1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #include "opt_inet.h" 31 #include "opt_inet6.h" 32 #include "opt_wlan.h" 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/kernel.h> 37 #include <sys/malloc.h> 38 #include <sys/mbuf.h> 39 #include <sys/endian.h> 40 41 #include <sys/socket.h> 42 43 #include <net/bpf.h> 44 #include <net/ethernet.h> 45 #include <net/if.h> 46 #include <net/if_var.h> 47 #include <net/if_llc.h> 48 #include <net/if_media.h> 49 #include <net/if_private.h> 50 #include <net/if_vlan_var.h> 51 52 #include <net80211/ieee80211_var.h> 53 #include <net80211/ieee80211_regdomain.h> 54 #ifdef IEEE80211_SUPPORT_SUPERG 55 #include <net80211/ieee80211_superg.h> 56 #endif 57 #ifdef IEEE80211_SUPPORT_TDMA 58 #include <net80211/ieee80211_tdma.h> 59 #endif 60 #include <net80211/ieee80211_wds.h> 61 #include <net80211/ieee80211_mesh.h> 62 #include <net80211/ieee80211_vht.h> 63 64 #if defined(INET) || defined(INET6) 65 #include <netinet/in.h> 66 #endif 67 68 #ifdef INET 69 #include <netinet/if_ether.h> 70 #include <netinet/in_systm.h> 71 #include <netinet/ip.h> 72 #endif 73 #ifdef INET6 74 #include <netinet/ip6.h> 75 #endif 76 77 #include <security/mac/mac_framework.h> 78 79 #define ETHER_HEADER_COPY(dst, src) \ 80 memcpy(dst, src, sizeof(struct ether_header)) 81 82 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *, 83 u_int hdrsize, u_int ciphdrsize, u_int mtu); 84 static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int); 85 86 #ifdef IEEE80211_DEBUG 87 /* 88 * Decide if an outbound management frame should be 89 * printed when debugging is enabled. This filters some 90 * of the less interesting frames that come frequently 91 * (e.g. beacons). 92 */ 93 static __inline int 94 doprint(struct ieee80211vap *vap, int subtype) 95 { 96 switch (subtype) { 97 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 98 return (vap->iv_opmode == IEEE80211_M_IBSS); 99 } 100 return 1; 101 } 102 #endif 103 104 /* 105 * Transmit a frame to the given destination on the given VAP. 106 * 107 * It's up to the caller to figure out the details of who this 108 * is going to and resolving the node. 109 * 110 * This routine takes care of queuing it for power save, 111 * A-MPDU state stuff, fast-frames state stuff, encapsulation 112 * if required, then passing it up to the driver layer. 113 * 114 * This routine (for now) consumes the mbuf and frees the node 115 * reference; it ideally will return a TX status which reflects 116 * whether the mbuf was consumed or not, so the caller can 117 * free the mbuf (if appropriate) and the node reference (again, 118 * if appropriate.) 119 */ 120 int 121 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m, 122 struct ieee80211_node *ni) 123 { 124 struct ieee80211com *ic = vap->iv_ic; 125 struct ifnet *ifp = vap->iv_ifp; 126 int mcast; 127 int do_ampdu = 0; 128 #ifdef IEEE80211_SUPPORT_SUPERG 129 int do_amsdu = 0; 130 int do_ampdu_amsdu = 0; 131 int no_ampdu = 1; /* Will be set to 0 if ampdu is active */ 132 int do_ff = 0; 133 #endif 134 135 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 136 (m->m_flags & M_PWR_SAV) == 0) { 137 /* 138 * Station in power save mode; pass the frame 139 * to the 802.11 layer and continue. We'll get 140 * the frame back when the time is right. 141 * XXX lose WDS vap linkage? 142 */ 143 if (ieee80211_pwrsave(ni, m) != 0) 144 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 145 ieee80211_free_node(ni); 146 147 /* 148 * We queued it fine, so tell the upper layer 149 * that we consumed it. 150 */ 151 return (0); 152 } 153 /* calculate priority so drivers can find the tx queue */ 154 if (ieee80211_classify(ni, m)) { 155 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 156 ni->ni_macaddr, NULL, 157 "%s", "classification failure"); 158 vap->iv_stats.is_tx_classify++; 159 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 160 m_freem(m); 161 ieee80211_free_node(ni); 162 163 /* XXX better status? */ 164 return (0); 165 } 166 /* 167 * Stash the node pointer. Note that we do this after 168 * any call to ieee80211_dwds_mcast because that code 169 * uses any existing value for rcvif to identify the 170 * interface it (might have been) received on. 171 */ 172 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 173 m->m_pkthdr.rcvif = (void *)ni; 174 mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0; 175 176 BPF_MTAP(ifp, m); /* 802.3 tx */ 177 178 /* 179 * Figure out if we can do A-MPDU, A-MSDU or FF. 180 * 181 * A-MPDU depends upon vap/node config. 182 * A-MSDU depends upon vap/node config. 183 * FF depends upon vap config, IE and whether 184 * it's 11abg (and not 11n/11ac/etc.) 185 * 186 * Note that these flags indiciate whether we can do 187 * it at all, rather than the situation (eg traffic type.) 188 */ 189 do_ampdu = ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) && 190 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)); 191 #ifdef IEEE80211_SUPPORT_SUPERG 192 do_amsdu = ((ni->ni_flags & IEEE80211_NODE_AMSDU_TX) && 193 (vap->iv_flags_ht & IEEE80211_FHT_AMSDU_TX)); 194 do_ff = 195 ((ni->ni_flags & IEEE80211_NODE_HT) == 0) && 196 ((ni->ni_flags & IEEE80211_NODE_VHT) == 0) && 197 (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)); 198 #endif 199 200 /* 201 * Check if A-MPDU tx aggregation is setup or if we 202 * should try to enable it. The sta must be associated 203 * with HT and A-MPDU enabled for use. When the policy 204 * routine decides we should enable A-MPDU we issue an 205 * ADDBA request and wait for a reply. The frame being 206 * encapsulated will go out w/o using A-MPDU, or possibly 207 * it might be collected by the driver and held/retransmit. 208 * The default ic_ampdu_enable routine handles staggering 209 * ADDBA requests in case the receiver NAK's us or we are 210 * otherwise unable to establish a BA stream. 211 * 212 * Don't treat group-addressed frames as candidates for aggregation; 213 * net80211 doesn't support 802.11aa-2012 and so group addressed 214 * frames will always have sequence numbers allocated from the NON_QOS 215 * TID. 216 */ 217 if (!IEEE80211_CONF_AMPDU_OFFLOAD(ic) && do_ampdu) { 218 if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) { 219 int tid = WME_AC_TO_TID(M_WME_GETAC(m)); 220 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; 221 222 ieee80211_txampdu_count_packet(tap); 223 if (IEEE80211_AMPDU_RUNNING(tap)) { 224 /* 225 * Operational, mark frame for aggregation. 226 * 227 * XXX do tx aggregation here 228 */ 229 m->m_flags |= M_AMPDU_MPDU; 230 } else if (!IEEE80211_AMPDU_REQUESTED(tap) && 231 ic->ic_ampdu_enable(ni, tap)) { 232 /* 233 * Not negotiated yet, request service. 234 */ 235 ieee80211_ampdu_request(ni, tap); 236 /* XXX hold frame for reply? */ 237 } 238 /* 239 * Now update the no-ampdu flag. A-MPDU may have been 240 * started or administratively disabled above; so now we 241 * know whether we're running yet or not. 242 * 243 * This will let us know whether we should be doing A-MSDU 244 * at this point. We only do A-MSDU if we're either not 245 * doing A-MPDU, or A-MPDU is NACKed, or A-MPDU + A-MSDU 246 * is available. 247 * 248 * Whilst here, update the amsdu-ampdu flag. The above may 249 * have also set or cleared the amsdu-in-ampdu txa_flags 250 * combination so we can correctly do A-MPDU + A-MSDU. 251 */ 252 #ifdef IEEE80211_SUPPORT_SUPERG 253 no_ampdu = (! IEEE80211_AMPDU_RUNNING(tap) 254 || (IEEE80211_AMPDU_NACKED(tap))); 255 do_ampdu_amsdu = IEEE80211_AMPDU_RUNNING_AMSDU(tap); 256 #endif 257 } 258 } 259 260 #ifdef IEEE80211_SUPPORT_SUPERG 261 /* 262 * Check for AMSDU/FF; queue for aggregation 263 * 264 * Note: we don't bother trying to do fast frames or 265 * A-MSDU encapsulation for 802.3 drivers. Now, we 266 * likely could do it for FF (because it's a magic 267 * atheros tunnel LLC type) but I don't think we're going 268 * to really need to. For A-MSDU we'd have to set the 269 * A-MSDU QoS bit in the wifi header, so we just plain 270 * can't do it. 271 */ 272 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 273 if ((! mcast) && 274 (do_ampdu_amsdu || (no_ampdu && do_amsdu)) && 275 ieee80211_amsdu_tx_ok(ni)) { 276 m = ieee80211_amsdu_check(ni, m); 277 if (m == NULL) { 278 /* NB: any ni ref held on stageq */ 279 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 280 "%s: amsdu_check queued frame\n", 281 __func__); 282 return (0); 283 } 284 } else if ((! mcast) && do_ff) { 285 m = ieee80211_ff_check(ni, m); 286 if (m == NULL) { 287 /* NB: any ni ref held on stageq */ 288 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 289 "%s: ff_check queued frame\n", 290 __func__); 291 return (0); 292 } 293 } 294 } 295 #endif /* IEEE80211_SUPPORT_SUPERG */ 296 297 /* 298 * Grab the TX lock - serialise the TX process from this 299 * point (where TX state is being checked/modified) 300 * through to driver queue. 301 */ 302 IEEE80211_TX_LOCK(ic); 303 304 /* 305 * XXX make the encap and transmit code a separate function 306 * so things like the FF (and later A-MSDU) path can just call 307 * it for flushed frames. 308 */ 309 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 310 /* 311 * Encapsulate the packet in prep for transmission. 312 */ 313 m = ieee80211_encap(vap, ni, m); 314 if (m == NULL) { 315 /* NB: stat+msg handled in ieee80211_encap */ 316 IEEE80211_TX_UNLOCK(ic); 317 ieee80211_free_node(ni); 318 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 319 return (ENOBUFS); 320 } 321 } 322 (void) ieee80211_parent_xmitpkt(ic, m); 323 324 /* 325 * Unlock at this point - no need to hold it across 326 * ieee80211_free_node() (ie, the comlock) 327 */ 328 IEEE80211_TX_UNLOCK(ic); 329 ic->ic_lastdata = ticks; 330 331 return (0); 332 } 333 334 /* 335 * Send the given mbuf through the given vap. 336 * 337 * This consumes the mbuf regardless of whether the transmit 338 * was successful or not. 339 * 340 * This does none of the initial checks that ieee80211_start() 341 * does (eg CAC timeout, interface wakeup) - the caller must 342 * do this first. 343 */ 344 static int 345 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m) 346 { 347 #define IS_DWDS(vap) \ 348 (vap->iv_opmode == IEEE80211_M_WDS && \ 349 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0) 350 struct ieee80211com *ic = vap->iv_ic; 351 struct ifnet *ifp = vap->iv_ifp; 352 struct ieee80211_node *ni; 353 struct ether_header *eh; 354 355 /* 356 * Cancel any background scan. 357 */ 358 if (ic->ic_flags & IEEE80211_F_SCAN) 359 ieee80211_cancel_anyscan(vap); 360 /* 361 * Find the node for the destination so we can do 362 * things like power save and fast frames aggregation. 363 * 364 * NB: past this point various code assumes the first 365 * mbuf has the 802.3 header present (and contiguous). 366 */ 367 ni = NULL; 368 if (m->m_len < sizeof(struct ether_header) && 369 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 370 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 371 "discard frame, %s\n", "m_pullup failed"); 372 vap->iv_stats.is_tx_nobuf++; /* XXX */ 373 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 374 return (ENOBUFS); 375 } 376 eh = mtod(m, struct ether_header *); 377 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 378 if (IS_DWDS(vap)) { 379 /* 380 * Only unicast frames from the above go out 381 * DWDS vaps; multicast frames are handled by 382 * dispatching the frame as it comes through 383 * the AP vap (see below). 384 */ 385 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS, 386 eh->ether_dhost, "mcast", "%s", "on DWDS"); 387 vap->iv_stats.is_dwds_mcast++; 388 m_freem(m); 389 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 390 /* XXX better status? */ 391 return (ENOBUFS); 392 } 393 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { 394 /* 395 * Spam DWDS vap's w/ multicast traffic. 396 */ 397 /* XXX only if dwds in use? */ 398 ieee80211_dwds_mcast(vap, m); 399 } 400 } 401 #ifdef IEEE80211_SUPPORT_MESH 402 if (vap->iv_opmode != IEEE80211_M_MBSS) { 403 #endif 404 ni = ieee80211_find_txnode(vap, eh->ether_dhost); 405 if (ni == NULL) { 406 /* NB: ieee80211_find_txnode does stat+msg */ 407 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 408 m_freem(m); 409 /* XXX better status? */ 410 return (ENOBUFS); 411 } 412 if (ni->ni_associd == 0 && 413 (ni->ni_flags & IEEE80211_NODE_ASSOCID)) { 414 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 415 eh->ether_dhost, NULL, 416 "sta not associated (type 0x%04x)", 417 htons(eh->ether_type)); 418 vap->iv_stats.is_tx_notassoc++; 419 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 420 m_freem(m); 421 ieee80211_free_node(ni); 422 /* XXX better status? */ 423 return (ENOBUFS); 424 } 425 #ifdef IEEE80211_SUPPORT_MESH 426 } else { 427 if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) { 428 /* 429 * Proxy station only if configured. 430 */ 431 if (!ieee80211_mesh_isproxyena(vap)) { 432 IEEE80211_DISCARD_MAC(vap, 433 IEEE80211_MSG_OUTPUT | 434 IEEE80211_MSG_MESH, 435 eh->ether_dhost, NULL, 436 "%s", "proxy not enabled"); 437 vap->iv_stats.is_mesh_notproxy++; 438 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 439 m_freem(m); 440 /* XXX better status? */ 441 return (ENOBUFS); 442 } 443 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 444 "forward frame from DS SA(%6D), DA(%6D)\n", 445 eh->ether_shost, ":", 446 eh->ether_dhost, ":"); 447 ieee80211_mesh_proxy_check(vap, eh->ether_shost); 448 } 449 ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m); 450 if (ni == NULL) { 451 /* 452 * NB: ieee80211_mesh_discover holds/disposes 453 * frame (e.g. queueing on path discovery). 454 */ 455 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 456 /* XXX better status? */ 457 return (ENOBUFS); 458 } 459 } 460 #endif 461 462 /* 463 * We've resolved the sender, so attempt to transmit it. 464 */ 465 466 if (vap->iv_state == IEEE80211_S_SLEEP) { 467 /* 468 * In power save; queue frame and then wakeup device 469 * for transmit. 470 */ 471 ic->ic_lastdata = ticks; 472 if (ieee80211_pwrsave(ni, m) != 0) 473 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 474 ieee80211_free_node(ni); 475 ieee80211_new_state(vap, IEEE80211_S_RUN, 0); 476 return (0); 477 } 478 479 if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0) 480 return (ENOBUFS); 481 return (0); 482 #undef IS_DWDS 483 } 484 485 /* 486 * Start method for vap's. All packets from the stack come 487 * through here. We handle common processing of the packets 488 * before dispatching them to the underlying device. 489 * 490 * if_transmit() requires that the mbuf be consumed by this call 491 * regardless of the return condition. 492 */ 493 int 494 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m) 495 { 496 struct ieee80211vap *vap = ifp->if_softc; 497 struct ieee80211com *ic = vap->iv_ic; 498 499 /* 500 * No data frames go out unless we're running. 501 * Note in particular this covers CAC and CSA 502 * states (though maybe we should check muting 503 * for CSA). 504 */ 505 if (vap->iv_state != IEEE80211_S_RUN && 506 vap->iv_state != IEEE80211_S_SLEEP) { 507 IEEE80211_LOCK(ic); 508 /* re-check under the com lock to avoid races */ 509 if (vap->iv_state != IEEE80211_S_RUN && 510 vap->iv_state != IEEE80211_S_SLEEP) { 511 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 512 "%s: ignore queue, in %s state\n", 513 __func__, ieee80211_state_name[vap->iv_state]); 514 vap->iv_stats.is_tx_badstate++; 515 IEEE80211_UNLOCK(ic); 516 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 517 m_freem(m); 518 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 519 return (ENETDOWN); 520 } 521 IEEE80211_UNLOCK(ic); 522 } 523 524 /* 525 * Sanitize mbuf flags for net80211 use. We cannot 526 * clear M_PWR_SAV or M_MORE_DATA because these may 527 * be set for frames that are re-submitted from the 528 * power save queue. 529 * 530 * NB: This must be done before ieee80211_classify as 531 * it marks EAPOL in frames with M_EAPOL. 532 */ 533 m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA); 534 535 /* 536 * Bump to the packet transmission path. 537 * The mbuf will be consumed here. 538 */ 539 return (ieee80211_start_pkt(vap, m)); 540 } 541 542 void 543 ieee80211_vap_qflush(struct ifnet *ifp) 544 { 545 546 /* Empty for now */ 547 } 548 549 /* 550 * 802.11 raw output routine. 551 * 552 * XXX TODO: this (and other send routines) should correctly 553 * XXX keep the pwr mgmt bit set if it decides to call into the 554 * XXX driver to send a frame whilst the state is SLEEP. 555 * 556 * Otherwise the peer may decide that we're awake and flood us 557 * with traffic we are still too asleep to receive! 558 */ 559 int 560 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni, 561 struct mbuf *m, const struct ieee80211_bpf_params *params) 562 { 563 struct ieee80211com *ic = vap->iv_ic; 564 int error; 565 566 /* 567 * Set node - the caller has taken a reference, so ensure 568 * that the mbuf has the same node value that 569 * it would if it were going via the normal path. 570 */ 571 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 572 m->m_pkthdr.rcvif = (void *)ni; 573 574 /* 575 * Attempt to add bpf transmit parameters. 576 * 577 * For now it's ok to fail; the raw_xmit api still takes 578 * them as an option. 