOTH) || 2640 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 2641 frm = ieee80211_add_countryie(frm, ic); 2642 if (vap->iv_flags & IEEE80211_F_DOTH) { 2643 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan)) 2644 frm = ieee80211_add_powerconstraint(frm, vap); 2645 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 2646 frm = ieee80211_add_csa(frm, vap); 2647 } 2648 if (vap->iv_flags & IEEE80211_F_DOTH) { 2649 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2650 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 2651 if (vap->iv_quiet) 2652 frm = ieee80211_add_quiet(frm, vap); 2653 } 2654 } 2655 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan)) 2656 frm = ieee80211_add_erp(frm, ic); 2657 frm = ieee80211_add_xrates(frm, rs); 2658 frm = ieee80211_add_rsn(frm, vap); 2659 /* 2660 * NB: legacy 11b clients do not get certain ie's. 2661 * The caller identifies such clients by passing 2662 * a token in legacy to us. Could expand this to be 2663 * any legacy client for stuff like HT ie's. 2664 */ 2665 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2666 legacy != IEEE80211_SEND_LEGACY_11B) { 2667 frm = ieee80211_add_htcap(frm, bss); 2668 frm = ieee80211_add_htinfo(frm, bss); 2669 } 2670 frm = ieee80211_add_wpa(frm, vap); 2671 if (vap->iv_flags & IEEE80211_F_WME) 2672 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2673 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2674 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) && 2675 legacy != IEEE80211_SEND_LEGACY_11B) { 2676 frm = ieee80211_add_htcap_vendor(frm, bss); 2677 frm = ieee80211_add_htinfo_vendor(frm, bss); 2678 } 2679 #ifdef IEEE80211_SUPPORT_SUPERG 2680 if ((vap->iv_flags & IEEE80211_F_ATHEROS) && 2681 legacy != IEEE80211_SEND_LEGACY_11B) 2682 frm = ieee80211_add_athcaps(frm, bss); 2683 #endif 2684 if (vap->iv_appie_proberesp != NULL) 2685 frm = add_appie(frm, vap->iv_appie_proberesp); 2686 #ifdef IEEE80211_SUPPORT_MESH 2687 if (vap->iv_opmode == IEEE80211_M_MBSS) { 2688 frm = ieee80211_add_meshid(frm, vap); 2689 frm = ieee80211_add_meshconf(frm, vap); 2690 } 2691 #endif 2692 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2693 2694 return m; 2695 } 2696 2697 /* 2698 * Send a probe response frame to the specified mac address. 2699 * This does not go through the normal mgt frame api so we 2700 * can specify the destination address and re-use the bss node 2701 * for the sta reference. 2702 */ 2703 int 2704 ieee80211_send_proberesp(struct ieee80211vap *vap, 2705 const uint8_t da[IEEE80211_ADDR_LEN], int legacy) 2706 { 2707 struct ieee80211_node *bss = vap->iv_bss; 2708 struct ieee80211com *ic = vap->iv_ic; 2709 struct ieee80211_frame *wh; 2710 struct mbuf *m; 2711 int ret; 2712 2713 if (vap->iv_state == IEEE80211_S_CAC) { 2714 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss, 2715 "block %s frame in CAC state", "probe response"); 2716 vap->iv_stats.is_tx_badstate++; 2717 return EIO; /* XXX */ 2718 } 2719 2720 /* 2721 * Hold a reference on the node so it doesn't go away until after 2722 * the xmit is complete all the way in the driver. On error we 2723 * will remove our reference. 