xref: /freebsd/sys/net80211/ieee80211_ht.c (revision fe50a38eb029e6e551fef9f6cf6ffa515f1897fa)
1 /*-
2  * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  */
25 
26 #include <sys/cdefs.h>
27 #ifdef __FreeBSD__
28 __FBSDID("$FreeBSD$");
29 #endif
30 
31 /*
32  * IEEE 802.11n protocol support.
33  */
34 
35 #include "opt_inet.h"
36 #include "opt_wlan.h"
37 
38 #include <sys/param.h>
39 #include <sys/kernel.h>
40 #include <sys/systm.h>
41 #include <sys/endian.h>
42 
43 #include <sys/socket.h>
44 
45 #include <net/if.h>
46 #include <net/if_var.h>
47 #include <net/if_media.h>
48 #include <net/ethernet.h>
49 
50 #include <net80211/ieee80211_var.h>
51 #include <net80211/ieee80211_action.h>
52 #include <net80211/ieee80211_input.h>
53 
54 /* define here, used throughout file */
55 #define	MS(_v, _f)	(((_v) & _f) >> _f##_S)
56 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
57 
58 const struct ieee80211_mcs_rates ieee80211_htrates[IEEE80211_HTRATE_MAXSIZE] = {
59 	{  13,  14,   27,   30 },	/* MCS 0 */
60 	{  26,  29,   54,   60 },	/* MCS 1 */
61 	{  39,  43,   81,   90 },	/* MCS 2 */
62 	{  52,  58,  108,  120 },	/* MCS 3 */
63 	{  78,  87,  162,  180 },	/* MCS 4 */
64 	{ 104, 116,  216,  240 },	/* MCS 5 */
65 	{ 117, 130,  243,  270 },	/* MCS 6 */
66 	{ 130, 144,  270,  300 },	/* MCS 7 */
67 	{  26,  29,   54,   60 },	/* MCS 8 */
68 	{  52,  58,  108,  120 },	/* MCS 9 */
69 	{  78,  87,  162,  180 },	/* MCS 10 */
70 	{ 104, 116,  216,  240 },	/* MCS 11 */
71 	{ 156, 173,  324,  360 },	/* MCS 12 */
72 	{ 208, 231,  432,  480 },	/* MCS 13 */
73 	{ 234, 260,  486,  540 },	/* MCS 14 */
74 	{ 260, 289,  540,  600 },	/* MCS 15 */
75 	{  39,  43,   81,   90 },	/* MCS 16 */
76 	{  78,  87,  162,  180 },	/* MCS 17 */
77 	{ 117, 130,  243,  270 },	/* MCS 18 */
78 	{ 156, 173,  324,  360 },	/* MCS 19 */
79 	{ 234, 260,  486,  540 },	/* MCS 20 */
80 	{ 312, 347,  648,  720 },	/* MCS 21 */
81 	{ 351, 390,  729,  810 },	/* MCS 22 */
82 	{ 390, 433,  810,  900 },	/* MCS 23 */
83 	{  52,  58,  108,  120 },	/* MCS 24 */
84 	{ 104, 116,  216,  240 },	/* MCS 25 */
85 	{ 156, 173,  324,  360 },	/* MCS 26 */
86 	{ 208, 231,  432,  480 },	/* MCS 27 */
87 	{ 312, 347,  648,  720 },	/* MCS 28 */
88 	{ 416, 462,  864,  960 },	/* MCS 29 */
89 	{ 468, 520,  972, 1080 },	/* MCS 30 */
90 	{ 520, 578, 1080, 1200 },	/* MCS 31 */
91 	{   0,   0,   12,   13 },	/* MCS 32 */
92 	{  78,  87,  162,  180 },	/* MCS 33 */
93 	{ 104, 116,  216,  240 },	/* MCS 34 */
94 	{ 130, 144,  270,  300 },	/* MCS 35 */
95 	{ 117, 130,  243,  270 },	/* MCS 36 */
96 	{ 156, 173,  324,  360 },	/* MCS 37 */
97 	{ 195, 217,  405,  450 },	/* MCS 38 */
98 	{ 104, 116,  216,  240 },	/* MCS 39 */
99 	{ 130, 144,  270,  300 },	/* MCS 40 */
100 	{ 130, 144,  270,  300 },	/* MCS 41 */
101 	{ 156, 173,  324,  360 },	/* MCS 42 */
102 	{ 182, 202,  378,  420 },	/* MCS 43 */
103 	{ 182, 202,  378,  420 },	/* MCS 44 */
104 	{ 208, 231,  432,  480 },	/* MCS 45 */
105 	{ 156, 173,  324,  360 },	/* MCS 46 */
106 	{ 195, 217,  405,  450 },	/* MCS 47 */
107 	{ 195, 217,  405,  450 },	/* MCS 48 */
108 	{ 234, 260,  486,  540 },	/* MCS 49 */
109 	{ 273, 303,  567,  630 },	/* MCS 50 */
110 	{ 273, 303,  567,  630 },	/* MCS 51 */
111 	{ 312, 347,  648,  720 },	/* MCS 52 */
112 	{ 130, 144,  270,  300 },	/* MCS 53 */
113 	{ 156, 173,  324,  360 },	/* MCS 54 */
114 	{ 182, 202,  378,  420 },	/* MCS 55 */
115 	{ 156, 173,  324,  360 },	/* MCS 56 */
116 	{ 182, 202,  378,  420 },	/* MCS 57 */
117 	{ 208, 231,  432,  480 },	/* MCS 58 */
118 	{ 234, 260,  486,  540 },	/* MCS 59 */
119 	{ 208, 231,  432,  480 },	/* MCS 60 */
120 	{ 234, 260,  486,  540 },	/* MCS 61 */
121 	{ 260, 289,  540,  600 },	/* MCS 62 */
122 	{ 260, 289,  540,  600 },	/* MCS 63 */
123 	{ 286, 318,  594,  660 },	/* MCS 64 */
124 	{ 195, 217,  405,  450 },	/* MCS 65 */
125 	{ 234, 260,  486,  540 },	/* MCS 66 */
126 	{ 273, 303,  567,  630 },	/* MCS 67 */
127 	{ 234, 260,  486,  540 },	/* MCS 68 */
128 	{ 273, 303,  567,  630 },	/* MCS 69 */
129 	{ 312, 347,  648,  720 },	/* MCS 70 */
130 	{ 351, 390,  729,  810 },	/* MCS 71 */
131 	{ 312, 347,  648,  720 },	/* MCS 72 */
132 	{ 351, 390,  729,  810 },	/* MCS 73 */
133 	{ 390, 433,  810,  900 },	/* MCS 74 */
134 	{ 390, 433,  810,  900 },	/* MCS 75 */
135 	{ 429, 477,  891,  990 },	/* MCS 76 */
136 };
137 
138 #ifdef IEEE80211_AMPDU_AGE
139 static	int ieee80211_ampdu_age = -1;	/* threshold for ampdu reorder q (ms) */
140 SYSCTL_PROC(_net_wlan, OID_AUTO, ampdu_age, CTLTYPE_INT | CTLFLAG_RW,
141 	&ieee80211_ampdu_age, 0, ieee80211_sysctl_msecs_ticks, "I",
142 	"AMPDU max reorder age (ms)");
143 #endif
144 
145 static	int ieee80211_recv_bar_ena = 1;
146 SYSCTL_INT(_net_wlan, OID_AUTO, recv_bar, CTLFLAG_RW, &ieee80211_recv_bar_ena,
147 	    0, "BAR frame processing (ena/dis)");
148 
149 static	int ieee80211_addba_timeout = -1;/* timeout for ADDBA response */
150 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_timeout, CTLTYPE_INT | CTLFLAG_RW,
151 	&ieee80211_addba_timeout, 0, ieee80211_sysctl_msecs_ticks, "I",
152 	"ADDBA request timeout (ms)");
153 static	int ieee80211_addba_backoff = -1;/* backoff after max ADDBA requests */
154 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_backoff, CTLTYPE_INT | CTLFLAG_RW,
155 	&ieee80211_addba_backoff, 0, ieee80211_sysctl_msecs_ticks, "I",
156 	"ADDBA request backoff (ms)");
157 static	int ieee80211_addba_maxtries = 3;/* max ADDBA requests before backoff */
158 SYSCTL_INT(_net_wlan, OID_AUTO, addba_maxtries, CTLFLAG_RW,
159 	&ieee80211_addba_maxtries, 0, "max ADDBA requests sent before backoff");
160 
161 static	int ieee80211_bar_timeout = -1;	/* timeout waiting for BAR response */
162 static	int ieee80211_bar_maxtries = 50;/* max BAR requests before DELBA */
163 
164 static	ieee80211_recv_action_func ht_recv_action_ba_addba_request;
165 static	ieee80211_recv_action_func ht_recv_action_ba_addba_response;
166 static	ieee80211_recv_action_func ht_recv_action_ba_delba;
167 static	ieee80211_recv_action_func ht_recv_action_ht_mimopwrsave;
168 static	ieee80211_recv_action_func ht_recv_action_ht_txchwidth;
169 
170 static	ieee80211_send_action_func ht_send_action_ba_addba;
171 static	ieee80211_send_action_func ht_send_action_ba_delba;
172 static	ieee80211_send_action_func ht_send_action_ht_txchwidth;
173 
174 static void
175 ieee80211_ht_init(void)
176 {
177 	/*
178 	 * Setup HT parameters that depends on the clock frequency.
179 	 */
180 #ifdef IEEE80211_AMPDU_AGE
181 	ieee80211_ampdu_age = msecs_to_ticks(500);
182 #endif
183 	ieee80211_addba_timeout = msecs_to_ticks(250);
184 	ieee80211_addba_backoff = msecs_to_ticks(10*1000);
185 	ieee80211_bar_timeout = msecs_to_ticks(250);
186 	/*
187 	 * Register action frame handlers.
188 	 */
189 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
190 	    IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_recv_action_ba_addba_request);
191 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
192 	    IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_recv_action_ba_addba_response);
193 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
194 	    IEEE80211_ACTION_BA_DELBA, ht_recv_action_ba_delba);
195 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT,
196 	    IEEE80211_ACTION_HT_MIMOPWRSAVE, ht_recv_action_ht_mimopwrsave);
197 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT,
198 	    IEEE80211_ACTION_HT_TXCHWIDTH, ht_recv_action_ht_txchwidth);
199 
200 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
201 	    IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_send_action_ba_addba);
202 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
203 	    IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_send_action_ba_addba);
204 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
205 	    IEEE80211_ACTION_BA_DELBA, ht_send_action_ba_delba);
206 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_HT,
207 	    IEEE80211_ACTION_HT_TXCHWIDTH, ht_send_action_ht_txchwidth);
208 }
209 SYSINIT(wlan_ht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_ht_init, NULL);
210 
211 static int ieee80211_ampdu_enable(struct ieee80211_node *ni,
212 	struct ieee80211_tx_ampdu *tap);
213 static int ieee80211_addba_request(struct ieee80211_node *ni,
214 	struct ieee80211_tx_ampdu *tap,
215 	int dialogtoken, int baparamset, int batimeout);
216 static int ieee80211_addba_response(struct ieee80211_node *ni,
217 	struct ieee80211_tx_ampdu *tap,
218 	int code, int baparamset, int batimeout);
219 static void ieee80211_addba_stop(struct ieee80211_node *ni,
220 	struct ieee80211_tx_ampdu *tap);
221 static void null_addba_response_timeout(struct ieee80211_node *ni,
222 	struct ieee80211_tx_ampdu *tap);
223 
224 static void ieee80211_bar_response(struct ieee80211_node *ni,
225 	struct ieee80211_tx_ampdu *tap, int status);
226 static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap);
227 static void bar_stop_timer(struct ieee80211_tx_ampdu *tap);
228 static int ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *,
229 	int baparamset, int batimeout, int baseqctl);
230 static void ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *);
231 
232 void
233 ieee80211_ht_attach(struct ieee80211com *ic)
234 {
235 	/* setup default aggregation policy */
236 	ic->ic_recv_action = ieee80211_recv_action;
237 	ic->ic_send_action = ieee80211_send_action;
238 	ic->ic_ampdu_enable = ieee80211_ampdu_enable;
239 	ic->ic_addba_request = ieee80211_addba_request;
240 	ic->ic_addba_response = ieee80211_addba_response;
241 	ic->ic_addba_response_timeout = null_addba_response_timeout;
242 	ic->ic_addba_stop = ieee80211_addba_stop;
243 	ic->ic_bar_response = ieee80211_bar_response;
244 	ic->ic_ampdu_rx_start = ampdu_rx_start;
245 	ic->ic_ampdu_rx_stop = ampdu_rx_stop;
246 
247 	ic->ic_htprotmode = IEEE80211_PROT_RTSCTS;
248 	ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE;
249 }
250 
251 void
252 ieee80211_ht_detach(struct ieee80211com *ic)
253 {
254 }
255 
256 void
257 ieee80211_ht_vattach(struct ieee80211vap *vap)
258 {
259 
260 	/* driver can override defaults */
261 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_8K;
262 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_NA;
263 	vap->iv_ampdu_limit = vap->iv_ampdu_rxmax;
264 	vap->iv_amsdu_limit = vap->iv_htcaps & IEEE80211_HTCAP_MAXAMSDU;
265 	/* tx aggregation traffic thresholds */
266 	vap->iv_ampdu_mintraffic[WME_AC_BK] = 128;
267 	vap->iv_ampdu_mintraffic[WME_AC_BE] = 64;
268 	vap->iv_ampdu_mintraffic[WME_AC_VO] = 32;
269 	vap->iv_ampdu_mintraffic[WME_AC_VI] = 32;
270 
271 	if (vap->iv_htcaps & IEEE80211_HTC_HT) {
272 		/*
273 		 * Device is HT capable; enable all HT-related
274 		 * facilities by default.
275 		 * XXX these choices may be too aggressive.