579 * 580 * Later on when ic_raw_xmit() has params removed, 581 * they'll have to be added - so fail the transmit if 582 * they can't be. 583 */ 584 if (params) 585 (void) ieee80211_add_xmit_params(m, params); 586 587 error = ic->ic_raw_xmit(ni, m, params); 588 if (error) { 589 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1); 590 ieee80211_free_node(ni); 591 } 592 return (error); 593 } 594 595 static int 596 ieee80211_validate_frame(struct mbuf *m, 597 const struct ieee80211_bpf_params *params) 598 { 599 struct ieee80211_frame *wh; 600 int type; 601 602 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack)) 603 return (EINVAL); 604 605 wh = mtod(m, struct ieee80211_frame *); 606 if (!IEEE80211_IS_FC0_CHECK_VER(wh, IEEE80211_FC0_VERSION_0)) 607 return (EINVAL); 608 609 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 610 if (type != IEEE80211_FC0_TYPE_DATA) { 611 if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != 612 IEEE80211_FC1_DIR_NODS) 613 return (EINVAL); 614 615 if (type != IEEE80211_FC0_TYPE_MGT && 616 (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) != 0) 617 return (EINVAL); 618 619 /* XXX skip other field checks? */ 620 } 621 622 if ((params && (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0) || 623 (IEEE80211_IS_PROTECTED(wh))) { 624 int subtype; 625 626 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 627 628 /* 629 * See IEEE Std 802.11-2012, 630 * 8.2.4.1.9 'Protected Frame field' 631 */ 632 /* XXX no support for robust management frames yet. */ 633 if (!(type == IEEE80211_FC0_TYPE_DATA || 634 (type == IEEE80211_FC0_TYPE_MGT && 635 subtype == IEEE80211_FC0_SUBTYPE_AUTH))) 636 return (EINVAL); 637 638 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 639 } 640 641 if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh)) 642 return (EINVAL); 643 644 return (0); 645 } 646 647 static int 648 ieee80211_validate_rate(struct ieee80211_node *ni, uint8_t rate) 649 { 650 struct ieee80211com *ic = ni->ni_ic; 651 652 if (IEEE80211_IS_HT_RATE(rate)) { 653 if ((ic->ic_htcaps & IEEE80211_HTC_HT) == 0) 654 return (EINVAL); 655 656 rate = IEEE80211_RV(rate); 657 if (rate <= 31) { 658 if (rate > ic->ic_txstream * 8 - 1) 659 return (EINVAL); 660 661 return (0); 662 } 663 664 if (rate == 32) { 665 if ((ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0) 666 return (EINVAL); 667 668 return (0); 669 } 670 671 if ((ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) == 0) 672 return (EINVAL); 673 674 switch (ic->ic_txstream) { 675 case 0: 676 case 1: 677 return (EINVAL); 678 case 2: 679 if (rate > 38) 680 return (EINVAL); 681 682 return (0); 683 case 3: 684 if (rate > 52) 685 return (EINVAL); 686 687 return (0); 688 case 4: 689 default: 690 if (rate > 76) 691 return (EINVAL); 692 693 return (0); 694 } 695 } 696 697 if (!ieee80211_isratevalid(ic->ic_rt, rate)) 698 return (EINVAL); 699 700 return (0); 701 } 702 703 static int 704 ieee80211_sanitize_rates(struct ieee80211_node *ni, struct mbuf *m, 705 const struct ieee80211_bpf_params *params) 706 { 707 int error; 708 709 if (!params) 710 return (0); /* nothing to do */ 711 712 /* NB: most drivers assume that ibp_rate0 is set (!= 0). */ 713 if (params->ibp_rate0 != 0) { 714 error = ieee80211_validate_rate(ni, params->ibp_rate0); 715 if (error != 0) 716 return (error); 717 } else { 718 /* XXX pre-setup some default (e.g., mgmt / mcast) rate */ 719 /* XXX __DECONST? */ 720 (void) m; 721 } 722 723 if (params->ibp_rate1 != 0 && 724 (error = ieee80211_validate_rate(ni, params->ibp_rate1)) != 0) 725 return (error); 726 727 if (params->ibp_rate2 != 0 && 728 (error = ieee80211_validate_rate(ni, params->ibp_rate2)) != 0) 729 return (error); 730 731 if (params->ibp_rate3 != 0 && 732 (error = ieee80211_validate_rate(ni, params->ibp_rate3)) != 0) 733 return (error); 734 735 return (0); 736 } 737 738 /* 739 * 802.11 output routine. This is (currently) used only to 740 * connect bpf write calls to the 802.11 layer for injecting 741 * raw 802.11 frames. 742 */ 743 int 744 ieee80211_output(struct ifnet *ifp, struct mbuf *m, 745 const struct sockaddr *dst, struct route *ro) 746 { 747 #define senderr(e) do { error = (e); goto bad;} while (0) 748 const struct ieee80211_bpf_params *params = NULL; 749 struct ieee80211_node *ni = NULL; 750 struct ieee80211vap *vap; 751 struct ieee80211_frame *wh; 752 struct ieee80211com *ic = NULL; 753 int error; 754 int ret; 755 756 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 757 /* 758 * Short-circuit requests if the vap is marked OACTIVE 759 * as this can happen because a packet came down through 760 * ieee80211_start before the vap entered RUN state in 761 * which case it's ok to just drop the frame. This 762 * should not be necessary but callers of if_output don't 763 * check OACTIVE. 764 */ 765 senderr(ENETDOWN); 766 } 767 vap = ifp->if_softc; 768 ic = vap->iv_ic; 769 /* 770 * Hand to the 802.3 code if not tagged as 771 * a raw 802.11 frame. 772 */ 773 if (dst->sa_family != AF_IEEE80211) 774 return vap->iv_output(ifp, m, dst, ro); 775 #ifdef MAC 776 error = mac_ifnet_check_transmit(ifp, m); 777 if (error) 778 senderr(error); 779 #endif 780 if (ieee80211_vap_ifp_check_is_monitor(vap)) 781 senderr(ENETDOWN); 782 if (!IFNET_IS_UP_RUNNING(ifp)) 783 senderr(ENETDOWN); 784 if (vap->iv_state == IEEE80211_S_CAC) { 785 IEEE80211_DPRINTF(vap, 786 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 787 "block %s frame in CAC state\n", "raw data"); 788 vap->iv_stats.is_tx_badstate++; 789 senderr(EIO); /* XXX */ 790 } else if (vap->iv_state == IEEE80211_S_SCAN) 791 senderr(EIO); 792 /* XXX bypass bridge, pfil, carp, etc. */ 793 794 /* 795 * NB: DLT_IEEE802_11_RADIO identifies the parameters are 796 * present by setting the sa_len field of the sockaddr (yes, 797 * this is a hack). 798 * NB: we assume sa_data is suitably aligned to cast. 799 */ 800 if (dst->sa_len != 0) 801 params = (const struct ieee80211_bpf_params *)dst->sa_data; 802 803 error = ieee80211_validate_frame(m, params); 804 if (error != 0) 805 senderr(error); 806 807 wh = mtod(m, struct ieee80211_frame *); 808 809 /* locate destination node */ 810 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 811 case IEEE80211_FC1_DIR_NODS: 812 case IEEE80211_FC1_DIR_FROMDS: 813 ni = ieee80211_find_txnode(vap, wh->i_addr1); 814 break; 815 case IEEE80211_FC1_DIR_TODS: 816 case IEEE80211_FC1_DIR_DSTODS: 817 ni = ieee80211_find_txnode(vap, wh->i_addr3); 818 break; 819 default: 820 senderr(EDOOFUS); 821 } 822 if (ni == NULL) { 823 /* 824 * Permit packets w/ bpf params through regardless 825 * (see below about sa_len). 826 */ 827 if (dst->sa_len == 0) 828 senderr(EHOSTUNREACH); 829 ni = ieee80211_ref_node(vap->iv_bss); 830 } 831 832 /* 833 * Sanitize mbuf for net80211 flags leaked from above. 834 * 835 * NB: This must be done before ieee80211_classify as 836 * it marks EAPOL in frames with M_EAPOL. 837 */ 838 m->m_flags &= ~M_80211_TX; 839 m->m_flags |= M_ENCAP; /* mark encapsulated */ 840 841 if (IEEE80211_IS_DATA(wh)) { 842 /* calculate priority so drivers can find the tx queue */ 843 if (ieee80211_classify(ni, m)) 844 senderr(EIO); /* XXX */ 845 846 /* NB: ieee80211_encap does not include 802.11 header */ 847 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, 848 m->m_pkthdr.len - ieee80211_hdrsize(wh)); 849 } else 850 M_WME_SETAC(m, WME_AC_BE); 851 852 error = ieee80211_sanitize_rates(ni, m, params); 853 if (error != 0) 854 senderr(error); 855 856 IEEE80211_NODE_STAT(ni, tx_data); 857 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 858 IEEE80211_NODE_STAT(ni, tx_mcast); 859 m->m_flags |= M_MCAST; 860 } else 861 IEEE80211_NODE_STAT(ni, tx_ucast); 862 863 IEEE80211_TX_LOCK(ic); 864 ret = ieee80211_raw_output(vap, ni, m, params); 865 IEEE80211_TX_UNLOCK(ic); 866 return (ret); 867 bad: 868 if (m != NULL) 869 m_freem(m); 870 if (ni != NULL) 871 ieee80211_free_node(ni); 872 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 873 return error; 874 #undef senderr 875 } 876 877 /* 878 * Set the direction field and address fields of an outgoing 879 * frame. Note this should be called early on in constructing 880 * a frame as it sets i_fc[1]; other bits can then be or'd in. 881 */ 882 void 883 ieee80211_send_setup( 884 struct ieee80211_node *ni, 885 struct mbuf *m, 886 int type, int tid, 887 const uint8_t sa[IEEE80211_ADDR_LEN], 888 const uint8_t da[IEEE80211_ADDR_LEN], 889 const uint8_t bssid[IEEE80211_ADDR_LEN]) 890 { 891 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 892 struct ieee80211vap *vap = ni->ni_vap; 893 struct ieee80211_tx_ampdu *tap; 894 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 895 896 IEEE80211_TX_LOCK_ASSERT(ni->ni_ic); 897 898 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 899 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 900 switch (vap->iv_opmode) { 901 case IEEE80211_M_STA: 902 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 903 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 904 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 905 IEEE80211_ADDR_COPY(wh->i_addr3, da); 906 break; 907 case IEEE80211_M_IBSS: 908 case IEEE80211_M_AHDEMO: 909 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 910 IEEE80211_ADDR_COPY(wh->i_addr1, da); 911 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 912 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 913 break; 914 case IEEE80211_M_HOSTAP: 915 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 916 IEEE80211_ADDR_COPY(wh->i_addr1, da); 917 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 918 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 919 break; 920 case IEEE80211_M_WDS: 921 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 922 IEEE80211_ADDR_COPY(wh->i_addr1, da); 923 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 924 IEEE80211_ADDR_COPY(wh->i_addr3, da); 925 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 926 break; 927 case IEEE80211_M_MBSS: 928 #ifdef IEEE80211_SUPPORT_MESH 929 if (IEEE80211_IS_MULTICAST(da)) { 930 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 931 /* XXX next hop */ 932 IEEE80211_ADDR_COPY(wh->i_addr1, da); 933 IEEE80211_ADDR_COPY(wh->i_addr2, 934 vap->iv_myaddr); 935 } else { 936 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 937 IEEE80211_ADDR_COPY(wh->i_addr1, da); 938 IEEE80211_ADDR_COPY(wh->i_addr2, 939 vap->iv_myaddr); 940 IEEE80211_ADDR_COPY(wh->i_addr3, da); 941 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 942 } 943 #endif 944 break; 945 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 946 break; 947 } 948 } else { 949 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 950 IEEE80211_ADDR_COPY(wh->i_addr1, da); 951 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 952 #ifdef IEEE80211_SUPPORT_MESH 953 if (vap->iv_opmode == IEEE80211_M_MBSS) 954 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 955 else 956 #endif 957 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 958 } 959 *(uint16_t *)&wh->i_dur[0] = 0; 960 961 /* 962 * XXX TODO: this is what the TX lock is for. 963 * Here we're incrementing sequence numbers, and they 964 * need to be in lock-step with what the driver is doing 965 * both in TX ordering and crypto encap (IV increment.) 966 * 967 * If the driver does seqno itself, then we can skip 968 * assigning sequence numbers here, and we can avoid 969 * requiring the TX lock. 970 */ 971 tap = &ni->ni_tx_ampdu[tid]; 972 if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) { 973 m->m_flags |= M_AMPDU_MPDU; 974 975 /* NB: zero out i_seq field (for s/w encryption etc) */ 976 *(uint16_t *)&wh->i_seq[0] = 0; 977 } else 978 ieee80211_output_seqno_assign(ni, tid, m); 979 980 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 981 m->m_flags |= M_MCAST; 982 #undef WH4 983 } 984 985 /* 986 * Send a management frame to the specified node. The node pointer 987 * must have a reference as the pointer will be passed to the driver 988 * and potentially held for a long time. If the frame is successfully 989 * dispatched to the driver, then it is responsible for freeing the 990 * reference (and potentially free'ing up any associated storage); 991 * otherwise deal with reclaiming any reference (on error). 992 */ 993 int 994 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type, 995 struct ieee80211_bpf_params *params) 996 { 997 struct ieee80211vap *vap = ni->ni_vap; 998 struct ieee80211com *ic = ni->ni_ic; 999 struct ieee80211_frame *wh; 1000 int ret; 1001 1002 KASSERT(ni != NULL, ("null node")); 1003 1004 if (vap->iv_state == IEEE80211_S_CAC) { 1005 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 1006 ni, "block %s frame in CAC state", 1007 ieee80211_mgt_subtype_name(type)); 1008 vap->iv_stats.is_tx_badstate++; 1009 ieee80211_free_node(ni); 1010 m_freem(m); 1011 return EIO; /* XXX */ 1012 } 1013 1014 M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT); 1015 if (m == NULL) { 1016 ieee80211_free_node(ni); 1017 return ENOMEM; 1018 } 1019 1020 IEEE80211_TX_LOCK(ic); 1021 1022 wh = mtod(m, struct ieee80211_frame *); 1023 ieee80211_send_setup(ni, m, 1024 IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID, 1025 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 1026 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { 1027 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1, 1028 "encrypting frame (%s)", __func__); 1029 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 1030 } 1031 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1032 1033 KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?")); 1034 M_WME_SETAC(m, params->ibp_pri); 1035 1036 #ifdef IEEE80211_DEBUG 1037 /* avoid printing too many frames */ 1038 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) || 1039 ieee80211_msg_dumppkts(vap)) { 1040 ieee80211_note(vap, "[%s] send %s on channel %u\n", 1041 ether_sprintf(wh->i_addr1), 1042 ieee80211_mgt_subtype_name(type), 1043 ieee80211_chan2ieee(ic, ic->ic_curchan)); 1044 } 1045 #endif 1046 IEEE80211_NODE_STAT(ni, tx_mgmt); 1047 1048 ret = ieee80211_raw_output(vap, ni, m, params); 1049 IEEE80211_TX_UNLOCK(ic); 1050 return (ret); 1051 } 1052 1053 static void 1054 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg, 1055 int status) 1056 { 1057 struct ieee80211vap *vap = ni->ni_vap; 1058 1059 wakeup(vap); 1060 } 1061 1062 /* 1063 * Send a null data frame to the specified node. If the station 1064 * is setup for QoS then a QoS Null Data frame is constructed. 1065 * If this is a WDS station then a 4-address frame is constructed. 1066 * 1067 * NB: the caller is assumed to have setup a node reference 1068 * for use; this is necessary to deal with a race condition 1069 * when probing for inactive stations. Like ieee80211_mgmt_output 1070 * we must cleanup any node reference on error; however we 1071 * can safely just unref it as we know it will never be the 1072 * last reference to the node. 1073 */ 1074 int 1075 ieee80211_send_nulldata(struct ieee80211_node *ni) 1076 { 1077 struct ieee80211vap *vap = ni->ni_vap; 1078 struct ieee80211com *ic = ni->ni_ic; 1079 struct mbuf *m; 1080 struct ieee80211_frame *wh; 1081 int hdrlen; 1082 uint8_t *frm; 1083 int ret; 1084 1085 if (vap->iv_state == IEEE80211_S_CAC) { 1086 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 1087 ni, "block %s frame in CAC state", "null data"); 1088 ieee80211_node_decref(ni); 1089 vap->iv_stats.is_tx_badstate++; 1090 return EIO; /* XXX */ 1091 } 1092 1093 if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) 1094 hdrlen = sizeof(struct ieee80211_qosframe); 1095 else 1096 hdrlen = sizeof(struct ieee80211_frame); 1097 /* NB: only WDS vap's get 4-address frames */ 1098 if (vap->iv_opmode == IEEE80211_M_WDS) 1099 hdrlen += IEEE80211_ADDR_LEN; 1100 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1101 hdrlen = roundup(hdrlen, sizeof(uint32_t)); 1102 1103 m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0); 1104 if (m == NULL) { 1105 /* XXX debug msg */ 1106 ieee80211_node_decref(ni); 1107 vap->iv_stats.is_tx_nobuf++; 1108 return ENOMEM; 1109 } 1110 KASSERT(M_LEADINGSPACE(m) >= hdrlen, 1111 ("leading space %zd", M_LEADINGSPACE(m))); 1112 M_PREPEND(m, hdrlen, IEEE80211_M_NOWAIT); 1113 if (m == NULL) { 1114 /* NB: cannot happen */ 1115 ieee80211_free_node(ni); 1116 return ENOMEM; 1117 } 1118 1119 IEEE80211_TX_LOCK(ic); 1120 1121 wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */ 1122 if (ni->ni_flags & IEEE80211_NODE_QOS) { 1123 const int tid = WME_AC_TO_TID(WME_AC_BE); 1124 uint8_t *qos; 1125 1126 ieee80211_send_setup(ni, m, 1127 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL, 1128 tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 1129 1130 if (vap->iv_opmode == IEEE80211_M_WDS) 1131 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1132 else 1133 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1134 qos[0] = tid & IEEE80211_QOS_TID; 1135 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy) 1136 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1137 qos[1] = 0; 1138 } else { 1139 ieee80211_send_setup(ni, m, 1140 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 1141 IEEE80211_NONQOS_TID, 1142 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 1143 } 1144 if (vap->iv_opmode != IEEE80211_M_WDS) { 1145 /* NB: power management bit is never sent by an AP */ 1146 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 1147 vap->iv_opmode != IEEE80211_M_HOSTAP) 1148 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 1149 } 1150 if ((ic->ic_flags & IEEE80211_F_SCAN) && 1151 (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) { 1152 ieee80211_add_callback(m, ieee80211_nulldata_transmitted, 1153 NULL); 1154 } 1155 m->m_len = m->m_pkthdr.len = hdrlen; 1156 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1157 1158 M_WME_SETAC(m, WME_AC_BE); 1159 1160 IEEE80211_NODE_STAT(ni, tx_data); 1161 1162 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni, 1163 "send %snull data frame on channel %u, pwr mgt %s", 1164 ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "", 1165 ieee80211_chan2ieee(ic, ic->ic_curchan), 1166 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 1167 1168 ret = ieee80211_raw_output(vap, ni, m, NULL); 1169 IEEE80211_TX_UNLOCK(ic); 1170 return (ret); 1171 } 1172 1173 /* 1174 * Assign priority to a frame based on any vlan tag assigned 1175 * to the station and/or any Diffserv setting in an IP header. 