xref: /freebsd/sys/net80211/ieee80211_output.c (revision 18849b5da0c5eaa88500b457be05b038813b51b1)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_wlan.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/malloc.h>
38 #include <sys/mbuf.h>
39 #include <sys/endian.h>
40 
41 #include <sys/socket.h>
42 
43 #include <net/bpf.h>
44 #include <net/ethernet.h>
45 #include <net/if.h>
46 #include <net/if_var.h>
47 #include <net/if_llc.h>
48 #include <net/if_media.h>
49 #include <net/if_vlan_var.h>
50 
51 #include <net80211/ieee80211_var.h>
52 #include <net80211/ieee80211_regdomain.h>
53 #ifdef IEEE80211_SUPPORT_SUPERG
54 #include <net80211/ieee80211_superg.h>
55 #endif
56 #ifdef IEEE80211_SUPPORT_TDMA
57 #include <net80211/ieee80211_tdma.h>
58 #endif
59 #include <net80211/ieee80211_wds.h>
60 #include <net80211/ieee80211_mesh.h>
61 
62 #if defined(INET) || defined(INET6)
63 #include <netinet/in.h>
64 #endif
65 
66 #ifdef INET
67 #include <netinet/if_ether.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/ip.h>
70 #endif
71 #ifdef INET6
72 #include <netinet/ip6.h>
73 #endif
74 
75 #include <security/mac/mac_framework.h>
76 
77 #define	ETHER_HEADER_COPY(dst, src) \
78 	memcpy(dst, src, sizeof(struct ether_header))
79 
80 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
81 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
82 static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
83 
84 #ifdef IEEE80211_DEBUG
85 /*
86  * Decide if an outbound management frame should be
87  * printed when debugging is enabled.  This filters some
88  * of the less interesting frames that come frequently
89  * (e.g. beacons).
90  */
91 static __inline int
92 doprint(struct ieee80211vap *vap, int subtype)
93 {
94 	switch (subtype) {
95 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
96 		return (vap->iv_opmode == IEEE80211_M_IBSS);
97 	}
98 	return 1;
99 }
100 #endif
101 
102 /*
103  * Transmit a frame to the given destination on the given VAP.
104  *
105  * It's up to the caller to figure out the details of who this
106  * is going to and resolving the node.
107  *
108  * This routine takes care of queuing it for power save,
109  * A-MPDU state stuff, fast-frames state stuff, encapsulation
110  * if required, then passing it up to the driver layer.
111  *
112  * This routine (for now) consumes the mbuf and frees the node
113  * reference; it ideally will return a TX status which reflects
114  * whether the mbuf was consumed or not, so the caller can
115  * free the mbuf (if appropriate) and the node reference (again,
116  * if appropriate.)
117  */
118 int
119 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
120     struct ieee80211_node *ni)
121 {
122 	struct ieee80211com *ic = vap->iv_ic;
123 	struct ifnet *ifp = vap->iv_ifp;
124 #ifdef IEEE80211_SUPPORT_SUPERG
125 	int mcast;
126 #endif
127 
128 	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
129 	    (m->m_flags & M_PWR_SAV) == 0) {
130 		/*
131 		 * Station in power save mode; pass the frame
132 		 * to the 802.11 layer and continue.  We'll get
133 		 * the frame back when the time is right.
134 		 * XXX lose WDS vap linkage?
135 		 */
136 		if (ieee80211_pwrsave(ni, m) != 0)
137 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
138 		ieee80211_free_node(ni);
139 
140 		/*
141 		 * We queued it fine, so tell the upper layer
142 		 * that we consumed it.
143 		 */
144 		return (0);
145 	}
146 	/* calculate priority so drivers can find the tx queue */
147 	if (ieee80211_classify(ni, m)) {
148 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
149 		    ni->ni_macaddr, NULL,
150 		    "%s", "classification failure");
151 		vap->iv_stats.is_tx_classify++;
152 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
153 		m_freem(m);
154 		ieee80211_free_node(ni);
155 
156 		/* XXX better status? */
157 		return (0);
158 	}
159 	/*
160 	 * Stash the node pointer.  Note that we do this after
161 	 * any call to ieee80211_dwds_mcast because that code
162 	 * uses any existing value for rcvif to identify the
163 	 * interface it (might have been) received on.
164 	 */
165 	m->m_pkthdr.rcvif = (void *)ni;
166 #ifdef IEEE80211_SUPPORT_SUPERG
167 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
168 #endif
169 
170 	BPF_MTAP(ifp, m);		/* 802.3 tx */
171 
172 	/*
173 	 * Check if A-MPDU tx aggregation is setup or if we
174 	 * should try to enable it.  The sta must be associated
175 	 * with HT and A-MPDU enabled for use.  When the policy
176 	 * routine decides we should enable A-MPDU we issue an
177 	 * ADDBA request and wait for a reply.  The frame being
178 	 * encapsulated will go out w/o using A-MPDU, or possibly
179 	 * it might be collected by the driver and held/retransmit.
180 	 * The default ic_ampdu_enable routine handles staggering
181 	 * ADDBA requests in case the receiver NAK's us or we are
182 	 * otherwise unable to establish a BA stream.
183 	 */
184 	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
185 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)) {
186 		if ((m->m_flags & M_EAPOL) == 0) {
187 			int tid = WME_AC_TO_TID(M_WME_GETAC(m));
188 			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
189 
190 			ieee80211_txampdu_count_packet(tap);
191 			if (IEEE80211_AMPDU_RUNNING(tap)) {
192 				/*
193 				 * Operational, mark frame for aggregation.
194 				 *
195 				 * XXX do tx aggregation here
196 				 */
197 				m->m_flags |= M_AMPDU_MPDU;
198 			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
199 			    ic->ic_ampdu_enable(ni, tap)) {
200 				/*
201 				 * Not negotiated yet, request service.
202 				 */
203 				ieee80211_ampdu_request(ni, tap);
204 				/* XXX hold frame for reply? */
205 			}
206 		}
207 	}
208 
209 #ifdef IEEE80211_SUPPORT_SUPERG
210 	/*
211 	 * Check for AMSDU/FF; queue for aggregation
212 	 *
213 	 * Note: we don't bother trying to do fast frames or
214 	 * A-MSDU encapsulation for 802.3 drivers.  Now, we
215 	 * likely could do it for FF (because it's a magic
216 	 * atheros tunnel LLC type) but I don't think we're going
217 	 * to really need to.  For A-MSDU we'd have to set the
218 	 * A-MSDU QoS bit in the wifi header, so we just plain
219 	 * can't do it.
220 	 *
221 	 * Strictly speaking, we could actually /do/ A-MSDU / FF
222 	 * with A-MPDU together which for certain circumstances
223 	 * is beneficial (eg A-MSDU of TCK ACKs.)  However,
224 	 * I'll ignore that for now so existing behaviour is maintained.
225 	 * Later on it would be good to make "amsdu + ampdu" configurable.
226 	 */
227 	else if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
228 		if ((! mcast) && ieee80211_amsdu_tx_ok(ni)) {
229 			m = ieee80211_amsdu_check(ni, m);
230 			if (m == NULL) {
231 				/* NB: any ni ref held on stageq */
232 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
233 				    "%s: amsdu_check queued frame\n",
234 				    __func__);
235 				return (0);
236 			}
237 		} else if ((! mcast) && IEEE80211_ATH_CAP(vap, ni,
238 		    IEEE80211_NODE_FF)) {
239 			m = ieee80211_ff_check(ni, m);
240 			if (m == NULL) {
241 				/* NB: any ni ref held on stageq */
242 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
243 				    "%s: ff_check queued frame\n",
244 				    __func__);
245 				return (0);
246 			}
247 		}
248 	}
249 #endif /* IEEE80211_SUPPORT_SUPERG */
250 
251 	/*
252 	 * Grab the TX lock - serialise the TX process from this
253 	 * point (where TX state is being checked/modified)
254 	 * through to driver queue.
255 	 */
256 	IEEE80211_TX_LOCK(ic);
257 
258 	/*
259 	 * XXX make the encap and transmit code a separate function
260 	 * so things like the FF (and later A-MSDU) path can just call
261 	 * it for flushed frames.
262 	 */
263 	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
264 		/*
265 		 * Encapsulate the packet in prep for transmission.
266 		 */
267 		m = ieee80211_encap(vap, ni, m);
268 		if (m == NULL) {
269 			/* NB: stat+msg handled in ieee80211_encap */
270 			IEEE80211_TX_UNLOCK(ic);
271 			ieee80211_free_node(ni);
272 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
273 			return (ENOBUFS);
274 		}
275 	}
276 	(void) ieee80211_parent_xmitpkt(ic, m);
277 
278 	/*
279 	 * Unlock at this point - no need to hold it across
280 	 * ieee80211_free_node() (ie, the comlock)
281 	 */
282 	IEEE80211_TX_UNLOCK(ic);
283 	ic->ic_lastdata = ticks;
284 
285 	return (0);
286 }
287 
288 
289 
290 /*
291  * Send the given mbuf through the given vap.
292  *
293  * This consumes the mbuf regardless of whether the transmit
294  * was successful or not.
295  *
296  * This does none of the initial checks that ieee80211_start()
297  * does (eg CAC timeout, interface wakeup) - the caller must
298  * do this first.
299  */
300 static int
301 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
302 {
303 #define	IS_DWDS(vap) \
304 	(vap->iv_opmode == IEEE80211_M_WDS && \
305 	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
306 	struct ieee80211com *ic = vap->iv_ic;
307 	struct ifnet *ifp = vap->iv_ifp;
308 	struct ieee80211_node *ni;
309 	struct ether_header *eh;
310 
311 	/*
312 	 * Cancel any background scan.
313 	 */
314 	if (ic->ic_flags & IEEE80211_F_SCAN)
315 		ieee80211_cancel_anyscan(vap);
316 	/*
317 	 * Find the node for the destination so we can do
318 	 * things like power save and fast frames aggregation.
319 	 *
320 	 * NB: past this point various code assumes the first
321 	 *     mbuf has the 802.3 header present (and contiguous).
322 	 */
323 	ni = NULL;
324 	if (m->m_len < sizeof(struct ether_header) &&
325 	   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
326 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
327 		    "discard frame, %s\n", "m_pullup failed");
328 		vap->iv_stats.is_tx_nobuf++;	/* XXX */
329 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
330 		return (ENOBUFS);
331 	}
332 	eh = mtod(m, struct ether_header *);
333 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
334 		if (IS_DWDS(vap)) {
335 			/*
336 			 * Only unicast frames from the above go out
337 			 * DWDS vaps; multicast frames are handled by
338 			 * dispatching the frame as it comes through
339 			 * the AP vap (see below).
340 			 */
341 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
342 			    eh->ether_dhost, "mcast", "%s", "on DWDS");
343 			vap->iv_stats.is_dwds_mcast++;
344 			m_freem(m);
345 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
346 			/* XXX better status? */
347 			return (ENOBUFS);
348 		}
349 		if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
350 			/*
351 			 * Spam DWDS vap's w/ multicast traffic.
352 			 */
353 			/* XXX only if dwds in use? */
354 			ieee80211_dwds_mcast(vap, m);
355 		}
356 	}
357 #ifdef IEEE80211_SUPPORT_MESH
358 	if (vap->iv_opmode != IEEE80211_M_MBSS) {
359 #endif
360 		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
361 		if (ni == NULL) {
362 			/* NB: ieee80211_find_txnode does stat+msg */
363 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
364 			m_freem(m);
365 			/* XXX better status? */
366 			return (ENOBUFS);
367 		}
368 		if (ni->ni_associd == 0 &&
369 		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
370 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
371 			    eh->ether_dhost, NULL,
372 			    "sta not associated (type 0x%04x)",
373 			    htons(eh->ether_type));
374 			vap->iv_stats.is_tx_notassoc++;
375 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
376 			m_freem(m);
377 			ieee80211_free_node(ni);
378 			/* XXX better status? */
379 			return (ENOBUFS);
380 		}
381 #ifdef IEEE80211_SUPPORT_MESH
382 	} else {
383 		if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
384 			/*
385 			 * Proxy station only if configured.
386 			 */
387 			if (!ieee80211_mesh_isproxyena(vap)) {
388 				IEEE80211_DISCARD_MAC(vap,
389 				    IEEE80211_MSG_OUTPUT |
390 				    IEEE80211_MSG_MESH,
391 				    eh->ether_dhost, NULL,
392 				    "%s", "proxy not enabled");
393 				vap->iv_stats.is_mesh_notproxy++;
394 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
395 				m_freem(m);
396 				/* XXX better status? */
397 				return (ENOBUFS);
398 			}
399 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
400 			    "forward frame from DS SA(%6D), DA(%6D)\n",
401 			    eh->ether_shost, ":",
402 			    eh->ether_dhost, ":");
403 			ieee80211_mesh_proxy_check(vap, eh->ether_shost);
404 		}
405 		ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
406 		if (ni == NULL) {
407 			/*
408 			 * NB: ieee80211_mesh_discover holds/disposes
409 			 * frame (e.g. queueing on path discovery).
410 			 */
411 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
412 			/* XXX better status? */
413 			return (ENOBUFS);
414 		}
415 	}
416 #endif
417 
418 	/*
419 	 * We've resolved the sender, so attempt to transmit it.
420 	 */
421 
422 	if (vap->iv_state == IEEE80211_S_SLEEP) {
423 		/*
424 		 * In power save; queue frame and then  wakeup device
425 		 * for transmit.
426 		 */
427 		ic->ic_lastdata = ticks;
428 		if (ieee80211_pwrsave(ni, m) != 0)
429 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
430 		ieee80211_free_node(ni);
431 		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
432 		return (0);
433 	}
434 
435 	if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
436 		return (ENOBUFS);
437 	return (0);
438 #undef	IS_DWDS
439 }
440 
441 /*
442  * Start method for vap's.  All packets from the stack come
443  * through here.  We handle common processing of the packets
444  * before dispatching them to the underlying device.
445  *
446  * if_transmit() requires that the mbuf be consumed by this call
447  * regardless of the return condition.
448  */
449 int
450 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
451 {
452 	struct ieee80211vap *vap = ifp->if_softc;
453 	struct ieee80211com *ic = vap->iv_ic;
454 
455 	/*
456 	 * No data frames go out unless we're running.
457 	 * Note in particular this covers CAC and CSA
458 	 * states (though maybe we should check muting
459 	 * for CSA).
460 	 */
461 	if (vap->iv_state != IEEE80211_S_RUN &&
462 	    vap->iv_state != IEEE80211_S_SLEEP) {
463 		IEEE80211_LOCK(ic);
464 		/* re-check under the com lock to avoid races */
465 		if (vap->iv_state != IEEE80211_S_RUN &&
466 		    vap->iv_state != IEEE80211_S_SLEEP) {
467 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
468 			    "%s: ignore queue, in %s state\n",
469 			    __func__, ieee80211_state_name[vap->iv_state]);
470 			vap->iv_stats.is_tx_badstate++;
471 			IEEE80211_UNLOCK(ic);
472 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
473 			m_freem(m);
474 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
475 			return (ENETDOWN);
476 		}
477 		IEEE80211_UNLOCK(ic);
478 	}
479 
480 	/*
481 	 * Sanitize mbuf flags for net80211 use.  We cannot
482 	 * clear M_PWR_SAV or M_MORE_DATA because these may
483 	 * be set for frames that are re-submitted from the
484 	 * power save queue.
