1 /*- 2 * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 */ 25 26 #include <sys/cdefs.h> 27 #ifdef __FreeBSD__ 28 __FBSDID("$FreeBSD$"); 29 #endif 30 31 /* 32 * IEEE 802.11n protocol support. 33 */ 34 35 #include "opt_inet.h" 36 #include "opt_wlan.h" 37 38 #include <sys/param.h> 39 #include <sys/kernel.h> 40 #include <sys/systm.h> 41 #include <sys/endian.h> 42 43 #include <sys/socket.h> 44 45 #include <net/if.h> 46 #include <net/if_var.h> 47 #include <net/if_media.h> 48 #include <net/ethernet.h> 49 50 #include <net80211/ieee80211_var.h> 51 #include <net80211/ieee80211_action.h> 52 #include <net80211/ieee80211_input.h> 53 54 /* define here, used throughout file */ 55 #define MS(_v, _f) (((_v) & _f) >> _f##_S) 56 #define SM(_v, _f) (((_v) << _f##_S) & _f) 57 58 const struct ieee80211_mcs_rates ieee80211_htrates[IEEE80211_HTRATE_MAXSIZE] = { 59 { 13, 14, 27, 30 }, /* MCS 0 */ 60 { 26, 29, 54, 60 }, /* MCS 1 */ 61 { 39, 43, 81, 90 }, /* MCS 2 */ 62 { 52, 58, 108, 120 }, /* MCS 3 */ 63 { 78, 87, 162, 180 }, /* MCS 4 */ 64 { 104, 116, 216, 240 }, /* MCS 5 */ 65 { 117, 130, 243, 270 }, /* MCS 6 */ 66 { 130, 144, 270, 300 }, /* MCS 7 */ 67 { 26, 29, 54, 60 }, /* MCS 8 */ 68 { 52, 58, 108, 120 }, /* MCS 9 */ 69 { 78, 87, 162, 180 }, /* MCS 10 */ 70 { 104, 116, 216, 240 }, /* MCS 11 */ 71 { 156, 173, 324, 360 }, /* MCS 12 */ 72 { 208, 231, 432, 480 }, /* MCS 13 */ 73 { 234, 260, 486, 540 }, /* MCS 14 */ 74 { 260, 289, 540, 600 }, /* MCS 15 */ 75 { 39, 43, 81, 90 }, /* MCS 16 */ 76 { 78, 87, 162, 180 }, /* MCS 17 */ 77 { 117, 130, 243, 270 }, /* MCS 18 */ 78 { 156, 173, 324, 360 }, /* MCS 19 */ 79 { 234, 260, 486, 540 }, /* MCS 20 */ 80 { 312, 347, 648, 720 }, /* MCS 21 */ 81 { 351, 390, 729, 810 }, /* MCS 22 */ 82 { 390, 433, 810, 900 }, /* MCS 23 */ 83 { 52, 58, 108, 120 }, /* MCS 24 */ 84 { 104, 116, 216, 240 }, /* MCS 25 */ 85 { 156, 173, 324, 360 }, /* MCS 26 */ 86 { 208, 231, 432, 480 }, /* MCS 27 */ 87 { 312, 347, 648, 720 }, /* MCS 28 */ 88 { 416, 462, 864, 960 }, /* MCS 29 */ 89 { 468, 520, 972, 1080 }, /* MCS 30 */ 90 { 520, 578, 1080, 1200 }, /* MCS 31 */ 91 { 0, 0, 12, 13 }, /* MCS 32 */ 92 { 78, 87, 162, 180 }, /* MCS 33 */ 93 { 104, 116, 216, 240 }, /* MCS 34 */ 94 { 130, 144, 270, 300 }, /* MCS 35 */ 95 { 117, 130, 243, 270 }, /* MCS 36 */ 96 { 156, 173, 324, 360 }, /* MCS 37 */ 97 { 195, 217, 405, 450 }, /* MCS 38 */ 98 { 104, 116, 216, 240 }, /* MCS 39 */ 99 { 130, 144, 270, 300 }, /* MCS 40 */ 100 { 130, 144, 270, 300 }, /* MCS 41 */ 101 { 156, 173, 324, 360 }, /* MCS 42 */ 102 { 182, 202, 378, 420 }, /* MCS 43 */ 103 { 182, 202, 378, 420 }, /* MCS 44 */ 104 { 208, 231, 432, 480 }, /* MCS 45 */ 105 { 156, 173, 324, 360 }, /* MCS 46 */ 106 { 195, 217, 405, 450 }, /* MCS 47 */ 107 { 195, 217, 405, 450 }, /* MCS 48 */ 108 { 234, 260, 486, 540 }, /* MCS 49 */ 109 { 273, 303, 567, 630 }, /* MCS 50 */ 110 { 273, 303, 567, 630 }, /* MCS 51 */ 111 { 312, 347, 648, 720 }, /* MCS 52 */ 112 { 130, 144, 270, 300 }, /* MCS 53 */ 113 { 156, 173, 324, 360 }, /* MCS 54 */ 114 { 182, 202, 378, 420 }, /* MCS 55 */ 115 { 156, 173, 324, 360 }, /* MCS 56 */ 116 { 182, 202, 378, 420 }, /* MCS 57 */ 117 { 208, 231, 432, 480 }, /* MCS 