1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_inet.h" 31 #include "opt_inet6.h" 32 #include "opt_wlan.h" 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/kernel.h> 37 #include <sys/malloc.h> 38 #include <sys/mbuf.h> 39 #include <sys/endian.h> 40 41 #include <sys/socket.h> 42 43 #include <net/bpf.h> 44 #include <net/ethernet.h> 45 #include <net/if.h> 46 #include <net/if_var.h> 47 #include <net/if_llc.h> 48 #include <net/if_media.h> 49 #include <net/if_vlan_var.h> 50 51 #include <net80211/ieee80211_var.h> 52 #include <net80211/ieee80211_regdomain.h> 53 #ifdef IEEE80211_SUPPORT_SUPERG 54 #include <net80211/ieee80211_superg.h> 55 #endif 56 #ifdef IEEE80211_SUPPORT_TDMA 57 #include <net80211/ieee80211_tdma.h> 58 #endif 59 #include <net80211/ieee80211_wds.h> 60 #include <net80211/ieee80211_mesh.h> 61 62 #if defined(INET) || defined(INET6) 63 #include <netinet/in.h> 64 #endif 65 66 #ifdef INET 67 #include <netinet/if_ether.h> 68 #include <netinet/in_systm.h> 69 #include <netinet/ip.h> 70 #endif 71 #ifdef INET6 72 #include <netinet/ip6.h> 73 #endif 74 75 #include <security/mac/mac_framework.h> 76 77 #define ETHER_HEADER_COPY(dst, src) \ 78 memcpy(dst, src, sizeof(struct ether_header)) 79 80 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *, 81 u_int hdrsize, u_int ciphdrsize, u_int mtu); 82 static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int); 83 84 #ifdef IEEE80211_DEBUG 85 /* 86 * Decide if an outbound management frame should be 87 * printed when debugging is enabled. This filters some 88 * of the less interesting frames that come frequently 89 * (e.g. beacons). 90 */ 91 static __inline int 92 doprint(struct ieee80211vap *vap, int subtype) 93 { 94 switch (subtype) { 95 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 96 return (vap->iv_opmode == IEEE80211_M_IBSS); 97 } 98 return 1; 99 } 100 #endif 101 102 /* 103 * Transmit a frame to the given destination on the given VAP. 104 * 105 * It's up to the caller to figure out the details of who this 106 * is going to and resolving the node. 107 * 108 * This routine takes care of queuing it for power save, 109 * A-MPDU state stuff, fast-frames state stuff, encapsulation 110 * if required, then passing it up to the driver layer. 111 * 112 * This routine (for now) consumes the mbuf and frees the node 113 * reference; it ideally will return a TX status which reflects 114 * whether the mbuf was consumed or not, so the caller can 115 * free the mbuf (if appropriate) and the node reference (again, 116 * if appropriate.) 117 */ 118 int 119 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m, 120 struct ieee80211_node *ni) 121 { 122 struct ieee80211com *ic = vap->iv_ic; 123 struct ifnet *ifp = vap->iv_ifp; 124 #ifdef IEEE80211_SUPPORT_SUPERG 125 int mcast; 126 #endif 127 128 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 129 (m->m_flags & M_PWR_SAV) == 0) { 130 /* 131 * Station in power save mode; pass the frame 132 * to the 802.11 layer and continue. We'll get 133 * the frame back when the time is right. 134 * XXX lose WDS vap linkage? 135 */ 136 if (ieee80211_pwrsave(ni, m) != 0) 137 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 138 ieee80211_free_node(ni); 139 140 /* 141 * We queued it fine, so tell the upper layer 142 * that we consumed it. 143 */ 144 return (0); 145 } 146 /* calculate priority so drivers can find the tx queue */ 147 if (ieee80211_classify(ni, m)) { 148 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 149 ni->ni_macaddr, NULL, 150 "%s", "classification failure"); 151 vap->iv_stats.is_tx_classify++; 152 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 153 m_freem(m); 154 ieee80211_free_node(ni); 155 156 /* XXX better status? */ 157 return (0); 158 } 159 /* 160 * Stash the node pointer. Note that we do this after 161 * any call to ieee80211_dwds_mcast because that code 162 * uses any existing value for rcvif to identify the 163 * interface it (might have been) received on. 164 */ 165 m->m_pkthdr.rcvif = (void *)ni; 166 #ifdef IEEE80211_SUPPORT_SUPERG 167 mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0; 168 #endif 169 170 BPF_MTAP(ifp, m); /* 802.3 tx */ 171 172 /* 173 * Check if A-MPDU tx aggregation is setup or if we 174 * should try to enable it. The sta must be associated 175 * with HT and A-MPDU enabled for use. When the policy 176 * routine decides we should enable A-MPDU we issue an 177 * ADDBA request and wait for a reply. The frame being 178 * encapsulated will go out w/o using A-MPDU, or possibly 179 * it might be collected by the driver and held/retransmit. 180 * The default ic_ampdu_enable routine handles staggering 181 * ADDBA requests in case the receiver NAK's us or we are 182 * otherwise unable to establish a BA stream. 183 */ 184 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) && 185 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)) { 186 if ((m->m_flags & M_EAPOL) == 0) { 187 int tid = WME_AC_TO_TID(M_WME_GETAC(m)); 188 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; 189 190 ieee80211_txampdu_count_packet(tap); 191 if (IEEE80211_AMPDU_RUNNING(tap)) { 192 /* 193 * Operational, mark frame for aggregation. 194 * 195 * XXX do tx aggregation here 196 */ 197 m->m_flags |= M_AMPDU_MPDU; 198 } else if (!IEEE80211_AMPDU_REQUESTED(tap) && 199 ic->ic_ampdu_enable(ni, tap)) { 200 /* 201 * Not negotiated yet, request service. 202 */ 203 ieee80211_ampdu_request(ni, tap); 204 /* XXX hold frame for reply? */ 205 } 206 } 207 } 208 209 #ifdef IEEE80211_SUPPORT_SUPERG 210 /* 211 * Check for AMSDU/FF; queue for aggregation 212 * 213 * Note: we don't bother trying to do fast frames or 214 * A-MSDU encapsulation for 802.3 drivers. Now, we 215 * likely could do it for FF (because it's a magic 216 * atheros tunnel LLC type) but I don't think we're going 217 * to really need to. For A-MSDU we'd have to set the 218 * A-MSDU QoS bit in the wifi header, so we just plain 219 * can't do it. 220 * 221 * Strictly speaking, we could actually /do/ A-MSDU / FF 222 * with A-MPDU together which for certain circumstances 223 * is beneficial (eg A-MSDU of TCK ACKs.) However, 224 * I'll ignore that for now so existing behaviour is maintained. 225 * Later on it would be good to make "amsdu + ampdu" configurable. 226 */ 227 else if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 228 if ((! mcast) && ieee80211_amsdu_tx_ok(ni)) { 229 m = ieee80211_amsdu_check(ni, m); 230 if (m == NULL) { 231 /* NB: any ni ref held on stageq */ 232 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 233 "%s: amsdu_check queued frame\n", 234 __func__); 235 return (0); 236 } 237 } else if ((! mcast) && IEEE80211_ATH_CAP(vap, ni, 238 IEEE80211_NODE_FF)) { 239 m = ieee80211_ff_check(ni, m); 240 if (m == NULL) { 241 /* NB: any ni ref held on stageq */ 242 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 243 "%s: ff_check queued frame\n", 244 __func__); 245 return (0); 246 } 247 } 248 } 249 #endif /* IEEE80211_SUPPORT_SUPERG */ 250 251 /* 252 * Grab the TX lock - serialise the TX process from this 253 * point (where TX state is being checked/modified) 254 * through to driver queue. 255 */ 256 IEEE80211_TX_LOCK(ic); 257 258 /* 259 * XXX make the encap and transmit code a separate function 260 * so things like the FF (and later A-MSDU) path can just call 261 * it for flushed frames. 262 */ 263 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 264 /* 265 * Encapsulate the packet in prep for transmission. 266 */ 267 m = ieee80211_encap(vap, ni, m); 268 if (m == NULL) { 269 /* NB: stat+msg handled in ieee80211_encap */ 270 IEEE80211_TX_UNLOCK(ic); 271 ieee80211_free_node(ni); 272 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 273 return (ENOBUFS); 274 } 275 } 276 (void) ieee80211_parent_xmitpkt(ic, m); 277 278 /* 279 * Unlock at this point - no need to hold it across 280 * ieee80211_free_node() (ie, the comlock) 281 */ 282 IEEE80211_TX_UNLOCK(ic); 283 ic->ic_lastdata = ticks; 284 285 return (0); 286 } 287 288 289 290 /* 291 * Send the given mbuf through the given vap. 292 * 293 * This consumes the mbuf regardless of whether the transmit 294 * was successful or not. 295 * 296 * This does none of the initial checks that ieee80211_start() 297 * does (eg CAC timeout, interface wakeup) - the caller must 298 * do this first. 299 */ 300 static int 301 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m) 302 { 303 #define IS_DWDS(vap) \ 304 (vap->iv_opmode == IEEE80211_M_WDS && \ 305 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0) 306 struct ieee80211com *ic = vap->iv_ic; 307 struct ifnet *ifp = vap->iv_ifp; 308 struct ieee80211_node *ni; 309 struct ether_header *eh; 310 311 /* 312 * Cancel any background scan. 313 */ 314 if (ic->ic_flags & IEEE80211_F_SCAN) 315 ieee80211_cancel_anyscan(vap); 316 /* 317 * Find the node for the destination so we can do 318 * things like power save and fast frames aggregation. 319 * 320 * NB: past this point various code assumes the first 321 * mbuf has the 802.3 header present (and contiguous). 322 */ 323 ni = NULL; 324 if (m->m_len < sizeof(struct ether_header) && 325 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 326 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 327 "discard frame, %s\n", "m_pullup failed"); 328 vap->iv_stats.is_tx_nobuf++; /* XXX */ 329 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 330 return (ENOBUFS); 331 } 332 eh = mtod(m, struct ether_header *); 333 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 334 if (IS_DWDS(vap)) { 335 /* 336 * Only unicast frames from the above go out 337 * DWDS vaps; multicast frames are handled by 338 * dispatching the frame as it comes through 339 * the AP vap (see below). 340 */ 341 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS, 342 eh->ether_dhost, "mcast", "%s", "on DWDS"); 343 vap->iv_stats.is_dwds_mcast++; 344 m_freem(m); 345 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 346 /* XXX better status? */ 347 return (ENOBUFS); 348 } 349 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { 350 /* 351 * Spam DWDS vap's w/ multicast traffic. 352 */ 353 /* XXX only if dwds in use? */ 354 ieee80211_dwds_mcast(vap, m); 355 } 356 } 357 #ifdef IEEE80211_SUPPORT_MESH 358 if (vap->iv_opmode != IEEE80211_M_MBSS) { 359 #endif 360 ni = ieee80211_find_txnode(vap, eh->ether_dhost); 361 if (ni == NULL) { 362 /* NB: ieee80211_find_txnode does stat+msg */ 363 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 364 m_freem(m); 365 /* XXX better status? */ 366 return (ENOBUFS); 367 } 368 if (ni->ni_associd == 0 && 369 (ni->ni_flags & IEEE80211_NODE_ASSOCID)) { 370 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 371 eh->ether_dhost, NULL, 372 "sta not associated (type 0x%04x)", 373 htons(eh->ether_type)); 374 vap->iv_stats.is_tx_notassoc++; 375 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 376 m_freem(m); 377 ieee80211_free_node(ni); 378 /* XXX better status? */ 379 return (ENOBUFS); 380 } 381 #ifdef IEEE80211_SUPPORT_MESH 382 } else { 383 if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) { 384 /* 385 * Proxy station only if configured. 386 */ 387 if (!ieee80211_mesh_isproxyena(vap)) { 388 IEEE80211_DISCARD_MAC(vap, 389 IEEE80211_MSG_OUTPUT | 390 IEEE80211_MSG_MESH, 391 eh->ether_dhost, NULL, 392 "%s", "proxy not enabled"); 393 vap->iv_stats.is_mesh_notproxy++; 394 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 395 m_freem(m); 396 /* XXX better status? */ 397 return (ENOBUFS); 398 } 399 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 400 "forward frame from DS SA(%6D), DA(%6D)\n", 401 eh->ether_shost, ":", 402 eh->ether_dhost, ":"); 403 ieee80211_mesh_proxy_check(vap, eh->ether_shost); 404 } 405 ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m); 406 if (ni == NULL) { 407 /* 408 * NB: ieee80211_mesh_discover holds/disposes 409 * frame (e.g. queueing on path discovery). 410 */ 411 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 412 /* XXX better status? */ 413 return (ENOBUFS); 414 } 415 } 416 #endif 417 418 /* 419 * We've resolved the sender, so attempt to transmit it. 420 */ 421 422 if (vap->iv_state == IEEE80211_S_SLEEP) { 423 /* 424 * In power save; queue frame and then wakeup device 425 * for transmit. 426 */ 427 ic->ic_lastdata = ticks; 428 if (ieee80211_pwrsave(ni, m) != 0) 429 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 430 ieee80211_free_node(ni); 431 ieee80211_new_state(vap, IEEE80211_S_RUN, 0); 432 return (0); 433 } 434 435 if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0) 436 return (ENOBUFS); 437 return (0); 438 #undef IS_DWDS 439 } 440 441 /* 442 * Start method for vap's. All packets from the stack come 443 * through here. We handle common processing of the packets 444 * before dispatching them to the underlying device. 445 * 446 * if_transmit() requires that the mbuf be consumed by this call 447 * regardless of the return condition. 448 */ 449 int 450 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m) 451 { 452 struct ieee80211vap *vap = ifp->if_softc; 453 struct ieee80211com *ic = vap->iv_ic; 454 455 /* 456 * No data frames go out unless we're running. 457 * Note in particular this covers CAC and CSA 458 * states (though maybe we should check muting 459 * for CSA). 460 */ 461 if (vap->iv_state != IEEE80211_S_RUN && 462 vap->iv_state != IEEE80211_S_SLEEP) { 463 IEEE80211_LOCK(ic); 464 /* re-check under the com lock to avoid races */ 465 if (vap->iv_state != IEEE80211_S_RUN && 466 vap->iv_state != IEEE80211_S_SLEEP) { 467 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 468 "%s: ignore queue, in %s state\n", 469 __func__, ieee80211_state_name[vap->iv_state]); 470 vap->iv_stats.is_tx_badstate++; 471 IEEE80211_UNLOCK(ic); 472 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 473 m_freem(m); 474 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 475 return (ENETDOWN); 476 } 477 IEEE80211_UNLOCK(ic); 478 } 479 480 /* 481 * Sanitize mbuf flags for net80211 use. We cannot 482 * clear M_PWR_SAV or M_MORE_DATA because these may 483 * be set for frames that are re-submitted from the 484 * power save queue. 485 * 486 * NB: This must be done before ieee80211_classify as 487 * it marks EAPOL in frames with M_EAPOL. 488 */ 489 m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA); 490 491 /* 492 * Bump to the packet transmission path. 493 * The mbuf will be consumed here. 494 */ 495 return (ieee80211_start_pkt(vap, m)); 496 } 497 498 void 499 ieee80211_vap_qflush(struct ifnet *ifp) 500 { 501 502 /* Empty for now */ 503 } 504 505 /* 506 * 802.11 raw output routine. 