1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 #ifdef __FreeBSD__ 30 __FBSDID("$FreeBSD$"); 31 #endif 32 33 /* 34 * IEEE 802.11n protocol support. 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_wlan.h" 39 40 #include <sys/param.h> 41 #include <sys/kernel.h> 42 #include <sys/malloc.h> 43 #include <sys/systm.h> 44 #include <sys/endian.h> 45 46 #include <sys/socket.h> 47 48 #include <net/if.h> 49 #include <net/if_var.h> 50 #include <net/if_media.h> 51 #include <net/ethernet.h> 52 53 #include <net80211/ieee80211_var.h> 54 #include <net80211/ieee80211_action.h> 55 #include <net80211/ieee80211_input.h> 56 57 /* define here, used throughout file */ 58 #define MS(_v, _f) (((_v) & _f) >> _f##_S) 59 #define SM(_v, _f) (((_v) << _f##_S) & _f) 60 61 const struct ieee80211_mcs_rates ieee80211_htrates[IEEE80211_HTRATE_MAXSIZE] = { 62 { 13, 14, 27, 30 }, /* MCS 0 */ 63 { 26, 29, 54, 60 }, /* MCS 1 */ 64 { 39, 43, 81, 90 }, /* MCS 2 */ 65 { 52, 58, 108, 120 }, /* MCS 3 */ 66 { 78, 87, 162, 180 }, /* MCS 4 */ 67 { 104, 116, 216, 240 }, /* MCS 5 */ 68 { 117, 130, 243, 270 }, /* MCS 6 */ 69 { 130, 144, 270, 300 }, /* MCS 7 */ 70 { 26, 29, 54, 60 }, /* MCS 8 */ 71 { 52, 58, 108, 120 }, /* MCS 9 */ 72 { 78, 87, 162, 180 }, /* MCS 10 */ 73 { 104, 116, 216, 240 }, /* MCS 11 */ 74 { 156, 173, 324, 360 }, /* MCS 12 */ 75 { 208, 231, 432, 480 }, /* MCS 13 */ 76 { 234, 260, 486, 540 }, /* MCS 14 */ 77 { 260, 289, 540, 600 }, /* MCS 15 */ 78 { 39, 43, 81, 90 }, /* MCS 16 */ 79 { 78, 87, 162, 180 }, /* MCS 17 */ 80 { 117, 130, 243, 270 }, /* MCS 18 */ 81 { 156, 173, 324, 360 }, /* MCS 19 */ 82 { 234, 260, 486, 540 }, /* MCS 20 */ 83 { 312, 347, 648, 720 }, /* MCS 21 */ 84 { 351, 390, 729, 810 }, /* MCS 22 */ 85 { 390, 433, 810, 900 }, /* MCS 23 */ 86 { 52, 58, 108, 120 }, /* MCS 24 */ 87 { 104, 116, 216, 240 }, /* MCS 25 */ 88 { 156, 173, 324, 360 }, /* MCS 26 */ 89 { 208, 231, 432, 480 }, /* MCS 27 */ 90 { 312, 347, 648, 720 }, /* MCS 28 */ 91 { 416, 462, 864, 960 }, /* MCS 29 */ 92 { 468, 520, 972, 1080 }, /* MCS 30 */ 93 { 520, 578, 1080, 1200 }, /* MCS 31 */ 94 { 0, 0, 12, 13 }, /* MCS 32 */ 95 { 78, 87, 162, 180 }, /* MCS 33 */ 96 { 104, 116, 216, 240 }, /* MCS 34 */ 97 { 130, 144, 270, 300 }, /* MCS 35 */ 98 { 117, 130, 243, 270 }, /* MCS 36 */ 99 { 156, 173, 324, 360 }, /* MCS 37 */ 100 { 195, 217, 405, 450 }, /* MCS 38 */ 101 { 104, 116, 216, 240 }, /* MCS 39 */ 102 { 130, 144, 270, 300 }, /* MCS 40 */ 103 { 130, 144, 270, 300 }, /* MCS 41 */ 104 { 156, 173, 324, 360 }, /* MCS 42 */ 105 { 182, 202, 378, 420 }, /* MCS 43 */ 106 { 182, 202, 378, 420 }, /* MCS 44 */ 107 { 208, 231, 432, 480 }, /* MCS 45 */ 108 { 156, 173, 324, 360 }, /* MCS 46 */ 109 { 195, 217, 405, 450 }, /* MCS 47 */ 110 { 195, 217, 405, 450 }, /* MCS 48 */ 111 { 234, 260, 486, 540 }, /* MCS 49 */ 112 { 273, 303, 567, 630 }, /* MCS 50 */ 113 { 273, 303, 567, 630 }, /* MCS 51 */ 114 { 312, 347, 648, 720 }, /* MCS 52 */ 115 { 130, 144, 270, 300 }, /* MCS 53 */ 116 { 156, 173, 324, 360 }, /* MCS 54 */ 117 { 182, 202, 378, 420 }, /* MCS 55 */ 118 { 156, 173, 324, 360 }, /* MCS 56 */ 119 { 182, 202, 378, 420 }, /* MCS 57 */ 120 { 208, 231, 432, 480 }, /* MCS 58 */ 121 { 234, 260, 486, 540 }, /* MCS 59 */ 122 { 208, 231, 432, 480 }, /* MCS 60 */ 123 { 234, 260, 486, 540 }, /* MCS 61 */ 124 { 260, 289, 540, 600 }, /* MCS 62 */ 125 { 260, 289, 540, 600 }, /* MCS 63 */ 126 { 286, 318, 594, 660 }, /* MCS 64 */ 127 { 195, 217, 405, 450 }, /* MCS 65 */ 128 { 234, 260, 486, 540 }, /* MCS 66 */ 129 { 273, 303, 567, 630 }, /* MCS 67 */ 130 { 234, 260, 486, 540 }, /* MCS 68 */ 131 { 273, 303, 567, 630 }, /* MCS 69 */ 132 { 312, 347, 648, 720 }, /* MCS 70 */ 133 { 351, 390, 729, 810 }, /* MCS 71 */ 134 { 312, 347, 648, 720 }, /* MCS 72 */ 135 { 351, 390, 729, 810 }, /* MCS 73 */ 136 { 390, 433, 810, 900 }, /* MCS 74 */ 137 { 390, 433, 810, 900 }, /* MCS 75 */ 138 { 429, 477, 891, 990 }, /* MCS 76 */ 139 }; 140 141 static int ieee80211_ampdu_age = -1; /* threshold for ampdu reorder q (ms) */ 142 SYSCTL_PROC(_net_wlan, OID_AUTO, ampdu_age, 143 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 144 &ieee80211_ampdu_age, 0, ieee80211_sysctl_msecs_ticks, "I", 145 "AMPDU max reorder age (ms)"); 146 147 static int ieee80211_recv_bar_ena = 1; 148 SYSCTL_INT(_net_wlan, OID_AUTO, recv_bar, CTLFLAG_RW, &ieee80211_recv_bar_ena, 149 0, "BAR frame processing (ena/dis)"); 150 151 static int ieee80211_addba_timeout = -1;/* timeout for ADDBA response */ 152 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_timeout, 153 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 154 &ieee80211_addba_timeout, 0, ieee80211_sysctl_msecs_ticks, "I", 155 "ADDBA request timeout (ms)"); 156 static int ieee80211_addba_backoff = -1;/* backoff after max ADDBA requests */ 157 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_backoff, 158 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 159 &ieee80211_addba_backoff, 0, ieee80211_sysctl_msecs_ticks, "I", 160 "ADDBA request backoff (ms)"); 161 static int ieee80211_addba_maxtries = 3;/* max ADDBA requests before backoff */ 162 SYSCTL_INT(_net_wlan, OID_AUTO, addba_maxtries, CTLFLAG_RW, 163 &ieee80211_addba_maxtries, 0, "max ADDBA requests sent before backoff"); 164 165 static int ieee80211_bar_timeout = -1; /* timeout waiting for BAR response */ 166 static int ieee80211_bar_maxtries = 50;/* max BAR requests before DELBA */ 167 168 static ieee80211_recv_action_func ht_recv_action_ba_addba_request; 169 static ieee80211_recv_action_func ht_recv_action_ba_addba_response; 170 static ieee80211_recv_action_func ht_recv_action_ba_delba; 171 static ieee80211_recv_action_func ht_recv_action_ht_mimopwrsave; 172 static ieee80211_recv_action_func ht_recv_action_ht_txchwidth; 173 174 static ieee80211_send_action_func ht_send_action_ba_addba; 175 static ieee80211_send_action_func ht_send_action_ba_delba; 176 static ieee80211_send_action_func ht_send_action_ht_txchwidth; 177 178 static void 179 ieee80211_ht_init(void) 180 { 181 /* 182 * Setup HT parameters that depends on the clock frequency. 183 */ 184 ieee80211_ampdu_age = msecs_to_ticks(500); 185 ieee80211_addba_timeout = msecs_to_ticks(250); 186 ieee80211_addba_backoff = msecs_to_ticks(10*1000); 187 ieee80211_bar_timeout = msecs_to_ticks(250); 188 /* 189 * Register action frame handlers. 190 */ 191 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 192 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_recv_action_ba_addba_request); 193 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 194 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_recv_action_ba_addba_response); 195 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 196 IEEE80211_ACTION_BA_DELBA, ht_recv_action_ba_delba); 197 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 198 IEEE80211_ACTION_HT_MIMOPWRSAVE, ht_recv_action_ht_mimopwrsave); 199 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 200 IEEE80211_ACTION_HT_TXCHWIDTH, ht_recv_action_ht_txchwidth); 201 202 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 203 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_send_action_ba_addba); 204 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 205 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_send_action_ba_addba); 206 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 207 IEEE80211_ACTION_BA_DELBA, ht_send_action_ba_delba); 208 ieee80211_send_action_register(IEEE80211_ACTION_CAT_HT, 209 IEEE80211_ACTION_HT_TXCHWIDTH, ht_send_action_ht_txchwidth); 210 } 211 SYSINIT(wlan_ht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_ht_init, NULL); 212 213 static int ieee80211_ampdu_enable(struct ieee80211_node *ni, 214 struct ieee80211_tx_ampdu *tap); 215 static int ieee80211_addba_request(struct ieee80211_node *ni, 216 struct ieee80211_tx_ampdu *tap, 217 int dialogtoken, int baparamset, int batimeout); 218 static int ieee80211_addba_response(struct ieee80211_node *ni, 219 struct ieee80211_tx_ampdu *tap, 220 int code, int baparamset, int batimeout); 221 static void ieee80211_addba_stop(struct ieee80211_node *ni, 222 struct ieee80211_tx_ampdu *tap); 223 static void null_addba_response_timeout(struct ieee80211_node *ni, 224 struct ieee80211_tx_ampdu *tap); 225 226 static void ieee80211_bar_response(struct ieee80211_node *ni, 227 struct ieee80211_tx_ampdu *tap, int status); 228 static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap); 229 static void bar_stop_timer(struct ieee80211_tx_ampdu *tap); 230 static int ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *, 231 int baparamset, int batimeout, int baseqctl); 232 static void ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *); 233 234 void 235 ieee80211_ht_attach(struct ieee80211com *ic) 236 { 237 /* setup default aggregation policy */ 238 ic->ic_recv_action = ieee80211_recv_action; 239 ic->ic_send_action = ieee80211_send_action; 240 ic->ic_ampdu_enable = ieee80211_ampdu_enable; 241 ic->ic_addba_request = ieee80211_addba_request; 242 ic->ic_addba_response = ieee80211_addba_response; 243 ic->ic_addba_response_timeout = null_addba_response_timeout; 244 ic->ic_addba_stop = ieee80211_addba_stop; 245 ic->ic_bar_response = ieee80211_bar_response; 246 ic->ic_ampdu_rx_start = ampdu_rx_start; 247 ic->ic_ampdu_rx_stop = ampdu_rx_stop; 248 249 ic->ic_htprotmode = IEEE80211_PROT_RTSCTS; 250 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; 251 } 252 253 void 254 ieee80211_ht_detach(struct ieee80211com *ic) 255 { 256 } 257 258 void 259 ieee80211_ht_vattach(struct ieee80211vap *vap) 260 { 261 262 /* driver can override defaults */ 263 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_8K; 264 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_NA; 265 vap->iv_ampdu_limit = vap->iv_ampdu_rxmax; 266 vap->iv_amsdu_limit = vap->iv_htcaps & IEEE80211_HTCAP_MAXAMSDU; 267 /* tx aggregation traffic thresholds */ 268 vap->iv_ampdu_mintraffic[WME_AC_BK] = 128; 269 vap->iv_ampdu_mintraffic[WME_AC_BE] = 64; 270 vap->iv_ampdu_mintraffic[WME_AC_VO] = 32; 271 vap->iv_ampdu_mintraffic[WME_AC_VI] = 32; 272 273 vap->iv_htprotmode = IEEE80211_PROT_RTSCTS; 274 vap->iv_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; 275 276 if (vap->iv_htcaps & IEEE80211_HTC_HT) { 277 /* 278 * Device is HT capable; enable all HT-related 279 * facilities by default. 280 * XXX these choices may be too aggressive. 281 */ 282 vap->iv_flags_ht |= IEEE80211_FHT_HT 283 | IEEE80211_FHT_HTCOMPAT 284 ; 285 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI20) 286 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20; 287 /* XXX infer from channel list? */ 288 if (vap->iv_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 289 vap->iv_flags_ht |= IEEE80211_FHT_USEHT40; 290 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI40) 291 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40; 292 } 293 /* enable RIFS if capable */ 294 if (vap->iv_htcaps & IEEE80211_HTC_RIFS) 295 vap->iv_flags_ht |= IEEE80211_FHT_RIFS; 296 297 /* NB: A-MPDU and A-MSDU rx are mandated, these are tx only */ 298 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX; 299 if (vap->iv_htcaps & IEEE80211_HTC_AMPDU) 300 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX; 301 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX; 302 if (vap->iv_htcaps & IEEE80211_HTC_AMSDU) 303 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX; 304 305 if (vap->iv_htcaps & IEEE80211_HTCAP_TXSTBC) 306 vap->iv_flags_ht |= IEEE80211_FHT_STBC_TX; 307 if (vap->iv_htcaps & IEEE80211_HTCAP_RXSTBC) 308 vap->iv_flags_ht |= IEEE80211_FHT_STBC_RX; 309 310 if (vap->iv_htcaps & IEEE80211_HTCAP_LDPC) 311 vap->iv_flags_ht |= IEEE80211_FHT_LDPC_RX; 312 if (vap->iv_htcaps & IEEE80211_HTC_TXLDPC) 313 vap->iv_flags_ht |= IEEE80211_FHT_LDPC_TX; 314 } 315 /* NB: disable default legacy WDS, too many issues right now */ 316 if (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) 317 vap->iv_flags_ht &= ~IEEE80211_FHT_HT; 318 } 319 320 void 321 ieee80211_ht_vdetach(struct ieee80211vap *vap) 322 { 323 } 324 325 static int 326 ht_getrate(struct ieee80211com *ic, int index, enum ieee80211_phymode mode, 327 int ratetype) 328 { 329 int mword, rate; 330 331 mword = ieee80211_rate2media(ic, index | IEEE80211_RATE_MCS, mode); 332 if (IFM_SUBTYPE(mword) != IFM_IEEE80211_MCS) 333 return (0); 334 switch (ratetype) { 335 case 0: 336 rate = ieee80211_htrates[index].ht20_rate_800ns; 337 break; 338 case 1: 339 rate = ieee80211_htrates[index].ht20_rate_400ns; 340 break; 341 case 2: 342 rate = ieee80211_htrates[index].ht40_rate_800ns; 343 break; 344 default: 345 rate = ieee80211_htrates[index].ht40_rate_400ns; 346 break; 347 } 348 return (rate); 349 } 350 351 static struct printranges { 352 int minmcs; 353 int maxmcs; 354 int txstream; 355 int ratetype; 356 int htcapflags; 357 } ranges[] = { 358 { 0, 7, 1, 0, 0 }, 359 { 8, 15, 2, 0, 0 }, 360 { 16, 23, 3, 0, 0 }, 361 { 24, 31, 4, 0, 0 }, 362 { 32, 0, 1, 2, IEEE80211_HTC_TXMCS32 }, 363 { 33, 38, 2, 0, IEEE80211_HTC_TXUNEQUAL }, 364 { 39, 52, 3, 0, IEEE80211_HTC_TXUNEQUAL }, 365 { 53, 76, 4, 0, IEEE80211_HTC_TXUNEQUAL }, 366 { 0, 0, 0, 0, 0 }, 367 }; 368 369 static void 370 ht_rateprint(struct ieee80211com *ic, enum ieee80211_phymode mode, int ratetype) 371 { 372 int minrate, maxrate; 373 struct printranges *range; 374 375 for (range = ranges; range->txstream != 0; range++) { 376 if (ic->ic_txstream < range->txstream) 377 continue; 378 if (range->htcapflags && 379 (ic->ic_htcaps & range->htcapflags) == 0) 380 continue; 381 if (ratetype < range->ratetype) 382 continue; 383 minrate = ht_getrate(ic, range->minmcs, mode, ratetype); 384 maxrate = ht_getrate(ic, range->maxmcs, mode, ratetype); 385 if (range->maxmcs) { 386 ic_printf(ic, "MCS %d-%d: %d%sMbps - %d%sMbps\n", 387 range->minmcs, range->maxmcs, 388 minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""), 389 maxrate/2, ((maxrate & 0x1) != 0 ? ".5" : "")); 390 } else { 391 ic_printf(ic, "MCS %d: %d%sMbps\n", range->minmcs, 392 minrate/2, ((minrate & 0x1) != 0 ? ".5" : "")); 393 } 394 } 395 } 396 397 static void 398 ht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode) 399 { 400 const char *modestr = ieee80211_phymode_name[mode]; 401 402 ic_printf(ic, "%s MCS 20MHz\n", modestr); 403 ht_rateprint(ic, mode, 0); 404 if (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) { 405 ic_printf(ic, "%s MCS 20MHz SGI\n", modestr); 406 ht_rateprint(ic, mode, 1); 407 } 408 if (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 409 ic_printf(ic, "%s MCS 40MHz:\n", modestr); 410 ht_rateprint(ic, mode, 2); 411 } 412 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 413 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) { 414 ic_printf(ic, "%s MCS 40MHz SGI:\n", modestr); 415 ht_rateprint(ic, mode, 3); 416 } 417 } 418 419 void 420 ieee80211_ht_announce(struct ieee80211com *ic) 421 { 422 423 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 424 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 425 ic_printf(ic, "%dT%dR\n", ic->ic_txstream, ic->ic_rxstream); 426 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA)) 427 ht_announce(ic, IEEE80211_MODE_11NA); 428 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 429 ht_announce(ic, IEEE80211_MODE_11NG); 430 } 431 432 void 433 ieee80211_init_suphtrates(struct ieee80211com *ic) 434 { 435 #define ADDRATE(x) do { \ 436 htrateset->rs_rates[htrateset->rs_nrates] = x; \ 437 htrateset->rs_nrates++; \ 438 } while (0) 439 struct ieee80211_htrateset *htrateset = &ic->ic_sup_htrates; 440 int i; 441 442 memset(htrateset, 0, sizeof(struct ieee80211_htrateset)); 443 for (i = 0; i < ic->ic_txstream * 8; i++) 444 ADDRATE(i); 445 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 446 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32)) 447 ADDRATE(32); 448 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 449 if (ic->ic_txstream >= 2) { 450 for (i = 33; i <= 38; i++) 451 ADDRATE(i); 452 } 453 if (ic->ic_txstream >= 3) { 454 for (i = 39; i <= 52; i++) 455 ADDRATE(i); 456 } 457 if (ic->ic_txstream == 4) { 458 for (i = 53; i <= 76; i++) 459 ADDRATE(i); 460 } 461 } 462 #undef ADDRATE 463 } 464 465 /* 466 * Receive processing. 