1176 * Finally, if an ACM policy is setup (in station mode) it's 1177 * applied. 1178 */ 1179 int 1180 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m) 1181 { 1182 const struct ether_header *eh = NULL; 1183 uint16_t ether_type; 1184 int v_wme_ac, d_wme_ac, ac; 1185 1186 if (__predict_false(m->m_flags & M_ENCAP)) { 1187 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 1188 struct llc *llc; 1189 int hdrlen, subtype; 1190 1191 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1192 if (subtype & IEEE80211_FC0_SUBTYPE_NODATA) { 1193 ac = WME_AC_BE; 1194 goto done; 1195 } 1196 1197 hdrlen = ieee80211_hdrsize(wh); 1198 if (m->m_pkthdr.len < hdrlen + sizeof(*llc)) 1199 return 1; 1200 1201 llc = (struct llc *)mtodo(m, hdrlen); 1202 if (llc->llc_dsap != LLC_SNAP_LSAP || 1203 llc->llc_ssap != LLC_SNAP_LSAP || 1204 llc->llc_control != LLC_UI || 1205 llc->llc_snap.org_code[0] != 0 || 1206 llc->llc_snap.org_code[1] != 0 || 1207 llc->llc_snap.org_code[2] != 0) 1208 return 1; 1209 1210 ether_type = llc->llc_snap.ether_type; 1211 } else { 1212 eh = mtod(m, struct ether_header *); 1213 ether_type = eh->ether_type; 1214 } 1215 1216 /* 1217 * Always promote PAE/EAPOL frames to high priority. 1218 */ 1219 if (ether_type == htons(ETHERTYPE_PAE)) { 1220 /* NB: mark so others don't need to check header */ 1221 m->m_flags |= M_EAPOL; 1222 ac = WME_AC_VO; 1223 goto done; 1224 } 1225 /* 1226 * Non-qos traffic goes to BE. 1227 */ 1228 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 1229 ac = WME_AC_BE; 1230 goto done; 1231 } 1232 1233 /* 1234 * If node has a vlan tag then all traffic 1235 * to it must have a matching tag. 1236 */ 1237 v_wme_ac = 0; 1238 if (ni->ni_vlan != 0) { 1239 if ((m->m_flags & M_VLANTAG) == 0) { 1240 IEEE80211_NODE_STAT(ni, tx_novlantag); 1241 return 1; 1242 } 1243 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 1244 EVL_VLANOFTAG(ni->ni_vlan)) { 1245 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 1246 return 1; 1247 } 1248 /* map vlan priority to AC */ 1249 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan)); 1250 } 1251 1252 if (eh == NULL) 1253 goto no_eh; 1254 1255 /* XXX m_copydata may be too slow for fast path */ 1256 switch (ntohs(eh->ether_type)) { 1257 #ifdef INET 1258 case ETHERTYPE_IP: 1259 { 1260 uint8_t tos; 1261 /* 1262 * IP frame, map the DSCP bits from the TOS field. 1263 */ 1264 /* NB: ip header may not be in first mbuf */ 1265 m_copydata(m, sizeof(struct ether_header) + 1266 offsetof(struct ip, ip_tos), sizeof(tos), &tos); 1267 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1268 d_wme_ac = TID_TO_WME_AC(tos); 1269 break; 1270 } 1271 #endif 1272 #ifdef INET6 1273 case ETHERTYPE_IPV6: 1274 { 1275 uint32_t flow; 1276 uint8_t tos; 1277 /* 1278 * IPv6 frame, map the DSCP bits from the traffic class field. 1279 */ 1280 m_copydata(m, sizeof(struct ether_header) + 1281 offsetof(struct ip6_hdr, ip6_flow), sizeof(flow), 1282 (caddr_t) &flow); 1283 tos = (uint8_t)(ntohl(flow) >> 20); 1284 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1285 d_wme_ac = TID_TO_WME_AC(tos); 1286 break; 1287 } 1288 #endif 1289 default: 1290 no_eh: 1291 d_wme_ac = WME_AC_BE; 1292 break; 1293 } 1294 1295 /* 1296 * Use highest priority AC. 1297 */ 1298 if (v_wme_ac > d_wme_ac) 1299 ac = v_wme_ac; 1300 else 1301 ac = d_wme_ac; 1302 1303 /* 1304 * Apply ACM policy. 1305 */ 1306 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) { 1307 static const int acmap[4] = { 1308 WME_AC_BK, /* WME_AC_BE */ 1309 WME_AC_BK, /* WME_AC_BK */ 1310 WME_AC_BE, /* WME_AC_VI */ 1311 WME_AC_VI, /* WME_AC_VO */ 1312 }; 1313 struct ieee80211com *ic = ni->ni_ic; 1314 1315 while (ac != WME_AC_BK && 1316 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 1317 ac = acmap[ac]; 1318 } 1319 done: 1320 M_WME_SETAC(m, ac); 1321 return 0; 1322 } 1323 1324 /* 1325 * Insure there is sufficient contiguous space to encapsulate the 1326 * 802.11 data frame. If room isn't already there, arrange for it. 1327 * Drivers and cipher modules assume we have done the necessary work 1328 * and fail rudely if they don't find the space they need. 1329 */ 1330 struct mbuf * 1331 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize, 1332 struct ieee80211_key *key, struct mbuf *m) 1333 { 1334 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 1335 int needed_space = vap->iv_ic->ic_headroom + hdrsize; 1336 1337 if (key != NULL) { 1338 /* XXX belongs in crypto code? */ 1339 needed_space += key->wk_cipher->ic_header; 1340 /* XXX frags */ 1341 /* 1342 * When crypto is being done in the host we must insure 1343 * the data are writable for the cipher routines; clone 1344 * a writable mbuf chain. 1345 * XXX handle SWMIC specially 1346 */ 1347 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) { 1348 m = m_unshare(m, IEEE80211_M_NOWAIT); 1349 if (m == NULL) { 1350 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1351 "%s: cannot get writable mbuf\n", __func__); 1352 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */ 1353 return NULL; 1354 } 1355 } 1356 } 1357 /* 1358 * We know we are called just before stripping an Ethernet 1359 * header and prepending an LLC header. This means we know 1360 * there will be 1361 * sizeof(struct ether_header) - sizeof(struct llc) 1362 * bytes recovered to which we need additional space for the 1363 * 802.11 header and any crypto header. 1364 */ 1365 /* XXX check trailing space and copy instead? */ 1366 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 1367 struct mbuf *n = m_gethdr(IEEE80211_M_NOWAIT, m->m_type); 1368 if (n == NULL) { 1369 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1370 "%s: cannot expand storage\n", __func__); 1371 vap->iv_stats.is_tx_nobuf++; 1372 m_freem(m); 1373 return NULL; 1374 } 1375 KASSERT(needed_space <= MHLEN, 1376 ("not enough room, need %u got %d\n", needed_space, MHLEN)); 1377 /* 1378 * Setup new mbuf to have leading space to prepend the 1379 * 802.11 header and any crypto header bits that are 1380 * required (the latter are added when the driver calls 1381 * back to ieee80211_crypto_encap to do crypto encapsulation). 1382 */ 1383 /* NB: must be first 'cuz it clobbers m_data */ 1384 m_move_pkthdr(n, m); 1385 n->m_len = 0; /* NB: m_gethdr does not set */ 1386 n->m_data += needed_space; 1387 /* 1388 * Pull up Ethernet header to create the expected layout. 1389 * We could use m_pullup but that's overkill (i.e. we don't 1390 * need the actual data) and it cannot fail so do it inline 1391 * for speed. 1392 */ 1393 /* NB: struct ether_header is known to be contiguous */ 1394 n->m_len += sizeof(struct ether_header); 1395 m->m_len -= sizeof(struct ether_header); 1396 m->m_data += sizeof(struct ether_header); 1397 /* 1398 * Replace the head of the chain. 1399 */ 1400 n->m_next = m; 1401 m = n; 1402 } 1403 return m; 1404 #undef TO_BE_RECLAIMED 1405 } 1406 1407 /* 1408 * Return the transmit key to use in sending a unicast frame. 1409 * If a unicast key is set we use that. When no unicast key is set 1410 * we fall back to the default transmit key. 1411 */ 1412 static __inline struct ieee80211_key * 1413 ieee80211_crypto_getucastkey(struct ieee80211vap *vap, 1414 struct ieee80211_node *ni) 1415 { 1416 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) { 1417 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1418 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1419 return NULL; 1420 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1421 } else { 1422 return &ni->ni_ucastkey; 1423 } 1424 } 1425 1426 /* 1427 * Return the transmit key to use in sending a multicast frame. 1428 * Multicast traffic always uses the group key which is installed as 1429 * the default tx key. 1430 */ 1431 static __inline struct ieee80211_key * 1432 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap, 1433 struct ieee80211_node *ni) 1434 { 1435 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1436 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1437 return NULL; 1438 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1439 } 1440 1441 /* 1442 * Encapsulate an outbound data frame. The mbuf chain is updated. 1443 * If an error is encountered NULL is returned. The caller is required 1444 * to provide a node reference and pullup the ethernet header in the 1445 * first mbuf. 1446 * 1447 * NB: Packet is assumed to be processed by ieee80211_classify which 1448 * marked EAPOL frames w/ M_EAPOL. 1449 */ 1450 struct mbuf * 1451 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni, 1452 struct mbuf *m) 1453 { 1454 #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh)) 1455 #define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc) 1456 struct ieee80211com *ic = ni->ni_ic; 1457 #ifdef IEEE80211_SUPPORT_MESH 1458 struct ieee80211_mesh_state *ms = vap->iv_mesh; 1459 struct ieee80211_meshcntl_ae10 *mc; 1460 struct ieee80211_mesh_route *rt = NULL; 1461 int dir = -1; 1462 #endif 1463 struct ether_header eh; 1464 struct ieee80211_frame *wh; 1465 struct ieee80211_key *key; 1466 struct llc *llc; 1467 int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast; 1468 int meshhdrsize, meshae; 1469 uint8_t *qos; 1470 int is_amsdu = 0; 1471 1472 IEEE80211_TX_LOCK_ASSERT(ic); 1473 1474 is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST)); 1475 1476 /* 1477 * Copy existing Ethernet header to a safe place. The 1478 * rest of the code assumes it's ok to strip it when 1479 * reorganizing state for the final encapsulation. 1480 */ 1481 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 1482 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t)); 1483 1484 /* 1485 * Insure space for additional headers. First identify 1486 * transmit key to use in calculating any buffer adjustments 1487 * required. This is also used below to do privacy 1488 * encapsulation work. Then calculate the 802.11 header 1489 * size and any padding required by the driver. 1490 * 1491 * Note key may be NULL if we fall back to the default 1492 * transmit key and that is not set. In that case the 1493 * buffer may not be expanded as needed by the cipher 1494 * routines, but they will/should discard it. 1495 */ 1496 if (vap->iv_flags & IEEE80211_F_PRIVACY) { 1497 if (vap->iv_opmode == IEEE80211_M_STA || 1498 !IEEE80211_IS_MULTICAST(eh.ether_dhost) || 1499 (vap->iv_opmode == IEEE80211_M_WDS && 1500 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) { 1501 key = ieee80211_crypto_getucastkey(vap, ni); 1502 } else if ((vap->iv_opmode == IEEE80211_M_WDS) && 1503 (! (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) { 1504 /* 1505 * Use ucastkey for DWDS transmit nodes, multicast 1506 * or otherwise. 1507 * 1508 * This is required to ensure that multicast frames 1509 * from a DWDS AP to a DWDS STA is encrypted with 1510 * a key that can actually work. 1511 * 1512 * There's no default key for multicast traffic 1513 * on a DWDS WDS VAP node (note NOT the DWDS enabled 1514 * AP VAP, the dynamically created per-STA WDS node) 1515 * so encap fails and transmit fails. 1516 */ 1517 key = ieee80211_crypto_getucastkey(vap, ni); 1518 } else { 1519 key = ieee80211_crypto_getmcastkey(vap, ni); 1520 } 1521 if (key == NULL && (m->m_flags & M_EAPOL) == 0) { 1522 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, 1523 eh.ether_dhost, 1524 "no default transmit key (%s) deftxkey %u", 1525 __func__, vap->iv_def_txkey); 1526 vap->iv_stats.is_tx_nodefkey++; 1527 goto bad; 1528 } 1529 } else 1530 key = NULL; 1531 /* 1532 * XXX Some ap's don't handle QoS-encapsulated EAPOL 1533 * frames so suppress use. This may be an issue if other 1534 * ap's require all data frames to be QoS-encapsulated 1535 * once negotiated in which case we'll need to make this 1536 * configurable. 1537 * 1538 * Don't send multicast QoS frames. 1539 * Technically multicast frames can be QoS if all stations in the 1540 * BSS are also QoS. 1541 * 1542 * NB: mesh data frames are QoS, including multicast frames. 1543 */ 1544 addqos = 1545 (((is_mcast == 0) && (ni->ni_flags & 1546 (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) || 1547 (vap->iv_opmode == IEEE80211_M_MBSS)) && 1548 (m->m_flags & M_EAPOL) == 0; 1549 1550 if (addqos) 1551 hdrsize = sizeof(struct ieee80211_qosframe); 1552 else 1553 hdrsize = sizeof(struct ieee80211_frame); 1554 #ifdef IEEE80211_SUPPORT_MESH 1555 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1556 /* 1557 * Mesh data frames are encapsulated according to the 1558 * rules of Section 11B.8.5 (p.139 of D3.0 spec). 1559 * o Group Addressed data (aka multicast) originating 1560 * at the local sta are sent w/ 3-address format and 1561 * address extension mode 00 1562 * o Individually Addressed data (aka unicast) originating 1563 * at the local sta are sent w/ 4-address format and 1564 * address extension mode 00 1565 * o Group Addressed data forwarded from a non-mesh sta are 1566 * sent w/ 3-address format and address extension mode 01 1567 * o Individually Address data from another sta are sent 1568 * w/ 4-address format and address extension mode 10 1569 */ 1570 is4addr = 0; /* NB: don't use, disable */ 1571 if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) { 1572 rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost); 1573 KASSERT(rt != NULL, ("route is NULL")); 1574 dir = IEEE80211_FC1_DIR_DSTODS; 1575 hdrsize += IEEE80211_ADDR_LEN; 1576 if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) { 1577 if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate, 1578 vap->iv_myaddr)) { 1579 IEEE80211_NOTE_MAC(vap, 1580 IEEE80211_MSG_MESH, 1581 eh.ether_dhost, 1582 "%s", "trying to send to ourself"); 1583 goto bad; 1584 } 1585 meshae = IEEE80211_MESH_AE_10; 1586 meshhdrsize = 1587 sizeof(struct ieee80211_meshcntl_ae10); 1588 } else { 1589 meshae = IEEE80211_MESH_AE_00; 1590 meshhdrsize = 1591 sizeof(struct ieee80211_meshcntl); 1592 } 1593 } else { 1594 dir = IEEE80211_FC1_DIR_FROMDS; 1595 if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) { 1596 /* proxy group */ 1597 meshae = IEEE80211_MESH_AE_01; 1598 meshhdrsize = 1599 sizeof(struct ieee80211_meshcntl_ae01); 1600 } else { 1601 /* group */ 1602 meshae = IEEE80211_MESH_AE_00; 1603 meshhdrsize = sizeof(struct ieee80211_meshcntl); 1604 } 1605 } 1606 } else { 1607 #endif 1608 /* 1609 * 4-address frames need to be generated for: 1610 * o packets sent through a WDS vap (IEEE80211_M_WDS) 1611 * o packets sent through a vap marked for relaying 1612 * (e.g. a station operating with dynamic WDS) 1613 */ 1614 is4addr = vap->iv_opmode == IEEE80211_M_WDS || 1615 ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) && 1616 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)); 1617 if (is4addr) 1618 hdrsize += IEEE80211_ADDR_LEN; 1619 meshhdrsize = meshae = 0; 1620 #ifdef IEEE80211_SUPPORT_MESH 1621 } 1622 #endif 1623 /* 1624 * Honor driver DATAPAD requirement. 1625 */ 1626 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1627 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1628 else 1629 hdrspace = hdrsize; 1630 1631 if (__predict_true((m->m_flags & M_FF) == 0)) { 1632 /* 1633 * Normal frame. 1634 */ 1635 m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m); 1636 if (m == NULL) { 1637 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 1638 goto bad; 1639 } 1640 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */ 1641 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 1642 llc = mtod(m, struct llc *); 1643 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 1644 llc->llc_control = LLC_UI; 1645 llc->llc_snap.org_code[0] = 0; 1646 llc->llc_snap.org_code[1] = 0; 1647 llc->llc_snap.org_code[2] = 0; 1648 llc->llc_snap.ether_type = eh.ether_type; 1649 } else { 1650 #ifdef IEEE80211_SUPPORT_SUPERG 1651 /* 1652 * Aggregated frame. Check if it's for AMSDU or FF. 1653 * 1654 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented 1655 * anywhere for some reason. But, since 11n requires 1656 * AMSDU RX, we can just assume "11n" == "AMSDU". 