507 * 508 * XXX TODO: this (and other send routines) should correctly 509 * XXX keep the pwr mgmt bit set if it decides to call into the 510 * XXX driver to send a frame whilst the state is SLEEP. 511 * 512 * Otherwise the peer may decide that we're awake and flood us 513 * with traffic we are still too asleep to receive! 514 */ 515 int 516 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni, 517 struct mbuf *m, const struct ieee80211_bpf_params *params) 518 { 519 struct ieee80211com *ic = vap->iv_ic; 520 int error; 521 522 /* 523 * Set node - the caller has taken a reference, so ensure 524 * that the mbuf has the same node value that 525 * it would if it were going via the normal path. 526 */ 527 m->m_pkthdr.rcvif = (void *)ni; 528 529 /* 530 * Attempt to add bpf transmit parameters. 531 * 532 * For now it's ok to fail; the raw_xmit api still takes 533 * them as an option. 534 * 535 * Later on when ic_raw_xmit() has params removed, 536 * they'll have to be added - so fail the transmit if 537 * they can't be. 538 */ 539 if (params) 540 (void) ieee80211_add_xmit_params(m, params); 541 542 error = ic->ic_raw_xmit(ni, m, params); 543 if (error) { 544 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1); 545 ieee80211_free_node(ni); 546 } 547 return (error); 548 } 549 550 /* 551 * 802.11 output routine. This is (currently) used only to 552 * connect bpf write calls to the 802.11 layer for injecting 553 * raw 802.11 frames. 554 */ 555 int 556 ieee80211_output(struct ifnet *ifp, struct mbuf *m, 557 const struct sockaddr *dst, struct route *ro) 558 { 559 #define senderr(e) do { error = (e); goto bad;} while (0) 560 struct ieee80211_node *ni = NULL; 561 struct ieee80211vap *vap; 562 struct ieee80211_frame *wh; 563 struct ieee80211com *ic = NULL; 564 int error; 565 int ret; 566 567 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 568 /* 569 * Short-circuit requests if the vap is marked OACTIVE 570 * as this can happen because a packet came down through 571 * ieee80211_start before the vap entered RUN state in 572 * which case it's ok to just drop the frame. This 573 * should not be necessary but callers of if_output don't 574 * check OACTIVE. 575 */ 576 senderr(ENETDOWN); 577 } 578 vap = ifp->if_softc; 579 ic = vap->iv_ic; 580 /* 581 * Hand to the 802.3 code if not tagged as 582 * a raw 802.11 frame. 583 */ 584 if (dst->sa_family != AF_IEEE80211) 585 return vap->iv_output(ifp, m, dst, ro); 586 #ifdef MAC 587 error = mac_ifnet_check_transmit(ifp, m); 588 if (error) 589 senderr(error); 590 #endif 591 if (ifp->if_flags & IFF_MONITOR) 592 senderr(ENETDOWN); 593 if (!IFNET_IS_UP_RUNNING(ifp)) 594 senderr(ENETDOWN); 595 if (vap->iv_state == IEEE80211_S_CAC) { 596 IEEE80211_DPRINTF(vap, 597 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 598 "block %s frame in CAC state\n", "raw data"); 599 vap->iv_stats.is_tx_badstate++; 600 senderr(EIO); /* XXX */ 601 } else if (vap->iv_state == IEEE80211_S_SCAN) 602 senderr(EIO); 603 /* XXX bypass bridge, pfil, carp, etc. */ 604 605 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack)) 606 senderr(EIO); /* XXX */ 607 wh = mtod(m, struct ieee80211_frame *); 608 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) != 609 IEEE80211_FC0_VERSION_0) 610 senderr(EIO); /* XXX */ 611 612 /* locate destination node */ 613 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 614 case IEEE80211_FC1_DIR_NODS: 615 case IEEE80211_FC1_DIR_FROMDS: 616 ni = ieee80211_find_txnode(vap, wh->i_addr1); 617 break; 618 case IEEE80211_FC1_DIR_TODS: 619 case IEEE80211_FC1_DIR_DSTODS: 620 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame)) 621 senderr(EIO); /* XXX */ 622 ni = ieee80211_find_txnode(vap, wh->i_addr3); 623 break; 624 default: 625 senderr(EIO); /* XXX */ 626 } 627 if (ni == NULL) { 628 /* 629 * Permit packets w/ bpf params through regardless 630 * (see below about sa_len). 631 */ 632 if (dst->sa_len == 0) 633 senderr(EHOSTUNREACH); 634 ni = ieee80211_ref_node(vap->iv_bss); 635 } 636 637 /* 638 * Sanitize mbuf for net80211 flags leaked from above. 639 * 640 * NB: This must be done before ieee80211_classify as 641 * it marks EAPOL in frames with M_EAPOL. 642 */ 643 m->m_flags &= ~M_80211_TX; 644 645 /* calculate priority so drivers can find the tx queue */ 646 /* XXX assumes an 802.3 frame */ 647 if (ieee80211_classify(ni, m)) 648 senderr(EIO); /* XXX */ 649 650 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 651 IEEE80211_NODE_STAT(ni, tx_data); 652 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 653 IEEE80211_NODE_STAT(ni, tx_mcast); 654 m->m_flags |= M_MCAST; 655 } else 656 IEEE80211_NODE_STAT(ni, tx_ucast); 657 /* NB: ieee80211_encap does not include 802.11 header */ 658 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len); 659 660 IEEE80211_TX_LOCK(ic); 661 662 /* 663 * NB: DLT_IEEE802_11_RADIO identifies the parameters are 664 * present by setting the sa_len field of the sockaddr (yes, 665 * this is a hack). 666 * NB: we assume sa_data is suitably aligned to cast. 667 */ 668 ret = ieee80211_raw_output(vap, ni, m, 669 (const struct ieee80211_bpf_params *)(dst->sa_len ? 670 dst->sa_data : NULL)); 671 IEEE80211_TX_UNLOCK(ic); 672 return (ret); 673 bad: 674 if (m != NULL) 675 m_freem(m); 676 if (ni != NULL) 677 ieee80211_free_node(ni); 678 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 679 return error; 680 #undef senderr 681 } 682 683 /* 684 * Set the direction field and address fields of an outgoing 685 * frame. Note this should be called early on in constructing 686 * a frame as it sets i_fc[1]; other bits can then be or'd in. 687 */ 688 void 689 ieee80211_send_setup( 690 struct ieee80211_node *ni, 691 struct mbuf *m, 692 int type, int tid, 693 const uint8_t sa[IEEE80211_ADDR_LEN], 694 const uint8_t da[IEEE80211_ADDR_LEN], 695 const uint8_t bssid[IEEE80211_ADDR_LEN]) 696 { 697 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 698 struct ieee80211vap *vap = ni->ni_vap; 699 struct ieee80211_tx_ampdu *tap; 700 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 701 ieee80211_seq seqno; 702 703 IEEE80211_TX_LOCK_ASSERT(ni->ni_ic); 704 705 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 706 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 707 switch (vap->iv_opmode) { 708 case IEEE80211_M_STA: 709 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 710 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 711 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 712 IEEE80211_ADDR_COPY(wh->i_addr3, da); 713 break; 714 case IEEE80211_M_IBSS: 715 case IEEE80211_M_AHDEMO: 716 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 717 IEEE80211_ADDR_COPY(wh->i_addr1, da); 718 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 719 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 720 break; 721 case IEEE80211_M_HOSTAP: 722 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 723 IEEE80211_ADDR_COPY(wh->i_addr1, da); 724 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 725 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 726 break; 727 case IEEE80211_M_WDS: 728 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 729 IEEE80211_ADDR_COPY(wh->i_addr1, da); 730 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 731 IEEE80211_ADDR_COPY(wh->i_addr3, da); 732 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 733 break; 734 case IEEE80211_M_MBSS: 735 #ifdef IEEE80211_SUPPORT_MESH 736 if (IEEE80211_IS_MULTICAST(da)) { 737 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 738 /* XXX next hop */ 739 IEEE80211_ADDR_COPY(wh->i_addr1, da); 740 IEEE80211_ADDR_COPY(wh->i_addr2, 741 vap->iv_myaddr); 742 } else { 743 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 744 IEEE80211_ADDR_COPY(wh->i_addr1, da); 745 IEEE80211_ADDR_COPY(wh->i_addr2, 746 vap->iv_myaddr); 747 IEEE80211_ADDR_COPY(wh->i_addr3, da); 748 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 749 } 750 #endif 751 break; 752 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 753 break; 754 } 755 } else { 756 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 757 IEEE80211_ADDR_COPY(wh->i_addr1, da); 758 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 759 #ifdef IEEE80211_SUPPORT_MESH 760 if (vap->iv_opmode == IEEE80211_M_MBSS) 761 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 762 else 763 #endif 764 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 765 } 766 *(uint16_t *)&wh->i_dur[0] = 0; 767 768 tap = &ni->ni_tx_ampdu[tid]; 769 if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) 770 m->m_flags |= M_AMPDU_MPDU; 771 else { 772 if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK, 773 type & IEEE80211_FC0_SUBTYPE_MASK)) 774 seqno = ni->ni_txseqs[tid]++; 775 else 776 seqno = 0; 777 778 *(uint16_t *)&wh->i_seq[0] = 779 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 780 M_SEQNO_SET(m, seqno); 781 } 782 783 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 784 m->m_flags |= M_MCAST; 785 #undef WH4 786 } 787 788 /* 789 * Send a management frame to the specified node. The node pointer 790 * must have a reference as the pointer will be passed to the driver 791 * and potentially held for a long time. If the frame is successfully 792 * dispatched to the driver, then it is responsible for freeing the 793 * reference (and potentially free'ing up any associated storage); 794 * otherwise deal with reclaiming any reference (on error). 795 */ 796 int 797 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type, 798 struct ieee80211_bpf_params *params) 799 { 800 struct ieee80211vap *vap = ni->ni_vap; 801 struct ieee80211com *ic = ni->ni_ic; 802 struct ieee80211_frame *wh; 803 int ret; 804 805 KASSERT(ni != NULL, ("null node")); 806 807 if (vap->iv_state == IEEE80211_S_CAC) { 808 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 809 ni, "block %s frame in CAC state", 810 ieee80211_mgt_subtype_name(type)); 811 vap->iv_stats.is_tx_badstate++; 812 ieee80211_free_node(ni); 813 m_freem(m); 814 return EIO; /* XXX */ 815 } 816 817 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 818 if (m == NULL) { 819 ieee80211_free_node(ni); 820 return ENOMEM; 821 } 822 823 IEEE80211_TX_LOCK(ic); 824 825 wh = mtod(m, struct ieee80211_frame *); 826 ieee80211_send_setup(ni, m, 827 IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID, 828 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 829 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { 830 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1, 831 "encrypting frame (%s)", __func__); 832 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 833 } 834 m->m_flags |= M_ENCAP; /* mark encapsulated */ 835 836 KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?")); 837 M_WME_SETAC(m, params->ibp_pri); 838 839 #ifdef IEEE80211_DEBUG 840 /* avoid printing too many frames */ 841 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) || 842 ieee80211_msg_dumppkts(vap)) { 843 printf("[%s] send %s on channel %u\n", 844 ether_sprintf(wh->i_addr1), 845 ieee80211_mgt_subtype_name(type), 846 ieee80211_chan2ieee(ic, ic->ic_curchan)); 847 } 848 #endif 849 IEEE80211_NODE_STAT(ni, tx_mgmt); 850 851 ret = ieee80211_raw_output(vap, ni, m, params); 852 IEEE80211_TX_UNLOCK(ic); 853 return (ret); 854 } 855 856 static void 857 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg, 858 int status) 859 { 860 struct ieee80211vap *vap = ni->ni_vap; 861 862 wakeup(vap); 863 } 864 865 /* 866 * Send a null data frame to the specified node. If the station 867 * is setup for QoS then a QoS Null Data frame is constructed. 868 * If this is a WDS station then a 4-address frame is constructed. 869 * 870 * NB: the caller is assumed to have setup a node reference 871 * for use; this is necessary to deal with a race condition 872 * when probing for inactive stations. Like ieee80211_mgmt_output 873 * we must cleanup any node reference on error; however we 874 * can safely just unref it as we know it will never be the 875 * last reference to the node. 876 */ 877 int 878 ieee80211_send_nulldata(struct ieee80211_node *ni) 879 { 880 struct ieee80211vap *vap = ni->ni_vap; 881 struct ieee80211com *ic = ni->ni_ic; 882 struct mbuf *m; 883 struct ieee80211_frame *wh; 884 int hdrlen; 885 uint8_t *frm; 886 int ret; 887 888 if (vap->iv_state == IEEE80211_S_CAC) { 889 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 890 ni, "block %s frame in CAC state", "null data"); 891 ieee80211_unref_node(&ni); 892 vap->iv_stats.is_tx_badstate++; 893 return EIO; /* XXX */ 894 } 895 896 if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) 897 hdrlen = sizeof(struct ieee80211_qosframe); 898 else 899 hdrlen = sizeof(struct ieee80211_frame); 900 /* NB: only WDS vap's get 4-address frames */ 901 if (vap->iv_opmode == IEEE80211_M_WDS) 902 hdrlen += IEEE80211_ADDR_LEN; 903 if (ic->ic_flags & IEEE80211_F_DATAPAD) 904 hdrlen = roundup(hdrlen, sizeof(uint32_t)); 905 906 m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0); 907 if (m == NULL) { 908 /* XXX debug msg */ 909 ieee80211_unref_node(&ni); 910 vap->iv_stats.is_tx_nobuf++; 911 return ENOMEM; 912 } 913 KASSERT(M_LEADINGSPACE(m) >= hdrlen, 914 ("leading space %zd", M_LEADINGSPACE(m))); 915 M_PREPEND(m, hdrlen, M_NOWAIT); 916 if (m == NULL) { 917 /* NB: cannot happen */ 918 ieee80211_free_node(ni); 919 return ENOMEM; 920 } 921 922 IEEE80211_TX_LOCK(ic); 923 924 wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */ 925 if (ni->ni_flags & IEEE80211_NODE_QOS) { 926 const int tid = WME_AC_TO_TID(WME_AC_BE); 927 uint8_t *qos; 928 929 ieee80211_send_setup(ni, m, 930 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL, 931 tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 932 933 if (vap->iv_opmode == IEEE80211_M_WDS) 934 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 935 else 936 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 937 qos[0] = tid & IEEE80211_QOS_TID; 938 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy) 939 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 940 qos[1] = 0; 941 } else { 942 ieee80211_send_setup(ni, m, 943 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 944 IEEE80211_NONQOS_TID, 945 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 946 } 947 if (vap->iv_opmode != IEEE80211_M_WDS) { 948 /* NB: power management bit is never sent by an AP */ 949 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 950 vap->iv_opmode != IEEE80211_M_HOSTAP) 951 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 952 } 953 if ((ic->ic_flags & IEEE80211_F_SCAN) && 954 (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) { 955 ieee80211_add_callback(m, ieee80211_nulldata_transmitted, 956 NULL); 957 } 958 m->m_len = m->m_pkthdr.len = hdrlen; 959 m->m_flags |= M_ENCAP; /* mark encapsulated */ 960 961 M_WME_SETAC(m, WME_AC_BE); 962 963 IEEE80211_NODE_STAT(ni, tx_data); 964 965 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni, 966 "send %snull data frame on channel %u, pwr mgt %s", 967 ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "", 968 ieee80211_chan2ieee(ic, ic->ic_curchan), 969 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 970 971 ret = ieee80211_raw_output(vap, ni, m, NULL); 972 IEEE80211_TX_UNLOCK(ic); 973 return (ret); 974 } 975 976 /* 977 * Assign priority to a frame based on any vlan tag assigned 978 * to the station and/or any Diffserv setting in an IP header. 