467 */ 468 469 /* 470 * Decap the encapsulated A-MSDU frames and dispatch all but 471 * the last for delivery. The last frame is returned for 472 * delivery via the normal path. 473 */ 474 struct mbuf * 475 ieee80211_decap_amsdu(struct ieee80211_node *ni, struct mbuf *m) 476 { 477 struct ieee80211vap *vap = ni->ni_vap; 478 int framelen; 479 struct mbuf *n; 480 481 /* discard 802.3 header inserted by ieee80211_decap */ 482 m_adj(m, sizeof(struct ether_header)); 483 484 vap->iv_stats.is_amsdu_decap++; 485 486 for (;;) { 487 /* 488 * Decap the first frame, bust it apart from the 489 * remainder and deliver. We leave the last frame 490 * delivery to the caller (for consistency with other 491 * code paths, could also do it here). 492 */ 493 m = ieee80211_decap1(m, &framelen); 494 if (m == NULL) { 495 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 496 ni->ni_macaddr, "a-msdu", "%s", "decap failed"); 497 vap->iv_stats.is_amsdu_tooshort++; 498 return NULL; 499 } 500 if (m->m_pkthdr.len == framelen) 501 break; 502 n = m_split(m, framelen, M_NOWAIT); 503 if (n == NULL) { 504 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 505 ni->ni_macaddr, "a-msdu", 506 "%s", "unable to split encapsulated frames"); 507 vap->iv_stats.is_amsdu_split++; 508 m_freem(m); /* NB: must reclaim */ 509 return NULL; 510 } 511 vap->iv_deliver_data(vap, ni, m); 512 513 /* 514 * Remove frame contents; each intermediate frame 515 * is required to be aligned to a 4-byte boundary. 516 */ 517 m = n; 518 m_adj(m, roundup2(framelen, 4) - framelen); /* padding */ 519 } 520 return m; /* last delivered by caller */ 521 } 522 523 static void 524 ampdu_rx_purge_slot(struct ieee80211_rx_ampdu *rap, int i) 525 { 526 struct mbuf *m; 527 528 /* Walk the queue, removing frames as appropriate */ 529 while (mbufq_len(&rap->rxa_mq[i]) != 0) { 530 m = mbufq_dequeue(&rap->rxa_mq[i]); 531 if (m == NULL) 532 break; 533 rap->rxa_qbytes -= m->m_pkthdr.len; 534 rap->rxa_qframes--; 535 m_freem(m); 536 } 537 } 538 539 /* 540 * Add the given frame to the current RX reorder slot. 541 * 542 * For future offloaded A-MSDU handling where multiple frames with 543 * the same sequence number show up here, this routine will append 544 * those frames as long as they're appropriately tagged. 545 */ 546 static int 547 ampdu_rx_add_slot(struct ieee80211_rx_ampdu *rap, int off, int tid, 548 ieee80211_seq rxseq, 549 struct ieee80211_node *ni, 550 struct mbuf *m, 551 const struct ieee80211_rx_stats *rxs) 552 { 553 const struct ieee80211_rx_stats *rxs_final = NULL; 554 struct ieee80211vap *vap = ni->ni_vap; 555 int toss_dup; 556 #define PROCESS 0 /* caller should process frame */ 557 #define CONSUMED 1 /* frame consumed, caller does nothing */ 558 559 /* 560 * Figure out if this is a duplicate frame for the given slot. 561 * 562 * We're assuming that the driver will hand us all the frames 563 * for a given AMSDU decap pass and if we get /a/ frame 564 * for an AMSDU decap then we'll get all of them. 565 * 566 * The tricksy bit is that we don't know when the /end/ of 567 * the decap pass is, because we aren't tracking state here 568 * per-slot to know that we've finished receiving the frame list. 569 * 570 * The driver sets RX_F_AMSDU and RX_F_AMSDU_MORE to tell us 571 * what's going on; so ideally we'd just check the frame at the 572 * end of the reassembly slot to see if its F_AMSDU w/ no F_AMSDU_MORE - 573 * that means we've received the whole AMSDU decap pass. 574 */ 575 576 /* 577 * Get the rxs of the final mbuf in the slot, if one exists. 578 */ 579 if (mbufq_len(&rap->rxa_mq[off]) != 0) { 580 rxs_final = ieee80211_get_rx_params_ptr(mbufq_last(&rap->rxa_mq[off])); 581 } 582 583 /* Default to tossing the duplicate frame */ 584 toss_dup = 1; 585 586 /* 587 * Check to see if the final frame has F_AMSDU and F_AMSDU set, AND 588 * this frame has F_AMSDU set (MORE or otherwise.) That's a sign 589 * that more can come. 590 */ 591 592 if ((rxs != NULL) && (rxs_final != NULL) && 593 ieee80211_check_rxseq_amsdu(rxs) && 594 ieee80211_check_rxseq_amsdu(rxs_final)) { 595 if (! ieee80211_check_rxseq_amsdu_more(rxs_final)) { 596 /* 597 * amsdu_more() returning 0 means "it's not the 598 * final frame" so we can append more 599 * frames here. 600 */ 601 toss_dup = 0; 602 } 603 } 604 605 /* 606 * If the list is empty OR we have determined we can put more 607 * driver decap'ed AMSDU frames in here, then insert. 608 */ 609 if ((mbufq_len(&rap->rxa_mq[off]) == 0) || (toss_dup == 0)) { 610 if (mbufq_enqueue(&rap->rxa_mq[off], m) != 0) { 611 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 612 ni->ni_macaddr, 613 "a-mpdu queue fail", 614 "seqno %u tid %u BA win <%u:%u> off=%d, qlen=%d, maxqlen=%d", 615 rxseq, tid, rap->rxa_start, 616 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 617 off, 618 mbufq_len(&rap->rxa_mq[off]), 619 rap->rxa_mq[off].mq_maxlen); 620 /* XXX error count */ 621 m_freem(m); 622 return CONSUMED; 623 } 624 rap->rxa_qframes++; 625 rap->rxa_qbytes += m->m_pkthdr.len; 626 vap->iv_stats.is_ampdu_rx_reorder++; 627 /* 628 * Statistics for AMSDU decap. 629 */ 630 if (rxs != NULL && ieee80211_check_rxseq_amsdu(rxs)) { 631 if (ieee80211_check_rxseq_amsdu_more(rxs)) { 632 /* more=1, AMSDU, end of batch */ 633 IEEE80211_NODE_STAT(ni, rx_amsdu_more_end); 634 } else { 635 IEEE80211_NODE_STAT(ni, rx_amsdu_more); 636 } 637 } 638 } else { 639 IEEE80211_DISCARD_MAC(vap, 640 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 641 ni->ni_macaddr, "a-mpdu duplicate", 642 "seqno %u tid %u BA win <%u:%u>", 643 rxseq, tid, rap->rxa_start, 644 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1)); 645 if (rxs != NULL) { 646 IEEE80211_DISCARD_MAC(vap, 647 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 648 ni->ni_macaddr, "a-mpdu duplicate", 649 "seqno %d tid %u pktflags 0x%08x\n", 650 rxseq, tid, rxs->c_pktflags); 651 } 652 if (rxs_final != NULL) { 653 IEEE80211_DISCARD_MAC(vap, 654 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 655 ni->ni_macaddr, "a-mpdu duplicate", 656 "final: pktflags 0x%08x\n", 657 rxs_final->c_pktflags); 658 } 659 vap->iv_stats.is_rx_dup++; 660 IEEE80211_NODE_STAT(ni, rx_dup); 661 m_freem(m); 662 } 663 return CONSUMED; 664 #undef CONSUMED 665 #undef PROCESS 666 } 667 668 /* 669 * Purge all frames in the A-MPDU re-order queue. 670 */ 671 static void 672 ampdu_rx_purge(struct ieee80211_rx_ampdu *rap) 673 { 674 int i; 675 676 for (i = 0; i < rap->rxa_wnd; i++) { 677 ampdu_rx_purge_slot(rap, i); 678 if (rap->rxa_qframes == 0) 679 break; 680 } 681 KASSERT(rap->rxa_qbytes == 0 && rap->rxa_qframes == 0, 682 ("lost %u data, %u frames on ampdu rx q", 683 rap->rxa_qbytes, rap->rxa_qframes)); 684 } 685 686 static void 687 ieee80211_ampdu_rx_init_rap(struct ieee80211_node *ni, 688 struct ieee80211_rx_ampdu *rap) 689 { 690 int i; 691 692 /* XXX TODO: ensure the queues are empty */ 693 memset(rap, 0, sizeof(*rap)); 694 for (i = 0; i < IEEE80211_AGGR_BAWMAX; i++) 695 mbufq_init(&rap->rxa_mq[i], 256); 696 } 697 698 /* 699 * Start A-MPDU rx/re-order processing for the specified TID. 700 */ 701 static int 702 ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap, 703 int baparamset, int batimeout, int baseqctl) 704 { 705 struct ieee80211vap *vap = ni->ni_vap; 706 int bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 707 708 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 709 /* 710 * AMPDU previously setup and not terminated with a DELBA, 711 * flush the reorder q's in case anything remains. 712 */ 713 ampdu_rx_purge(rap); 714 } 715 ieee80211_ampdu_rx_init_rap(ni, rap); 716 rap->rxa_wnd = (bufsiz == 0) ? 717 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 718 rap->rxa_start = MS(baseqctl, IEEE80211_BASEQ_START); 719 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 720 721 /* XXX this should be a configuration flag */ 722 if ((vap->iv_htcaps & IEEE80211_HTC_RX_AMSDU_AMPDU) && 723 (MS(baparamset, IEEE80211_BAPS_AMSDU))) 724 rap->rxa_flags |= IEEE80211_AGGR_AMSDU; 725 else 726 rap->rxa_flags &= ~IEEE80211_AGGR_AMSDU; 727 728 return 0; 729 } 730 731 /* 732 * Public function; manually setup the RX ampdu state. 733 */ 734 int 735 ieee80211_ampdu_rx_start_ext(struct ieee80211_node *ni, int tid, int seq, int baw) 736 { 737 struct ieee80211_rx_ampdu *rap; 738 739 /* XXX TODO: sanity check tid, seq, baw */ 740 741 rap = &ni->ni_rx_ampdu[tid]; 742 743 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 744 /* 745 * AMPDU previously setup and not terminated with a DELBA, 746 * flush the reorder q's in case anything remains. 747 */ 748 ampdu_rx_purge(rap); 749 } 750 751 ieee80211_ampdu_rx_init_rap(ni, rap); 752 753 rap->rxa_wnd = (baw== 0) ? 754 IEEE80211_AGGR_BAWMAX : min(baw, IEEE80211_AGGR_BAWMAX); 755 if (seq == -1) { 756 /* Wait for the first RX frame, use that as BAW */ 757 rap->rxa_start = 0; 758 rap->rxa_flags |= IEEE80211_AGGR_WAITRX; 759 } else { 760 rap->rxa_start = seq; 761 } 762 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 763 764 /* XXX TODO: no amsdu flag */ 765 766 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 767 "%s: tid=%d, start=%d, wnd=%d, flags=0x%08x", 768 __func__, 769 tid, 770 seq, 771 rap->rxa_wnd, 772 rap->rxa_flags); 773 774 return 0; 775 } 776 777 /* 778 * Public function; manually stop the RX AMPDU state. 779 */ 780 void 781 ieee80211_ampdu_rx_stop_ext(struct ieee80211_node *ni, int tid) 782 { 783 struct ieee80211_rx_ampdu *rap; 784 785 /* XXX TODO: sanity check tid, seq, baw */ 786 rap = &ni->ni_rx_ampdu[tid]; 787 ampdu_rx_stop(ni, rap); 788 } 789 790 /* 791 * Stop A-MPDU rx processing for the specified TID. 792 */ 793 static void 794 ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 795 { 796 797 ampdu_rx_purge(rap); 798 rap->rxa_flags &= ~(IEEE80211_AGGR_RUNNING 799 | IEEE80211_AGGR_XCHGPEND 800 | IEEE80211_AGGR_WAITRX); 801 } 802 803 /* 804 * Dispatch a frame from the A-MPDU reorder queue. The 805 * frame is fed back into ieee80211_input marked with an 806 * M_AMPDU_MPDU flag so it doesn't come back to us (it also 807 * permits ieee80211_input to optimize re-processing). 808 */ 809 static __inline void 810 ampdu_dispatch(struct ieee80211_node *ni, struct mbuf *m) 811 { 812 m->m_flags |= M_AMPDU_MPDU; /* bypass normal processing */ 813 /* NB: rssi and noise are ignored w/ M_AMPDU_MPDU set */ 814 (void) ieee80211_input(ni, m, 0, 0); 815 } 816 817 static int 818 ampdu_dispatch_slot(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni, 819 int i) 820 { 821 struct mbuf *m; 822 int n = 0; 823 824 while (mbufq_len(&rap->rxa_mq[i]) != 0) { 825 m = mbufq_dequeue(&rap->rxa_mq[i]); 826 if (m == NULL) 827 break; 828 n++; 829 830 rap->rxa_qbytes -= m->m_pkthdr.len; 831 rap->rxa_qframes--; 832 833 ampdu_dispatch(ni, m); 834 } 835 return (n); 836 } 837 838 static void 839 ampdu_rx_moveup(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni, 840 int i, int winstart) 841 { 842 struct ieee80211vap *vap = ni->ni_vap; 843 844 /* 845 * If frames remain, copy the mbuf pointers down so 846 * they correspond to the offsets in the new window. 847 */ 848 if (rap->rxa_qframes != 0) { 849 int n = rap->rxa_qframes, j; 850 for (j = i+1; j < rap->rxa_wnd; j++) { 851 /* 852 * Concat the list contents over, which will 853 * blank the source list for us. 854 */ 855 if (mbufq_len(&rap->rxa_mq[j]) != 0) { 856 n = n - mbufq_len(&rap->rxa_mq[j]); 857 mbufq_concat(&rap->rxa_mq[j-i], &rap->rxa_mq[j]); 858 KASSERT(n >= 0, ("%s: n < 0 (%d)", __func__, n)); 859 if (n == 0) 860 break; 861 } 862 } 863 KASSERT(n == 0, ("%s: lost %d frames, qframes %d off %d " 864 "BA win <%d:%d> winstart %d", 865 __func__, n, rap->rxa_qframes, i, rap->rxa_start, 866 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 867 winstart)); 868 vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; 869 } 870 } 871 872 /* 873 * Dispatch as many frames as possible from the re-order queue. 874 * Frames will always be "at the front"; we process all frames 875 * up to the first empty slot in the window. On completion we 876 * cleanup state if there are still pending frames in the current 877 * BA window. We assume the frame at slot 0 is already handled 878 * by the caller; we always start at slot 1. 879 */ 880 static void 881 ampdu_rx_dispatch(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni) 882 { 883 struct ieee80211vap *vap = ni->ni_vap; 884 int i, r, r2; 885 886 /* flush run of frames */ 887 r2 = 0; 888 for (i = 1; i < rap->rxa_wnd; i++) { 889 r = ampdu_dispatch_slot(rap, ni, i); 890 if (r == 0) 891 break; 892 r2 += r; 893 } 894 895 /* move up frames */ 896 ampdu_rx_moveup(rap, ni, i, -1); 897 898 /* 899 * Adjust the start of the BA window to 900 * reflect the frames just dispatched. 901 */ 902 rap->rxa_start = IEEE80211_SEQ_ADD(rap->rxa_start, i); 903 vap->iv_stats.is_ampdu_rx_oor += r2; 904 905 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 906 "%s: moved slot up %d slots to start at %d (%d frames)", 907 __func__, 908 i, 909 rap->rxa_start, 910 r2); 911 } 912 913 /* 914 * Dispatch all frames in the A-MPDU re-order queue. 