485 	 *
486 	 * NB: This must be done before ieee80211_classify as
487 	 *     it marks EAPOL in frames with M_EAPOL.
488 	 */
489 	m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
490 
491 	/*
492 	 * Bump to the packet transmission path.
493 	 * The mbuf will be consumed here.
494 	 */
495 	return (ieee80211_start_pkt(vap, m));
496 }
497 
498 void
499 ieee80211_vap_qflush(struct ifnet *ifp)
500 {
501 
502 	/* Empty for now */
503 }
504 
505 /*
506  * 802.11 raw output routine.
507  *
508  * XXX TODO: this (and other send routines) should correctly
509  * XXX keep the pwr mgmt bit set if it decides to call into the
510  * XXX driver to send a frame whilst the state is SLEEP.
511  *
512  * Otherwise the peer may decide that we're awake and flood us
513  * with traffic we are still too asleep to receive!
514  */
515 int
516 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
517     struct mbuf *m, const struct ieee80211_bpf_params *params)
518 {
519 	struct ieee80211com *ic = vap->iv_ic;
520 	int error;
521 
522 	/*
523 	 * Set node - the caller has taken a reference, so ensure
524 	 * that the mbuf has the same node value that
525 	 * it would if it were going via the normal path.
526 	 */
527 	m->m_pkthdr.rcvif = (void *)ni;
528 
529 	/*
530 	 * Attempt to add bpf transmit parameters.
531 	 *
532 	 * For now it's ok to fail; the raw_xmit api still takes
533 	 * them as an option.
534 	 *
535 	 * Later on when ic_raw_xmit() has params removed,
536 	 * they'll have to be added - so fail the transmit if
537 	 * they can't be.
538 	 */
539 	if (params)
540 		(void) ieee80211_add_xmit_params(m, params);
541 
542 	error = ic->ic_raw_xmit(ni, m, params);
543 	if (error) {
544 		if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
545 		ieee80211_free_node(ni);
546 	}
547 	return (error);
548 }
549 
550 /*
551  * 802.11 output routine. This is (currently) used only to
552  * connect bpf write calls to the 802.11 layer for injecting
553  * raw 802.11 frames.
554  */
555 int
556 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
557 	const struct sockaddr *dst, struct route *ro)
558 {
559 #define senderr(e) do { error = (e); goto bad;} while (0)
560 	struct ieee80211_node *ni = NULL;
561 	struct ieee80211vap *vap;
562 	struct ieee80211_frame *wh;
563 	struct ieee80211com *ic = NULL;
564 	int error;
565 	int ret;
566 
567 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
568 		/*
569 		 * Short-circuit requests if the vap is marked OACTIVE
570 		 * as this can happen because a packet came down through
571 		 * ieee80211_start before the vap entered RUN state in
572 		 * which case it's ok to just drop the frame.  This
573 		 * should not be necessary but callers of if_output don't
574 		 * check OACTIVE.
575 		 */
576 		senderr(ENETDOWN);
577 	}
578 	vap = ifp->if_softc;
579 	ic = vap->iv_ic;
580 	/*
581 	 * Hand to the 802.3 code if not tagged as
582 	 * a raw 802.11 frame.
583 	 */
584 	if (dst->sa_family != AF_IEEE80211)
585 		return vap->iv_output(ifp, m, dst, ro);
586 #ifdef MAC
587 	error = mac_ifnet_check_transmit(ifp, m);
588 	if (error)
589 		senderr(error);
590 #endif
591 	if (ifp->if_flags & IFF_MONITOR)
592 		senderr(ENETDOWN);
593 	if (!IFNET_IS_UP_RUNNING(ifp))
594 		senderr(ENETDOWN);
595 	if (vap->iv_state == IEEE80211_S_CAC) {
596 		IEEE80211_DPRINTF(vap,
597 		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
598 		    "block %s frame in CAC state\n", "raw data");
599 		vap->iv_stats.is_tx_badstate++;
600 		senderr(EIO);		/* XXX */
601 	} else if (vap->iv_state == IEEE80211_S_SCAN)
602 		senderr(EIO);
603 	/* XXX bypass bridge, pfil, carp, etc. */
604 
605 	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
606 		senderr(EIO);	/* XXX */
607 	wh = mtod(m, struct ieee80211_frame *);
608 	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
609 	    IEEE80211_FC0_VERSION_0)
610 		senderr(EIO);	/* XXX */
611 
612 	/* locate destination node */
613 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
614 	case IEEE80211_FC1_DIR_NODS:
615 	case IEEE80211_FC1_DIR_FROMDS:
616 		ni = ieee80211_find_txnode(vap, wh->i_addr1);
617 		break;
618 	case IEEE80211_FC1_DIR_TODS:
619 	case IEEE80211_FC1_DIR_DSTODS:
620 		if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
621 			senderr(EIO);	/* XXX */
622 		ni = ieee80211_find_txnode(vap, wh->i_addr3);
623 		break;
624 	default:
625 		senderr(EIO);	/* XXX */
626 	}
627 	if (ni == NULL) {
628 		/*
629 		 * Permit packets w/ bpf params through regardless
630 		 * (see below about sa_len).
631 		 */
632 		if (dst->sa_len == 0)
633 			senderr(EHOSTUNREACH);
634 		ni = ieee80211_ref_node(vap->iv_bss);
635 	}
636 
637 	/*
638 	 * Sanitize mbuf for net80211 flags leaked from above.
639 	 *
640 	 * NB: This must be done before ieee80211_classify as
641 	 *     it marks EAPOL in frames with M_EAPOL.
642 	 */
643 	m->m_flags &= ~M_80211_TX;
644 
645 	/* calculate priority so drivers can find the tx queue */
646 	/* XXX assumes an 802.3 frame */
647 	if (ieee80211_classify(ni, m))
648 		senderr(EIO);		/* XXX */
649 
650 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
651 	IEEE80211_NODE_STAT(ni, tx_data);
652 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
653 		IEEE80211_NODE_STAT(ni, tx_mcast);
654 		m->m_flags |= M_MCAST;
655 	} else
656 		IEEE80211_NODE_STAT(ni, tx_ucast);
657 	/* NB: ieee80211_encap does not include 802.11 header */
658 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len);
659 
660 	IEEE80211_TX_LOCK(ic);
661 
662 	/*
663 	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
664 	 * present by setting the sa_len field of the sockaddr (yes,
665 	 * this is a hack).
666 	 * NB: we assume sa_data is suitably aligned to cast.
667 	 */
668 	ret = ieee80211_raw_output(vap, ni, m,
669 	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
670 		dst->sa_data : NULL));
671 	IEEE80211_TX_UNLOCK(ic);
672 	return (ret);
673 bad:
674 	if (m != NULL)
675 		m_freem(m);
676 	if (ni != NULL)
677 		ieee80211_free_node(ni);
678 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
679 	return error;
680 #undef senderr
681 }
682 
683 /*
684  * Set the direction field and address fields of an outgoing
685  * frame.  Note this should be called early on in constructing
686  * a frame as it sets i_fc[1]; other bits can then be or'd in.
687  */
688 void
689 ieee80211_send_setup(
690 	struct ieee80211_node *ni,
691 	struct mbuf *m,
692 	int type, int tid,
693 	const uint8_t sa[IEEE80211_ADDR_LEN],
694 	const uint8_t da[IEEE80211_ADDR_LEN],
695 	const uint8_t bssid[IEEE80211_ADDR_LEN])
696 {
697 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
698 	struct ieee80211vap *vap = ni->ni_vap;
699 	struct ieee80211_tx_ampdu *tap;
700 	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
701 	ieee80211_seq seqno;
702 
703 	IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
704 
705 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
706 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
707 		switch (vap->iv_opmode) {
708 		case IEEE80211_M_STA:
709 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
710 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
711 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
712 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
713 			break;
714 		case IEEE80211_M_IBSS:
715 		case IEEE80211_M_AHDEMO:
716 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
717 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
718 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
719 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
720 			break;
721 		case IEEE80211_M_HOSTAP:
722 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
723 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
724 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
725 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
726 			break;
727 		case IEEE80211_M_WDS:
728 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
729 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
730 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
731 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
732 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
733 			break;
734 		case IEEE80211_M_MBSS:
735 #ifdef IEEE80211_SUPPORT_MESH
736 			if (IEEE80211_IS_MULTICAST(da)) {
737 				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
738 				/* XXX next hop */
739 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
740 				IEEE80211_ADDR_COPY(wh->i_addr2,
741 				    vap->iv_myaddr);
742 			} else {
743 				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
744 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
745 				IEEE80211_ADDR_COPY(wh->i_addr2,
746 				    vap->iv_myaddr);
747 				IEEE80211_ADDR_COPY(wh->i_addr3, da);
748 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
749 			}
750 #endif
751 			break;
752 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
753 			break;
754 		}
755 	} else {
756 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
757 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
758 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
759 #ifdef IEEE80211_SUPPORT_MESH
760 		if (vap->iv_opmode == IEEE80211_M_MBSS)
761 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
762 		else
763 #endif
764 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
765 	}
766 	*(uint16_t *)&wh->i_dur[0] = 0;
767 
768 	tap = &ni->ni_tx_ampdu[tid];
769 	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap))
770 		m->m_flags |= M_AMPDU_MPDU;
771 	else {
772 		if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
773 				      type & IEEE80211_FC0_SUBTYPE_MASK))
774 			seqno = ni->ni_txseqs[tid]++;
775 		else
776 			seqno = 0;
777 
778 		*(uint16_t *)&wh->i_seq[0] =
779 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
780 		M_SEQNO_SET(m, seqno);
781 	}
782 
783 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
784 		m->m_flags |= M_MCAST;
785 #undef WH4
786 }
787 
788 /*
789  * Send a management frame to the specified node.  The node pointer
790  * must have a reference as the pointer will be passed to the driver
791  * and potentially held for a long time.  If the frame is successfully
792  * dispatched to the driver, then it is responsible for freeing the
793  * reference (and potentially free'ing up any associated storage);
794  * otherwise deal with reclaiming any reference (on error).
795  */
796 int
797 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
798 	struct ieee80211_bpf_params *params)
799 {
800 	struct ieee80211vap *vap = ni->ni_vap;
801 	struct ieee80211com *ic = ni->ni_ic;
802 	struct ieee80211_frame *wh;
803 	int ret;
804 
805 	KASSERT(ni != NULL, ("null node"));
806 
807 	if (vap->iv_state == IEEE80211_S_CAC) {
808 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
809 		    ni, "block %s frame in CAC state",
810 			ieee80211_mgt_subtype_name(type));
811 		vap->iv_stats.is_tx_badstate++;
812 		ieee80211_free_node(ni);
813 		m_freem(m);
814 		return EIO;		/* XXX */
815 	}
816 
817 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
818 	if (m == NULL) {
819 		ieee80211_free_node(ni);
820 		return ENOMEM;
821 	}
822 
823 	IEEE80211_TX_LOCK(ic);
824 
825 	wh = mtod(m, struct ieee80211_frame *);
826 	ieee80211_send_setup(ni, m,
827 	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
828 	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
829 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
830 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
831 		    "encrypting frame (%s)", __func__);
832 		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
833 	}
834 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
835 
836 	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
837 	M_WME_SETAC(m, params->ibp_pri);
838 
839 #ifdef IEEE80211_DEBUG
840 	/* avoid printing too many frames */
841 	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
842 	    ieee80211_msg_dumppkts(vap)) {
843 		printf("[%s] send %s on channel %u\n",
844 		    ether_sprintf(wh->i_addr1),
845 		    ieee80211_mgt_subtype_name(type),
846 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
847 	}
848 #endif
849 	IEEE80211_NODE_STAT(ni, tx_mgmt);
850 
851 	ret = ieee80211_raw_output(vap, ni, m, params);
852 	IEEE80211_TX_UNLOCK(ic);
853 	return (ret);
854 }
855 
856 static void
857 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg,
858     int status)
859 {
860 	struct ieee80211vap *vap = ni->ni_vap;
861 
862 	wakeup(vap);
863 }
864 
865 /*
866  * Send a null data frame to the specified node.  If the station
867  * is setup for QoS then a QoS Null Data frame is constructed.
868  * If this is a WDS station then a 4-address frame is constructed.
869  *
870  * NB: the caller is assumed to have setup a node reference
871  *     for use; this is necessary to deal with a race condition
872  *     when probing for inactive stations.  Like ieee80211_mgmt_output
873  *     we must cleanup any node reference on error;  however we
874  *     can safely just unref it as we know it will never be the
875  *     last reference to the node.
876  */
877 int
878 ieee80211_send_nulldata(struct ieee80211_node *ni)
879 {
880 	struct ieee80211vap *vap = ni->ni_vap;
881 	struct ieee80211com *ic = ni->ni_ic;
882 	struct mbuf *m;
883 	struct ieee80211_frame *wh;
884 	int hdrlen;
885 	uint8_t *frm;
886 	int ret;
887 
888 	if (vap->iv_state == IEEE80211_S_CAC) {
889 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
890 		    ni, "block %s frame in CAC state", "null data");
891 		ieee80211_unref_node(&ni);
892 		vap->iv_stats.is_tx_badstate++;
893 		return EIO;		/* XXX */
894 	}
895 
896 	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
897 		hdrlen = sizeof(struct ieee80211_qosframe);
898 	else
899 		hdrlen = sizeof(struct ieee80211_frame);
900 	/* NB: only WDS vap's get 4-address frames */
901 	if (vap->iv_opmode == IEEE80211_M_WDS)
902 		hdrlen += IEEE80211_ADDR_LEN;
903 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
904 		hdrlen = roundup(hdrlen, sizeof(uint32_t));
905 
906 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
907 	if (m == NULL) {
908 		/* XXX debug msg */
909 		ieee80211_unref_node(&ni);
910 		vap->iv_stats.is_tx_nobuf++;
911 		return ENOMEM;
912 	}
913 	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
914 	    ("leading space %zd", M_LEADINGSPACE(m)));
915 	M_PREPEND(m, hdrlen, M_NOWAIT);
916 	if (m == NULL) {
917 		/* NB: cannot happen */
918 		ieee80211_free_node(ni);
919 		return ENOMEM;
920 	}
921 
922 	IEEE80211_TX_LOCK(ic);
923 
924 	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
925 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
926 		const int tid = WME_AC_TO_TID(WME_AC_BE);
927 		uint8_t *qos;
928 
929 		ieee80211_send_setup(ni, m,
930 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
931 		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
932 
933 		if (vap->iv_opmode == IEEE80211_M_WDS)
934 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
935 		else
936 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
937 		qos[0] = tid & IEEE80211_QOS_TID;
938 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
939 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
940 		qos[1] = 0;
941 	} else {
942 		ieee80211_send_setup(ni, m,
943 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
944 		    IEEE80211_NONQOS_TID,
945 		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
946 	}
947 	if (vap->iv_opmode != IEEE80211_M_WDS) {
948 		/* NB: power management bit is never sent by an AP */
949 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
950 		    vap->iv_opmode != IEEE80211_M_HOSTAP)
951 			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
952 	}
953 	if ((ic->ic_flags & IEEE80211_F_SCAN) &&
954 	    (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) {
955 		ieee80211_add_callback(m, ieee80211_nulldata_transmitted,
956 		    NULL);
957 	}
958 	m->m_len = m->m_pkthdr.len = hdrlen;
959 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
960 
961 	M_WME_SETAC(m, WME_AC_BE);
962 
963 	IEEE80211_NODE_STAT(ni, tx_data);
964 
965 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
966 	    "send %snull data frame on channel %u, pwr mgt %s",
967 	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
968 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
969 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
970 
971 	ret = ieee80211_raw_output(vap, ni, m, NULL);
972 	IEEE80211_TX_UNLOCK(ic);
973 	return (ret);
974 }
975 
976 /*
977  * Assign priority to a frame based on any vlan tag assigned
978  * to the station and/or any Diffserv setting in an IP header.