58 */ 118 { 234, 260, 486, 540 }, /* MCS 59 */ 119 { 208, 231, 432, 480 }, /* MCS 60 */ 120 { 234, 260, 486, 540 }, /* MCS 61 */ 121 { 260, 289, 540, 600 }, /* MCS 62 */ 122 { 260, 289, 540, 600 }, /* MCS 63 */ 123 { 286, 318, 594, 660 }, /* MCS 64 */ 124 { 195, 217, 405, 450 }, /* MCS 65 */ 125 { 234, 260, 486, 540 }, /* MCS 66 */ 126 { 273, 303, 567, 630 }, /* MCS 67 */ 127 { 234, 260, 486, 540 }, /* MCS 68 */ 128 { 273, 303, 567, 630 }, /* MCS 69 */ 129 { 312, 347, 648, 720 }, /* MCS 70 */ 130 { 351, 390, 729, 810 }, /* MCS 71 */ 131 { 312, 347, 648, 720 }, /* MCS 72 */ 132 { 351, 390, 729, 810 }, /* MCS 73 */ 133 { 390, 433, 810, 900 }, /* MCS 74 */ 134 { 390, 433, 810, 900 }, /* MCS 75 */ 135 { 429, 477, 891, 990 }, /* MCS 76 */ 136 }; 137 138 #ifdef IEEE80211_AMPDU_AGE 139 static int ieee80211_ampdu_age = -1; /* threshold for ampdu reorder q (ms) */ 140 SYSCTL_PROC(_net_wlan, OID_AUTO, ampdu_age, CTLTYPE_INT | CTLFLAG_RW, 141 &ieee80211_ampdu_age, 0, ieee80211_sysctl_msecs_ticks, "I", 142 "AMPDU max reorder age (ms)"); 143 #endif 144 145 static int ieee80211_recv_bar_ena = 1; 146 SYSCTL_INT(_net_wlan, OID_AUTO, recv_bar, CTLFLAG_RW, &ieee80211_recv_bar_ena, 147 0, "BAR frame processing (ena/dis)"); 148 149 static int ieee80211_addba_timeout = -1;/* timeout for ADDBA response */ 150 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_timeout, CTLTYPE_INT | CTLFLAG_RW, 151 &ieee80211_addba_timeout, 0, ieee80211_sysctl_msecs_ticks, "I", 152 "ADDBA request timeout (ms)"); 153 static int ieee80211_addba_backoff = -1;/* backoff after max ADDBA requests */ 154 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_backoff, CTLTYPE_INT | CTLFLAG_RW, 155 &ieee80211_addba_backoff, 0, ieee80211_sysctl_msecs_ticks, "I", 156 "ADDBA request backoff (ms)"); 157 static int ieee80211_addba_maxtries = 3;/* max ADDBA requests before backoff */ 158 SYSCTL_INT(_net_wlan, OID_AUTO, addba_maxtries, CTLFLAG_RW, 159 &ieee80211_addba_maxtries, 0, "max ADDBA requests sent before backoff"); 160 161 static int ieee80211_bar_timeout = -1; /* timeout waiting for BAR response */ 162 static int ieee80211_bar_maxtries = 50;/* max BAR requests before DELBA */ 163 164 static ieee80211_recv_action_func ht_recv_action_ba_addba_request; 165 static ieee80211_recv_action_func ht_recv_action_ba_addba_response; 166 static ieee80211_recv_action_func ht_recv_action_ba_delba; 167 static ieee80211_recv_action_func ht_recv_action_ht_mimopwrsave; 168 static ieee80211_recv_action_func ht_recv_action_ht_txchwidth; 169 170 static ieee80211_send_action_func ht_send_action_ba_addba; 171 static ieee80211_send_action_func ht_send_action_ba_delba; 172 static ieee80211_send_action_func ht_send_action_ht_txchwidth; 173 174 static void 175 ieee80211_ht_init(void) 176 { 177 /* 178 * Setup HT parameters that depends on the clock frequency. 179 */ 180 #ifdef IEEE80211_AMPDU_AGE 181 ieee80211_ampdu_age = msecs_to_ticks(500); 182 #endif 183 ieee80211_addba_timeout = msecs_to_ticks(250); 184 ieee80211_addba_backoff = msecs_to_ticks(10*1000); 185 ieee80211_bar_timeout = msecs_to_ticks(250); 186 /* 187 * Register action frame handlers. 