915 */ 916 static void 917 ampdu_rx_flush(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 918 { 919 int i, r; 920 921 for (i = 0; i < rap->rxa_wnd; i++) { 922 r = ampdu_dispatch_slot(rap, ni, i); 923 if (r == 0) 924 continue; 925 ni->ni_vap->iv_stats.is_ampdu_rx_oor += r; 926 927 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 928 "%s: moved slot up %d slots to start at %d (%d frames)", 929 __func__, 930 1, 931 rap->rxa_start, 932 r); 933 934 if (rap->rxa_qframes == 0) 935 break; 936 } 937 } 938 939 /* 940 * Dispatch all frames in the A-MPDU re-order queue 941 * preceding the specified sequence number. This logic 942 * handles window moves due to a received MSDU or BAR. 943 */ 944 static void 945 ampdu_rx_flush_upto(struct ieee80211_node *ni, 946 struct ieee80211_rx_ampdu *rap, ieee80211_seq winstart) 947 { 948 struct ieee80211vap *vap = ni->ni_vap; 949 ieee80211_seq seqno; 950 int i, r; 951 952 /* 953 * Flush any complete MSDU's with a sequence number lower 954 * than winstart. Gaps may exist. Note that we may actually 955 * dispatch frames past winstart if a run continues; this is 956 * an optimization that avoids having to do a separate pass 957 * to dispatch frames after moving the BA window start. 958 */ 959 seqno = rap->rxa_start; 960 for (i = 0; i < rap->rxa_wnd; i++) { 961 if ((r = mbufq_len(&rap->rxa_mq[i])) != 0) { 962 (void) ampdu_dispatch_slot(rap, ni, i); 963 } else { 964 if (!IEEE80211_SEQ_BA_BEFORE(seqno, winstart)) 965 break; 966 } 967 vap->iv_stats.is_ampdu_rx_oor += r; 968 seqno = IEEE80211_SEQ_INC(seqno); 969 970 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 971 "%s: moved slot up %d slots to start at %d (%d frames)", 972 __func__, 973 1, 974 seqno, 975 r); 976 } 977 978 /* 979 * If frames remain, copy the mbuf pointers down so 980 * they correspond to the offsets in the new window. 981 */ 982 ampdu_rx_moveup(rap, ni, i, winstart); 983 984 /* 985 * Move the start of the BA window; we use the 986 * sequence number of the last MSDU that was 987 * passed up the stack+1 or winstart if stopped on 988 * a gap in the reorder buffer. 989 */ 990 rap->rxa_start = seqno; 991 } 992 993 /* 994 * Process a received QoS data frame for an HT station. Handle 995 * A-MPDU reordering: if this frame is received out of order 996 * and falls within the BA window hold onto it. Otherwise if 997 * this frame completes a run, flush any pending frames. We 998 * return 1 if the frame is consumed. A 0 is returned if 999 * the frame should be processed normally by the caller. 1000 * 1001 * A-MSDU: handle hardware decap'ed A-MSDU frames that are 1002 * pretending to be MPDU's. They're dispatched directly if 1003 * able; or attempted to put into the receive reordering slot. 1004 */ 1005 int 1006 ieee80211_ampdu_reorder(struct ieee80211_node *ni, struct mbuf *m, 1007 const struct ieee80211_rx_stats *rxs) 1008 { 1009 #define PROCESS 0 /* caller should process frame */ 1010 #define CONSUMED 1 /* frame consumed, caller does nothing */ 1011 struct ieee80211vap *vap = ni->ni_vap; 1012 struct ieee80211_qosframe *wh; 1013 struct ieee80211_rx_ampdu *rap; 1014 ieee80211_seq rxseq; 1015 uint8_t tid; 1016 int off; 1017 int amsdu = ieee80211_check_rxseq_amsdu(rxs); 1018 int amsdu_end = ieee80211_check_rxseq_amsdu_more(rxs); 1019 1020 KASSERT((m->m_flags & (M_AMPDU | M_AMPDU_MPDU)) == M_AMPDU, 1021 ("!a-mpdu or already re-ordered, flags 0x%x", m->m_flags)); 1022 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 1023 1024 /* NB: m_len known to be sufficient */ 1025 wh = mtod(m, struct ieee80211_qosframe *); 1026 if (wh->i_fc[0] != IEEE80211_FC0_QOSDATA) { 1027 /* 1028 * Not QoS data, shouldn't get here but just 1029 * return it to the caller for processing. 1030 */ 1031 return PROCESS; 1032 } 1033 1034 /* 1035 * 802.11-2012 9.3.2.10 - Duplicate detection and recovery. 1036 * 1037 * Multicast QoS data frames are checked against a different 1038 * counter, not the per-TID counter. 1039 */ 1040 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1041 return PROCESS; 1042 1043 tid = ieee80211_getqos(wh)[0]; 1044 tid &= IEEE80211_QOS_TID; 1045 rap = &ni->ni_rx_ampdu[tid]; 1046 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 1047 /* 1048 * No ADDBA request yet, don't touch. 1049 */ 1050 return PROCESS; 1051 } 1052 rxseq = le16toh(*(uint16_t *)wh->i_seq); 1053 if ((rxseq & IEEE80211_SEQ_FRAG_MASK) != 0) { 1054 /* 1055 * Fragments are not allowed; toss. 1056 */ 1057 IEEE80211_DISCARD_MAC(vap, 1058 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 1059 "A-MPDU", "fragment, rxseq 0x%x tid %u%s", rxseq, tid, 1060 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 1061 vap->iv_stats.is_ampdu_rx_drop++; 1062 IEEE80211_NODE_STAT(ni, rx_drop); 1063 m_freem(m); 1064 return CONSUMED; 1065 } 1066 rxseq >>= IEEE80211_SEQ_SEQ_SHIFT; 1067 rap->rxa_nframes++; 1068 1069 /* 1070 * Handle waiting for the first frame to define the BAW. 1071 * Some firmware doesn't provide the RX of the starting point 1072 * of the BAW and we have to cope. 1073 */ 1074 if (rap->rxa_flags & IEEE80211_AGGR_WAITRX) { 1075 rap->rxa_flags &= ~IEEE80211_AGGR_WAITRX; 1076 rap->rxa_start = rxseq; 1077 } 1078 again: 1079 if (rxseq == rap->rxa_start) { 1080 /* 1081 * First frame in window. 1082 */ 1083 if (rap->rxa_qframes != 0) { 1084 /* 1085 * Dispatch as many packets as we can. 1086 */ 1087 KASSERT((mbufq_len(&rap->rxa_mq[0]) == 0), ("unexpected dup")); 1088 ampdu_dispatch(ni, m); 1089 ampdu_rx_dispatch(rap, ni); 1090 return CONSUMED; 1091 } else { 1092 /* 1093 * In order; advance window if needed and notify 1094 * caller to dispatch directly. 1095 */ 1096 if (amsdu) { 1097 if (amsdu_end) { 1098 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 1099 IEEE80211_NODE_STAT(ni, rx_amsdu_more_end); 1100 } else { 1101 IEEE80211_NODE_STAT(ni, rx_amsdu_more); 1102 } 1103 } else { 1104 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 1105 } 1106 return PROCESS; 1107 } 1108 } 1109 /* 1110 * Frame is out of order; store if in the BA window. 1111 */ 1112 /* calculate offset in BA window */ 1113 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 1114 if (off < rap->rxa_wnd) { 1115 /* 1116 * Common case (hopefully): in the BA window. 1117 * Sec 9.10.7.6.2 a) (p.137) 1118 */ 1119 1120 /* 1121 * Check for frames sitting too long in the reorder queue. 1122 * This should only ever happen if frames are not delivered 1123 * without the sender otherwise notifying us (e.g. with a 1124 * BAR to move the window). Typically this happens because 1125 * of vendor bugs that cause the sequence number to jump. 1126 * When this happens we get a gap in the reorder queue that 1127 * leaves frame sitting on the queue until they get pushed 1128 * out due to window moves. When the vendor does not send 1129 * BAR this move only happens due to explicit packet sends 1130 * 1131 * NB: we only track the time of the oldest frame in the 1132 * reorder q; this means that if we flush we might push 1133 * frames that still "new"; if this happens then subsequent 1134 * frames will result in BA window moves which cost something 1135 * but is still better than a big throughput dip. 1136 */ 1137 if (rap->rxa_qframes != 0) { 1138 /* XXX honor batimeout? */ 1139 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 1140 /* 1141 * Too long since we received the first 1142 * frame; flush the reorder buffer. 1143 */ 1144 if (rap->rxa_qframes != 0) { 1145 vap->iv_stats.is_ampdu_rx_age += 1146 rap->rxa_qframes; 1147 ampdu_rx_flush(ni, rap); 1148 } 1149 /* 1150 * Advance the window if needed and notify 1151 * the caller to dispatch directly. 1152 */ 1153 if (amsdu) { 1154 if (amsdu_end) { 1155 rap->rxa_start = 1156 IEEE80211_SEQ_INC(rxseq); 1157 IEEE80211_NODE_STAT(ni, 1158 rx_amsdu_more_end); 1159 } else { 1160 IEEE80211_NODE_STAT(ni, 1161 rx_amsdu_more); 1162 } 1163 } else { 1164 rap->rxa_start = 1165 IEEE80211_SEQ_INC(rxseq); 1166 } 1167 return PROCESS; 1168 } 1169 } else { 1170 /* 1171 * First frame, start aging timer. 1172 */ 1173 rap->rxa_age = ticks; 1174 } 1175 1176 /* save packet - this consumes, no matter what */ 1177 ampdu_rx_add_slot(rap, off, tid, rxseq, ni, m, rxs); 1178 return CONSUMED; 1179 } 1180 if (off < IEEE80211_SEQ_BA_RANGE) { 1181 /* 1182 * Outside the BA window, but within range; 1183 * flush the reorder q and move the window. 1184 * Sec 9.10.7.6.2 b) (p.138) 1185 */ 1186 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1187 "move BA win <%u:%u> (%u frames) rxseq %u tid %u", 1188 rap->rxa_start, 1189 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1190 rap->rxa_qframes, rxseq, tid); 1191 vap->iv_stats.is_ampdu_rx_move++; 1192 1193 /* 1194 * The spec says to flush frames up to but not including: 1195 * WinStart_B = rxseq - rap->rxa_wnd + 1 1196 * Then insert the frame or notify the caller to process 1197 * it immediately. We can safely do this by just starting 1198 * over again because we know the frame will now be within 1199 * the BA window. 1200 */ 1201 /* NB: rxa_wnd known to be >0 */ 1202 ampdu_rx_flush_upto(ni, rap, 1203 IEEE80211_SEQ_SUB(rxseq, rap->rxa_wnd-1)); 1204 goto again; 1205 } else { 1206 /* 1207 * Outside the BA window and out of range; toss. 1208 * Sec 9.10.7.6.2 c) (p.138) 1209 */ 1210 IEEE80211_DISCARD_MAC(vap, 1211 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 1212 "MPDU", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 1213 rap->rxa_start, 1214 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1215 rap->rxa_qframes, rxseq, tid, 1216 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 1217 vap->iv_stats.is_ampdu_rx_drop++; 1218 IEEE80211_NODE_STAT(ni, rx_drop); 1219 m_freem(m); 1220 return CONSUMED; 1221 } 1222 #undef CONSUMED 1223 #undef PROCESS 1224 } 1225 1226 /* 1227 * Process a BAR ctl frame. Dispatch all frames up to 1228 * the sequence number of the frame. If this frame is 1229 * out of range it's discarded. 1230 */ 1231 void 1232 ieee80211_recv_bar(struct ieee80211_node *ni, struct mbuf *m0) 1233 { 1234 struct ieee80211vap *vap = ni->ni_vap; 1235 struct ieee80211_frame_bar *wh; 1236 struct ieee80211_rx_ampdu *rap; 1237 ieee80211_seq rxseq; 1238 int tid, off; 1239 1240 if (!ieee80211_recv_bar_ena) { 1241 #if 0 1242 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_11N, 1243 ni->ni_macaddr, "BAR", "%s", "processing disabled"); 1244 #endif 1245 vap->iv_stats.is_ampdu_bar_bad++; 1246 return; 1247 } 1248 wh = mtod(m0, struct ieee80211_frame_bar *); 1249 /* XXX check basic BAR */ 1250 tid = MS(le16toh(wh->i_ctl), IEEE80211_BAR_TID); 1251 rap = &ni->ni_rx_ampdu[tid]; 1252 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 1253 /* 1254 * No ADDBA request yet, don't touch. 1255 */ 1256 IEEE80211_DISCARD_MAC(vap, 1257 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 1258 ni->ni_macaddr, "BAR", "no BA stream, tid %u", tid); 1259 vap->iv_stats.is_ampdu_bar_bad++; 1260 return; 1261 } 1262 vap->iv_stats.is_ampdu_bar_rx++; 1263 rxseq = le16toh(wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT; 1264 if (rxseq == rap->rxa_start) 1265 return; 1266 /* calculate offset in BA window */ 1267 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 1268 if (off < IEEE80211_SEQ_BA_RANGE) { 1269 /* 1270 * Flush the reorder q up to rxseq and move the window. 1271 * Sec 9.10.7.6.3 a) (p.138) 1272 */ 1273 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1274 "BAR moves BA win <%u:%u> (%u frames) rxseq %u tid %u", 1275 rap->rxa_start, 1276 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1277 rap->rxa_qframes, rxseq, tid); 1278 vap->iv_stats.is_ampdu_bar_move++; 1279 1280 ampdu_rx_flush_upto(ni, rap, rxseq); 1281 if (off >= rap->rxa_wnd) { 1282 /* 1283 * BAR specifies a window start to the right of BA 1284 * window; we must move it explicitly since 1285 * ampdu_rx_flush_upto will not. 1286 */ 1287 rap->rxa_start = rxseq; 1288 } 1289 } else { 1290 /* 1291 * Out of range; toss. 1292 * Sec 9.10.7.6.3 b) (p.138) 1293 */ 1294 IEEE80211_DISCARD_MAC(vap, 1295 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 1296 "BAR", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 1297 rap->rxa_start, 1298 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1299 rap->rxa_qframes, rxseq, tid, 1300 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 1301 vap->iv_stats.is_ampdu_bar_oow++; 1302 IEEE80211_NODE_STAT(ni, rx_drop); 1303 } 1304 } 1305 1306 /* 1307 * Setup HT-specific state in a node. Called only 1308 * when HT use is negotiated so we don't do extra 1309 * work for temporary and/or legacy sta's. 1310 */ 1311 void 1312 ieee80211_ht_node_init(struct ieee80211_node *ni) 1313 { 1314 struct ieee80211_tx_ampdu *tap; 1315 int tid; 1316 1317 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1318 ni, 1319 "%s: called (%p)", 1320 __func__, 1321 ni); 1322 1323 if (ni->ni_flags & IEEE80211_NODE_HT) { 1324 /* 1325 * Clean AMPDU state on re-associate. This handles the case 1326 * where a station leaves w/o notifying us and then returns 1327 * before node is reaped for inactivity. 1328 */ 1329 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1330 ni, 1331 "%s: calling cleanup (%p)", 1332 __func__, ni); 1333 ieee80211_ht_node_cleanup(ni); 1334 } 1335 for (tid = 0; tid < WME_NUM_TID; tid++) { 1336 tap = &ni->ni_tx_ampdu[tid]; 1337 tap->txa_tid = tid; 1338 tap->txa_ni = ni; 1339 ieee80211_txampdu_init_pps(tap); 1340 /* NB: further initialization deferred */ 1341 ieee80211_ampdu_rx_init_rap(ni, &ni->ni_rx_ampdu[tid]); 1342 } 1343 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU | 1344 IEEE80211_NODE_AMSDU; 1345 } 1346 1347 /* 1348 * Cleanup HT-specific state in a node. Called only 1349 * when HT use has been marked. 1350 */ 1351 void 1352 ieee80211_ht_node_cleanup(struct ieee80211_node *ni) 1353 { 1354 struct ieee80211com *ic = ni->ni_ic; 1355 int i; 1356 1357 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1358 ni, 1359 "%s: called (%p)", 1360 __func__, ni); 1361 1362 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT node")); 1363 1364 /* XXX optimize this */ 1365 for (i = 0; i < WME_NUM_TID; i++) { 1366 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[i]; 1367 if (tap->txa_flags & IEEE80211_AGGR_SETUP) 1368 ampdu_tx_stop(tap); 1369 } 1370 for (i = 0; i < WME_NUM_TID; i++) 1371 ic->ic_ampdu_rx_stop(ni, &ni->ni_rx_ampdu[i]); 1372 1373 ni->ni_htcap = 0; 1374 ni->ni_flags &= ~IEEE80211_NODE_HT_ALL; 1375 } 1376 1377 /* 1378 * Age out HT resources for a station. 