979 * Finally, if an ACM policy is setup (in station mode) it's 980 * applied. 981 */ 982 int 983 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m) 984 { 985 const struct ether_header *eh = mtod(m, struct ether_header *); 986 int v_wme_ac, d_wme_ac, ac; 987 988 /* 989 * Always promote PAE/EAPOL frames to high priority. 990 */ 991 if (eh->ether_type == htons(ETHERTYPE_PAE)) { 992 /* NB: mark so others don't need to check header */ 993 m->m_flags |= M_EAPOL; 994 ac = WME_AC_VO; 995 goto done; 996 } 997 /* 998 * Non-qos traffic goes to BE. 999 */ 1000 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 1001 ac = WME_AC_BE; 1002 goto done; 1003 } 1004 1005 /* 1006 * If node has a vlan tag then all traffic 1007 * to it must have a matching tag. 1008 */ 1009 v_wme_ac = 0; 1010 if (ni->ni_vlan != 0) { 1011 if ((m->m_flags & M_VLANTAG) == 0) { 1012 IEEE80211_NODE_STAT(ni, tx_novlantag); 1013 return 1; 1014 } 1015 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 1016 EVL_VLANOFTAG(ni->ni_vlan)) { 1017 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 1018 return 1; 1019 } 1020 /* map vlan priority to AC */ 1021 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan)); 1022 } 1023 1024 /* XXX m_copydata may be too slow for fast path */ 1025 #ifdef INET 1026 if (eh->ether_type == htons(ETHERTYPE_IP)) { 1027 uint8_t tos; 1028 /* 1029 * IP frame, map the DSCP bits from the TOS field. 1030 */ 1031 /* NB: ip header may not be in first mbuf */ 1032 m_copydata(m, sizeof(struct ether_header) + 1033 offsetof(struct ip, ip_tos), sizeof(tos), &tos); 1034 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1035 d_wme_ac = TID_TO_WME_AC(tos); 1036 } else { 1037 #endif /* INET */ 1038 #ifdef INET6 1039 if (eh->ether_type == htons(ETHERTYPE_IPV6)) { 1040 uint32_t flow; 1041 uint8_t tos; 1042 /* 1043 * IPv6 frame, map the DSCP bits from the traffic class field. 1044 */ 1045 m_copydata(m, sizeof(struct ether_header) + 1046 offsetof(struct ip6_hdr, ip6_flow), sizeof(flow), 1047 (caddr_t) &flow); 1048 tos = (uint8_t)(ntohl(flow) >> 20); 1049 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1050 d_wme_ac = TID_TO_WME_AC(tos); 1051 } else { 1052 #endif /* INET6 */ 1053 d_wme_ac = WME_AC_BE; 1054 #ifdef INET6 1055 } 1056 #endif 1057 #ifdef INET 1058 } 1059 #endif 1060 /* 1061 * Use highest priority AC. 1062 */ 1063 if (v_wme_ac > d_wme_ac) 1064 ac = v_wme_ac; 1065 else 1066 ac = d_wme_ac; 1067 1068 /* 1069 * Apply ACM policy. 1070 */ 1071 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) { 1072 static const int acmap[4] = { 1073 WME_AC_BK, /* WME_AC_BE */ 1074 WME_AC_BK, /* WME_AC_BK */ 1075 WME_AC_BE, /* WME_AC_VI */ 1076 WME_AC_VI, /* WME_AC_VO */ 1077 }; 1078 struct ieee80211com *ic = ni->ni_ic; 1079 1080 while (ac != WME_AC_BK && 1081 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 1082 ac = acmap[ac]; 1083 } 1084 done: 1085 M_WME_SETAC(m, ac); 1086 return 0; 1087 } 1088 1089 /* 1090 * Insure there is sufficient contiguous space to encapsulate the 1091 * 802.11 data frame. If room isn't already there, arrange for it. 1092 * Drivers and cipher modules assume we have done the necessary work 1093 * and fail rudely if they don't find the space they need. 1094 */ 1095 struct mbuf * 1096 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize, 1097 struct ieee80211_key *key, struct mbuf *m) 1098 { 1099 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 1100 int needed_space = vap->iv_ic->ic_headroom + hdrsize; 1101 1102 if (key != NULL) { 1103 /* XXX belongs in crypto code? */ 1104 needed_space += key->wk_cipher->ic_header; 1105 /* XXX frags */ 1106 /* 1107 * When crypto is being done in the host we must insure 1108 * the data are writable for the cipher routines; clone 1109 * a writable mbuf chain. 1110 * XXX handle SWMIC specially 1111 */ 1112 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) { 1113 m = m_unshare(m, M_NOWAIT); 1114 if (m == NULL) { 1115 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1116 "%s: cannot get writable mbuf\n", __func__); 1117 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */ 1118 return NULL; 1119 } 1120 } 1121 } 1122 /* 1123 * We know we are called just before stripping an Ethernet 1124 * header and prepending an LLC header. This means we know 1125 * there will be 1126 * sizeof(struct ether_header) - sizeof(struct llc) 1127 * bytes recovered to which we need additional space for the 1128 * 802.11 header and any crypto header. 1129 */ 1130 /* XXX check trailing space and copy instead? */ 1131 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 1132 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); 1133 if (n == NULL) { 1134 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1135 "%s: cannot expand storage\n", __func__); 1136 vap->iv_stats.is_tx_nobuf++; 1137 m_freem(m); 1138 return NULL; 1139 } 1140 KASSERT(needed_space <= MHLEN, 1141 ("not enough room, need %u got %d\n", needed_space, MHLEN)); 1142 /* 1143 * Setup new mbuf to have leading space to prepend the 1144 * 802.11 header and any crypto header bits that are 1145 * required (the latter are added when the driver calls 1146 * back to ieee80211_crypto_encap to do crypto encapsulation). 1147 */ 1148 /* NB: must be first 'cuz it clobbers m_data */ 1149 m_move_pkthdr(n, m); 1150 n->m_len = 0; /* NB: m_gethdr does not set */ 1151 n->m_data += needed_space; 1152 /* 1153 * Pull up Ethernet header to create the expected layout. 1154 * We could use m_pullup but that's overkill (i.e. we don't 1155 * need the actual data) and it cannot fail so do it inline 1156 * for speed. 1157 */ 1158 /* NB: struct ether_header is known to be contiguous */ 1159 n->m_len += sizeof(struct ether_header); 1160 m->m_len -= sizeof(struct ether_header); 1161 m->m_data += sizeof(struct ether_header); 1162 /* 1163 * Replace the head of the chain. 1164 */ 1165 n->m_next = m; 1166 m = n; 1167 } 1168 return m; 1169 #undef TO_BE_RECLAIMED 1170 } 1171 1172 /* 1173 * Return the transmit key to use in sending a unicast frame. 1174 * If a unicast key is set we use that. When no unicast key is set 1175 * we fall back to the default transmit key. 1176 */ 1177 static __inline struct ieee80211_key * 1178 ieee80211_crypto_getucastkey(struct ieee80211vap *vap, 1179 struct ieee80211_node *ni) 1180 { 1181 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) { 1182 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1183 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1184 return NULL; 1185 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1186 } else { 1187 return &ni->ni_ucastkey; 1188 } 1189 } 1190 1191 /* 1192 * Return the transmit key to use in sending a multicast frame. 1193 * Multicast traffic always uses the group key which is installed as 1194 * the default tx key. 1195 */ 1196 static __inline struct ieee80211_key * 1197 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap, 1198 struct ieee80211_node *ni) 1199 { 1200 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1201 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1202 return NULL; 1203 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1204 } 1205 1206 /* 1207 * Encapsulate an outbound data frame. The mbuf chain is updated. 1208 * If an error is encountered NULL is returned. The caller is required 1209 * to provide a node reference and pullup the ethernet header in the 1210 * first mbuf. 1211 * 1212 * NB: Packet is assumed to be processed by ieee80211_classify which 1213 * marked EAPOL frames w/ M_EAPOL. 1214 */ 1215 struct mbuf * 1216 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni, 1217 struct mbuf *m) 1218 { 1219 #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh)) 1220 #define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc) 1221 struct ieee80211com *ic = ni->ni_ic; 1222 #ifdef IEEE80211_SUPPORT_MESH 1223 struct ieee80211_mesh_state *ms = vap->iv_mesh; 1224 struct ieee80211_meshcntl_ae10 *mc; 1225 struct ieee80211_mesh_route *rt = NULL; 1226 int dir = -1; 1227 #endif 1228 struct ether_header eh; 1229 struct ieee80211_frame *wh; 1230 struct ieee80211_key *key; 1231 struct llc *llc; 1232 int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr; 1233 ieee80211_seq seqno; 1234 int meshhdrsize, meshae; 1235 uint8_t *qos; 1236 int is_amsdu = 0; 1237 1238 IEEE80211_TX_LOCK_ASSERT(ic); 1239 1240 /* 1241 * Copy existing Ethernet header to a safe place. The 1242 * rest of the code assumes it's ok to strip it when 1243 * reorganizing state for the final encapsulation. 1244 */ 1245 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 1246 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t)); 1247 1248 /* 1249 * Insure space for additional headers. First identify 1250 * transmit key to use in calculating any buffer adjustments 1251 * required. This is also used below to do privacy 1252 * encapsulation work. Then calculate the 802.11 header 1253 * size and any padding required by the driver. 1254 * 1255 * Note key may be NULL if we fall back to the default 1256 * transmit key and that is not set. In that case the 1257 * buffer may not be expanded as needed by the cipher 1258 * routines, but they will/should discard it. 1259 */ 1260 if (vap->iv_flags & IEEE80211_F_PRIVACY) { 1261 if (vap->iv_opmode == IEEE80211_M_STA || 1262 !IEEE80211_IS_MULTICAST(eh.ether_dhost) || 1263 (vap->iv_opmode == IEEE80211_M_WDS && 1264 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) 1265 key = ieee80211_crypto_getucastkey(vap, ni); 1266 else 1267 key = ieee80211_crypto_getmcastkey(vap, ni); 1268 if (key == NULL && (m->m_flags & M_EAPOL) == 0) { 1269 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, 1270 eh.ether_dhost, 1271 "no default transmit key (%s) deftxkey %u", 1272 __func__, vap->iv_def_txkey); 1273 vap->iv_stats.is_tx_nodefkey++; 1274 goto bad; 1275 } 1276 } else 1277 key = NULL; 1278 /* 1279 * XXX Some ap's don't handle QoS-encapsulated EAPOL 1280 * frames so suppress use. This may be an issue if other 1281 * ap's require all data frames to be QoS-encapsulated 1282 * once negotiated in which case we'll need to make this 1283 * configurable. 1284 * NB: mesh data frames are QoS. 1285 */ 1286 addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) || 1287 (vap->iv_opmode == IEEE80211_M_MBSS)) && 1288 (m->m_flags & M_EAPOL) == 0; 1289 if (addqos) 1290 hdrsize = sizeof(struct ieee80211_qosframe); 1291 else 1292 hdrsize = sizeof(struct ieee80211_frame); 1293 #ifdef IEEE80211_SUPPORT_MESH 1294 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1295 /* 1296 * Mesh data frames are encapsulated according to the 1297 * rules of Section 11B.8.5 (p.139 of D3.0 spec). 1298 * o Group Addressed data (aka multicast) originating 1299 * at the local sta are sent w/ 3-address format and 1300 * address extension mode 00 1301 * o Individually Addressed data (aka unicast) originating 1302 * at the local sta are sent w/ 4-address format and 1303 * address extension mode 00 1304 * o Group Addressed data forwarded from a non-mesh sta are 1305 * sent w/ 3-address format and address extension mode 01 1306 * o Individually Address data from another sta are sent 1307 * w/ 4-address format and address extension mode 10 1308 */ 1309 is4addr = 0; /* NB: don't use, disable */ 1310 if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) { 1311 rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost); 1312 KASSERT(rt != NULL, ("route is NULL")); 1313 dir = IEEE80211_FC1_DIR_DSTODS; 1314 hdrsize += IEEE80211_ADDR_LEN; 1315 if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) { 1316 if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate, 1317 vap->iv_myaddr)) { 1318 IEEE80211_NOTE_MAC(vap, 1319 IEEE80211_MSG_MESH, 1320 eh.ether_dhost, 1321 "%s", "trying to send to ourself"); 1322 goto bad; 1323 } 1324 meshae = IEEE80211_MESH_AE_10; 1325 meshhdrsize = 1326 sizeof(struct ieee80211_meshcntl_ae10); 1327 } else { 1328 meshae = IEEE80211_MESH_AE_00; 1329 meshhdrsize = 1330 sizeof(struct ieee80211_meshcntl); 1331 } 1332 } else { 1333 dir = IEEE80211_FC1_DIR_FROMDS; 1334 if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) { 1335 /* proxy group */ 1336 meshae = IEEE80211_MESH_AE_01; 1337 meshhdrsize = 1338 sizeof(struct ieee80211_meshcntl_ae01); 1339 } else { 1340 /* group */ 1341 meshae = IEEE80211_MESH_AE_00; 1342 meshhdrsize = sizeof(struct ieee80211_meshcntl); 1343 } 1344 } 1345 } else { 1346 #endif 1347 /* 1348 * 4-address frames need to be generated for: 1349 * o packets sent through a WDS vap (IEEE80211_M_WDS) 1350 * o packets sent through a vap marked for relaying 1351 * (e.g. a station operating with dynamic WDS) 1352 */ 1353 is4addr = vap->iv_opmode == IEEE80211_M_WDS || 1354 ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) && 1355 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)); 1356 if (is4addr) 1357 hdrsize += IEEE80211_ADDR_LEN; 1358 meshhdrsize = meshae = 0; 1359 #ifdef IEEE80211_SUPPORT_MESH 1360 } 1361 #endif 1362 /* 1363 * Honor driver DATAPAD requirement. 1364 */ 1365 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1366 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1367 else 1368 hdrspace = hdrsize; 1369 1370 if (__predict_true((m->m_flags & M_FF) == 0)) { 1371 /* 1372 * Normal frame. 