979  * Finally, if an ACM policy is setup (in station mode) it's
980  * applied.
981  */
982 int
983 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
984 {
985 	const struct ether_header *eh = mtod(m, struct ether_header *);
986 	int v_wme_ac, d_wme_ac, ac;
987 
988 	/*
989 	 * Always promote PAE/EAPOL frames to high priority.
990 	 */
991 	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
992 		/* NB: mark so others don't need to check header */
993 		m->m_flags |= M_EAPOL;
994 		ac = WME_AC_VO;
995 		goto done;
996 	}
997 	/*
998 	 * Non-qos traffic goes to BE.
999 	 */
1000 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
1001 		ac = WME_AC_BE;
1002 		goto done;
1003 	}
1004 
1005 	/*
1006 	 * If node has a vlan tag then all traffic
1007 	 * to it must have a matching tag.
1008 	 */
1009 	v_wme_ac = 0;
1010 	if (ni->ni_vlan != 0) {
1011 		 if ((m->m_flags & M_VLANTAG) == 0) {
1012 			IEEE80211_NODE_STAT(ni, tx_novlantag);
1013 			return 1;
1014 		}
1015 		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
1016 		    EVL_VLANOFTAG(ni->ni_vlan)) {
1017 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
1018 			return 1;
1019 		}
1020 		/* map vlan priority to AC */
1021 		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
1022 	}
1023 
1024 	/* XXX m_copydata may be too slow for fast path */
1025 #ifdef INET
1026 	if (eh->ether_type == htons(ETHERTYPE_IP)) {
1027 		uint8_t tos;
1028 		/*
1029 		 * IP frame, map the DSCP bits from the TOS field.
1030 		 */
1031 		/* NB: ip header may not be in first mbuf */
1032 		m_copydata(m, sizeof(struct ether_header) +
1033 		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
1034 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1035 		d_wme_ac = TID_TO_WME_AC(tos);
1036 	} else {
1037 #endif /* INET */
1038 #ifdef INET6
1039 	if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
1040 		uint32_t flow;
1041 		uint8_t tos;
1042 		/*
1043 		 * IPv6 frame, map the DSCP bits from the traffic class field.
1044 		 */
1045 		m_copydata(m, sizeof(struct ether_header) +
1046 		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
1047 		    (caddr_t) &flow);
1048 		tos = (uint8_t)(ntohl(flow) >> 20);
1049 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1050 		d_wme_ac = TID_TO_WME_AC(tos);
1051 	} else {
1052 #endif /* INET6 */
1053 		d_wme_ac = WME_AC_BE;
1054 #ifdef INET6
1055 	}
1056 #endif
1057 #ifdef INET
1058 	}
1059 #endif
1060 	/*
1061 	 * Use highest priority AC.
1062 	 */
1063 	if (v_wme_ac > d_wme_ac)
1064 		ac = v_wme_ac;
1065 	else
1066 		ac = d_wme_ac;
1067 
1068 	/*
1069 	 * Apply ACM policy.
1070 	 */
1071 	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1072 		static const int acmap[4] = {
1073 			WME_AC_BK,	/* WME_AC_BE */
1074 			WME_AC_BK,	/* WME_AC_BK */
1075 			WME_AC_BE,	/* WME_AC_VI */
1076 			WME_AC_VI,	/* WME_AC_VO */
1077 		};
1078 		struct ieee80211com *ic = ni->ni_ic;
1079 
1080 		while (ac != WME_AC_BK &&
1081 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1082 			ac = acmap[ac];
1083 	}
1084 done:
1085 	M_WME_SETAC(m, ac);
1086 	return 0;
1087 }
1088 
1089 /*
1090  * Insure there is sufficient contiguous space to encapsulate the
1091  * 802.11 data frame.  If room isn't already there, arrange for it.
1092  * Drivers and cipher modules assume we have done the necessary work
1093  * and fail rudely if they don't find the space they need.
1094  */
1095 struct mbuf *
1096 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1097 	struct ieee80211_key *key, struct mbuf *m)
1098 {
1099 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
1100 	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1101 
1102 	if (key != NULL) {
1103 		/* XXX belongs in crypto code? */
1104 		needed_space += key->wk_cipher->ic_header;
1105 		/* XXX frags */
1106 		/*
1107 		 * When crypto is being done in the host we must insure
1108 		 * the data are writable for the cipher routines; clone
1109 		 * a writable mbuf chain.
1110 		 * XXX handle SWMIC specially
1111 		 */
1112 		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1113 			m = m_unshare(m, M_NOWAIT);
1114 			if (m == NULL) {
1115 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1116 				    "%s: cannot get writable mbuf\n", __func__);
1117 				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1118 				return NULL;
1119 			}
1120 		}
1121 	}
1122 	/*
1123 	 * We know we are called just before stripping an Ethernet
1124 	 * header and prepending an LLC header.  This means we know
1125 	 * there will be
1126 	 *	sizeof(struct ether_header) - sizeof(struct llc)
1127 	 * bytes recovered to which we need additional space for the
1128 	 * 802.11 header and any crypto header.
1129 	 */
1130 	/* XXX check trailing space and copy instead? */
1131 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1132 		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
1133 		if (n == NULL) {
1134 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1135 			    "%s: cannot expand storage\n", __func__);
1136 			vap->iv_stats.is_tx_nobuf++;
1137 			m_freem(m);
1138 			return NULL;
1139 		}
1140 		KASSERT(needed_space <= MHLEN,
1141 		    ("not enough room, need %u got %d\n", needed_space, MHLEN));
1142 		/*
1143 		 * Setup new mbuf to have leading space to prepend the
1144 		 * 802.11 header and any crypto header bits that are
1145 		 * required (the latter are added when the driver calls
1146 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
1147 		 */
1148 		/* NB: must be first 'cuz it clobbers m_data */
1149 		m_move_pkthdr(n, m);
1150 		n->m_len = 0;			/* NB: m_gethdr does not set */
1151 		n->m_data += needed_space;
1152 		/*
1153 		 * Pull up Ethernet header to create the expected layout.
1154 		 * We could use m_pullup but that's overkill (i.e. we don't
1155 		 * need the actual data) and it cannot fail so do it inline
1156 		 * for speed.
1157 		 */
1158 		/* NB: struct ether_header is known to be contiguous */
1159 		n->m_len += sizeof(struct ether_header);
1160 		m->m_len -= sizeof(struct ether_header);
1161 		m->m_data += sizeof(struct ether_header);
1162 		/*
1163 		 * Replace the head of the chain.
1164 		 */
1165 		n->m_next = m;
1166 		m = n;
1167 	}
1168 	return m;
1169 #undef TO_BE_RECLAIMED
1170 }
1171 
1172 /*
1173  * Return the transmit key to use in sending a unicast frame.
1174  * If a unicast key is set we use that.  When no unicast key is set
1175  * we fall back to the default transmit key.
1176  */
1177 static __inline struct ieee80211_key *
1178 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1179 	struct ieee80211_node *ni)
1180 {
1181 	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1182 		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1183 		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1184 			return NULL;
1185 		return &vap->iv_nw_keys[vap->iv_def_txkey];
1186 	} else {
1187 		return &ni->ni_ucastkey;
1188 	}
1189 }
1190 
1191 /*
1192  * Return the transmit key to use in sending a multicast frame.
1193  * Multicast traffic always uses the group key which is installed as
1194  * the default tx key.
1195  */
1196 static __inline struct ieee80211_key *
1197 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1198 	struct ieee80211_node *ni)
1199 {
1200 	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1201 	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1202 		return NULL;
1203 	return &vap->iv_nw_keys[vap->iv_def_txkey];
1204 }
1205 
1206 /*
1207  * Encapsulate an outbound data frame.  The mbuf chain is updated.
1208  * If an error is encountered NULL is returned.  The caller is required
1209  * to provide a node reference and pullup the ethernet header in the
1210  * first mbuf.
1211  *
1212  * NB: Packet is assumed to be processed by ieee80211_classify which
1213  *     marked EAPOL frames w/ M_EAPOL.
1214  */
1215 struct mbuf *
1216 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1217     struct mbuf *m)
1218 {
1219 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1220 #define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
1221 	struct ieee80211com *ic = ni->ni_ic;
1222 #ifdef IEEE80211_SUPPORT_MESH
1223 	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1224 	struct ieee80211_meshcntl_ae10 *mc;
1225 	struct ieee80211_mesh_route *rt = NULL;
1226 	int dir = -1;
1227 #endif
1228 	struct ether_header eh;
1229 	struct ieee80211_frame *wh;
1230 	struct ieee80211_key *key;
1231 	struct llc *llc;
1232 	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr;
1233 	ieee80211_seq seqno;
1234 	int meshhdrsize, meshae;
1235 	uint8_t *qos;
1236 	int is_amsdu = 0;
1237 
1238 	IEEE80211_TX_LOCK_ASSERT(ic);
1239 
1240 	/*
1241 	 * Copy existing Ethernet header to a safe place.  The
1242 	 * rest of the code assumes it's ok to strip it when
1243 	 * reorganizing state for the final encapsulation.
1244 	 */
1245 	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1246 	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1247 
1248 	/*
1249 	 * Insure space for additional headers.  First identify
1250 	 * transmit key to use in calculating any buffer adjustments
1251 	 * required.  This is also used below to do privacy
1252 	 * encapsulation work.  Then calculate the 802.11 header
1253 	 * size and any padding required by the driver.
1254 	 *
1255 	 * Note key may be NULL if we fall back to the default
1256 	 * transmit key and that is not set.  In that case the
1257 	 * buffer may not be expanded as needed by the cipher
1258 	 * routines, but they will/should discard it.
1259 	 */
1260 	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1261 		if (vap->iv_opmode == IEEE80211_M_STA ||
1262 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1263 		    (vap->iv_opmode == IEEE80211_M_WDS &&
1264 		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1265 			key = ieee80211_crypto_getucastkey(vap, ni);
1266 		else
1267 			key = ieee80211_crypto_getmcastkey(vap, ni);
1268 		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1269 			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1270 			    eh.ether_dhost,
1271 			    "no default transmit key (%s) deftxkey %u",
1272 			    __func__, vap->iv_def_txkey);
1273 			vap->iv_stats.is_tx_nodefkey++;
1274 			goto bad;
1275 		}
1276 	} else
1277 		key = NULL;
1278 	/*
1279 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1280 	 * frames so suppress use.  This may be an issue if other
1281 	 * ap's require all data frames to be QoS-encapsulated
1282 	 * once negotiated in which case we'll need to make this
1283 	 * configurable.
1284 	 * NB: mesh data frames are QoS.
1285 	 */
1286 	addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) ||
1287 	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1288 	    (m->m_flags & M_EAPOL) == 0;
1289 	if (addqos)
1290 		hdrsize = sizeof(struct ieee80211_qosframe);
1291 	else
1292 		hdrsize = sizeof(struct ieee80211_frame);
1293 #ifdef IEEE80211_SUPPORT_MESH
1294 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1295 		/*
1296 		 * Mesh data frames are encapsulated according to the
1297 		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1298 		 * o Group Addressed data (aka multicast) originating
1299 		 *   at the local sta are sent w/ 3-address format and
1300 		 *   address extension mode 00
1301 		 * o Individually Addressed data (aka unicast) originating
1302 		 *   at the local sta are sent w/ 4-address format and
1303 		 *   address extension mode 00
1304 		 * o Group Addressed data forwarded from a non-mesh sta are
1305 		 *   sent w/ 3-address format and address extension mode 01
1306 		 * o Individually Address data from another sta are sent
1307 		 *   w/ 4-address format and address extension mode 10
1308 		 */
1309 		is4addr = 0;		/* NB: don't use, disable */
1310 		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1311 			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1312 			KASSERT(rt != NULL, ("route is NULL"));
1313 			dir = IEEE80211_FC1_DIR_DSTODS;
1314 			hdrsize += IEEE80211_ADDR_LEN;
1315 			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1316 				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1317 				    vap->iv_myaddr)) {
1318 					IEEE80211_NOTE_MAC(vap,
1319 					    IEEE80211_MSG_MESH,
1320 					    eh.ether_dhost,
1321 					    "%s", "trying to send to ourself");
1322 					goto bad;
1323 				}
1324 				meshae = IEEE80211_MESH_AE_10;
1325 				meshhdrsize =
1326 				    sizeof(struct ieee80211_meshcntl_ae10);
1327 			} else {
1328 				meshae = IEEE80211_MESH_AE_00;
1329 				meshhdrsize =
1330 				    sizeof(struct ieee80211_meshcntl);
1331 			}
1332 		} else {
1333 			dir = IEEE80211_FC1_DIR_FROMDS;
1334 			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1335 				/* proxy group */
1336 				meshae = IEEE80211_MESH_AE_01;
1337 				meshhdrsize =
1338 				    sizeof(struct ieee80211_meshcntl_ae01);
1339 			} else {
1340 				/* group */
1341 				meshae = IEEE80211_MESH_AE_00;
1342 				meshhdrsize = sizeof(struct ieee80211_meshcntl);
1343 			}
1344 		}
1345 	} else {
1346 #endif
1347 		/*
1348 		 * 4-address frames need to be generated for:
1349 		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1350 		 * o packets sent through a vap marked for relaying
1351 		 *   (e.g. a station operating with dynamic WDS)
1352 		 */
1353 		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1354 		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1355 		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1356 		if (is4addr)
1357 			hdrsize += IEEE80211_ADDR_LEN;
1358 		meshhdrsize = meshae = 0;
1359 #ifdef IEEE80211_SUPPORT_MESH
1360 	}
1361 #endif
1362 	/*
1363 	 * Honor driver DATAPAD requirement.
1364 	 */
1365 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1366 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1367 	else
1368 		hdrspace = hdrsize;
1369 
1370 	if (__predict_true((m->m_flags & M_FF) == 0)) {
1371 		/*
1372 		 * Normal frame.