1379 */ 1380 void 1381 ieee80211_ht_node_age(struct ieee80211_node *ni) 1382 { 1383 struct ieee80211vap *vap = ni->ni_vap; 1384 uint8_t tid; 1385 1386 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 1387 1388 for (tid = 0; tid < WME_NUM_TID; tid++) { 1389 struct ieee80211_rx_ampdu *rap; 1390 1391 rap = &ni->ni_rx_ampdu[tid]; 1392 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) 1393 continue; 1394 if (rap->rxa_qframes == 0) 1395 continue; 1396 /* 1397 * Check for frames sitting too long in the reorder queue. 1398 * See above for more details on what's happening here. 1399 */ 1400 /* XXX honor batimeout? */ 1401 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 1402 /* 1403 * Too long since we received the first 1404 * frame; flush the reorder buffer. 1405 */ 1406 vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes; 1407 ampdu_rx_flush(ni, rap); 1408 } 1409 } 1410 } 1411 1412 static struct ieee80211_channel * 1413 findhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int htflags) 1414 { 1415 return ieee80211_find_channel(ic, c->ic_freq, 1416 (c->ic_flags &~ IEEE80211_CHAN_HT) | htflags); 1417 } 1418 1419 /* 1420 * Adjust a channel to be HT/non-HT according to the vap's configuration. 1421 */ 1422 struct ieee80211_channel * 1423 ieee80211_ht_adjust_channel(struct ieee80211com *ic, 1424 struct ieee80211_channel *chan, int flags) 1425 { 1426 struct ieee80211_channel *c; 1427 1428 if (flags & IEEE80211_FHT_HT) { 1429 /* promote to HT if possible */ 1430 if (flags & IEEE80211_FHT_USEHT40) { 1431 if (!IEEE80211_IS_CHAN_HT40(chan)) { 1432 /* NB: arbitrarily pick ht40+ over ht40- */ 1433 c = findhtchan(ic, chan, IEEE80211_CHAN_HT40U); 1434 if (c == NULL) 1435 c = findhtchan(ic, chan, 1436 IEEE80211_CHAN_HT40D); 1437 if (c == NULL) 1438 c = findhtchan(ic, chan, 1439 IEEE80211_CHAN_HT20); 1440 if (c != NULL) 1441 chan = c; 1442 } 1443 } else if (!IEEE80211_IS_CHAN_HT20(chan)) { 1444 c = findhtchan(ic, chan, IEEE80211_CHAN_HT20); 1445 if (c != NULL) 1446 chan = c; 1447 } 1448 } else if (IEEE80211_IS_CHAN_HT(chan)) { 1449 /* demote to legacy, HT use is disabled */ 1450 c = ieee80211_find_channel(ic, chan->ic_freq, 1451 chan->ic_flags &~ IEEE80211_CHAN_HT); 1452 if (c != NULL) 1453 chan = c; 1454 } 1455 return chan; 1456 } 1457 1458 /* 1459 * Setup HT-specific state for a legacy WDS peer. 1460 */ 1461 void 1462 ieee80211_ht_wds_init(struct ieee80211_node *ni) 1463 { 1464 struct ieee80211vap *vap = ni->ni_vap; 1465 struct ieee80211_tx_ampdu *tap; 1466 int tid; 1467 1468 KASSERT(vap->iv_flags_ht & IEEE80211_FHT_HT, ("no HT requested")); 1469 1470 /* XXX check scan cache in case peer has an ap and we have info */ 1471 /* 1472 * If setup with a legacy channel; locate an HT channel. 1473 * Otherwise if the inherited channel (from a companion 1474 * AP) is suitable use it so we use the same location 1475 * for the extension channel). 1476 */ 1477 ni->ni_chan = ieee80211_ht_adjust_channel(ni->ni_ic, 1478 ni->ni_chan, ieee80211_htchanflags(ni->ni_chan)); 1479 1480 ni->ni_htcap = 0; 1481 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) 1482 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI20; 1483 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { 1484 ni->ni_htcap |= IEEE80211_HTCAP_CHWIDTH40; 1485 ni->ni_chw = 40; 1486 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 1487 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_ABOVE; 1488 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 1489 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_BELOW; 1490 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) 1491 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI40; 1492 } else { 1493 ni->ni_chw = 20; 1494 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_NONE; 1495 } 1496 ni->ni_htctlchan = ni->ni_chan->ic_ieee; 1497 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 1498 ni->ni_flags |= IEEE80211_NODE_RIFS; 1499 /* XXX does it make sense to enable SMPS? */ 1500 1501 ni->ni_htopmode = 0; /* XXX need protection state */ 1502 ni->ni_htstbc = 0; /* XXX need info */ 1503 1504 for (tid = 0; tid < WME_NUM_TID; tid++) { 1505 tap = &ni->ni_tx_ampdu[tid]; 1506 tap->txa_tid = tid; 1507 ieee80211_txampdu_init_pps(tap); 1508 } 1509 /* NB: AMPDU tx/rx governed by IEEE80211_FHT_AMPDU_{TX,RX} */ 1510 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU | 1511 IEEE80211_NODE_AMSDU; 1512 } 1513 1514 /* 1515 * Notify a VAP of a change in the HTINFO ie if it's a hostap VAP. 1516 * 1517 * This is to be called from the deferred HT protection update 1518 * task once the flags are updated. 1519 */ 1520 void 1521 ieee80211_htinfo_notify(struct ieee80211vap *vap) 1522 { 1523 1524 IEEE80211_LOCK_ASSERT(vap->iv_ic); 1525 1526 if (vap->iv_opmode != IEEE80211_M_HOSTAP) 1527 return; 1528 if (vap->iv_state != IEEE80211_S_RUN || 1529 !IEEE80211_IS_CHAN_HT(vap->iv_bss->ni_chan)) 1530 return; 1531 1532 IEEE80211_NOTE(vap, 1533 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1534 vap->iv_bss, 1535 "HT bss occupancy change: %d sta, %d ht, " 1536 "%d ht40%s, HT protmode now 0x%x" 1537 , vap->iv_sta_assoc 1538 , vap->iv_ht_sta_assoc 1539 , vap->iv_ht40_sta_assoc 1540 , (vap->iv_flags_ht & IEEE80211_FHT_NONHT_PR) ? 1541 ", non-HT sta present" : "" 1542 , vap->iv_curhtprotmode); 1543 1544 ieee80211_beacon_notify(vap, IEEE80211_BEACON_HTINFO); 1545 } 1546 1547 /* 1548 * Calculate HT protection mode from current 1549 * state and handle updates. 1550 */ 1551 static void 1552 htinfo_update(struct ieee80211vap *vap) 1553 { 1554 struct ieee80211com *ic = vap->iv_ic; 1555 uint8_t protmode; 1556 1557 if (vap->iv_sta_assoc != vap->iv_ht_sta_assoc) { 1558 protmode = IEEE80211_HTINFO_OPMODE_MIXED 1559 | IEEE80211_HTINFO_NONHT_PRESENT; 1560 } else if (vap->iv_flags_ht & IEEE80211_FHT_NONHT_PR) { 1561 protmode = IEEE80211_HTINFO_OPMODE_PROTOPT 1562 | IEEE80211_HTINFO_NONHT_PRESENT; 1563 } else if (ic->ic_bsschan != IEEE80211_CHAN_ANYC && 1564 IEEE80211_IS_CHAN_HT40(ic->ic_bsschan) && 1565 vap->iv_sta_assoc != vap->iv_ht40_sta_assoc) { 1566 protmode = IEEE80211_HTINFO_OPMODE_HT20PR; 1567 } else { 1568 protmode = IEEE80211_HTINFO_OPMODE_PURE; 1569 } 1570 if (protmode != vap->iv_curhtprotmode) { 1571 vap->iv_curhtprotmode = protmode; 1572 /* Update VAP with new protection mode */ 1573 ieee80211_vap_update_ht_protmode(vap); 1574 } 1575 } 1576 1577 /* 1578 * Handle an HT station joining a BSS. 1579 */ 1580 void 1581 ieee80211_ht_node_join(struct ieee80211_node *ni) 1582 { 1583 struct ieee80211vap *vap = ni->ni_vap; 1584 1585 IEEE80211_LOCK_ASSERT(vap->iv_ic); 1586 1587 if (ni->ni_flags & IEEE80211_NODE_HT) { 1588 vap->iv_ht_sta_assoc++; 1589 if (ni->ni_chw == 40) 1590 vap->iv_ht40_sta_assoc++; 1591 } 1592 htinfo_update(vap); 1593 } 1594 1595 /* 1596 * Handle an HT station leaving a BSS. 1597 */ 1598 void 1599 ieee80211_ht_node_leave(struct ieee80211_node *ni) 1600 { 1601 struct ieee80211vap *vap = ni->ni_vap; 1602 1603 IEEE80211_LOCK_ASSERT(vap->iv_ic); 1604 1605 if (ni->ni_flags & IEEE80211_NODE_HT) { 1606 vap->iv_ht_sta_assoc--; 1607 if (ni->ni_chw == 40) 1608 vap->iv_ht40_sta_assoc--; 1609 } 1610 htinfo_update(vap); 1611 } 1612 1613 /* 1614 * Public version of htinfo_update; used for processing 1615 * beacon frames from overlapping bss. 1616 * 1617 * Caller can specify either IEEE80211_HTINFO_OPMODE_MIXED 1618 * (on receipt of a beacon that advertises MIXED) or 1619 * IEEE80211_HTINFO_OPMODE_PROTOPT (on receipt of a beacon 1620 * from an overlapping legacy bss). We treat MIXED with 1621 * a higher precedence than PROTOPT (i.e. we will not change 1622 * change PROTOPT -> MIXED; only MIXED -> PROTOPT). This 1623 * corresponds to how we handle things in htinfo_update. 1624 * 1625 */ 1626 void 1627 ieee80211_htprot_update(struct ieee80211vap *vap, int protmode) 1628 { 1629 struct ieee80211com *ic = vap->iv_ic; 1630 #define OPMODE(x) SM(x, IEEE80211_HTINFO_OPMODE) 1631 IEEE80211_LOCK(ic); 1632 1633 /* track non-HT station presence */ 1634 KASSERT(protmode & IEEE80211_HTINFO_NONHT_PRESENT, 1635 ("protmode 0x%x", protmode)); 1636 vap->iv_flags_ht |= IEEE80211_FHT_NONHT_PR; 1637 vap->iv_lastnonht = ticks; 1638 1639 if (protmode != vap->iv_curhtprotmode && 1640 (OPMODE(vap->iv_curhtprotmode) != IEEE80211_HTINFO_OPMODE_MIXED || 1641 OPMODE(protmode) == IEEE80211_HTINFO_OPMODE_PROTOPT)) { 1642 vap->iv_curhtprotmode = protmode; 1643 /* Update VAP with new protection mode */ 1644 ieee80211_vap_update_ht_protmode(vap); 1645 } 1646 IEEE80211_UNLOCK(ic); 1647 #undef OPMODE 1648 } 1649 1650 /* 1651 * Time out presence of an overlapping bss with non-HT 1652 * stations. When operating in hostap mode we listen for 1653 * beacons from other stations and if we identify a non-HT 1654 * station is present we update the opmode field of the 1655 * HTINFO ie. To identify when all non-HT stations are 1656 * gone we time out this condition. 1657 */ 1658 void 1659 ieee80211_ht_timeout(struct ieee80211vap *vap) 1660 { 1661 1662 IEEE80211_LOCK_ASSERT(vap->iv_ic); 1663 1664 if ((vap->iv_flags_ht & IEEE80211_FHT_NONHT_PR) && 1665 ieee80211_time_after(ticks, vap->iv_lastnonht + IEEE80211_NONHT_PRESENT_AGE)) { 1666 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, 1667 "%s", "time out non-HT STA present on channel"); 1668 vap->iv_flags_ht &= ~IEEE80211_FHT_NONHT_PR; 1669 htinfo_update(vap); 1670 } 1671 } 1672 1673 /* 1674 * Process an 802.11n HT capabilities ie. 1675 */ 1676 void 1677 ieee80211_parse_htcap(struct ieee80211_node *ni, const uint8_t *ie) 1678 { 1679 if (ie[0] == IEEE80211_ELEMID_VENDOR) { 1680 /* 1681 * Station used Vendor OUI ie to associate; 1682 * mark the node so when we respond we'll use 1683 * the Vendor OUI's and not the standard ie's. 1684 */ 1685 ni->ni_flags |= IEEE80211_NODE_HTCOMPAT; 1686 ie += 4; 1687 } else 1688 ni->ni_flags &= ~IEEE80211_NODE_HTCOMPAT; 1689 1690 ni->ni_htcap = le16dec(ie + 1691 __offsetof(struct ieee80211_ie_htcap, hc_cap)); 1692 ni->ni_htparam = ie[__offsetof(struct ieee80211_ie_htcap, hc_param)]; 1693 } 1694 1695 static void 1696 htinfo_parse(struct ieee80211_node *ni, 1697 const struct ieee80211_ie_htinfo *htinfo) 1698 { 1699 uint16_t w; 1700 1701 ni->ni_htctlchan = htinfo->hi_ctrlchannel; 1702 ni->ni_ht2ndchan = SM(htinfo->hi_byte1, IEEE80211_HTINFO_2NDCHAN); 1703 w = le16dec(&htinfo->hi_byte2); 1704 ni->ni_htopmode = SM(w, IEEE80211_HTINFO_OPMODE); 1705 w = le16dec(&htinfo->hi_byte45); 1706 ni->ni_htstbc = SM(w, IEEE80211_HTINFO_BASIC_STBCMCS); 1707 } 1708 1709 /* 1710 * Parse an 802.11n HT info ie and save useful information 1711 * to the node state. Note this does not effect any state 1712 * changes such as for channel width change. 1713 */ 1714 void 1715 ieee80211_parse_htinfo(struct ieee80211_node *ni, const uint8_t *ie) 1716 { 1717 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1718 ie += 4; 1719 htinfo_parse(ni, (const struct ieee80211_ie_htinfo *) ie); 1720 } 1721 1722 /* 1723 * Handle 11n/11ac channel switch. 1724 * 1725 * Use the received HT/VHT ie's to identify the right channel to use. 1726 * If we cannot locate it in the channel table then fallback to 1727 * legacy operation. 1728 * 1729 * Note that we use this information to identify the node's 1730 * channel only; the caller is responsible for insuring any 1731 * required channel change is done (e.g. in sta mode when 1732 * parsing the contents of a beacon frame). 1733 */ 1734 static int 1735 htinfo_update_chw(struct ieee80211_node *ni, int htflags, int vhtflags) 1736 { 1737 struct ieee80211com *ic = ni->ni_ic; 1738 struct ieee80211_channel *c; 1739 int chanflags; 1740 int ret = 0; 1741 1742 /* 1743 * First step - do HT/VHT only channel lookup based on operating mode 1744 * flags. This involves masking out the VHT flags as well. 1745 * Otherwise we end up doing the full channel walk each time 1746 * we trigger this, which is expensive. 1747 */ 1748 chanflags = (ni->ni_chan->ic_flags &~ 1749 (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags | vhtflags; 1750 1751 if (chanflags == ni->ni_chan->ic_flags) 1752 goto done; 1753 1754 /* 1755 * If HT /or/ VHT flags have changed then check both. 1756 * We need to start by picking a HT channel anyway. 1757 */ 1758 1759 c = NULL; 1760 chanflags = (ni->ni_chan->ic_flags &~ 1761 (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags; 1762 /* XXX not right for ht40- */ 1763 c = ieee80211_find_channel(ic, ni->ni_chan->ic_freq, chanflags); 1764 if (c == NULL && (htflags & IEEE80211_CHAN_HT40)) { 1765 /* 1766 * No HT40 channel entry in our table; fall back 1767 * to HT20 operation. This should not happen. 1768 */ 1769 c = findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT20); 1770 #if 0 1771 IEEE80211_NOTE(ni->ni_vap, 1772 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1773 "no HT40 channel (freq %u), falling back to HT20", 1774 ni->ni_chan->ic_freq); 1775 #endif 1776 /* XXX stat */ 1777 } 1778 1779 /* Nothing found - leave it alone; move onto VHT */ 1780 if (c == NULL) 1781 c = ni->ni_chan; 1782 1783 /* 1784 * If it's non-HT, then bail out now. 1785 */ 1786 if (! IEEE80211_IS_CHAN_HT(c)) { 1787 IEEE80211_NOTE(ni->ni_vap, 1788 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1789 "not HT; skipping VHT check (%u/0x%x)", 1790 c->ic_freq, c->ic_flags); 1791 goto done; 1792 } 1793 1794 /* 1795 * Next step - look at the current VHT flags and determine 1796 * if we need to upgrade. Mask out the VHT and HT flags since 1797 * the vhtflags field will already have the correct HT 1798 * flags to use. 1799 */ 1800 if (IEEE80211_CONF_VHT(ic) && ni->ni_vhtcap != 0 && vhtflags != 0) { 1801 chanflags = (c->ic_flags 1802 &~ (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) 1803 | vhtflags; 1804 IEEE80211_NOTE(ni->ni_vap, 1805 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1806 ni, 1807 "%s: VHT; chanwidth=0x%02x; vhtflags=0x%08x", 1808 __func__, ni->ni_vht_chanwidth, vhtflags); 1809 1810 IEEE80211_NOTE(ni->ni_vap, 1811 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1812 ni, 1813 "%s: VHT; trying lookup for %d/0x%08x", 1814 __func__, c->ic_freq, chanflags); 1815 c = ieee80211_find_channel(ic, c->ic_freq, chanflags); 1816 } 1817 1818 /* Finally, if it's changed */ 1819 if (c != NULL && c != ni->ni_chan) { 1820 IEEE80211_NOTE(ni->ni_vap, 1821 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1822 "switch station to %s%d channel %u/0x%x", 1823 IEEE80211_IS_CHAN_VHT(c) ? "VHT" : "HT", 1824 IEEE80211_IS_CHAN_VHT80(c) ? 80 : 1825 (IEEE80211_IS_CHAN_HT40(c) ? 40 : 20), 1826 c->ic_freq, c->ic_flags); 1827 ni->ni_chan = c; 1828 ret = 1; 1829 } 1830 /* NB: caller responsible for forcing any channel change */ 1831 1832 done: 1833 /* update node's (11n) tx channel width */ 1834 ni->ni_chw = IEEE80211_IS_CHAN_HT40(ni->ni_chan)? 