1373 */ 1374 m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m); 1375 if (m == NULL) { 1376 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 1377 goto bad; 1378 } 1379 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */ 1380 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 1381 llc = mtod(m, struct llc *); 1382 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 1383 llc->llc_control = LLC_UI; 1384 llc->llc_snap.org_code[0] = 0; 1385 llc->llc_snap.org_code[1] = 0; 1386 llc->llc_snap.org_code[2] = 0; 1387 llc->llc_snap.ether_type = eh.ether_type; 1388 } else { 1389 #ifdef IEEE80211_SUPPORT_SUPERG 1390 /* 1391 * Aggregated frame. Check if it's for AMSDU or FF. 1392 * 1393 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented 1394 * anywhere for some reason. But, since 11n requires 1395 * AMSDU RX, we can just assume "11n" == "AMSDU". 1396 */ 1397 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__); 1398 if (ieee80211_amsdu_tx_ok(ni)) { 1399 m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key); 1400 is_amsdu = 1; 1401 } else { 1402 m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key); 1403 } 1404 if (m == NULL) 1405 #endif 1406 goto bad; 1407 } 1408 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 1409 1410 M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT); 1411 if (m == NULL) { 1412 vap->iv_stats.is_tx_nobuf++; 1413 goto bad; 1414 } 1415 wh = mtod(m, struct ieee80211_frame *); 1416 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 1417 *(uint16_t *)wh->i_dur = 0; 1418 qos = NULL; /* NB: quiet compiler */ 1419 if (is4addr) { 1420 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 1421 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); 1422 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1423 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1424 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); 1425 } else switch (vap->iv_opmode) { 1426 case IEEE80211_M_STA: 1427 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 1428 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 1429 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1430 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1431 break; 1432 case IEEE80211_M_IBSS: 1433 case IEEE80211_M_AHDEMO: 1434 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1435 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1436 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1437 /* 1438 * NB: always use the bssid from iv_bss as the 1439 * neighbor's may be stale after an ibss merge 1440 */ 1441 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid); 1442 break; 1443 case IEEE80211_M_HOSTAP: 1444 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1445 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1446 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 1447 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 1448 break; 1449 #ifdef IEEE80211_SUPPORT_MESH 1450 case IEEE80211_M_MBSS: 1451 /* NB: offset by hdrspace to deal with DATAPAD */ 1452 mc = (struct ieee80211_meshcntl_ae10 *) 1453 (mtod(m, uint8_t *) + hdrspace); 1454 wh->i_fc[1] = dir; 1455 switch (meshae) { 1456 case IEEE80211_MESH_AE_00: /* no proxy */ 1457 mc->mc_flags = 0; 1458 if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */ 1459 IEEE80211_ADDR_COPY(wh->i_addr1, 1460 ni->ni_macaddr); 1461 IEEE80211_ADDR_COPY(wh->i_addr2, 1462 vap->iv_myaddr); 1463 IEEE80211_ADDR_COPY(wh->i_addr3, 1464 eh.ether_dhost); 1465 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, 1466 eh.ether_shost); 1467 qos =((struct ieee80211_qosframe_addr4 *) 1468 wh)->i_qos; 1469 } else if (dir == IEEE80211_FC1_DIR_FROMDS) { 1470 /* mcast */ 1471 IEEE80211_ADDR_COPY(wh->i_addr1, 1472 eh.ether_dhost); 1473 IEEE80211_ADDR_COPY(wh->i_addr2, 1474 vap->iv_myaddr); 1475 IEEE80211_ADDR_COPY(wh->i_addr3, 1476 eh.ether_shost); 1477 qos = ((struct ieee80211_qosframe *) 1478 wh)->i_qos; 1479 } 1480 break; 1481 case IEEE80211_MESH_AE_01: /* mcast, proxy */ 1482 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1483 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1484 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1485 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr); 1486 mc->mc_flags = 1; 1487 IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4, 1488 eh.ether_shost); 1489 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1490 break; 1491 case IEEE80211_MESH_AE_10: /* ucast, proxy */ 1492 KASSERT(rt != NULL, ("route is NULL")); 1493 IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop); 1494 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1495 IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate); 1496 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr); 1497 mc->mc_flags = IEEE80211_MESH_AE_10; 1498 IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost); 1499 IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost); 1500 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1501 break; 1502 default: 1503 KASSERT(0, ("meshae %d", meshae)); 1504 break; 1505 } 1506 mc->mc_ttl = ms->ms_ttl; 1507 ms->ms_seq++; 1508 le32enc(mc->mc_seq, ms->ms_seq); 1509 break; 1510 #endif 1511 case IEEE80211_M_WDS: /* NB: is4addr should always be true */ 1512 default: 1513 goto bad; 1514 } 1515 if (m->m_flags & M_MORE_DATA) 1516 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 1517 if (addqos) { 1518 int ac, tid; 1519 1520 if (is4addr) { 1521 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1522 /* NB: mesh case handled earlier */ 1523 } else if (vap->iv_opmode != IEEE80211_M_MBSS) 1524 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1525 ac = M_WME_GETAC(m); 1526 /* map from access class/queue to 11e header priorty value */ 1527 tid = WME_AC_TO_TID(ac); 1528 qos[0] = tid & IEEE80211_QOS_TID; 1529 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 1530 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1531 #ifdef IEEE80211_SUPPORT_MESH 1532 if (vap->iv_opmode == IEEE80211_M_MBSS) 1533 qos[1] = IEEE80211_QOS_MC; 1534 else 1535 #endif 1536 qos[1] = 0; 1537 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 1538 1539 /* 1540 * If this is an A-MSDU then ensure we set the 1541 * relevant field. 1542 */ 1543 if (is_amsdu) 1544 qos[0] |= IEEE80211_QOS_AMSDU; 1545 1546 if ((m->m_flags & M_AMPDU_MPDU) == 0) { 1547 /* 1548 * NB: don't assign a sequence # to potential 1549 * aggregates; we expect this happens at the 1550 * point the frame comes off any aggregation q 1551 * as otherwise we may introduce holes in the 1552 * BA sequence space and/or make window accouting 1553 * more difficult. 1554 * 1555 * XXX may want to control this with a driver 1556 * capability; this may also change when we pull 1557 * aggregation up into net80211 1558 */ 1559 seqno = ni->ni_txseqs[tid]++; 1560 *(uint16_t *)wh->i_seq = 1561 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1562 M_SEQNO_SET(m, seqno); 1563 } 1564 } else { 1565 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1566 *(uint16_t *)wh->i_seq = 1567 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1568 M_SEQNO_SET(m, seqno); 1569 1570 /* 1571 * XXX TODO: we shouldn't allow EAPOL, etc that would 1572 * be forced to be non-QoS traffic to be A-MSDU encapsulated. 1573 */ 1574 if (is_amsdu) 1575 printf("%s: XXX ERROR: is_amsdu set; not QoS!\n", 1576 __func__); 1577 } 1578 1579 1580 /* check if xmit fragmentation is required */ 1581 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold && 1582 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 1583 (vap->iv_caps & IEEE80211_C_TXFRAG) && 1584 (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0); 1585 if (key != NULL) { 1586 /* 1587 * IEEE 802.1X: send EAPOL frames always in the clear. 1588 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 1589 */ 1590 if ((m->m_flags & M_EAPOL) == 0 || 1591 ((vap->iv_flags & IEEE80211_F_WPA) && 1592 (vap->iv_opmode == IEEE80211_M_STA ? 1593 !IEEE80211_KEY_UNDEFINED(key) : 1594 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) { 1595 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 1596 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) { 1597 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT, 1598 eh.ether_dhost, 1599 "%s", "enmic failed, discard frame"); 1600 vap->iv_stats.is_crypto_enmicfail++; 1601 goto bad; 1602 } 1603 } 1604 } 1605 if (txfrag && !ieee80211_fragment(vap, m, hdrsize, 1606 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold)) 1607 goto bad; 1608 1609 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1610 1611 IEEE80211_NODE_STAT(ni, tx_data); 1612 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1613 IEEE80211_NODE_STAT(ni, tx_mcast); 1614 m->m_flags |= M_MCAST; 1615 } else 1616 IEEE80211_NODE_STAT(ni, tx_ucast); 1617 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 1618 1619 return m; 1620 bad: 1621 if (m != NULL) 1622 m_freem(m); 1623 return NULL; 1624 #undef WH4 1625 #undef MC01 1626 } 1627 1628 void 1629 ieee80211_free_mbuf(struct mbuf *m) 1630 { 1631 struct mbuf *next; 1632 1633 if (m == NULL) 1634 return; 1635 1636 do { 1637 next = m->m_nextpkt; 1638 m->m_nextpkt = NULL; 1639 m_freem(m); 1640 } while ((m = next) != NULL); 1641 } 1642 1643 /* 1644 * Fragment the frame according to the specified mtu. 1645 * The size of the 802.11 header (w/o padding) is provided 1646 * so we don't need to recalculate it. We create a new 1647 * mbuf for each fragment and chain it through m_nextpkt; 1648 * we might be able to optimize this by reusing the original 1649 * packet's mbufs but that is significantly more complicated. 1650 */ 1651 static int 1652 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0, 1653 u_int hdrsize, u_int ciphdrsize, u_int mtu) 1654 { 1655 struct ieee80211com *ic = vap->iv_ic; 1656 struct ieee80211_frame *wh, *whf; 1657 struct mbuf *m, *prev; 1658 u_int totalhdrsize, fragno, fragsize, off, remainder, payload; 1659 u_int hdrspace; 1660 1661 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); 1662 KASSERT(m0->m_pkthdr.len > mtu, 1663 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); 1664 1665 /* 1666 * Honor driver DATAPAD requirement. 1667 */ 1668 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1669 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1670 else 1671 hdrspace = hdrsize; 1672 1673 wh = mtod(m0, struct ieee80211_frame *); 1674 /* NB: mark the first frag; it will be propagated below */ 1675 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; 1676 totalhdrsize = hdrspace + ciphdrsize; 1677 fragno = 1; 1678 off = mtu - ciphdrsize; 1679 remainder = m0->m_pkthdr.len - off; 1680 prev = m0; 1681 do { 1682 fragsize = totalhdrsize + remainder; 1683 if (fragsize > mtu) 1684 fragsize = mtu; 1685 /* XXX fragsize can be >2048! */ 1686 KASSERT(fragsize < MCLBYTES, 1687 ("fragment size %u too big!", fragsize)); 1688 if (fragsize > MHLEN) 1689 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1690 else 1691 m = m_gethdr(M_NOWAIT, MT_DATA); 1692 if (m == NULL) 1693 goto bad; 1694 /* leave room to prepend any cipher header */ 1695 m_align(m, fragsize - ciphdrsize); 1696 1697 /* 1698 * Form the header in the fragment. Note that since 1699 * we mark the first fragment with the MORE_FRAG bit 1700 * it automatically is propagated to each fragment; we 1701 * need only clear it on the last fragment (done below). 1702 * NB: frag 1+ dont have Mesh Control field present. 1703 */ 1704 whf = mtod(m, struct ieee80211_frame *); 1705 memcpy(whf, wh, hdrsize); 1706 #ifdef IEEE80211_SUPPORT_MESH 1707 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1708 if (IEEE80211_IS_DSTODS(wh)) 1709 ((struct ieee80211_qosframe_addr4 *) 1710 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1711 else 1712 ((struct ieee80211_qosframe *) 1713 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1714 } 1715 #endif 1716 *(uint16_t *)&whf->i_seq[0] |= htole16( 1717 (fragno & IEEE80211_SEQ_FRAG_MASK) << 1718 IEEE80211_SEQ_FRAG_SHIFT); 1719 fragno++; 1720 1721 payload = fragsize - totalhdrsize; 1722 /* NB: destination is known to be contiguous */ 1723 1724 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace); 1725 m->m_len = hdrspace + payload; 1726 m->m_pkthdr.len = hdrspace + payload; 1727 m->m_flags |= M_FRAG; 1728 1729 /* chain up the fragment */ 1730 prev->m_nextpkt = m; 1731 prev = m; 1732 1733 /* deduct fragment just formed */ 1734 remainder -= payload; 1735 off += payload; 1736 } while (remainder != 0); 1737 1738 /* set the last fragment */ 1739 m->m_flags |= M_LASTFRAG; 1740 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; 1741 1742 /* strip first mbuf now that everything has been copied */ 1743 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); 1744 m0->m_flags |= M_FIRSTFRAG | M_FRAG; 1745 1746 vap->iv_stats.is_tx_fragframes++; 1747 vap->iv_stats.is_tx_frags += fragno-1; 1748 1749 return 1; 1750 bad: 1751 /* reclaim fragments but leave original frame for caller to free */ 1752 ieee80211_free_mbuf(m0->m_nextpkt); 1753 m0->m_nextpkt = NULL; 1754 return 0; 1755 } 1756 1757 /* 1758 * Add a supported rates element id to a frame. 1759 */ 1760 uint8_t * 1761 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs) 1762 { 1763 int nrates; 1764 1765 *frm++ = IEEE80211_ELEMID_RATES; 1766 nrates = rs->rs_nrates; 1767 if (nrates > IEEE80211_RATE_SIZE) 1768 nrates = IEEE80211_RATE_SIZE; 1769 *frm++ = nrates; 1770 memcpy(frm, rs->rs_rates, nrates); 1771 return frm + nrates; 1772 } 1773 1774 /* 1775 * Add an extended supported rates element id to a frame. 1776 */ 1777 uint8_t * 1778 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs) 1779 { 1780 /* 1781 * Add an extended supported rates element if operating in 11g mode. 1782 */ 1783 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 1784 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 1785 *frm++ = IEEE80211_ELEMID_XRATES; 1786 *frm++ = nrates; 1787 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 1788 frm += nrates; 1789 } 1790 return frm; 1791 } 1792 1793 /* 1794 * Add an ssid element to a frame. 1795 */ 1796 uint8_t * 1797 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) 1798 { 1799 *frm++ = IEEE80211_ELEMID_SSID; 1800 *frm++ = len; 1801 memcpy(frm, ssid, len); 1802 return frm + len; 1803 } 1804 1805 /* 1806 * Add an erp element to a frame. 1807 */ 1808 static uint8_t * 1809 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic) 1810 { 1811 uint8_t erp; 1812 1813 *frm++ = IEEE80211_ELEMID_ERP; 1814 *frm++ = 1; 1815 erp = 0; 1816 if (ic->ic_nonerpsta != 0) 1817 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 1818 if (ic->ic_flags & IEEE80211_F_USEPROT) 1819 erp |= IEEE80211_ERP_USE_PROTECTION; 1820 if (ic->ic_flags & IEEE80211_F_USEBARKER) 1821 erp |= IEEE80211_ERP_LONG_PREAMBLE; 1822 *frm++ = erp; 1823 return frm; 1824 } 1825 1826 /* 1827 * Add a CFParams element to a frame. 