1373 		 */
1374 		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1375 		if (m == NULL) {
1376 			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1377 			goto bad;
1378 		}
1379 		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1380 		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1381 		llc = mtod(m, struct llc *);
1382 		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1383 		llc->llc_control = LLC_UI;
1384 		llc->llc_snap.org_code[0] = 0;
1385 		llc->llc_snap.org_code[1] = 0;
1386 		llc->llc_snap.org_code[2] = 0;
1387 		llc->llc_snap.ether_type = eh.ether_type;
1388 	} else {
1389 #ifdef IEEE80211_SUPPORT_SUPERG
1390 		/*
1391 		 * Aggregated frame.  Check if it's for AMSDU or FF.
1392 		 *
1393 		 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented
1394 		 * anywhere for some reason.  But, since 11n requires
1395 		 * AMSDU RX, we can just assume "11n" == "AMSDU".
1396 		 */
1397 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__);
1398 		if (ieee80211_amsdu_tx_ok(ni)) {
1399 			m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key);
1400 			is_amsdu = 1;
1401 		} else {
1402 			m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1403 		}
1404 		if (m == NULL)
1405 #endif
1406 			goto bad;
1407 	}
1408 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1409 
1410 	M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT);
1411 	if (m == NULL) {
1412 		vap->iv_stats.is_tx_nobuf++;
1413 		goto bad;
1414 	}
1415 	wh = mtod(m, struct ieee80211_frame *);
1416 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1417 	*(uint16_t *)wh->i_dur = 0;
1418 	qos = NULL;	/* NB: quiet compiler */
1419 	if (is4addr) {
1420 		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1421 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1422 		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1423 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1424 		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1425 	} else switch (vap->iv_opmode) {
1426 	case IEEE80211_M_STA:
1427 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1428 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1429 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1430 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1431 		break;
1432 	case IEEE80211_M_IBSS:
1433 	case IEEE80211_M_AHDEMO:
1434 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1435 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1436 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1437 		/*
1438 		 * NB: always use the bssid from iv_bss as the
1439 		 *     neighbor's may be stale after an ibss merge
1440 		 */
1441 		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1442 		break;
1443 	case IEEE80211_M_HOSTAP:
1444 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1445 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1446 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1447 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1448 		break;
1449 #ifdef IEEE80211_SUPPORT_MESH
1450 	case IEEE80211_M_MBSS:
1451 		/* NB: offset by hdrspace to deal with DATAPAD */
1452 		mc = (struct ieee80211_meshcntl_ae10 *)
1453 		     (mtod(m, uint8_t *) + hdrspace);
1454 		wh->i_fc[1] = dir;
1455 		switch (meshae) {
1456 		case IEEE80211_MESH_AE_00:	/* no proxy */
1457 			mc->mc_flags = 0;
1458 			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1459 				IEEE80211_ADDR_COPY(wh->i_addr1,
1460 				    ni->ni_macaddr);
1461 				IEEE80211_ADDR_COPY(wh->i_addr2,
1462 				    vap->iv_myaddr);
1463 				IEEE80211_ADDR_COPY(wh->i_addr3,
1464 				    eh.ether_dhost);
1465 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1466 				    eh.ether_shost);
1467 				qos =((struct ieee80211_qosframe_addr4 *)
1468 				    wh)->i_qos;
1469 			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1470 				 /* mcast */
1471 				IEEE80211_ADDR_COPY(wh->i_addr1,
1472 				    eh.ether_dhost);
1473 				IEEE80211_ADDR_COPY(wh->i_addr2,
1474 				    vap->iv_myaddr);
1475 				IEEE80211_ADDR_COPY(wh->i_addr3,
1476 				    eh.ether_shost);
1477 				qos = ((struct ieee80211_qosframe *)
1478 				    wh)->i_qos;
1479 			}
1480 			break;
1481 		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
1482 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1483 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1484 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1485 			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1486 			mc->mc_flags = 1;
1487 			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1488 			    eh.ether_shost);
1489 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1490 			break;
1491 		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
1492 			KASSERT(rt != NULL, ("route is NULL"));
1493 			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1494 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1495 			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1496 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1497 			mc->mc_flags = IEEE80211_MESH_AE_10;
1498 			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1499 			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1500 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1501 			break;
1502 		default:
1503 			KASSERT(0, ("meshae %d", meshae));
1504 			break;
1505 		}
1506 		mc->mc_ttl = ms->ms_ttl;
1507 		ms->ms_seq++;
1508 		le32enc(mc->mc_seq, ms->ms_seq);
1509 		break;
1510 #endif
1511 	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1512 	default:
1513 		goto bad;
1514 	}
1515 	if (m->m_flags & M_MORE_DATA)
1516 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1517 	if (addqos) {
1518 		int ac, tid;
1519 
1520 		if (is4addr) {
1521 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1522 		/* NB: mesh case handled earlier */
1523 		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1524 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1525 		ac = M_WME_GETAC(m);
1526 		/* map from access class/queue to 11e header priorty value */
1527 		tid = WME_AC_TO_TID(ac);
1528 		qos[0] = tid & IEEE80211_QOS_TID;
1529 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1530 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1531 #ifdef IEEE80211_SUPPORT_MESH
1532 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1533 			qos[1] = IEEE80211_QOS_MC;
1534 		else
1535 #endif
1536 			qos[1] = 0;
1537 		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1538 
1539 		/*
1540 		 * If this is an A-MSDU then ensure we set the
1541 		 * relevant field.
1542 		 */
1543 		if (is_amsdu)
1544 			qos[0] |= IEEE80211_QOS_AMSDU;
1545 
1546 		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1547 			/*
1548 			 * NB: don't assign a sequence # to potential
1549 			 * aggregates; we expect this happens at the
1550 			 * point the frame comes off any aggregation q
1551 			 * as otherwise we may introduce holes in the
1552 			 * BA sequence space and/or make window accouting
1553 			 * more difficult.
1554 			 *
1555 			 * XXX may want to control this with a driver
1556 			 * capability; this may also change when we pull
1557 			 * aggregation up into net80211
1558 			 */
1559 			seqno = ni->ni_txseqs[tid]++;
1560 			*(uint16_t *)wh->i_seq =
1561 			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1562 			M_SEQNO_SET(m, seqno);
1563 		}
1564 	} else {
1565 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1566 		*(uint16_t *)wh->i_seq =
1567 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1568 		M_SEQNO_SET(m, seqno);
1569 
1570 		/*
1571 		 * XXX TODO: we shouldn't allow EAPOL, etc that would
1572 		 * be forced to be non-QoS traffic to be A-MSDU encapsulated.
1573 		 */
1574 		if (is_amsdu)
1575 			printf("%s: XXX ERROR: is_amsdu set; not QoS!\n",
1576 			    __func__);
1577 	}
1578 
1579 
1580 	/* check if xmit fragmentation is required */
1581 	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1582 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1583 	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1584 	    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1585 	if (key != NULL) {
1586 		/*
1587 		 * IEEE 802.1X: send EAPOL frames always in the clear.
1588 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1589 		 */
1590 		if ((m->m_flags & M_EAPOL) == 0 ||
1591 		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1592 		     (vap->iv_opmode == IEEE80211_M_STA ?
1593 		      !IEEE80211_KEY_UNDEFINED(key) :
1594 		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1595 			wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1596 			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1597 				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1598 				    eh.ether_dhost,
1599 				    "%s", "enmic failed, discard frame");
1600 				vap->iv_stats.is_crypto_enmicfail++;
1601 				goto bad;
1602 			}
1603 		}
1604 	}
1605 	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1606 	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1607 		goto bad;
1608 
1609 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1610 
1611 	IEEE80211_NODE_STAT(ni, tx_data);
1612 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1613 		IEEE80211_NODE_STAT(ni, tx_mcast);
1614 		m->m_flags |= M_MCAST;
1615 	} else
1616 		IEEE80211_NODE_STAT(ni, tx_ucast);
1617 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1618 
1619 	return m;
1620 bad:
1621 	if (m != NULL)
1622 		m_freem(m);
1623 	return NULL;
1624 #undef WH4
1625 #undef MC01
1626 }
1627 
1628 void
1629 ieee80211_free_mbuf(struct mbuf *m)
1630 {
1631 	struct mbuf *next;
1632 
1633 	if (m == NULL)
1634 		return;
1635 
1636 	do {
1637 		next = m->m_nextpkt;
1638 		m->m_nextpkt = NULL;
1639 		m_freem(m);
1640 	} while ((m = next) != NULL);
1641 }
1642 
1643 /*
1644  * Fragment the frame according to the specified mtu.
1645  * The size of the 802.11 header (w/o padding) is provided
1646  * so we don't need to recalculate it.  We create a new
1647  * mbuf for each fragment and chain it through m_nextpkt;
1648  * we might be able to optimize this by reusing the original
1649  * packet's mbufs but that is significantly more complicated.
1650  */
1651 static int
1652 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1653 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1654 {
1655 	struct ieee80211com *ic = vap->iv_ic;
1656 	struct ieee80211_frame *wh, *whf;
1657 	struct mbuf *m, *prev;
1658 	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1659 	u_int hdrspace;
1660 
1661 	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1662 	KASSERT(m0->m_pkthdr.len > mtu,
1663 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1664 
1665 	/*
1666 	 * Honor driver DATAPAD requirement.
1667 	 */
1668 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1669 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1670 	else
1671 		hdrspace = hdrsize;
1672 
1673 	wh = mtod(m0, struct ieee80211_frame *);
1674 	/* NB: mark the first frag; it will be propagated below */
1675 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1676 	totalhdrsize = hdrspace + ciphdrsize;
1677 	fragno = 1;
1678 	off = mtu - ciphdrsize;
1679 	remainder = m0->m_pkthdr.len - off;
1680 	prev = m0;
1681 	do {
1682 		fragsize = totalhdrsize + remainder;
1683 		if (fragsize > mtu)
1684 			fragsize = mtu;
1685 		/* XXX fragsize can be >2048! */
1686 		KASSERT(fragsize < MCLBYTES,
1687 			("fragment size %u too big!", fragsize));
1688 		if (fragsize > MHLEN)
1689 			m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1690 		else
1691 			m = m_gethdr(M_NOWAIT, MT_DATA);
1692 		if (m == NULL)
1693 			goto bad;
1694 		/* leave room to prepend any cipher header */
1695 		m_align(m, fragsize - ciphdrsize);
1696 
1697 		/*
1698 		 * Form the header in the fragment.  Note that since
1699 		 * we mark the first fragment with the MORE_FRAG bit
1700 		 * it automatically is propagated to each fragment; we
1701 		 * need only clear it on the last fragment (done below).
1702 		 * NB: frag 1+ dont have Mesh Control field present.
1703 		 */
1704 		whf = mtod(m, struct ieee80211_frame *);
1705 		memcpy(whf, wh, hdrsize);
1706 #ifdef IEEE80211_SUPPORT_MESH
1707 		if (vap->iv_opmode == IEEE80211_M_MBSS) {
1708 			if (IEEE80211_IS_DSTODS(wh))
1709 				((struct ieee80211_qosframe_addr4 *)
1710 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1711 			else
1712 				((struct ieee80211_qosframe *)
1713 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1714 		}
1715 #endif
1716 		*(uint16_t *)&whf->i_seq[0] |= htole16(
1717 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1718 				IEEE80211_SEQ_FRAG_SHIFT);
1719 		fragno++;
1720 
1721 		payload = fragsize - totalhdrsize;
1722 		/* NB: destination is known to be contiguous */
1723 
1724 		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
1725 		m->m_len = hdrspace + payload;
1726 		m->m_pkthdr.len = hdrspace + payload;
1727 		m->m_flags |= M_FRAG;
1728 
1729 		/* chain up the fragment */
1730 		prev->m_nextpkt = m;
1731 		prev = m;
1732 
1733 		/* deduct fragment just formed */
1734 		remainder -= payload;
1735 		off += payload;
1736 	} while (remainder != 0);
1737 
1738 	/* set the last fragment */
1739 	m->m_flags |= M_LASTFRAG;
1740 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1741 
1742 	/* strip first mbuf now that everything has been copied */
1743 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1744 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1745 
1746 	vap->iv_stats.is_tx_fragframes++;
1747 	vap->iv_stats.is_tx_frags += fragno-1;
1748 
1749 	return 1;
1750 bad:
1751 	/* reclaim fragments but leave original frame for caller to free */
1752 	ieee80211_free_mbuf(m0->m_nextpkt);
1753 	m0->m_nextpkt = NULL;
1754 	return 0;
1755 }
1756 
1757 /*
1758  * Add a supported rates element id to a frame.
1759  */
1760 uint8_t *
1761 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1762 {
1763 	int nrates;
1764 
1765 	*frm++ = IEEE80211_ELEMID_RATES;
1766 	nrates = rs->rs_nrates;
1767 	if (nrates > IEEE80211_RATE_SIZE)
1768 		nrates = IEEE80211_RATE_SIZE;
1769 	*frm++ = nrates;
1770 	memcpy(frm, rs->rs_rates, nrates);
1771 	return frm + nrates;
1772 }
1773 
1774 /*
1775  * Add an extended supported rates element id to a frame.
1776  */
1777 uint8_t *
1778 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1779 {
1780 	/*
1781 	 * Add an extended supported rates element if operating in 11g mode.
1782 	 */
1783 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1784 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1785 		*frm++ = IEEE80211_ELEMID_XRATES;
1786 		*frm++ = nrates;
1787 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1788 		frm += nrates;
1789 	}
1790 	return frm;
1791 }
1792 
1793 /*
1794  * Add an ssid element to a frame.
1795  */
1796 uint8_t *
1797 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1798 {
1799 	*frm++ = IEEE80211_ELEMID_SSID;
1800 	*frm++ = len;
1801 	memcpy(frm, ssid, len);
1802 	return frm + len;
1803 }
1804 
1805 /*
1806  * Add an erp element to a frame.
1807  */
1808 static uint8_t *
1809 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1810 {
1811 	uint8_t erp;
1812 
1813 	*frm++ = IEEE80211_ELEMID_ERP;
1814 	*frm++ = 1;
1815 	erp = 0;
1816 	if (ic->ic_nonerpsta != 0)
1817 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1818 	if (ic->ic_flags & IEEE80211_F_USEPROT)
1819 		erp |= IEEE80211_ERP_USE_PROTECTION;
1820 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1821 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1822 	*frm++ = erp;
1823 	return frm;
1824 }
1825 
1826 /*
1827  * Add a CFParams element to a frame.
1828  */
1829 static uint8_t *
1830 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1831 {
1832 #define	ADDSHORT(frm, v) do {	\
1833 	le16enc(frm, v);	\
1834 	frm += 2;		\
1835 } while (0)
1836 	*frm++ = IEEE80211_ELEMID_CFPARMS;
1837 	*frm++ = 6;
1838 	*frm++ = 0;		/* CFP count */
1839 	*frm++ = 2;		/* CFP period */
1840 	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1841 	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1842 	return frm;
1843 #undef ADDSHORT
1844 }
1845 
1846 static __inline uint8_t *
1847 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1848 {
1849 	memcpy(frm, ie->ie_data, ie->ie_len);
1850 	return frm + ie->ie_len;
1851 }
1852 
1853 static __inline uint8_t *
1854 add_ie(uint8_t *frm, const uint8_t *ie)
1855 {
1856 	memcpy(frm, ie, 2 + ie[1]);
1857 	return frm + 2 + ie[1];
1858 }
1859 
1860 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1861 /*
1862  * Add a WME information element to a frame.