276 		 */
277 		vap->iv_flags_ht |= IEEE80211_FHT_HT
278 				 |  IEEE80211_FHT_HTCOMPAT
279 				 ;
280 		if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI20)
281 			vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20;
282 		/* XXX infer from channel list? */
283 		if (vap->iv_htcaps & IEEE80211_HTCAP_CHWIDTH40) {
284 			vap->iv_flags_ht |= IEEE80211_FHT_USEHT40;
285 			if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI40)
286 				vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40;
287 		}
288 		/* enable RIFS if capable */
289 		if (vap->iv_htcaps & IEEE80211_HTC_RIFS)
290 			vap->iv_flags_ht |= IEEE80211_FHT_RIFS;
291 
292 		/* NB: A-MPDU and A-MSDU rx are mandated, these are tx only */
293 		vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX;
294 		if (vap->iv_htcaps & IEEE80211_HTC_AMPDU)
295 			vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX;
296 		vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX;
297 		if (vap->iv_htcaps & IEEE80211_HTC_AMSDU)
298 			vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX;
299 	}
300 	/* NB: disable default legacy WDS, too many issues right now */
301 	if (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)
302 		vap->iv_flags_ht &= ~IEEE80211_FHT_HT;
303 }
304 
305 void
306 ieee80211_ht_vdetach(struct ieee80211vap *vap)
307 {
308 }
309 
310 static int
311 ht_getrate(struct ieee80211com *ic, int index, enum ieee80211_phymode mode,
312     int ratetype)
313 {
314 	int mword, rate;
315 
316 	mword = ieee80211_rate2media(ic, index | IEEE80211_RATE_MCS, mode);
317 	if (IFM_SUBTYPE(mword) != IFM_IEEE80211_MCS)
318 		return (0);
319 	switch (ratetype) {
320 	case 0:
321 		rate = ieee80211_htrates[index].ht20_rate_800ns;
322 		break;
323 	case 1:
324 		rate = ieee80211_htrates[index].ht20_rate_400ns;
325 		break;
326 	case 2:
327 		rate = ieee80211_htrates[index].ht40_rate_800ns;
328 		break;
329 	default:
330 		rate = ieee80211_htrates[index].ht40_rate_400ns;
331 		break;
332 	}
333 	return (rate);
334 }
335 
336 static struct printranges {
337 	int	minmcs;
338 	int	maxmcs;
339 	int	txstream;
340 	int	ratetype;
341 	int	htcapflags;
342 } ranges[] = {
343 	{  0,  7, 1, 0, 0 },
344 	{  8, 15, 2, 0, 0 },
345 	{ 16, 23, 3, 0, 0 },
346 	{ 24, 31, 4, 0, 0 },
347 	{ 32,  0, 1, 2, IEEE80211_HTC_TXMCS32 },
348 	{ 33, 38, 2, 0, IEEE80211_HTC_TXUNEQUAL },
349 	{ 39, 52, 3, 0, IEEE80211_HTC_TXUNEQUAL },
350 	{ 53, 76, 4, 0, IEEE80211_HTC_TXUNEQUAL },
351 	{  0,  0, 0, 0, 0 },
352 };
353 
354 static void
355 ht_rateprint(struct ieee80211com *ic, enum ieee80211_phymode mode, int ratetype)
356 {
357 	int minrate, maxrate;
358 	struct printranges *range;
359 
360 	for (range = ranges; range->txstream != 0; range++) {
361 		if (ic->ic_txstream < range->txstream)
362 			continue;
363 		if (range->htcapflags &&
364 		    (ic->ic_htcaps & range->htcapflags) == 0)
365 			continue;
366 		if (ratetype < range->ratetype)
367 			continue;
368 		minrate = ht_getrate(ic, range->minmcs, mode, ratetype);
369 		maxrate = ht_getrate(ic, range->maxmcs, mode, ratetype);
370 		if (range->maxmcs) {
371 			ic_printf(ic, "MCS %d-%d: %d%sMbps - %d%sMbps\n",
372 			    range->minmcs, range->maxmcs,
373 			    minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""),
374 			    maxrate/2, ((maxrate & 0x1) != 0 ? ".5" : ""));
375 		} else {
376 			ic_printf(ic, "MCS %d: %d%sMbps\n", range->minmcs,
377 			    minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""));
378 		}
379 	}
380 }
381 
382 static void
383 ht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode)
384 {
385 	const char *modestr = ieee80211_phymode_name[mode];
386 
387 	ic_printf(ic, "%s MCS 20MHz\n", modestr);
388 	ht_rateprint(ic, mode, 0);
389 	if (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) {
390 		ic_printf(ic, "%s MCS 20MHz SGI\n", modestr);
391 		ht_rateprint(ic, mode, 1);
392 	}
393 	if (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) {
394 		ic_printf(ic, "%s MCS 40MHz:\n", modestr);
395 		ht_rateprint(ic, mode, 2);
396 	}
397 	if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
398 	    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) {
399 		ic_printf(ic, "%s MCS 40MHz SGI:\n", modestr);
400 		ht_rateprint(ic, mode, 3);
401 	}
402 }
403 
404 void
405 ieee80211_ht_announce(struct ieee80211com *ic)
406 {
407 
408 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
409 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG))
410 		ic_printf(ic, "%dT%dR\n", ic->ic_txstream, ic->ic_rxstream);
411 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA))
412 		ht_announce(ic, IEEE80211_MODE_11NA);
413 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NG))
414 		ht_announce(ic, IEEE80211_MODE_11NG);
415 }
416 
417 static struct ieee80211_htrateset htrateset;
418 
419 const struct ieee80211_htrateset *
420 ieee80211_get_suphtrates(struct ieee80211com *ic,
421     const struct ieee80211_channel *c)
422 {
423 #define	ADDRATE(x)	do {						\
424 	htrateset.rs_rates[htrateset.rs_nrates] = x;			\
425 	htrateset.rs_nrates++;						\
426 } while (0)
427 	int i;
428 
429 	memset(&htrateset, 0, sizeof(struct ieee80211_htrateset));
430 	for (i = 0; i < ic->ic_txstream * 8; i++)
431 		ADDRATE(i);
432 	if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
433 	    (ic->ic_htcaps & IEEE80211_HTC_TXMCS32))
434 		ADDRATE(32);
435 	if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) {
436 		if (ic->ic_txstream >= 2) {
437 			 for (i = 33; i <= 38; i++)
438 				ADDRATE(i);
439 		}
440 		if (ic->ic_txstream >= 3) {
441 			for (i = 39; i <= 52; i++)
442 				ADDRATE(i);
443 		}
444 		if (ic->ic_txstream == 4) {
445 			for (i = 53; i <= 76; i++)
446 				ADDRATE(i);
447 		}
448 	}
449 	return &htrateset;
450 #undef	ADDRATE
451 }
452 
453 /*
454  * Receive processing.
455  */
456 
457 /*
458  * Decap the encapsulated A-MSDU frames and dispatch all but
459  * the last for delivery.  The last frame is returned for
460  * delivery via the normal path.
461  */
462 struct mbuf *
463 ieee80211_decap_amsdu(struct ieee80211_node *ni, struct mbuf *m)
464 {
465 	struct ieee80211vap *vap = ni->ni_vap;
466 	int framelen;
467 	struct mbuf *n;
468 
469 	/* discard 802.3 header inserted by ieee80211_decap */
470 	m_adj(m, sizeof(struct ether_header));
471 
472 	vap->iv_stats.is_amsdu_decap++;
473 
474 	for (;;) {
475 		/*
476 		 * Decap the first frame, bust it apart from the
477 		 * remainder and deliver.  We leave the last frame
478 		 * delivery to the caller (for consistency with other
479 		 * code paths, could also do it here).
480 		 */
481 		m = ieee80211_decap1(m, &framelen);
482 		if (m == NULL) {
483 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
484 			    ni->ni_macaddr, "a-msdu", "%s", "decap failed");
485 			vap->iv_stats.is_amsdu_tooshort++;
486 			return NULL;
487 		}
488 		if (m->m_pkthdr.len == framelen)
489 			break;
490 		n = m_split(m, framelen, M_NOWAIT);
491 		if (n == NULL) {
492 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
493 			    ni->ni_macaddr, "a-msdu",
494 			    "%s", "unable to split encapsulated frames");
495 			vap->iv_stats.is_amsdu_split++;
496 			m_freem(m);			/* NB: must reclaim */
497 			return NULL;
498 		}
499 		vap->iv_deliver_data(vap, ni, m);
500 
501 		/*
502 		 * Remove frame contents; each intermediate frame
503 		 * is required to be aligned to a 4-byte boundary.
504 		 */
505 		m = n;
506 		m_adj(m, roundup2(framelen, 4) - framelen);	/* padding */
507 	}
508 	return m;				/* last delivered by caller */
509 }
510 
511 /*
512  * Purge all frames in the A-MPDU re-order queue.
513  */
514 static void
515 ampdu_rx_purge(struct ieee80211_rx_ampdu *rap)
516 {
517 	struct mbuf *m;
518 	int i;
519 
520 	for (i = 0; i < rap->rxa_wnd; i++) {
521 		m = rap->rxa_m[i];
522 		if (m != NULL) {
523 			rap->rxa_m[i] = NULL;
524 			rap->rxa_qbytes -= m->m_pkthdr.len;
525 			m_freem(m);
526 			if (--rap->rxa_qframes == 0)
527 				break;
528 		}
529 	}
530 	KASSERT(rap->rxa_qbytes == 0 && rap->rxa_qframes == 0,
531 	    ("lost %u data, %u frames on ampdu rx q",
532 	    rap->rxa_qbytes, rap->rxa_qframes));
533 }
534 
535 /*
536  * Start A-MPDU rx/re-order processing for the specified TID.
537  */
538 static int
539 ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
540 	int baparamset, int batimeout, int baseqctl)
541 {
542 	int bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
543 
544 	if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) {
545 		/*
546 		 * AMPDU previously setup and not terminated with a DELBA,
547 		 * flush the reorder q's in case anything remains.
548 		 */
549 		ampdu_rx_purge(rap);
550 	}
551 	memset(rap, 0, sizeof(*rap));
552 	rap->rxa_wnd = (bufsiz == 0) ?
553 	    IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
554 	rap->rxa_start = MS(baseqctl, IEEE80211_BASEQ_START);
555 	rap->rxa_flags |=  IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND;
556 
557 	return 0;
558 }
559 
560 /*
561  * Public function; manually setup the RX ampdu state.
562  */
563 int
564 ieee80211_ampdu_rx_start_ext(struct ieee80211_node *ni, int tid, int seq, int baw)
565 {
566 	struct ieee80211_rx_ampdu *rap;
567 
568 	/* XXX TODO: sanity check tid, seq, baw */
569 
570 	rap = &ni->ni_rx_ampdu[tid];
571 
572 	if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) {
573 		/*
574 		 * AMPDU previously setup and not terminated with a DELBA,
575 		 * flush the reorder q's in case anything remains.
576 		 */
577 		ampdu_rx_purge(rap);
578 	}
579 
580 	memset(rap, 0, sizeof(*rap));
581 	rap->rxa_wnd = (baw== 0) ?
582 	    IEEE80211_AGGR_BAWMAX : min(baw, IEEE80211_AGGR_BAWMAX);
583 	rap->rxa_start = seq;
584 	rap->rxa_flags |=  IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND;
585 
586 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni,
587 	    "%s: tid=%d, start=%d, wnd=%d, flags=0x%08x\n",
588 	    __func__,
589 	    tid,
590 	    seq,
591 	    rap->rxa_wnd,
592 	    rap->rxa_flags);
593 
594 	return 0;
595 }
596 
597 /*
598  * Stop A-MPDU rx processing for the specified TID.
599  */
600 static void
601 ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
602 {
603 
604 	ampdu_rx_purge(rap);
605 	rap->rxa_flags &= ~(IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND);
606 }
607 
608 /*
609  * Dispatch a frame from the A-MPDU reorder queue.  The
610  * frame is fed back into ieee80211_input marked with an
611  * M_AMPDU_MPDU flag so it doesn't come back to us (it also
612  * permits ieee80211_input to optimize re-processing).
613  */
614 static __inline void
615 ampdu_dispatch(struct ieee80211_node *ni, struct mbuf *m)
616 {
617 	m->m_flags |= M_AMPDU_MPDU;	/* bypass normal processing */
618 	/* NB: rssi and noise are ignored w/ M_AMPDU_MPDU set */
619 	(void) ieee80211_input(ni, m, 0, 0);
620 }
621 
622 /*
623  * Dispatch as many frames as possible from the re-order queue.
624  * Frames will always be "at the front"; we process all frames
625  * up to the first empty slot in the window.  On completion we
626  * cleanup state if there are still pending frames in the current
627  * BA window.  We assume the frame at slot 0 is already handled
628  * by the caller; we always start at slot 1.
629  */
630 static void
631 ampdu_rx_dispatch(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni)
632 {
633 	struct ieee80211vap *vap = ni->ni_vap;
634 	struct mbuf *m;
635 	int i;
636 
637 	/* flush run of frames */
638 	for (i = 1; i < rap->rxa_wnd; i++) {
639 		m = rap->rxa_m[i];
640 		if (m == NULL)
641 			break;
642 		rap->rxa_m[i] = NULL;
643 		rap->rxa_qbytes -= m->m_pkthdr.len;
644 		rap->rxa_qframes--;
645 
646 		ampdu_dispatch(ni, m);
647 	}
648 	/*
649 	 * If frames remain, copy the mbuf pointers down so
650 	 * they correspond to the offsets in the new window.
651 	 */
652 	if (rap->rxa_qframes != 0) {
653 		int n = rap->rxa_qframes, j;
654 		for (j = i+1; j < rap->rxa_wnd; j++) {
655 			if (rap->rxa_m[j] != NULL) {
656 				rap->rxa_m[j-i] = rap->rxa_m[j];
657 				rap->rxa_m[j] = NULL;
658 				if (--n == 0)
659 					break;
660 			}
661 		}
662 		KASSERT(n == 0, ("lost %d frames", n));
663 		vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes;
664 	}
665 	/*
666 	 * Adjust the start of the BA window to
667 	 * reflect the frames just dispatched.
668 	 */
669 	rap->rxa_start = IEEE80211_SEQ_ADD(rap->rxa_start, i);
670 	vap->iv_stats.is_ampdu_rx_oor += i;
671 }
672 
673 #ifdef IEEE80211_AMPDU_AGE
674 /*
675  * Dispatch all frames in the A-MPDU re-order queue.
676  */
677 static void
678 ampdu_rx_flush(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
679 {
680 	struct ieee80211vap *vap = ni->ni_vap;
681 	struct mbuf *m;
682 	int i;
683 
684 	for (i = 0; i < rap->rxa_wnd; i++) {
685 		m = rap->rxa_m[i];
686 		if (m == NULL)
687 			continue;
688 		rap->rxa_m[i] = NULL;
689 		rap->rxa_qbytes -= m->m_pkthdr.len;
690 		rap->rxa_qframes--;
691 		vap->iv_stats.is_ampdu_rx_oor++;
692 
693 		ampdu_dispatch(ni, m);
694 		if (rap->rxa_qframes == 0)
695 			break;
696 	}
697 }
698 #endif /* IEEE80211_AMPDU_AGE */
699 
700 /*
701  * Dispatch all frames in the A-MPDU re-order queue
702  * preceding the specified sequence number.  This logic
703  * handles window moves due to a received MSDU or BAR.
704  */
705 static void
706 ampdu_rx_flush_upto(struct ieee80211_node *ni,
707 	struct ieee80211_rx_ampdu *rap, ieee80211_seq winstart)
708 {
709 	struct ieee80211vap *vap = ni->ni_vap;
710 	struct mbuf *m;
711 	ieee80211_seq seqno;
712 	int i;
713 
714 	/*
715 	 * Flush any complete MSDU's with a sequence number lower
716 	 * than winstart.  Gaps may exist.  Note that we may actually
717 	 * dispatch frames past winstart if a run continues; this is
718 	 * an optimization that avoids having to do a separate pass
719 	 * to dispatch frames after moving the BA window start.
720 	 */
721 	seqno = rap->rxa_start;
722 	for (i = 0; i < rap->rxa_wnd; i++) {
723 		m = rap->rxa_m[i];
724 		if (m != NULL) {
725 			rap->rxa_m[i] = NULL;
726 			rap->rxa_qbytes -= m->m_pkthdr.len;
727 			rap->rxa_qframes--;
728 			vap->iv_stats.is_ampdu_rx_oor++;
729 
730 			ampdu_dispatch(ni, m);
731 		} else {
732 			if (!IEEE80211_SEQ_BA_BEFORE(seqno, winstart))
733 				break;
734 		}
735 		seqno = IEEE80211_SEQ_INC(seqno);
736 	}
737 	/*
738 	 * If frames remain, copy the mbuf pointers down so
739 	 * they correspond to the offsets in the new window.