1828 */ 1829 static uint8_t * 1830 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic) 1831 { 1832 #define ADDSHORT(frm, v) do { \ 1833 le16enc(frm, v); \ 1834 frm += 2; \ 1835 } while (0) 1836 *frm++ = IEEE80211_ELEMID_CFPARMS; 1837 *frm++ = 6; 1838 *frm++ = 0; /* CFP count */ 1839 *frm++ = 2; /* CFP period */ 1840 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */ 1841 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */ 1842 return frm; 1843 #undef ADDSHORT 1844 } 1845 1846 static __inline uint8_t * 1847 add_appie(uint8_t *frm, const struct ieee80211_appie *ie) 1848 { 1849 memcpy(frm, ie->ie_data, ie->ie_len); 1850 return frm + ie->ie_len; 1851 } 1852 1853 static __inline uint8_t * 1854 add_ie(uint8_t *frm, const uint8_t *ie) 1855 { 1856 memcpy(frm, ie, 2 + ie[1]); 1857 return frm + 2 + ie[1]; 1858 } 1859 1860 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 1861 /* 1862 * Add a WME information element to a frame. 1863 */ 1864 uint8_t * 1865 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme) 1866 { 1867 static const struct ieee80211_wme_info info = { 1868 .wme_id = IEEE80211_ELEMID_VENDOR, 1869 .wme_len = sizeof(struct ieee80211_wme_info) - 2, 1870 .wme_oui = { WME_OUI_BYTES }, 1871 .wme_type = WME_OUI_TYPE, 1872 .wme_subtype = WME_INFO_OUI_SUBTYPE, 1873 .wme_version = WME_VERSION, 1874 .wme_info = 0, 1875 }; 1876 memcpy(frm, &info, sizeof(info)); 1877 return frm + sizeof(info); 1878 } 1879 1880 /* 1881 * Add a WME parameters element to a frame. 1882 */ 1883 static uint8_t * 1884 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme) 1885 { 1886 #define SM(_v, _f) (((_v) << _f##_S) & _f) 1887 #define ADDSHORT(frm, v) do { \ 1888 le16enc(frm, v); \ 1889 frm += 2; \ 1890 } while (0) 1891 /* NB: this works 'cuz a param has an info at the front */ 1892 static const struct ieee80211_wme_info param = { 1893 .wme_id = IEEE80211_ELEMID_VENDOR, 1894 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 1895 .wme_oui = { WME_OUI_BYTES }, 1896 .wme_type = WME_OUI_TYPE, 1897 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 1898 .wme_version = WME_VERSION, 1899 }; 1900 int i; 1901 1902 memcpy(frm, ¶m, sizeof(param)); 1903 frm += __offsetof(struct ieee80211_wme_info, wme_info); 1904 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ 1905 *frm++ = 0; /* reserved field */ 1906 for (i = 0; i < WME_NUM_AC; i++) { 1907 const struct wmeParams *ac = 1908 &wme->wme_bssChanParams.cap_wmeParams[i]; 1909 *frm++ = SM(i, WME_PARAM_ACI) 1910 | SM(ac->wmep_acm, WME_PARAM_ACM) 1911 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) 1912 ; 1913 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) 1914 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) 1915 ; 1916 ADDSHORT(frm, ac->wmep_txopLimit); 1917 } 1918 return frm; 1919 #undef SM 1920 #undef ADDSHORT 1921 } 1922 #undef WME_OUI_BYTES 1923 1924 /* 1925 * Add an 11h Power Constraint element to a frame. 1926 */ 1927 static uint8_t * 1928 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap) 1929 { 1930 const struct ieee80211_channel *c = vap->iv_bss->ni_chan; 1931 /* XXX per-vap tx power limit? */ 1932 int8_t limit = vap->iv_ic->ic_txpowlimit / 2; 1933 1934 frm[0] = IEEE80211_ELEMID_PWRCNSTR; 1935 frm[1] = 1; 1936 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0; 1937 return frm + 3; 1938 } 1939 1940 /* 1941 * Add an 11h Power Capability element to a frame. 1942 */ 1943 static uint8_t * 1944 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c) 1945 { 1946 frm[0] = IEEE80211_ELEMID_PWRCAP; 1947 frm[1] = 2; 1948 frm[2] = c->ic_minpower; 1949 frm[3] = c->ic_maxpower; 1950 return frm + 4; 1951 } 1952 1953 /* 1954 * Add an 11h Supported Channels element to a frame. 1955 */ 1956 static uint8_t * 1957 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic) 1958 { 1959 static const int ielen = 26; 1960 1961 frm[0] = IEEE80211_ELEMID_SUPPCHAN; 1962 frm[1] = ielen; 1963 /* XXX not correct */ 1964 memcpy(frm+2, ic->ic_chan_avail, ielen); 1965 return frm + 2 + ielen; 1966 } 1967 1968 /* 1969 * Add an 11h Quiet time element to a frame. 1970 */ 1971 static uint8_t * 1972 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap) 1973 { 1974 struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm; 1975 1976 quiet->quiet_ie = IEEE80211_ELEMID_QUIET; 1977 quiet->len = 6; 1978 if (vap->iv_quiet_count_value == 1) 1979 vap->iv_quiet_count_value = vap->iv_quiet_count; 1980 else if (vap->iv_quiet_count_value > 1) 1981 vap->iv_quiet_count_value--; 1982 1983 if (vap->iv_quiet_count_value == 0) { 1984 /* value 0 is reserved as per 802.11h standerd */ 1985 vap->iv_quiet_count_value = 1; 1986 } 1987 1988 quiet->tbttcount = vap->iv_quiet_count_value; 1989 quiet->period = vap->iv_quiet_period; 1990 quiet->duration = htole16(vap->iv_quiet_duration); 1991 quiet->offset = htole16(vap->iv_quiet_offset); 1992 return frm + sizeof(*quiet); 1993 } 1994 1995 /* 1996 * Add an 11h Channel Switch Announcement element to a frame. 1997 * Note that we use the per-vap CSA count to adjust the global 1998 * counter so we can use this routine to form probe response 1999 * frames and get the current count. 2000 */ 2001 static uint8_t * 2002 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap) 2003 { 2004 struct ieee80211com *ic = vap->iv_ic; 2005 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm; 2006 2007 csa->csa_ie = IEEE80211_ELEMID_CSA; 2008 csa->csa_len = 3; 2009 csa->csa_mode = 1; /* XXX force quiet on channel */ 2010 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan); 2011 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count; 2012 return frm + sizeof(*csa); 2013 } 2014 2015 /* 2016 * Add an 11h country information element to a frame. 2017 */ 2018 static uint8_t * 2019 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic) 2020 { 2021 2022 if (ic->ic_countryie == NULL || 2023 ic->ic_countryie_chan != ic->ic_bsschan) { 2024 /* 2025 * Handle lazy construction of ie. This is done on 2026 * first use and after a channel change that requires 2027 * re-calculation. 2028 */ 2029 if (ic->ic_countryie != NULL) 2030 IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE); 2031 ic->ic_countryie = ieee80211_alloc_countryie(ic); 2032 if (ic->ic_countryie == NULL) 2033 return frm; 2034 ic->ic_countryie_chan = ic->ic_bsschan; 2035 } 2036 return add_appie(frm, ic->ic_countryie); 2037 } 2038 2039 uint8_t * 2040 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap) 2041 { 2042 if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) 2043 return (add_ie(frm, vap->iv_wpa_ie)); 2044 else { 2045 /* XXX else complain? */ 2046 return (frm); 2047 } 2048 } 2049 2050 uint8_t * 2051 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap) 2052 { 2053 if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL) 2054 return (add_ie(frm, vap->iv_rsn_ie)); 2055 else { 2056 /* XXX else complain? */ 2057 return (frm); 2058 } 2059 } 2060 2061 uint8_t * 2062 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni) 2063 { 2064 if (ni->ni_flags & IEEE80211_NODE_QOS) { 2065 *frm++ = IEEE80211_ELEMID_QOS; 2066 *frm++ = 1; 2067 *frm++ = 0; 2068 } 2069 2070 return (frm); 2071 } 2072 2073 /* 2074 * Send a probe request frame with the specified ssid 2075 * and any optional information element data. 2076 */ 2077 int 2078 ieee80211_send_probereq(struct ieee80211_node *ni, 2079 const uint8_t sa[IEEE80211_ADDR_LEN], 2080 const uint8_t da[IEEE80211_ADDR_LEN], 2081 const uint8_t bssid[IEEE80211_ADDR_LEN], 2082 const uint8_t *ssid, size_t ssidlen) 2083 { 2084 struct ieee80211vap *vap = ni->ni_vap; 2085 struct ieee80211com *ic = ni->ni_ic; 2086 const struct ieee80211_txparam *tp; 2087 struct ieee80211_bpf_params params; 2088 const struct ieee80211_rateset *rs; 2089 struct mbuf *m; 2090 uint8_t *frm; 2091 int ret; 2092 2093 if (vap->iv_state == IEEE80211_S_CAC) { 2094 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni, 2095 "block %s frame in CAC state", "probe request"); 2096 vap->iv_stats.is_tx_badstate++; 2097 return EIO; /* XXX */ 2098 } 2099 2100 /* 2101 * Hold a reference on the node so it doesn't go away until after 2102 * the xmit is complete all the way in the driver. On error we 2103 * will remove our reference. 2104 */ 2105 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2106 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2107 __func__, __LINE__, 2108 ni, ether_sprintf(ni->ni_macaddr), 2109 ieee80211_node_refcnt(ni)+1); 2110 ieee80211_ref_node(ni); 2111 2112 /* 2113 * prreq frame format 2114 * [tlv] ssid 2115 * [tlv] supported rates 2116 * [tlv] RSN (optional) 2117 * [tlv] extended supported rates 2118 * [tlv] WPA (optional) 2119 * [tlv] user-specified ie's 2120 */ 2121 m = ieee80211_getmgtframe(&frm, 2122 ic->ic_headroom + sizeof(struct ieee80211_frame), 2123 2 + IEEE80211_NWID_LEN 2124 + 2 + IEEE80211_RATE_SIZE 2125 + sizeof(struct ieee80211_ie_wpa) 2126 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2127 + sizeof(struct ieee80211_ie_wpa) 2128 + (vap->iv_appie_probereq != NULL ? 2129 vap->iv_appie_probereq->ie_len : 0) 2130 ); 2131 if (m == NULL) { 2132 vap->iv_stats.is_tx_nobuf++; 2133 ieee80211_free_node(ni); 2134 return ENOMEM; 2135 } 2136 2137 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 2138 rs = ieee80211_get_suprates(ic, ic->ic_curchan); 2139 frm = ieee80211_add_rates(frm, rs); 2140 frm = ieee80211_add_rsn(frm, vap); 2141 frm = ieee80211_add_xrates(frm, rs); 2142 frm = ieee80211_add_wpa(frm, vap); 2143 if (vap->iv_appie_probereq != NULL) 2144 frm = add_appie(frm, vap->iv_appie_probereq); 2145 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2146 2147 KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame), 2148 ("leading space %zd", M_LEADINGSPACE(m))); 2149 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2150 if (m == NULL) { 2151 /* NB: cannot happen */ 2152 ieee80211_free_node(ni); 2153 return ENOMEM; 2154 } 2155 2156 IEEE80211_TX_LOCK(ic); 2157 ieee80211_send_setup(ni, m, 2158 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 2159 IEEE80211_NONQOS_TID, sa, da, bssid); 2160 /* XXX power management? */ 2161 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2162 2163 M_WME_SETAC(m, WME_AC_BE); 2164 2165 IEEE80211_NODE_STAT(ni, tx_probereq); 2166 IEEE80211_NODE_STAT(ni, tx_mgmt); 2167 2168 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2169 "send probe req on channel %u bssid %s ssid \"%.*s\"\n", 2170 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid), 2171 ssidlen, ssid); 2172 2173 memset(¶ms, 0, sizeof(params)); 2174 params.ibp_pri = M_WME_GETAC(m); 2175 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 2176 params.ibp_rate0 = tp->mgmtrate; 2177 if (IEEE80211_IS_MULTICAST(da)) { 2178 params.ibp_flags |= IEEE80211_BPF_NOACK; 2179 params.ibp_try0 = 1; 2180 } else 2181 params.ibp_try0 = tp->maxretry; 2182 params.ibp_power = ni->ni_txpower; 2183 ret = ieee80211_raw_output(vap, ni, m, ¶ms); 2184 IEEE80211_TX_UNLOCK(ic); 2185 return (ret); 2186 } 2187 2188 /* 2189 * Calculate capability information for mgt frames. 2190 */ 2191 uint16_t 2192 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan) 2193 { 2194 struct ieee80211com *ic = vap->iv_ic; 2195 uint16_t capinfo; 2196 2197 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode")); 2198 2199 if (vap->iv_opmode == IEEE80211_M_HOSTAP) 2200 capinfo = IEEE80211_CAPINFO_ESS; 2201 else if (vap->iv_opmode == IEEE80211_M_IBSS) 2202 capinfo = IEEE80211_CAPINFO_IBSS; 2203 else 2204 capinfo = 0; 2205 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2206 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2207 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2208 IEEE80211_IS_CHAN_2GHZ(chan)) 2209 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2210 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2211 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2212 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH)) 2213 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2214 return capinfo; 2215 } 2216 2217 /* 2218 * Send a management frame. The node is for the destination (or ic_bss 2219 * when in station mode). Nodes other than ic_bss have their reference 2220 * count bumped to reflect our use for an indeterminant time. 2221 */ 2222 int 2223 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg) 2224 { 2225 #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT) 2226 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2227 struct ieee80211vap *vap = ni->ni_vap; 2228 struct ieee80211com *ic = ni->ni_ic; 2229 struct ieee80211_node *bss = vap->iv_bss; 2230 struct ieee80211_bpf_params params; 2231 struct mbuf *m; 2232 uint8_t *frm; 2233 uint16_t capinfo; 2234 int has_challenge, is_shared_key, ret, status; 2235 2236 KASSERT(ni != NULL, ("null node")); 2237 2238 /* 2239 * Hold a reference on the node so it doesn't go away until after 2240 * the xmit is complete all the way in the driver. On error we 2241 * will remove our reference. 2242 */ 2243 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2244 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2245 __func__, __LINE__, 2246 ni, ether_sprintf(ni->ni_macaddr), 2247 ieee80211_node_refcnt(ni)+1); 2248 ieee80211_ref_node(ni); 2249 2250 memset(¶ms, 0, sizeof(params)); 2251 switch (type) { 2252 2253 case IEEE80211_FC0_SUBTYPE_AUTH: 2254 status = arg >> 16; 2255 arg &= 0xffff; 2256 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || 2257 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 2258 ni->ni_challenge != NULL); 2259 2260 /* 2261 * Deduce whether we're doing open authentication or 2262 * shared key authentication. We do the latter if 2263 * we're in the middle of a shared key authentication 2264 * handshake or if we're initiating an authentication 2265 * request and configured to use shared key. 2266 */ 2267 is_shared_key = has_challenge || 2268 arg >= IEEE80211_AUTH_SHARED_RESPONSE || 2269 (arg == IEEE80211_AUTH_SHARED_REQUEST && 2270 bss->ni_authmode == IEEE80211_AUTH_SHARED); 2271 2272 m = ieee80211_getmgtframe(&frm, 2273 ic->ic_headroom + sizeof(struct ieee80211_frame), 2274 3 * sizeof(uint16_t) 2275 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? 