1863  */
1864 uint8_t *
1865 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1866 {
1867 	static const struct ieee80211_wme_info info = {
1868 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1869 		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1870 		.wme_oui	= { WME_OUI_BYTES },
1871 		.wme_type	= WME_OUI_TYPE,
1872 		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1873 		.wme_version	= WME_VERSION,
1874 		.wme_info	= 0,
1875 	};
1876 	memcpy(frm, &info, sizeof(info));
1877 	return frm + sizeof(info);
1878 }
1879 
1880 /*
1881  * Add a WME parameters element to a frame.
1882  */
1883 static uint8_t *
1884 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1885 {
1886 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1887 #define	ADDSHORT(frm, v) do {	\
1888 	le16enc(frm, v);	\
1889 	frm += 2;		\
1890 } while (0)
1891 	/* NB: this works 'cuz a param has an info at the front */
1892 	static const struct ieee80211_wme_info param = {
1893 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1894 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1895 		.wme_oui	= { WME_OUI_BYTES },
1896 		.wme_type	= WME_OUI_TYPE,
1897 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1898 		.wme_version	= WME_VERSION,
1899 	};
1900 	int i;
1901 
1902 	memcpy(frm, &param, sizeof(param));
1903 	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1904 	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1905 	*frm++ = 0;					/* reserved field */
1906 	for (i = 0; i < WME_NUM_AC; i++) {
1907 		const struct wmeParams *ac =
1908 		       &wme->wme_bssChanParams.cap_wmeParams[i];
1909 		*frm++ = SM(i, WME_PARAM_ACI)
1910 		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1911 		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1912 		       ;
1913 		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1914 		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1915 		       ;
1916 		ADDSHORT(frm, ac->wmep_txopLimit);
1917 	}
1918 	return frm;
1919 #undef SM
1920 #undef ADDSHORT
1921 }
1922 #undef WME_OUI_BYTES
1923 
1924 /*
1925  * Add an 11h Power Constraint element to a frame.
1926  */
1927 static uint8_t *
1928 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1929 {
1930 	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1931 	/* XXX per-vap tx power limit? */
1932 	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1933 
1934 	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1935 	frm[1] = 1;
1936 	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1937 	return frm + 3;
1938 }
1939 
1940 /*
1941  * Add an 11h Power Capability element to a frame.
1942  */
1943 static uint8_t *
1944 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1945 {
1946 	frm[0] = IEEE80211_ELEMID_PWRCAP;
1947 	frm[1] = 2;
1948 	frm[2] = c->ic_minpower;
1949 	frm[3] = c->ic_maxpower;
1950 	return frm + 4;
1951 }
1952 
1953 /*
1954  * Add an 11h Supported Channels element to a frame.
1955  */
1956 static uint8_t *
1957 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1958 {
1959 	static const int ielen = 26;
1960 
1961 	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1962 	frm[1] = ielen;
1963 	/* XXX not correct */
1964 	memcpy(frm+2, ic->ic_chan_avail, ielen);
1965 	return frm + 2 + ielen;
1966 }
1967 
1968 /*
1969  * Add an 11h Quiet time element to a frame.
1970  */
1971 static uint8_t *
1972 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap)
1973 {
1974 	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
1975 
1976 	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
1977 	quiet->len = 6;
1978 	if (vap->iv_quiet_count_value == 1)
1979 		vap->iv_quiet_count_value = vap->iv_quiet_count;
1980 	else if (vap->iv_quiet_count_value > 1)
1981 		vap->iv_quiet_count_value--;
1982 
1983 	if (vap->iv_quiet_count_value == 0) {
1984 		/* value 0 is reserved as per 802.11h standerd */
1985 		vap->iv_quiet_count_value = 1;
1986 	}
1987 
1988 	quiet->tbttcount = vap->iv_quiet_count_value;
1989 	quiet->period = vap->iv_quiet_period;
1990 	quiet->duration = htole16(vap->iv_quiet_duration);
1991 	quiet->offset = htole16(vap->iv_quiet_offset);
1992 	return frm + sizeof(*quiet);
1993 }
1994 
1995 /*
1996  * Add an 11h Channel Switch Announcement element to a frame.
1997  * Note that we use the per-vap CSA count to adjust the global
1998  * counter so we can use this routine to form probe response
1999  * frames and get the current count.
2000  */
2001 static uint8_t *
2002 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
2003 {
2004 	struct ieee80211com *ic = vap->iv_ic;
2005 	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
2006 
2007 	csa->csa_ie = IEEE80211_ELEMID_CSA;
2008 	csa->csa_len = 3;
2009 	csa->csa_mode = 1;		/* XXX force quiet on channel */
2010 	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
2011 	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
2012 	return frm + sizeof(*csa);
2013 }
2014 
2015 /*
2016  * Add an 11h country information element to a frame.
2017  */
2018 static uint8_t *
2019 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
2020 {
2021 
2022 	if (ic->ic_countryie == NULL ||
2023 	    ic->ic_countryie_chan != ic->ic_bsschan) {
2024 		/*
2025 		 * Handle lazy construction of ie.  This is done on
2026 		 * first use and after a channel change that requires
2027 		 * re-calculation.
2028 		 */
2029 		if (ic->ic_countryie != NULL)
2030 			IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
2031 		ic->ic_countryie = ieee80211_alloc_countryie(ic);
2032 		if (ic->ic_countryie == NULL)
2033 			return frm;
2034 		ic->ic_countryie_chan = ic->ic_bsschan;
2035 	}
2036 	return add_appie(frm, ic->ic_countryie);
2037 }
2038 
2039 uint8_t *
2040 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
2041 {
2042 	if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
2043 		return (add_ie(frm, vap->iv_wpa_ie));
2044 	else {
2045 		/* XXX else complain? */
2046 		return (frm);
2047 	}
2048 }
2049 
2050 uint8_t *
2051 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
2052 {
2053 	if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
2054 		return (add_ie(frm, vap->iv_rsn_ie));
2055 	else {
2056 		/* XXX else complain? */
2057 		return (frm);
2058 	}
2059 }
2060 
2061 uint8_t *
2062 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
2063 {
2064 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
2065 		*frm++ = IEEE80211_ELEMID_QOS;
2066 		*frm++ = 1;
2067 		*frm++ = 0;
2068 	}
2069 
2070 	return (frm);
2071 }
2072 
2073 /*
2074  * Send a probe request frame with the specified ssid
2075  * and any optional information element data.
2076  */
2077 int
2078 ieee80211_send_probereq(struct ieee80211_node *ni,
2079 	const uint8_t sa[IEEE80211_ADDR_LEN],
2080 	const uint8_t da[IEEE80211_ADDR_LEN],
2081 	const uint8_t bssid[IEEE80211_ADDR_LEN],
2082 	const uint8_t *ssid, size_t ssidlen)
2083 {
2084 	struct ieee80211vap *vap = ni->ni_vap;
2085 	struct ieee80211com *ic = ni->ni_ic;
2086 	const struct ieee80211_txparam *tp;
2087 	struct ieee80211_bpf_params params;
2088 	const struct ieee80211_rateset *rs;
2089 	struct mbuf *m;
2090 	uint8_t *frm;
2091 	int ret;
2092 
2093 	if (vap->iv_state == IEEE80211_S_CAC) {
2094 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
2095 		    "block %s frame in CAC state", "probe request");
2096 		vap->iv_stats.is_tx_badstate++;
2097 		return EIO;		/* XXX */
2098 	}
2099 
2100 	/*
2101 	 * Hold a reference on the node so it doesn't go away until after
2102 	 * the xmit is complete all the way in the driver.  On error we
2103 	 * will remove our reference.
2104 	 */
2105 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2106 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2107 		__func__, __LINE__,
2108 		ni, ether_sprintf(ni->ni_macaddr),
2109 		ieee80211_node_refcnt(ni)+1);
2110 	ieee80211_ref_node(ni);
2111 
2112 	/*
2113 	 * prreq frame format
2114 	 *	[tlv] ssid
2115 	 *	[tlv] supported rates
2116 	 *	[tlv] RSN (optional)
2117 	 *	[tlv] extended supported rates
2118 	 *	[tlv] WPA (optional)
2119 	 *	[tlv] user-specified ie's
2120 	 */
2121 	m = ieee80211_getmgtframe(&frm,
2122 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2123 	       	 2 + IEEE80211_NWID_LEN
2124 	       + 2 + IEEE80211_RATE_SIZE
2125 	       + sizeof(struct ieee80211_ie_wpa)
2126 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2127 	       + sizeof(struct ieee80211_ie_wpa)
2128 	       + (vap->iv_appie_probereq != NULL ?
2129 		   vap->iv_appie_probereq->ie_len : 0)
2130 	);
2131 	if (m == NULL) {
2132 		vap->iv_stats.is_tx_nobuf++;
2133 		ieee80211_free_node(ni);
2134 		return ENOMEM;
2135 	}
2136 
2137 	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2138 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2139 	frm = ieee80211_add_rates(frm, rs);
2140 	frm = ieee80211_add_rsn(frm, vap);
2141 	frm = ieee80211_add_xrates(frm, rs);
2142 	frm = ieee80211_add_wpa(frm, vap);
2143 	if (vap->iv_appie_probereq != NULL)
2144 		frm = add_appie(frm, vap->iv_appie_probereq);
2145 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2146 
2147 	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2148 	    ("leading space %zd", M_LEADINGSPACE(m)));
2149 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2150 	if (m == NULL) {
2151 		/* NB: cannot happen */
2152 		ieee80211_free_node(ni);
2153 		return ENOMEM;
2154 	}
2155 
2156 	IEEE80211_TX_LOCK(ic);
2157 	ieee80211_send_setup(ni, m,
2158 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2159 	     IEEE80211_NONQOS_TID, sa, da, bssid);
2160 	/* XXX power management? */
2161 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2162 
2163 	M_WME_SETAC(m, WME_AC_BE);
2164 
2165 	IEEE80211_NODE_STAT(ni, tx_probereq);
2166 	IEEE80211_NODE_STAT(ni, tx_mgmt);
2167 
2168 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2169 	    "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
2170 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
2171 	    ssidlen, ssid);
2172 
2173 	memset(&params, 0, sizeof(params));
2174 	params.ibp_pri = M_WME_GETAC(m);
2175 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2176 	params.ibp_rate0 = tp->mgmtrate;
2177 	if (IEEE80211_IS_MULTICAST(da)) {
2178 		params.ibp_flags |= IEEE80211_BPF_NOACK;
2179 		params.ibp_try0 = 1;
2180 	} else
2181 		params.ibp_try0 = tp->maxretry;
2182 	params.ibp_power = ni->ni_txpower;
2183 	ret = ieee80211_raw_output(vap, ni, m, &params);
2184 	IEEE80211_TX_UNLOCK(ic);
2185 	return (ret);
2186 }
2187 
2188 /*
2189  * Calculate capability information for mgt frames.
2190  */
2191 uint16_t
2192 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2193 {
2194 	struct ieee80211com *ic = vap->iv_ic;
2195 	uint16_t capinfo;
2196 
2197 	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2198 
2199 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2200 		capinfo = IEEE80211_CAPINFO_ESS;
2201 	else if (vap->iv_opmode == IEEE80211_M_IBSS)
2202 		capinfo = IEEE80211_CAPINFO_IBSS;
2203 	else
2204 		capinfo = 0;
2205 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2206 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2207 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2208 	    IEEE80211_IS_CHAN_2GHZ(chan))
2209 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2210 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2211 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2212 	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2213 		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2214 	return capinfo;
2215 }
2216 
2217 /*
2218  * Send a management frame.  The node is for the destination (or ic_bss
2219  * when in station mode).  Nodes other than ic_bss have their reference
2220  * count bumped to reflect our use for an indeterminant time.
2221  */
2222 int
2223 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2224 {
2225 #define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2226 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2227 	struct ieee80211vap *vap = ni->ni_vap;
2228 	struct ieee80211com *ic = ni->ni_ic;
2229 	struct ieee80211_node *bss = vap->iv_bss;
2230 	struct ieee80211_bpf_params params;
2231 	struct mbuf *m;
2232 	uint8_t *frm;
2233 	uint16_t capinfo;
2234 	int has_challenge, is_shared_key, ret, status;
2235 
2236 	KASSERT(ni != NULL, ("null node"));
2237 
2238 	/*
2239 	 * Hold a reference on the node so it doesn't go away until after
2240 	 * the xmit is complete all the way in the driver.  On error we
2241 	 * will remove our reference.
2242 	 */
2243 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2244 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2245 		__func__, __LINE__,
2246 		ni, ether_sprintf(ni->ni_macaddr),
2247 		ieee80211_node_refcnt(ni)+1);
2248 	ieee80211_ref_node(ni);
2249 
2250 	memset(&params, 0, sizeof(params));
2251 	switch (type) {
2252 
2253 	case IEEE80211_FC0_SUBTYPE_AUTH:
2254 		status = arg >> 16;
2255 		arg &= 0xffff;
2256 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2257 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2258 		    ni->ni_challenge != NULL);
2259 
2260 		/*
2261 		 * Deduce whether we're doing open authentication or
2262 		 * shared key authentication.  We do the latter if
2263 		 * we're in the middle of a shared key authentication
2264 		 * handshake or if we're initiating an authentication
2265 		 * request and configured to use shared key.