740 	 */
741 	if (rap->rxa_qframes != 0) {
742 		int n = rap->rxa_qframes, j;
743 
744 		/* NB: this loop assumes i > 0 and/or rxa_m[0] is NULL */
745 		KASSERT(rap->rxa_m[0] == NULL,
746 		    ("%s: BA window slot 0 occupied", __func__));
747 		for (j = i+1; j < rap->rxa_wnd; j++) {
748 			if (rap->rxa_m[j] != NULL) {
749 				rap->rxa_m[j-i] = rap->rxa_m[j];
750 				rap->rxa_m[j] = NULL;
751 				if (--n == 0)
752 					break;
753 			}
754 		}
755 		KASSERT(n == 0, ("%s: lost %d frames, qframes %d off %d "
756 		    "BA win <%d:%d> winstart %d",
757 		    __func__, n, rap->rxa_qframes, i, rap->rxa_start,
758 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
759 		    winstart));
760 		vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes;
761 	}
762 	/*
763 	 * Move the start of the BA window; we use the
764 	 * sequence number of the last MSDU that was
765 	 * passed up the stack+1 or winstart if stopped on
766 	 * a gap in the reorder buffer.
767 	 */
768 	rap->rxa_start = seqno;
769 }
770 
771 /*
772  * Process a received QoS data frame for an HT station.  Handle
773  * A-MPDU reordering: if this frame is received out of order
774  * and falls within the BA window hold onto it.  Otherwise if
775  * this frame completes a run, flush any pending frames.  We
776  * return 1 if the frame is consumed.  A 0 is returned if
777  * the frame should be processed normally by the caller.
778  */
779 int
780 ieee80211_ampdu_reorder(struct ieee80211_node *ni, struct mbuf *m)
781 {
782 #define	IEEE80211_FC0_QOSDATA \
783 	(IEEE80211_FC0_TYPE_DATA|IEEE80211_FC0_SUBTYPE_QOS|IEEE80211_FC0_VERSION_0)
784 #define	PROCESS		0	/* caller should process frame */
785 #define	CONSUMED	1	/* frame consumed, caller does nothing */
786 	struct ieee80211vap *vap = ni->ni_vap;
787 	struct ieee80211_qosframe *wh;
788 	struct ieee80211_rx_ampdu *rap;
789 	ieee80211_seq rxseq;
790 	uint8_t tid;
791 	int off;
792 
793 	KASSERT((m->m_flags & (M_AMPDU | M_AMPDU_MPDU)) == M_AMPDU,
794 	    ("!a-mpdu or already re-ordered, flags 0x%x", m->m_flags));
795 	KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta"));
796 
797 	/* NB: m_len known to be sufficient */
798 	wh = mtod(m, struct ieee80211_qosframe *);
799 	if (wh->i_fc[0] != IEEE80211_FC0_QOSDATA) {
800 		/*
801 		 * Not QoS data, shouldn't get here but just
802 		 * return it to the caller for processing.
803 		 */
804 		return PROCESS;
805 	}
806 	if (IEEE80211_IS_DSTODS(wh))
807 		tid = ((struct ieee80211_qosframe_addr4 *)wh)->i_qos[0];
808 	else
809 		tid = wh->i_qos[0];
810 	tid &= IEEE80211_QOS_TID;
811 	rap = &ni->ni_rx_ampdu[tid];
812 	if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
813 		/*
814 		 * No ADDBA request yet, don't touch.
815 		 */
816 		return PROCESS;
817 	}
818 	rxseq = le16toh(*(uint16_t *)wh->i_seq);
819 	if ((rxseq & IEEE80211_SEQ_FRAG_MASK) != 0) {
820 		/*
821 		 * Fragments are not allowed; toss.
822 		 */
823 		IEEE80211_DISCARD_MAC(vap,
824 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
825 		    "A-MPDU", "fragment, rxseq 0x%x tid %u%s", rxseq, tid,
826 		    wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
827 		vap->iv_stats.is_ampdu_rx_drop++;
828 		IEEE80211_NODE_STAT(ni, rx_drop);
829 		m_freem(m);
830 		return CONSUMED;
831 	}
832 	rxseq >>= IEEE80211_SEQ_SEQ_SHIFT;
833 	rap->rxa_nframes++;
834 again:
835 	if (rxseq == rap->rxa_start) {
836 		/*
837 		 * First frame in window.
838 		 */
839 		if (rap->rxa_qframes != 0) {
840 			/*
841 			 * Dispatch as many packets as we can.
842 			 */
843 			KASSERT(rap->rxa_m[0] == NULL, ("unexpected dup"));
844 			ampdu_dispatch(ni, m);
845 			ampdu_rx_dispatch(rap, ni);
846 			return CONSUMED;
847 		} else {
848 			/*
849 			 * In order; advance window and notify
850 			 * caller to dispatch directly.
851 			 */
852 			rap->rxa_start = IEEE80211_SEQ_INC(rxseq);
853 			return PROCESS;
854 		}
855 	}
856 	/*
857 	 * Frame is out of order; store if in the BA window.
858 	 */
859 	/* calculate offset in BA window */
860 	off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start);
861 	if (off < rap->rxa_wnd) {
862 		/*
863 		 * Common case (hopefully): in the BA window.
864 		 * Sec 9.10.7.6.2 a) (p.137)
865 		 */
866 #ifdef IEEE80211_AMPDU_AGE
867 		/*
868 		 * Check for frames sitting too long in the reorder queue.
869 		 * This should only ever happen if frames are not delivered
870 		 * without the sender otherwise notifying us (e.g. with a
871 		 * BAR to move the window).  Typically this happens because
872 		 * of vendor bugs that cause the sequence number to jump.
873 		 * When this happens we get a gap in the reorder queue that
874 		 * leaves frame sitting on the queue until they get pushed
875 		 * out due to window moves.  When the vendor does not send
876 		 * BAR this move only happens due to explicit packet sends
877 		 *
878 		 * NB: we only track the time of the oldest frame in the
879 		 * reorder q; this means that if we flush we might push
880 		 * frames that still "new"; if this happens then subsequent
881 		 * frames will result in BA window moves which cost something
882 		 * but is still better than a big throughput dip.
883 		 */
884 		if (rap->rxa_qframes != 0) {
885 			/* XXX honor batimeout? */
886 			if (ticks - rap->rxa_age > ieee80211_ampdu_age) {
887 				/*
888 				 * Too long since we received the first
889 				 * frame; flush the reorder buffer.
890 				 */
891 				if (rap->rxa_qframes != 0) {
892 					vap->iv_stats.is_ampdu_rx_age +=
893 					    rap->rxa_qframes;
894 					ampdu_rx_flush(ni, rap);
895 				}
896 				rap->rxa_start = IEEE80211_SEQ_INC(rxseq);
897 				return PROCESS;
898 			}
899 		} else {
900 			/*
901 			 * First frame, start aging timer.
902 			 */
903 			rap->rxa_age = ticks;
904 		}
905 #endif /* IEEE80211_AMPDU_AGE */
906 		/* save packet */
907 		if (rap->rxa_m[off] == NULL) {
908 			rap->rxa_m[off] = m;
909 			rap->rxa_qframes++;
910 			rap->rxa_qbytes += m->m_pkthdr.len;
911 			vap->iv_stats.is_ampdu_rx_reorder++;
912 		} else {
913 			IEEE80211_DISCARD_MAC(vap,
914 			    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
915 			    ni->ni_macaddr, "a-mpdu duplicate",
916 			    "seqno %u tid %u BA win <%u:%u>",
917 			    rxseq, tid, rap->rxa_start,
918 			    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1));
919 			vap->iv_stats.is_rx_dup++;
920 			IEEE80211_NODE_STAT(ni, rx_dup);
921 			m_freem(m);
922 		}
923 		return CONSUMED;
924 	}
925 	if (off < IEEE80211_SEQ_BA_RANGE) {
926 		/*
927 		 * Outside the BA window, but within range;
928 		 * flush the reorder q and move the window.
929 		 * Sec 9.10.7.6.2 b) (p.138)
930 		 */
931 		IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
932 		    "move BA win <%u:%u> (%u frames) rxseq %u tid %u",
933 		    rap->rxa_start,
934 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
935 		    rap->rxa_qframes, rxseq, tid);
936 		vap->iv_stats.is_ampdu_rx_move++;
937 
938 		/*
939 		 * The spec says to flush frames up to but not including:
940 		 * 	WinStart_B = rxseq - rap->rxa_wnd + 1
941 		 * Then insert the frame or notify the caller to process
942 		 * it immediately.  We can safely do this by just starting
943 		 * over again because we know the frame will now be within
944 		 * the BA window.
945 		 */
946 		/* NB: rxa_wnd known to be >0 */
947 		ampdu_rx_flush_upto(ni, rap,
948 		    IEEE80211_SEQ_SUB(rxseq, rap->rxa_wnd-1));
949 		goto again;
950 	} else {
951 		/*
952 		 * Outside the BA window and out of range; toss.
953 		 * Sec 9.10.7.6.2 c) (p.138)
954 		 */
955 		IEEE80211_DISCARD_MAC(vap,
956 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
957 		    "MPDU", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s",
958 		    rap->rxa_start,
959 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
960 		    rap->rxa_qframes, rxseq, tid,
961 		    wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
962 		vap->iv_stats.is_ampdu_rx_drop++;
963 		IEEE80211_NODE_STAT(ni, rx_drop);
964 		m_freem(m);
965 		return CONSUMED;
966 	}
967 #undef CONSUMED
968 #undef PROCESS
969 #undef IEEE80211_FC0_QOSDATA
970 }
971 
972 /*
973  * Process a BAR ctl frame.  Dispatch all frames up to
974  * the sequence number of the frame.  If this frame is
975  * out of range it's discarded.
976  */
977 void
978 ieee80211_recv_bar(struct ieee80211_node *ni, struct mbuf *m0)
979 {
980 	struct ieee80211vap *vap = ni->ni_vap;
981 	struct ieee80211_frame_bar *wh;
982 	struct ieee80211_rx_ampdu *rap;
983 	ieee80211_seq rxseq;
984 	int tid, off;
985 
986 	if (!ieee80211_recv_bar_ena) {
987 #if 0
988 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_11N,
989 		    ni->ni_macaddr, "BAR", "%s", "processing disabled");
990 #endif
991 		vap->iv_stats.is_ampdu_bar_bad++;
992 		return;
993 	}
994 	wh = mtod(m0, struct ieee80211_frame_bar *);
995 	/* XXX check basic BAR */
996 	tid = MS(le16toh(wh->i_ctl), IEEE80211_BAR_TID);
997 	rap = &ni->ni_rx_ampdu[tid];
998 	if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
999 		/*
1000 		 * No ADDBA request yet, don't touch.
1001 		 */
1002 		IEEE80211_DISCARD_MAC(vap,
1003 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
1004 		    ni->ni_macaddr, "BAR", "no BA stream, tid %u", tid);
1005 		vap->iv_stats.is_ampdu_bar_bad++;
1006 		return;
1007 	}
1008 	vap->iv_stats.is_ampdu_bar_rx++;
1009 	rxseq = le16toh(wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT;
1010 	if (rxseq == rap->rxa_start)
1011 		return;
1012 	/* calculate offset in BA window */
1013 	off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start);
1014 	if (off < IEEE80211_SEQ_BA_RANGE) {
1015 		/*
1016 		 * Flush the reorder q up to rxseq and move the window.
1017 		 * Sec 9.10.7.6.3 a) (p.138)
1018 		 */
1019 		IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
1020 		    "BAR moves BA win <%u:%u> (%u frames) rxseq %u tid %u",
1021 		    rap->rxa_start,
1022 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
1023 		    rap->rxa_qframes, rxseq, tid);
1024 		vap->iv_stats.is_ampdu_bar_move++;
1025 
1026 		ampdu_rx_flush_upto(ni, rap, rxseq);
1027 		if (off >= rap->rxa_wnd) {
1028 			/*
1029 			 * BAR specifies a window start to the right of BA
1030 			 * window; we must move it explicitly since
1031 			 * ampdu_rx_flush_upto will not.
1032 			 */
1033 			rap->rxa_start = rxseq;
1034 		}
1035 	} else {
1036 		/*
1037 		 * Out of range; toss.
1038 		 * Sec 9.10.7.6.3 b) (p.138)
1039 		 */
1040 		IEEE80211_DISCARD_MAC(vap,
1041 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
1042 		    "BAR", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s",
1043 		    rap->rxa_start,
1044 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
1045 		    rap->rxa_qframes, rxseq, tid,
1046 		    wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
1047 		vap->iv_stats.is_ampdu_bar_oow++;
1048 		IEEE80211_NODE_STAT(ni, rx_drop);
1049 	}
1050 }
1051 
1052 /*
1053  * Setup HT-specific state in a node.  Called only
1054  * when HT use is negotiated so we don't do extra
1055  * work for temporary and/or legacy sta's.
1056  */
1057 void
1058 ieee80211_ht_node_init(struct ieee80211_node *ni)
1059 {
1060 	struct ieee80211_tx_ampdu *tap;
1061 	int tid;
1062 
1063 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
1064 	    ni,
1065 	    "%s: called",
1066 	    __func__);
1067 
1068 	if (ni->ni_flags & IEEE80211_NODE_HT) {
1069 		/*
1070 		 * Clean AMPDU state on re-associate.  This handles the case
1071 		 * where a station leaves w/o notifying us and then returns
1072 		 * before node is reaped for inactivity.
1073 		 */
1074 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
1075 		    ni,
1076 		    "%s: calling cleanup",
1077 		    __func__);
1078 		ieee80211_ht_node_cleanup(ni);
1079 	}
1080 	for (tid = 0; tid < WME_NUM_TID; tid++) {
1081 		tap = &ni->ni_tx_ampdu[tid];
1082 		tap->txa_tid = tid;
1083 		tap->txa_ni = ni;
1084 		ieee80211_txampdu_init_pps(tap);
1085 		/* NB: further initialization deferred */
1086 	}
1087 	ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU;
1088 }
1089 
1090 /*
1091  * Cleanup HT-specific state in a node.  Called only
1092  * when HT use has been marked.
1093  */
1094 void
1095 ieee80211_ht_node_cleanup(struct ieee80211_node *ni)
1096 {
1097 	struct ieee80211com *ic = ni->ni_ic;
1098 	int i;
1099 
1100 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
1101 	    ni,
1102 	    "%s: called",
1103 	    __func__);
1104 
1105 	KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT node"));
1106 
1107 	/* XXX optimize this */
1108 	for (i = 0; i < WME_NUM_TID; i++) {
1109 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[i];
1110 		if (tap->txa_flags & IEEE80211_AGGR_SETUP)
1111 			ampdu_tx_stop(tap);
1112 	}
1113 	for (i = 0; i < WME_NUM_TID; i++)
1114 		ic->ic_ampdu_rx_stop(ni, &ni->ni_rx_ampdu[i]);
1115 
1116 	ni->ni_htcap = 0;
1117 	ni->ni_flags &= ~IEEE80211_NODE_HT_ALL;
1118 }
1119 
1120 /*
1121  * Age out HT resources for a station.