1657 */ 1658 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__); 1659 if (ieee80211_amsdu_tx_ok(ni)) { 1660 m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key); 1661 is_amsdu = 1; 1662 } else { 1663 m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key); 1664 } 1665 if (m == NULL) 1666 #endif 1667 goto bad; 1668 } 1669 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 1670 1671 M_PREPEND(m, hdrspace + meshhdrsize, IEEE80211_M_NOWAIT); 1672 if (m == NULL) { 1673 vap->iv_stats.is_tx_nobuf++; 1674 goto bad; 1675 } 1676 wh = mtod(m, struct ieee80211_frame *); 1677 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 1678 *(uint16_t *)wh->i_dur = 0; 1679 qos = NULL; /* NB: quiet compiler */ 1680 if (is4addr) { 1681 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 1682 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); 1683 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1684 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1685 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); 1686 } else switch (vap->iv_opmode) { 1687 case IEEE80211_M_STA: 1688 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 1689 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 1690 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1691 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1692 break; 1693 case IEEE80211_M_IBSS: 1694 case IEEE80211_M_AHDEMO: 1695 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1696 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1697 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1698 /* 1699 * NB: always use the bssid from iv_bss as the 1700 * neighbor's may be stale after an ibss merge 1701 */ 1702 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid); 1703 break; 1704 case IEEE80211_M_HOSTAP: 1705 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1706 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1707 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 1708 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 1709 break; 1710 #ifdef IEEE80211_SUPPORT_MESH 1711 case IEEE80211_M_MBSS: 1712 /* NB: offset by hdrspace to deal with DATAPAD */ 1713 mc = (struct ieee80211_meshcntl_ae10 *) 1714 (mtod(m, uint8_t *) + hdrspace); 1715 wh->i_fc[1] = dir; 1716 switch (meshae) { 1717 case IEEE80211_MESH_AE_00: /* no proxy */ 1718 mc->mc_flags = 0; 1719 if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */ 1720 IEEE80211_ADDR_COPY(wh->i_addr1, 1721 ni->ni_macaddr); 1722 IEEE80211_ADDR_COPY(wh->i_addr2, 1723 vap->iv_myaddr); 1724 IEEE80211_ADDR_COPY(wh->i_addr3, 1725 eh.ether_dhost); 1726 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, 1727 eh.ether_shost); 1728 qos =((struct ieee80211_qosframe_addr4 *) 1729 wh)->i_qos; 1730 } else if (dir == IEEE80211_FC1_DIR_FROMDS) { 1731 /* mcast */ 1732 IEEE80211_ADDR_COPY(wh->i_addr1, 1733 eh.ether_dhost); 1734 IEEE80211_ADDR_COPY(wh->i_addr2, 1735 vap->iv_myaddr); 1736 IEEE80211_ADDR_COPY(wh->i_addr3, 1737 eh.ether_shost); 1738 qos = ((struct ieee80211_qosframe *) 1739 wh)->i_qos; 1740 } 1741 break; 1742 case IEEE80211_MESH_AE_01: /* mcast, proxy */ 1743 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1744 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1745 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1746 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr); 1747 mc->mc_flags = 1; 1748 IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4, 1749 eh.ether_shost); 1750 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1751 break; 1752 case IEEE80211_MESH_AE_10: /* ucast, proxy */ 1753 KASSERT(rt != NULL, ("route is NULL")); 1754 IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop); 1755 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1756 IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate); 1757 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr); 1758 mc->mc_flags = IEEE80211_MESH_AE_10; 1759 IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost); 1760 IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost); 1761 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1762 break; 1763 default: 1764 KASSERT(0, ("meshae %d", meshae)); 1765 break; 1766 } 1767 mc->mc_ttl = ms->ms_ttl; 1768 ms->ms_seq++; 1769 le32enc(mc->mc_seq, ms->ms_seq); 1770 break; 1771 #endif 1772 case IEEE80211_M_WDS: /* NB: is4addr should always be true */ 1773 default: 1774 goto bad; 1775 } 1776 if (m->m_flags & M_MORE_DATA) 1777 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 1778 if (addqos) { 1779 int ac, tid; 1780 1781 if (is4addr) { 1782 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1783 /* NB: mesh case handled earlier */ 1784 } else if (vap->iv_opmode != IEEE80211_M_MBSS) 1785 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1786 ac = M_WME_GETAC(m); 1787 /* map from access class/queue to 11e header priorty value */ 1788 tid = WME_AC_TO_TID(ac); 1789 qos[0] = tid & IEEE80211_QOS_TID; 1790 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 1791 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1792 #ifdef IEEE80211_SUPPORT_MESH 1793 if (vap->iv_opmode == IEEE80211_M_MBSS) 1794 qos[1] = IEEE80211_QOS_MC; 1795 else 1796 #endif 1797 qos[1] = 0; 1798 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS_DATA; 1799 1800 /* 1801 * If this is an A-MSDU then ensure we set the 1802 * relevant field. 1803 */ 1804 if (is_amsdu) 1805 qos[0] |= IEEE80211_QOS_AMSDU; 1806 1807 /* 1808 * XXX TODO TX lock is needed for atomic updates of sequence 1809 * numbers. If the driver does it, then don't do it here; 1810 * and we don't need the TX lock held. 1811 */ 1812 if ((m->m_flags & M_AMPDU_MPDU) == 0) { 1813 ieee80211_output_seqno_assign(ni, tid, m); 1814 } else { 1815 /* 1816 * NB: don't assign a sequence # to potential 1817 * aggregates; we expect this happens at the 1818 * point the frame comes off any aggregation q 1819 * as otherwise we may introduce holes in the 1820 * BA sequence space and/or make window accouting 1821 * more difficult. 1822 * 1823 * XXX may want to control this with a driver 1824 * capability; this may also change when we pull 1825 * aggregation up into net80211 1826 */ 1827 /* NB: zero out i_seq field (for s/w encryption etc) */ 1828 *(uint16_t *)wh->i_seq = 0; 1829 } 1830 } else { 1831 ieee80211_output_seqno_assign(ni, IEEE80211_NONQOS_TID, m); 1832 /* 1833 * XXX TODO: we shouldn't allow EAPOL, etc that would 1834 * be forced to be non-QoS traffic to be A-MSDU encapsulated. 1835 */ 1836 if (is_amsdu) 1837 printf("%s: XXX ERROR: is_amsdu set; not QoS!\n", 1838 __func__); 1839 } 1840 1841 /* 1842 * Check if xmit fragmentation is required. 1843 * 1844 * If the hardware does fragmentation offload, then don't bother 1845 * doing it here. 1846 * 1847 * Don't send AMPDU/FF/AMSDU through fragmentation. 1848 * 1849 * 802.11-2016 10.2.7 (Fragmentation/defragmentation overview) 1850 */ 1851 if (IEEE80211_CONF_FRAG_OFFLOAD(ic)) 1852 txfrag = 0; 1853 else 1854 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold && 1855 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 1856 (vap->iv_caps & IEEE80211_C_TXFRAG) && 1857 (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0); 1858 1859 if (key != NULL) { 1860 /* 1861 * IEEE 802.1X: send EAPOL frames always in the clear. 1862 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 1863 */ 1864 if ((m->m_flags & M_EAPOL) == 0 || 1865 ((vap->iv_flags & IEEE80211_F_WPA) && 1866 (vap->iv_opmode == IEEE80211_M_STA ? 1867 !IEEE80211_KEY_UNDEFINED(key) : 1868 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) { 1869 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 1870 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) { 1871 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT, 1872 eh.ether_dhost, 1873 "%s", "enmic failed, discard frame"); 1874 vap->iv_stats.is_crypto_enmicfail++; 1875 goto bad; 1876 } 1877 } 1878 } 1879 if (txfrag && !ieee80211_fragment(vap, m, hdrsize, 1880 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold)) 1881 goto bad; 1882 1883 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1884 1885 IEEE80211_NODE_STAT(ni, tx_data); 1886 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1887 IEEE80211_NODE_STAT(ni, tx_mcast); 1888 m->m_flags |= M_MCAST; 1889 } else 1890 IEEE80211_NODE_STAT(ni, tx_ucast); 1891 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 1892 1893 return m; 1894 bad: 1895 if (m != NULL) 1896 m_freem(m); 1897 return NULL; 1898 #undef WH4 1899 #undef MC01 1900 } 1901 1902 /** 1903 * @brief Free an 802.11 frame mbuf. 1904 * 1905 * Note that since a "frame" may consist of an mbuf packet 1906 * list containing the 802.11 fragments that make up said 1907 * frame, it will free everything in the mbuf packet list. 1908 * 1909 * @param m mbuf packet list to free 1910 */ 1911 void 1912 ieee80211_free_mbuf(struct mbuf *m) 1913 { 1914 struct mbuf *next; 1915 1916 if (m == NULL) 1917 return; 1918 1919 do { 1920 next = m->m_nextpkt; 1921 m->m_nextpkt = NULL; 1922 m_freem(m); 1923 } while ((m = next) != NULL); 1924 } 1925 1926 /** 1927 * @brief Fragment the frame according to the specified mtu. 1928 * 1929 * This implements the fragmentation part of 802.11-2016 10.2.7 1930 * (Fragmentation/defragmentation overview.) 1931 * 1932 * The size of the 802.11 header (w/o padding) is provided 1933 * so we don't need to recalculate it. We create a new 1934 * mbuf for each fragment and chain it through m_nextpkt; 1935 * we might be able to optimize this by reusing the original 1936 * packet's mbufs but that is significantly more complicated. 1937 * 1938 * A node reference is NOT acquired for each fragment in 1939 * the list - the caller is assumed to have taken a node 1940 * reference for the whole list. The fragment mbufs do not 1941 * have a node pointer. 1942 * 1943 * Fragments will have the sequence number and fragment numbers 1944 * assigned. However, Fragments will NOT have a sequence number 1945 * assigned via M_SEQNO_SET. 1946 * 1947 * This must be called after assigning sequence numbers; it 1948 * modifies the i_seq field in the 802.11 header to include 1949 * the fragment number. 1950 * 1951 * @param vap ieee80211vap interface 1952 * @param m0 pointer to mbuf list to fragment 1953 * @param hdrsize header size to reserver 1954 * @param ciphdrsize crypto cipher header size to reserve 1955 * @param mtu maximum fragment size 1956 * @retval 1 if successful, with the mbuf pointed at by m0 1957 * turned into an mbuf list of fragments (with the original 1958 * mbuf being truncated.) 1959 * @retval 0 if failure, the mbuf needs to be freed by the caller 1960 */ 1961 static int 1962 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0, 1963 u_int hdrsize, u_int ciphdrsize, u_int mtu) 1964 { 1965 struct ieee80211com *ic = vap->iv_ic; 1966 struct ieee80211_frame *wh, *whf; 1967 struct mbuf *m, *prev; 1968 u_int totalhdrsize, fragno, fragsize, off, remainder, payload; 1969 u_int hdrspace; 1970 1971 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); 1972 KASSERT(m0->m_pkthdr.len > mtu, 1973 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); 1974 1975 /* 1976 * Honor driver DATAPAD requirement. 1977 */ 1978 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1979 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1980 else 1981 hdrspace = hdrsize; 1982 1983 wh = mtod(m0, struct ieee80211_frame *); 1984 /* NB: mark the first frag; it will be propagated below */ 1985 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; 1986 totalhdrsize = hdrspace + ciphdrsize; 1987 fragno = 1; 1988 off = mtu - ciphdrsize; 1989 remainder = m0->m_pkthdr.len - off; 1990 prev = m0; 1991 do { 1992 fragsize = MIN(totalhdrsize + remainder, mtu); 1993 m = m_get2(fragsize, IEEE80211_M_NOWAIT, MT_DATA, M_PKTHDR); 1994 if (m == NULL) 1995 goto bad; 1996 /* leave room to prepend any cipher header */ 1997 m_align(m, fragsize - ciphdrsize); 1998 1999 /* 2000 * Form the header in the fragment. Note that since 2001 * we mark the first fragment with the MORE_FRAG bit 2002 * it automatically is propagated to each fragment; we 2003 * need only clear it on the last fragment (done below). 2004 * NB: frag 1+ dont have Mesh Control field present. 2005 */ 2006 whf = mtod(m, struct ieee80211_frame *); 2007 memcpy(whf, wh, hdrsize); 2008 #ifdef IEEE80211_SUPPORT_MESH 2009 if (vap->iv_opmode == IEEE80211_M_MBSS) 2010 ieee80211_getqos(wh)[1] &= ~IEEE80211_QOS_MC; 2011 #endif 2012 *(uint16_t *)&whf->i_seq[0] |= htole16( 2013 (fragno & IEEE80211_SEQ_FRAG_MASK) << 2014 IEEE80211_SEQ_FRAG_SHIFT); 2015 fragno++; 2016 2017 payload = fragsize - totalhdrsize; 2018 /* NB: destination is known to be contiguous */ 2019 2020 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace); 2021 m->m_len = hdrspace + payload; 2022 m->m_pkthdr.len = hdrspace + payload; 2023 m->m_flags |= M_FRAG; 2024 2025 /* chain up the fragment */ 2026 prev->m_nextpkt = m; 2027 prev = m; 2028 2029 /* deduct fragment just formed */ 2030 remainder -= payload; 2031 off += payload; 2032 } while (remainder != 0); 2033 2034 /* set the last fragment */ 2035 m->m_flags |= M_LASTFRAG; 2036 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; 2037 2038 /* strip first mbuf now that everything has been copied */ 2039 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); 2040 m0->m_flags |= M_FIRSTFRAG | M_FRAG; 2041 2042 vap->iv_stats.is_tx_fragframes++; 2043 vap->iv_stats.is_tx_frags += fragno-1; 2044 2045 return 1; 2046 bad: 2047 /* reclaim fragments but leave original frame for caller to free */ 2048 ieee80211_free_mbuf(m0->m_nextpkt); 2049 m0->m_nextpkt = NULL; 2050 return 0; 2051 } 2052 2053 /* 2054 * Add a supported rates element id to a frame. 2055 */ 2056 uint8_t * 2057 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs) 2058 { 2059 int nrates; 2060 2061 *frm++ = IEEE80211_ELEMID_RATES; 2062 nrates = rs->rs_nrates; 2063 if (nrates > IEEE80211_RATE_SIZE) 2064 nrates = IEEE80211_RATE_SIZE; 2065 *frm++ = nrates; 2066 memcpy(frm, rs->rs_rates, nrates); 2067 return frm + nrates; 2068 } 2069 2070 /* 2071 * Add an extended supported rates element id to a frame. 2072 */ 2073 uint8_t * 2074 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs) 2075 { 2076 /* 2077 * Add an extended supported rates element if operating in 11g mode. 2078 */ 2079 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 2080 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 2081 *frm++ = IEEE80211_ELEMID_XRATES; 2082 *frm++ = nrates; 2083 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 2084 frm += nrates; 2085 } 2086 return frm; 2087 } 2088 2089 /* 2090 * Add an ssid element to a frame. 2091 */ 2092 uint8_t * 2093 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) 2094 { 2095 *frm++ = IEEE80211_ELEMID_SSID; 2096 *frm++ = len; 2097 memcpy(frm, ssid, len); 2098 return frm + len; 2099 } 2100 2101 /* 2102 * Add an erp element to a frame. 2103 */ 2104 static uint8_t * 2105 ieee80211_add_erp(uint8_t *frm, struct ieee80211vap *vap) 2106 { 2107 struct ieee80211com *ic = vap->iv_ic; 2108 uint8_t erp; 2109 2110 *frm++ = IEEE80211_ELEMID_ERP; 2111 *frm++ = 1; 2112 erp = 0; 2113 2114 /* 2115 * TODO: This uses the global flags for now because 2116 * the per-VAP flags are fine for per-VAP, but don't 2117 * take into account which VAPs share the same channel 2118 * and which are on different channels. 2119 * 2120 * ERP and HT/VHT protection mode is a function of 2121 * how many stations are on a channel, not specifically 2122 * the VAP or global. But, until we grow that status, 2123 * the global flag will have to do. 2124 */ 2125 if (ic->ic_flags_ext & IEEE80211_FEXT_NONERP_PR) 2126 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 2127 2128 /* 2129 * TODO: same as above; these should be based not 2130 * on the vap or ic flags, but instead on a combination 2131 * of per-VAP and channels. 2132 */ 2133 if (ic->ic_flags & IEEE80211_F_USEPROT) 2134 erp |= IEEE80211_ERP_USE_PROTECTION; 2135 if (ic->ic_flags & IEEE80211_F_USEBARKER) 2136 erp |= IEEE80211_ERP_LONG_PREAMBLE; 2137 *frm++ = erp; 2138 return frm; 2139 } 2140 2141 /* 2142 * Add a CFParams element to a frame. 2143 */ 2144 static uint8_t * 2145 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic) 2146 { 2147 #define ADDSHORT(frm, v) do { \ 2148 le16enc(frm, v); \ 2149 frm += 2; \ 2150 } while (0) 2151 *frm++ = IEEE80211_ELEMID_CFPARMS; 2152 *frm++ = 6; 2153 *frm++ = 0; /* CFP count */ 2154 *frm++ = 2; /* CFP period */ 2155 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */ 2156 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */ 2157 return frm; 2158 #undef ADDSHORT 2159 } 2160 2161 static __inline uint8_t * 2162 add_appie(uint8_t *frm, const struct ieee80211_appie *ie) 2163 { 2164 memcpy(frm, ie->ie_data, ie->ie_len); 2165 return frm + ie->ie_len; 2166 } 2167 2168 static __inline uint8_t * 2169 add_ie(uint8_t *frm, const uint8_t *ie) 2170 { 2171 memcpy(frm, ie, 2 + ie[1]); 2172 return frm + 2 + ie[1]; 2173 } 2174 2175 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 2176 /* 2177 * Add a WME information element to a frame. 2178 */ 2179 uint8_t * 2180 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme, 2181 struct ieee80211_node *ni) 2182 { 2183 static const uint8_t oui[4] = { WME_OUI_BYTES, WME_OUI_TYPE }; 2184 struct ieee80211vap *vap = ni->ni_vap; 2185 2186 *frm++ = IEEE80211_ELEMID_VENDOR; 2187 *frm++ = sizeof(struct ieee80211_wme_info) - 2; 2188 memcpy(frm, oui, sizeof(oui)); 2189 frm += sizeof(oui); 2190 *frm++ = WME_INFO_OUI_SUBTYPE; 2191 *frm++ = WME_VERSION; 2192 2193 /* QoS info field depends upon operating mode */ 2194 switch (vap->iv_opmode) { 2195 case IEEE80211_M_HOSTAP: 2196 *frm = wme->wme_bssChanParams.cap_info; 2197 if (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD) 2198 *frm |= WME_CAPINFO_UAPSD_EN; 2199 frm++; 2200 break; 2201 case IEEE80211_M_STA: 2202 /* 2203 * NB: UAPSD drivers must set this up in their 2204 * VAP creation method. 2205 */ 2206 *frm++ = vap->iv_uapsdinfo; 2207 break; 2208 default: 2209 *frm++ = 0; 2210 break; 2211 } 2212 2213 return frm; 2214 } 2215 2216 /* 2217 * Add a WME parameters element to a frame. 