2266 		 */
2267 		is_shared_key = has_challenge ||
2268 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2269 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2270 		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
2271 
2272 		m = ieee80211_getmgtframe(&frm,
2273 			  ic->ic_headroom + sizeof(struct ieee80211_frame),
2274 			  3 * sizeof(uint16_t)
2275 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2276 				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
2277 		);
2278 		if (m == NULL)
2279 			senderr(ENOMEM, is_tx_nobuf);
2280 
2281 		((uint16_t *)frm)[0] =
2282 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2283 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
2284 		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
2285 		((uint16_t *)frm)[2] = htole16(status);/* status */
2286 
2287 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2288 			((uint16_t *)frm)[3] =
2289 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
2290 			    IEEE80211_ELEMID_CHALLENGE);
2291 			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2292 			    IEEE80211_CHALLENGE_LEN);
2293 			m->m_pkthdr.len = m->m_len =
2294 				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2295 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2296 				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2297 				    "request encrypt frame (%s)", __func__);
2298 				/* mark frame for encryption */
2299 				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2300 			}
2301 		} else
2302 			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2303 
2304 		/* XXX not right for shared key */
2305 		if (status == IEEE80211_STATUS_SUCCESS)
2306 			IEEE80211_NODE_STAT(ni, tx_auth);
2307 		else
2308 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
2309 
2310 		if (vap->iv_opmode == IEEE80211_M_STA)
2311 			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2312 				(void *) vap->iv_state);
2313 		break;
2314 
2315 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2316 		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2317 		    "send station deauthenticate (reason: %d (%s))", arg,
2318 		    ieee80211_reason_to_string(arg));
2319 		m = ieee80211_getmgtframe(&frm,
2320 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2321 			sizeof(uint16_t));
2322 		if (m == NULL)
2323 			senderr(ENOMEM, is_tx_nobuf);
2324 		*(uint16_t *)frm = htole16(arg);	/* reason */
2325 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2326 
2327 		IEEE80211_NODE_STAT(ni, tx_deauth);
2328 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2329 
2330 		ieee80211_node_unauthorize(ni);		/* port closed */
2331 		break;
2332 
2333 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2334 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2335 		/*
2336 		 * asreq frame format
2337 		 *	[2] capability information
2338 		 *	[2] listen interval
2339 		 *	[6*] current AP address (reassoc only)
2340 		 *	[tlv] ssid
2341 		 *	[tlv] supported rates
2342 		 *	[tlv] extended supported rates
2343 		 *	[4] power capability (optional)
2344 		 *	[28] supported channels (optional)
2345 		 *	[tlv] HT capabilities
2346 		 *	[tlv] WME (optional)
2347 		 *	[tlv] Vendor OUI HT capabilities (optional)
2348 		 *	[tlv] Atheros capabilities (if negotiated)
2349 		 *	[tlv] AppIE's (optional)
2350 		 */
2351 		m = ieee80211_getmgtframe(&frm,
2352 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2353 			 sizeof(uint16_t)
2354 		       + sizeof(uint16_t)
2355 		       + IEEE80211_ADDR_LEN
2356 		       + 2 + IEEE80211_NWID_LEN
2357 		       + 2 + IEEE80211_RATE_SIZE
2358 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2359 		       + 4
2360 		       + 2 + 26
2361 		       + sizeof(struct ieee80211_wme_info)
2362 		       + sizeof(struct ieee80211_ie_htcap)
2363 		       + 4 + sizeof(struct ieee80211_ie_htcap)
2364 #ifdef IEEE80211_SUPPORT_SUPERG
2365 		       + sizeof(struct ieee80211_ath_ie)
2366 #endif
2367 		       + (vap->iv_appie_wpa != NULL ?
2368 				vap->iv_appie_wpa->ie_len : 0)
2369 		       + (vap->iv_appie_assocreq != NULL ?
2370 				vap->iv_appie_assocreq->ie_len : 0)
2371 		);
2372 		if (m == NULL)
2373 			senderr(ENOMEM, is_tx_nobuf);
2374 
2375 		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2376 		    ("wrong mode %u", vap->iv_opmode));
2377 		capinfo = IEEE80211_CAPINFO_ESS;
2378 		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2379 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2380 		/*
2381 		 * NB: Some 11a AP's reject the request when
2382 		 *     short premable is set.
2383 		 */
2384 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2385 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2386 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2387 		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2388 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2389 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2390 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2391 		    (vap->iv_flags & IEEE80211_F_DOTH))
2392 			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2393 		*(uint16_t *)frm = htole16(capinfo);
2394 		frm += 2;
2395 
2396 		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2397 		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2398 						    bss->ni_intval));
2399 		frm += 2;
2400 
2401 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2402 			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2403 			frm += IEEE80211_ADDR_LEN;
2404 		}
2405 
2406 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2407 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2408 		frm = ieee80211_add_rsn(frm, vap);
2409 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2410 		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2411 			frm = ieee80211_add_powercapability(frm,
2412 			    ic->ic_curchan);
2413 			frm = ieee80211_add_supportedchannels(frm, ic);
2414 		}
2415 
2416 		/*
2417 		 * Check the channel - we may be using an 11n NIC with an
2418 		 * 11n capable station, but we're configured to be an 11b
2419 		 * channel.
2420 		 */
2421 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2422 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2423 		    ni->ni_ies.htcap_ie != NULL &&
2424 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
2425 			frm = ieee80211_add_htcap(frm, ni);
2426 		}
2427 		frm = ieee80211_add_wpa(frm, vap);
2428 		if ((ic->ic_flags & IEEE80211_F_WME) &&
2429 		    ni->ni_ies.wme_ie != NULL)
2430 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2431 
2432 		/*
2433 		 * Same deal - only send HT info if we're on an 11n
2434 		 * capable channel.
2435 		 */
2436 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2437 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2438 		    ni->ni_ies.htcap_ie != NULL &&
2439 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
2440 			frm = ieee80211_add_htcap_vendor(frm, ni);
2441 		}
2442 #ifdef IEEE80211_SUPPORT_SUPERG
2443 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2444 			frm = ieee80211_add_ath(frm,
2445 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2446 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2447 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2448 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2449 		}
2450 #endif /* IEEE80211_SUPPORT_SUPERG */
2451 		if (vap->iv_appie_assocreq != NULL)
2452 			frm = add_appie(frm, vap->iv_appie_assocreq);
2453 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2454 
2455 		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2456 			(void *) vap->iv_state);
2457 		break;
2458 
2459 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2460 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2461 		/*
2462 		 * asresp frame format
2463 		 *	[2] capability information
2464 		 *	[2] status
2465 		 *	[2] association ID
2466 		 *	[tlv] supported rates
2467 		 *	[tlv] extended supported rates
2468 		 *	[tlv] HT capabilities (standard, if STA enabled)
2469 		 *	[tlv] HT information (standard, if STA enabled)
2470 		 *	[tlv] WME (if configured and STA enabled)
2471 		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2472 		 *	[tlv] HT information (vendor OUI, if STA enabled)
2473 		 *	[tlv] Atheros capabilities (if STA enabled)
2474 		 *	[tlv] AppIE's (optional)
2475 		 */
2476 		m = ieee80211_getmgtframe(&frm,
2477 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2478 			 sizeof(uint16_t)
2479 		       + sizeof(uint16_t)
2480 		       + sizeof(uint16_t)
2481 		       + 2 + IEEE80211_RATE_SIZE
2482 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2483 		       + sizeof(struct ieee80211_ie_htcap) + 4
2484 		       + sizeof(struct ieee80211_ie_htinfo) + 4
2485 		       + sizeof(struct ieee80211_wme_param)
2486 #ifdef IEEE80211_SUPPORT_SUPERG
2487 		       + sizeof(struct ieee80211_ath_ie)
2488 #endif
2489 		       + (vap->iv_appie_assocresp != NULL ?
2490 				vap->iv_appie_assocresp->ie_len : 0)
2491 		);
2492 		if (m == NULL)
2493 			senderr(ENOMEM, is_tx_nobuf);
2494 
2495 		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2496 		*(uint16_t *)frm = htole16(capinfo);
2497 		frm += 2;
2498 
2499 		*(uint16_t *)frm = htole16(arg);	/* status */
2500 		frm += 2;
2501 
2502 		if (arg == IEEE80211_STATUS_SUCCESS) {
2503 			*(uint16_t *)frm = htole16(ni->ni_associd);
2504 			IEEE80211_NODE_STAT(ni, tx_assoc);
2505 		} else
2506 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2507 		frm += 2;
2508 
2509 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2510 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2511 		/* NB: respond according to what we received */
2512 		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2513 			frm = ieee80211_add_htcap(frm, ni);
2514 			frm = ieee80211_add_htinfo(frm, ni);
2515 		}
2516 		if ((vap->iv_flags & IEEE80211_F_WME) &&
2517 		    ni->ni_ies.wme_ie != NULL)
2518 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2519 		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2520 			frm = ieee80211_add_htcap_vendor(frm, ni);
2521 			frm = ieee80211_add_htinfo_vendor(frm, ni);
2522 		}
2523 #ifdef IEEE80211_SUPPORT_SUPERG
2524 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2525 			frm = ieee80211_add_ath(frm,
2526 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2527 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2528 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2529 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2530 #endif /* IEEE80211_SUPPORT_SUPERG */
2531 		if (vap->iv_appie_assocresp != NULL)
2532 			frm = add_appie(frm, vap->iv_appie_assocresp);
2533 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2534 		break;
2535 
2536 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2537 		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2538 		    "send station disassociate (reason: %d (%s))", arg,
2539 		    ieee80211_reason_to_string(arg));
2540 		m = ieee80211_getmgtframe(&frm,
2541 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2542 			sizeof(uint16_t));
2543 		if (m == NULL)
2544 			senderr(ENOMEM, is_tx_nobuf);
2545 		*(uint16_t *)frm = htole16(arg);	/* reason */
2546 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2547 
2548 		IEEE80211_NODE_STAT(ni, tx_disassoc);
2549 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2550 		break;
2551 
2552 	default:
2553 		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2554 		    "invalid mgmt frame type %u", type);
2555 		senderr(EINVAL, is_tx_unknownmgt);
2556 		/* NOTREACHED */
2557 	}
2558 
2559 	/* NB: force non-ProbeResp frames to the highest queue */
2560 	params.ibp_pri = WME_AC_VO;
2561 	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2562 	/* NB: we know all frames are unicast */
2563 	params.ibp_try0 = bss->ni_txparms->maxretry;
2564 	params.ibp_power = bss->ni_txpower;
2565 	return ieee80211_mgmt_output(ni, m, type, &params);
2566 bad:
2567 	ieee80211_free_node(ni);
2568 	return ret;
2569 #undef senderr
2570 #undef HTFLAGS
2571 }
2572 
2573 /*
2574  * Return an mbuf with a probe response frame in it.
2575  * Space is left to prepend and 802.11 header at the
2576  * front but it's left to the caller to fill in.
2577  */
2578 struct mbuf *
2579 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2580 {
2581 	struct ieee80211vap *vap = bss->ni_vap;
2582 	struct ieee80211com *ic = bss->ni_ic;
2583 	const struct ieee80211_rateset *rs;
2584 	struct mbuf *m;
2585 	uint16_t capinfo;
2586 	uint8_t *frm;
2587 
2588 	/*
2589 	 * probe response frame format
2590 	 *	[8] time stamp
2591 	 *	[2] beacon interval
2592 	 *	[2] cabability information
2593 	 *	[tlv] ssid
2594 	 *	[tlv] supported rates
2595 	 *	[tlv] parameter set (FH/DS)
2596 	 *	[tlv] parameter set (IBSS)
2597 	 *	[tlv] country (optional)
2598 	 *	[3] power control (optional)
2599 	 *	[5] channel switch announcement (CSA) (optional)
2600 	 *	[tlv] extended rate phy (ERP)
2601 	 *	[tlv] extended supported rates
2602 	 *	[tlv] RSN (optional)
2603 	 *	[tlv] HT capabilities
2604 	 *	[tlv] HT information
2605 	 *	[tlv] WPA (optional)
2606 	 *	[tlv] WME (optional)
2607 	 *	[tlv] Vendor OUI HT capabilities (optional)
2608 	 *	[tlv] Vendor OUI HT information (optional)
2609 	 *	[tlv] Atheros capabilities
2610 	 *	[tlv] AppIE's (optional)
2611 	 *	[tlv] Mesh ID (MBSS)
2612 	 *	[tlv] Mesh Conf (MBSS)
2613 	 */
2614 	m = ieee80211_getmgtframe(&frm,
2615 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2616 		 8
2617 	       + sizeof(uint16_t)
2618 	       + sizeof(uint16_t)
2619 	       + 2 + IEEE80211_NWID_LEN
2620 	       + 2 + IEEE80211_RATE_SIZE
2621 	       + 7	/* max(7,3) */
2622 	       + IEEE80211_COUNTRY_MAX_SIZE
2623 	       + 3
2624 	       + sizeof(struct ieee80211_csa_ie)
2625 	       + sizeof(struct ieee80211_quiet_ie)
2626 	       + 3
2627 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2628 	       + sizeof(struct ieee80211_ie_wpa)
2629 	       + sizeof(struct ieee80211_ie_htcap)
2630 	       + sizeof(struct ieee80211_ie_htinfo)
2631 	       + sizeof(struct ieee80211_ie_wpa)
2632 	       + sizeof(struct ieee80211_wme_param)
2633 	       + 4 + sizeof(struct ieee80211_ie_htcap)
2634 	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2635 #ifdef IEEE80211_SUPPORT_SUPERG
2636 	       + sizeof(struct ieee80211_ath_ie)
2637 #endif
2638 #ifdef IEEE80211_SUPPORT_MESH
2639 	       + 2 + IEEE80211_MESHID_LEN
2640 	       + sizeof(struct ieee80211_meshconf_ie)
2641 #endif
2642 	       + (vap->iv_appie_proberesp != NULL ?
2643 			vap->iv_appie_proberesp->ie_len : 0)
2644 	);
2645 	if (m == NULL) {
2646 		vap->iv_stats.is_tx_nobuf++;
2647 		return NULL;
2648 	}
2649 
2650 	memset(frm, 0, 8);	/* timestamp should be filled later */
2651 	frm += 8;
2652 	*(uint16_t *)frm = htole16(bss->ni_intval);
2653 	frm += 2;
2654 	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2655 	*(uint16_t *)frm = htole16(capinfo);
2656 	frm += 2;
2657 
2658 	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2659 	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2660 	frm = ieee80211_add_rates(frm, rs);
2661 
2662 	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2663 		*frm++ = IEEE80211_ELEMID_FHPARMS;
2664 		*frm++ = 5;
2665 		*frm++ = bss->ni_fhdwell & 0x00ff;
2666 		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2667 		*frm++ = IEEE80211_FH_CHANSET(
2668 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2669 		*frm++ = IEEE80211_FH_CHANPAT(
2670 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2671 		*frm++ = bss->ni_fhindex;
2672 	} else {
2673 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2674 		*frm++ = 1;
2675 		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2676 	}
2677 
2678 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2679 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2680 		*frm++ = 2;
2681 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2682 	}
2683 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2684 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2685 		frm = ieee80211_add_countryie(frm, ic);
2686 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2687 		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2688 			frm = ieee80211_add_powerconstraint(frm, vap);
2689 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2690 			frm = ieee80211_add_csa(frm, vap);
2691 	}
2692 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2693 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2694 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2695 			if (vap->iv_quiet)
2696 				frm = ieee80211_add_quiet(frm, vap);
2697 		}
2698 	}
2699 	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2700 		frm = ieee80211_add_erp(frm, ic);
2701 	frm = ieee80211_add_xrates(frm, rs);
2702 	frm = ieee80211_add_rsn(frm, vap);
2703 	/*
2704 	 * NB: legacy 11b clients do not get certain ie's.
2705 	 *     The caller identifies such clients by passing
2706 	 *     a token in legacy to us.  Could expand this to be
2707 	 *     any legacy client for stuff like HT ie's.
2708 	 */
2709 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2710 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2711 		frm = ieee80211_add_htcap(frm, bss);
2712 		frm = ieee80211_add_htinfo(frm, bss);
2713 	}
2714 	frm = ieee80211_add_wpa(frm, vap);
2715 	if (vap->iv_flags & IEEE80211_F_WME)
2716 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2717 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2718 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
2719 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2720 		frm = ieee80211_add_htcap_vendor(frm, bss);
2721 		frm = ieee80211_add_htinfo_vendor(frm, bss);
2722 	}
2723 #ifdef IEEE80211_SUPPORT_SUPERG
2724 	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
2725 	    legacy != IEEE80211_SEND_LEGACY_11B)
2726 		frm = ieee80211_add_athcaps(frm, bss);
2727 #endif
2728 	if (vap->iv_appie_proberesp != NULL)
2729 		frm = add_appie(frm, vap->iv_appie_proberesp);
2730 #ifdef IEEE80211_SUPPORT_MESH
2731 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2732 		frm = ieee80211_add_meshid(frm, vap);
2733 		frm = ieee80211_add_meshconf(frm, vap);
2734 	}
2735 #endif
2736 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2737 
2738 	return m;
2739 }
2740 
2741 /*
2742  * Send a probe response frame to the specified mac address.