188 */ 189 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 190 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_recv_action_ba_addba_request); 191 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 192 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_recv_action_ba_addba_response); 193 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 194 IEEE80211_ACTION_BA_DELBA, ht_recv_action_ba_delba); 195 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 196 IEEE80211_ACTION_HT_MIMOPWRSAVE, ht_recv_action_ht_mimopwrsave); 197 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 198 IEEE80211_ACTION_HT_TXCHWIDTH, ht_recv_action_ht_txchwidth); 199 200 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 201 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_send_action_ba_addba); 202 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 203 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_send_action_ba_addba); 204 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 205 IEEE80211_ACTION_BA_DELBA, ht_send_action_ba_delba); 206 ieee80211_send_action_register(IEEE80211_ACTION_CAT_HT, 207 IEEE80211_ACTION_HT_TXCHWIDTH, ht_send_action_ht_txchwidth); 208 } 209 SYSINIT(wlan_ht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_ht_init, NULL); 210 211 static int ieee80211_ampdu_enable(struct ieee80211_node *ni, 212 struct ieee80211_tx_ampdu *tap); 213 static int ieee80211_addba_request(struct ieee80211_node *ni, 214 struct ieee80211_tx_ampdu *tap, 215 int dialogtoken, int baparamset, int batimeout); 216 static int ieee80211_addba_response(struct ieee80211_node *ni, 217 struct ieee80211_tx_ampdu *tap, 218 int code, int baparamset, int batimeout); 219 static void ieee80211_addba_stop(struct ieee80211_node *ni, 220 struct ieee80211_tx_ampdu *tap); 221 static void null_addba_response_timeout(struct ieee80211_node *ni, 222 struct ieee80211_tx_ampdu *tap); 223 224 static void ieee80211_bar_response(struct ieee80211_node *ni, 225 struct ieee80211_tx_ampdu *tap, int status); 226 static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap); 227 static void bar_stop_timer(struct ieee80211_tx_ampdu *tap); 228 static int ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *, 229 int baparamset, int batimeout, int baseqctl); 230 static void ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *); 231 232 void 233 ieee80211_ht_attach(struct ieee80211com *ic) 234 { 235 /* setup default aggregation policy */ 236 ic->ic_recv_action = ieee80211_recv_action; 237 ic->ic_send_action = ieee80211_send_action; 238 ic->ic_ampdu_enable = ieee80211_ampdu_enable; 239 ic->ic_addba_request = ieee80211_addba_request; 240 ic->ic_addba_response = ieee80211_addba_response; 241 ic->ic_addba_response_timeout = null_addba_response_timeout; 242 ic->ic_addba_stop = ieee80211_addba_stop; 243 ic->ic_bar_response = ieee80211_bar_response; 244 ic->ic_ampdu_rx_start = ampdu_rx_start; 245 ic->ic_ampdu_rx_stop = ampdu_rx_stop; 246 247 ic->ic_htprotmode = IEEE80211_PROT_RTSCTS; 248 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; 249 } 250 251 void 252 ieee80211_ht_detach(struct ieee80211com *ic) 253 { 254 } 255 256 void 257 ieee80211_ht_vattach(struct ieee80211vap *vap) 258 { 259 260 /* driver