40 : 20; 1835 return (ret); 1836 } 1837 1838 /* 1839 * Update 11n MIMO PS state according to received htcap. 1840 */ 1841 static __inline int 1842 htcap_update_mimo_ps(struct ieee80211_node *ni) 1843 { 1844 uint16_t oflags = ni->ni_flags; 1845 1846 switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) { 1847 case IEEE80211_HTCAP_SMPS_DYNAMIC: 1848 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1849 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 1850 break; 1851 case IEEE80211_HTCAP_SMPS_ENA: 1852 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1853 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1854 break; 1855 case IEEE80211_HTCAP_SMPS_OFF: 1856 default: /* disable on rx of reserved value */ 1857 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 1858 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1859 break; 1860 } 1861 return (oflags ^ ni->ni_flags); 1862 } 1863 1864 /* 1865 * Update short GI state according to received htcap 1866 * and local settings. 1867 */ 1868 static __inline void 1869 htcap_update_shortgi(struct ieee80211_node *ni) 1870 { 1871 struct ieee80211vap *vap = ni->ni_vap; 1872 1873 ni->ni_flags &= ~(IEEE80211_NODE_SGI20|IEEE80211_NODE_SGI40); 1874 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) && 1875 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)) 1876 ni->ni_flags |= IEEE80211_NODE_SGI20; 1877 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) && 1878 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)) 1879 ni->ni_flags |= IEEE80211_NODE_SGI40; 1880 } 1881 1882 /* 1883 * Update LDPC state according to received htcap 1884 * and local settings. 1885 */ 1886 static __inline void 1887 htcap_update_ldpc(struct ieee80211_node *ni) 1888 { 1889 struct ieee80211vap *vap = ni->ni_vap; 1890 1891 if ((ni->ni_htcap & IEEE80211_HTCAP_LDPC) && 1892 (vap->iv_flags_ht & IEEE80211_FHT_LDPC_TX)) 1893 ni->ni_flags |= IEEE80211_NODE_LDPC; 1894 } 1895 1896 /* 1897 * Parse and update HT-related state extracted from 1898 * the HT cap and info ie's. 1899 * 1900 * This is called from the STA management path and 1901 * the ieee80211_node_join() path. It will take into 1902 * account the IEs discovered during scanning and 1903 * adjust things accordingly. 1904 */ 1905 void 1906 ieee80211_ht_updateparams(struct ieee80211_node *ni, 1907 const uint8_t *htcapie, const uint8_t *htinfoie) 1908 { 1909 struct ieee80211vap *vap = ni->ni_vap; 1910 const struct ieee80211_ie_htinfo *htinfo; 1911 1912 ieee80211_parse_htcap(ni, htcapie); 1913 if (vap->iv_htcaps & IEEE80211_HTC_SMPS) 1914 htcap_update_mimo_ps(ni); 1915 htcap_update_shortgi(ni); 1916 htcap_update_ldpc(ni); 1917 1918 if (htinfoie[0] == IEEE80211_ELEMID_VENDOR) 1919 htinfoie += 4; 1920 htinfo = (const struct ieee80211_ie_htinfo *) htinfoie; 1921 htinfo_parse(ni, htinfo); 1922 1923 /* 1924 * Defer the node channel change; we need to now 1925 * update VHT parameters before we do it. 1926 */ 1927 1928 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_RIFSMODE_PERM) && 1929 (vap->iv_flags_ht & IEEE80211_FHT_RIFS)) 1930 ni->ni_flags |= IEEE80211_NODE_RIFS; 1931 else 1932 ni->ni_flags &= ~IEEE80211_NODE_RIFS; 1933 } 1934 1935 static uint32_t 1936 ieee80211_vht_get_vhtflags(struct ieee80211_node *ni, uint32_t htflags) 1937 { 1938 struct ieee80211vap *vap = ni->ni_vap; 1939 uint32_t vhtflags = 0; 1940 1941 vhtflags = 0; 1942 if (ni->ni_flags & IEEE80211_NODE_VHT && vap->iv_flags_vht & IEEE80211_FVHT_VHT) { 1943 if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_160MHZ) && 1944 /* XXX 2 means "160MHz and 80+80MHz", 1 means "160MHz" */ 1945 (MS(vap->iv_vhtcaps, 1946 IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) >= 1) && 1947 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT160)) { 1948 vhtflags = IEEE80211_CHAN_VHT160; 1949 /* Mirror the HT40 flags */ 1950 if (htflags == IEEE80211_CHAN_HT40U) { 1951 vhtflags |= IEEE80211_CHAN_HT40U; 1952 } else if (htflags == IEEE80211_CHAN_HT40D) { 1953 vhtflags |= IEEE80211_CHAN_HT40D; 1954 } 1955 } else if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_80P80MHZ) && 1956 /* XXX 2 means "160MHz and 80+80MHz" */ 1957 (MS(vap->iv_vhtcaps, 1958 IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) == 2) && 1959 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT80P80)) { 1960 vhtflags = IEEE80211_CHAN_VHT80P80; 1961 /* Mirror the HT40 flags */ 1962 if (htflags == IEEE80211_CHAN_HT40U) { 1963 vhtflags |= IEEE80211_CHAN_HT40U; 1964 } else if (htflags == IEEE80211_CHAN_HT40D) { 1965 vhtflags |= IEEE80211_CHAN_HT40D; 1966 } 1967 } else if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_80MHZ) && 1968 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT80)) { 1969 vhtflags = IEEE80211_CHAN_VHT80; 1970 /* Mirror the HT40 flags */ 1971 if (htflags == IEEE80211_CHAN_HT40U) { 1972 vhtflags |= IEEE80211_CHAN_HT40U; 1973 } else if (htflags == IEEE80211_CHAN_HT40D) { 1974 vhtflags |= IEEE80211_CHAN_HT40D; 1975 } 1976 } else if (ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_USE_HT) { 1977 /* Mirror the HT40 flags */ 1978 /* 1979 * XXX TODO: if ht40 is disabled, but vht40 isn't 1980 * disabled then this logic will get very, very sad. 1981 * It's quite possible the only sane thing to do is 1982 * to not have vht40 as an option, and just obey 1983 * 'ht40' as that flag. 1984 */ 1985 if ((htflags == IEEE80211_CHAN_HT40U) && 1986 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT40)) { 1987 vhtflags = IEEE80211_CHAN_VHT40U 1988 | IEEE80211_CHAN_HT40U; 1989 } else if (htflags == IEEE80211_CHAN_HT40D && 1990 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT40)) { 1991 vhtflags = IEEE80211_CHAN_VHT40D 1992 | IEEE80211_CHAN_HT40D; 1993 } else if (htflags == IEEE80211_CHAN_HT20) { 1994 vhtflags = IEEE80211_CHAN_VHT20 1995 | IEEE80211_CHAN_HT20; 1996 } 1997 } else { 1998 vhtflags = IEEE80211_CHAN_VHT20; 1999 } 2000 } 2001 return (vhtflags); 2002 } 2003 2004 /* 2005 * Final part of updating the HT parameters. 2006 * 2007 * This is called from the STA management path and 2008 * the ieee80211_node_join() path. It will take into 2009 * account the IEs discovered during scanning and 2010 * adjust things accordingly. 2011 * 2012 * This is done after a call to ieee80211_ht_updateparams() 2013 * because it (and the upcoming VHT version of updateparams) 2014 * needs to ensure everything is parsed before htinfo_update_chw() 2015 * is called - which will change the channel config for the 2016 * node for us. 2017 */ 2018 int 2019 ieee80211_ht_updateparams_final(struct ieee80211_node *ni, 2020 const uint8_t *htcapie, const uint8_t *htinfoie) 2021 { 2022 struct ieee80211vap *vap = ni->ni_vap; 2023 const struct ieee80211_ie_htinfo *htinfo; 2024 int htflags, vhtflags; 2025 int ret = 0; 2026 2027 htinfo = (const struct ieee80211_ie_htinfo *) htinfoie; 2028 2029 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 2030 IEEE80211_CHAN_HT20 : 0; 2031 2032 /* NB: honor operating mode constraint */ 2033 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH_2040) && 2034 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 2035 if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_ABOVE) 2036 htflags = IEEE80211_CHAN_HT40U; 2037 else if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_BELOW) 2038 htflags = IEEE80211_CHAN_HT40D; 2039 } 2040 2041 /* 2042 * VHT flags - do much the same; check whether VHT is available 2043 * and if so, what our ideal channel use would be based on our 2044 * capabilities and the (pre-parsed) VHT info IE. 2045 */ 2046 vhtflags = ieee80211_vht_get_vhtflags(ni, htflags); 2047 2048 if (htinfo_update_chw(ni, htflags, vhtflags)) 2049 ret = 1; 2050 2051 return (ret); 2052 } 2053 2054 /* 2055 * Parse and update HT-related state extracted from the HT cap ie 2056 * for a station joining an HT BSS. 2057 * 2058 * This is called from the hostap path for each station. 2059 */ 2060 void 2061 ieee80211_ht_updatehtcap(struct ieee80211_node *ni, const uint8_t *htcapie) 2062 { 2063 struct ieee80211vap *vap = ni->ni_vap; 2064 2065 ieee80211_parse_htcap(ni, htcapie); 2066 if (vap->iv_htcaps & IEEE80211_HTC_SMPS) 2067 htcap_update_mimo_ps(ni); 2068 htcap_update_shortgi(ni); 2069 htcap_update_ldpc(ni); 2070 } 2071 2072 /* 2073 * Called once HT and VHT capabilities are parsed in hostap mode - 2074 * this will adjust the channel configuration of the given node 2075 * based on the configuration and capabilities. 2076 */ 2077 void 2078 ieee80211_ht_updatehtcap_final(struct ieee80211_node *ni) 2079 { 2080 struct ieee80211vap *vap = ni->ni_vap; 2081 int htflags; 2082 int vhtflags; 2083 2084 /* NB: honor operating mode constraint */ 2085 /* XXX 40 MHz intolerant */ 2086 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 2087 IEEE80211_CHAN_HT20 : 0; 2088 if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) && 2089 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 2090 if (IEEE80211_IS_CHAN_HT40U(vap->iv_bss->ni_chan)) 2091 htflags = IEEE80211_CHAN_HT40U; 2092 else if (IEEE80211_IS_CHAN_HT40D(vap->iv_bss->ni_chan)) 2093 htflags = IEEE80211_CHAN_HT40D; 2094 } 2095 /* 2096 * VHT flags - do much the same; check whether VHT is available 2097 * and if so, what our ideal channel use would be based on our 2098 * capabilities and the (pre-parsed) VHT info IE. 2099 */ 2100 vhtflags = ieee80211_vht_get_vhtflags(ni, htflags); 2101 2102 (void) htinfo_update_chw(ni, htflags, vhtflags); 2103 } 2104 2105 /* 2106 * Install received HT rate set by parsing the HT cap ie. 2107 */ 2108 int 2109 ieee80211_setup_htrates(struct ieee80211_node *ni, const uint8_t *ie, int flags) 2110 { 2111 struct ieee80211com *ic = ni->ni_ic; 2112 struct ieee80211vap *vap = ni->ni_vap; 2113 const struct ieee80211_ie_htcap *htcap; 2114 struct ieee80211_htrateset *rs; 2115 int i, maxequalmcs, maxunequalmcs; 2116 2117 maxequalmcs = ic->ic_txstream * 8 - 1; 2118 maxunequalmcs = 0; 2119 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 2120 if (ic->ic_txstream >= 2) 2121 maxunequalmcs = 38; 2122 if (ic->ic_txstream >= 3) 2123 maxunequalmcs = 52; 2124 if (ic->ic_txstream >= 4) 2125 maxunequalmcs = 76; 2126 } 2127 2128 rs = &ni->ni_htrates; 2129 memset(rs, 0, sizeof(*rs)); 2130 if (ie != NULL) { 2131 if (ie[0] == IEEE80211_ELEMID_VENDOR) 2132 ie += 4; 2133 htcap = (const struct ieee80211_ie_htcap *) ie; 2134 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 2135 if (isclr(htcap->hc_mcsset, i)) 2136 continue; 2137 if (rs->rs_nrates == IEEE80211_HTRATE_MAXSIZE) { 2138 IEEE80211_NOTE(vap, 2139 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 2140 "WARNING, HT rate set too large; only " 2141 "using %u rates", IEEE80211_HTRATE_MAXSIZE); 2142 vap->iv_stats.is_rx_rstoobig++; 2143 break; 2144 } 2145 if (i <= 31 && i > maxequalmcs) 2146 continue; 2147 if (i == 32 && 2148 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0) 2149 continue; 2150 if (i > 32 && i > maxunequalmcs) 2151 continue; 2152 rs->rs_rates[rs->rs_nrates++] = i; 2153 } 2154 } 2155 return ieee80211_fix_rate(ni, (struct ieee80211_rateset *) rs, flags); 2156 } 2157 2158 /* 2159 * Mark rates in a node's HT rate set as basic according 2160 * to the information in the supplied HT info ie. 2161 */ 2162 void 2163 ieee80211_setup_basic_htrates(struct ieee80211_node *ni, const uint8_t *ie) 2164 { 2165 const struct ieee80211_ie_htinfo *htinfo; 2166 struct ieee80211_htrateset *rs; 2167 int i, j; 2168 2169 if (ie[0] == IEEE80211_ELEMID_VENDOR) 2170 ie += 4; 2171 htinfo = (const struct ieee80211_ie_htinfo *) ie; 2172 rs = &ni->ni_htrates; 2173 if (rs->rs_nrates == 0) { 2174 IEEE80211_NOTE(ni->ni_vap, 2175 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 2176 "%s", "WARNING, empty HT rate set"); 2177 return; 2178 } 2179 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 2180 if (isclr(htinfo->hi_basicmcsset, i)) 2181 continue; 2182 for (j = 0; j < rs->rs_nrates; j++) 2183 if ((rs->rs_rates[j] & IEEE80211_RATE_VAL) == i) 2184 rs->rs_rates[j] |= IEEE80211_RATE_BASIC; 2185 } 2186 } 2187 2188 static void 2189 ampdu_tx_setup(struct ieee80211_tx_ampdu *tap) 2190 { 2191 callout_init(&tap->txa_timer, 1); 2192 tap->txa_flags |= IEEE80211_AGGR_SETUP; 2193 tap->txa_lastsample = ticks; 2194 } 2195 2196 static void 2197 ampdu_tx_stop(struct ieee80211_tx_ampdu *tap) 2198 { 2199 struct ieee80211_node *ni = tap->txa_ni; 2200 struct ieee80211com *ic = ni->ni_ic; 2201 2202 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2203 tap->txa_ni, 2204 "%s: called", 2205 __func__); 2206 2207 KASSERT(tap->txa_flags & IEEE80211_AGGR_SETUP, 2208 ("txa_flags 0x%x tid %d ac %d", tap->txa_flags, tap->txa_tid, 2209 TID_TO_WME_AC(tap->txa_tid))); 2210 2211 /* 2212 * Stop BA stream if setup so driver has a chance 2213 * to reclaim any resources it might have allocated. 2214 */ 2215 ic->ic_addba_stop(ni, tap); 2216 /* 2217 * Stop any pending BAR transmit. 2218 */ 2219 bar_stop_timer(tap); 2220 2221 /* 2222 * Reset packet estimate. 2223 */ 2224 ieee80211_txampdu_init_pps(tap); 2225 2226 /* NB: clearing NAK means we may re-send ADDBA */ 2227 tap->txa_flags &= ~(IEEE80211_AGGR_SETUP | IEEE80211_AGGR_NAK); 2228 } 2229 2230 /* 2231 * ADDBA response timeout. 2232 * 2233 * If software aggregation and per-TID queue management was done here, 2234 * that queue would be unpaused after the ADDBA timeout occurs. 2235 */ 2236 static void 2237 addba_timeout(void *arg) 2238 { 2239 struct ieee80211_tx_ampdu *tap = arg; 2240 struct ieee80211_node *ni = tap->txa_ni; 2241 struct ieee80211com *ic = ni->ni_ic; 2242 2243 /* XXX ? */ 2244 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 2245 tap->txa_attempts++; 2246 ic->ic_addba_response_timeout(ni, tap); 2247 } 2248 2249 static void 2250 addba_start_timeout(struct ieee80211_tx_ampdu *tap) 2251 { 2252 /* XXX use CALLOUT_PENDING instead? */ 2253 callout_reset(&tap->txa_timer, ieee80211_addba_timeout, 2254 addba_timeout, tap); 2255 tap->txa_flags |= IEEE80211_AGGR_XCHGPEND; 2256 tap->txa_nextrequest = ticks + ieee80211_addba_timeout; 2257 } 2258 2259 static void 2260 addba_stop_timeout(struct ieee80211_tx_ampdu *tap) 2261 { 2262 /* XXX use CALLOUT_PENDING instead? */ 2263 if (tap->txa_flags & IEEE80211_AGGR_XCHGPEND) { 2264 callout_stop(&tap->txa_timer); 2265 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 2266 } 2267 } 2268 2269 static void 2270 null_addba_response_timeout(struct ieee80211_node *ni, 2271 struct ieee80211_tx_ampdu *tap) 2272 { 2273 } 2274 2275 /* 2276 * Default method for requesting A-MPDU tx aggregation. 