2743  * This does not go through the normal mgt frame api so we
2744  * can specify the destination address and re-use the bss node
2745  * for the sta reference.
2746  */
2747 int
2748 ieee80211_send_proberesp(struct ieee80211vap *vap,
2749 	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2750 {
2751 	struct ieee80211_node *bss = vap->iv_bss;
2752 	struct ieee80211com *ic = vap->iv_ic;
2753 	struct mbuf *m;
2754 	int ret;
2755 
2756 	if (vap->iv_state == IEEE80211_S_CAC) {
2757 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2758 		    "block %s frame in CAC state", "probe response");
2759 		vap->iv_stats.is_tx_badstate++;
2760 		return EIO;		/* XXX */
2761 	}
2762 
2763 	/*
2764 	 * Hold a reference on the node so it doesn't go away until after
2765 	 * the xmit is complete all the way in the driver.  On error we
2766 	 * will remove our reference.
2767 	 */
2768 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2769 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2770 	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2771 	    ieee80211_node_refcnt(bss)+1);
2772 	ieee80211_ref_node(bss);
2773 
2774 	m = ieee80211_alloc_proberesp(bss, legacy);
2775 	if (m == NULL) {
2776 		ieee80211_free_node(bss);
2777 		return ENOMEM;
2778 	}
2779 
2780 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2781 	KASSERT(m != NULL, ("no room for header"));
2782 
2783 	IEEE80211_TX_LOCK(ic);
2784 	ieee80211_send_setup(bss, m,
2785 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2786 	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2787 	/* XXX power management? */
2788 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2789 
2790 	M_WME_SETAC(m, WME_AC_BE);
2791 
2792 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2793 	    "send probe resp on channel %u to %s%s\n",
2794 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2795 	    legacy ? " <legacy>" : "");
2796 	IEEE80211_NODE_STAT(bss, tx_mgmt);
2797 
2798 	ret = ieee80211_raw_output(vap, bss, m, NULL);
2799 	IEEE80211_TX_UNLOCK(ic);
2800 	return (ret);
2801 }
2802 
2803 /*
2804  * Allocate and build a RTS (Request To Send) control frame.
2805  */
2806 struct mbuf *
2807 ieee80211_alloc_rts(struct ieee80211com *ic,
2808 	const uint8_t ra[IEEE80211_ADDR_LEN],
2809 	const uint8_t ta[IEEE80211_ADDR_LEN],
2810 	uint16_t dur)
2811 {
2812 	struct ieee80211_frame_rts *rts;
2813 	struct mbuf *m;
2814 
2815 	/* XXX honor ic_headroom */
2816 	m = m_gethdr(M_NOWAIT, MT_DATA);
2817 	if (m != NULL) {
2818 		rts = mtod(m, struct ieee80211_frame_rts *);
2819 		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2820 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2821 		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2822 		*(u_int16_t *)rts->i_dur = htole16(dur);
2823 		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2824 		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2825 
2826 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2827 	}
2828 	return m;
2829 }
2830 
2831 /*
2832  * Allocate and build a CTS (Clear To Send) control frame.
2833  */
2834 struct mbuf *
2835 ieee80211_alloc_cts(struct ieee80211com *ic,
2836 	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2837 {
2838 	struct ieee80211_frame_cts *cts;
2839 	struct mbuf *m;
2840 
2841 	/* XXX honor ic_headroom */
2842 	m = m_gethdr(M_NOWAIT, MT_DATA);
2843 	if (m != NULL) {
2844 		cts = mtod(m, struct ieee80211_frame_cts *);
2845 		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2846 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2847 		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2848 		*(u_int16_t *)cts->i_dur = htole16(dur);
2849 		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2850 
2851 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2852 	}
2853 	return m;
2854 }
2855 
2856 static void
2857 ieee80211_tx_mgt_timeout(void *arg)
2858 {
2859 	struct ieee80211vap *vap = arg;
2860 
2861 	IEEE80211_LOCK(vap->iv_ic);
2862 	if (vap->iv_state != IEEE80211_S_INIT &&
2863 	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2864 		/*
2865 		 * NB: it's safe to specify a timeout as the reason here;
2866 		 *     it'll only be used in the right state.
2867 		 */
2868 		ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
2869 			IEEE80211_SCAN_FAIL_TIMEOUT);
2870 	}
2871 	IEEE80211_UNLOCK(vap->iv_ic);
2872 }
2873 
2874 /*
2875  * This is the callback set on net80211-sourced transmitted
2876  * authentication request frames.
2877  *
2878  * This does a couple of things:
2879  *
2880  * + If the frame transmitted was a success, it schedules a future
2881  *   event which will transition the interface to scan.
2882  *   If a state transition _then_ occurs before that event occurs,
2883  *   said state transition will cancel this callout.
2884  *
2885  * + If the frame transmit was a failure, it immediately schedules
2886  *   the transition back to scan.
2887  */
2888 static void
2889 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2890 {
2891 	struct ieee80211vap *vap = ni->ni_vap;
2892 	enum ieee80211_state ostate = (enum ieee80211_state) arg;
2893 
2894 	/*
2895 	 * Frame transmit completed; arrange timer callback.  If
2896 	 * transmit was successfully we wait for response.  Otherwise
2897 	 * we arrange an immediate callback instead of doing the
2898 	 * callback directly since we don't know what state the driver
2899 	 * is in (e.g. what locks it is holding).  This work should
2900 	 * not be too time-critical and not happen too often so the
2901 	 * added overhead is acceptable.
2902 	 *
2903 	 * XXX what happens if !acked but response shows up before callback?
2904 	 */
2905 	if (vap->iv_state == ostate) {
2906 		callout_reset(&vap->iv_mgtsend,
2907 			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2908 			ieee80211_tx_mgt_timeout, vap);
2909 	}
2910 }
2911 
2912 static void
2913 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2914 	struct ieee80211_node *ni)
2915 {
2916 	struct ieee80211vap *vap = ni->ni_vap;
2917 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
2918 	struct ieee80211com *ic = ni->ni_ic;
2919 	struct ieee80211_rateset *rs = &ni->ni_rates;
2920 	uint16_t capinfo;
2921 
2922 	/*
2923 	 * beacon frame format
2924 	 *	[8] time stamp
2925 	 *	[2] beacon interval
2926 	 *	[2] cabability information
2927 	 *	[tlv] ssid
2928 	 *	[tlv] supported rates
2929 	 *	[3] parameter set (DS)
2930 	 *	[8] CF parameter set (optional)
2931 	 *	[tlv] parameter set (IBSS/TIM)
2932 	 *	[tlv] country (optional)
2933 	 *	[3] power control (optional)
2934 	 *	[5] channel switch announcement (CSA) (optional)
2935 	 *	[tlv] extended rate phy (ERP)
2936 	 *	[tlv] extended supported rates
2937 	 *	[tlv] RSN parameters
2938 	 *	[tlv] HT capabilities
2939 	 *	[tlv] HT information
2940 	 * XXX Vendor-specific OIDs (e.g. Atheros)
2941 	 *	[tlv] WPA parameters
2942 	 *	[tlv] WME parameters
2943 	 *	[tlv] Vendor OUI HT capabilities (optional)
2944 	 *	[tlv] Vendor OUI HT information (optional)
2945 	 *	[tlv] Atheros capabilities (optional)
2946 	 *	[tlv] TDMA parameters (optional)
2947 	 *	[tlv] Mesh ID (MBSS)
2948 	 *	[tlv] Mesh Conf (MBSS)
2949 	 *	[tlv] application data (optional)
2950 	 */
2951 
2952 	memset(bo, 0, sizeof(*bo));
2953 
2954 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
2955 	frm += 8;
2956 	*(uint16_t *)frm = htole16(ni->ni_intval);
2957 	frm += 2;
2958 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
2959 	bo->bo_caps = (uint16_t *)frm;
2960 	*(uint16_t *)frm = htole16(capinfo);
2961 	frm += 2;
2962 	*frm++ = IEEE80211_ELEMID_SSID;
2963 	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2964 		*frm++ = ni->ni_esslen;
2965 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
2966 		frm += ni->ni_esslen;
2967 	} else
2968 		*frm++ = 0;
2969 	frm = ieee80211_add_rates(frm, rs);
2970 	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2971 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2972 		*frm++ = 1;
2973 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2974 	}
2975 	if (ic->ic_flags & IEEE80211_F_PCF) {
2976 		bo->bo_cfp = frm;
2977 		frm = ieee80211_add_cfparms(frm, ic);
2978 	}
2979 	bo->bo_tim = frm;
2980 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2981 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2982 		*frm++ = 2;
2983 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2984 		bo->bo_tim_len = 0;
2985 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2986 	    vap->iv_opmode == IEEE80211_M_MBSS) {
2987 		/* TIM IE is the same for Mesh and Hostap */
2988 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2989 
2990 		tie->tim_ie = IEEE80211_ELEMID_TIM;
2991 		tie->tim_len = 4;	/* length */
2992 		tie->tim_count = 0;	/* DTIM count */
2993 		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
2994 		tie->tim_bitctl = 0;	/* bitmap control */
2995 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
2996 		frm += sizeof(struct ieee80211_tim_ie);
2997 		bo->bo_tim_len = 1;
2998 	}
2999 	bo->bo_tim_trailer = frm;
3000 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3001 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3002 		frm = ieee80211_add_countryie(frm, ic);
3003 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3004 		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
3005 			frm = ieee80211_add_powerconstraint(frm, vap);
3006 		bo->bo_csa = frm;
3007 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3008 			frm = ieee80211_add_csa(frm, vap);
3009 	} else
3010 		bo->bo_csa = frm;
3011 
3012 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3013 		bo->bo_quiet = frm;
3014 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3015 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
3016 			if (vap->iv_quiet)
3017 				frm = ieee80211_add_quiet(frm,vap);
3018 		}
3019 	} else
3020 		bo->bo_quiet = frm;
3021 
3022 	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
3023 		bo->bo_erp = frm;
3024 		frm = ieee80211_add_erp(frm, ic);
3025 	}
3026 	frm = ieee80211_add_xrates(frm, rs);
3027 	frm = ieee80211_add_rsn(frm, vap);
3028 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
3029 		frm = ieee80211_add_htcap(frm, ni);
3030 		bo->bo_htinfo = frm;
3031 		frm = ieee80211_add_htinfo(frm, ni);
3032 	}
3033 	frm = ieee80211_add_wpa(frm, vap);
3034 	if (vap->iv_flags & IEEE80211_F_WME) {
3035 		bo->bo_wme = frm;
3036 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
3037 	}
3038 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
3039 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
3040 		frm = ieee80211_add_htcap_vendor(frm, ni);
3041 		frm = ieee80211_add_htinfo_vendor(frm, ni);
3042 	}
3043 #ifdef IEEE80211_SUPPORT_SUPERG
3044 	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
3045 		bo->bo_ath = frm;
3046 		frm = ieee80211_add_athcaps(frm, ni);
3047 	}
3048 #endif
3049 #ifdef IEEE80211_SUPPORT_TDMA
3050 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3051 		bo->bo_tdma = frm;
3052 		frm = ieee80211_add_tdma(frm, vap);
3053 	}
3054 #endif
3055 	if (vap->iv_appie_beacon != NULL) {
3056 		bo->bo_appie = frm;
3057 		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
3058 		frm = add_appie(frm, vap->iv_appie_beacon);
3059 	}
3060 #ifdef IEEE80211_SUPPORT_MESH
3061 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3062 		frm = ieee80211_add_meshid(frm, vap);
3063 		bo->bo_meshconf = frm;
3064 		frm = ieee80211_add_meshconf(frm, vap);
3065 	}
3066 #endif
3067 	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
3068 	bo->bo_csa_trailer_len = frm - bo->bo_csa;
3069 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3070 }
3071 
3072 /*
3073  * Allocate a beacon frame and fillin the appropriate bits.
3074  */
3075 struct mbuf *
3076 ieee80211_beacon_alloc(struct ieee80211_node *ni)
3077 {
3078 	struct ieee80211vap *vap = ni->ni_vap;
3079 	struct ieee80211com *ic = ni->ni_ic;
3080 	struct ifnet *ifp = vap->iv_ifp;
3081 	struct ieee80211_frame *wh;
3082 	struct mbuf *m;
3083 	int pktlen;
3084 	uint8_t *frm;
3085 
3086 	/*
3087 	 * beacon frame format
3088 	 *	[8] time stamp
3089 	 *	[2] beacon interval
3090 	 *	[2] cabability information
3091 	 *	[tlv] ssid
3092 	 *	[tlv] supported rates
3093 	 *	[3] parameter set (DS)
3094 	 *	[8] CF parameter set (optional)
3095 	 *	[tlv] parameter set (IBSS/TIM)
3096 	 *	[tlv] country (optional)
3097 	 *	[3] power control (optional)
3098 	 *	[5] channel switch announcement (CSA) (optional)
3099 	 *	[tlv] extended rate phy (ERP)
3100 	 *	[tlv] extended supported rates
3101 	 *	[tlv] RSN parameters
3102 	 *	[tlv] HT capabilities
3103 	 *	[tlv] HT information
3104 	 *	[tlv] Vendor OUI HT capabilities (optional)
3105 	 *	[tlv] Vendor OUI HT information (optional)
3106 	 * XXX Vendor-specific OIDs (e.g. Atheros)
3107 	 *	[tlv] WPA parameters
3108 	 *	[tlv] WME parameters
3109 	 *	[tlv] TDMA parameters (optional)
3110 	 *	[tlv] Mesh ID (MBSS)
3111 	 *	[tlv] Mesh Conf (MBSS)
3112 	 *	[tlv] application data (optional)
3113 	 * NB: we allocate the max space required for the TIM bitmap.
3114 	 * XXX how big is this?