2724 */ 2725 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2726 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2727 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr), 2728 ieee80211_node_refcnt(bss)+1); 2729 ieee80211_ref_node(bss); 2730 2731 m = ieee80211_alloc_proberesp(bss, legacy); 2732 if (m == NULL) { 2733 ieee80211_free_node(bss); 2734 return ENOMEM; 2735 } 2736 2737 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2738 KASSERT(m != NULL, ("no room for header")); 2739 2740 IEEE80211_TX_LOCK(ic); 2741 wh = mtod(m, struct ieee80211_frame *); 2742 ieee80211_send_setup(bss, m, 2743 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP, 2744 IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid); 2745 /* XXX power management? */ 2746 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2747 2748 M_WME_SETAC(m, WME_AC_BE); 2749 2750 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2751 "send probe resp on channel %u to %s%s\n", 2752 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da), 2753 legacy ? " <legacy>" : ""); 2754 IEEE80211_NODE_STAT(bss, tx_mgmt); 2755 2756 ret = ieee80211_raw_output(vap, bss, m, NULL); 2757 IEEE80211_TX_UNLOCK(ic); 2758 return (ret); 2759 } 2760 2761 /* 2762 * Allocate and build a RTS (Request To Send) control frame. 2763 */ 2764 struct mbuf * 2765 ieee80211_alloc_rts(struct ieee80211com *ic, 2766 const uint8_t ra[IEEE80211_ADDR_LEN], 2767 const uint8_t ta[IEEE80211_ADDR_LEN], 2768 uint16_t dur) 2769 { 2770 struct ieee80211_frame_rts *rts; 2771 struct mbuf *m; 2772 2773 /* XXX honor ic_headroom */ 2774 m = m_gethdr(M_NOWAIT, MT_DATA); 2775 if (m != NULL) { 2776 rts = mtod(m, struct ieee80211_frame_rts *); 2777 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2778 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS; 2779 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2780 *(u_int16_t *)rts->i_dur = htole16(dur); 2781 IEEE80211_ADDR_COPY(rts->i_ra, ra); 2782 IEEE80211_ADDR_COPY(rts->i_ta, ta); 2783 2784 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); 2785 } 2786 return m; 2787 } 2788 2789 /* 2790 * Allocate and build a CTS (Clear To Send) control frame. 2791 */ 2792 struct mbuf * 2793 ieee80211_alloc_cts(struct ieee80211com *ic, 2794 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur) 2795 { 2796 struct ieee80211_frame_cts *cts; 2797 struct mbuf *m; 2798 2799 /* XXX honor ic_headroom */ 2800 m = m_gethdr(M_NOWAIT, MT_DATA); 2801 if (m != NULL) { 2802 cts = mtod(m, struct ieee80211_frame_cts *); 2803 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2804 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS; 2805 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2806 *(u_int16_t *)cts->i_dur = htole16(dur); 2807 IEEE80211_ADDR_COPY(cts->i_ra, ra); 2808 2809 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts); 2810 } 2811 return m; 2812 } 2813 2814 static void 2815 ieee80211_tx_mgt_timeout(void *arg) 2816 { 2817 struct ieee80211vap *vap = arg; 2818 2819 IEEE80211_LOCK(vap->iv_ic); 2820 if (vap->iv_state != IEEE80211_S_INIT && 2821 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) { 2822 /* 2823 * NB: it's safe to specify a timeout as the reason here; 2824 * it'll only be used in the right state. 2825 */ 2826 ieee80211_new_state_locked(vap, IEEE80211_S_SCAN, 2827 IEEE80211_SCAN_FAIL_TIMEOUT); 2828 } 2829 IEEE80211_UNLOCK(vap->iv_ic); 2830 } 2831 2832 /* 2833 * This is the callback set on net80211-sourced transmitted 2834 * authentication request frames. 2835 * 2836 * This does a couple of things: 2837 * 2838 * + If the frame transmitted was a success, it schedules a future 2839 * event which will transition the interface to scan. 2840 * If a state transition _then_ occurs before that event occurs, 2841 * said state transition will cancel this callout. 2842 * 2843 * + If the frame transmit was a failure, it immediately schedules 2844 * the transition back to scan. 2845 */ 2846 static void 2847 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status) 2848 { 2849 struct ieee80211vap *vap = ni->ni_vap; 2850 enum ieee80211_state ostate = (enum ieee80211_state) arg; 2851 2852 /* 2853 * Frame transmit completed; arrange timer callback. If 2854 * transmit was successfuly we wait for response. Otherwise 2855 * we arrange an immediate callback instead of doing the 2856 * callback directly since we don't know what state the driver 2857 * is in (e.g. what locks it is holding). This work should 2858 * not be too time-critical and not happen too often so the 2859 * added overhead is acceptable. 