1122  */
1123 void
1124 ieee80211_ht_node_age(struct ieee80211_node *ni)
1125 {
1126 #ifdef IEEE80211_AMPDU_AGE
1127 	struct ieee80211vap *vap = ni->ni_vap;
1128 	uint8_t tid;
1129 #endif
1130 
1131 	KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta"));
1132 
1133 #ifdef IEEE80211_AMPDU_AGE
1134 	for (tid = 0; tid < WME_NUM_TID; tid++) {
1135 		struct ieee80211_rx_ampdu *rap;
1136 
1137 		rap = &ni->ni_rx_ampdu[tid];
1138 		if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0)
1139 			continue;
1140 		if (rap->rxa_qframes == 0)
1141 			continue;
1142 		/*
1143 		 * Check for frames sitting too long in the reorder queue.
1144 		 * See above for more details on what's happening here.
1145 		 */
1146 		/* XXX honor batimeout? */
1147 		if (ticks - rap->rxa_age > ieee80211_ampdu_age) {
1148 			/*
1149 			 * Too long since we received the first
1150 			 * frame; flush the reorder buffer.
1151 			 */
1152 			vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes;
1153 			ampdu_rx_flush(ni, rap);
1154 		}
1155 	}
1156 #endif /* IEEE80211_AMPDU_AGE */
1157 }
1158 
1159 static struct ieee80211_channel *
1160 findhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int htflags)
1161 {
1162 	return ieee80211_find_channel(ic, c->ic_freq,
1163 	    (c->ic_flags &~ IEEE80211_CHAN_HT) | htflags);
1164 }
1165 
1166 /*
1167  * Adjust a channel to be HT/non-HT according to the vap's configuration.
1168  */
1169 struct ieee80211_channel *
1170 ieee80211_ht_adjust_channel(struct ieee80211com *ic,
1171 	struct ieee80211_channel *chan, int flags)
1172 {
1173 	struct ieee80211_channel *c;
1174 
1175 	if (flags & IEEE80211_FHT_HT) {
1176 		/* promote to HT if possible */
1177 		if (flags & IEEE80211_FHT_USEHT40) {
1178 			if (!IEEE80211_IS_CHAN_HT40(chan)) {
1179 				/* NB: arbitrarily pick ht40+ over ht40- */
1180 				c = findhtchan(ic, chan, IEEE80211_CHAN_HT40U);
1181 				if (c == NULL)
1182 					c = findhtchan(ic, chan,
1183 						IEEE80211_CHAN_HT40D);
1184 				if (c == NULL)
1185 					c = findhtchan(ic, chan,
1186 						IEEE80211_CHAN_HT20);
1187 				if (c != NULL)
1188 					chan = c;
1189 			}
1190 		} else if (!IEEE80211_IS_CHAN_HT20(chan)) {
1191 			c = findhtchan(ic, chan, IEEE80211_CHAN_HT20);
1192 			if (c != NULL)
1193 				chan = c;
1194 		}
1195 	} else if (IEEE80211_IS_CHAN_HT(chan)) {
1196 		/* demote to legacy, HT use is disabled */
1197 		c = ieee80211_find_channel(ic, chan->ic_freq,
1198 		    chan->ic_flags &~ IEEE80211_CHAN_HT);
1199 		if (c != NULL)
1200 			chan = c;
1201 	}
1202 	return chan;
1203 }
1204 
1205 /*
1206  * Setup HT-specific state for a legacy WDS peer.
1207  */
1208 void
1209 ieee80211_ht_wds_init(struct ieee80211_node *ni)
1210 {
1211 	struct ieee80211vap *vap = ni->ni_vap;
1212 	struct ieee80211_tx_ampdu *tap;
1213 	int tid;
1214 
1215 	KASSERT(vap->iv_flags_ht & IEEE80211_FHT_HT, ("no HT requested"));
1216 
1217 	/* XXX check scan cache in case peer has an ap and we have info */
1218 	/*
1219 	 * If setup with a legacy channel; locate an HT channel.
1220 	 * Otherwise if the inherited channel (from a companion
1221 	 * AP) is suitable use it so we use the same location
1222 	 * for the extension channel).
1223 	 */
1224 	ni->ni_chan = ieee80211_ht_adjust_channel(ni->ni_ic,
1225 	    ni->ni_chan, ieee80211_htchanflags(ni->ni_chan));
1226 
1227 	ni->ni_htcap = 0;
1228 	if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)
1229 		ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI20;
1230 	if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
1231 		ni->ni_htcap |= IEEE80211_HTCAP_CHWIDTH40;
1232 		ni->ni_chw = 40;
1233 		if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
1234 			ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_ABOVE;
1235 		else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
1236 			ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_BELOW;
1237 		if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)
1238 			ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI40;
1239 	} else {
1240 		ni->ni_chw = 20;
1241 		ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_NONE;
1242 	}
1243 	ni->ni_htctlchan = ni->ni_chan->ic_ieee;
1244 	if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
1245 		ni->ni_flags |= IEEE80211_NODE_RIFS;
1246 	/* XXX does it make sense to enable SMPS? */
1247 
1248 	ni->ni_htopmode = 0;		/* XXX need protection state */
1249 	ni->ni_htstbc = 0;		/* XXX need info */
1250 
1251 	for (tid = 0; tid < WME_NUM_TID; tid++) {
1252 		tap = &ni->ni_tx_ampdu[tid];
1253 		tap->txa_tid = tid;
1254 		ieee80211_txampdu_init_pps(tap);
1255 	}
1256 	/* NB: AMPDU tx/rx governed by IEEE80211_FHT_AMPDU_{TX,RX} */
1257 	ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU;
1258 }
1259 
1260 /*
1261  * Notify hostap vaps of a change in the HTINFO ie.
1262  */
1263 static void
1264 htinfo_notify(struct ieee80211com *ic)
1265 {
1266 	struct ieee80211vap *vap;
1267 	int first = 1;
1268 
1269 	IEEE80211_LOCK_ASSERT(ic);
1270 
1271 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1272 		if (vap->iv_opmode != IEEE80211_M_HOSTAP)
1273 			continue;
1274 		if (vap->iv_state != IEEE80211_S_RUN ||
1275 		    !IEEE80211_IS_CHAN_HT(vap->iv_bss->ni_chan))
1276 			continue;
1277 		if (first) {
1278 			IEEE80211_NOTE(vap,
1279 			    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N,
1280 			    vap->iv_bss,
1281 			    "HT bss occupancy change: %d sta, %d ht, "
1282 			    "%d ht40%s, HT protmode now 0x%x"
1283 			    , ic->ic_sta_assoc
1284 			    , ic->ic_ht_sta_assoc
1285 			    , ic->ic_ht40_sta_assoc
1286 			    , (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) ?
1287 				 ", non-HT sta present" : ""
1288 			    , ic->ic_curhtprotmode);
1289 			first = 0;
1290 		}
1291 		ieee80211_beacon_notify(vap, IEEE80211_BEACON_HTINFO);
1292 	}
1293 }
1294 
1295 /*
1296  * Calculate HT protection mode from current
1297  * state and handle updates.
1298  */
1299 static void
1300 htinfo_update(struct ieee80211com *ic)
1301 {
1302 	uint8_t protmode;
1303 
1304 	if (ic->ic_sta_assoc != ic->ic_ht_sta_assoc) {
1305 		protmode = IEEE80211_HTINFO_OPMODE_MIXED
1306 			 | IEEE80211_HTINFO_NONHT_PRESENT;
1307 	} else if (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) {
1308 		protmode = IEEE80211_HTINFO_OPMODE_PROTOPT
1309 			 | IEEE80211_HTINFO_NONHT_PRESENT;
1310 	} else if (ic->ic_bsschan != IEEE80211_CHAN_ANYC &&
1311 	    IEEE80211_IS_CHAN_HT40(ic->ic_bsschan) &&
1312 	    ic->ic_sta_assoc != ic->ic_ht40_sta_assoc) {
1313 		protmode = IEEE80211_HTINFO_OPMODE_HT20PR;
1314 	} else {
1315 		protmode = IEEE80211_HTINFO_OPMODE_PURE;
1316 	}
1317 	if (protmode != ic->ic_curhtprotmode) {
1318 		ic->ic_curhtprotmode = protmode;
1319 		htinfo_notify(ic);
1320 	}
1321 }
1322 
1323 /*
1324  * Handle an HT station joining a BSS.
1325  */
1326 void
1327 ieee80211_ht_node_join(struct ieee80211_node *ni)
1328 {
1329 	struct ieee80211com *ic = ni->ni_ic;
1330 
1331 	IEEE80211_LOCK_ASSERT(ic);
1332 
1333 	if (ni->ni_flags & IEEE80211_NODE_HT) {
1334 		ic->ic_ht_sta_assoc++;
1335 		if (ni->ni_chw == 40)
1336 			ic->ic_ht40_sta_assoc++;
1337 	}
1338 	htinfo_update(ic);
1339 }
1340 
1341 /*
1342  * Handle an HT station leaving a BSS.
1343  */
1344 void
1345 ieee80211_ht_node_leave(struct ieee80211_node *ni)
1346 {
1347 	struct ieee80211com *ic = ni->ni_ic;
1348 
1349 	IEEE80211_LOCK_ASSERT(ic);
1350 
1351 	if (ni->ni_flags & IEEE80211_NODE_HT) {
1352 		ic->ic_ht_sta_assoc--;
1353 		if (ni->ni_chw == 40)
1354 			ic->ic_ht40_sta_assoc--;
1355 	}
1356 	htinfo_update(ic);
1357 }
1358 
1359 /*
1360  * Public version of htinfo_update; used for processing
1361  * beacon frames from overlapping bss.
1362  *
1363  * Caller can specify either IEEE80211_HTINFO_OPMODE_MIXED
1364  * (on receipt of a beacon that advertises MIXED) or
1365  * IEEE80211_HTINFO_OPMODE_PROTOPT (on receipt of a beacon
1366  * from an overlapping legacy bss).  We treat MIXED with
1367  * a higher precedence than PROTOPT (i.e. we will not change
1368  * change PROTOPT -> MIXED; only MIXED -> PROTOPT).  This
1369  * corresponds to how we handle things in htinfo_update.
1370  */
1371 void
1372 ieee80211_htprot_update(struct ieee80211com *ic, int protmode)
1373 {
1374 #define	OPMODE(x)	SM(x, IEEE80211_HTINFO_OPMODE)
1375 	IEEE80211_LOCK(ic);
1376 
1377 	/* track non-HT station presence */
1378 	KASSERT(protmode & IEEE80211_HTINFO_NONHT_PRESENT,
1379 	    ("protmode 0x%x", protmode));
1380 	ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR;
1381 	ic->ic_lastnonht = ticks;
1382 
1383 	if (protmode != ic->ic_curhtprotmode &&
1384 	    (OPMODE(ic->ic_curhtprotmode) != IEEE80211_HTINFO_OPMODE_MIXED ||
1385 	     OPMODE(protmode) == IEEE80211_HTINFO_OPMODE_PROTOPT)) {
1386 		/* push beacon update */
1387 		ic->ic_curhtprotmode = protmode;
1388 		htinfo_notify(ic);
1389 	}
1390 	IEEE80211_UNLOCK(ic);
1391 #undef OPMODE
1392 }
1393 
1394 /*
1395  * Time out presence of an overlapping bss with non-HT
1396  * stations.  When operating in hostap mode we listen for
1397  * beacons from other stations and if we identify a non-HT
1398  * station is present we update the opmode field of the
1399  * HTINFO ie.  To identify when all non-HT stations are
1400  * gone we time out this condition.
1401  */
1402 void
1403 ieee80211_ht_timeout(struct ieee80211com *ic)
1404 {
1405 	IEEE80211_LOCK_ASSERT(ic);
1406 
1407 	if ((ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) &&
1408 	    time_after(ticks, ic->ic_lastnonht + IEEE80211_NONHT_PRESENT_AGE)) {
1409 #if 0
1410 		IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
1411 		    "%s", "time out non-HT STA present on channel");
1412 #endif
1413 		ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR;
1414 		htinfo_update(ic);
1415 	}
1416 }
1417 
1418 /*
1419  * Process an 802.11n HT capabilities ie.
1420  */
1421 void
1422 ieee80211_parse_htcap(struct ieee80211_node *ni, const uint8_t *ie)
1423 {
1424 	if (ie[0] == IEEE80211_ELEMID_VENDOR) {
1425 		/*
1426 		 * Station used Vendor OUI ie to associate;
1427 		 * mark the node so when we respond we'll use
1428 		 * the Vendor OUI's and not the standard ie's.
1429 		 */
1430 		ni->ni_flags |= IEEE80211_NODE_HTCOMPAT;
1431 		ie += 4;
1432 	} else
1433 		ni->ni_flags &= ~IEEE80211_NODE_HTCOMPAT;
1434 
1435 	ni->ni_htcap = LE_READ_2(ie +
1436 		__offsetof(struct ieee80211_ie_htcap, hc_cap));
1437 	ni->ni_htparam = ie[__offsetof(struct ieee80211_ie_htcap, hc_param)];
1438 }
1439 
1440 static void
1441 htinfo_parse(struct ieee80211_node *ni,
1442 	const struct ieee80211_ie_htinfo *htinfo)
1443 {
1444 	uint16_t w;
1445 
1446 	ni->ni_htctlchan = htinfo->hi_ctrlchannel;
1447 	ni->ni_ht2ndchan = SM(htinfo->hi_byte1, IEEE80211_HTINFO_2NDCHAN);
1448 	w = LE_READ_2(&htinfo->hi_byte2);
1449 	ni->ni_htopmode = SM(w, IEEE80211_HTINFO_OPMODE);
1450 	w = LE_READ_2(&htinfo->hi_byte45);
1451 	ni->ni_htstbc = SM(w, IEEE80211_HTINFO_BASIC_STBCMCS);
1452 }
1453 
1454 /*
1455  * Parse an 802.11n HT info ie and save useful information
1456  * to the node state.  Note this does not effect any state
1457  * changes such as for channel width change.
1458  */
1459 void
1460 ieee80211_parse_htinfo(struct ieee80211_node *ni, const uint8_t *ie)
1461 {
1462 	if (ie[0] == IEEE80211_ELEMID_VENDOR)
1463 		ie += 4;
1464 	htinfo_parse(ni, (const struct ieee80211_ie_htinfo *) ie);
1465 }
1466 
1467 /*
1468  * Handle 11n channel switch.  Use the received HT ie's to
1469  * identify the right channel to use.  If we cannot locate it
1470  * in the channel table then fallback to legacy operation.
1471  * Note that we use this information to identify the node's
1472  * channel only; the caller is responsible for insuring any
1473  * required channel change is done (e.g. in sta mode when
1474  * parsing the contents of a beacon frame).
1475  */
1476 static int
1477 htinfo_update_chw(struct ieee80211_node *ni, int htflags)
1478 {
1479 	struct ieee80211com *ic = ni->ni_ic;
1480 	struct ieee80211_channel *c;
1481 	int chanflags;
1482 	int ret = 0;
1483 
1484 	chanflags = (ni->ni_chan->ic_flags &~ IEEE80211_CHAN_HT) | htflags;
1485 	if (chanflags != ni->ni_chan->ic_flags) {
1486 		/* XXX not right for ht40- */
1487 		c = ieee80211_find_channel(ic, ni->ni_chan->ic_freq, chanflags);
1488 		if (c == NULL && (htflags & IEEE80211_CHAN_HT40)) {
1489 			/*
1490 			 * No HT40 channel entry in our table; fall back
1491 			 * to HT20 operation.  This should not happen.