2218 */ 2219 static uint8_t * 2220 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme, 2221 int uapsd_enable) 2222 { 2223 #define ADDSHORT(frm, v) do { \ 2224 le16enc(frm, v); \ 2225 frm += 2; \ 2226 } while (0) 2227 /* NB: this works 'cuz a param has an info at the front */ 2228 static const struct ieee80211_wme_info param = { 2229 .wme_id = IEEE80211_ELEMID_VENDOR, 2230 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 2231 .wme_oui = { WME_OUI_BYTES }, 2232 .wme_type = WME_OUI_TYPE, 2233 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 2234 .wme_version = WME_VERSION, 2235 }; 2236 int i; 2237 2238 memcpy(frm, ¶m, sizeof(param)); 2239 frm += __offsetof(struct ieee80211_wme_info, wme_info); 2240 *frm = wme->wme_bssChanParams.cap_info; /* AC info */ 2241 if (uapsd_enable) 2242 *frm |= WME_CAPINFO_UAPSD_EN; 2243 frm++; 2244 *frm++ = 0; /* reserved field */ 2245 /* XXX TODO - U-APSD bits - SP, flags below */ 2246 for (i = 0; i < WME_NUM_AC; i++) { 2247 const struct wmeParams *ac = 2248 &wme->wme_bssChanParams.cap_wmeParams[i]; 2249 *frm++ = _IEEE80211_SHIFTMASK(i, WME_PARAM_ACI) 2250 | _IEEE80211_SHIFTMASK(ac->wmep_acm, WME_PARAM_ACM) 2251 | _IEEE80211_SHIFTMASK(ac->wmep_aifsn, WME_PARAM_AIFSN) 2252 ; 2253 *frm++ = _IEEE80211_SHIFTMASK(ac->wmep_logcwmax, 2254 WME_PARAM_LOGCWMAX) 2255 | _IEEE80211_SHIFTMASK(ac->wmep_logcwmin, 2256 WME_PARAM_LOGCWMIN) 2257 ; 2258 ADDSHORT(frm, ac->wmep_txopLimit); 2259 } 2260 return frm; 2261 #undef ADDSHORT 2262 } 2263 #undef WME_OUI_BYTES 2264 2265 /* 2266 * Add an 11h Power Constraint element to a frame. 2267 */ 2268 static uint8_t * 2269 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap) 2270 { 2271 const struct ieee80211_channel *c = vap->iv_bss->ni_chan; 2272 /* XXX per-vap tx power limit? */ 2273 int8_t limit = vap->iv_ic->ic_txpowlimit / 2; 2274 2275 frm[0] = IEEE80211_ELEMID_PWRCNSTR; 2276 frm[1] = 1; 2277 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0; 2278 return frm + 3; 2279 } 2280 2281 /* 2282 * Add an 11h Power Capability element to a frame. 2283 */ 2284 static uint8_t * 2285 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c) 2286 { 2287 frm[0] = IEEE80211_ELEMID_PWRCAP; 2288 frm[1] = 2; 2289 frm[2] = c->ic_minpower; 2290 frm[3] = c->ic_maxpower; 2291 return frm + 4; 2292 } 2293 2294 /* 2295 * Add an 11h Supported Channels element to a frame. 2296 */ 2297 static uint8_t * 2298 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic) 2299 { 2300 static const int ielen = 26; 2301 2302 frm[0] = IEEE80211_ELEMID_SUPPCHAN; 2303 frm[1] = ielen; 2304 /* XXX not correct */ 2305 memcpy(frm+2, ic->ic_chan_avail, ielen); 2306 return frm + 2 + ielen; 2307 } 2308 2309 /* 2310 * Add an 11h Quiet time element to a frame. 2311 */ 2312 static uint8_t * 2313 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap, int update) 2314 { 2315 struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm; 2316 2317 quiet->quiet_ie = IEEE80211_ELEMID_QUIET; 2318 quiet->len = 6; 2319 2320 /* 2321 * Only update every beacon interval - otherwise probe responses 2322 * would update the quiet count value. 2323 */ 2324 if (update) { 2325 if (vap->iv_quiet_count_value == 1) 2326 vap->iv_quiet_count_value = vap->iv_quiet_count; 2327 else if (vap->iv_quiet_count_value > 1) 2328 vap->iv_quiet_count_value--; 2329 } 2330 2331 if (vap->iv_quiet_count_value == 0) { 2332 /* value 0 is reserved as per 802.11h standerd */ 2333 vap->iv_quiet_count_value = 1; 2334 } 2335 2336 quiet->tbttcount = vap->iv_quiet_count_value; 2337 quiet->period = vap->iv_quiet_period; 2338 quiet->duration = htole16(vap->iv_quiet_duration); 2339 quiet->offset = htole16(vap->iv_quiet_offset); 2340 return frm + sizeof(*quiet); 2341 } 2342 2343 /* 2344 * Add an 11h Channel Switch Announcement element to a frame. 2345 * Note that we use the per-vap CSA count to adjust the global 2346 * counter so we can use this routine to form probe response 2347 * frames and get the current count. 2348 */ 2349 static uint8_t * 2350 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap) 2351 { 2352 struct ieee80211com *ic = vap->iv_ic; 2353 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm; 2354 2355 csa->csa_ie = IEEE80211_ELEMID_CSA; 2356 csa->csa_len = 3; 2357 csa->csa_mode = 1; /* XXX force quiet on channel */ 2358 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan); 2359 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count; 2360 return frm + sizeof(*csa); 2361 } 2362 2363 /* 2364 * Add an 11h country information element to a frame. 2365 */ 2366 static uint8_t * 2367 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic) 2368 { 2369 2370 if (ic->ic_countryie == NULL || 2371 ic->ic_countryie_chan != ic->ic_bsschan) { 2372 /* 2373 * Handle lazy construction of ie. This is done on 2374 * first use and after a channel change that requires 2375 * re-calculation. 2376 */ 2377 if (ic->ic_countryie != NULL) 2378 IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE); 2379 ic->ic_countryie = ieee80211_alloc_countryie(ic); 2380 if (ic->ic_countryie == NULL) 2381 return frm; 2382 ic->ic_countryie_chan = ic->ic_bsschan; 2383 } 2384 return add_appie(frm, ic->ic_countryie); 2385 } 2386 2387 uint8_t * 2388 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap) 2389 { 2390 if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) 2391 return (add_ie(frm, vap->iv_wpa_ie)); 2392 else { 2393 /* XXX else complain? */ 2394 return (frm); 2395 } 2396 } 2397 2398 uint8_t * 2399 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap) 2400 { 2401 if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL) 2402 return (add_ie(frm, vap->iv_rsn_ie)); 2403 else { 2404 /* XXX else complain? */ 2405 return (frm); 2406 } 2407 } 2408 2409 uint8_t * 2410 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni) 2411 { 2412 if (ni->ni_flags & IEEE80211_NODE_QOS) { 2413 *frm++ = IEEE80211_ELEMID_QOS; 2414 *frm++ = 1; 2415 *frm++ = 0; 2416 } 2417 2418 return (frm); 2419 } 2420 2421 /* 2422 * ieee80211_send_probereq(): send a probe request frame with the specified ssid 2423 * and any optional information element data; some helper functions as FW based 2424 * HW scans need some of that information passed too. 2425 */ 2426 static uint32_t 2427 ieee80211_probereq_ie_len(struct ieee80211vap *vap, struct ieee80211com *ic) 2428 { 2429 const struct ieee80211_rateset *rs; 2430 2431 rs = ieee80211_get_suprates(ic, ic->ic_curchan); 2432 2433 /* 2434 * prreq frame format 2435 * [tlv] ssid 2436 * [tlv] supported rates 2437 * [tlv] extended supported rates (if needed) 2438 * [tlv] HT cap (optional) 2439 * [tlv] VHT cap (optional) 2440 * [tlv] WPA (optional) 2441 * [tlv] user-specified ie's 2442 */ 2443 return ( 2 + IEEE80211_NWID_LEN 2444 + 2 + IEEE80211_RATE_SIZE 2445 + ((rs->rs_nrates > IEEE80211_RATE_SIZE) ? 2446 2 + (rs->rs_nrates - IEEE80211_RATE_SIZE) : 0) 2447 + (((vap->iv_opmode == IEEE80211_M_IBSS) && 2448 (vap->iv_flags_ht & IEEE80211_FHT_HT)) ? 2449 sizeof(struct ieee80211_ie_htcap) : 0) 2450 #ifdef notyet 2451 + sizeof(struct ieee80211_ie_htinfo) /* XXX not needed? */ 2452 + 2 + sizeof(struct ieee80211_vht_cap) 2453 #endif 2454 + ((vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) ? 2455 vap->iv_wpa_ie[1] : 0) 2456 + (vap->iv_appie_probereq != NULL ? 2457 vap->iv_appie_probereq->ie_len : 0) 2458 ); 2459 } 2460 2461 int 2462 ieee80211_probereq_ie(struct ieee80211vap *vap, struct ieee80211com *ic, 2463 uint8_t **frmp, uint32_t *frmlen, const uint8_t *ssid, size_t ssidlen, 2464 bool alloc) 2465 { 2466 const struct ieee80211_rateset *rs; 2467 uint8_t *frm; 2468 uint32_t len; 2469 2470 if (!alloc && (frmp == NULL || frmlen == NULL)) 2471 return (EINVAL); 2472 2473 len = ieee80211_probereq_ie_len(vap, ic); 2474 if (!alloc && len > *frmlen) 2475 return (ENOBUFS); 2476 2477 /* For HW scans we usually do not pass in the SSID as IE. */ 2478 if (ssidlen == -1) 2479 len -= (2 + IEEE80211_NWID_LEN); 2480 2481 if (alloc) { 2482 frm = IEEE80211_MALLOC(len, M_80211_VAP, 2483 IEEE80211_M_WAITOK | IEEE80211_M_ZERO); 2484 *frmp = frm; 2485 *frmlen = len; 2486 } else 2487 frm = *frmp; 2488 2489 if (ssidlen != -1) 2490 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 2491 rs = ieee80211_get_suprates(ic, ic->ic_curchan); 2492 frm = ieee80211_add_rates(frm, rs); 2493 frm = ieee80211_add_xrates(frm, rs); 2494 2495 /* 2496 * Note: we can't use bss; we don't have one yet. 2497 * 2498 * So, we should announce our capabilities 2499 * in this channel mode (2g/5g), not the 2500 * channel details itself. 2501 */ 2502 if ((vap->iv_opmode == IEEE80211_M_IBSS) && 2503 (vap->iv_flags_ht & IEEE80211_FHT_HT)) { 2504 struct ieee80211_channel *c; 2505 2506 /* 2507 * Get the HT channel that we should try upgrading to. 2508 * If we can do 40MHz then this'll upgrade it appropriately. 2509 */ 2510 c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan, 2511 vap->iv_flags_ht); 2512 frm = ieee80211_add_htcap_ch(frm, vap, c); 2513 } 2514 2515 /* 2516 * XXX TODO: need to figure out what/how to update the 2517 * VHT channel. 2518 */ 2519 #ifdef notyet 2520 if (vap->iv_vht_flags & IEEE80211_FVHT_VHT) { 2521 struct ieee80211_channel *c; 2522 2523 c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan, 2524 vap->iv_flags_ht); 2525 c = ieee80211_vht_adjust_channel(ic, c, vap->iv_vht_flags); 2526 frm = ieee80211_add_vhtcap_ch(frm, vap, c); 2527 } 2528 #endif 2529 2530 frm = ieee80211_add_wpa(frm, vap); 2531 if (vap->iv_appie_probereq != NULL) 2532 frm = add_appie(frm, vap->iv_appie_probereq); 2533 2534 if (!alloc) { 2535 *frmp = frm; 2536 *frmlen = len; 2537 } 2538 2539 return (0); 2540 } 2541 2542 int 2543 ieee80211_send_probereq(struct ieee80211_node *ni, 2544 const uint8_t sa[IEEE80211_ADDR_LEN], 2545 const uint8_t da[IEEE80211_ADDR_LEN], 2546 const uint8_t bssid[IEEE80211_ADDR_LEN], 2547 const uint8_t *ssid, size_t ssidlen) 2548 { 2549 struct ieee80211vap *vap = ni->ni_vap; 2550 struct ieee80211com *ic = ni->ni_ic; 2551 struct ieee80211_node *bss; 2552 const struct ieee80211_txparam *tp; 2553 struct ieee80211_bpf_params params; 2554 struct mbuf *m; 2555 uint8_t *frm; 2556 uint32_t frmlen; 2557 int ret; 2558 2559 bss = ieee80211_ref_node(vap->iv_bss); 2560 2561 if (vap->iv_state == IEEE80211_S_CAC) { 2562 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni, 2563 "block %s frame in CAC state", "probe request"); 2564 vap->iv_stats.is_tx_badstate++; 2565 ieee80211_free_node(bss); 2566 return EIO; /* XXX */ 2567 } 2568 2569 /* 2570 * Hold a reference on the node so it doesn't go away until after 2571 * the xmit is complete all the way in the driver. On error we 2572 * will remove our reference. 2573 */ 2574 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2575 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2576 __func__, __LINE__, 2577 ni, ether_sprintf(ni->ni_macaddr), 2578 ieee80211_node_refcnt(ni)+1); 2579 ieee80211_ref_node(ni); 2580 2581 /* See comments above for entire frame format. */ 2582 frmlen = ieee80211_probereq_ie_len(vap, ic); 2583 m = ieee80211_getmgtframe(&frm, 2584 ic->ic_headroom + sizeof(struct ieee80211_frame), frmlen); 2585 if (m == NULL) { 2586 vap->iv_stats.is_tx_nobuf++; 2587 ieee80211_free_node(ni); 2588 ieee80211_free_node(bss); 2589 return ENOMEM; 2590 } 2591 2592 ret = ieee80211_probereq_ie(vap, ic, &frm, &frmlen, ssid, ssidlen, 2593 false); 2594 KASSERT(ret == 0, 2595 ("%s: ieee80211_probereq_ie failed: %d\n", __func__, ret)); 2596 2597 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2598 KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame), 2599 ("leading space %zd", M_LEADINGSPACE(m))); 2600 M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT); 2601 if (m == NULL) { 2602 /* NB: cannot happen */ 2603 ieee80211_free_node(ni); 2604 ieee80211_free_node(bss); 2605 return ENOMEM; 2606 } 2607 2608 IEEE80211_TX_LOCK(ic); 2609 ieee80211_send_setup(ni, m, 2610 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 2611 IEEE80211_NONQOS_TID, sa, da, bssid); 2612 /* XXX power management? */ 2613 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2614 2615 M_WME_SETAC(m, WME_AC_BE); 2616 2617 IEEE80211_NODE_STAT(ni, tx_probereq); 2618 IEEE80211_NODE_STAT(ni, tx_mgmt); 2619 2620 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2621 "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n", 2622 ieee80211_chan2ieee(ic, ic->ic_curchan), 2623 ether_sprintf(bssid), 2624 sa, ":", 2625 da, ":", 2626 ssidlen, ssid); 2627 2628 memset(¶ms, 0, sizeof(params)); 2629 params.ibp_pri = M_WME_GETAC(m); 2630 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 2631 params.ibp_rate0 = tp->mgmtrate; 2632 if (IEEE80211_IS_MULTICAST(da)) { 2633 params.ibp_flags |= IEEE80211_BPF_NOACK; 2634 params.ibp_try0 = 1; 2635 } else 2636 params.ibp_try0 = tp->maxretry; 2637 params.ibp_power = ni->ni_txpower; 2638 ret = ieee80211_raw_output(vap, ni, m, ¶ms); 2639 IEEE80211_TX_UNLOCK(ic); 2640 ieee80211_free_node(bss); 2641 return (ret); 2642 } 2643 2644 /* 2645 * Calculate capability information for mgt frames. 2646 * 2647 * This fills out the 16 bit capability field in various management 2648 * frames for non-DMG STAs. DMG STAs are not supported. 2649 * 2650 * See 802.11-2020 9.4.1.4 (Capability Information Field) for the 2651 * field definitions. 2652 */ 2653 uint16_t 2654 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan) 2655 { 2656 uint16_t capinfo; 2657 2658 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode")); 2659 2660 if (vap->iv_opmode == IEEE80211_M_HOSTAP) 2661 capinfo = IEEE80211_CAPINFO_ESS; 2662 else if (vap->iv_opmode == IEEE80211_M_IBSS) 2663 capinfo = IEEE80211_CAPINFO_IBSS; 2664 else 2665 capinfo = 0; 2666 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2667 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2668 if ((vap->iv_flags & IEEE80211_F_SHPREAMBLE) && 2669 IEEE80211_IS_CHAN_2GHZ(chan)) 2670 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2671 if (vap->iv_flags & IEEE80211_F_SHSLOT) 2672 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2673 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH)) 2674 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2675 return capinfo; 2676 } 2677 2678 /* 2679 * Send a management frame. The node is for the destination (or ic_bss 2680 * when in station mode). Nodes other than ic_bss have their reference 2681 * count bumped to reflect our use for an indeterminant time. 2682 */ 2683 int 2684 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg) 2685 { 2686 #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT) 2687 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2688 struct ieee80211vap *vap = ni->ni_vap; 2689 struct ieee80211com *ic = ni->ni_ic; 2690 struct ieee80211_node *bss = vap->iv_bss; 2691 struct ieee80211_bpf_params params; 2692 struct mbuf *m; 2693 uint8_t *frm; 2694 uint16_t capinfo; 2695 int has_challenge, is_shared_key, ret, status; 2696 2697 KASSERT(ni != NULL, ("null node")); 2698 2699 /* 2700 * Hold a reference on the node so it doesn't go away until after 2701 * the xmit is complete all the way in the driver. On error we 2702 * will remove our reference. 2703 */ 2704 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2705 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2706 __func__, __LINE__, 2707 ni, ether_sprintf(ni->ni_macaddr), 2708 ieee80211_node_refcnt(ni)+1); 2709 ieee80211_ref_node(ni); 2710 2711 memset(¶ms, 0, sizeof(params)); 2712 switch (type) { 2713 case IEEE80211_FC0_SUBTYPE_AUTH: 2714 status = arg >> 16; 2715 arg &= 0xffff; 2716 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || 2717 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 2718 ni->ni_challenge != NULL); 2719 2720 /* 2721 * Deduce whether we're doing open authentication or 2722 * shared key authentication. We do the latter if 2723 * we're in the middle of a shared key authentication 2724 * handshake or if we're initiating an authentication 2725 * request and configured to use shared key. 2726 */ 2727 is_shared_key = has_challenge || 2728 arg >= IEEE80211_AUTH_SHARED_RESPONSE || 2729 (arg == IEEE80211_AUTH_SHARED_REQUEST && 2730 bss->ni_authmode == IEEE80211_AUTH_SHARED); 2731 2732 m = ieee80211_getmgtframe(&frm, 2733 ic->ic_headroom + sizeof(struct ieee80211_frame), 2734 3 * sizeof(uint16_t) 2735 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? 