2860 * 2861 * XXX what happens if !acked but response shows up before callback? 2862 */ 2863 if (vap->iv_state == ostate) { 2864 callout_reset(&vap->iv_mgtsend, 2865 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0, 2866 ieee80211_tx_mgt_timeout, vap); 2867 } 2868 } 2869 2870 static void 2871 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm, 2872 struct ieee80211_node *ni) 2873 { 2874 struct ieee80211vap *vap = ni->ni_vap; 2875 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 2876 struct ieee80211com *ic = ni->ni_ic; 2877 struct ieee80211_rateset *rs = &ni->ni_rates; 2878 uint16_t capinfo; 2879 2880 /* 2881 * beacon frame format 2882 * [8] time stamp 2883 * [2] beacon interval 2884 * [2] cabability information 2885 * [tlv] ssid 2886 * [tlv] supported rates 2887 * [3] parameter set (DS) 2888 * [8] CF parameter set (optional) 2889 * [tlv] parameter set (IBSS/TIM) 2890 * [tlv] country (optional) 2891 * [3] power control (optional) 2892 * [5] channel switch announcement (CSA) (optional) 2893 * [tlv] extended rate phy (ERP) 2894 * [tlv] extended supported rates 2895 * [tlv] RSN parameters 2896 * [tlv] HT capabilities 2897 * [tlv] HT information 2898 * XXX Vendor-specific OIDs (e.g. Atheros) 2899 * [tlv] WPA parameters 2900 * [tlv] WME parameters 2901 * [tlv] Vendor OUI HT capabilities (optional) 2902 * [tlv] Vendor OUI HT information (optional) 2903 * [tlv] Atheros capabilities (optional) 2904 * [tlv] TDMA parameters (optional) 2905 * [tlv] Mesh ID (MBSS) 2906 * [tlv] Mesh Conf (MBSS) 2907 * [tlv] application data (optional) 2908 */ 2909 2910 memset(bo, 0, sizeof(*bo)); 2911 2912 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 2913 frm += 8; 2914 *(uint16_t *)frm = htole16(ni->ni_intval); 2915 frm += 2; 2916 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 2917 bo->bo_caps = (uint16_t *)frm; 2918 *(uint16_t *)frm = htole16(capinfo); 2919 frm += 2; 2920 *frm++ = IEEE80211_ELEMID_SSID; 2921 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) { 2922 *frm++ = ni->ni_esslen; 2923 memcpy(frm, ni->ni_essid, ni->ni_esslen); 2924 frm += ni->ni_esslen; 2925 } else 2926 *frm++ = 0; 2927 frm = ieee80211_add_rates(frm, rs); 2928 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) { 2929 *frm++ = IEEE80211_ELEMID_DSPARMS; 2930 *frm++ = 1; 2931 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 2932 } 2933 if (ic->ic_flags & IEEE80211_F_PCF) { 2934 bo->bo_cfp = frm; 2935 frm = ieee80211_add_cfparms(frm, ic); 2936 } 2937 bo->bo_tim = frm; 2938 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2939 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2940 *frm++ = 2; 2941 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2942 bo->bo_tim_len = 0; 2943 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 2944 vap->iv_opmode == IEEE80211_M_MBSS) { 2945 /* TIM IE is the same for Mesh and Hostap */ 2946 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; 2947 2948 tie->tim_ie = IEEE80211_ELEMID_TIM; 2949 tie->tim_len = 4; /* length */ 2950 tie->tim_count = 0; /* DTIM count */ 2951 tie->tim_period = vap->iv_dtim_period; /* DTIM period */ 2952 tie->tim_bitctl = 0; /* bitmap control */ 2953 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 2954 frm += sizeof(struct ieee80211_tim_ie); 2955 bo->bo_tim_len = 1; 2956 } 2957 bo->bo_tim_trailer = frm; 2958 if ((vap->iv_flags & IEEE80211_F_DOTH) || 