1492 			 */
1493 			c = findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT20);
1494 #if 0
1495 			IEEE80211_NOTE(ni->ni_vap,
1496 			    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni,
1497 			    "no HT40 channel (freq %u), falling back to HT20",
1498 			    ni->ni_chan->ic_freq);
1499 #endif
1500 			/* XXX stat */
1501 		}
1502 		if (c != NULL && c != ni->ni_chan) {
1503 			IEEE80211_NOTE(ni->ni_vap,
1504 			    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni,
1505 			    "switch station to HT%d channel %u/0x%x",
1506 			    IEEE80211_IS_CHAN_HT40(c) ? 40 : 20,
1507 			    c->ic_freq, c->ic_flags);
1508 			ni->ni_chan = c;
1509 			ret = 1;
1510 		}
1511 		/* NB: caller responsible for forcing any channel change */
1512 	}
1513 	/* update node's tx channel width */
1514 	ni->ni_chw = IEEE80211_IS_CHAN_HT40(ni->ni_chan)? 40 : 20;
1515 	return (ret);
1516 }
1517 
1518 /*
1519  * Update 11n MIMO PS state according to received htcap.
1520  */
1521 static __inline int
1522 htcap_update_mimo_ps(struct ieee80211_node *ni)
1523 {
1524 	uint16_t oflags = ni->ni_flags;
1525 
1526 	switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
1527 	case IEEE80211_HTCAP_SMPS_DYNAMIC:
1528 		ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
1529 		ni->ni_flags |= IEEE80211_NODE_MIMO_RTS;
1530 		break;
1531 	case IEEE80211_HTCAP_SMPS_ENA:
1532 		ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
1533 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
1534 		break;
1535 	case IEEE80211_HTCAP_SMPS_OFF:
1536 	default:		/* disable on rx of reserved value */
1537 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS;
1538 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
1539 		break;
1540 	}
1541 	return (oflags ^ ni->ni_flags);
1542 }
1543 
1544 /*
1545  * Update short GI state according to received htcap
1546  * and local settings.
1547  */
1548 static __inline void
1549 htcap_update_shortgi(struct ieee80211_node *ni)
1550 {
1551 	struct ieee80211vap *vap = ni->ni_vap;
1552 
1553 	ni->ni_flags &= ~(IEEE80211_NODE_SGI20|IEEE80211_NODE_SGI40);
1554 	if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) &&
1555 	    (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20))
1556 		ni->ni_flags |= IEEE80211_NODE_SGI20;
1557 	if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) &&
1558 	    (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40))
1559 		ni->ni_flags |= IEEE80211_NODE_SGI40;
1560 }
1561 
1562 /*
1563  * Parse and update HT-related state extracted from
1564  * the HT cap and info ie's.
1565  */
1566 int
1567 ieee80211_ht_updateparams(struct ieee80211_node *ni,
1568 	const uint8_t *htcapie, const uint8_t *htinfoie)
1569 {
1570 	struct ieee80211vap *vap = ni->ni_vap;
1571 	const struct ieee80211_ie_htinfo *htinfo;
1572 	int htflags;
1573 	int ret = 0;
1574 
1575 	ieee80211_parse_htcap(ni, htcapie);
1576 	if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS)
1577 		htcap_update_mimo_ps(ni);
1578 	htcap_update_shortgi(ni);
1579 
1580 	if (htinfoie[0] == IEEE80211_ELEMID_VENDOR)
1581 		htinfoie += 4;
1582 	htinfo = (const struct ieee80211_ie_htinfo *) htinfoie;
1583 	htinfo_parse(ni, htinfo);
1584 
1585 	htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ?
1586 	    IEEE80211_CHAN_HT20 : 0;
1587 	/* NB: honor operating mode constraint */
1588 	if ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH_2040) &&
1589 	    (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) {
1590 		if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_ABOVE)
1591 			htflags = IEEE80211_CHAN_HT40U;
1592 		else if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_BELOW)
1593 			htflags = IEEE80211_CHAN_HT40D;
1594 	}
1595 	if (htinfo_update_chw(ni, htflags))
1596 		ret = 1;
1597 
1598 	if ((htinfo->hi_byte1 & IEEE80211_HTINFO_RIFSMODE_PERM) &&
1599 	    (vap->iv_flags_ht & IEEE80211_FHT_RIFS))
1600 		ni->ni_flags |= IEEE80211_NODE_RIFS;
1601 	else
1602 		ni->ni_flags &= ~IEEE80211_NODE_RIFS;
1603 
1604 	return (ret);
1605 }
1606 
1607 /*
1608  * Parse and update HT-related state extracted from the HT cap ie
1609  * for a station joining an HT BSS.
1610  */
1611 void
1612 ieee80211_ht_updatehtcap(struct ieee80211_node *ni, const uint8_t *htcapie)
1613 {
1614 	struct ieee80211vap *vap = ni->ni_vap;
1615 	int htflags;
1616 
1617 	ieee80211_parse_htcap(ni, htcapie);
1618 	if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS)
1619 		htcap_update_mimo_ps(ni);
1620 	htcap_update_shortgi(ni);
1621 
1622 	/* NB: honor operating mode constraint */
1623 	/* XXX 40 MHz intolerant */
1624 	htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ?
1625 	    IEEE80211_CHAN_HT20 : 0;
1626 	if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) &&
1627 	    (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) {
1628 		if (IEEE80211_IS_CHAN_HT40U(vap->iv_bss->ni_chan))
1629 			htflags = IEEE80211_CHAN_HT40U;
1630 		else if (IEEE80211_IS_CHAN_HT40D(vap->iv_bss->ni_chan))
1631 			htflags = IEEE80211_CHAN_HT40D;
1632 	}
1633 	(void) htinfo_update_chw(ni, htflags);
1634 }
1635 
1636 /*
1637  * Install received HT rate set by parsing the HT cap ie.
1638  */
1639 int
1640 ieee80211_setup_htrates(struct ieee80211_node *ni, const uint8_t *ie, int flags)
1641 {
1642 	struct ieee80211com *ic = ni->ni_ic;
1643 	struct ieee80211vap *vap = ni->ni_vap;
1644 	const struct ieee80211_ie_htcap *htcap;
1645 	struct ieee80211_htrateset *rs;
1646 	int i, maxequalmcs, maxunequalmcs;
1647 
1648 	maxequalmcs = ic->ic_txstream * 8 - 1;
1649 	if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) {
1650 		if (ic->ic_txstream >= 2)
1651 			maxunequalmcs = 38;
1652 		if (ic->ic_txstream >= 3)
1653 			maxunequalmcs = 52;
1654 		if (ic->ic_txstream >= 4)
1655 			maxunequalmcs = 76;
1656 	} else
1657 		maxunequalmcs = 0;
1658 
1659 	rs = &ni->ni_htrates;
1660 	memset(rs, 0, sizeof(*rs));
1661 	if (ie != NULL) {
1662 		if (ie[0] == IEEE80211_ELEMID_VENDOR)
1663 			ie += 4;
1664 		htcap = (const struct ieee80211_ie_htcap *) ie;
1665 		for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) {
1666 			if (isclr(htcap->hc_mcsset, i))
1667 				continue;
1668 			if (rs->rs_nrates == IEEE80211_HTRATE_MAXSIZE) {
1669 				IEEE80211_NOTE(vap,
1670 				    IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
1671 				    "WARNING, HT rate set too large; only "
1672 				    "using %u rates", IEEE80211_HTRATE_MAXSIZE);
1673 				vap->iv_stats.is_rx_rstoobig++;
1674 				break;
1675 			}
1676 			if (i <= 31 && i > maxequalmcs)
1677 				continue;
1678 			if (i == 32 &&
1679 			    (ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0)
1680 				continue;
1681 			if (i > 32 && i > maxunequalmcs)
1682 				continue;
1683 			rs->rs_rates[rs->rs_nrates++] = i;
1684 		}
1685 	}
1686 	return ieee80211_fix_rate(ni, (struct ieee80211_rateset *) rs, flags);
1687 }
1688 
1689 /*
1690  * Mark rates in a node's HT rate set as basic according
1691  * to the information in the supplied HT info ie.
1692  */
1693 void
1694 ieee80211_setup_basic_htrates(struct ieee80211_node *ni, const uint8_t *ie)
1695 {
1696 	const struct ieee80211_ie_htinfo *htinfo;
1697 	struct ieee80211_htrateset *rs;
1698 	int i, j;
1699 
1700 	if (ie[0] == IEEE80211_ELEMID_VENDOR)
1701 		ie += 4;
1702 	htinfo = (const struct ieee80211_ie_htinfo *) ie;
1703 	rs = &ni->ni_htrates;
1704 	if (rs->rs_nrates == 0) {
1705 		IEEE80211_NOTE(ni->ni_vap,
1706 		    IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
1707 		    "%s", "WARNING, empty HT rate set");
1708 		return;
1709 	}
1710 	for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) {
1711 		if (isclr(htinfo->hi_basicmcsset, i))
1712 			continue;
1713 		for (j = 0; j < rs->rs_nrates; j++)
1714 			if ((rs->rs_rates[j] & IEEE80211_RATE_VAL) == i)
1715 				rs->rs_rates[j] |= IEEE80211_RATE_BASIC;
1716 	}
1717 }
1718 
1719 static void
1720 ampdu_tx_setup(struct ieee80211_tx_ampdu *tap)
1721 {
1722 	callout_init(&tap->txa_timer, 1);
1723 	tap->txa_flags |= IEEE80211_AGGR_SETUP;
1724 	tap->txa_lastsample = ticks;
1725 }
1726 
1727 static void
1728 ampdu_tx_stop(struct ieee80211_tx_ampdu *tap)
1729 {
1730 	struct ieee80211_node *ni = tap->txa_ni;
1731 	struct ieee80211com *ic = ni->ni_ic;
1732 
1733 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
1734 	    tap->txa_ni,
1735 	    "%s: called",
1736 	    __func__);
1737 
1738 	KASSERT(tap->txa_flags & IEEE80211_AGGR_SETUP,
1739 	    ("txa_flags 0x%x tid %d ac %d", tap->txa_flags, tap->txa_tid,
1740 	    TID_TO_WME_AC(tap->txa_tid)));
1741 
1742 	/*
1743 	 * Stop BA stream if setup so driver has a chance
1744 	 * to reclaim any resources it might have allocated.
1745 	 */
1746 	ic->ic_addba_stop(ni, tap);
1747 	/*
1748 	 * Stop any pending BAR transmit.
1749 	 */
1750 	bar_stop_timer(tap);
1751 
1752 	/*
1753 	 * Reset packet estimate.
1754 	 */
1755 	ieee80211_txampdu_init_pps(tap);
1756 
1757 	/* NB: clearing NAK means we may re-send ADDBA */
1758 	tap->txa_flags &= ~(IEEE80211_AGGR_SETUP | IEEE80211_AGGR_NAK);
1759 }
1760 
1761 /*
1762  * ADDBA response timeout.
1763  *
1764  * If software aggregation and per-TID queue management was done here,
1765  * that queue would be unpaused after the ADDBA timeout occurs.
1766  */
1767 static void
1768 addba_timeout(void *arg)
1769 {
1770 	struct ieee80211_tx_ampdu *tap = arg;
1771 	struct ieee80211_node *ni = tap->txa_ni;
1772 	struct ieee80211com *ic = ni->ni_ic;
1773 
1774 	/* XXX ? */
1775 	tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND;
1776 	tap->txa_attempts++;
1777 	ic->ic_addba_response_timeout(ni, tap);
1778 }
1779 
1780 static void
1781 addba_start_timeout(struct ieee80211_tx_ampdu *tap)
1782 {
1783 	/* XXX use CALLOUT_PENDING instead? */
1784 	callout_reset(&tap->txa_timer, ieee80211_addba_timeout,
1785 	    addba_timeout, tap);
1786 	tap->txa_flags |= IEEE80211_AGGR_XCHGPEND;
1787 	tap->txa_nextrequest = ticks + ieee80211_addba_timeout;
1788 }
1789 
1790 static void
1791 addba_stop_timeout(struct ieee80211_tx_ampdu *tap)
1792 {
1793 	/* XXX use CALLOUT_PENDING instead? */
1794 	if (tap->txa_flags & IEEE80211_AGGR_XCHGPEND) {
1795 		callout_stop(&tap->txa_timer);
1796 		tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND;
1797 	}
1798 }
1799 
1800 static void
1801 null_addba_response_timeout(struct ieee80211_node *ni,
1802     struct ieee80211_tx_ampdu *tap)
1803 {
1804 }
1805 
1806 /*
1807  * Default method for requesting A-MPDU tx aggregation.
1808  * We setup the specified state block and start a timer
1809  * to wait for an ADDBA response frame.
1810  */
1811 static int
1812 ieee80211_addba_request(struct ieee80211_node *ni,
1813 	struct ieee80211_tx_ampdu *tap,
1814 	int dialogtoken, int baparamset, int batimeout)
1815 {
1816 	int bufsiz;
1817 
1818 	/* XXX locking */
1819 	tap->txa_token = dialogtoken;
1820 	tap->txa_flags |= IEEE80211_AGGR_IMMEDIATE;
1821 	bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
1822 	tap->txa_wnd = (bufsiz == 0) ?
1823 	    IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
1824 	addba_start_timeout(tap);
1825 	return 1;
1826 }
1827 
1828 /*
1829  * Called by drivers that wish to request an ADDBA session be
1830  * setup.  This brings it up and starts the request timer.
1831  */
1832 int
1833 ieee80211_ampdu_tx_request_ext(struct ieee80211_node *ni, int tid)
1834 {
1835 	struct ieee80211_tx_ampdu *tap;
1836 
1837 	if (tid < 0 || tid > 15)
1838 		return (0);
1839 	tap = &ni->ni_tx_ampdu[tid];
1840 
1841 	/* XXX locking */
1842 	if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) {
1843 		/* do deferred setup of state */
1844 		ampdu_tx_setup(tap);
1845 	}
1846 	/* XXX hack for not doing proper locking */
1847 	tap->txa_flags &= ~IEEE80211_AGGR_NAK;
1848 	addba_start_timeout(tap);
1849 	return (1);
1850 }
1851 
1852 /*
1853  * Called by drivers that have marked a session as active.
1854  */
1855 int
1856 ieee80211_ampdu_tx_request_active_ext(struct ieee80211_node *ni, int tid,
1857     int status)
1858 {
1859 	struct ieee80211_tx_ampdu *tap;
1860 
1861 	if (tid < 0 || tid > 15)
1862 		return (0);
1863 	tap = &ni->ni_tx_ampdu[tid];
1864 
1865 	/* XXX locking */
1866 	addba_stop_timeout(tap);
1867 	if (status == 1) {
1868 		tap->txa_flags |= IEEE80211_AGGR_RUNNING;
1869 		tap->txa_attempts = 0;
1870 	} else {
1871 		/* mark tid so we don't try again */
1872 		tap->txa_flags |= IEEE80211_AGGR_NAK;
1873 	}
1874 	return (1);
1875 }
1876 
1877 /*
1878  * Default method for processing an A-MPDU tx aggregation
1879  * response.  We shutdown any pending timer and update the
1880  * state block according to the reply.