3115 	 */
3116 	pktlen =   8					/* time stamp */
3117 		 + sizeof(uint16_t)			/* beacon interval */
3118 		 + sizeof(uint16_t)			/* capabilities */
3119 		 + 2 + ni->ni_esslen			/* ssid */
3120 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
3121 	         + 2 + 1				/* DS parameters */
3122 		 + 2 + 6				/* CF parameters */
3123 		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
3124 		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
3125 		 + 2 + 1				/* power control */
3126 		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
3127 		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
3128 		 + 2 + 1				/* ERP */
3129 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3130 		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
3131 			2*sizeof(struct ieee80211_ie_wpa) : 0)
3132 		 /* XXX conditional? */
3133 		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3134 		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3135 		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
3136 			sizeof(struct ieee80211_wme_param) : 0)
3137 #ifdef IEEE80211_SUPPORT_SUPERG
3138 		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
3139 #endif
3140 #ifdef IEEE80211_SUPPORT_TDMA
3141 		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
3142 			sizeof(struct ieee80211_tdma_param) : 0)
3143 #endif
3144 #ifdef IEEE80211_SUPPORT_MESH
3145 		 + 2 + ni->ni_meshidlen
3146 		 + sizeof(struct ieee80211_meshconf_ie)
3147 #endif
3148 		 + IEEE80211_MAX_APPIE
3149 		 ;
3150 	m = ieee80211_getmgtframe(&frm,
3151 		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3152 	if (m == NULL) {
3153 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3154 			"%s: cannot get buf; size %u\n", __func__, pktlen);
3155 		vap->iv_stats.is_tx_nobuf++;
3156 		return NULL;
3157 	}
3158 	ieee80211_beacon_construct(m, frm, ni);
3159 
3160 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
3161 	KASSERT(m != NULL, ("no space for 802.11 header?"));
3162 	wh = mtod(m, struct ieee80211_frame *);
3163 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3164 	    IEEE80211_FC0_SUBTYPE_BEACON;
3165 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3166 	*(uint16_t *)wh->i_dur = 0;
3167 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3168 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3169 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3170 	*(uint16_t *)wh->i_seq = 0;
3171 
3172 	return m;
3173 }
3174 
3175 /*
3176  * Update the dynamic parts of a beacon frame based on the current state.
3177  */
3178 int
3179 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast)
3180 {
3181 	struct ieee80211vap *vap = ni->ni_vap;
3182 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3183 	struct ieee80211com *ic = ni->ni_ic;
3184 	int len_changed = 0;
3185 	uint16_t capinfo;
3186 	struct ieee80211_frame *wh;
3187 	ieee80211_seq seqno;
3188 
3189 	IEEE80211_LOCK(ic);
3190 	/*
3191 	 * Handle 11h channel change when we've reached the count.
3192 	 * We must recalculate the beacon frame contents to account
3193 	 * for the new channel.  Note we do this only for the first
3194 	 * vap that reaches this point; subsequent vaps just update
3195 	 * their beacon state to reflect the recalculated channel.
3196 	 */
3197 	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3198 	    vap->iv_csa_count == ic->ic_csa_count) {
3199 		vap->iv_csa_count = 0;
3200 		/*
3201 		 * Effect channel change before reconstructing the beacon
3202 		 * frame contents as many places reference ni_chan.
3203 		 */
3204 		if (ic->ic_csa_newchan != NULL)
3205 			ieee80211_csa_completeswitch(ic);
3206 		/*
3207 		 * NB: ieee80211_beacon_construct clears all pending
3208 		 * updates in bo_flags so we don't need to explicitly
3209 		 * clear IEEE80211_BEACON_CSA.
3210 		 */
3211 		ieee80211_beacon_construct(m,
3212 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3213 
3214 		/* XXX do WME aggressive mode processing? */
3215 		IEEE80211_UNLOCK(ic);
3216 		return 1;		/* just assume length changed */
3217 	}
3218 
3219 	wh = mtod(m, struct ieee80211_frame *);
3220 	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3221 	*(uint16_t *)&wh->i_seq[0] =
3222 		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3223 	M_SEQNO_SET(m, seqno);
3224 
3225 	/* XXX faster to recalculate entirely or just changes? */
3226 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3227 	*bo->bo_caps = htole16(capinfo);
3228 
3229 	if (vap->iv_flags & IEEE80211_F_WME) {
3230 		struct ieee80211_wme_state *wme = &ic->ic_wme;
3231 
3232 		/*
3233 		 * Check for aggressive mode change.  When there is
3234 		 * significant high priority traffic in the BSS
3235 		 * throttle back BE traffic by using conservative
3236 		 * parameters.  Otherwise BE uses aggressive params
3237 		 * to optimize performance of legacy/non-QoS traffic.
3238 		 */
3239 		if (wme->wme_flags & WME_F_AGGRMODE) {
3240 			if (wme->wme_hipri_traffic >
3241 			    wme->wme_hipri_switch_thresh) {
3242 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3243 				    "%s: traffic %u, disable aggressive mode\n",
3244 				    __func__, wme->wme_hipri_traffic);
3245 				wme->wme_flags &= ~WME_F_AGGRMODE;
3246 				ieee80211_wme_updateparams_locked(vap);
3247 				wme->wme_hipri_traffic =
3248 					wme->wme_hipri_switch_hysteresis;
3249 			} else
3250 				wme->wme_hipri_traffic = 0;
3251 		} else {
3252 			if (wme->wme_hipri_traffic <=
3253 			    wme->wme_hipri_switch_thresh) {
3254 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3255 				    "%s: traffic %u, enable aggressive mode\n",
3256 				    __func__, wme->wme_hipri_traffic);
3257 				wme->wme_flags |= WME_F_AGGRMODE;
3258 				ieee80211_wme_updateparams_locked(vap);
3259 				wme->wme_hipri_traffic = 0;
3260 			} else
3261 				wme->wme_hipri_traffic =
3262 					wme->wme_hipri_switch_hysteresis;
3263 		}
3264 		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3265 			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
3266 			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3267 		}
3268 	}
3269 
3270 	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
3271 		ieee80211_ht_update_beacon(vap, bo);
3272 		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3273 	}
3274 #ifdef IEEE80211_SUPPORT_TDMA
3275 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3276 		/*
3277 		 * NB: the beacon is potentially updated every TBTT.
3278 		 */
3279 		ieee80211_tdma_update_beacon(vap, bo);
3280 	}
3281 #endif
3282 #ifdef IEEE80211_SUPPORT_MESH
3283 	if (vap->iv_opmode == IEEE80211_M_MBSS)
3284 		ieee80211_mesh_update_beacon(vap, bo);
3285 #endif
3286 
3287 	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3288 	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
3289 		struct ieee80211_tim_ie *tie =
3290 			(struct ieee80211_tim_ie *) bo->bo_tim;
3291 		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3292 			u_int timlen, timoff, i;
3293 			/*
3294 			 * ATIM/DTIM needs updating.  If it fits in the
3295 			 * current space allocated then just copy in the
3296 			 * new bits.  Otherwise we need to move any trailing
3297 			 * data to make room.  Note that we know there is
3298 			 * contiguous space because ieee80211_beacon_allocate
3299 			 * insures there is space in the mbuf to write a
3300 			 * maximal-size virtual bitmap (based on iv_max_aid).
3301 			 */
3302 			/*
3303 			 * Calculate the bitmap size and offset, copy any
3304 			 * trailer out of the way, and then copy in the
3305 			 * new bitmap and update the information element.
3306 			 * Note that the tim bitmap must contain at least
3307 			 * one byte and any offset must be even.
3308 			 */
3309 			if (vap->iv_ps_pending != 0) {
3310 				timoff = 128;		/* impossibly large */
3311 				for (i = 0; i < vap->iv_tim_len; i++)
3312 					if (vap->iv_tim_bitmap[i]) {
3313 						timoff = i &~ 1;
3314 						break;
3315 					}
3316 				KASSERT(timoff != 128, ("tim bitmap empty!"));
3317 				for (i = vap->iv_tim_len-1; i >= timoff; i--)
3318 					if (vap->iv_tim_bitmap[i])
3319 						break;
3320 				timlen = 1 + (i - timoff);
3321 			} else {
3322 				timoff = 0;
3323 				timlen = 1;
3324 			}
3325 			if (timlen != bo->bo_tim_len) {
3326 				/* copy up/down trailer */
3327 				int adjust = tie->tim_bitmap+timlen
3328 					   - bo->bo_tim_trailer;
3329 				ovbcopy(bo->bo_tim_trailer,
3330 				    bo->bo_tim_trailer+adjust,
3331 				    bo->bo_tim_trailer_len);
3332 				bo->bo_tim_trailer += adjust;
3333 				bo->bo_erp += adjust;
3334 				bo->bo_htinfo += adjust;
3335 #ifdef IEEE80211_SUPPORT_SUPERG
3336 				bo->bo_ath += adjust;
3337 #endif
3338 #ifdef IEEE80211_SUPPORT_TDMA
3339 				bo->bo_tdma += adjust;
3340 #endif
3341 #ifdef IEEE80211_SUPPORT_MESH
3342 				bo->bo_meshconf += adjust;
3343 #endif
3344 				bo->bo_appie += adjust;
3345 				bo->bo_wme += adjust;
3346 				bo->bo_csa += adjust;
3347 				bo->bo_quiet += adjust;
3348 				bo->bo_tim_len = timlen;
3349 
3350 				/* update information element */
3351 				tie->tim_len = 3 + timlen;
3352 				tie->tim_bitctl = timoff;
3353 				len_changed = 1;
3354 			}
3355 			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
3356 				bo->bo_tim_len);
3357 
3358 			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
3359 
3360 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
3361 				"%s: TIM updated, pending %u, off %u, len %u\n",
3362 				__func__, vap->iv_ps_pending, timoff, timlen);
3363 		}
3364 		/* count down DTIM period */
3365 		if (tie->tim_count == 0)
3366 			tie->tim_count = tie->tim_period - 1;
3367 		else
3368 			tie->tim_count--;
3369 		/* update state for buffered multicast frames on DTIM */
3370 		if (mcast && tie->tim_count == 0)
3371 			tie->tim_bitctl |= 1;
3372 		else
3373 			tie->tim_bitctl &= ~1;
3374 		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
3375 			struct ieee80211_csa_ie *csa =
3376 			    (struct ieee80211_csa_ie *) bo->bo_csa;
3377 
3378 			/*
3379 			 * Insert or update CSA ie.  If we're just starting
3380 			 * to count down to the channel switch then we need
3381 			 * to insert the CSA ie.  Otherwise we just need to
3382 			 * drop the count.  The actual change happens above
3383 			 * when the vap's count reaches the target count.
3384 			 */
3385 			if (vap->iv_csa_count == 0) {
3386 				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
3387 				bo->bo_erp += sizeof(*csa);
3388 				bo->bo_htinfo += sizeof(*csa);
3389 				bo->bo_wme += sizeof(*csa);
3390 #ifdef IEEE80211_SUPPORT_SUPERG
3391 				bo->bo_ath += sizeof(*csa);
3392 #endif
3393 #ifdef IEEE80211_SUPPORT_TDMA
3394 				bo->bo_tdma += sizeof(*csa);
3395 #endif
3396 #ifdef IEEE80211_SUPPORT_MESH
3397 				bo->bo_meshconf += sizeof(*csa);
3398 #endif
3399 				bo->bo_appie += sizeof(*csa);
3400 				bo->bo_csa_trailer_len += sizeof(*csa);
3401 				bo->bo_quiet += sizeof(*csa);
3402 				bo->bo_tim_trailer_len += sizeof(*csa);
3403 				m->m_len += sizeof(*csa);
3404 				m->m_pkthdr.len += sizeof(*csa);
3405 
3406 				ieee80211_add_csa(bo->bo_csa, vap);
3407 			} else
3408 				csa->csa_count--;
3409 			vap->iv_csa_count++;
3410 			/* NB: don't clear IEEE80211_BEACON_CSA */
3411 		}
3412 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3413 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){
3414 			if (vap->iv_quiet)
3415 				ieee80211_add_quiet(bo->bo_quiet, vap);
3416 		}
3417 		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3418 			/*
3419 			 * ERP element needs updating.
3420 			 */
3421 			(void) ieee80211_add_erp(bo->bo_erp, ic);
3422 			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3423 		}
3424 #ifdef IEEE80211_SUPPORT_SUPERG
3425 		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
3426 			ieee80211_add_athcaps(bo->bo_ath, ni);
3427 			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3428 		}
3429 #endif
3430 	}
3431 	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3432 		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3433 		int aielen;
3434 		uint8_t *frm;
3435 
3436 		aielen = 0;
3437 		if (aie != NULL)
3438 			aielen += aie->ie_len;
3439 		if (aielen != bo->bo_appie_len) {
3440 			/* copy up/down trailer */
3441 			int adjust = aielen - bo->bo_appie_len;
3442 			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3443 				bo->bo_tim_trailer_len);
3444 			bo->bo_tim_trailer += adjust;
3445 			bo->bo_appie += adjust;
3446 			bo->bo_appie_len = aielen;
3447 
3448 			len_changed = 1;
3449 		}
3450 		frm = bo->bo_appie;
3451 		if (aie != NULL)
3452 			frm  = add_appie(frm, aie);
3453 		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3454 	}
3455 	IEEE80211_UNLOCK(ic);
3456 
3457 	return len_changed;
3458 }
3459 
3460 /*
3461  * Do Ethernet-LLC encapsulation for each payload in a fast frame
3462  * tunnel encapsulation.  The frame is assumed to have an Ethernet
3463  * header at the front that must be stripped before prepending the
3464  * LLC followed by the Ethernet header passed in (with an Ethernet
3465  * type that specifies the payload size).
3466  */
3467 struct mbuf *
3468 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
3469 	const struct ether_header *eh)
3470 {
3471 	struct llc *llc;
3472 	uint16_t payload;
3473 
3474 	/* XXX optimize by combining m_adj+M_PREPEND */
3475 	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
3476 	llc = mtod(m, struct llc *);
3477 	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
3478 	llc->llc_control = LLC_UI;
3479 	llc->llc_snap.org_code[0] = 0;
3480 	llc->llc_snap.org_code[1] = 0;
3481 	llc->llc_snap.org_code[2] = 0;
3482 	llc->llc_snap.ether_type = eh->ether_type;
3483 	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
3484 
3485 	M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
3486 	if (m == NULL) {		/* XXX cannot happen */
3487 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
3488 			"%s: no space for ether_header\n", __func__);
3489 		vap->iv_stats.is_tx_nobuf++;
3490 		return NULL;
3491 	}
3492 	ETHER_HEADER_COPY(mtod(m, void *), eh);
3493 	mtod(m, struct ether_header *)->ether_type = htons(payload);
3494 	return m;
3495 }
3496 
3497 /*
3498  * Complete an mbuf transmission.
3499  *
3500  * For now, this simply processes a completed frame after the
3501  * driver has completed it's transmission and/or retransmission.
3502  * It assumes the frame is an 802.11 encapsulated frame.
3503  *
3504  * Later on it will grow to become the exit path for a given frame
3505  * from the driver and, depending upon how it's been encapsulated
3506  * and already transmitted, it may end up doing A-MPDU retransmission,
3507  * power save requeuing, etc.
3508  *
3509  * In order for the above to work, the driver entry point to this
3510  * must not hold any driver locks.  Thus, the driver needs to delay
3511  * any actual mbuf completion until it can release said locks.
3512  *
3513  * This frees the mbuf and if the mbuf has a node reference,
3514  * the node reference will be freed.
3515  */
3516 void
3517 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
3518 {
3519 
3520 	if (ni != NULL) {
3521 		struct ifnet *ifp = ni->ni_vap->iv_ifp;
3522 
3523 		if (status == 0) {
3524 			if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
3525 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3526 			if (m->m_flags & M_MCAST)
3527 				if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
3528 		} else
3529 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3530 		if (m->m_flags & M_TXCB)
3531 			ieee80211_process_callback(ni, m, status);
3532 		ieee80211_free_node(ni);
3533 	}
3534 	m_freem(m);
3535 }
3536