2959 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 2960 frm = ieee80211_add_countryie(frm, ic); 2961 if (vap->iv_flags & IEEE80211_F_DOTH) { 2962 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) 2963 frm = ieee80211_add_powerconstraint(frm, vap); 2964 bo->bo_csa = frm; 2965 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 2966 frm = ieee80211_add_csa(frm, vap); 2967 } else 2968 bo->bo_csa = frm; 2969 2970 if (vap->iv_flags & IEEE80211_F_DOTH) { 2971 bo->bo_quiet = frm; 2972 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2973 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 2974 if (vap->iv_quiet) 2975 frm = ieee80211_add_quiet(frm,vap); 2976 } 2977 } else 2978 bo->bo_quiet = frm; 2979 2980 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) { 2981 bo->bo_erp = frm; 2982 frm = ieee80211_add_erp(frm, ic); 2983 } 2984 frm = ieee80211_add_xrates(frm, rs); 2985 frm = ieee80211_add_rsn(frm, vap); 2986 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 2987 frm = ieee80211_add_htcap(frm, ni); 2988 bo->bo_htinfo = frm; 2989 frm = ieee80211_add_htinfo(frm, ni); 2990 } 2991 frm = ieee80211_add_wpa(frm, vap); 2992 if (vap->iv_flags & IEEE80211_F_WME) { 2993 bo->bo_wme = frm; 2994 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2995 } 2996 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2997 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) { 2998 frm = ieee80211_add_htcap_vendor(frm, ni); 2999 frm = ieee80211_add_htinfo_vendor(frm, ni); 3000 } 3001 #ifdef IEEE80211_SUPPORT_SUPERG 3002 if (vap->iv_flags & IEEE80211_F_ATHEROS) { 3003 bo->bo_ath = frm; 3004 frm = ieee80211_add_athcaps(frm, ni); 3005 } 3006 #endif 3007 #ifdef IEEE80211_SUPPORT_TDMA 3008 if (vap->iv_caps & IEEE80211_C_TDMA) { 3009 bo->bo_tdma = frm; 3010 frm = ieee80211_add_tdma(frm, vap); 3011 } 3012 #endif 3013 if (vap->iv_appie_beacon != NULL) { 3014 bo->bo_appie = frm; 3015 bo->bo_appie_len = vap->iv_appie_beacon->ie_len; 3016 frm = add_appie(frm, vap->iv_appie_beacon); 3017 } 3018 #ifdef IEEE80211_SUPPORT_MESH 3019 if (vap->iv_opmode == IEEE80211_M_MBSS) { 3020 frm = ieee80211_add_meshid(frm, vap); 3021 bo->bo_meshconf = frm; 3022 frm = ieee80211_add_meshconf(frm, vap); 3023 } 3024 #endif 3025 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer; 3026 bo->bo_csa_trailer_len = frm - bo->bo_csa; 3027 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3028 } 3029 3030 /* 3031 * Allocate a beacon frame and fillin the appropriate bits. 3032 */ 3033 struct mbuf * 3034 ieee80211_beacon_alloc(struct ieee80211_node *ni) 3035 { 3036 struct ieee80211vap *vap = ni->ni_vap; 3037 struct ieee80211com *ic = ni->ni_ic; 3038 struct ifnet *ifp = vap->iv_ifp; 3039 struct ieee80211_frame *wh; 3040 struct mbuf *m; 3041 int pktlen; 3042 uint8_t *frm; 3043 3044 /* 3045 * beacon frame format 3046 * [8] time stamp 3047 * [2] beacon interval 3048 * [2] cabability information 3049 * [tlv] ssid 3050 * [tlv] supported rates 3051 * [3] parameter set (DS) 3052 * [8] CF parameter set (optional) 3053 * [tlv] parameter set (IBSS/TIM) 3054 * [tlv] country (optional) 3055 * [3] power control (optional) 3056 * [5] channel switch announcement (CSA) (optional) 3057 * [tlv] extended rate phy (ERP) 3058 * [tlv] extended supported rates 3059 * [tlv] RSN parameters 3060 * [tlv] HT capabilities 3061 * [tlv] HT information 3062 * [tlv] Vendor OUI HT capabilities (optional) 3063 * [tlv] Vendor OUI HT information (optional) 3064 * XXX Vendor-specific OIDs (e.g. Atheros) 3065 * [tlv] WPA parameters 3066 * [tlv] WME parameters 3067 * [tlv] TDMA parameters (optional) 3068 * [tlv] Mesh ID (MBSS) 3069 * [tlv] Mesh Conf (MBSS) 3070 * [tlv] application data (optional) 3071 * NB: we allocate the max space required for the TIM bitmap. 