1881  */
1882 static int
1883 ieee80211_addba_response(struct ieee80211_node *ni,
1884 	struct ieee80211_tx_ampdu *tap,
1885 	int status, int baparamset, int batimeout)
1886 {
1887 	int bufsiz, tid;
1888 
1889 	/* XXX locking */
1890 	addba_stop_timeout(tap);
1891 	if (status == IEEE80211_STATUS_SUCCESS) {
1892 		bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
1893 		/* XXX override our request? */
1894 		tap->txa_wnd = (bufsiz == 0) ?
1895 		    IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
1896 		/* XXX AC/TID */
1897 		tid = MS(baparamset, IEEE80211_BAPS_TID);
1898 		tap->txa_flags |= IEEE80211_AGGR_RUNNING;
1899 		tap->txa_attempts = 0;
1900 	} else {
1901 		/* mark tid so we don't try again */
1902 		tap->txa_flags |= IEEE80211_AGGR_NAK;
1903 	}
1904 	return 1;
1905 }
1906 
1907 /*
1908  * Default method for stopping A-MPDU tx aggregation.
1909  * Any timer is cleared and we drain any pending frames.
1910  */
1911 static void
1912 ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
1913 {
1914 	/* XXX locking */
1915 	addba_stop_timeout(tap);
1916 	if (tap->txa_flags & IEEE80211_AGGR_RUNNING) {
1917 		/* XXX clear aggregation queue */
1918 		tap->txa_flags &= ~IEEE80211_AGGR_RUNNING;
1919 	}
1920 	tap->txa_attempts = 0;
1921 }
1922 
1923 /*
1924  * Process a received action frame using the default aggregation
1925  * policy.  We intercept ADDBA-related frames and use them to
1926  * update our aggregation state.  All other frames are passed up
1927  * for processing by ieee80211_recv_action.
1928  */
1929 static int
1930 ht_recv_action_ba_addba_request(struct ieee80211_node *ni,
1931 	const struct ieee80211_frame *wh,
1932 	const uint8_t *frm, const uint8_t *efrm)
1933 {
1934 	struct ieee80211com *ic = ni->ni_ic;
1935 	struct ieee80211vap *vap = ni->ni_vap;
1936 	struct ieee80211_rx_ampdu *rap;
1937 	uint8_t dialogtoken;
1938 	uint16_t baparamset, batimeout, baseqctl;
1939 	uint16_t args[5];
1940 	int tid;
1941 
1942 	dialogtoken = frm[2];
1943 	baparamset = LE_READ_2(frm+3);
1944 	batimeout = LE_READ_2(frm+5);
1945 	baseqctl = LE_READ_2(frm+7);
1946 
1947 	tid = MS(baparamset, IEEE80211_BAPS_TID);
1948 
1949 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
1950 	    "recv ADDBA request: dialogtoken %u baparamset 0x%x "
1951 	    "(tid %d bufsiz %d) batimeout %d baseqctl %d:%d",
1952 	    dialogtoken, baparamset,
1953 	    tid, MS(baparamset, IEEE80211_BAPS_BUFSIZ),
1954 	    batimeout,
1955 	    MS(baseqctl, IEEE80211_BASEQ_START),
1956 	    MS(baseqctl, IEEE80211_BASEQ_FRAG));
1957 
1958 	rap = &ni->ni_rx_ampdu[tid];
1959 
1960 	/* Send ADDBA response */
1961 	args[0] = dialogtoken;
1962 	/*
1963 	 * NB: We ack only if the sta associated with HT and
1964 	 * the ap is configured to do AMPDU rx (the latter
1965 	 * violates the 11n spec and is mostly for testing).
1966 	 */
1967 	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_RX) &&
1968 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX)) {
1969 		/* XXX handle ampdu_rx_start failure */
1970 		ic->ic_ampdu_rx_start(ni, rap,
1971 		    baparamset, batimeout, baseqctl);
1972 
1973 		args[1] = IEEE80211_STATUS_SUCCESS;
1974 	} else {
1975 		IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
1976 		    ni, "reject ADDBA request: %s",
1977 		    ni->ni_flags & IEEE80211_NODE_AMPDU_RX ?
1978 		       "administratively disabled" :
1979 		       "not negotiated for station");
1980 		vap->iv_stats.is_addba_reject++;
1981 		args[1] = IEEE80211_STATUS_UNSPECIFIED;
1982 	}
1983 	/* XXX honor rap flags? */
1984 	args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE
1985 		| SM(tid, IEEE80211_BAPS_TID)
1986 		| SM(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ)
1987 		;
1988 	args[3] = 0;
1989 	args[4] = 0;
1990 	ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
1991 		IEEE80211_ACTION_BA_ADDBA_RESPONSE, args);
1992 	return 0;
1993 }
1994 
1995 static int
1996 ht_recv_action_ba_addba_response(struct ieee80211_node *ni,
1997 	const struct ieee80211_frame *wh,
1998 	const uint8_t *frm, const uint8_t *efrm)
1999 {
2000 	struct ieee80211com *ic = ni->ni_ic;
2001 	struct ieee80211vap *vap = ni->ni_vap;
2002 	struct ieee80211_tx_ampdu *tap;
2003 	uint8_t dialogtoken, policy;
2004 	uint16_t baparamset, batimeout, code;
2005 	int tid, bufsiz;
2006 
2007 	dialogtoken = frm[2];
2008 	code = LE_READ_2(frm+3);
2009 	baparamset = LE_READ_2(frm+5);
2010 	tid = MS(baparamset, IEEE80211_BAPS_TID);
2011 	bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
2012 	policy = MS(baparamset, IEEE80211_BAPS_POLICY);
2013 	batimeout = LE_READ_2(frm+7);
2014 
2015 	tap = &ni->ni_tx_ampdu[tid];
2016 	if ((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
2017 		IEEE80211_DISCARD_MAC(vap,
2018 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2019 		    ni->ni_macaddr, "ADDBA response",
2020 		    "no pending ADDBA, tid %d dialogtoken %u "
2021 		    "code %d", tid, dialogtoken, code);
2022 		vap->iv_stats.is_addba_norequest++;
2023 		return 0;
2024 	}
2025 	if (dialogtoken != tap->txa_token) {
2026 		IEEE80211_DISCARD_MAC(vap,
2027 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2028 		    ni->ni_macaddr, "ADDBA response",
2029 		    "dialogtoken mismatch: waiting for %d, "
2030 		    "received %d, tid %d code %d",
2031 		    tap->txa_token, dialogtoken, tid, code);
2032 		vap->iv_stats.is_addba_badtoken++;
2033 		return 0;
2034 	}
2035 	/* NB: assumes IEEE80211_AGGR_IMMEDIATE is 1 */
2036 	if (policy != (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE)) {
2037 		IEEE80211_DISCARD_MAC(vap,
2038 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2039 		    ni->ni_macaddr, "ADDBA response",
2040 		    "policy mismatch: expecting %s, "
2041 		    "received %s, tid %d code %d",
2042 		    tap->txa_flags & IEEE80211_AGGR_IMMEDIATE,
2043 		    policy, tid, code);
2044 		vap->iv_stats.is_addba_badpolicy++;
2045 		return 0;
2046 	}
2047 #if 0
2048 	/* XXX we take MIN in ieee80211_addba_response */
2049 	if (bufsiz > IEEE80211_AGGR_BAWMAX) {
2050 		IEEE80211_DISCARD_MAC(vap,
2051 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2052 		    ni->ni_macaddr, "ADDBA response",
2053 		    "BA window too large: max %d, "
2054 		    "received %d, tid %d code %d",
2055 		    bufsiz, IEEE80211_AGGR_BAWMAX, tid, code);
2056 		vap->iv_stats.is_addba_badbawinsize++;
2057 		return 0;
2058 	}
2059 #endif
2060 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2061 	    "recv ADDBA response: dialogtoken %u code %d "
2062 	    "baparamset 0x%x (tid %d bufsiz %d) batimeout %d",
2063 	    dialogtoken, code, baparamset, tid, bufsiz,
2064 	    batimeout);
2065 	ic->ic_addba_response(ni, tap, code, baparamset, batimeout);
2066 	return 0;
2067 }
2068 
2069 static int
2070 ht_recv_action_ba_delba(struct ieee80211_node *ni,
2071 	const struct ieee80211_frame *wh,
2072 	const uint8_t *frm, const uint8_t *efrm)
2073 {
2074 	struct ieee80211com *ic = ni->ni_ic;
2075 	struct ieee80211_rx_ampdu *rap;
2076 	struct ieee80211_tx_ampdu *tap;
2077 	uint16_t baparamset, code;
2078 	int tid;
2079 
2080 	baparamset = LE_READ_2(frm+2);
2081 	code = LE_READ_2(frm+4);
2082 
2083 	tid = MS(baparamset, IEEE80211_DELBAPS_TID);
2084 
2085 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2086 	    "recv DELBA: baparamset 0x%x (tid %d initiator %d) "
2087 	    "code %d", baparamset, tid,
2088 	    MS(baparamset, IEEE80211_DELBAPS_INIT), code);
2089 
2090 	if ((baparamset & IEEE80211_DELBAPS_INIT) == 0) {
2091 		tap = &ni->ni_tx_ampdu[tid];
2092 		ic->ic_addba_stop(ni, tap);
2093 	} else {
2094 		rap = &ni->ni_rx_ampdu[tid];
2095 		ic->ic_ampdu_rx_stop(ni, rap);
2096 	}
2097 	return 0;
2098 }
2099 
2100 static int
2101 ht_recv_action_ht_txchwidth(struct ieee80211_node *ni,
2102 	const struct ieee80211_frame *wh,
2103 	const uint8_t *frm, const uint8_t *efrm)
2104 {
2105 	int chw;
2106 
2107 	chw = (frm[2] == IEEE80211_A_HT_TXCHWIDTH_2040) ? 40 : 20;
2108 
2109 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2110 	    "%s: HT txchwidth, width %d%s",
2111 	    __func__, chw, ni->ni_chw != chw ? "*" : "");
2112 	if (chw != ni->ni_chw) {
2113 		ni->ni_chw = chw;
2114 		/* XXX notify on change */
2115 	}
2116 	return 0;
2117 }
2118 
2119 static int
2120 ht_recv_action_ht_mimopwrsave(struct ieee80211_node *ni,
2121 	const struct ieee80211_frame *wh,
2122 	const uint8_t *frm, const uint8_t *efrm)
2123 {
2124 	const struct ieee80211_action_ht_mimopowersave *mps =
2125 	    (const struct ieee80211_action_ht_mimopowersave *) frm;
2126 
2127 	/* XXX check iv_htcaps */
2128 	if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA)
2129 		ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
2130 	else
2131 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS;
2132 	if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_MODE)
2133 		ni->ni_flags |= IEEE80211_NODE_MIMO_RTS;
2134 	else
2135 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
2136 	/* XXX notify on change */
2137 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2138 	    "%s: HT MIMO PS (%s%s)", __func__,
2139 	    (ni->ni_flags & IEEE80211_NODE_MIMO_PS) ?  "on" : "off",
2140 	    (ni->ni_flags & IEEE80211_NODE_MIMO_RTS) ?  "+rts" : ""
2141 	);
2142 	return 0;
2143 }
2144 
2145 /*
2146  * Transmit processing.
2147  */
2148 
2149 /*
2150  * Check if A-MPDU should be requested/enabled for a stream.
2151  * We require a traffic rate above a per-AC threshold and we
2152  * also handle backoff from previous failed attempts.
2153  *
2154  * Drivers may override this method to bring in information
2155  * such as link state conditions in making the decision.
2156  */
2157 static int
2158 ieee80211_ampdu_enable(struct ieee80211_node *ni,
2159 	struct ieee80211_tx_ampdu *tap)
2160 {
2161 	struct ieee80211vap *vap = ni->ni_vap;
2162 
2163 	if (tap->txa_avgpps <
2164 	    vap->iv_ampdu_mintraffic[TID_TO_WME_AC(tap->txa_tid)])
2165 		return 0;
2166 	/* XXX check rssi? */
2167 	if (tap->txa_attempts >= ieee80211_addba_maxtries &&
2168 	    ticks < tap->txa_nextrequest) {
2169 		/*
2170 		 * Don't retry too often; txa_nextrequest is set
2171 		 * to the minimum interval we'll retry after
2172 		 * ieee80211_addba_maxtries failed attempts are made.
2173 		 */
2174 		return 0;
2175 	}
2176 	IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
2177 	    "enable AMPDU on tid %d (%s), avgpps %d pkts %d",
2178 	    tap->txa_tid, ieee80211_wme_acnames[TID_TO_WME_AC(tap->txa_tid)],
2179 	    tap->txa_avgpps, tap->txa_pkts);
2180 	return 1;
2181 }
2182 
2183 /*
2184  * Request A-MPDU tx aggregation.  Setup local state and
2185  * issue an ADDBA request.  BA use will only happen after
2186  * the other end replies with ADDBA response.
2187  */
2188 int
2189 ieee80211_ampdu_request(struct ieee80211_node *ni,
2190 	struct ieee80211_tx_ampdu *tap)
2191 {
2192 	struct ieee80211com *ic = ni->ni_ic;
2193 	uint16_t args[5];
2194 	int tid, dialogtoken;
2195 	static int tokens = 0;	/* XXX */
2196 
2197 	/* XXX locking */
2198 	if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) {
2199 		/* do deferred setup of state */
2200 		ampdu_tx_setup(tap);
2201 	}
2202 	/* XXX hack for not doing proper locking */
2203 	tap->txa_flags &= ~IEEE80211_AGGR_NAK;
2204 
2205 	dialogtoken = (tokens+1) % 63;		/* XXX */
2206 	tid = tap->txa_tid;
2207 	tap->txa_start = ni->ni_txseqs[tid];
2208 
2209 	args[0] = dialogtoken;
2210 	args[1] = 0;	/* NB: status code not used */
2211 	args[2]	= IEEE80211_BAPS_POLICY_IMMEDIATE
2212 		| SM(tid, IEEE80211_BAPS_TID)
2213 		| SM(IEEE80211_AGGR_BAWMAX, IEEE80211_BAPS_BUFSIZ)
2214 		;
2215 	args[3] = 0;	/* batimeout */
2216 	/* NB: do first so there's no race against reply */
2217 	if (!ic->ic_addba_request(ni, tap, dialogtoken, args[2], args[3])) {
2218 		/* unable to setup state, don't make request */
2219 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2220 		    ni, "%s: could not setup BA stream for TID %d AC %d",
2221 		    __func__, tap->txa_tid, TID_TO_WME_AC(tap->txa_tid));
2222 		/* defer next try so we don't slam the driver with requests */
2223 		tap->txa_attempts = ieee80211_addba_maxtries;
2224 		/* NB: check in case driver wants to override */
2225 		if (tap->txa_nextrequest <= ticks)
2226 			tap->txa_nextrequest = ticks + ieee80211_addba_backoff;
2227 		return 0;
2228 	}
2229 	tokens = dialogtoken;			/* allocate token */
2230 	/* NB: after calling ic_addba_request so driver can set txa_start */
2231 	args[4] = SM(tap->txa_start, IEEE80211_BASEQ_START)
2232 		| SM(0, IEEE80211_BASEQ_FRAG)
2233 		;
2234 	return ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
2235 		IEEE80211_ACTION_BA_ADDBA_REQUEST, args);
2236 }
2237 
2238 /*
2239  * Terminate an AMPDU tx stream.  State is reclaimed
2240  * and the peer notified with a DelBA Action frame.