2736 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)); 2737 if (m == NULL) 2738 senderr(ENOMEM, is_tx_nobuf); 2739 2740 ((uint16_t *)frm)[0] = 2741 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) 2742 : htole16(IEEE80211_AUTH_ALG_OPEN); 2743 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */ 2744 ((uint16_t *)frm)[2] = htole16(status);/* status */ 2745 2746 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { 2747 ((uint16_t *)frm)[3] = 2748 htole16((IEEE80211_CHALLENGE_LEN << 8) | 2749 IEEE80211_ELEMID_CHALLENGE); 2750 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge, 2751 IEEE80211_CHALLENGE_LEN); 2752 m->m_pkthdr.len = m->m_len = 2753 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN; 2754 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 2755 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2756 "request encrypt frame (%s)", __func__); 2757 /* mark frame for encryption */ 2758 params.ibp_flags |= IEEE80211_BPF_CRYPTO; 2759 } 2760 } else 2761 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t); 2762 2763 /* XXX not right for shared key */ 2764 if (status == IEEE80211_STATUS_SUCCESS) 2765 IEEE80211_NODE_STAT(ni, tx_auth); 2766 else 2767 IEEE80211_NODE_STAT(ni, tx_auth_fail); 2768 2769 if (vap->iv_opmode == IEEE80211_M_STA) 2770 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2771 (void *) vap->iv_state); 2772 break; 2773 2774 case IEEE80211_FC0_SUBTYPE_DEAUTH: 2775 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2776 "send station deauthenticate (reason: %d (%s))", arg, 2777 ieee80211_reason_to_string(arg)); 2778 m = ieee80211_getmgtframe(&frm, 2779 ic->ic_headroom + sizeof(struct ieee80211_frame), 2780 sizeof(uint16_t)); 2781 if (m == NULL) 2782 senderr(ENOMEM, is_tx_nobuf); 2783 *(uint16_t *)frm = htole16(arg); /* reason */ 2784 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2785 2786 IEEE80211_NODE_STAT(ni, tx_deauth); 2787 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 2788 2789 ieee80211_node_unauthorize(ni); /* port closed */ 2790 break; 2791 2792 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 2793 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 2794 /* 2795 * asreq frame format 2796 * [2] capability information 2797 * [2] listen interval 2798 * [6*] current AP address (reassoc only) 2799 * [tlv] ssid 2800 * [tlv] supported rates 2801 * [tlv] extended supported rates 2802 * [4] power capability (optional) 2803 * [28] supported channels (optional) 2804 * [tlv] HT capabilities 2805 * [tlv] VHT capabilities 2806 * [tlv] WME (optional) 2807 * [tlv] Vendor OUI HT capabilities (optional) 2808 * [tlv] Atheros capabilities (if negotiated) 2809 * [tlv] AppIE's (optional) 2810 */ 2811 m = ieee80211_getmgtframe(&frm, 2812 ic->ic_headroom + sizeof(struct ieee80211_frame), 2813 sizeof(uint16_t) 2814 + sizeof(uint16_t) 2815 + IEEE80211_ADDR_LEN 2816 + 2 + IEEE80211_NWID_LEN 2817 + 2 + IEEE80211_RATE_SIZE 2818 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2819 + 4 2820 + 2 + 26 2821 + sizeof(struct ieee80211_wme_info) 2822 + sizeof(struct ieee80211_ie_htcap) 2823 + 2 + sizeof(struct ieee80211_vht_cap) 2824 + 4 + sizeof(struct ieee80211_ie_htcap) 2825 #ifdef IEEE80211_SUPPORT_SUPERG 2826 + sizeof(struct ieee80211_ath_ie) 2827 #endif 2828 + (vap->iv_appie_wpa != NULL ? 2829 vap->iv_appie_wpa->ie_len : 0) 2830 + (vap->iv_appie_assocreq != NULL ? 2831 vap->iv_appie_assocreq->ie_len : 0) 2832 ); 2833 if (m == NULL) 2834 senderr(ENOMEM, is_tx_nobuf); 2835 2836 KASSERT(vap->iv_opmode == IEEE80211_M_STA, 2837 ("wrong mode %u", vap->iv_opmode)); 2838 capinfo = IEEE80211_CAPINFO_ESS; 2839 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2840 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2841 /* 2842 * NB: Some 11a AP's reject the request when 2843 * short preamble is set. 2844 */ 2845 if ((vap->iv_flags & IEEE80211_F_SHPREAMBLE) && 2846 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2847 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2848 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 2849 (ic->ic_caps & IEEE80211_C_SHSLOT)) 2850 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2851 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) && 2852 (vap->iv_flags & IEEE80211_F_DOTH)) 2853 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2854 *(uint16_t *)frm = htole16(capinfo); 2855 frm += 2; 2856 2857 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!")); 2858 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval, 2859 bss->ni_intval)); 2860 frm += 2; 2861 2862 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 2863 IEEE80211_ADDR_COPY(frm, bss->ni_bssid); 2864 frm += IEEE80211_ADDR_LEN; 2865 } 2866 2867 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 2868 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2869 frm = ieee80211_add_rsn(frm, vap); 2870 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2871 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) { 2872 frm = ieee80211_add_powercapability(frm, 2873 ic->ic_curchan); 2874 frm = ieee80211_add_supportedchannels(frm, ic); 2875 } 2876 2877 /* 2878 * Check the channel - we may be using an 11n NIC with an 2879 * 11n capable station, but we're configured to be an 11b 2880 * channel. 2881 */ 2882 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2883 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2884 ni->ni_ies.htcap_ie != NULL && 2885 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) { 2886 frm = ieee80211_add_htcap(frm, ni); 2887 } 2888 2889 if ((vap->iv_vht_flags & IEEE80211_FVHT_VHT) && 2890 IEEE80211_IS_CHAN_VHT(ni->ni_chan) && 2891 ni->ni_ies.vhtcap_ie != NULL && 2892 ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) { 2893 frm = ieee80211_add_vhtcap(frm, ni); 2894 } 2895 2896 frm = ieee80211_add_wpa(frm, vap); 2897 if ((vap->iv_flags & IEEE80211_F_WME) && 2898 ni->ni_ies.wme_ie != NULL) 2899 frm = ieee80211_add_wme_info(frm, &ic->ic_wme, ni); 2900 2901 /* 2902 * Same deal - only send HT info if we're on an 11n 2903 * capable channel. 2904 */ 2905 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2906 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2907 ni->ni_ies.htcap_ie != NULL && 2908 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) { 2909 frm = ieee80211_add_htcap_vendor(frm, ni); 2910 } 2911 #ifdef IEEE80211_SUPPORT_SUPERG 2912 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) { 2913 frm = ieee80211_add_ath(frm, 2914 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2915 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2916 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2917 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2918 } 2919 #endif /* IEEE80211_SUPPORT_SUPERG */ 2920 if (vap->iv_appie_assocreq != NULL) 2921 frm = add_appie(frm, vap->iv_appie_assocreq); 2922 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2923 2924 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2925 (void *) vap->iv_state); 2926 break; 2927 2928 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 2929 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 2930 /* 2931 * asresp frame format 2932 * [2] capability information 2933 * [2] status 2934 * [2] association ID 2935 * [tlv] supported rates 2936 * [tlv] extended supported rates 2937 * [tlv] HT capabilities (standard, if STA enabled) 2938 * [tlv] HT information (standard, if STA enabled) 2939 * [tlv] VHT capabilities (standard, if STA enabled) 2940 * [tlv] VHT information (standard, if STA enabled) 2941 * [tlv] WME (if configured and STA enabled) 2942 * [tlv] HT capabilities (vendor OUI, if STA enabled) 2943 * [tlv] HT information (vendor OUI, if STA enabled) 2944 * [tlv] Atheros capabilities (if STA enabled) 2945 * [tlv] AppIE's (optional) 2946 */ 2947 m = ieee80211_getmgtframe(&frm, 2948 ic->ic_headroom + sizeof(struct ieee80211_frame), 2949 sizeof(uint16_t) 2950 + sizeof(uint16_t) 2951 + sizeof(uint16_t) 2952 + 2 + IEEE80211_RATE_SIZE 2953 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2954 + sizeof(struct ieee80211_ie_htcap) + 4 2955 + sizeof(struct ieee80211_ie_htinfo) + 4 2956 + 2 + sizeof(struct ieee80211_vht_cap) 2957 + 2 + sizeof(struct ieee80211_vht_operation) 2958 + sizeof(struct ieee80211_wme_param) 2959 #ifdef IEEE80211_SUPPORT_SUPERG 2960 + sizeof(struct ieee80211_ath_ie) 2961 #endif 2962 + (vap->iv_appie_assocresp != NULL ? 2963 vap->iv_appie_assocresp->ie_len : 0) 2964 ); 2965 if (m == NULL) 2966 senderr(ENOMEM, is_tx_nobuf); 2967 2968 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2969 *(uint16_t *)frm = htole16(capinfo); 2970 frm += 2; 2971 2972 *(uint16_t *)frm = htole16(arg); /* status */ 2973 frm += 2; 2974 2975 if (arg == IEEE80211_STATUS_SUCCESS) { 2976 *(uint16_t *)frm = htole16(ni->ni_associd); 2977 IEEE80211_NODE_STAT(ni, tx_assoc); 2978 } else 2979 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 2980 frm += 2; 2981 2982 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2983 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2984 /* NB: respond according to what we received */ 2985 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) { 2986 frm = ieee80211_add_htcap(frm, ni); 2987 frm = ieee80211_add_htinfo(frm, ni); 2988 } 2989 if ((vap->iv_flags & IEEE80211_F_WME) && 2990 ni->ni_ies.wme_ie != NULL) 2991 frm = ieee80211_add_wme_param(frm, &ic->ic_wme, 2992 !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD)); 2993 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) { 2994 frm = ieee80211_add_htcap_vendor(frm, ni); 2995 frm = ieee80211_add_htinfo_vendor(frm, ni); 2996 } 2997 if (ni->ni_flags & IEEE80211_NODE_VHT) { 2998 frm = ieee80211_add_vhtcap(frm, ni); 2999 frm = ieee80211_add_vhtinfo(frm, ni); 3000 } 3001 #ifdef IEEE80211_SUPPORT_SUPERG 3002 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) 3003 frm = ieee80211_add_ath(frm, 3004 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 3005 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 3006 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 3007 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 3008 #endif /* IEEE80211_SUPPORT_SUPERG */ 3009 if (vap->iv_appie_assocresp != NULL) 3010 frm = add_appie(frm, vap->iv_appie_assocresp); 3011 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3012 break; 3013 3014 case IEEE80211_FC0_SUBTYPE_DISASSOC: 3015 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, 3016 "send station disassociate (reason: %d (%s))", arg, 3017 ieee80211_reason_to_string(arg)); 3018 m = ieee80211_getmgtframe(&frm, 3019 ic->ic_headroom + sizeof(struct ieee80211_frame), 3020 sizeof(uint16_t)); 3021 if (m == NULL) 3022 senderr(ENOMEM, is_tx_nobuf); 3023 *(uint16_t *)frm = htole16(arg); /* reason */ 3024 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 3025 3026 IEEE80211_NODE_STAT(ni, tx_disassoc); 3027 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 3028 break; 3029 3030 default: 3031 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni, 3032 "invalid mgmt frame type %u", type); 3033 senderr(EINVAL, is_tx_unknownmgt); 3034 /* NOTREACHED */ 3035 } 3036 3037 /* NB: force non-ProbeResp frames to the highest queue */ 3038 params.ibp_pri = WME_AC_VO; 3039 params.ibp_rate0 = bss->ni_txparms->mgmtrate; 3040 /* NB: we know all frames are unicast */ 3041 params.ibp_try0 = bss->ni_txparms->maxretry; 3042 params.ibp_power = bss->ni_txpower; 3043 return ieee80211_mgmt_output(ni, m, type, ¶ms); 3044 bad: 3045 ieee80211_free_node(ni); 3046 return ret; 3047 #undef senderr 3048 #undef HTFLAGS 3049 } 3050 3051 /* 3052 * Return an mbuf with a probe response frame in it. 3053 * Space is left to prepend and 802.11 header at the 3054 * front but it's left to the caller to fill in. 3055 */ 3056 struct mbuf * 3057 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy) 3058 { 3059 struct ieee80211vap *vap = bss->ni_vap; 3060 struct ieee80211com *ic = bss->ni_ic; 3061 const struct ieee80211_rateset *rs; 3062 struct mbuf *m; 3063 uint16_t capinfo; 3064 uint8_t *frm; 3065 3066 /* 3067 * probe response frame format 3068 * [8] time stamp 3069 * [2] beacon interval 3070 * [2] cabability information 3071 * [tlv] ssid 3072 * [tlv] supported rates 3073 * [tlv] parameter set (FH/DS) 3074 * [tlv] parameter set (IBSS) 3075 * [tlv] country (optional) 3076 * [3] power control (optional) 3077 * [5] channel switch announcement (CSA) (optional) 3078 * [tlv] extended rate phy (ERP) 3079 * [tlv] extended supported rates 3080 * [tlv] RSN (optional) 3081 * [tlv] HT capabilities 3082 * [tlv] HT information 3083 * [tlv] VHT capabilities 3084 * [tlv] VHT information 3085 * [tlv] WPA (optional) 3086 * [tlv] WME (optional) 3087 * [tlv] Vendor OUI HT capabilities (optional) 3088 * [tlv] Vendor OUI HT information (optional) 3089 * [tlv] Atheros capabilities 3090 * [tlv] AppIE's (optional) 3091 * [tlv] Mesh ID (MBSS) 3092 * [tlv] Mesh Conf (MBSS) 3093 */ 3094 m = ieee80211_getmgtframe(&frm, 3095 ic->ic_headroom + sizeof(struct ieee80211_frame), 3096 8 3097 + sizeof(uint16_t) 3098 + sizeof(uint16_t) 3099 + 2 + IEEE80211_NWID_LEN 3100 + 2 + IEEE80211_RATE_SIZE 3101 + 7 /* max(7,3) */ 3102 + IEEE80211_COUNTRY_MAX_SIZE 3103 + 3 3104 + sizeof(struct ieee80211_csa_ie) 3105 + sizeof(struct ieee80211_quiet_ie) 3106 + 3 3107 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 3108 + sizeof(struct ieee80211_ie_wpa) 3109 + sizeof(struct ieee80211_ie_htcap) 3110 + sizeof(struct ieee80211_ie_htinfo) 3111 + sizeof(struct ieee80211_ie_wpa) 3112 + sizeof(struct ieee80211_wme_param) 3113 + 4 + sizeof(struct ieee80211_ie_htcap) 3114 + 4 + sizeof(struct ieee80211_ie_htinfo) 3115 + 2 + sizeof(struct ieee80211_vht_cap) 3116 + 2 + sizeof(struct ieee80211_vht_operation) 3117 #ifdef IEEE80211_SUPPORT_SUPERG 3118 + sizeof(struct ieee80211_ath_ie) 3119 #endif 3120 #ifdef IEEE80211_SUPPORT_MESH 3121 + 2 + IEEE80211_MESHID_LEN 3122 + sizeof(struct ieee80211_meshconf_ie) 3123 #endif 3124 + (vap->iv_appie_proberesp != NULL ? 3125 vap->iv_appie_proberesp->ie_len : 0) 3126 ); 3127 if (m == NULL) { 3128 vap->iv_stats.is_tx_nobuf++; 3129 return NULL; 3130 } 3131 3132 memset(frm, 0, 8); /* timestamp should be filled later */ 3133 frm += 8; 3134 *(uint16_t *)frm = htole16(bss->ni_intval); 3135 frm += 2; 3136 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 3137 *(uint16_t *)frm = htole16(capinfo); 3138 frm += 2; 3139 3140 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen); 3141 rs = ieee80211_get_suprates(ic, bss->ni_chan); 3142 frm = ieee80211_add_rates(frm, rs); 3143 3144 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) { 3145 *frm++ = IEEE80211_ELEMID_FHPARMS; 3146 *frm++ = 5; 3147 *frm++ = bss->ni_fhdwell & 0x00ff; 3148 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff; 3149 *frm++ = IEEE80211_FH_CHANSET( 3150 ieee80211_chan2ieee(ic, bss->ni_chan)); 3151 *frm++ = IEEE80211_FH_CHANPAT( 3152 ieee80211_chan2ieee(ic, bss->ni_chan)); 3153 *frm++ = bss->ni_fhindex; 3154 } else { 3155 *frm++ = IEEE80211_ELEMID_DSPARMS; 3156 *frm++ = 1; 3157 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan); 3158 } 3159 3160 if (vap->iv_opmode == IEEE80211_M_IBSS) { 3161 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 3162 *frm++ = 2; 3163 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 3164 } 3165 if ((vap->iv_flags & IEEE80211_F_DOTH) || 3166 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 3167 frm = ieee80211_add_countryie(frm, ic); 3168 if (vap->iv_flags & IEEE80211_F_DOTH) { 3169 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan)) 3170 frm = ieee80211_add_powerconstraint(frm, vap); 3171 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 3172 frm = ieee80211_add_csa(frm, vap); 3173 } 3174 if (vap->iv_flags & IEEE80211_F_DOTH) { 3175 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3176 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 3177 if (vap->iv_quiet) 3178 frm = ieee80211_add_quiet(frm, vap, 0); 3179 } 3180 } 3181 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan)) 3182 frm = ieee80211_add_erp(frm, vap); 3183 frm = ieee80211_add_xrates(frm, rs); 3184 frm = ieee80211_add_rsn(frm, vap); 3185 /* 3186 * NB: legacy 11b clients do not get certain ie's. 3187 * The caller identifies such clients by passing 3188 * a token in legacy to us. Could expand this to be 3189 * any legacy client for stuff like HT ie's. 3190 */ 3191 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 3192 legacy != IEEE80211_SEND_LEGACY_11B) { 3193 frm = ieee80211_add_htcap(frm, bss); 3194 frm = ieee80211_add_htinfo(frm, bss); 3195 } 3196 if (IEEE80211_IS_CHAN_VHT(bss->ni_chan) && 3197 legacy != IEEE80211_SEND_LEGACY_11B) { 3198 frm = ieee80211_add_vhtcap(frm, bss); 3199 frm = ieee80211_add_vhtinfo(frm, bss); 3200 } 3201 frm = ieee80211_add_wpa(frm, vap); 3202 if (vap->iv_flags & IEEE80211_F_WME) 3203 frm = ieee80211_add_wme_param(frm, &ic->ic_wme, 3204 !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD)); 3205 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 3206 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) && 3207 legacy != IEEE80211_SEND_LEGACY_11B) { 3208 frm = ieee80211_add_htcap_vendor(frm, bss); 3209 frm = ieee80211_add_htinfo_vendor(frm, bss); 3210 } 3211 #ifdef IEEE80211_SUPPORT_SUPERG 3212 if ((vap->iv_flags & IEEE80211_F_ATHEROS) && 3213 legacy != IEEE80211_SEND_LEGACY_11B) 3214 frm = ieee80211_add_athcaps(frm, bss); 3215 #endif 3216 if (vap->iv_appie_proberesp != NULL) 3217 frm = add_appie(frm, vap->iv_appie_proberesp); 3218 #ifdef IEEE80211_SUPPORT_MESH 3219 if (vap->iv_opmode == IEEE80211_M_MBSS) { 3220 frm = ieee80211_add_meshid(frm, vap); 3221 frm = ieee80211_add_meshconf(frm, vap); 3222 } 3223 #endif 3224 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3225 3226 return m; 3227 } 3228 3229 /* 3230 * Send a probe response frame to the specified mac address. 3231 * This does not go through the normal mgt frame api so we 3232 * can specify the destination address and re-use the bss node 3233 * for the sta reference. 3234 */ 3235 int 3236 ieee80211_send_proberesp(struct ieee80211vap *vap, 3237 const uint8_t da[IEEE80211_ADDR_LEN], int legacy) 3238 { 3239 struct ieee80211_node *bss = vap->iv_bss; 3240 struct ieee80211com *ic = vap->iv_ic; 3241 struct mbuf *m; 3242 int ret; 3243 3244 if (vap->iv_state == IEEE80211_S_CAC) { 3245 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss, 3246 "block %s frame in CAC state", "probe response"); 3247 vap->iv_stats.is_tx_badstate++; 3248 return EIO; /* XXX */ 3249 } 3250 3251 /* 3252 * Hold a reference on the node so it doesn't go away until after 3253 * the xmit is complete all the way in the driver. On error we 3254 * will remove our reference. 