3072 * XXX how big is this? 3073 */ 3074 pktlen = 8 /* time stamp */ 3075 + sizeof(uint16_t) /* beacon interval */ 3076 + sizeof(uint16_t) /* capabilities */ 3077 + 2 + ni->ni_esslen /* ssid */ 3078 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 3079 + 2 + 1 /* DS parameters */ 3080 + 2 + 6 /* CF parameters */ 3081 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */ 3082 + IEEE80211_COUNTRY_MAX_SIZE /* country */ 3083 + 2 + 1 /* power control */ 3084 + sizeof(struct ieee80211_csa_ie) /* CSA */ 3085 + sizeof(struct ieee80211_quiet_ie) /* Quiet */ 3086 + 2 + 1 /* ERP */ 3087 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 3088 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 3089 2*sizeof(struct ieee80211_ie_wpa) : 0) 3090 /* XXX conditional? */ 3091 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */ 3092 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */ 3093 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */ 3094 sizeof(struct ieee80211_wme_param) : 0) 3095 #ifdef IEEE80211_SUPPORT_SUPERG 3096 + sizeof(struct ieee80211_ath_ie) /* ATH */ 3097 #endif 3098 #ifdef IEEE80211_SUPPORT_TDMA 3099 + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */ 3100 sizeof(struct ieee80211_tdma_param) : 0) 3101 #endif 3102 #ifdef IEEE80211_SUPPORT_MESH 3103 + 2 + ni->ni_meshidlen 3104 + sizeof(struct ieee80211_meshconf_ie) 3105 #endif 3106 + IEEE80211_MAX_APPIE 3107 ; 3108 m = ieee80211_getmgtframe(&frm, 3109 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen); 3110 if (m == NULL) { 3111 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, 3112 "%s: cannot get buf; size %u\n", __func__, pktlen); 3113 vap->iv_stats.is_tx_nobuf++; 3114 return NULL; 3115 } 3116 ieee80211_beacon_construct(m, frm, ni); 3117 3118 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 3119 KASSERT(m != NULL, ("no space for 802.11 header?")); 3120 wh = mtod(m, struct ieee80211_frame *); 3121 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 3122 IEEE80211_FC0_SUBTYPE_BEACON; 3123 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3124 *(uint16_t *)wh->i_dur = 0; 3125 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 3126 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 3127 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 3128 *(uint16_t *)wh->i_seq = 0; 3129 3130 return m; 3131 } 3132 3133 /* 3134 * Update the dynamic parts of a beacon frame based on the current state. 3135 */ 3136 int 3137 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast) 3138 { 3139 struct ieee80211vap *vap = ni->ni_vap; 3140 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 3141 struct ieee80211com *ic = ni->ni_ic; 3142 int len_changed = 0; 3143 uint16_t capinfo; 3144 struct ieee80211_frame *wh; 3145 ieee80211_seq seqno; 3146 3147 IEEE80211_LOCK(ic); 3148 /* 3149 * Handle 11h channel change when we've reached the count. 3150 * We must recalculate the beacon frame contents to account 3151 * for the new channel. Note we do this only for the first 3152 * vap that reaches this point; subsequent vaps just update 3153 * their beacon state to reflect the recalculated channel. 