2241  */
2242 void
2243 ieee80211_ampdu_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
2244 	int reason)
2245 {
2246 	struct ieee80211com *ic = ni->ni_ic;
2247 	struct ieee80211vap *vap = ni->ni_vap;
2248 	uint16_t args[4];
2249 
2250 	/* XXX locking */
2251 	tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
2252 	if (IEEE80211_AMPDU_RUNNING(tap)) {
2253 		IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2254 		    ni, "%s: stop BA stream for TID %d (reason %d)",
2255 		    __func__, tap->txa_tid, reason);
2256 		vap->iv_stats.is_ampdu_stop++;
2257 
2258 		ic->ic_addba_stop(ni, tap);
2259 		args[0] = tap->txa_tid;
2260 		args[1] = IEEE80211_DELBAPS_INIT;
2261 		args[2] = reason;			/* XXX reason code */
2262 		ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
2263 			IEEE80211_ACTION_BA_DELBA, args);
2264 	} else {
2265 		IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2266 		    ni, "%s: BA stream for TID %d not running (reason %d)",
2267 		    __func__, tap->txa_tid, reason);
2268 		vap->iv_stats.is_ampdu_stop_failed++;
2269 	}
2270 }
2271 
2272 /* XXX */
2273 static void bar_start_timer(struct ieee80211_tx_ampdu *tap);
2274 
2275 static void
2276 bar_timeout(void *arg)
2277 {
2278 	struct ieee80211_tx_ampdu *tap = arg;
2279 	struct ieee80211_node *ni = tap->txa_ni;
2280 
2281 	KASSERT((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0,
2282 	    ("bar/addba collision, flags 0x%x", tap->txa_flags));
2283 
2284 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2285 	    ni, "%s: tid %u flags 0x%x attempts %d", __func__,
2286 	    tap->txa_tid, tap->txa_flags, tap->txa_attempts);
2287 
2288 	/* guard against race with bar_tx_complete */
2289 	if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0)
2290 		return;
2291 	/* XXX ? */
2292 	if (tap->txa_attempts >= ieee80211_bar_maxtries) {
2293 		struct ieee80211com *ic = ni->ni_ic;
2294 
2295 		ni->ni_vap->iv_stats.is_ampdu_bar_tx_fail++;
2296 		/*
2297 		 * If (at least) the last BAR TX timeout was due to
2298 		 * an ieee80211_send_bar() failures, then we need
2299 		 * to make sure we notify the driver that a BAR
2300 		 * TX did occur and fail.  This gives the driver
2301 		 * a chance to undo any queue pause that may
2302 		 * have occured.
2303 		 */
2304 		ic->ic_bar_response(ni, tap, 1);
2305 		ieee80211_ampdu_stop(ni, tap, IEEE80211_REASON_TIMEOUT);
2306 	} else {
2307 		ni->ni_vap->iv_stats.is_ampdu_bar_tx_retry++;
2308 		if (ieee80211_send_bar(ni, tap, tap->txa_seqpending) != 0) {
2309 			IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2310 			    ni, "%s: failed to TX, starting timer\n",
2311 			    __func__);
2312 			/*
2313 			 * If ieee80211_send_bar() fails here, the
2314 			 * timer may have stopped and/or the pending
2315 			 * flag may be clear.  Because of this,
2316 			 * fake the BARPEND and reset the timer.
2317 			 * A retransmission attempt will then occur
2318 			 * during the next timeout.
2319 			 */
2320 			/* XXX locking */
2321 			tap->txa_flags |= IEEE80211_AGGR_BARPEND;
2322 			bar_start_timer(tap);
2323 		}
2324 	}
2325 }
2326 
2327 static void
2328 bar_start_timer(struct ieee80211_tx_ampdu *tap)
2329 {
2330 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2331 	    tap->txa_ni,
2332 	    "%s: called",
2333 	    __func__);
2334 	callout_reset(&tap->txa_timer, ieee80211_bar_timeout, bar_timeout, tap);
2335 }
2336 
2337 static void
2338 bar_stop_timer(struct ieee80211_tx_ampdu *tap)
2339 {
2340 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2341 	    tap->txa_ni,
2342 	    "%s: called",
2343 	    __func__);
2344 	callout_stop(&tap->txa_timer);
2345 }
2346 
2347 static void
2348 bar_tx_complete(struct ieee80211_node *ni, void *arg, int status)
2349 {
2350 	struct ieee80211_tx_ampdu *tap = arg;
2351 
2352 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2353 	    ni, "%s: tid %u flags 0x%x pending %d status %d",
2354 	    __func__, tap->txa_tid, tap->txa_flags,
2355 	    callout_pending(&tap->txa_timer), status);
2356 
2357 	ni->ni_vap->iv_stats.is_ampdu_bar_tx++;
2358 	/* XXX locking */
2359 	if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) &&
2360 	    callout_pending(&tap->txa_timer)) {
2361 		struct ieee80211com *ic = ni->ni_ic;
2362 
2363 		if (status == 0)		/* ACK'd */
2364 			bar_stop_timer(tap);
2365 		ic->ic_bar_response(ni, tap, status);
2366 		/* NB: just let timer expire so we pace requests */
2367 	}
2368 }
2369 
2370 static void
2371 ieee80211_bar_response(struct ieee80211_node *ni,
2372 	struct ieee80211_tx_ampdu *tap, int status)
2373 {
2374 
2375 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2376 	    tap->txa_ni,
2377 	    "%s: called",
2378 	    __func__);
2379 	if (status == 0) {		/* got ACK */
2380 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2381 		    ni, "BAR moves BA win <%u:%u> (%u frames) txseq %u tid %u",
2382 		    tap->txa_start,
2383 		    IEEE80211_SEQ_ADD(tap->txa_start, tap->txa_wnd-1),
2384 		    tap->txa_qframes, tap->txa_seqpending,
2385 		    tap->txa_tid);
2386 
2387 		/* NB: timer already stopped in bar_tx_complete */
2388 		tap->txa_start = tap->txa_seqpending;
2389 		tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
2390 	}
2391 }
2392 
2393 /*
2394  * Transmit a BAR frame to the specified node.  The
2395  * BAR contents are drawn from the supplied aggregation
2396  * state associated with the node.
2397  *
2398  * NB: we only handle immediate ACK w/ compressed bitmap.
2399  */
2400 int
2401 ieee80211_send_bar(struct ieee80211_node *ni,
2402 	struct ieee80211_tx_ampdu *tap, ieee80211_seq seq)
2403 {
2404 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2405 	struct ieee80211vap *vap = ni->ni_vap;
2406 	struct ieee80211com *ic = ni->ni_ic;
2407 	struct ieee80211_frame_bar *bar;
2408 	struct mbuf *m;
2409 	uint16_t barctl, barseqctl;
2410 	uint8_t *frm;
2411 	int tid, ret;
2412 
2413 
2414 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2415 	    tap->txa_ni,
2416 	    "%s: called",
2417 	    __func__);
2418 
2419 	if ((tap->txa_flags & IEEE80211_AGGR_RUNNING) == 0) {
2420 		/* no ADDBA response, should not happen */
2421 		/* XXX stat+msg */
2422 		return EINVAL;
2423 	}
2424 	/* XXX locking */
2425 	bar_stop_timer(tap);
2426 
2427 	ieee80211_ref_node(ni);
2428 
2429 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom, sizeof(*bar));
2430 	if (m == NULL)
2431 		senderr(ENOMEM, is_tx_nobuf);
2432 
2433 	if (!ieee80211_add_callback(m, bar_tx_complete, tap)) {
2434 		m_freem(m);
2435 		senderr(ENOMEM, is_tx_nobuf);	/* XXX */
2436 		/* NOTREACHED */
2437 	}
2438 
2439 	bar = mtod(m, struct ieee80211_frame_bar *);
2440 	bar->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2441 		IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR;
2442 	bar->i_fc[1] = 0;
2443 	IEEE80211_ADDR_COPY(bar->i_ra, ni->ni_macaddr);
2444 	IEEE80211_ADDR_COPY(bar->i_ta, vap->iv_myaddr);
2445 
2446 	tid = tap->txa_tid;
2447 	barctl 	= (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE ?
2448 			0 : IEEE80211_BAR_NOACK)
2449 		| IEEE80211_BAR_COMP
2450 		| SM(tid, IEEE80211_BAR_TID)
2451 		;
2452 	barseqctl = SM(seq, IEEE80211_BAR_SEQ_START);
2453 	/* NB: known to have proper alignment */
2454 	bar->i_ctl = htole16(barctl);
2455 	bar->i_seq = htole16(barseqctl);
2456 	m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_bar);
2457 
2458 	M_WME_SETAC(m, WME_AC_VO);
2459 
2460 	IEEE80211_NODE_STAT(ni, tx_mgmt);	/* XXX tx_ctl? */
2461 
2462 	/* XXX locking */
2463 	/* init/bump attempts counter */
2464 	if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0)
2465 		tap->txa_attempts = 1;
2466 	else
2467 		tap->txa_attempts++;
2468 	tap->txa_seqpending = seq;
2469 	tap->txa_flags |= IEEE80211_AGGR_BARPEND;
2470 
2471 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N,
2472 	    ni, "send BAR: tid %u ctl 0x%x start %u (attempt %d)",
2473 	    tid, barctl, seq, tap->txa_attempts);
2474 
2475 	/*
2476 	 * ic_raw_xmit will free the node reference
2477 	 * regardless of queue/TX success or failure.
2478 	 */
2479 	IEEE80211_TX_LOCK(ic);
2480 	ret = ieee80211_raw_output(vap, ni, m, NULL);
2481 	IEEE80211_TX_UNLOCK(ic);
2482 	if (ret != 0) {
2483 		IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N,
2484 		    ni, "send BAR: failed: (ret = %d)\n",
2485 		    ret);
2486 		/* xmit failed, clear state flag */
2487 		tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
2488 		vap->iv_stats.is_ampdu_bar_tx_fail++;
2489 		return ret;
2490 	}
2491 	/* XXX hack against tx complete happening before timer is started */
2492 	if (tap->txa_flags & IEEE80211_AGGR_BARPEND)
2493 		bar_start_timer(tap);
2494 	return 0;
2495 bad:
2496 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2497 	    tap->txa_ni,
2498 	    "%s: bad! ret=%d",
2499 	    __func__, ret);
2500 	vap->iv_stats.is_ampdu_bar_tx_fail++;
2501 	ieee80211_free_node(ni);
2502 	return ret;
2503 #undef senderr
2504 }
2505 
2506 static int
2507 ht_action_output(struct ieee80211_node *ni, struct mbuf *m)
2508 {
2509 	struct ieee80211_bpf_params params;
2510 
2511 	memset(&params, 0, sizeof(params));
2512 	params.ibp_pri = WME_AC_VO;
2513 	params.ibp_rate0 = ni->ni_txparms->mgmtrate;
2514 	/* NB: we know all frames are unicast */
2515 	params.ibp_try0 = ni->ni_txparms->maxretry;
2516 	params.ibp_power = ni->ni_txpower;
2517 	return ieee80211_mgmt_output(ni, m, IEEE80211_FC0_SUBTYPE_ACTION,
2518 	     &params);
2519 }
2520 
2521 #define	ADDSHORT(frm, v) do {			\
2522 	frm[0] = (v) & 0xff;			\
2523 	frm[1] = (v) >> 8;			\
2524 	frm += 2;				\
2525 } while (0)
2526 
2527 /*
2528  * Send an action management frame.  The arguments are stuff
2529  * into a frame without inspection; the caller is assumed to
2530  * prepare them carefully (e.g. based on the aggregation state).
2531  */
2532 static int
2533 ht_send_action_ba_addba(struct ieee80211_node *ni,
2534 	int category, int action, void *arg0)
2535 {
2536 	struct ieee80211vap *vap = ni->ni_vap;
2537 	struct ieee80211com *ic = ni->ni_ic;
2538 	uint16_t *args = arg0;
2539 	struct mbuf *m;
2540 	uint8_t *frm;
2541 
2542 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2543 	    "send ADDBA %s: dialogtoken %d status %d "
2544 	    "baparamset 0x%x (tid %d) batimeout 0x%x baseqctl 0x%x",
2545 	    (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ?
2546 		"request" : "response",
2547 	    args[0], args[1], args[2], MS(args[2], IEEE80211_BAPS_TID),
2548 	    args[3], args[4]);
2549 
2550 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2551 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
2552 	    ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
2553 	ieee80211_ref_node(ni);
2554 
2555 	m = ieee80211_getmgtframe(&frm,
2556 	    ic->ic_headroom + sizeof(struct ieee80211_frame),
2557 	    sizeof(uint16_t)	/* action+category */
2558 	    /* XXX may action payload */
2559 	    + sizeof(struct ieee80211_action_ba_addbaresponse)
2560 	);
2561 	if (m != NULL) {
2562 		*frm++ = category;
2563 		*frm++ = action;
2564 		*frm++ = args[0];		/* dialog token */
2565 		if (action == IEEE80211_ACTION_BA_ADDBA_RESPONSE)
2566 			ADDSHORT(frm, args[1]);	/* status code */
2567 		ADDSHORT(frm, args[2]);		/* baparamset */
2568 		ADDSHORT(frm, args[3]);		/* batimeout */
2569 		if (action == IEEE80211_ACTION_BA_ADDBA_REQUEST)
2570 			ADDSHORT(frm, args[4]);	/* baseqctl */
2571 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2572 		return ht_action_output(ni, m);
2573 	} else {
2574 		vap->iv_stats.is_tx_nobuf++;
2575 		ieee80211_free_node(ni);
2576 		return ENOMEM;
2577 	}
2578 }
2579 
2580 static int
2581 ht_send_action_ba_delba(struct ieee80211_node *ni,
2582 	int category, int action, void *arg0)
2583 {
2584 	struct ieee80211vap *vap = ni->ni_vap;
2585 	struct ieee80211com *ic = ni->ni_ic;
2586 	uint16_t *args = arg0;
2587 	struct mbuf *m;
2588 	uint16_t baparamset;
2589 	uint8_t *frm;
2590 
2591 	baparamset = SM(args[0], IEEE80211_DELBAPS_TID)
2592 		   | args[1]
2593 		   ;
2594 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2595 	    "send DELBA action: tid %d, initiator %d reason %d",
2596 	    args[0], args[1], args[2]);
2597 
2598 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2599 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
2600 	    ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
2601 	ieee80211_ref_node(ni);
2602 
2603 	m = ieee80211_getmgtframe(&frm,
2604 	    ic->ic_headroom + sizeof(struct ieee80211_frame),
2605 	    sizeof(uint16_t)	/* action+category */
2606 	    /* XXX may action payload */
2607 	    + sizeof(struct ieee80211_action_ba_addbaresponse)
2608 	);
2609 	if (m != NULL) {
2610 		*frm++ = category;
2611 		*frm++ = action;
2612 		ADDSHORT(frm, baparamset);
2613 		ADDSHORT(frm, args[2]);		/* reason code */
2614 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2615 		return ht_action_output(ni, m);
2616 	} else {
2617 		vap->iv_stats.is_tx_nobuf++;
2618 		ieee80211_free_node(ni);
2619 		return ENOMEM;
2620 	}
2621 }
2622 
2623 static int
2624 ht_send_action_ht_txchwidth(struct ieee80211_node *ni,
2625 	int category, int action, void *arg0)
2626 {
2627 	struct ieee80211vap *vap = ni->ni_vap;
2628 	struct ieee80211com *ic = ni->ni_ic;
2629 	struct mbuf *m;
2630 	uint8_t *frm;
2631 
2632 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2633 	    "send HT txchwidth: width %d",
2634 	    IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 40 : 20);
2635 
2636 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2637 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
2638 	    ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
2639 	ieee80211_ref_node(ni);
2640 
2641 	m = ieee80211_getmgtframe(&frm,
2642 	    ic->ic_headroom + sizeof(struct ieee80211_frame),
2643 	    sizeof(uint16_t)	/* action+category */
2644 	    /* XXX may action payload */
2645 	    + sizeof(struct ieee80211_action_ba_addbaresponse)
2646 	);
2647 	if (m != NULL) {
2648 		*frm++ = category;
2649 		*frm++ = action;
2650 		*frm++ = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ?