2276 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0) 2277 ); 2278 if (m == NULL) 2279 senderr(ENOMEM, is_tx_nobuf); 2280 2281 ((uint16_t *)frm)[0] = 2282 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) 2283 : htole16(IEEE80211_AUTH_ALG_OPEN); 2284 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */ 2285 ((uint16_t *)frm)[2] = htole16(status);/* status */ 2286 2287 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { 2288 ((uint16_t *)frm)[3] = 2289 htole16((IEEE80211_CHALLENGE_LEN << 8) | 2290 IEEE80211_ELEMID_CHALLENGE); 2291 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge, 2292 IEEE80211_CHALLENGE_LEN); 2293 m->m_pkthdr.len = m->m_len = 2294 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN; 2295 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 2296 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2297 "request encrypt frame (%s)", __func__); 2298 /* mark frame for encryption */ 2299 params.ibp_flags |= IEEE80211_BPF_CRYPTO; 2300 } 2301 } else 2302 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t); 2303 2304 /* XXX not right for shared key */ 2305 if (status == IEEE80211_STATUS_SUCCESS) 2306 IEEE80211_NODE_STAT(ni, tx_auth); 2307 else 2308 IEEE80211_NODE_STAT(ni, tx_auth_fail); 2309 2310 if (vap->iv_opmode == IEEE80211_M_STA) 2311 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2312 (void *) vap->iv_state); 2313 break; 2314 2315 case IEEE80211_FC0_SUBTYPE_DEAUTH: 2316 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2317 "send station deauthenticate (reason: %d (%s))", arg, 2318 ieee80211_reason_to_string(arg)); 2319 m = ieee80211_getmgtframe(&frm, 2320 ic->ic_headroom + sizeof(struct ieee80211_frame), 2321 sizeof(uint16_t)); 2322 if (m == NULL) 2323 senderr(ENOMEM, is_tx_nobuf); 2324 *(uint16_t *)frm = htole16(arg); /* reason */ 2325 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2326 2327 IEEE80211_NODE_STAT(ni, tx_deauth); 2328 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 2329 2330 ieee80211_node_unauthorize(ni); /* port closed */ 2331 break; 2332 2333 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 2334 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 2335 /* 2336 * asreq frame format 2337 * [2] capability information 2338 * [2] listen interval 2339 * [6*] current AP address (reassoc only) 2340 * [tlv] ssid 2341 * [tlv] supported rates 2342 * [tlv] extended supported rates 2343 * [4] power capability (optional) 2344 * [28] supported channels (optional) 2345 * [tlv] HT capabilities 2346 * [tlv] WME (optional) 2347 * [tlv] Vendor OUI HT capabilities (optional) 2348 * [tlv] Atheros capabilities (if negotiated) 2349 * [tlv] AppIE's (optional) 2350 */ 2351 m = ieee80211_getmgtframe(&frm, 2352 ic->ic_headroom + sizeof(struct ieee80211_frame), 2353 sizeof(uint16_t) 2354 + sizeof(uint16_t) 2355 + IEEE80211_ADDR_LEN 2356 + 2 + IEEE80211_NWID_LEN 2357 + 2 + IEEE80211_RATE_SIZE 2358 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2359 + 4 2360 + 2 + 26 2361 + sizeof(struct ieee80211_wme_info) 2362 + sizeof(struct ieee80211_ie_htcap) 2363 + 4 + sizeof(struct ieee80211_ie_htcap) 2364 #ifdef IEEE80211_SUPPORT_SUPERG 2365 + sizeof(struct ieee80211_ath_ie) 2366 #endif 2367 + (vap->iv_appie_wpa != NULL ? 2368 vap->iv_appie_wpa->ie_len : 0) 2369 + (vap->iv_appie_assocreq != NULL ? 2370 vap->iv_appie_assocreq->ie_len : 0) 2371 ); 2372 if (m == NULL) 2373 senderr(ENOMEM, is_tx_nobuf); 2374 2375 KASSERT(vap->iv_opmode == IEEE80211_M_STA, 2376 ("wrong mode %u", vap->iv_opmode)); 2377 capinfo = IEEE80211_CAPINFO_ESS; 2378 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2379 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2380 /* 2381 * NB: Some 11a AP's reject the request when 2382 * short premable is set. 2383 */ 2384 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2385 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2386 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2387 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 2388 (ic->ic_caps & IEEE80211_C_SHSLOT)) 2389 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2390 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) && 2391 (vap->iv_flags & IEEE80211_F_DOTH)) 2392 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2393 *(uint16_t *)frm = htole16(capinfo); 2394 frm += 2; 2395 2396 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!")); 2397 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval, 2398 bss->ni_intval)); 2399 frm += 2; 2400 2401 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 2402 IEEE80211_ADDR_COPY(frm, bss->ni_bssid); 2403 frm += IEEE80211_ADDR_LEN; 2404 } 2405 2406 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 2407 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2408 frm = ieee80211_add_rsn(frm, vap); 2409 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2410 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) { 2411 frm = ieee80211_add_powercapability(frm, 2412 ic->ic_curchan); 2413 frm = ieee80211_add_supportedchannels(frm, ic); 2414 } 2415 2416 /* 2417 * Check the channel - we may be using an 11n NIC with an 2418 * 11n capable station, but we're configured to be an 11b 2419 * channel. 2420 */ 2421 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2422 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2423 ni->ni_ies.htcap_ie != NULL && 2424 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) { 2425 frm = ieee80211_add_htcap(frm, ni); 2426 } 2427 frm = ieee80211_add_wpa(frm, vap); 2428 if ((ic->ic_flags & IEEE80211_F_WME) && 2429 ni->ni_ies.wme_ie != NULL) 2430 frm = ieee80211_add_wme_info(frm, &ic->ic_wme); 2431 2432 /* 2433 * Same deal - only send HT info if we're on an 11n 2434 * capable channel. 2435 */ 2436 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2437 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2438 ni->ni_ies.htcap_ie != NULL && 2439 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) { 2440 frm = ieee80211_add_htcap_vendor(frm, ni); 2441 } 2442 #ifdef IEEE80211_SUPPORT_SUPERG 2443 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) { 2444 frm = ieee80211_add_ath(frm, 2445 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2446 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2447 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2448 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2449 } 2450 #endif /* IEEE80211_SUPPORT_SUPERG */ 2451 if (vap->iv_appie_assocreq != NULL) 2452 frm = add_appie(frm, vap->iv_appie_assocreq); 2453 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2454 2455 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2456 (void *) vap->iv_state); 2457 break; 2458 2459 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 2460 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 2461 /* 2462 * asresp frame format 2463 * [2] capability information 2464 * [2] status 2465 * [2] association ID 2466 * [tlv] supported rates 2467 * [tlv] extended supported rates 2468 * [tlv] HT capabilities (standard, if STA enabled) 2469 * [tlv] HT information (standard, if STA enabled) 2470 * [tlv] WME (if configured and STA enabled) 2471 * [tlv] HT capabilities (vendor OUI, if STA enabled) 2472 * [tlv] HT information (vendor OUI, if STA enabled) 2473 * [tlv] Atheros capabilities (if STA enabled) 2474 * [tlv] AppIE's (optional) 2475 */ 2476 m = ieee80211_getmgtframe(&frm, 2477 ic->ic_headroom + sizeof(struct ieee80211_frame), 2478 sizeof(uint16_t) 2479 + sizeof(uint16_t) 2480 + sizeof(uint16_t) 2481 + 2 + IEEE80211_RATE_SIZE 2482 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2483 + sizeof(struct ieee80211_ie_htcap) + 4 2484 + sizeof(struct ieee80211_ie_htinfo) + 4 2485 + sizeof(struct ieee80211_wme_param) 2486 #ifdef IEEE80211_SUPPORT_SUPERG 2487 + sizeof(struct ieee80211_ath_ie) 2488 #endif 2489 + (vap->iv_appie_assocresp != NULL ? 2490 vap->iv_appie_assocresp->ie_len : 0) 2491 ); 2492 if (m == NULL) 2493 senderr(ENOMEM, is_tx_nobuf); 2494 2495 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2496 *(uint16_t *)frm = htole16(capinfo); 2497 frm += 2; 2498 2499 *(uint16_t *)frm = htole16(arg); /* status */ 2500 frm += 2; 2501 2502 if (arg == IEEE80211_STATUS_SUCCESS) { 2503 *(uint16_t *)frm = htole16(ni->ni_associd); 2504 IEEE80211_NODE_STAT(ni, tx_assoc); 2505 } else 2506 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 2507 frm += 2; 2508 2509 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2510 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2511 /* NB: respond according to what we received */ 2512 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) { 2513 frm = ieee80211_add_htcap(frm, ni); 2514 frm = ieee80211_add_htinfo(frm, ni); 2515 } 2516 if ((vap->iv_flags & IEEE80211_F_WME) && 2517 ni->ni_ies.wme_ie != NULL) 2518 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2519 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) { 2520 frm = ieee80211_add_htcap_vendor(frm, ni); 2521 frm = ieee80211_add_htinfo_vendor(frm, ni); 2522 } 2523 #ifdef IEEE80211_SUPPORT_SUPERG 2524 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) 2525 frm = ieee80211_add_ath(frm, 2526 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2527 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2528 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2529 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2530 #endif /* IEEE80211_SUPPORT_SUPERG */ 2531 if (vap->iv_appie_assocresp != NULL) 2532 frm = add_appie(frm, vap->iv_appie_assocresp); 2533 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2534 break; 2535 2536 case IEEE80211_FC0_SUBTYPE_DISASSOC: 2537 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, 2538 "send station disassociate (reason: %d (%s))", arg, 2539 ieee80211_reason_to_string(arg)); 2540 m = ieee80211_getmgtframe(&frm, 2541 ic->ic_headroom + sizeof(struct ieee80211_frame), 2542 sizeof(uint16_t)); 2543 if (m == NULL) 2544 senderr(ENOMEM, is_tx_nobuf); 2545 *(uint16_t *)frm = htole16(arg); /* reason */ 2546 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2547 2548 IEEE80211_NODE_STAT(ni, tx_disassoc); 2549 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 2550 break; 2551 2552 default: 2553 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni, 2554 "invalid mgmt frame type %u", type); 2555 senderr(EINVAL, is_tx_unknownmgt); 2556 /* NOTREACHED */ 2557 } 2558 2559 /* NB: force non-ProbeResp frames to the highest queue */ 2560 params.ibp_pri = WME_AC_VO; 2561 params.ibp_rate0 = bss->ni_txparms->mgmtrate; 2562 /* NB: we know all frames are unicast */ 2563 params.ibp_try0 = bss->ni_txparms->maxretry; 2564 params.ibp_power = bss->ni_txpower; 2565 return ieee80211_mgmt_output(ni, m, type, ¶ms); 2566 bad: 2567 ieee80211_free_node(ni); 2568 return ret; 2569 #undef senderr 2570 #undef HTFLAGS 2571 } 2572 2573 /* 2574 * Return an mbuf with a probe response frame in it. 2575 * Space is left to prepend and 802.11 header at the 2576 * front but it's left to the caller to fill in. 2577 */ 2578 struct mbuf * 2579 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy) 2580 { 2581 struct ieee80211vap *vap = bss->ni_vap; 2582 struct ieee80211com *ic = bss->ni_ic; 2583 const struct ieee80211_rateset *rs; 2584 struct mbuf *m; 2585 uint16_t capinfo; 2586 uint8_t *frm; 2587 2588 /* 2589 * probe response frame format 2590 * [8] time stamp 2591 * [2] beacon interval 2592 * [2] cabability information 2593 * [tlv] ssid 2594 * [tlv] supported rates 2595 * [tlv] parameter set (FH/DS) 2596 * [tlv] parameter set (IBSS) 2597 * [tlv] country (optional) 2598 * [3] power control (optional) 2599 * [5] channel switch announcement (CSA) (optional) 2600 * [tlv] extended rate phy (ERP) 2601 * [tlv] extended supported rates 2602 * [tlv] RSN (optional) 2603 * [tlv] HT capabilities 2604 * [tlv] HT information 2605 * [tlv] WPA (optional) 2606 * [tlv] WME (optional) 2607 * [tlv] Vendor OUI HT capabilities (optional) 2608 * [tlv] Vendor OUI HT information (optional) 2609 * [tlv] Atheros capabilities 2610 * [tlv] AppIE's (optional) 2611 * [tlv] Mesh ID (MBSS) 2612 * [tlv] Mesh Conf (MBSS) 2613 */ 2614 m = ieee80211_getmgtframe(&frm, 2615 ic->ic_headroom + sizeof(struct ieee80211_frame), 2616 8 2617 + sizeof(uint16_t) 2618 + sizeof(uint16_t) 2619 + 2 + IEEE80211_NWID_LEN 2620 + 2 + IEEE80211_RATE_SIZE 2621 + 7 /* max(7,3) */ 2622 + IEEE80211_COUNTRY_MAX_SIZE 2623 + 3 2624 + sizeof(struct ieee80211_csa_ie) 2625 + sizeof(struct ieee80211_quiet_ie) 2626 + 3 2627 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2628 + sizeof(struct ieee80211_ie_wpa) 2629 + sizeof(struct ieee80211_ie_htcap) 2630 + sizeof(struct ieee80211_ie_htinfo) 2631 + sizeof(struct ieee80211_ie_wpa) 2632 + sizeof(struct ieee80211_wme_param) 2633 + 4 + sizeof(struct ieee80211_ie_htcap) 2634 + 4 + sizeof(struct ieee80211_ie_htinfo) 2635 #ifdef IEEE80211_SUPPORT_SUPERG 2636 + sizeof(struct ieee80211_ath_ie) 2637 #endif 2638 #ifdef IEEE80211_SUPPORT_MESH 2639 + 2 + IEEE80211_MESHID_LEN 2640 + sizeof(struct ieee80211_meshconf_ie) 2641 #endif 2642 + (vap->iv_appie_proberesp != NULL ? 