3154 */ 3155 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) && 3156 vap->iv_csa_count == ic->ic_csa_count) { 3157 vap->iv_csa_count = 0; 3158 /* 3159 * Effect channel change before reconstructing the beacon 3160 * frame contents as many places reference ni_chan. 3161 */ 3162 if (ic->ic_csa_newchan != NULL) 3163 ieee80211_csa_completeswitch(ic); 3164 /* 3165 * NB: ieee80211_beacon_construct clears all pending 3166 * updates in bo_flags so we don't need to explicitly 3167 * clear IEEE80211_BEACON_CSA. 3168 */ 3169 ieee80211_beacon_construct(m, 3170 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3171 3172 /* XXX do WME aggressive mode processing? */ 3173 IEEE80211_UNLOCK(ic); 3174 return 1; /* just assume length changed */ 3175 } 3176 3177 wh = mtod(m, struct ieee80211_frame *); 3178 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 3179 *(uint16_t *)&wh->i_seq[0] = 3180 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 3181 M_SEQNO_SET(m, seqno); 3182 3183 /* XXX faster to recalculate entirely or just changes? */ 3184 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3185 *bo->bo_caps = htole16(capinfo); 3186 3187 if (vap->iv_flags & IEEE80211_F_WME) { 3188 struct ieee80211_wme_state *wme = &ic->ic_wme; 3189 3190 /* 3191 * Check for agressive mode change. When there is 3192 * significant high priority traffic in the BSS 3193 * throttle back BE traffic by using conservative 3194 * parameters. Otherwise BE uses agressive params 3195 * to optimize performance of legacy/non-QoS traffic. 3196 */ 3197 if (wme->wme_flags & WME_F_AGGRMODE) { 3198 if (wme->wme_hipri_traffic > 3199 wme->wme_hipri_switch_thresh) { 3200 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3201 "%s: traffic %u, disable aggressive mode\n", 3202 __func__, wme->wme_hipri_traffic); 3203 wme->wme_flags &= ~WME_F_AGGRMODE; 3204 ieee80211_wme_updateparams_locked(vap); 3205 wme->wme_hipri_traffic = 3206 wme->wme_hipri_switch_hysteresis; 3207 } else 3208 wme->wme_hipri_traffic = 0; 3209 } else { 3210 if (wme->wme_hipri_traffic <= 3211 wme->wme_hipri_switch_thresh) { 3212 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3213 "%s: traffic %u, enable aggressive mode\n", 3214 __func__, wme->wme_hipri_traffic); 3215 wme->wme_flags |= WME_F_AGGRMODE; 3216 ieee80211_wme_updateparams_locked(vap); 3217 wme->wme_hipri_traffic = 0; 3218 } else 3219 wme->wme_hipri_traffic = 3220 wme->wme_hipri_switch_hysteresis; 3221 } 3222 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) { 3223 (void) ieee80211_add_wme_param(bo->bo_wme, wme); 3224 clrbit(bo->bo_flags, IEEE80211_BEACON_WME); 3225 } 3226 } 3227 3228 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) { 3229 ieee80211_ht_update_beacon(vap, bo); 3230 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO); 3231 } 3232 #ifdef IEEE80211_SUPPORT_TDMA 3233 if (vap->iv_caps & IEEE80211_C_TDMA) { 3234 /* 3235 * NB: the beacon is potentially updated every TBTT. 3236 */ 3237 ieee80211_tdma_update_beacon(vap, bo); 3238 } 3239 #endif 3240 #ifdef IEEE80211_SUPPORT_MESH 3241 if (vap->iv_opmode == IEEE80211_M_MBSS) 3242 ieee80211_mesh_update_beacon(vap, bo); 3243 #endif 3244 3245 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3246 vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/ 3247 struct ieee80211_tim_ie *tie = 3248 (struct ieee80211_tim_ie *) bo->bo_tim; 3249 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) { 3250 u_int timlen, timoff, i; 3251 /* 3252 * ATIM/DTIM needs updating. If it fits in the 3253 * current space allocated then just copy in the 3254 * new bits. Otherwise we need to move any trailing 3255 * data to make room. Note that we know there is 3256 * contiguous space because ieee80211_beacon_allocate 3257 * insures there is space in the mbuf to write a 3258 * maximal-size virtual bitmap (based on iv_max_aid). 3259 */ 3260 /* 3261 * Calculate the bitmap size and offset, copy any 3262 * trailer out of the way, and then copy in the 3263 * new bitmap and update the information element. 