can override defaults */ 261 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_8K; 262 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_NA; 263 vap->iv_ampdu_limit = vap->iv_ampdu_rxmax; 264 vap->iv_amsdu_limit = vap->iv_htcaps & IEEE80211_HTCAP_MAXAMSDU; 265 /* tx aggregation traffic thresholds */ 266 vap->iv_ampdu_mintraffic[WME_AC_BK] = 128; 267 vap->iv_ampdu_mintraffic[WME_AC_BE] = 64; 268 vap->iv_ampdu_mintraffic[WME_AC_VO] = 32; 269 vap->iv_ampdu_mintraffic[WME_AC_VI] = 32; 270 271 if (vap->iv_htcaps & IEEE80211_HTC_HT) { 272 /* 273 * Device is HT capable; enable all HT-related 274 * facilities by default. 275 * XXX these choices may be too aggressive. 276 */ 277 vap->iv_flags_ht |= IEEE80211_FHT_HT 278 | IEEE80211_FHT_HTCOMPAT 279 ; 280 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI20) 281 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20; 282 /* XXX infer from channel list? */ 283 if (vap->iv_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 284 vap->iv_flags_ht |= IEEE80211_FHT_USEHT40; 285 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI40) 286 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40; 287 } 288 /* enable RIFS if capable */ 289 if (vap->iv_htcaps & IEEE80211_HTC_RIFS) 290 vap->iv_flags_ht |= IEEE80211_FHT_RIFS; 291 292 /* NB: A-MPDU and A-MSDU rx are mandated, these are tx only */ 293 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX; 294 if (vap->iv_htcaps & IEEE80211_HTC_AMPDU) 295 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX; 296 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX; 297 if (vap->iv_htcaps & IEEE80211_HTC_AMSDU) 298 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX; 299 } 300 /* NB: disable default legacy WDS, too many issues right now */ 301 if (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) 302 vap->iv_flags_ht &= ~IEEE80211_FHT_HT; 303 } 304 305 void 306 ieee80211_ht_vdetach(struct ieee80211vap *vap) 307 { 308 } 309 310 static int 311 ht_getrate(struct ieee80211com *ic, int index, enum ieee80211_phymode mode, 312 int ratetype) 313 { 314 int mword, rate; 315 316 mword = ieee80211_rate2media(ic, index | IEEE80211_RATE_MCS, mode); 317 if (IFM_SUBTYPE(mword) != IFM_IEEE80211_MCS) 318 return (0); 319 switch (ratetype) { 320 case 0: 321 rate = ieee80211_htrates[index].ht20_rate_800ns; 322 break; 323 case 1: 324 rate = ieee80211_htrates[index].ht20_rate_400ns; 325 break; 326 case 2: 327 rate = ieee80211_htrates[index].ht40_rate_800ns; 328 break; 329 default: 330 rate = ieee80211_htrates[index].ht40_rate_400ns; 331 break; 332 } 333 return (rate); 334 } 335 336 static struct printranges { 337 int minmcs; 338 int maxmcs; 339 int txstream; 340 int ratetype; 341 int htcapflags; 342 } ranges[] = { 343 { 0, 7, 1, 0, 0 }, 344 { 8, 15, 2, 0, 0 }, 345 { 16, 23, 3, 0, 0 }, 346 { 24, 31, 4, 0, 0 }, 347 { 32, 0, 1, 2, IEEE80211_HTC_TXMCS32 }, 348 { 33, 38, 2, 0, IEEE80211_HTC_TXUNEQUAL }, 349 { 39, 52, 3, 0, IEEE80211_HTC_TXUNEQUAL }, 350 { 53, 76, 4, 0, IEEE80211_HTC_TXUNEQUAL }, 351 { 0, 0, 0, 0, 0 }, 352 }; 353 354 static void 355 ht_rateprint(struct ieee80211com *ic, enum ieee80211_phymode mode, int ratetype) 356 { 357 int