2643 vap->iv_appie_proberesp->ie_len : 0) 2644 ); 2645 if (m == NULL) { 2646 vap->iv_stats.is_tx_nobuf++; 2647 return NULL; 2648 } 2649 2650 memset(frm, 0, 8); /* timestamp should be filled later */ 2651 frm += 8; 2652 *(uint16_t *)frm = htole16(bss->ni_intval); 2653 frm += 2; 2654 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2655 *(uint16_t *)frm = htole16(capinfo); 2656 frm += 2; 2657 2658 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen); 2659 rs = ieee80211_get_suprates(ic, bss->ni_chan); 2660 frm = ieee80211_add_rates(frm, rs); 2661 2662 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) { 2663 *frm++ = IEEE80211_ELEMID_FHPARMS; 2664 *frm++ = 5; 2665 *frm++ = bss->ni_fhdwell & 0x00ff; 2666 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff; 2667 *frm++ = IEEE80211_FH_CHANSET( 2668 ieee80211_chan2ieee(ic, bss->ni_chan)); 2669 *frm++ = IEEE80211_FH_CHANPAT( 2670 ieee80211_chan2ieee(ic, bss->ni_chan)); 2671 *frm++ = bss->ni_fhindex; 2672 } else { 2673 *frm++ = IEEE80211_ELEMID_DSPARMS; 2674 *frm++ = 1; 2675 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan); 2676 } 2677 2678 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2679 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2680 *frm++ = 2; 2681 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2682 } 2683 if ((vap->iv_flags & IEEE80211_F_DOTH) || 2684 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 2685 frm = ieee80211_add_countryie(frm, ic); 2686 if (vap->iv_flags & IEEE80211_F_DOTH) { 2687 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan)) 2688 frm = ieee80211_add_powerconstraint(frm, vap); 2689 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 2690 frm = ieee80211_add_csa(frm, vap); 2691 } 2692 if (vap->iv_flags & IEEE80211_F_DOTH) { 2693 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2694 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 2695 if (vap->iv_quiet) 2696 frm = ieee80211_add_quiet(frm, vap); 2697 } 2698 } 2699 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan)) 2700 frm = ieee80211_add_erp(frm, ic); 2701 frm = ieee80211_add_xrates(frm, rs); 2702 frm = ieee80211_add_rsn(frm, vap); 2703 /* 2704 * NB: legacy 11b clients do not get certain ie's. 2705 * The caller identifies such clients by passing 2706 * a token in legacy to us. Could expand this to be 2707 * any legacy client for stuff like HT ie's. 2708 */ 2709 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2710 legacy != IEEE80211_SEND_LEGACY_11B) { 2711 frm = ieee80211_add_htcap(frm, bss); 2712 frm = ieee80211_add_htinfo(frm, bss); 2713 } 2714 frm = ieee80211_add_wpa(frm, vap); 2715 if (vap->iv_flags & IEEE80211_F_WME) 2716 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2717 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2718 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) && 2719 legacy != IEEE80211_SEND_LEGACY_11B) { 2720 frm = ieee80211_add_htcap_vendor(frm, bss); 2721 frm = ieee80211_add_htinfo_vendor(frm, bss); 2722 } 2723 #ifdef IEEE80211_SUPPORT_SUPERG 2724 if ((vap->iv_flags & IEEE80211_F_ATHEROS) && 2725 legacy != IEEE80211_SEND_LEGACY_11B) 2726 frm = ieee80211_add_athcaps(frm, bss); 2727 #endif 2728 if (vap->iv_appie_proberesp != NULL) 2729 frm = add_appie(frm, vap->iv_appie_proberesp); 2730 #ifdef IEEE80211_SUPPORT_MESH 2731 if (vap->iv_opmode == IEEE80211_M_MBSS) { 2732 frm = ieee80211_add_meshid(frm, vap); 2733 frm = ieee80211_add_meshconf(frm, vap); 2734 } 2735 #endif 2736 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2737 2738 return m; 2739 } 2740 2741 /* 2742 * Send a probe response frame to the specified mac address. 2743 * This does not go through the normal mgt frame api so we 2744 * can specify the destination address and re-use the bss node 2745 * for the sta reference. 2746 */ 2747 int 2748 ieee80211_send_proberesp(struct ieee80211vap *vap, 2749 const uint8_t da[IEEE80211_ADDR_LEN], int legacy) 2750 { 2751 struct ieee80211_node *bss = vap->iv_bss; 2752 struct ieee80211com *ic = vap->iv_ic; 2753 struct mbuf *m; 2754 int ret; 2755 2756 if (vap->iv_state == IEEE80211_S_CAC) { 2757 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss, 2758 "block %s frame in CAC state", "probe response"); 2759 vap->iv_stats.is_tx_badstate++; 2760 return EIO; /* XXX */ 2761 } 2762 2763 /* 2764 * Hold a reference on the node so it doesn't go away until after 2765 * the xmit is complete all the way in the driver. On error we 2766 * will remove our reference. 2767 */ 2768 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2769 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2770 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr), 2771 ieee80211_node_refcnt(bss)+1); 2772 ieee80211_ref_node(bss); 2773 2774 m = ieee80211_alloc_proberesp(bss, legacy); 2775 if (m == NULL) { 2776 ieee80211_free_node(bss); 2777 return ENOMEM; 2778 } 2779 2780 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2781 KASSERT(m != NULL, ("no room for header")); 2782 2783 IEEE80211_TX_LOCK(ic); 2784 ieee80211_send_setup(bss, m, 2785 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP, 2786 IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid); 2787 /* XXX power management? */ 2788 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2789 2790 M_WME_SETAC(m, WME_AC_BE); 2791 2792 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2793 "send probe resp on channel %u to %s%s\n", 2794 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da), 2795 legacy ? " <legacy>" : ""); 2796 IEEE80211_NODE_STAT(bss, tx_mgmt); 2797 2798 ret = ieee80211_raw_output(vap, bss, m, NULL); 2799 IEEE80211_TX_UNLOCK(ic); 2800 return (ret); 2801 } 2802 2803 /* 2804 * Allocate and build a RTS (Request To Send) control frame. 2805 */ 2806 struct mbuf * 2807 ieee80211_alloc_rts(struct ieee80211com *ic, 2808 const uint8_t ra[IEEE80211_ADDR_LEN], 2809 const uint8_t ta[IEEE80211_ADDR_LEN], 2810 uint16_t dur) 2811 { 2812 struct ieee80211_frame_rts *rts; 2813 struct mbuf *m; 2814 2815 /* XXX honor ic_headroom */ 2816 m = m_gethdr(M_NOWAIT, MT_DATA); 2817 if (m != NULL) { 2818 rts = mtod(m, struct ieee80211_frame_rts *); 2819 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2820 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS; 2821 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2822 *(u_int16_t *)rts->i_dur = htole16(dur); 2823 IEEE80211_ADDR_COPY(rts->i_ra, ra); 2824 IEEE80211_ADDR_COPY(rts->i_ta, ta); 2825 2826 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); 2827 } 2828 return m; 2829 } 2830 2831 /* 2832 * Allocate and build a CTS (Clear To Send) control frame. 2833 */ 2834 struct mbuf * 2835 ieee80211_alloc_cts(struct ieee80211com *ic, 2836 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur) 2837 { 2838 struct ieee80211_frame_cts *cts; 2839 struct mbuf *m; 2840 2841 /* XXX honor ic_headroom */ 2842 m = m_gethdr(M_NOWAIT, MT_DATA); 2843 if (m != NULL) { 2844 cts = mtod(m, struct ieee80211_frame_cts *); 2845 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2846 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS; 2847 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2848 *(u_int16_t *)cts->i_dur = htole16(dur); 2849 IEEE80211_ADDR_COPY(cts->i_ra, ra); 2850 2851 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts); 2852 } 2853 return m; 2854 } 2855 2856 static void 2857 ieee80211_tx_mgt_timeout(void *arg) 2858 { 2859 struct ieee80211vap *vap = arg; 2860 2861 IEEE80211_LOCK(vap->iv_ic); 2862 if (vap->iv_state != IEEE80211_S_INIT && 2863 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) { 2864 /* 2865 * NB: it's safe to specify a timeout as the reason here; 2866 * it'll only be used in the right state. 2867 */ 2868 ieee80211_new_state_locked(vap, IEEE80211_S_SCAN, 2869 IEEE80211_SCAN_FAIL_TIMEOUT); 2870 } 2871 IEEE80211_UNLOCK(vap->iv_ic); 2872 } 2873 2874 /* 2875 * This is the callback set on net80211-sourced transmitted 2876 * authentication request frames. 2877 * 2878 * This does a couple of things: 2879 * 2880 * + If the frame transmitted was a success, it schedules a future 2881 * event which will transition the interface to scan. 2882 * If a state transition _then_ occurs before that event occurs, 2883 * said state transition will cancel this callout. 2884 * 2885 * + If the frame transmit was a failure, it immediately schedules 2886 * the transition back to scan. 2887 */ 2888 static void 2889 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status) 2890 { 2891 struct ieee80211vap *vap = ni->ni_vap; 2892 enum ieee80211_state ostate = (enum ieee80211_state) arg; 2893 2894 /* 2895 * Frame transmit completed; arrange timer callback. If 2896 * transmit was successfully we wait for response. Otherwise 2897 * we arrange an immediate callback instead of doing the 2898 * callback directly since we don't know what state the driver 2899 * is in (e.g. what locks it is holding). This work should 2900 * not be too time-critical and not happen too often so the 2901 * added overhead is acceptable. 2902 * 2903 * XXX what happens if !acked but response shows up before callback? 2904 */ 2905 if (vap->iv_state == ostate) { 2906 callout_reset(&vap->iv_mgtsend, 2907 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0, 2908 ieee80211_tx_mgt_timeout, vap); 2909 } 2910 } 2911 2912 static void 2913 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm, 2914 struct ieee80211_node *ni) 2915 { 2916 struct ieee80211vap *vap = ni->ni_vap; 2917 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 2918 struct ieee80211com *ic = ni->ni_ic; 2919 struct ieee80211_rateset *rs = &ni->ni_rates; 2920 uint16_t capinfo; 2921 2922 /* 2923 * beacon frame format 2924 * [8] time stamp 2925 * [2] beacon interval 2926 * [2] cabability information 2927 * [tlv] ssid 2928 * [tlv] supported rates 2929 * [3] parameter set (DS) 2930 * [8] CF parameter set (optional) 2931 * [tlv] parameter set (IBSS/TIM) 2932 * [tlv] country (optional) 2933 * [3] power control (optional) 2934 * [5] channel switch announcement (CSA) (optional) 2935 * [tlv] extended rate phy (ERP) 2936 * [tlv] extended supported rates 2937 * [tlv] RSN parameters 2938 * [tlv] HT capabilities 2939 * [tlv] HT information 2940 * XXX Vendor-specific OIDs (e.g. Atheros) 2941 * [tlv] WPA parameters 2942 * [tlv] WME parameters 2943 * [tlv] Vendor OUI HT capabilities (optional) 2944 * [tlv] Vendor OUI HT information (optional) 2945 * [tlv] Atheros capabilities (optional) 2946 * [tlv] TDMA parameters (optional) 2947 * [tlv] Mesh ID (MBSS) 2948 * [tlv] Mesh Conf (MBSS) 2949 * [tlv] application data (optional) 2950 */ 2951 2952 memset(bo, 0, sizeof(*bo)); 2953 2954 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 2955 frm += 8; 2956 *(uint16_t *)frm = htole16(ni->ni_intval); 2957 frm += 2; 2958 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 2959 bo->bo_caps = (uint16_t *)frm; 2960 *(uint16_t *)frm = htole16(capinfo); 2961 frm += 2; 2962 *frm++ = IEEE80211_ELEMID_SSID; 2963 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) { 2964 *frm++ = ni->ni_esslen; 2965 memcpy(frm, ni->ni_essid, ni->ni_esslen); 2966 frm += ni->ni_esslen; 2967 } else 2968 *frm++ = 0; 2969 frm = ieee80211_add_rates(frm, rs); 2970 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) { 2971 *frm++ = IEEE80211_ELEMID_DSPARMS; 2972 *frm++ = 1; 2973 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 2974 } 2975 if (ic->ic_flags & IEEE80211_F_PCF) { 2976 bo->bo_cfp = frm; 2977 frm = ieee80211_add_cfparms(frm, ic); 2978 } 2979 bo->bo_tim = frm; 2980 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2981 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2982 *frm++ = 2; 2983 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2984 bo->bo_tim_len = 0; 2985 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 2986 vap->iv_opmode == IEEE80211_M_MBSS) { 2987 /* TIM IE is the same for Mesh and Hostap */ 2988 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; 2989 2990 tie->tim_ie = IEEE80211_ELEMID_TIM; 2991 tie->tim_len = 4; /* length */ 2992 tie->tim_count = 0; /* DTIM count */ 2993 tie->tim_period = vap->iv_dtim_period; /* DTIM period */ 2994 tie->tim_bitctl = 0; /* bitmap control */ 2995 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 2996 frm += sizeof(struct ieee80211_tim_ie); 2997 bo->bo_tim_len = 1; 2998 } 2999 bo->bo_tim_trailer = frm; 3000 if ((vap->iv_flags & IEEE80211_F_DOTH) || 3001 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 3002 frm = ieee80211_add_countryie(frm, ic); 3003 if (vap->iv_flags & IEEE80211_F_DOTH) { 3004 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) 3005 frm = ieee80211_add_powerconstraint(frm, vap); 3006 bo->bo_csa = frm; 3007 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 3008 frm = ieee80211_add_csa(frm, vap); 3009 } else 3010 bo->bo_csa = frm; 3011 3012 if (vap->iv_flags & IEEE80211_F_DOTH) { 3013 bo->bo_quiet = frm; 3014 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3015 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 3016 if (vap->iv_quiet) 3017 frm = ieee80211_add_quiet(frm,vap); 3018 } 3019 } else 3020 bo->bo_quiet = frm; 3021 3022 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) { 3023 bo->bo_erp = frm; 3024 frm = ieee80211_add_erp(frm, ic); 3025 } 3026 frm = ieee80211_add_xrates(frm, rs); 3027 frm = ieee80211_add_rsn(frm, vap); 3028 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 3029 frm = ieee80211_add_htcap(frm, ni); 3030 bo->bo_htinfo = frm; 3031 frm = ieee80211_add_htinfo(frm, ni); 3032 } 3033 frm = ieee80211_add_wpa(frm, vap); 3034 if (vap->iv_flags & IEEE80211_F_WME) { 3035 bo->bo_wme = frm; 3036 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 3037 } 3038 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && 3039 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) { 3040 frm = ieee80211_add_htcap_vendor(frm, ni); 3041 frm = ieee80211_add_htinfo_vendor(frm, ni); 3042 } 3043 #ifdef IEEE80211_SUPPORT_SUPERG 3044 if (vap->iv_flags & IEEE80211_F_ATHEROS) { 3045 bo->bo_ath = frm; 3046 frm = ieee80211_add_athcaps(frm, ni); 3047 } 3048 #endif 3049 #ifdef IEEE80211_SUPPORT_TDMA 3050 if (vap->iv_caps & IEEE80211_C_TDMA) { 3051 bo->bo_tdma = frm; 3052 frm = ieee80211_add_tdma(frm, vap); 3053 } 3054 #endif 3055 if (vap->iv_appie_beacon != NULL) { 3056 bo->bo_appie = frm; 3057 bo->bo_appie_len = vap->iv_appie_beacon->ie_len; 3058 frm = add_appie(frm, vap->iv_appie_beacon); 3059 } 3060 #ifdef IEEE80211_SUPPORT_MESH 3061 if (vap->iv_opmode == IEEE80211_M_MBSS) { 3062 frm = ieee80211_add_meshid(frm, vap); 3063 bo->bo_meshconf = frm; 3064 frm = ieee80211_add_meshconf(frm, vap); 3065 } 3066 #endif 3067 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer; 3068 bo->bo_csa_trailer_len = frm - bo->bo_csa; 3069 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3070 } 3071 3072 /* 3073 * Allocate a beacon frame and fillin the appropriate bits. 3074 */ 3075 struct mbuf * 3076 ieee80211_beacon_alloc(struct ieee80211_node *ni) 3077 { 3078 struct ieee80211vap *vap = ni->ni_vap; 3079 struct ieee80211com *ic = ni->ni_ic; 3080 struct ifnet *ifp = vap->iv_ifp; 3081 struct ieee80211_frame *wh; 3082 struct mbuf *m; 3083 int pktlen; 3084 uint8_t *frm; 3085 3086 /* 3087 * beacon frame format 3088 * [8] time stamp 3089 * [2] beacon interval 3090 * [2] cabability information 3091 * [tlv] ssid 3092 * [tlv] supported rates 3093 * [3] parameter set (DS) 3094 * [8] CF parameter set (optional) 3095 * [tlv] parameter set (IBSS/TIM) 3096 * [tlv] country (optional) 3097 * [3] power control (optional) 3098 * [5] channel switch announcement (CSA) (optional) 3099 * [tlv] extended rate phy (ERP) 3100 * [tlv] extended supported rates 3101 * [tlv] RSN parameters 3102 * [tlv] HT capabilities 3103 * [tlv] HT information 3104 * [tlv] Vendor OUI HT capabilities (optional) 3105 * [tlv] Vendor OUI HT information (optional) 3106 * XXX Vendor-specific OIDs (e.g. Atheros) 3107 * [tlv] WPA parameters 3108 * [tlv] WME parameters 3109 * [tlv] TDMA parameters (optional) 3110 * [tlv] Mesh ID (MBSS) 3111 * [tlv] Mesh Conf (MBSS) 3112 * [tlv] application data (optional) 3113 * NB: we allocate the max space required for the TIM bitmap. 