2277 * We setup the specified state block and start a timer 2278 * to wait for an ADDBA response frame. 2279 */ 2280 static int 2281 ieee80211_addba_request(struct ieee80211_node *ni, 2282 struct ieee80211_tx_ampdu *tap, 2283 int dialogtoken, int baparamset, int batimeout) 2284 { 2285 int bufsiz; 2286 2287 /* XXX locking */ 2288 tap->txa_token = dialogtoken; 2289 tap->txa_flags |= IEEE80211_AGGR_IMMEDIATE; 2290 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 2291 tap->txa_wnd = (bufsiz == 0) ? 2292 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 2293 addba_start_timeout(tap); 2294 return 1; 2295 } 2296 2297 /* 2298 * Called by drivers that wish to request an ADDBA session be 2299 * setup. This brings it up and starts the request timer. 2300 */ 2301 int 2302 ieee80211_ampdu_tx_request_ext(struct ieee80211_node *ni, int tid) 2303 { 2304 struct ieee80211_tx_ampdu *tap; 2305 2306 if (tid < 0 || tid > 15) 2307 return (0); 2308 tap = &ni->ni_tx_ampdu[tid]; 2309 2310 /* XXX locking */ 2311 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 2312 /* do deferred setup of state */ 2313 ampdu_tx_setup(tap); 2314 } 2315 /* XXX hack for not doing proper locking */ 2316 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 2317 addba_start_timeout(tap); 2318 return (1); 2319 } 2320 2321 /* 2322 * Called by drivers that have marked a session as active. 2323 */ 2324 int 2325 ieee80211_ampdu_tx_request_active_ext(struct ieee80211_node *ni, int tid, 2326 int status) 2327 { 2328 struct ieee80211_tx_ampdu *tap; 2329 2330 if (tid < 0 || tid > 15) 2331 return (0); 2332 tap = &ni->ni_tx_ampdu[tid]; 2333 2334 /* XXX locking */ 2335 addba_stop_timeout(tap); 2336 if (status == 1) { 2337 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 2338 tap->txa_attempts = 0; 2339 } else { 2340 /* mark tid so we don't try again */ 2341 tap->txa_flags |= IEEE80211_AGGR_NAK; 2342 } 2343 return (1); 2344 } 2345 2346 /* 2347 * Default method for processing an A-MPDU tx aggregation 2348 * response. We shutdown any pending timer and update the 2349 * state block according to the reply. 2350 */ 2351 static int 2352 ieee80211_addba_response(struct ieee80211_node *ni, 2353 struct ieee80211_tx_ampdu *tap, 2354 int status, int baparamset, int batimeout) 2355 { 2356 struct ieee80211vap *vap = ni->ni_vap; 2357 int bufsiz, tid; 2358 2359 /* XXX locking */ 2360 addba_stop_timeout(tap); 2361 if (status == IEEE80211_STATUS_SUCCESS) { 2362 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 2363 /* XXX override our request? */ 2364 tap->txa_wnd = (bufsiz == 0) ? 2365 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 2366 tid = MS(baparamset, IEEE80211_BAPS_TID); 2367 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 2368 tap->txa_attempts = 0; 2369 /* TODO: this should be a vap flag */ 2370 if ((vap->iv_htcaps & IEEE80211_HTC_TX_AMSDU_AMPDU) && 2371 (ni->ni_flags & IEEE80211_NODE_AMSDU_TX) && 2372 (MS(baparamset, IEEE80211_BAPS_AMSDU))) 2373 tap->txa_flags |= IEEE80211_AGGR_AMSDU; 2374 else 2375 tap->txa_flags &= ~IEEE80211_AGGR_AMSDU; 2376 } else { 2377 /* mark tid so we don't try again */ 2378 tap->txa_flags |= IEEE80211_AGGR_NAK; 2379 } 2380 return 1; 2381 } 2382 2383 /* 2384 * Default method for stopping A-MPDU tx aggregation. 2385 * Any timer is cleared and we drain any pending frames. 2386 */ 2387 static void 2388 ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 2389 { 2390 /* XXX locking */ 2391 addba_stop_timeout(tap); 2392 if (tap->txa_flags & IEEE80211_AGGR_RUNNING) { 2393 /* XXX clear aggregation queue */ 2394 tap->txa_flags &= ~(IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_AMSDU); 2395 } 2396 tap->txa_attempts = 0; 2397 } 2398 2399 /* 2400 * Process a received action frame using the default aggregation 2401 * policy. We intercept ADDBA-related frames and use them to 2402 * update our aggregation state. All other frames are passed up 2403 * for processing by ieee80211_recv_action. 2404 */ 2405 static int 2406 ht_recv_action_ba_addba_request(struct ieee80211_node *ni, 2407 const struct ieee80211_frame *wh, 2408 const uint8_t *frm, const uint8_t *efrm) 2409 { 2410 struct ieee80211com *ic = ni->ni_ic; 2411 struct ieee80211vap *vap = ni->ni_vap; 2412 struct ieee80211_rx_ampdu *rap; 2413 uint8_t dialogtoken; 2414 uint16_t baparamset, batimeout, baseqctl; 2415 uint16_t args[5]; 2416 int tid; 2417 2418 dialogtoken = frm[2]; 2419 baparamset = le16dec(frm+3); 2420 batimeout = le16dec(frm+5); 2421 baseqctl = le16dec(frm+7); 2422 2423 tid = MS(baparamset, IEEE80211_BAPS_TID); 2424 2425 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2426 "recv ADDBA request: dialogtoken %u baparamset 0x%x " 2427 "(tid %d bufsiz %d) batimeout %d baseqctl %d:%d amsdu %d", 2428 dialogtoken, baparamset, 2429 tid, MS(baparamset, IEEE80211_BAPS_BUFSIZ), 2430 batimeout, 2431 MS(baseqctl, IEEE80211_BASEQ_START), 2432 MS(baseqctl, IEEE80211_BASEQ_FRAG), 2433 MS(baparamset, IEEE80211_BAPS_AMSDU)); 2434 2435 rap = &ni->ni_rx_ampdu[tid]; 2436 2437 /* Send ADDBA response */ 2438 args[0] = dialogtoken; 2439 /* 2440 * NB: We ack only if the sta associated with HT and 2441 * the ap is configured to do AMPDU rx (the latter 2442 * violates the 11n spec and is mostly for testing). 2443 */ 2444 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_RX) && 2445 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX)) { 2446 /* XXX TODO: handle ampdu_rx_start failure */ 2447 ic->ic_ampdu_rx_start(ni, rap, 2448 baparamset, batimeout, baseqctl); 2449 2450 args[1] = IEEE80211_STATUS_SUCCESS; 2451 } else { 2452 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2453 ni, "reject ADDBA request: %s", 2454 ni->ni_flags & IEEE80211_NODE_AMPDU_RX ? 2455 "administratively disabled" : 2456 "not negotiated for station"); 2457 vap->iv_stats.is_addba_reject++; 2458 args[1] = IEEE80211_STATUS_UNSPECIFIED; 2459 } 2460 /* XXX honor rap flags? */ 2461 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 2462 | SM(tid, IEEE80211_BAPS_TID) 2463 | SM(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ) 2464 ; 2465 2466 /* 2467 * TODO: we're out of iv_flags_ht fields; once 2468 * this is extended we should make this configurable. 2469 */ 2470 if ((baparamset & IEEE80211_BAPS_AMSDU) && 2471 (ni->ni_flags & IEEE80211_NODE_AMSDU_RX) && 2472 (vap->iv_htcaps & IEEE80211_HTC_RX_AMSDU_AMPDU)) 2473 args[2] |= IEEE80211_BAPS_AMSDU; 2474 2475 args[3] = 0; 2476 args[4] = 0; 2477 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2478 IEEE80211_ACTION_BA_ADDBA_RESPONSE, args); 2479 return 0; 2480 } 2481 2482 static int 2483 ht_recv_action_ba_addba_response(struct ieee80211_node *ni, 2484 const struct ieee80211_frame *wh, 2485 const uint8_t *frm, const uint8_t *efrm) 2486 { 2487 struct ieee80211com *ic = ni->ni_ic; 2488 struct ieee80211vap *vap = ni->ni_vap; 2489 struct ieee80211_tx_ampdu *tap; 2490 uint8_t dialogtoken, policy; 2491 uint16_t baparamset, batimeout, code; 2492 int tid, bufsiz; 2493 int amsdu; 2494 2495 dialogtoken = frm[2]; 2496 code = le16dec(frm+3); 2497 baparamset = le16dec(frm+5); 2498 tid = MS(baparamset, IEEE80211_BAPS_TID); 2499 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 2500 policy = MS(baparamset, IEEE80211_BAPS_POLICY); 2501 amsdu = !! MS(baparamset, IEEE80211_BAPS_AMSDU); 2502 batimeout = le16dec(frm+7); 2503 2504 tap = &ni->ni_tx_ampdu[tid]; 2505 if ((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 2506 IEEE80211_DISCARD_MAC(vap, 2507 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2508 ni->ni_macaddr, "ADDBA response", 2509 "no pending ADDBA, tid %d dialogtoken %u " 2510 "code %d", tid, dialogtoken, code); 2511 vap->iv_stats.is_addba_norequest++; 2512 return 0; 2513 } 2514 if (dialogtoken != tap->txa_token) { 2515 IEEE80211_DISCARD_MAC(vap, 2516 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2517 ni->ni_macaddr, "ADDBA response", 2518 "dialogtoken mismatch: waiting for %d, " 2519 "received %d, tid %d code %d", 2520 tap->txa_token, dialogtoken, tid, code); 2521 vap->iv_stats.is_addba_badtoken++; 2522 return 0; 2523 } 2524 /* NB: assumes IEEE80211_AGGR_IMMEDIATE is 1 */ 2525 if (policy != (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE)) { 2526 IEEE80211_DISCARD_MAC(vap, 2527 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2528 ni->ni_macaddr, "ADDBA response", 2529 "policy mismatch: expecting %s, " 2530 "received %s, tid %d code %d", 2531 tap->txa_flags & IEEE80211_AGGR_IMMEDIATE, 2532 policy, tid, code); 2533 vap->iv_stats.is_addba_badpolicy++; 2534 return 0; 2535 } 2536 #if 0 2537 /* XXX we take MIN in ieee80211_addba_response */ 2538 if (bufsiz > IEEE80211_AGGR_BAWMAX) { 2539 IEEE80211_DISCARD_MAC(vap, 2540 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2541 ni->ni_macaddr, "ADDBA response", 2542 "BA window too large: max %d, " 2543 "received %d, tid %d code %d", 2544 bufsiz, IEEE80211_AGGR_BAWMAX, tid, code); 2545 vap->iv_stats.is_addba_badbawinsize++; 2546 return 0; 2547 } 2548 #endif 2549 2550 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2551 "recv ADDBA response: dialogtoken %u code %d " 2552 "baparamset 0x%x (tid %d bufsiz %d amsdu %d) batimeout %d", 2553 dialogtoken, code, baparamset, tid, 2554 bufsiz, 2555 amsdu, 2556 batimeout); 2557 ic->ic_addba_response(ni, tap, code, baparamset, batimeout); 2558 return 0; 2559 } 2560 2561 static int 2562 ht_recv_action_ba_delba(struct ieee80211_node *ni, 2563 const struct ieee80211_frame *wh, 2564 const uint8_t *frm, const uint8_t *efrm) 2565 { 2566 struct ieee80211com *ic = ni->ni_ic; 2567 struct ieee80211_rx_ampdu *rap; 2568 struct ieee80211_tx_ampdu *tap; 2569 uint16_t baparamset, code; 2570 int tid; 2571 2572 baparamset = le16dec(frm+2); 2573 code = le16dec(frm+4); 2574 2575 tid = MS(baparamset, IEEE80211_DELBAPS_TID); 2576 2577 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2578 "recv DELBA: baparamset 0x%x (tid %d initiator %d) " 2579 "code %d", baparamset, tid, 2580 MS(baparamset, IEEE80211_DELBAPS_INIT), code); 2581 2582 if ((baparamset & IEEE80211_DELBAPS_INIT) == 0) { 2583 tap = &ni->ni_tx_ampdu[tid]; 2584 ic->ic_addba_stop(ni, tap); 2585 } else { 2586 rap = &ni->ni_rx_ampdu[tid]; 2587 ic->ic_ampdu_rx_stop(ni, rap); 2588 } 2589 return 0; 2590 } 2591 2592 static int 2593 ht_recv_action_ht_txchwidth(struct ieee80211_node *ni, 2594 const struct ieee80211_frame *wh, 2595 const uint8_t *frm, const uint8_t *efrm) 2596 { 2597 int chw; 2598 2599 chw = (frm[2] == IEEE80211_A_HT_TXCHWIDTH_2040) ? 40 : 20; 2600 2601 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2602 "%s: HT txchwidth, width %d%s", 2603 __func__, chw, ni->ni_chw != chw ? "*" : ""); 2604 if (chw != ni->ni_chw) { 2605 /* XXX does this need to change the ht40 station count? */ 2606 ni->ni_chw = chw; 2607 /* XXX notify on change */ 2608 } 2609 return 0; 2610 } 2611 2612 static int 2613 ht_recv_action_ht_mimopwrsave(struct ieee80211_node *ni, 2614 const struct ieee80211_frame *wh, 2615 const uint8_t *frm, const uint8_t *efrm) 2616 { 2617 const struct ieee80211_action_ht_mimopowersave *mps = 2618 (const struct ieee80211_action_ht_mimopowersave *) frm; 2619 2620 /* XXX check iv_htcaps */ 2621 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA) 2622 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 2623 else 2624 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 2625 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_MODE) 2626 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 2627 else 2628 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 2629 /* XXX notify on change */ 2630 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2631 "%s: HT MIMO PS (%s%s)", __func__, 2632 (ni->ni_flags & IEEE80211_NODE_MIMO_PS) ? "on" : "off", 2633 (ni->ni_flags & IEEE80211_NODE_MIMO_RTS) ? "+rts" : "" 2634 ); 2635 return 0; 2636 } 2637 2638 /* 2639 * Transmit processing. 2640 */ 2641 2642 /* 2643 * Check if A-MPDU should be requested/enabled for a stream. 2644 * We require a traffic rate above a per-AC threshold and we 2645 * also handle backoff from previous failed attempts. 2646 * 2647 * Drivers may override this method to bring in information 2648 * such as link state conditions in making the decision. 2649 */ 2650 static int 2651 ieee80211_ampdu_enable(struct ieee80211_node *ni, 2652 struct ieee80211_tx_ampdu *tap) 2653 { 2654 struct ieee80211vap *vap = ni->ni_vap; 2655 2656 if (tap->txa_avgpps < 2657 vap->iv_ampdu_mintraffic[TID_TO_WME_AC(tap->txa_tid)]) 2658 return 0; 2659 /* XXX check rssi? */ 2660 if (tap->txa_attempts >= ieee80211_addba_maxtries && 2661 ieee80211_time_after(ticks, tap->txa_nextrequest)) { 2662 /* 2663 * Don't retry too often; txa_nextrequest is set 2664 * to the minimum interval we'll retry after 2665 * ieee80211_addba_maxtries failed attempts are made. 2666 */ 2667 return 0; 2668 } 2669 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 2670 "enable AMPDU on tid %d (%s), avgpps %d pkts %d attempt %d", 2671 tap->txa_tid, ieee80211_wme_acnames[TID_TO_WME_AC(tap->txa_tid)], 2672 tap->txa_avgpps, tap->txa_pkts, tap->txa_attempts); 2673 return 1; 2674 } 2675 2676 /* 2677 * Request A-MPDU tx aggregation. Setup local state and 2678 * issue an ADDBA request. BA use will only happen after 2679 * the other end replies with ADDBA response. 2680 */ 2681 int 2682 ieee80211_ampdu_request(struct ieee80211_node *ni, 2683 struct ieee80211_tx_ampdu *tap) 2684 { 2685 struct ieee80211com *ic = ni->ni_ic; 2686 uint16_t args[5]; 2687 int tid, dialogtoken; 2688 static int tokens = 0; /* XXX */ 2689 2690 /* XXX locking */ 2691 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 2692 /* do deferred setup of state */ 2693 ampdu_tx_setup(tap); 2694 } 2695 /* XXX hack for not doing proper locking */ 2696 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 2697 2698 dialogtoken = (tokens+1) % 63; /* XXX */ 2699 tid = tap->txa_tid; 2700 2701 /* 2702 * XXX TODO: This is racy with any other parallel TX going on. :( 2703 */ 2704 tap->txa_start = ni->ni_txseqs[tid]; 2705 2706 args[0] = dialogtoken; 2707 args[1] = 0; /* NB: status code not used */ 2708 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 2709 | SM(tid, IEEE80211_BAPS_TID) 2710 | SM(IEEE80211_AGGR_BAWMAX, IEEE80211_BAPS_BUFSIZ) 2711 ; 2712 2713 /* XXX TODO: this should be a flag, not iv_htcaps */ 2714 if ((ni->ni_flags & IEEE80211_NODE_AMSDU_TX) && 2715 (ni->ni_vap->iv_htcaps & IEEE80211_HTC_TX_AMSDU_AMPDU)) 2716 args[2] |= IEEE80211_BAPS_AMSDU; 2717 2718 args[3] = 0; /* batimeout */ 2719 /* NB: do first so there's no race against reply */ 2720 if (!ic->ic_addba_request(ni, tap, dialogtoken, args[2], args[3])) { 2721 /* unable to setup state, don't make request */ 2722 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2723 ni, "%s: could not setup BA stream for TID %d AC %d", 2724 __func__, tap->txa_tid, TID_TO_WME_AC(tap->txa_tid)); 2725 /* defer next try so we don't slam the driver with requests */ 2726 tap->txa_attempts = ieee80211_addba_maxtries; 2727 /* NB: check in case driver wants to override */ 2728 if (tap->txa_nextrequest <= ticks) 2729 tap->txa_nextrequest = ticks + ieee80211_addba_backoff; 2730 return 0; 2731 } 2732 tokens = dialogtoken; /* allocate token */ 2733 /* NB: after calling ic_addba_request so driver can set txa_start */ 2734 args[4] = SM(tap->txa_start, IEEE80211_BASEQ_START) 2735 | SM(0, IEEE80211_BASEQ_FRAG) 2736 ; 2737 return ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2738 IEEE80211_ACTION_BA_ADDBA_REQUEST, args); 2739 } 2740 2741 /* 2742 * Terminate an AMPDU tx stream. State is reclaimed 2743 * and the peer notified with a DelBA Action frame. 