minrate, maxrate; 358 struct printranges *range; 359 360 for (range = ranges; range->txstream != 0; range++) { 361 if (ic->ic_txstream < range->txstream) 362 continue; 363 if (range->htcapflags && 364 (ic->ic_htcaps & range->htcapflags) == 0) 365 continue; 366 if (ratetype < range->ratetype) 367 continue; 368 minrate = ht_getrate(ic, range->minmcs, mode, ratetype); 369 maxrate = ht_getrate(ic, range->maxmcs, mode, ratetype); 370 if (range->maxmcs) { 371 ic_printf(ic, "MCS %d-%d: %d%sMbps - %d%sMbps\n", 372 range->minmcs, range->maxmcs, 373 minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""), 374 maxrate/2, ((maxrate & 0x1) != 0 ? ".5" : "")); 375 } else { 376 ic_printf(ic, "MCS %d: %d%sMbps\n", range->minmcs, 377 minrate/2, ((minrate & 0x1) != 0 ? ".5" : "")); 378 } 379 } 380 } 381 382 static void 383 ht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode) 384 { 385 const char *modestr = ieee80211_phymode_name[mode]; 386 387 ic_printf(ic, "%s MCS 20MHz\n", modestr); 388 ht_rateprint(ic, mode, 0); 389 if (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) { 390 ic_printf(ic, "%s MCS 20MHz SGI\n", modestr); 391 ht_rateprint(ic, mode, 1); 392 } 393 if (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 394 ic_printf(ic, "%s MCS 40MHz:\n", modestr); 395 ht_rateprint(ic, mode, 2); 396 } 397 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 398 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) { 399 ic_printf(ic, "%s MCS 40MHz SGI:\n", modestr); 400 ht_rateprint(ic, mode, 3); 401 } 402 } 403 404 void 405 ieee80211_ht_announce(struct ieee80211com *ic) 406 { 407 408 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 409 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 410 ic_printf(ic, "%dT%dR\n", ic->ic_txstream, ic->ic_rxstream); 411 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA)) 412 ht_announce(ic, IEEE80211_MODE_11NA); 413 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 414 ht_announce(ic, IEEE80211_MODE_11NG); 415 } 416 417 static struct ieee80211_htrateset htrateset; 418 419 const struct ieee80211_htrateset * 420 ieee80211_get_suphtrates(struct ieee80211com *ic, 421 const struct ieee80211_channel *c) 422 { 423 #define ADDRATE(x) do { \ 424 htrateset.rs_rates[htrateset.rs_nrates] = x; \ 425 htrateset.rs_nrates++; \ 426 } while (0) 427 int i; 428 429 memset(&htrateset, 0, sizeof(struct ieee80211_htrateset)); 430 for (i = 0; i < ic->ic_txstream * 8; i++) 431 ADDRATE(i); 432 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 433 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32)) 434 ADDRATE(32); 435 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 436 if (ic->ic_txstream >= 2) { 437 for (i = 33; i <= 38; i++) 438 ADDRATE(i); 439 } 440 if (ic->ic_txstream >= 3) { 441 for (i = 39; i <= 52; i++) 442 ADDRATE(i); 443 } 444 if (ic->ic_txstream == 4) { 445 for (i = 53; i <= 76; i++) 446 ADDRATE(i); 447 } 448 } 449 return &htrateset; 450 #undef ADDRATE 451 } 452 453 /* 454 * Receive processing. 