3114 * XXX how big is this? 3115 */ 3116 pktlen = 8 /* time stamp */ 3117 + sizeof(uint16_t) /* beacon interval */ 3118 + sizeof(uint16_t) /* capabilities */ 3119 + 2 + ni->ni_esslen /* ssid */ 3120 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 3121 + 2 + 1 /* DS parameters */ 3122 + 2 + 6 /* CF parameters */ 3123 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */ 3124 + IEEE80211_COUNTRY_MAX_SIZE /* country */ 3125 + 2 + 1 /* power control */ 3126 + sizeof(struct ieee80211_csa_ie) /* CSA */ 3127 + sizeof(struct ieee80211_quiet_ie) /* Quiet */ 3128 + 2 + 1 /* ERP */ 3129 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 3130 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 3131 2*sizeof(struct ieee80211_ie_wpa) : 0) 3132 /* XXX conditional? */ 3133 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */ 3134 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */ 3135 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */ 3136 sizeof(struct ieee80211_wme_param) : 0) 3137 #ifdef IEEE80211_SUPPORT_SUPERG 3138 + sizeof(struct ieee80211_ath_ie) /* ATH */ 3139 #endif 3140 #ifdef IEEE80211_SUPPORT_TDMA 3141 + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */ 3142 sizeof(struct ieee80211_tdma_param) : 0) 3143 #endif 3144 #ifdef IEEE80211_SUPPORT_MESH 3145 + 2 + ni->ni_meshidlen 3146 + sizeof(struct ieee80211_meshconf_ie) 3147 #endif 3148 + IEEE80211_MAX_APPIE 3149 ; 3150 m = ieee80211_getmgtframe(&frm, 3151 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen); 3152 if (m == NULL) { 3153 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, 3154 "%s: cannot get buf; size %u\n", __func__, pktlen); 3155 vap->iv_stats.is_tx_nobuf++; 3156 return NULL; 3157 } 3158 ieee80211_beacon_construct(m, frm, ni); 3159 3160 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 3161 KASSERT(m != NULL, ("no space for 802.11 header?")); 3162 wh = mtod(m, struct ieee80211_frame *); 3163 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 3164 IEEE80211_FC0_SUBTYPE_BEACON; 3165 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3166 *(uint16_t *)wh->i_dur = 0; 3167 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 3168 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 3169 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 3170 *(uint16_t *)wh->i_seq = 0; 3171 3172 return m; 3173 } 3174 3175 /* 3176 * Update the dynamic parts of a beacon frame based on the current state. 3177 */ 3178 int 3179 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast) 3180 { 3181 struct ieee80211vap *vap = ni->ni_vap; 3182 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 3183 struct ieee80211com *ic = ni->ni_ic; 3184 int len_changed = 0; 3185 uint16_t capinfo; 3186 struct ieee80211_frame *wh; 3187 ieee80211_seq seqno; 3188 3189 IEEE80211_LOCK(ic); 3190 /* 3191 * Handle 11h channel change when we've reached the count. 3192 * We must recalculate the beacon frame contents to account 3193 * for the new channel. Note we do this only for the first 3194 * vap that reaches this point; subsequent vaps just update 3195 * their beacon state to reflect the recalculated channel. 3196 */ 3197 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) && 3198 vap->iv_csa_count == ic->ic_csa_count) { 3199 vap->iv_csa_count = 0; 3200 /* 3201 * Effect channel change before reconstructing the beacon 3202 * frame contents as many places reference ni_chan. 3203 */ 3204 if (ic->ic_csa_newchan != NULL) 3205 ieee80211_csa_completeswitch(ic); 3206 /* 3207 * NB: ieee80211_beacon_construct clears all pending 3208 * updates in bo_flags so we don't need to explicitly 3209 * clear IEEE80211_BEACON_CSA. 3210 */ 3211 ieee80211_beacon_construct(m, 3212 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3213 3214 /* XXX do WME aggressive mode processing? */ 3215 IEEE80211_UNLOCK(ic); 3216 return 1; /* just assume length changed */ 3217 } 3218 3219 wh = mtod(m, struct ieee80211_frame *); 3220 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 3221 *(uint16_t *)&wh->i_seq[0] = 3222 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 3223 M_SEQNO_SET(m, seqno); 3224 3225 /* XXX faster to recalculate entirely or just changes? */ 3226 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3227 *bo->bo_caps = htole16(capinfo); 3228 3229 if (vap->iv_flags & IEEE80211_F_WME) { 3230 struct ieee80211_wme_state *wme = &ic->ic_wme; 3231 3232 /* 3233 * Check for aggressive mode change. When there is 3234 * significant high priority traffic in the BSS 3235 * throttle back BE traffic by using conservative 3236 * parameters. Otherwise BE uses aggressive params 3237 * to optimize performance of legacy/non-QoS traffic. 3238 */ 3239 if (wme->wme_flags & WME_F_AGGRMODE) { 3240 if (wme->wme_hipri_traffic > 3241 wme->wme_hipri_switch_thresh) { 3242 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3243 "%s: traffic %u, disable aggressive mode\n", 3244 __func__, wme->wme_hipri_traffic); 3245 wme->wme_flags &= ~WME_F_AGGRMODE; 3246 ieee80211_wme_updateparams_locked(vap); 3247 wme->wme_hipri_traffic = 3248 wme->wme_hipri_switch_hysteresis; 3249 } else 3250 wme->wme_hipri_traffic = 0; 3251 } else { 3252 if (wme->wme_hipri_traffic <= 3253 wme->wme_hipri_switch_thresh) { 3254 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3255 "%s: traffic %u, enable aggressive mode\n", 3256 __func__, wme->wme_hipri_traffic); 3257 wme->wme_flags |= WME_F_AGGRMODE; 3258 ieee80211_wme_updateparams_locked(vap); 3259 wme->wme_hipri_traffic = 0; 3260 } else 3261 wme->wme_hipri_traffic = 3262 wme->wme_hipri_switch_hysteresis; 3263 } 3264 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) { 3265 (void) ieee80211_add_wme_param(bo->bo_wme, wme); 3266 clrbit(bo->bo_flags, IEEE80211_BEACON_WME); 3267 } 3268 } 3269 3270 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) { 3271 ieee80211_ht_update_beacon(vap, bo); 3272 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO); 3273 } 3274 #ifdef IEEE80211_SUPPORT_TDMA 3275 if (vap->iv_caps & IEEE80211_C_TDMA) { 3276 /* 3277 * NB: the beacon is potentially updated every TBTT. 3278 */ 3279 ieee80211_tdma_update_beacon(vap, bo); 3280 } 3281 #endif 3282 #ifdef IEEE80211_SUPPORT_MESH 3283 if (vap->iv_opmode == IEEE80211_M_MBSS) 3284 ieee80211_mesh_update_beacon(vap, bo); 3285 #endif 3286 3287 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3288 vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/ 3289 struct ieee80211_tim_ie *tie = 3290 (struct ieee80211_tim_ie *) bo->bo_tim; 3291 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) { 3292 u_int timlen, timoff, i; 3293 /* 3294 * ATIM/DTIM needs updating. If it fits in the 3295 * current space allocated then just copy in the 3296 * new bits. Otherwise we need to move any trailing 3297 * data to make room. Note that we know there is 3298 * contiguous space because ieee80211_beacon_allocate 3299 * insures there is space in the mbuf to write a 3300 * maximal-size virtual bitmap (based on iv_max_aid). 3301 */ 3302 /* 3303 * Calculate the bitmap size and offset, copy any 3304 * trailer out of the way, and then copy in the 3305 * new bitmap and update the information element. 3306 * Note that the tim bitmap must contain at least 3307 * one byte and any offset must be even. 3308 */ 3309 if (vap->iv_ps_pending != 0) { 3310 timoff = 128; /* impossibly large */ 3311 for (i = 0; i < vap->iv_tim_len; i++) 3312 if (vap->iv_tim_bitmap[i]) { 3313 timoff = i &~ 1; 3314 break; 3315 } 3316 KASSERT(timoff != 128, ("tim bitmap empty!")); 3317 for (i = vap->iv_tim_len-1; i >= timoff; i--) 3318 if (vap->iv_tim_bitmap[i]) 3319 break; 3320 timlen = 1 + (i - timoff); 3321 } else { 3322 timoff = 0; 3323 timlen = 1; 3324 } 3325 if (timlen != bo->bo_tim_len) { 3326 /* copy up/down trailer */ 3327 int adjust = tie->tim_bitmap+timlen 3328 - bo->bo_tim_trailer; 3329 ovbcopy(bo->bo_tim_trailer, 3330 bo->bo_tim_trailer+adjust, 3331 bo->bo_tim_trailer_len); 3332 bo->bo_tim_trailer += adjust; 3333 bo->bo_erp += adjust; 3334 bo->bo_htinfo += adjust; 3335 #ifdef IEEE80211_SUPPORT_SUPERG 3336 bo->bo_ath += adjust; 3337 #endif 3338 #ifdef IEEE80211_SUPPORT_TDMA 3339 bo->bo_tdma += adjust; 3340 #endif 3341 #ifdef IEEE80211_SUPPORT_MESH 3342 bo->bo_meshconf += adjust; 3343 #endif 3344 bo->bo_appie += adjust; 3345 bo->bo_wme += adjust; 3346 bo->bo_csa += adjust; 3347 bo->bo_quiet += adjust; 3348 bo->bo_tim_len = timlen; 3349 3350 /* update information element */ 3351 tie->tim_len = 3 + timlen; 3352 tie->tim_bitctl = timoff; 3353 len_changed = 1; 3354 } 3355 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff, 3356 bo->bo_tim_len); 3357 3358 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM); 3359 3360 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER, 3361 "%s: TIM updated, pending %u, off %u, len %u\n", 3362 __func__, vap->iv_ps_pending, timoff, timlen); 3363 } 3364 /* count down DTIM period */ 3365 if (tie->tim_count == 0) 3366 tie->tim_count = tie->tim_period - 1; 3367 else 3368 tie->tim_count--; 3369 /* update state for buffered multicast frames on DTIM */ 3370 if (mcast && tie->tim_count == 0) 3371 tie->tim_bitctl |= 1; 3372 else 3373 tie->tim_bitctl &= ~1; 3374 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) { 3375 struct ieee80211_csa_ie *csa = 3376 (struct ieee80211_csa_ie *) bo->bo_csa; 3377 3378 /* 3379 * Insert or update CSA ie. If we're just starting 3380 * to count down to the channel switch then we need 3381 * to insert the CSA ie. Otherwise we just need to 3382 * drop the count. The actual change happens above 3383 * when the vap's count reaches the target count. 3384 */ 3385 if (vap->iv_csa_count == 0) { 3386 memmove(&csa[1], csa, bo->bo_csa_trailer_len); 3387 bo->bo_erp += sizeof(*csa); 3388 bo->bo_htinfo += sizeof(*csa); 3389 bo->bo_wme += sizeof(*csa); 3390 #ifdef IEEE80211_SUPPORT_SUPERG 3391 bo->bo_ath += sizeof(*csa); 3392 #endif 3393 #ifdef IEEE80211_SUPPORT_TDMA 3394 bo->bo_tdma += sizeof(*csa); 3395 #endif 3396 #ifdef IEEE80211_SUPPORT_MESH 3397 bo->bo_meshconf += sizeof(*csa); 3398 #endif 3399 bo->bo_appie += sizeof(*csa); 3400 bo->bo_csa_trailer_len += sizeof(*csa); 3401 bo->bo_quiet += sizeof(*csa); 3402 bo->bo_tim_trailer_len += sizeof(*csa); 3403 m->m_len += sizeof(*csa); 3404 m->m_pkthdr.len += sizeof(*csa); 3405 3406 ieee80211_add_csa(bo->bo_csa, vap); 3407 } else 3408 csa->csa_count--; 3409 vap->iv_csa_count++; 3410 /* NB: don't clear IEEE80211_BEACON_CSA */ 3411 } 3412 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3413 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){ 3414 if (vap->iv_quiet) 3415 ieee80211_add_quiet(bo->bo_quiet, vap); 3416 } 3417 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) { 3418 /* 3419 * ERP element needs updating. 3420 */ 3421 (void) ieee80211_add_erp(bo->bo_erp, ic); 3422 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP); 3423 } 3424 #ifdef IEEE80211_SUPPORT_SUPERG 3425 if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) { 3426 ieee80211_add_athcaps(bo->bo_ath, ni); 3427 clrbit(bo->bo_flags, IEEE80211_BEACON_ATH); 3428 } 3429 #endif 3430 } 3431 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) { 3432 const struct ieee80211_appie *aie = vap->iv_appie_beacon; 3433 int aielen; 3434 uint8_t *frm; 3435 3436 aielen = 0; 3437 if (aie != NULL) 3438 aielen += aie->ie_len; 3439 if (aielen != bo->bo_appie_len) { 3440 /* copy up/down trailer */ 3441 int adjust = aielen - bo->bo_appie_len; 3442 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust, 3443 bo->bo_tim_trailer_len); 3444 bo->bo_tim_trailer += adjust; 3445 bo->bo_appie += adjust; 3446 bo->bo_appie_len = aielen; 3447 3448 len_changed = 1; 3449 } 3450 frm = bo->bo_appie; 3451 if (aie != NULL) 3452 frm = add_appie(frm, aie); 3453 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE); 3454 } 3455 IEEE80211_UNLOCK(ic); 3456 3457 return len_changed; 3458 } 3459 3460 /* 3461 * Do Ethernet-LLC encapsulation for each payload in a fast frame 3462 * tunnel encapsulation. The frame is assumed to have an Ethernet 3463 * header at the front that must be stripped before prepending the 3464 * LLC followed by the Ethernet header passed in (with an Ethernet 3465 * type that specifies the payload size). 3466 */ 3467 struct mbuf * 3468 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m, 3469 const struct ether_header *eh) 3470 { 3471 struct llc *llc; 3472 uint16_t payload; 3473 3474 /* XXX optimize by combining m_adj+M_PREPEND */ 3475 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 3476 llc = mtod(m, struct llc *); 3477 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 3478 llc->llc_control = LLC_UI; 3479 llc->llc_snap.org_code[0] = 0; 3480 llc->llc_snap.org_code[1] = 0; 3481 llc->llc_snap.org_code[2] = 0; 3482 llc->llc_snap.ether_type = eh->ether_type; 3483 payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */ 3484 3485 M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT); 3486 if (m == NULL) { /* XXX cannot happen */ 3487 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 3488 "%s: no space for ether_header\n", __func__); 3489 vap->iv_stats.is_tx_nobuf++; 3490 return NULL; 3491 } 3492 ETHER_HEADER_COPY(mtod(m, void *), eh); 3493 mtod(m, struct ether_header *)->ether_type = htons(payload); 3494 return m; 3495 } 3496 3497 /* 3498 * Complete an mbuf transmission. 3499 * 3500 * For now, this simply processes a completed frame after the 3501 * driver has completed it's transmission and/or retransmission. 3502 * It assumes the frame is an 802.11 encapsulated frame. 3503 * 3504 * Later on it will grow to become the exit path for a given frame 3505 * from the driver and, depending upon how it's been encapsulated 3506 * and already transmitted, it may end up doing A-MPDU retransmission, 3507 * power save requeuing, etc. 3508 * 3509 * In order for the above to work, the driver entry point to this 3510 * must not hold any driver locks. Thus, the driver needs to delay 3511 * any actual mbuf completion until it can release said locks. 3512 * 3513 * This frees the mbuf and if the mbuf has a node reference, 3514 * the node reference will be freed. 3515 */ 3516 void 3517 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status) 3518 { 3519 3520 if (ni != NULL) { 3521 struct ifnet *ifp = ni->ni_vap->iv_ifp; 3522 3523 if (status == 0) { 3524 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len); 3525 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 3526 if (m->m_flags & M_MCAST) 3527 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 3528 } else 3529 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 3530 if (m->m_flags & M_TXCB) 3531 ieee80211_process_callback(ni, m, status); 3532 ieee80211_free_node(ni); 3533 } 3534 m_freem(m); 3535 } 3536