2651 			IEEE80211_A_HT_TXCHWIDTH_2040 :
2652 			IEEE80211_A_HT_TXCHWIDTH_20;
2653 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2654 		return ht_action_output(ni, m);
2655 	} else {
2656 		vap->iv_stats.is_tx_nobuf++;
2657 		ieee80211_free_node(ni);
2658 		return ENOMEM;
2659 	}
2660 }
2661 #undef ADDSHORT
2662 
2663 /*
2664  * Construct the MCS bit mask for inclusion in an HT capabilities
2665  * information element.
2666  */
2667 static void
2668 ieee80211_set_mcsset(struct ieee80211com *ic, uint8_t *frm)
2669 {
2670 	int i;
2671 	uint8_t txparams;
2672 
2673 	KASSERT((ic->ic_rxstream > 0 && ic->ic_rxstream <= 4),
2674 	    ("ic_rxstream %d out of range", ic->ic_rxstream));
2675 	KASSERT((ic->ic_txstream > 0 && ic->ic_txstream <= 4),
2676 	    ("ic_txstream %d out of range", ic->ic_txstream));
2677 
2678 	for (i = 0; i < ic->ic_rxstream * 8; i++)
2679 		setbit(frm, i);
2680 	if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
2681 	    (ic->ic_htcaps & IEEE80211_HTC_RXMCS32))
2682 		setbit(frm, 32);
2683 	if (ic->ic_htcaps & IEEE80211_HTC_RXUNEQUAL) {
2684 		if (ic->ic_rxstream >= 2) {
2685 			for (i = 33; i <= 38; i++)
2686 				setbit(frm, i);
2687 		}
2688 		if (ic->ic_rxstream >= 3) {
2689 			for (i = 39; i <= 52; i++)
2690 				setbit(frm, i);
2691 		}
2692 		if (ic->ic_txstream >= 4) {
2693 			for (i = 53; i <= 76; i++)
2694 				setbit(frm, i);
2695 		}
2696 	}
2697 
2698 	if (ic->ic_rxstream != ic->ic_txstream) {
2699 		txparams = 0x1;			/* TX MCS set defined */
2700 		txparams |= 0x2;		/* TX RX MCS not equal */
2701 		txparams |= (ic->ic_txstream - 1) << 2;	/* num TX streams */
2702 		if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL)
2703 			txparams |= 0x16;	/* TX unequal modulation sup */
2704 	} else
2705 		txparams = 0;
2706 	frm[12] = txparams;
2707 }
2708 
2709 /*
2710  * Add body of an HTCAP information element.
2711  */
2712 static uint8_t *
2713 ieee80211_add_htcap_body(uint8_t *frm, struct ieee80211_node *ni)
2714 {
2715 #define	ADDSHORT(frm, v) do {			\
2716 	frm[0] = (v) & 0xff;			\
2717 	frm[1] = (v) >> 8;			\
2718 	frm += 2;				\
2719 } while (0)
2720 	struct ieee80211com *ic = ni->ni_ic;
2721 	struct ieee80211vap *vap = ni->ni_vap;
2722 	uint16_t caps, extcaps;
2723 	int rxmax, density;
2724 
2725 	/* HT capabilities */
2726 	caps = vap->iv_htcaps & 0xffff;
2727 	/*
2728 	 * Note channel width depends on whether we are operating as
2729 	 * a sta or not.  When operating as a sta we are generating
2730 	 * a request based on our desired configuration.  Otherwise
2731 	 * we are operational and the channel attributes identify
2732 	 * how we've been setup (which might be different if a fixed
2733 	 * channel is specified).
2734 	 */
2735 	if (vap->iv_opmode == IEEE80211_M_STA) {
2736 		/* override 20/40 use based on config */
2737 		if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)
2738 			caps |= IEEE80211_HTCAP_CHWIDTH40;
2739 		else
2740 			caps &= ~IEEE80211_HTCAP_CHWIDTH40;
2741 
2742 		/* Start by using the advertised settings */
2743 		rxmax = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU);
2744 		density = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY);
2745 
2746 		/* Cap at VAP rxmax */
2747 		if (rxmax > vap->iv_ampdu_rxmax)
2748 			rxmax = vap->iv_ampdu_rxmax;
2749 
2750 		/*
2751 		 * If the VAP ampdu density value greater, use that.
2752 		 *
2753 		 * (Larger density value == larger minimum gap between A-MPDU
2754 		 * subframes.)
2755 		 */
2756 		if (vap->iv_ampdu_density > density)
2757 			density = vap->iv_ampdu_density;
2758 
2759 		/*
2760 		 * NB: Hardware might support HT40 on some but not all
2761 		 * channels. We can't determine this earlier because only
2762 		 * after association the channel is upgraded to HT based
2763 		 * on the negotiated capabilities.
2764 		 */
2765 		if (ni->ni_chan != IEEE80211_CHAN_ANYC &&
2766 		    findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40U) == NULL &&
2767 		    findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40D) == NULL)
2768 			caps &= ~IEEE80211_HTCAP_CHWIDTH40;
2769 	} else {
2770 		/* override 20/40 use based on current channel */
2771 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
2772 			caps |= IEEE80211_HTCAP_CHWIDTH40;
2773 		else
2774 			caps &= ~IEEE80211_HTCAP_CHWIDTH40;
2775 
2776 		/* XXX TODO should it start by using advertised settings? */
2777 		rxmax = vap->iv_ampdu_rxmax;
2778 		density = vap->iv_ampdu_density;
2779 	}
2780 
2781 	/* adjust short GI based on channel and config */
2782 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0)
2783 		caps &= ~IEEE80211_HTCAP_SHORTGI20;
2784 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 ||
2785 	    (caps & IEEE80211_HTCAP_CHWIDTH40) == 0)
2786 		caps &= ~IEEE80211_HTCAP_SHORTGI40;
2787 	ADDSHORT(frm, caps);
2788 
2789 	/* HT parameters */
2790 	*frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU)
2791 	     | SM(density, IEEE80211_HTCAP_MPDUDENSITY)
2792 	     ;
2793 	frm++;
2794 
2795 	/* pre-zero remainder of ie */
2796 	memset(frm, 0, sizeof(struct ieee80211_ie_htcap) -
2797 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset));
2798 
2799 	/* supported MCS set */
2800 	/*
2801 	 * XXX: For sta mode the rate set should be restricted based
2802 	 * on the AP's capabilities, but ni_htrates isn't setup when
2803 	 * we're called to form an AssocReq frame so for now we're
2804 	 * restricted to the device capabilities.
2805 	 */
2806 	ieee80211_set_mcsset(ni->ni_ic, frm);
2807 
2808 	frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) -
2809 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset);
2810 
2811 	/* HT extended capabilities */
2812 	extcaps = vap->iv_htextcaps & 0xffff;
2813 
2814 	ADDSHORT(frm, extcaps);
2815 
2816 	frm += sizeof(struct ieee80211_ie_htcap) -
2817 		__offsetof(struct ieee80211_ie_htcap, hc_txbf);
2818 
2819 	return frm;
2820 #undef ADDSHORT
2821 }
2822 
2823 /*
2824  * Add 802.11n HT capabilities information element
2825  */
2826 uint8_t *
2827 ieee80211_add_htcap(uint8_t *frm, struct ieee80211_node *ni)
2828 {
2829 	frm[0] = IEEE80211_ELEMID_HTCAP;
2830 	frm[1] = sizeof(struct ieee80211_ie_htcap) - 2;
2831 	return ieee80211_add_htcap_body(frm + 2, ni);
2832 }
2833 
2834 /*
2835  * Add Broadcom OUI wrapped standard HTCAP ie; this is
2836  * used for compatibility w/ pre-draft implementations.
2837  */
2838 uint8_t *
2839 ieee80211_add_htcap_vendor(uint8_t *frm, struct ieee80211_node *ni)
2840 {
2841 	frm[0] = IEEE80211_ELEMID_VENDOR;
2842 	frm[1] = 4 + sizeof(struct ieee80211_ie_htcap) - 2;
2843 	frm[2] = (BCM_OUI >> 0) & 0xff;
2844 	frm[3] = (BCM_OUI >> 8) & 0xff;
2845 	frm[4] = (BCM_OUI >> 16) & 0xff;
2846 	frm[5] = BCM_OUI_HTCAP;
2847 	return ieee80211_add_htcap_body(frm + 6, ni);
2848 }
2849 
2850 /*
2851  * Construct the MCS bit mask of basic rates
2852  * for inclusion in an HT information element.
2853  */
2854 static void
2855 ieee80211_set_basic_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs)
2856 {
2857 	int i;
2858 
2859 	for (i = 0; i < rs->rs_nrates; i++) {
2860 		int r = rs->rs_rates[i] & IEEE80211_RATE_VAL;
2861 		if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) &&
2862 		    r < IEEE80211_HTRATE_MAXSIZE) {
2863 			/* NB: this assumes a particular implementation */
2864 			setbit(frm, r);
2865 		}
2866 	}
2867 }
2868 
2869 /*
2870  * Update the HTINFO ie for a beacon frame.
2871  */
2872 void
2873 ieee80211_ht_update_beacon(struct ieee80211vap *vap,
2874 	struct ieee80211_beacon_offsets *bo)
2875 {
2876 #define	PROTMODE	(IEEE80211_HTINFO_OPMODE|IEEE80211_HTINFO_NONHT_PRESENT)
2877 	struct ieee80211_node *ni;
2878 	const struct ieee80211_channel *bsschan;
2879 	struct ieee80211com *ic = vap->iv_ic;
2880 	struct ieee80211_ie_htinfo *ht =
2881 	   (struct ieee80211_ie_htinfo *) bo->bo_htinfo;
2882 
2883 	ni = ieee80211_ref_node(vap->iv_bss);
2884 	bsschan = ni->ni_chan;
2885 
2886 	/* XXX only update on channel change */
2887 	ht->hi_ctrlchannel = ieee80211_chan2ieee(ic, bsschan);
2888 	if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
2889 		ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PERM;
2890 	else
2891 		ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PROH;
2892 	if (IEEE80211_IS_CHAN_HT40U(bsschan))
2893 		ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_ABOVE;
2894 	else if (IEEE80211_IS_CHAN_HT40D(bsschan))
2895 		ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_BELOW;
2896 	else
2897 		ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_NONE;
2898 	if (IEEE80211_IS_CHAN_HT40(bsschan))
2899 		ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040;
2900 
2901 	/* protection mode */
2902 	ht->hi_byte2 = (ht->hi_byte2 &~ PROTMODE) | ic->ic_curhtprotmode;
2903 
2904 	ieee80211_free_node(ni);
2905 
2906 	/* XXX propagate to vendor ie's */
2907 #undef PROTMODE
2908 }
2909 
2910 /*
2911  * Add body of an HTINFO information element.
2912  *
2913  * NB: We don't use struct ieee80211_ie_htinfo because we can
2914  * be called to fillin both a standard ie and a compat ie that
2915  * has a vendor OUI at the front.
2916  */
2917 static uint8_t *
2918 ieee80211_add_htinfo_body(uint8_t *frm, struct ieee80211_node *ni)
2919 {
2920 	struct ieee80211vap *vap = ni->ni_vap;
2921 	struct ieee80211com *ic = ni->ni_ic;
2922 
2923 	/* pre-zero remainder of ie */
2924 	memset(frm, 0, sizeof(struct ieee80211_ie_htinfo) - 2);
2925 
2926 	/* primary/control channel center */
2927 	*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2928 
2929 	if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
2930 		frm[0] = IEEE80211_HTINFO_RIFSMODE_PERM;
2931 	else
2932 		frm[0] = IEEE80211_HTINFO_RIFSMODE_PROH;
2933 	if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
2934 		frm[0] |= IEEE80211_HTINFO_2NDCHAN_ABOVE;
2935 	else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
2936 		frm[0] |= IEEE80211_HTINFO_2NDCHAN_BELOW;
2937 	else
2938 		frm[0] |= IEEE80211_HTINFO_2NDCHAN_NONE;
2939 	if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
2940 		frm[0] |= IEEE80211_HTINFO_TXWIDTH_2040;
2941 
2942 	frm[1] = ic->ic_curhtprotmode;
2943 
2944 	frm += 5;
2945 
2946 	/* basic MCS set */
2947 	ieee80211_set_basic_htrates(frm, &ni->ni_htrates);
2948 	frm += sizeof(struct ieee80211_ie_htinfo) -
2949 		__offsetof(struct ieee80211_ie_htinfo, hi_basicmcsset);
2950 	return frm;
2951 }
2952 
2953 /*
2954  * Add 802.11n HT information information element.
2955  */
2956 uint8_t *
2957 ieee80211_add_htinfo(uint8_t *frm, struct ieee80211_node *ni)
2958 {
2959 	frm[0] = IEEE80211_ELEMID_HTINFO;
2960 	frm[1] = sizeof(struct ieee80211_ie_htinfo) - 2;
2961 	return ieee80211_add_htinfo_body(frm + 2, ni);
2962 }
2963 
2964 /*
2965  * Add Broadcom OUI wrapped standard HTINFO ie; this is
2966  * used for compatibility w/ pre-draft implementations.
2967  */
2968 uint8_t *
2969 ieee80211_add_htinfo_vendor(uint8_t *frm, struct ieee80211_node *ni)
2970 {
2971 	frm[0] = IEEE80211_ELEMID_VENDOR;
2972 	frm[1] = 4 + sizeof(struct ieee80211_ie_htinfo) - 2;
2973 	frm[2] = (BCM_OUI >> 0) & 0xff;
2974 	frm[3] = (BCM_OUI >> 8) & 0xff;
2975 	frm[4] = (BCM_OUI >> 16) & 0xff;
2976 	frm[5] = BCM_OUI_HTINFO;
2977 	return ieee80211_add_htinfo_body(frm + 6, ni);
2978 }
2979