455 */ 456 457 /* 458 * Decap the encapsulated A-MSDU frames and dispatch all but 459 * the last for delivery. The last frame is returned for 460 * delivery via the normal path. 461 */ 462 struct mbuf * 463 ieee80211_decap_amsdu(struct ieee80211_node *ni, struct mbuf *m) 464 { 465 struct ieee80211vap *vap = ni->ni_vap; 466 int framelen; 467 struct mbuf *n; 468 469 /* discard 802.3 header inserted by ieee80211_decap */ 470 m_adj(m, sizeof(struct ether_header)); 471 472 vap->iv_stats.is_amsdu_decap++; 473 474 for (;;) { 475 /* 476 * Decap the first frame, bust it apart from the 477 * remainder and deliver. We leave the last frame 478 * delivery to the caller (for consistency with other 479 * code paths, could also do it here). 480 */ 481 m = ieee80211_decap1(m, &framelen); 482 if (m == NULL) { 483 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 484 ni->ni_macaddr, "a-msdu", "%s", "decap failed"); 485 vap->iv_stats.is_amsdu_tooshort++; 486 return NULL; 487 } 488 if (m->m_pkthdr.len == framelen) 489 break; 490 n = m_split(m, framelen, M_NOWAIT); 491 if (n == NULL) { 492 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 493 ni->ni_macaddr, "a-msdu", 494 "%s", "unable to split encapsulated frames"); 495 vap->iv_stats.is_amsdu_split++; 496 m_freem(m); /* NB: must reclaim */ 497 return NULL; 498 } 499 vap->iv_deliver_data(vap, ni, m); 500 501 /* 502 * Remove frame contents; each intermediate frame 503 * is required to be aligned to a 4-byte boundary. 504 */ 505 m = n; 506 m_adj(m, roundup2(framelen, 4) - framelen); /* padding */ 507 } 508 return m; /* last delivered by caller */ 509 } 510 511 /* 512 * Purge all frames in the A-MPDU re-order queue. 513 */ 514 static void 515 ampdu_rx_purge(struct ieee80211_rx_ampdu *rap) 516 { 517 struct mbuf *m; 518 int i; 519 520 for (i = 0; i < rap->rxa_wnd; i++) { 521 m = rap->rxa_m[i]; 522 if (m != NULL) { 523 rap->rxa_m[i] = NULL; 524 rap->rxa_qbytes -= m->m_pkthdr.len; 525 m_freem(m); 526 if (--rap->rxa_qframes == 0) 527 break; 528 } 529 } 530 KASSERT(rap->rxa_qbytes == 0 && rap->rxa_qframes == 0, 531 ("lost %u data, %u frames on ampdu rx q", 532 rap->rxa_qbytes, rap->rxa_qframes)); 533 } 534 535 /* 536 * Start A-MPDU rx/re-order processing for the specified TID. 537 */ 538 static int 539 ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap, 540 int baparamset, int batimeout, int baseqctl) 541 { 542 int bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 543 544 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 545 /* 546 * AMPDU previously setup and not terminated with a DELBA, 547 * flush the reorder q's in case anything remains. 548 */ 549 ampdu_rx_purge(rap); 550 } 551 memset(rap, 0, sizeof(*rap)); 552 rap->rxa_wnd = (bufsiz == 0) ? 553 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 554 rap->rxa_start = MS(baseqctl, IEEE80211_BASEQ_START); 555 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 556 557 return 0; 558 } 559 560 /* 561 * Stop A-MPDU rx processing for the specified TID. 562 */ 563 static void 564 ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 565 { 566 567 ampdu_rx_purge(rap); 568 rap->rxa_flags &= ~(IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND); 569 } 570 571 /* 572 * Dispatch a frame from the A-MPDU reorder queue. The 573 * frame is fed back into ieee80211_input marked with an 574 * M_AMPDU_MPDU flag so it doesn't come back to us (it also 575 * permits ieee80211_input to optimize re-processing). 