3255 */ 3256 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 3257 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 3258 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr), 3259 ieee80211_node_refcnt(bss)+1); 3260 ieee80211_ref_node(bss); 3261 3262 m = ieee80211_alloc_proberesp(bss, legacy); 3263 if (m == NULL) { 3264 ieee80211_free_node(bss); 3265 return ENOMEM; 3266 } 3267 3268 M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT); 3269 KASSERT(m != NULL, ("no room for header")); 3270 3271 IEEE80211_TX_LOCK(ic); 3272 ieee80211_send_setup(bss, m, 3273 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP, 3274 IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid); 3275 /* XXX power management? */ 3276 m->m_flags |= M_ENCAP; /* mark encapsulated */ 3277 3278 M_WME_SETAC(m, WME_AC_BE); 3279 3280 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 3281 "send probe resp on channel %u to %s%s\n", 3282 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da), 3283 legacy ? " <legacy>" : ""); 3284 IEEE80211_NODE_STAT(bss, tx_mgmt); 3285 3286 ret = ieee80211_raw_output(vap, bss, m, NULL); 3287 IEEE80211_TX_UNLOCK(ic); 3288 return (ret); 3289 } 3290 3291 /* 3292 * Allocate and build a RTS (Request To Send) control frame. 3293 */ 3294 struct mbuf * 3295 ieee80211_alloc_rts(struct ieee80211com *ic, 3296 const uint8_t ra[IEEE80211_ADDR_LEN], 3297 const uint8_t ta[IEEE80211_ADDR_LEN], 3298 uint16_t dur) 3299 { 3300 struct ieee80211_frame_rts *rts; 3301 struct mbuf *m; 3302 3303 /* XXX honor ic_headroom */ 3304 m = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA); 3305 if (m != NULL) { 3306 rts = mtod(m, struct ieee80211_frame_rts *); 3307 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 3308 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS; 3309 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3310 *(u_int16_t *)rts->i_dur = htole16(dur); 3311 IEEE80211_ADDR_COPY(rts->i_ra, ra); 3312 IEEE80211_ADDR_COPY(rts->i_ta, ta); 3313 3314 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); 3315 } 3316 return m; 3317 } 3318 3319 /* 3320 * Allocate and build a CTS (Clear To Send) control frame. 3321 */ 3322 struct mbuf * 3323 ieee80211_alloc_cts(struct ieee80211com *ic, 3324 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur) 3325 { 3326 struct ieee80211_frame_cts *cts; 3327 struct mbuf *m; 3328 3329 /* XXX honor ic_headroom */ 3330 m = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA); 3331 if (m != NULL) { 3332 cts = mtod(m, struct ieee80211_frame_cts *); 3333 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 3334 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS; 3335 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3336 *(u_int16_t *)cts->i_dur = htole16(dur); 3337 IEEE80211_ADDR_COPY(cts->i_ra, ra); 3338 3339 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts); 3340 } 3341 return m; 3342 } 3343 3344 /* 3345 * Wrapper for CTS/RTS frame allocation. 3346 */ 3347 struct mbuf * 3348 ieee80211_alloc_prot(struct ieee80211_node *ni, const struct mbuf *m, 3349 uint8_t rate, int prot) 3350 { 3351 struct ieee80211com *ic = ni->ni_ic; 3352 struct ieee80211vap *vap = ni->ni_vap; 3353 const struct ieee80211_frame *wh; 3354 struct mbuf *mprot; 3355 uint16_t dur; 3356 int pktlen, isshort; 3357 3358 KASSERT(prot == IEEE80211_PROT_RTSCTS || 3359 prot == IEEE80211_PROT_CTSONLY, 3360 ("wrong protection type %d", prot)); 3361 3362 wh = mtod(m, const struct ieee80211_frame *); 3363 pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; 3364 isshort = (vap->iv_flags & IEEE80211_F_SHPREAMBLE) != 0; 3365 dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort) 3366 + ieee80211_ack_duration(ic->ic_rt, rate, isshort); 3367 3368 if (prot == IEEE80211_PROT_RTSCTS) { 3369 /* NB: CTS is the same size as an ACK */ 3370 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); 3371 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); 3372 } else 3373 mprot = ieee80211_alloc_cts(ic, vap->iv_myaddr, dur); 3374 3375 return (mprot); 3376 } 3377 3378 static void 3379 ieee80211_tx_mgt_timeout(void *arg) 3380 { 3381 struct ieee80211vap *vap = arg; 3382 3383 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 3384 "vap %p mode %s state %s flags %#x & %#x\n", vap, 3385 ieee80211_opmode_name[vap->iv_opmode], 3386 ieee80211_state_name[vap->iv_state], 3387 vap->iv_ic->ic_flags, IEEE80211_F_SCAN); 3388 3389 IEEE80211_LOCK(vap->iv_ic); 3390 if (vap->iv_state != IEEE80211_S_INIT && 3391 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) { 3392 /* 3393 * NB: it's safe to specify a timeout as the reason here; 3394 * it'll only be used in the right state. 3395 */ 3396 ieee80211_new_state_locked(vap, IEEE80211_S_SCAN, 3397 IEEE80211_SCAN_FAIL_TIMEOUT); 3398 } 3399 IEEE80211_UNLOCK(vap->iv_ic); 3400 } 3401 3402 /* 3403 * This is the callback set on net80211-sourced transmitted 3404 * authentication request frames. 3405 * 3406 * This does a couple of things: 3407 * 3408 * + If the frame transmitted was a success, it schedules a future 3409 * event which will transition the interface to scan. 3410 * If a state transition _then_ occurs before that event occurs, 3411 * said state transition will cancel this callout. 3412 * 3413 * + If the frame transmit was a failure, it immediately schedules 3414 * the transition back to scan. 3415 */ 3416 static void 3417 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status) 3418 { 3419 struct ieee80211vap *vap = ni->ni_vap; 3420 enum ieee80211_state ostate = (enum ieee80211_state)(uintptr_t)arg; 3421 3422 /* 3423 * Frame transmit completed; arrange timer callback. If 3424 * transmit was successfully we wait for response. Otherwise 3425 * we arrange an immediate callback instead of doing the 3426 * callback directly since we don't know what state the driver 3427 * is in (e.g. what locks it is holding). This work should 3428 * not be too time-critical and not happen too often so the 3429 * added overhead is acceptable. 3430 * 3431 * XXX what happens if !acked but response shows up before callback? 3432 */ 3433 if (vap->iv_state == ostate) { 3434 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 3435 "ni %p mode %s state %s arg %p status %d\n", ni, 3436 ieee80211_opmode_name[vap->iv_opmode], 3437 ieee80211_state_name[vap->iv_state], arg, status); 3438 3439 callout_reset(&vap->iv_mgtsend, 3440 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0, 3441 ieee80211_tx_mgt_timeout, vap); 3442 } 3443 } 3444 3445 static void 3446 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm, 3447 struct ieee80211_node *ni) 3448 { 3449 struct ieee80211vap *vap = ni->ni_vap; 3450 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 3451 struct ieee80211com *ic = ni->ni_ic; 3452 struct ieee80211_rateset *rs = &ni->ni_rates; 3453 uint16_t capinfo; 3454 3455 /* 3456 * beacon frame format 3457 * 3458 * TODO: update to 802.11-2012; a lot of stuff has changed; 3459 * vendor extensions should be at the end, etc. 3460 * 3461 * [8] time stamp 3462 * [2] beacon interval 3463 * [2] cabability information 3464 * [tlv] ssid 3465 * [tlv] supported rates 3466 * [3] parameter set (DS) 3467 * [8] CF parameter set (optional) 3468 * [tlv] parameter set (IBSS/TIM) 3469 * [tlv] country (optional) 3470 * [3] power control (optional) 3471 * [5] channel switch announcement (CSA) (optional) 3472 * XXX TODO: Quiet 3473 * XXX TODO: IBSS DFS 3474 * XXX TODO: TPC report 3475 * [tlv] extended rate phy (ERP) 3476 * [tlv] extended supported rates 3477 * [tlv] RSN parameters 3478 * XXX TODO: BSSLOAD 3479 * (XXX EDCA parameter set, QoS capability?) 3480 * XXX TODO: AP channel report 3481 * 3482 * [tlv] HT capabilities 3483 * [tlv] HT information 3484 * XXX TODO: 20/40 BSS coexistence 3485 * Mesh: 3486 * XXX TODO: Meshid 3487 * XXX TODO: mesh config 3488 * XXX TODO: mesh awake window 3489 * XXX TODO: beacon timing (mesh, etc) 3490 * XXX TODO: MCCAOP Advertisement Overview 3491 * XXX TODO: MCCAOP Advertisement 3492 * XXX TODO: Mesh channel switch parameters 3493 * VHT: 3494 * XXX TODO: VHT capabilities 3495 * XXX TODO: VHT operation 3496 * XXX TODO: VHT transmit power envelope 3497 * XXX TODO: channel switch wrapper element 3498 * XXX TODO: extended BSS load element 3499 * 3500 * XXX Vendor-specific OIDs (e.g. Atheros) 3501 * [tlv] WPA parameters 3502 * [tlv] WME parameters 3503 * [tlv] Vendor OUI HT capabilities (optional) 3504 * [tlv] Vendor OUI HT information (optional) 3505 * [tlv] Atheros capabilities (optional) 3506 * [tlv] TDMA parameters (optional) 3507 * [tlv] Mesh ID (MBSS) 3508 * [tlv] Mesh Conf (MBSS) 3509 * [tlv] application data (optional) 3510 */ 3511 3512 memset(bo, 0, sizeof(*bo)); 3513 3514 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 3515 frm += 8; 3516 *(uint16_t *)frm = htole16(ni->ni_intval); 3517 frm += 2; 3518 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3519 bo->bo_caps = (uint16_t *)frm; 3520 *(uint16_t *)frm = htole16(capinfo); 3521 frm += 2; 3522 *frm++ = IEEE80211_ELEMID_SSID; 3523 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) { 3524 *frm++ = ni->ni_esslen; 3525 memcpy(frm, ni->ni_essid, ni->ni_esslen); 3526 frm += ni->ni_esslen; 3527 } else 3528 *frm++ = 0; 3529 frm = ieee80211_add_rates(frm, rs); 3530 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) { 3531 *frm++ = IEEE80211_ELEMID_DSPARMS; 3532 *frm++ = 1; 3533 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 3534 } 3535 if (ic->ic_flags & IEEE80211_F_PCF) { 3536 bo->bo_cfp = frm; 3537 frm = ieee80211_add_cfparms(frm, ic); 3538 } 3539 bo->bo_tim = frm; 3540 if (vap->iv_opmode == IEEE80211_M_IBSS) { 3541 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 3542 *frm++ = 2; 3543 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 3544 bo->bo_tim_len = 0; 3545 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3546 vap->iv_opmode == IEEE80211_M_MBSS) { 3547 /* TIM IE is the same for Mesh and Hostap */ 3548 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; 3549 3550 tie->tim_ie = IEEE80211_ELEMID_TIM; 3551 tie->tim_len = 4; /* length */ 3552 tie->tim_count = 0; /* DTIM count */ 3553 tie->tim_period = vap->iv_dtim_period; /* DTIM period */ 3554 tie->tim_bitctl = 0; /* bitmap control */ 3555 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 3556 frm += sizeof(struct ieee80211_tim_ie); 3557 bo->bo_tim_len = 1; 3558 } 3559 bo->bo_tim_trailer = frm; 3560 if ((vap->iv_flags & IEEE80211_F_DOTH) || 3561 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 3562 frm = ieee80211_add_countryie(frm, ic); 3563 if (vap->iv_flags & IEEE80211_F_DOTH) { 3564 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) 3565 frm = ieee80211_add_powerconstraint(frm, vap); 3566 bo->bo_csa = frm; 3567 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 3568 frm = ieee80211_add_csa(frm, vap); 3569 } else 3570 bo->bo_csa = frm; 3571 3572 bo->bo_quiet = NULL; 3573 if (vap->iv_flags & IEEE80211_F_DOTH) { 3574 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3575 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && 3576 (vap->iv_quiet == 1)) { 3577 /* 3578 * We only insert the quiet IE offset if 3579 * the quiet IE is enabled. Otherwise don't 3580 * put it here or we'll just overwrite 3581 * some other beacon contents. 3582 */ 3583 if (vap->iv_quiet) { 3584 bo->bo_quiet = frm; 3585 frm = ieee80211_add_quiet(frm,vap, 0); 3586 } 3587 } 3588 } 3589 3590 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) { 3591 bo->bo_erp = frm; 3592 frm = ieee80211_add_erp(frm, vap); 3593 } 3594 frm = ieee80211_add_xrates(frm, rs); 3595 frm = ieee80211_add_rsn(frm, vap); 3596 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 3597 frm = ieee80211_add_htcap(frm, ni); 3598 bo->bo_htinfo = frm; 3599 frm = ieee80211_add_htinfo(frm, ni); 3600 } 3601 3602 if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) { 3603 frm = ieee80211_add_vhtcap(frm, ni); 3604 bo->bo_vhtinfo = frm; 3605 frm = ieee80211_add_vhtinfo(frm, ni); 3606 /* Transmit power envelope */ 3607 /* Channel switch wrapper element */ 3608 /* Extended bss load element */ 3609 } 3610 3611 frm = ieee80211_add_wpa(frm, vap); 3612 if (vap->iv_flags & IEEE80211_F_WME) { 3613 bo->bo_wme = frm; 3614 frm = ieee80211_add_wme_param(frm, &ic->ic_wme, 3615 !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD)); 3616 } 3617 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && 3618 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) { 3619 frm = ieee80211_add_htcap_vendor(frm, ni); 3620 frm = ieee80211_add_htinfo_vendor(frm, ni); 3621 } 3622 3623 #ifdef IEEE80211_SUPPORT_SUPERG 3624 if (vap->iv_flags & IEEE80211_F_ATHEROS) { 3625 bo->bo_ath = frm; 3626 frm = ieee80211_add_athcaps(frm, ni); 3627 } 3628 #endif 3629 #ifdef IEEE80211_SUPPORT_TDMA 3630 if (vap->iv_caps & IEEE80211_C_TDMA) { 3631 bo->bo_tdma = frm; 3632 frm = ieee80211_add_tdma(frm, vap); 3633 } 3634 #endif 3635 if (vap->iv_appie_beacon != NULL) { 3636 bo->bo_appie = frm; 3637 bo->bo_appie_len = vap->iv_appie_beacon->ie_len; 3638 frm = add_appie(frm, vap->iv_appie_beacon); 3639 } 3640 3641 /* XXX TODO: move meshid/meshconf up to before vendor extensions? */ 3642 #ifdef IEEE80211_SUPPORT_MESH 3643 if (vap->iv_opmode == IEEE80211_M_MBSS) { 3644 frm = ieee80211_add_meshid(frm, vap); 3645 bo->bo_meshconf = frm; 3646 frm = ieee80211_add_meshconf(frm, vap); 3647 } 3648 #endif 3649 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer; 3650 bo->bo_csa_trailer_len = frm - bo->bo_csa; 3651 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3652 } 3653 3654 /* 3655 * Allocate a beacon frame and fillin the appropriate bits. 3656 */ 3657 struct mbuf * 3658 ieee80211_beacon_alloc(struct ieee80211_node *ni) 3659 { 3660 struct ieee80211vap *vap = ni->ni_vap; 3661 struct ieee80211com *ic = ni->ni_ic; 3662 struct ieee80211_frame *wh; 3663 struct mbuf *m; 3664 int pktlen; 3665 uint8_t *frm; 3666 3667 /* 3668 * Update the "We're putting the quiet IE in the beacon" state. 3669 */ 3670 if (vap->iv_quiet == 1) 3671 vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE; 3672 else if (vap->iv_quiet == 0) 3673 vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE; 3674 3675 /* 3676 * beacon frame format 3677 * 3678 * Note: This needs updating for 802.11-2012. 3679 * 3680 * [8] time stamp 3681 * [2] beacon interval 3682 * [2] cabability information 3683 * [tlv] ssid 3684 * [tlv] supported rates 3685 * [3] parameter set (DS) 3686 * [8] CF parameter set (optional) 3687 * [tlv] parameter set (IBSS/TIM) 3688 * [tlv] country (optional) 3689 * [3] power control (optional) 3690 * [5] channel switch announcement (CSA) (optional) 3691 * [tlv] extended rate phy (ERP) 3692 * [tlv] extended supported rates 3693 * [tlv] RSN parameters 3694 * [tlv] HT capabilities 3695 * [tlv] HT information 3696 * [tlv] VHT capabilities 3697 * [tlv] VHT operation 3698 * [tlv] Vendor OUI HT capabilities (optional) 3699 * [tlv] Vendor OUI HT information (optional) 3700 * XXX Vendor-specific OIDs (e.g. Atheros) 3701 * [tlv] WPA parameters 3702 * [tlv] WME parameters 3703 * [tlv] TDMA parameters (optional) 3704 * [tlv] Mesh ID (MBSS) 3705 * [tlv] Mesh Conf (MBSS) 3706 * [tlv] application data (optional) 3707 * NB: we allocate the max space required for the TIM bitmap. 3708 * XXX how big is this? 3709 */ 3710 pktlen = 8 /* time stamp */ 3711 + sizeof(uint16_t) /* beacon interval */ 3712 + sizeof(uint16_t) /* capabilities */ 3713 + 2 + ni->ni_esslen /* ssid */ 3714 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 3715 + 2 + 1 /* DS parameters */ 3716 + 2 + 6 /* CF parameters */ 3717 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */ 3718 + IEEE80211_COUNTRY_MAX_SIZE /* country */ 3719 + 2 + 1 /* power control */ 3720 + sizeof(struct ieee80211_csa_ie) /* CSA */ 3721 + sizeof(struct ieee80211_quiet_ie) /* Quiet */ 3722 + 2 + 1 /* ERP */ 3723 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 3724 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 3725 2*sizeof(struct ieee80211_ie_wpa) : 0) 3726 /* XXX conditional? */ 3727 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */ 3728 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */ 3729 + 2 + sizeof(struct ieee80211_vht_cap)/* VHT caps */ 3730 + 2 + sizeof(struct ieee80211_vht_operation)/* VHT info */ 3731 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */ 3732 sizeof(struct ieee80211_wme_param) : 0) 3733 #ifdef IEEE80211_SUPPORT_SUPERG 3734 + sizeof(struct ieee80211_ath_ie) /* ATH */ 3735 #endif 3736 #ifdef IEEE80211_SUPPORT_TDMA 3737 + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */ 3738 sizeof(struct ieee80211_tdma_param) : 0) 3739 #endif 3740 #ifdef IEEE80211_SUPPORT_MESH 3741 + 2 + ni->ni_meshidlen 3742 + sizeof(struct ieee80211_meshconf_ie) 3743 #endif 3744 + IEEE80211_MAX_APPIE 3745 ; 3746 m = ieee80211_getmgtframe(&frm, 3747 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen); 3748 if (m == NULL) { 3749 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, 3750 "%s: cannot get buf; size %u\n", __func__, pktlen); 3751 vap->iv_stats.is_tx_nobuf++; 3752 return NULL; 3753 } 3754 ieee80211_beacon_construct(m, frm, ni); 3755 3756 M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT); 3757 KASSERT(m != NULL, ("no space for 802.11 header?")); 3758 wh = mtod(m, struct ieee80211_frame *); 3759 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 3760 IEEE80211_FC0_SUBTYPE_BEACON; 3761 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3762 *(uint16_t *)wh->i_dur = 0; 3763 IEEE80211_ADDR_COPY(wh->i_addr1, 3764 ieee80211_vap_get_broadcast_address(vap)); 3765 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 3766 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 3767 *(uint16_t *)wh->i_seq = 0; 3768 3769 return m; 3770 } 3771 3772 /* 3773 * Update the dynamic parts of a beacon frame based on the current state. 