3264 * Note that the tim bitmap must contain at least 3265 * one byte and any offset must be even. 3266 */ 3267 if (vap->iv_ps_pending != 0) { 3268 timoff = 128; /* impossibly large */ 3269 for (i = 0; i < vap->iv_tim_len; i++) 3270 if (vap->iv_tim_bitmap[i]) { 3271 timoff = i &~ 1; 3272 break; 3273 } 3274 KASSERT(timoff != 128, ("tim bitmap empty!")); 3275 for (i = vap->iv_tim_len-1; i >= timoff; i--) 3276 if (vap->iv_tim_bitmap[i]) 3277 break; 3278 timlen = 1 + (i - timoff); 3279 } else { 3280 timoff = 0; 3281 timlen = 1; 3282 } 3283 if (timlen != bo->bo_tim_len) { 3284 /* copy up/down trailer */ 3285 int adjust = tie->tim_bitmap+timlen 3286 - bo->bo_tim_trailer; 3287 ovbcopy(bo->bo_tim_trailer, 3288 bo->bo_tim_trailer+adjust, 3289 bo->bo_tim_trailer_len); 3290 bo->bo_tim_trailer += adjust; 3291 bo->bo_erp += adjust; 3292 bo->bo_htinfo += adjust; 3293 #ifdef IEEE80211_SUPPORT_SUPERG 3294 bo->bo_ath += adjust; 3295 #endif 3296 #ifdef IEEE80211_SUPPORT_TDMA 3297 bo->bo_tdma += adjust; 3298 #endif 3299 #ifdef IEEE80211_SUPPORT_MESH 3300 bo->bo_meshconf += adjust; 3301 #endif 3302 bo->bo_appie += adjust; 3303 bo->bo_wme += adjust; 3304 bo->bo_csa += adjust; 3305 bo->bo_quiet += adjust; 3306 bo->bo_tim_len = timlen; 3307 3308 /* update information element */ 3309 tie->tim_len = 3 + timlen; 3310 tie->tim_bitctl = timoff; 3311 len_changed = 1; 3312 } 3313 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff, 3314 bo->bo_tim_len); 3315 3316 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM); 3317 3318 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER, 3319 "%s: TIM updated, pending %u, off %u, len %u\n", 3320 __func__, vap->iv_ps_pending, timoff, timlen); 3321 } 3322 /* count down DTIM period */ 3323 if (tie->tim_count == 0) 3324 tie->tim_count = tie->tim_period - 1; 3325 else 3326 tie->tim_count--; 3327 /* update state for buffered multicast frames on DTIM */ 3328 if (mcast && tie->tim_count == 0) 3329 tie->tim_bitctl |= 1; 3330 else 3331 tie->tim_bitctl &= ~1; 3332 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) { 3333 struct ieee80211_csa_ie *csa = 3334 (struct ieee80211_csa_ie *) bo->bo_csa; 3335 3336 /* 3337 * Insert or update CSA ie. If we're just starting 3338 * to count down to the channel switch then we need 3339 * to insert the CSA ie. Otherwise we just need to 3340 * drop the count. The actual change happens above 3341 * when the vap's count reaches the target count. 3342 */ 3343 if (vap->iv_csa_count == 0) { 3344 memmove(&csa[1], csa, bo->bo_csa_trailer_len); 3345 bo->bo_erp += sizeof(*csa); 3346 bo->bo_htinfo += sizeof(*csa); 3347 bo->bo_wme += sizeof(*csa); 3348 #ifdef IEEE80211_SUPPORT_SUPERG 3349 bo->bo_ath += sizeof(*csa); 3350 #endif 3351 #ifdef IEEE80211_SUPPORT_TDMA 3352 bo->bo_tdma += sizeof(*csa); 3353 #endif 3354 #ifdef IEEE80211_SUPPORT_MESH 3355 bo->bo_meshconf += sizeof(*csa); 3356 #endif 3357 bo->bo_appie += sizeof(*csa); 3358 bo->bo_csa_trailer_len += sizeof(*csa); 3359 bo->bo_quiet += sizeof(*csa); 3360 bo->bo_tim_trailer_len += sizeof(*csa); 3361 m->m_len += sizeof(*csa); 3362 m->m_pkthdr.len += sizeof(*csa); 3363 3364 ieee80211_add_csa(bo->bo_csa, vap); 3365 } else 3366 csa->csa_count--; 3367 vap->iv_csa_count++; 3368 /* NB: don't clear IEEE80211_BEACON_CSA */ 3369 } 3370 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3371 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){ 3372 if (vap->iv_quiet) 3373 ieee80211_add_quiet(bo->bo_quiet, vap); 3374 } 3375 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) { 3376 /* 3377 * ERP element needs updating. 