2744 */ 2745 void 2746 ieee80211_ampdu_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 2747 int reason) 2748 { 2749 struct ieee80211com *ic = ni->ni_ic; 2750 struct ieee80211vap *vap = ni->ni_vap; 2751 uint16_t args[4]; 2752 2753 /* XXX locking */ 2754 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2755 if (IEEE80211_AMPDU_RUNNING(tap)) { 2756 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2757 ni, "%s: stop BA stream for TID %d (reason: %d (%s))", 2758 __func__, tap->txa_tid, reason, 2759 ieee80211_reason_to_string(reason)); 2760 vap->iv_stats.is_ampdu_stop++; 2761 2762 ic->ic_addba_stop(ni, tap); 2763 args[0] = tap->txa_tid; 2764 args[1] = IEEE80211_DELBAPS_INIT; 2765 args[2] = reason; /* XXX reason code */ 2766 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2767 IEEE80211_ACTION_BA_DELBA, args); 2768 } else { 2769 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2770 ni, "%s: BA stream for TID %d not running " 2771 "(reason: %d (%s))", __func__, tap->txa_tid, reason, 2772 ieee80211_reason_to_string(reason)); 2773 vap->iv_stats.is_ampdu_stop_failed++; 2774 } 2775 } 2776 2777 /* XXX */ 2778 static void bar_start_timer(struct ieee80211_tx_ampdu *tap); 2779 2780 static void 2781 bar_timeout(void *arg) 2782 { 2783 struct ieee80211_tx_ampdu *tap = arg; 2784 struct ieee80211_node *ni = tap->txa_ni; 2785 2786 KASSERT((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0, 2787 ("bar/addba collision, flags 0x%x", tap->txa_flags)); 2788 2789 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2790 ni, "%s: tid %u flags 0x%x attempts %d", __func__, 2791 tap->txa_tid, tap->txa_flags, tap->txa_attempts); 2792 2793 /* guard against race with bar_tx_complete */ 2794 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2795 return; 2796 /* XXX ? */ 2797 if (tap->txa_attempts >= ieee80211_bar_maxtries) { 2798 struct ieee80211com *ic = ni->ni_ic; 2799 2800 ni->ni_vap->iv_stats.is_ampdu_bar_tx_fail++; 2801 /* 2802 * If (at least) the last BAR TX timeout was due to 2803 * an ieee80211_send_bar() failures, then we need 2804 * to make sure we notify the driver that a BAR 2805 * TX did occur and fail. This gives the driver 2806 * a chance to undo any queue pause that may 2807 * have occurred. 2808 */ 2809 ic->ic_bar_response(ni, tap, 1); 2810 ieee80211_ampdu_stop(ni, tap, IEEE80211_REASON_TIMEOUT); 2811 } else { 2812 ni->ni_vap->iv_stats.is_ampdu_bar_tx_retry++; 2813 if (ieee80211_send_bar(ni, tap, tap->txa_seqpending) != 0) { 2814 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2815 ni, "%s: failed to TX, starting timer\n", 2816 __func__); 2817 /* 2818 * If ieee80211_send_bar() fails here, the 2819 * timer may have stopped and/or the pending 2820 * flag may be clear. Because of this, 2821 * fake the BARPEND and reset the timer. 2822 * A retransmission attempt will then occur 2823 * during the next timeout. 2824 */ 2825 /* XXX locking */ 2826 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2827 bar_start_timer(tap); 2828 } 2829 } 2830 } 2831 2832 static void 2833 bar_start_timer(struct ieee80211_tx_ampdu *tap) 2834 { 2835 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2836 tap->txa_ni, 2837 "%s: called", 2838 __func__); 2839 callout_reset(&tap->txa_timer, ieee80211_bar_timeout, bar_timeout, tap); 2840 } 2841 2842 static void 2843 bar_stop_timer(struct ieee80211_tx_ampdu *tap) 2844 { 2845 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2846 tap->txa_ni, 2847 "%s: called", 2848 __func__); 2849 callout_stop(&tap->txa_timer); 2850 } 2851 2852 static void 2853 bar_tx_complete(struct ieee80211_node *ni, void *arg, int status) 2854 { 2855 struct ieee80211_tx_ampdu *tap = arg; 2856 2857 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2858 ni, "%s: tid %u flags 0x%x pending %d status %d", 2859 __func__, tap->txa_tid, tap->txa_flags, 2860 callout_pending(&tap->txa_timer), status); 2861 2862 ni->ni_vap->iv_stats.is_ampdu_bar_tx++; 2863 /* XXX locking */ 2864 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) && 2865 callout_pending(&tap->txa_timer)) { 2866 struct ieee80211com *ic = ni->ni_ic; 2867 2868 if (status == 0) /* ACK'd */ 2869 bar_stop_timer(tap); 2870 ic->ic_bar_response(ni, tap, status); 2871 /* NB: just let timer expire so we pace requests */ 2872 } 2873 } 2874 2875 static void 2876 ieee80211_bar_response(struct ieee80211_node *ni, 2877 struct ieee80211_tx_ampdu *tap, int status) 2878 { 2879 2880 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2881 tap->txa_ni, 2882 "%s: called", 2883 __func__); 2884 if (status == 0) { /* got ACK */ 2885 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2886 ni, "BAR moves BA win <%u:%u> (%u frames) txseq %u tid %u", 2887 tap->txa_start, 2888 IEEE80211_SEQ_ADD(tap->txa_start, tap->txa_wnd-1), 2889 tap->txa_qframes, tap->txa_seqpending, 2890 tap->txa_tid); 2891 2892 /* NB: timer already stopped in bar_tx_complete */ 2893 tap->txa_start = tap->txa_seqpending; 2894 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2895 } 2896 } 2897 2898 /* 2899 * Transmit a BAR frame to the specified node. The 2900 * BAR contents are drawn from the supplied aggregation 2901 * state associated with the node. 2902 * 2903 * NB: we only handle immediate ACK w/ compressed bitmap. 2904 */ 2905 int 2906 ieee80211_send_bar(struct ieee80211_node *ni, 2907 struct ieee80211_tx_ampdu *tap, ieee80211_seq seq) 2908 { 2909 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2910 struct ieee80211vap *vap = ni->ni_vap; 2911 struct ieee80211com *ic = ni->ni_ic; 2912 struct ieee80211_frame_bar *bar; 2913 struct mbuf *m; 2914 uint16_t barctl, barseqctl; 2915 uint8_t *frm; 2916 int tid, ret; 2917 2918 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2919 tap->txa_ni, 2920 "%s: called", 2921 __func__); 2922 2923 if ((tap->txa_flags & IEEE80211_AGGR_RUNNING) == 0) { 2924 /* no ADDBA response, should not happen */ 2925 /* XXX stat+msg */ 2926 return EINVAL; 2927 } 2928 /* XXX locking */ 2929 bar_stop_timer(tap); 2930 2931 ieee80211_ref_node(ni); 2932 2933 m = ieee80211_getmgtframe(&frm, ic->ic_headroom, sizeof(*bar)); 2934 if (m == NULL) 2935 senderr(ENOMEM, is_tx_nobuf); 2936 2937 if (!ieee80211_add_callback(m, bar_tx_complete, tap)) { 2938 m_freem(m); 2939 senderr(ENOMEM, is_tx_nobuf); /* XXX */ 2940 /* NOTREACHED */ 2941 } 2942 2943 bar = mtod(m, struct ieee80211_frame_bar *); 2944 bar->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2945 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR; 2946 bar->i_fc[1] = 0; 2947 IEEE80211_ADDR_COPY(bar->i_ra, ni->ni_macaddr); 2948 IEEE80211_ADDR_COPY(bar->i_ta, vap->iv_myaddr); 2949 2950 tid = tap->txa_tid; 2951 barctl = (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE ? 2952 0 : IEEE80211_BAR_NOACK) 2953 | IEEE80211_BAR_COMP 2954 | SM(tid, IEEE80211_BAR_TID) 2955 ; 2956 barseqctl = SM(seq, IEEE80211_BAR_SEQ_START); 2957 /* NB: known to have proper alignment */ 2958 bar->i_ctl = htole16(barctl); 2959 bar->i_seq = htole16(barseqctl); 2960 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_bar); 2961 2962 M_WME_SETAC(m, WME_AC_VO); 2963 2964 IEEE80211_NODE_STAT(ni, tx_mgmt); /* XXX tx_ctl? */ 2965 2966 /* XXX locking */ 2967 /* init/bump attempts counter */ 2968 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2969 tap->txa_attempts = 1; 2970 else 2971 tap->txa_attempts++; 2972 tap->txa_seqpending = seq; 2973 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2974 2975 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2976 ni, "send BAR: tid %u ctl 0x%x start %u (attempt %d)", 2977 tid, barctl, seq, tap->txa_attempts); 2978 2979 /* 2980 * ic_raw_xmit will free the node reference 2981 * regardless of queue/TX success or failure. 2982 */ 2983 IEEE80211_TX_LOCK(ic); 2984 ret = ieee80211_raw_output(vap, ni, m, NULL); 2985 IEEE80211_TX_UNLOCK(ic); 2986 if (ret != 0) { 2987 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2988 ni, "send BAR: failed: (ret = %d)\n", 2989 ret); 2990 /* xmit failed, clear state flag */ 2991 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2992 vap->iv_stats.is_ampdu_bar_tx_fail++; 2993 return ret; 2994 } 2995 /* XXX hack against tx complete happening before timer is started */ 2996 if (tap->txa_flags & IEEE80211_AGGR_BARPEND) 2997 bar_start_timer(tap); 2998 return 0; 2999 bad: 3000 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 3001 tap->txa_ni, 3002 "%s: bad! ret=%d", 3003 __func__, ret); 3004 vap->iv_stats.is_ampdu_bar_tx_fail++; 3005 ieee80211_free_node(ni); 3006 return ret; 3007 #undef senderr 3008 } 3009 3010 static int 3011 ht_action_output(struct ieee80211_node *ni, struct mbuf *m) 3012 { 3013 struct ieee80211_bpf_params params; 3014 3015 memset(¶ms, 0, sizeof(params)); 3016 params.ibp_pri = WME_AC_VO; 3017 params.ibp_rate0 = ni->ni_txparms->mgmtrate; 3018 /* NB: we know all frames are unicast */ 3019 params.ibp_try0 = ni->ni_txparms->maxretry; 3020 params.ibp_power = ni->ni_txpower; 3021 return ieee80211_mgmt_output(ni, m, IEEE80211_FC0_SUBTYPE_ACTION, 3022 ¶ms); 3023 } 3024 3025 #define ADDSHORT(frm, v) do { \ 3026 frm[0] = (v) & 0xff; \ 3027 frm[1] = (v) >> 8; \ 3028 frm += 2; \ 3029 } while (0) 3030 3031 /* 3032 * Send an action management frame. The arguments are stuff 3033 * into a frame without inspection; the caller is assumed to 3034 * prepare them carefully (e.g. based on the aggregation state). 3035 */ 3036 static int 3037 ht_send_action_ba_addba(struct ieee80211_node *ni, 3038 int category, int action, void *arg0) 3039 { 3040 struct ieee80211vap *vap = ni->ni_vap; 3041 struct ieee80211com *ic = ni->ni_ic; 3042 uint16_t *args = arg0; 3043 struct mbuf *m; 3044 uint8_t *frm; 3045 3046 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 3047 "send ADDBA %s: dialogtoken %d status %d " 3048 "baparamset 0x%x (tid %d amsdu %d) batimeout 0x%x baseqctl 0x%x", 3049 (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ? 3050 "request" : "response", 3051 args[0], args[1], args[2], MS(args[2], IEEE80211_BAPS_TID), 3052 MS(args[2], IEEE80211_BAPS_AMSDU), args[3], args[4]); 3053 3054 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 3055 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 3056 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 3057 ieee80211_ref_node(ni); 3058 3059 m = ieee80211_getmgtframe(&frm, 3060 ic->ic_headroom + sizeof(struct ieee80211_frame), 3061 sizeof(uint16_t) /* action+category */ 3062 /* XXX may action payload */ 3063 + sizeof(struct ieee80211_action_ba_addbaresponse) 3064 ); 3065 if (m != NULL) { 3066 *frm++ = category; 3067 *frm++ = action; 3068 *frm++ = args[0]; /* dialog token */ 3069 if (action == IEEE80211_ACTION_BA_ADDBA_RESPONSE) 3070 ADDSHORT(frm, args[1]); /* status code */ 3071 ADDSHORT(frm, args[2]); /* baparamset */ 3072 ADDSHORT(frm, args[3]); /* batimeout */ 3073 if (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) 3074 ADDSHORT(frm, args[4]); /* baseqctl */ 3075 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3076 return ht_action_output(ni, m); 3077 } else { 3078 vap->iv_stats.is_tx_nobuf++; 3079 ieee80211_free_node(ni); 3080 return ENOMEM; 3081 } 3082 } 3083 3084 static int 3085 ht_send_action_ba_delba(struct ieee80211_node *ni, 3086 int category, int action, void *arg0) 3087 { 3088 struct ieee80211vap *vap = ni->ni_vap; 3089 struct ieee80211com *ic = ni->ni_ic; 3090 uint16_t *args = arg0; 3091 struct mbuf *m; 3092 uint16_t baparamset; 3093 uint8_t *frm; 3094 3095 baparamset = SM(args[0], IEEE80211_DELBAPS_TID) 3096 | args[1] 3097 ; 3098 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 3099 "send DELBA action: tid %d, initiator %d reason %d (%s)", 3100 args[0], args[1], args[2], ieee80211_reason_to_string(args[2])); 3101 3102 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 3103 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 3104 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 3105 ieee80211_ref_node(ni); 3106 3107 m = ieee80211_getmgtframe(&frm, 3108 ic->ic_headroom + sizeof(struct ieee80211_frame), 3109 sizeof(uint16_t) /* action+category */ 3110 /* XXX may action payload */ 3111 + sizeof(struct ieee80211_action_ba_addbaresponse) 3112 ); 3113 if (m != NULL) { 3114 *frm++ = category; 3115 *frm++ = action; 3116 ADDSHORT(frm, baparamset); 3117 ADDSHORT(frm, args[2]); /* reason code */ 3118 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3119 return ht_action_output(ni, m); 3120 } else { 3121 vap->iv_stats.is_tx_nobuf++; 3122 ieee80211_free_node(ni); 3123 return ENOMEM; 3124 } 3125 } 3126 3127 static int 3128 ht_send_action_ht_txchwidth(struct ieee80211_node *ni, 3129 int category, int action, void *arg0) 3130 { 3131 struct ieee80211vap *vap = ni->ni_vap; 3132 struct ieee80211com *ic = ni->ni_ic; 3133 struct mbuf *m; 3134 uint8_t *frm; 3135 3136 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 3137 "send HT txchwidth: width %d", 3138 IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 40 : 20); 3139 3140 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 3141 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 3142 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 3143 ieee80211_ref_node(ni); 3144 3145 m = ieee80211_getmgtframe(&frm, 3146 ic->ic_headroom + sizeof(struct ieee80211_frame), 3147 sizeof(uint16_t) /* action+category */ 3148 /* XXX may action payload */ 3149 + sizeof(struct ieee80211_action_ba_addbaresponse) 3150 ); 3151 if (m != NULL) { 3152 *frm++ = category; 3153 *frm++ = action; 3154 *frm++ = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 3155 IEEE80211_A_HT_TXCHWIDTH_2040 : 3156 IEEE80211_A_HT_TXCHWIDTH_20; 3157 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3158 return ht_action_output(ni, m); 3159 } else { 3160 vap->iv_stats.is_tx_nobuf++; 3161 ieee80211_free_node(ni); 3162 return ENOMEM; 3163 } 3164 } 3165 #undef ADDSHORT 3166 3167 /* 3168 * Construct the MCS bit mask for inclusion in an HT capabilities 3169 * information element. 