3774 */ 3775 int 3776 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast) 3777 { 3778 struct ieee80211vap *vap = ni->ni_vap; 3779 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 3780 struct ieee80211com *ic = ni->ni_ic; 3781 int len_changed = 0; 3782 uint16_t capinfo; 3783 3784 IEEE80211_LOCK(ic); 3785 /* 3786 * Handle 11h channel change when we've reached the count. 3787 * We must recalculate the beacon frame contents to account 3788 * for the new channel. Note we do this only for the first 3789 * vap that reaches this point; subsequent vaps just update 3790 * their beacon state to reflect the recalculated channel. 3791 */ 3792 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) && 3793 vap->iv_csa_count == ic->ic_csa_count) { 3794 vap->iv_csa_count = 0; 3795 /* 3796 * Effect channel change before reconstructing the beacon 3797 * frame contents as many places reference ni_chan. 3798 */ 3799 if (ic->ic_csa_newchan != NULL) 3800 ieee80211_csa_completeswitch(ic); 3801 /* 3802 * NB: ieee80211_beacon_construct clears all pending 3803 * updates in bo_flags so we don't need to explicitly 3804 * clear IEEE80211_BEACON_CSA. 3805 */ 3806 ieee80211_beacon_construct(m, 3807 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3808 3809 /* XXX do WME aggressive mode processing? */ 3810 IEEE80211_UNLOCK(ic); 3811 return 1; /* just assume length changed */ 3812 } 3813 3814 /* 3815 * Handle the quiet time element being added and removed. 3816 * Again, for now we just cheat and reconstruct the whole 3817 * beacon - that way the gap is provided as appropriate. 3818 * 3819 * So, track whether we have already added the IE versus 3820 * whether we want to be adding the IE. 3821 */ 3822 if ((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) && 3823 (vap->iv_quiet == 0)) { 3824 /* 3825 * Quiet time beacon IE enabled, but it's disabled; 3826 * recalc 3827 */ 3828 vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE; 3829 ieee80211_beacon_construct(m, 3830 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3831 /* XXX do WME aggressive mode processing? */ 3832 IEEE80211_UNLOCK(ic); 3833 return 1; /* just assume length changed */ 3834 } 3835 3836 if (((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) == 0) && 3837 (vap->iv_quiet == 1)) { 3838 /* 3839 * Quiet time beacon IE disabled, but it's now enabled; 3840 * recalc 3841 */ 3842 vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE; 3843 ieee80211_beacon_construct(m, 3844 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3845 /* XXX do WME aggressive mode processing? */ 3846 IEEE80211_UNLOCK(ic); 3847 return 1; /* just assume length changed */ 3848 } 3849 3850 /* 3851 * XXX TODO Strictly speaking this should be incremented with the TX 3852 * lock held so as to serialise access to the non-qos TID sequence 3853 * number space. 3854 * 3855 * If the driver identifies it does its own TX seqno management then 3856 * we can skip this (and still not do the TX seqno.) 3857 */ 3858 ieee80211_output_beacon_seqno_assign(ni, m); 3859 3860 /* XXX faster to recalculate entirely or just changes? */ 3861 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3862 *bo->bo_caps = htole16(capinfo); 3863 3864 if (vap->iv_flags & IEEE80211_F_WME) { 3865 struct ieee80211_wme_state *wme = &ic->ic_wme; 3866 3867 /* 3868 * Check for aggressive mode change. When there is 3869 * significant high priority traffic in the BSS 3870 * throttle back BE traffic by using conservative 3871 * parameters. Otherwise BE uses aggressive params 3872 * to optimize performance of legacy/non-QoS traffic. 3873 */ 3874 if (wme->wme_flags & WME_F_AGGRMODE) { 3875 if (wme->wme_hipri_traffic > 3876 wme->wme_hipri_switch_thresh) { 3877 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3878 "%s: traffic %u, disable aggressive mode\n", 3879 __func__, wme->wme_hipri_traffic); 3880 wme->wme_flags &= ~WME_F_AGGRMODE; 3881 ieee80211_wme_updateparams_locked(vap); 3882 wme->wme_hipri_traffic = 3883 wme->wme_hipri_switch_hysteresis; 3884 } else 3885 wme->wme_hipri_traffic = 0; 3886 } else { 3887 if (wme->wme_hipri_traffic <= 3888 wme->wme_hipri_switch_thresh) { 3889 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3890 "%s: traffic %u, enable aggressive mode\n", 3891 __func__, wme->wme_hipri_traffic); 3892 wme->wme_flags |= WME_F_AGGRMODE; 3893 ieee80211_wme_updateparams_locked(vap); 3894 wme->wme_hipri_traffic = 0; 3895 } else 3896 wme->wme_hipri_traffic = 3897 wme->wme_hipri_switch_hysteresis; 3898 } 3899 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) { 3900 (void) ieee80211_add_wme_param(bo->bo_wme, wme, 3901 vap->iv_flags_ext & IEEE80211_FEXT_UAPSD); 3902 clrbit(bo->bo_flags, IEEE80211_BEACON_WME); 3903 } 3904 } 3905 3906 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) { 3907 ieee80211_ht_update_beacon(vap, bo); 3908 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO); 3909 } 3910 #ifdef IEEE80211_SUPPORT_TDMA 3911 if (vap->iv_caps & IEEE80211_C_TDMA) { 3912 /* 3913 * NB: the beacon is potentially updated every TBTT. 3914 */ 3915 ieee80211_tdma_update_beacon(vap, bo); 3916 } 3917 #endif 3918 #ifdef IEEE80211_SUPPORT_MESH 3919 if (vap->iv_opmode == IEEE80211_M_MBSS) 3920 ieee80211_mesh_update_beacon(vap, bo); 3921 #endif 3922 3923 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3924 vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/ 3925 struct ieee80211_tim_ie *tie = 3926 (struct ieee80211_tim_ie *) bo->bo_tim; 3927 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) { 3928 u_int timlen, timoff, i; 3929 /* 3930 * ATIM/DTIM needs updating. If it fits in the 3931 * current space allocated then just copy in the 3932 * new bits. Otherwise we need to move any trailing 3933 * data to make room. Note that we know there is 3934 * contiguous space because ieee80211_beacon_allocate 3935 * insures there is space in the mbuf to write a 3936 * maximal-size virtual bitmap (based on iv_max_aid). 3937 */ 3938 /* 3939 * Calculate the bitmap size and offset, copy any 3940 * trailer out of the way, and then copy in the 3941 * new bitmap and update the information element. 3942 * Note that the tim bitmap must contain at least 3943 * one byte and any offset must be even. 3944 */ 3945 if (vap->iv_ps_pending != 0) { 3946 timoff = 128; /* impossibly large */ 3947 for (i = 0; i < vap->iv_tim_len; i++) 3948 if (vap->iv_tim_bitmap[i]) { 3949 timoff = i &~ 1; 3950 break; 3951 } 3952 KASSERT(timoff != 128, ("tim bitmap empty!")); 3953 for (i = vap->iv_tim_len-1; i >= timoff; i--) 3954 if (vap->iv_tim_bitmap[i]) 3955 break; 3956 timlen = 1 + (i - timoff); 3957 } else { 3958 timoff = 0; 3959 timlen = 1; 3960 } 3961 3962 /* 3963 * TODO: validate this! 3964 */ 3965 if (timlen != bo->bo_tim_len) { 3966 /* copy up/down trailer */ 3967 int adjust = tie->tim_bitmap+timlen 3968 - bo->bo_tim_trailer; 3969 ovbcopy(bo->bo_tim_trailer, 3970 bo->bo_tim_trailer+adjust, 3971 bo->bo_tim_trailer_len); 3972 bo->bo_tim_trailer += adjust; 3973 bo->bo_erp += adjust; 3974 bo->bo_htinfo += adjust; 3975 bo->bo_vhtinfo += adjust; 3976 #ifdef IEEE80211_SUPPORT_SUPERG 3977 bo->bo_ath += adjust; 3978 #endif 3979 #ifdef IEEE80211_SUPPORT_TDMA 3980 bo->bo_tdma += adjust; 3981 #endif 3982 #ifdef IEEE80211_SUPPORT_MESH 3983 bo->bo_meshconf += adjust; 3984 #endif 3985 bo->bo_appie += adjust; 3986 bo->bo_wme += adjust; 3987 bo->bo_csa += adjust; 3988 bo->bo_quiet += adjust; 3989 bo->bo_tim_len = timlen; 3990 3991 /* update information element */ 3992 tie->tim_len = 3 + timlen; 3993 tie->tim_bitctl = timoff; 3994 len_changed = 1; 3995 } 3996 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff, 3997 bo->bo_tim_len); 3998 3999 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM); 4000 4001 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER, 4002 "%s: TIM updated, pending %u, off %u, len %u\n", 4003 __func__, vap->iv_ps_pending, timoff, timlen); 4004 } 4005 /* count down DTIM period */ 4006 if (tie->tim_count == 0) 4007 tie->tim_count = tie->tim_period - 1; 4008 else 4009 tie->tim_count--; 4010 /* update state for buffered multicast frames on DTIM */ 4011 if (mcast && tie->tim_count == 0) 4012 tie->tim_bitctl |= 1; 4013 else 4014 tie->tim_bitctl &= ~1; 4015 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) { 4016 struct ieee80211_csa_ie *csa = 4017 (struct ieee80211_csa_ie *) bo->bo_csa; 4018 4019 /* 4020 * Insert or update CSA ie. If we're just starting 4021 * to count down to the channel switch then we need 4022 * to insert the CSA ie. Otherwise we just need to 4023 * drop the count. The actual change happens above 4024 * when the vap's count reaches the target count. 4025 */ 4026 if (vap->iv_csa_count == 0) { 4027 memmove(&csa[1], csa, bo->bo_csa_trailer_len); 4028 bo->bo_erp += sizeof(*csa); 4029 bo->bo_htinfo += sizeof(*csa); 4030 bo->bo_vhtinfo += sizeof(*csa); 4031 bo->bo_wme += sizeof(*csa); 4032 #ifdef IEEE80211_SUPPORT_SUPERG 4033 bo->bo_ath += sizeof(*csa); 4034 #endif 4035 #ifdef IEEE80211_SUPPORT_TDMA 4036 bo->bo_tdma += sizeof(*csa); 4037 #endif 4038 #ifdef IEEE80211_SUPPORT_MESH 4039 bo->bo_meshconf += sizeof(*csa); 4040 #endif 4041 bo->bo_appie += sizeof(*csa); 4042 bo->bo_csa_trailer_len += sizeof(*csa); 4043 bo->bo_quiet += sizeof(*csa); 4044 bo->bo_tim_trailer_len += sizeof(*csa); 4045 m->m_len += sizeof(*csa); 4046 m->m_pkthdr.len += sizeof(*csa); 4047 4048 ieee80211_add_csa(bo->bo_csa, vap); 4049 } else 4050 csa->csa_count--; 4051 vap->iv_csa_count++; 4052 /* NB: don't clear IEEE80211_BEACON_CSA */ 4053 } 4054 4055 /* 4056 * Only add the quiet time IE if we've enabled it 4057 * as appropriate. 4058 */ 4059 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 4060 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 4061 if (vap->iv_quiet && 4062 (vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE)) { 4063 ieee80211_add_quiet(bo->bo_quiet, vap, 1); 4064 } 4065 } 4066 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) { 4067 /* 4068 * ERP element needs updating. 4069 */ 4070 (void) ieee80211_add_erp(bo->bo_erp, vap); 4071 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP); 4072 } 4073 #ifdef IEEE80211_SUPPORT_SUPERG 4074 if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) { 4075 ieee80211_add_athcaps(bo->bo_ath, ni); 4076 clrbit(bo->bo_flags, IEEE80211_BEACON_ATH); 4077 } 4078 #endif 4079 } 4080 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) { 4081 const struct ieee80211_appie *aie = vap->iv_appie_beacon; 4082 int aielen; 4083 uint8_t *frm; 4084 4085 aielen = 0; 4086 if (aie != NULL) 4087 aielen += aie->ie_len; 4088 if (aielen != bo->bo_appie_len) { 4089 /* copy up/down trailer */ 4090 int adjust = aielen - bo->bo_appie_len; 4091 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust, 4092 bo->bo_tim_trailer_len); 4093 bo->bo_tim_trailer += adjust; 4094 bo->bo_appie += adjust; 4095 bo->bo_appie_len = aielen; 4096 4097 len_changed = 1; 4098 } 4099 frm = bo->bo_appie; 4100 if (aie != NULL) 4101 frm = add_appie(frm, aie); 4102 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE); 4103 } 4104 IEEE80211_UNLOCK(ic); 4105 4106 return len_changed; 4107 } 4108 4109 /* 4110 * Do Ethernet-LLC encapsulation for each payload in a fast frame 4111 * tunnel encapsulation. The frame is assumed to have an Ethernet 4112 * header at the front that must be stripped before prepending the 4113 * LLC followed by the Ethernet header passed in (with an Ethernet 4114 * type that specifies the payload size). 4115 */ 4116 struct mbuf * 4117 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m, 4118 const struct ether_header *eh) 4119 { 4120 struct llc *llc; 4121 uint16_t payload; 4122 4123 /* XXX optimize by combining m_adj+M_PREPEND */ 4124 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 4125 llc = mtod(m, struct llc *); 4126 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 4127 llc->llc_control = LLC_UI; 4128 llc->llc_snap.org_code[0] = 0; 4129 llc->llc_snap.org_code[1] = 0; 4130 llc->llc_snap.org_code[2] = 0; 4131 llc->llc_snap.ether_type = eh->ether_type; 4132 payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */ 4133 4134 M_PREPEND(m, sizeof(struct ether_header), IEEE80211_M_NOWAIT); 4135 if (m == NULL) { /* XXX cannot happen */ 4136 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 4137 "%s: no space for ether_header\n", __func__); 4138 vap->iv_stats.is_tx_nobuf++; 4139 return NULL; 4140 } 4141 ETHER_HEADER_COPY(mtod(m, void *), eh); 4142 mtod(m, struct ether_header *)->ether_type = htons(payload); 4143 return m; 4144 } 4145 4146 /* 4147 * Complete an mbuf transmission. 4148 * 4149 * For now, this simply processes a completed frame after the 4150 * driver has completed it's transmission and/or retransmission. 4151 * It assumes the frame is an 802.11 encapsulated frame. 4152 * 4153 * Later on it will grow to become the exit path for a given frame 4154 * from the driver and, depending upon how it's been encapsulated 4155 * and already transmitted, it may end up doing A-MPDU retransmission, 4156 * power save requeuing, etc. 4157 * 4158 * In order for the above to work, the driver entry point to this 4159 * must not hold any driver locks. Thus, the driver needs to delay 4160 * any actual mbuf completion until it can release said locks. 4161 * 4162 * This frees the mbuf and if the mbuf has a node reference, 4163 * the node reference will be freed. 4164 */ 4165 void 4166 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status) 4167 { 4168 4169 if (ni != NULL) { 4170 struct ifnet *ifp = ni->ni_vap->iv_ifp; 4171 4172 if (status == 0) { 4173 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len); 4174 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 4175 if (m->m_flags & M_MCAST) 4176 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 4177 } else 4178 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 4179 if (m->m_flags & M_TXCB) { 4180 IEEE80211_DPRINTF(ni->ni_vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 4181 "ni %p vap %p mode %s state %s m %p status %d\n", ni, ni->ni_vap, 4182 ieee80211_opmode_name[ni->ni_vap->iv_opmode], 4183 ieee80211_state_name[ni->ni_vap->iv_state], m, status); 4184 ieee80211_process_callback(ni, m, status); 4185 } 4186 ieee80211_free_node(ni); 4187 } 4188 m_freem(m); 4189 } 4190 4191 /** 4192 * @brief Assign a sequence number to the given frame. 4193 * 4194 * Check the frame type and TID and assign a suitable sequence number 4195 * from the correct sequence number space. 4196 * 4197 * It assumes the mbuf has been encapsulated, and has the TID assigned 4198 * if it is a QoS frame. 4199 * 4200 * Note this also clears any existing fragment ID in the header, so it 4201 * must be called first before assigning fragment IDs. 4202 * 4203 * For now this implements parts of 802.11-2012; it doesn't do all of 4204 * the needed checks for full compliance (notably QoS-Data NULL frames). 4205 * 4206 * TODO: update to 802.11-2020 10.3.2.14.2 (Transmitter Requirements) 4207 * 4208 * @param ni ieee80211_node this frame will be transmitted to 4209 * @param arg_tid A temporary check, existing callers may set 4210 * this to a TID variable they were using, and this routine 4211 * will verify it against what's in the frame and complain if 4212 * they don't match. For new callers, use -1. 4213 * @param m mbuf to populate the sequence number into 4214 */ 4215 void 4216 ieee80211_output_seqno_assign(struct ieee80211_node *ni, int arg_tid, 4217 struct mbuf *m) 4218 { 4219 struct ieee80211_frame *wh; 4220 ieee80211_seq seqno; 4221 uint8_t tid, type, subtype; 4222 4223 wh = mtod(m, struct ieee80211_frame *); 4224 tid = ieee80211_gettid(wh); 4225 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 4226 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 4227 4228 /* 4229 * Find places where the passed in TID doesn't match gettid() 4230 * and log. I'll have to then go and chase those down. 4231 * 4232 * If the caller knows its already setup the TID in the frame 4233 * correctly then it can pass in -1 and this check will be 4234 * skipped. 4235 */ 4236 if (arg_tid != -1 && tid != arg_tid) 4237 ic_printf(ni->ni_vap->iv_ic, 4238 "%s: called; TID mismatch; tid=%u, arg_tid=%d\n", 4239 __func__, tid, arg_tid); 4240 4241 if (IEEE80211_HAS_SEQ(type, subtype)) { 4242 /* 4243 * 802.11-2012 9.3.2.10 - QoS multicast frames 4244 * come out of a different seqno space. 4245 */ 4246 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 4247 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 4248 else 4249 seqno = ni->ni_txseqs[tid]++; 4250 } else 4251 seqno = 0; 4252 4253 /* 4254 * Assign the sequence number, clearing out any existing 4255 * sequence and fragment numbers. 4256 */ 4257 *(uint16_t *)&wh->i_seq[0] = 4258 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 4259 M_SEQNO_SET(m, seqno); 4260 } 4261 4262 /** 4263 * @brief Assign a sequence number to the given beacon frame. 4264 * 4265 * TODO: update to 802.11-2020 10.3.2.14.2 (Transmitter Requirements) 4266 * 4267 * @param ni ieee80211_node this frame will be transmitted to 4268 * @param m mbuf to populate the sequence number into 4269 */ 4270 void 4271 ieee80211_output_beacon_seqno_assign(struct ieee80211_node *ni, struct mbuf *m) 4272 { 4273 struct ieee80211_frame *wh; 4274 ieee80211_seq seqno; 4275 4276 wh = mtod(m, struct ieee80211_frame *); 4277 4278 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 4279 *(uint16_t *)&wh->i_seq[0] = 4280 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 4281 M_SEQNO_SET(m, seqno); 4282 } 4283