3378 */ 3379 (void) ieee80211_add_erp(bo->bo_erp, ic); 3380 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP); 3381 } 3382 #ifdef IEEE80211_SUPPORT_SUPERG 3383 if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) { 3384 ieee80211_add_athcaps(bo->bo_ath, ni); 3385 clrbit(bo->bo_flags, IEEE80211_BEACON_ATH); 3386 } 3387 #endif 3388 } 3389 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) { 3390 const struct ieee80211_appie *aie = vap->iv_appie_beacon; 3391 int aielen; 3392 uint8_t *frm; 3393 3394 aielen = 0; 3395 if (aie != NULL) 3396 aielen += aie->ie_len; 3397 if (aielen != bo->bo_appie_len) { 3398 /* copy up/down trailer */ 3399 int adjust = aielen - bo->bo_appie_len; 3400 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust, 3401 bo->bo_tim_trailer_len); 3402 bo->bo_tim_trailer += adjust; 3403 bo->bo_appie += adjust; 3404 bo->bo_appie_len = aielen; 3405 3406 len_changed = 1; 3407 } 3408 frm = bo->bo_appie; 3409 if (aie != NULL) 3410 frm = add_appie(frm, aie); 3411 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE); 3412 } 3413 IEEE80211_UNLOCK(ic); 3414 3415 return len_changed; 3416 } 3417 3418 /* 3419 * Do Ethernet-LLC encapsulation for each payload in a fast frame 3420 * tunnel encapsulation. The frame is assumed to have an Ethernet 3421 * header at the front that must be stripped before prepending the 3422 * LLC followed by the Ethernet header passed in (with an Ethernet 3423 * type that specifies the payload size). 3424 */ 3425 struct mbuf * 3426 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m, 3427 const struct ether_header *eh) 3428 { 3429 struct llc *llc; 3430 uint16_t payload; 3431 3432 /* XXX optimize by combining m_adj+M_PREPEND */ 3433 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 3434 llc = mtod(m, struct llc *); 3435 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 3436 llc->llc_control = LLC_UI; 3437 llc->llc_snap.org_code[0] = 0; 3438 llc->llc_snap.org_code[1] = 0; 3439 llc->llc_snap.org_code[2] = 0; 3440 llc->llc_snap.ether_type = eh->ether_type; 3441 payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */ 3442 3443 M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT); 3444 if (m == NULL) { /* XXX cannot happen */ 3445 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 3446 "%s: no space for ether_header\n", __func__); 3447 vap->iv_stats.is_tx_nobuf++; 3448 return NULL; 3449 } 3450 ETHER_HEADER_COPY(mtod(m, void *), eh); 3451 mtod(m, struct ether_header *)->ether_type = htons(payload); 3452 return m; 3453 } 3454 3455 /* 3456 * Complete an mbuf transmission. 3457 * 3458 * For now, this simply processes a completed frame after the 3459 * driver has completed it's transmission and/or retransmission. 3460 * It assumes the frame is an 802.11 encapsulated frame. 3461 * 3462 * Later on it will grow to become the exit path for a given frame 3463 * from the driver and, depending upon how it's been encapsulated 3464 * and already transmitted, it may end up doing A-MPDU retransmission, 3465 * power save requeuing, etc. 3466 * 3467 * In order for the above to work, the driver entry point to this 3468 * must not hold any driver locks. Thus, the driver needs to delay 3469 * any actual mbuf completion until it can release said locks. 3470 * 3471 * This frees the mbuf and if the mbuf has a node reference, 3472 * the node reference will be freed. 3473 */ 3474 void 3475 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status) 3476 { 3477 3478 if (ni != NULL) { 3479 struct ifnet *ifp = ni->ni_vap->iv_ifp; 3480 3481 if (status == 0) { 3482 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len); 3483 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 3484 if (m->m_flags & M_MCAST) 3485 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 3486 } else 3487 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 3488 if (m->m_flags & M_TXCB) 3489 ieee80211_process_callback(ni, m, status); 3490 ieee80211_free_node(ni); 3491 } 3492 m_freem(m); 3493 } 3494