3170 */ 3171 static void 3172 ieee80211_set_mcsset(struct ieee80211com *ic, uint8_t *frm) 3173 { 3174 int i; 3175 uint8_t txparams; 3176 3177 KASSERT((ic->ic_rxstream > 0 && ic->ic_rxstream <= 4), 3178 ("ic_rxstream %d out of range", ic->ic_rxstream)); 3179 KASSERT((ic->ic_txstream > 0 && ic->ic_txstream <= 4), 3180 ("ic_txstream %d out of range", ic->ic_txstream)); 3181 3182 for (i = 0; i < ic->ic_rxstream * 8; i++) 3183 setbit(frm, i); 3184 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 3185 (ic->ic_htcaps & IEEE80211_HTC_RXMCS32)) 3186 setbit(frm, 32); 3187 if (ic->ic_htcaps & IEEE80211_HTC_RXUNEQUAL) { 3188 if (ic->ic_rxstream >= 2) { 3189 for (i = 33; i <= 38; i++) 3190 setbit(frm, i); 3191 } 3192 if (ic->ic_rxstream >= 3) { 3193 for (i = 39; i <= 52; i++) 3194 setbit(frm, i); 3195 } 3196 if (ic->ic_txstream >= 4) { 3197 for (i = 53; i <= 76; i++) 3198 setbit(frm, i); 3199 } 3200 } 3201 3202 if (ic->ic_rxstream != ic->ic_txstream) { 3203 txparams = 0x1; /* TX MCS set defined */ 3204 txparams |= 0x2; /* TX RX MCS not equal */ 3205 txparams |= (ic->ic_txstream - 1) << 2; /* num TX streams */ 3206 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) 3207 txparams |= 0x16; /* TX unequal modulation sup */ 3208 } else 3209 txparams = 0; 3210 frm[12] = txparams; 3211 } 3212 3213 /* 3214 * Add body of an HTCAP information element. 3215 */ 3216 static uint8_t * 3217 ieee80211_add_htcap_body(uint8_t *frm, struct ieee80211_node *ni) 3218 { 3219 #define ADDSHORT(frm, v) do { \ 3220 frm[0] = (v) & 0xff; \ 3221 frm[1] = (v) >> 8; \ 3222 frm += 2; \ 3223 } while (0) 3224 struct ieee80211com *ic = ni->ni_ic; 3225 struct ieee80211vap *vap = ni->ni_vap; 3226 uint16_t caps, extcaps; 3227 int rxmax, density; 3228 3229 /* HT capabilities */ 3230 caps = vap->iv_htcaps & 0xffff; 3231 /* 3232 * Note channel width depends on whether we are operating as 3233 * a sta or not. When operating as a sta we are generating 3234 * a request based on our desired configuration. Otherwise 3235 * we are operational and the channel attributes identify 3236 * how we've been setup (which might be different if a fixed 3237 * channel is specified). 3238 */ 3239 if (vap->iv_opmode == IEEE80211_M_STA) { 3240 /* override 20/40 use based on config */ 3241 if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40) 3242 caps |= IEEE80211_HTCAP_CHWIDTH40; 3243 else 3244 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3245 3246 /* Start by using the advertised settings */ 3247 rxmax = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU); 3248 density = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY); 3249 3250 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, 3251 "%s: advertised rxmax=%d, density=%d, vap rxmax=%d, density=%d\n", 3252 __func__, 3253 rxmax, 3254 density, 3255 vap->iv_ampdu_rxmax, 3256 vap->iv_ampdu_density); 3257 3258 /* Cap at VAP rxmax */ 3259 if (rxmax > vap->iv_ampdu_rxmax) 3260 rxmax = vap->iv_ampdu_rxmax; 3261 3262 /* 3263 * If the VAP ampdu density value greater, use that. 3264 * 3265 * (Larger density value == larger minimum gap between A-MPDU 3266 * subframes.) 3267 */ 3268 if (vap->iv_ampdu_density > density) 3269 density = vap->iv_ampdu_density; 3270 3271 /* 3272 * NB: Hardware might support HT40 on some but not all 3273 * channels. We can't determine this earlier because only 3274 * after association the channel is upgraded to HT based 3275 * on the negotiated capabilities. 3276 */ 3277 if (ni->ni_chan != IEEE80211_CHAN_ANYC && 3278 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40U) == NULL && 3279 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40D) == NULL) 3280 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3281 } else { 3282 /* override 20/40 use based on current channel */ 3283 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 3284 caps |= IEEE80211_HTCAP_CHWIDTH40; 3285 else 3286 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3287 3288 /* XXX TODO should it start by using advertised settings? */ 3289 rxmax = vap->iv_ampdu_rxmax; 3290 density = vap->iv_ampdu_density; 3291 } 3292 3293 /* adjust short GI based on channel and config */ 3294 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) 3295 caps &= ~IEEE80211_HTCAP_SHORTGI20; 3296 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || 3297 (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) 3298 caps &= ~IEEE80211_HTCAP_SHORTGI40; 3299 3300 /* adjust STBC based on receive capabilities */ 3301 if ((vap->iv_flags_ht & IEEE80211_FHT_STBC_RX) == 0) 3302 caps &= ~IEEE80211_HTCAP_RXSTBC; 3303 3304 /* adjust LDPC based on receive capabilites */ 3305 if ((vap->iv_flags_ht & IEEE80211_FHT_LDPC_RX) == 0) 3306 caps &= ~IEEE80211_HTCAP_LDPC; 3307 3308 ADDSHORT(frm, caps); 3309 3310 /* HT parameters */ 3311 *frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) 3312 | SM(density, IEEE80211_HTCAP_MPDUDENSITY) 3313 ; 3314 frm++; 3315 3316 /* pre-zero remainder of ie */ 3317 memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - 3318 __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); 3319 3320 /* supported MCS set */ 3321 /* 3322 * XXX: For sta mode the rate set should be restricted based 3323 * on the AP's capabilities, but ni_htrates isn't setup when 3324 * we're called to form an AssocReq frame so for now we're 3325 * restricted to the device capabilities. 3326 */ 3327 ieee80211_set_mcsset(ni->ni_ic, frm); 3328 3329 frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - 3330 __offsetof(struct ieee80211_ie_htcap, hc_mcsset); 3331 3332 /* HT extended capabilities */ 3333 extcaps = vap->iv_htextcaps & 0xffff; 3334 3335 ADDSHORT(frm, extcaps); 3336 3337 frm += sizeof(struct ieee80211_ie_htcap) - 3338 __offsetof(struct ieee80211_ie_htcap, hc_txbf); 3339 3340 return frm; 3341 #undef ADDSHORT 3342 } 3343 3344 /* 3345 * Add 802.11n HT capabilities information element 3346 */ 3347 uint8_t * 3348 ieee80211_add_htcap(uint8_t *frm, struct ieee80211_node *ni) 3349 { 3350 frm[0] = IEEE80211_ELEMID_HTCAP; 3351 frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; 3352 return ieee80211_add_htcap_body(frm + 2, ni); 3353 } 3354 3355 /* 3356 * Non-associated probe request - add HT capabilities based on 3357 * the current channel configuration. 3358 */ 3359 static uint8_t * 3360 ieee80211_add_htcap_body_ch(uint8_t *frm, struct ieee80211vap *vap, 3361 struct ieee80211_channel *c) 3362 { 3363 #define ADDSHORT(frm, v) do { \ 3364 frm[0] = (v) & 0xff; \ 3365 frm[1] = (v) >> 8; \ 3366 frm += 2; \ 3367 } while (0) 3368 struct ieee80211com *ic = vap->iv_ic; 3369 uint16_t caps, extcaps; 3370 int rxmax, density; 3371 3372 /* HT capabilities */ 3373 caps = vap->iv_htcaps & 0xffff; 3374 3375 /* 3376 * We don't use this in STA mode; only in IBSS mode. 3377 * So in IBSS mode we base our HTCAP flags on the 3378 * given channel. 3379 */ 3380 3381 /* override 20/40 use based on current channel */ 3382 if (IEEE80211_IS_CHAN_HT40(c)) 3383 caps |= IEEE80211_HTCAP_CHWIDTH40; 3384 else 3385 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3386 3387 /* Use the currently configured values */ 3388 rxmax = vap->iv_ampdu_rxmax; 3389 density = vap->iv_ampdu_density; 3390 3391 /* adjust short GI based on channel and config */ 3392 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) 3393 caps &= ~IEEE80211_HTCAP_SHORTGI20; 3394 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || 3395 (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) 3396 caps &= ~IEEE80211_HTCAP_SHORTGI40; 3397 ADDSHORT(frm, caps); 3398 3399 /* HT parameters */ 3400 *frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) 3401 | SM(density, IEEE80211_HTCAP_MPDUDENSITY) 3402 ; 3403 frm++; 3404 3405 /* pre-zero remainder of ie */ 3406 memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - 3407 __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); 3408 3409 /* supported MCS set */ 3410 /* 3411 * XXX: For sta mode the rate set should be restricted based 3412 * on the AP's capabilities, but ni_htrates isn't setup when 3413 * we're called to form an AssocReq frame so for now we're 3414 * restricted to the device capabilities. 3415 */ 3416 ieee80211_set_mcsset(ic, frm); 3417 3418 frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - 3419 __offsetof(struct ieee80211_ie_htcap, hc_mcsset); 3420 3421 /* HT extended capabilities */ 3422 extcaps = vap->iv_htextcaps & 0xffff; 3423 3424 ADDSHORT(frm, extcaps); 3425 3426 frm += sizeof(struct ieee80211_ie_htcap) - 3427 __offsetof(struct ieee80211_ie_htcap, hc_txbf); 3428 3429 return frm; 3430 #undef ADDSHORT 3431 } 3432 3433 /* 3434 * Add 802.11n HT capabilities information element 3435 */ 3436 uint8_t * 3437 ieee80211_add_htcap_ch(uint8_t *frm, struct ieee80211vap *vap, 3438 struct ieee80211_channel *c) 3439 { 3440 frm[0] = IEEE80211_ELEMID_HTCAP; 3441 frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; 3442 return ieee80211_add_htcap_body_ch(frm + 2, vap, c); 3443 } 3444 3445 /* 3446 * Add Broadcom OUI wrapped standard HTCAP ie; this is 3447 * used for compatibility w/ pre-draft implementations. 3448 */ 3449 uint8_t * 3450 ieee80211_add_htcap_vendor(uint8_t *frm, struct ieee80211_node *ni) 3451 { 3452 frm[0] = IEEE80211_ELEMID_VENDOR; 3453 frm[1] = 4 + sizeof(struct ieee80211_ie_htcap) - 2; 3454 frm[2] = (BCM_OUI >> 0) & 0xff; 3455 frm[3] = (BCM_OUI >> 8) & 0xff; 3456 frm[4] = (BCM_OUI >> 16) & 0xff; 3457 frm[5] = BCM_OUI_HTCAP; 3458 return ieee80211_add_htcap_body(frm + 6, ni); 3459 } 3460 3461 /* 3462 * Construct the MCS bit mask of basic rates 3463 * for inclusion in an HT information element. 3464 */ 3465 static void 3466 ieee80211_set_basic_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs) 3467 { 3468 int i; 3469 3470 for (i = 0; i < rs->rs_nrates; i++) { 3471 int r = rs->rs_rates[i] & IEEE80211_RATE_VAL; 3472 if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) && 3473 r < IEEE80211_HTRATE_MAXSIZE) { 3474 /* NB: this assumes a particular implementation */ 3475 setbit(frm, r); 3476 } 3477 } 3478 } 3479 3480 /* 3481 * Update the HTINFO ie for a beacon frame. 3482 */ 3483 void 3484 ieee80211_ht_update_beacon(struct ieee80211vap *vap, 3485 struct ieee80211_beacon_offsets *bo) 3486 { 3487 #define PROTMODE (IEEE80211_HTINFO_OPMODE|IEEE80211_HTINFO_NONHT_PRESENT) 3488 struct ieee80211_node *ni; 3489 const struct ieee80211_channel *bsschan; 3490 struct ieee80211com *ic = vap->iv_ic; 3491 struct ieee80211_ie_htinfo *ht = 3492 (struct ieee80211_ie_htinfo *) bo->bo_htinfo; 3493 3494 ni = ieee80211_ref_node(vap->iv_bss); 3495 bsschan = ni->ni_chan; 3496 3497 /* XXX only update on channel change */ 3498 ht->hi_ctrlchannel = ieee80211_chan2ieee(ic, bsschan); 3499 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 3500 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PERM; 3501 else 3502 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PROH; 3503 if (IEEE80211_IS_CHAN_HT40U(bsschan)) 3504 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 3505 else if (IEEE80211_IS_CHAN_HT40D(bsschan)) 3506 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_BELOW; 3507 else 3508 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_NONE; 3509 if (IEEE80211_IS_CHAN_HT40(bsschan)) 3510 ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040; 3511 3512 /* protection mode */ 3513 /* 3514 * XXX TODO: this uses the global flag, not the per-VAP flag. 3515 * Eventually (once the protection modes are done per-channel 3516 * rather than per-VAP) we can flip this over to be per-VAP but 3517 * using the channel protection mode. 3518 */ 3519 ht->hi_byte2 = (ht->hi_byte2 &~ PROTMODE) | ic->ic_curhtprotmode; 3520 3521 ieee80211_free_node(ni); 3522 3523 /* XXX propagate to vendor ie's */ 3524 #undef PROTMODE 3525 } 3526 3527 /* 3528 * Add body of an HTINFO information element. 3529 * 3530 * NB: We don't use struct ieee80211_ie_htinfo because we can 3531 * be called to fillin both a standard ie and a compat ie that 3532 * has a vendor OUI at the front. 3533 */ 3534 static uint8_t * 3535 ieee80211_add_htinfo_body(uint8_t *frm, struct ieee80211_node *ni) 3536 { 3537 struct ieee80211vap *vap = ni->ni_vap; 3538 struct ieee80211com *ic = ni->ni_ic; 3539 3540 /* pre-zero remainder of ie */ 3541 memset(frm, 0, sizeof(struct ieee80211_ie_htinfo) - 2); 3542 3543 /* primary/control channel center */ 3544 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 3545 3546 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 3547 frm[0] = IEEE80211_HTINFO_RIFSMODE_PERM; 3548 else 3549 frm[0] = IEEE80211_HTINFO_RIFSMODE_PROH; 3550 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 3551 frm[0] |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 3552 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 3553 frm[0] |= IEEE80211_HTINFO_2NDCHAN_BELOW; 3554 else 3555 frm[0] |= IEEE80211_HTINFO_2NDCHAN_NONE; 3556 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 3557 frm[0] |= IEEE80211_HTINFO_TXWIDTH_2040; 3558 3559 /* 3560 * Add current protection mode. Unlike for beacons, 3561 * this will respect the per-VAP flags. 3562 */ 3563 frm[1] = vap->iv_curhtprotmode; 3564 3565 frm += 5; 3566 3567 /* basic MCS set */ 3568 ieee80211_set_basic_htrates(frm, &ni->ni_htrates); 3569 frm += sizeof(struct ieee80211_ie_htinfo) - 3570 __offsetof(struct ieee80211_ie_htinfo, hi_basicmcsset); 3571 return frm; 3572 } 3573 3574 /* 3575 * Add 802.11n HT information element. 3576 */ 3577 uint8_t * 3578 ieee80211_add_htinfo(uint8_t *frm, struct ieee80211_node *ni) 3579 { 3580 frm[0] = IEEE80211_ELEMID_HTINFO; 3581 frm[1] = sizeof(struct ieee80211_ie_htinfo) - 2; 3582 return ieee80211_add_htinfo_body(frm + 2, ni); 3583 } 3584 3585 /* 3586 * Add Broadcom OUI wrapped standard HTINFO ie; this is 3587 * used for compatibility w/ pre-draft implementations. 3588 */ 3589 uint8_t * 3590 ieee80211_add_htinfo_vendor(uint8_t *frm, struct ieee80211_node *ni) 3591 { 3592 frm[0] = IEEE80211_ELEMID_VENDOR; 3593 frm[1] = 4 + sizeof(struct ieee80211_ie_htinfo) - 2; 3594 frm[2] = (BCM_OUI >> 0) & 0xff; 3595 frm[3] = (BCM_OUI >> 8) & 0xff; 3596 frm[4] = (BCM_OUI >> 16) & 0xff; 3597 frm[5] = BCM_OUI_HTINFO; 3598 return ieee80211_add_htinfo_body(frm + 6, ni); 3599 } 3600