576 */ 577 static __inline void 578 ampdu_dispatch(struct ieee80211_node *ni, struct mbuf *m) 579 { 580 m->m_flags |= M_AMPDU_MPDU; /* bypass normal processing */ 581 /* NB: rssi and noise are ignored w/ M_AMPDU_MPDU set */ 582 (void) ieee80211_input(ni, m, 0, 0); 583 } 584 585 /* 586 * Dispatch as many frames as possible from the re-order queue. 587 * Frames will always be "at the front"; we process all frames 588 * up to the first empty slot in the window. On completion we 589 * cleanup state if there are still pending frames in the current 590 * BA window. We assume the frame at slot 0 is already handled 591 * by the caller; we always start at slot 1. 592 */ 593 static void 594 ampdu_rx_dispatch(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni) 595 { 596 struct ieee80211vap *vap = ni->ni_vap; 597 struct mbuf *m; 598 int i; 599 600 /* flush run of frames */ 601 for (i = 1; i < rap->rxa_wnd; i++) { 602 m = rap->rxa_m[i]; 603 if (m == NULL) 604 break; 605 rap->rxa_m[i] = NULL; 606 rap->rxa_qbytes -= m->m_pkthdr.len; 607 rap->rxa_qframes--; 608 609 ampdu_dispatch(ni, m); 610 } 611 /* 612 * If frames remain, copy the mbuf pointers down so 613 * they correspond to the offsets in the new window. 614 */ 615 if (rap->rxa_qframes != 0) { 616 int n = rap->rxa_qframes, j; 617 for (j = i+1; j < rap->rxa_wnd; j++) { 618 if (rap->rxa_m[j] != NULL) { 619 rap->rxa_m[j-i] = rap->rxa_m[j]; 620 rap->rxa_m[j] = NULL; 621 if (--n == 0) 622 break; 623 } 624 } 625 KASSERT(n == 0, ("lost %d frames", n)); 626 vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; 627 } 628 /* 629 * Adjust the start of the BA window to 630 * reflect the frames just dispatched. 631 */ 632 rap->rxa_start = IEEE80211_SEQ_ADD(rap->rxa_start, i); 633 vap->iv_stats.is_ampdu_rx_oor += i; 634 } 635 636 #ifdef IEEE80211_AMPDU_AGE 637 /* 638 * Dispatch all frames in the A-MPDU re-order queue. 639 */ 640 static void 641 ampdu_rx_flush(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 642 { 643 struct ieee80211vap *vap = ni->ni_vap; 644 struct mbuf *m; 645 int i; 646 647 for (i = 0; i < rap->rxa_wnd; i++) { 648 m = rap->rxa_m[i]; 649 if (m == NULL) 650 continue; 651 rap->rxa_m[i] = NULL; 652 rap->rxa_qbytes -= m->m_pkthdr.len; 653 rap->rxa_qframes--; 654 vap->iv_stats.is_ampdu_rx_oor++; 655 656 ampdu_dispatch(ni, m); 657 if (rap->rxa_qframes == 0) 658 break; 659 } 660 } 661 #endif /* IEEE80211_AMPDU_AGE */ 662 663 /* 664 * Dispatch all frames in the A-MPDU re-order queue 665 * preceding the specified sequence number. This logic 666 * handles window moves due to a received MSDU or BAR. 667 */ 668 static void 669 ampdu_rx_flush_upto(struct ieee80211_node *ni, 670 struct ieee80211_rx_ampdu *rap, ieee80211_seq winstart) 671 { 672 struct ieee80211vap *vap = ni->ni_vap; 673 struct mbuf *m; 674 ieee80211_seq seqno; 675 int i; 676 677 /* 678 * Flush any complete MSDU's with a sequence number lower 679 * than winstart. Gaps may exist. Note that we may actually 680 * dispatch frames past winstart if a run continues; this is 681 * an optimization that avoids having to do a separate pass 682 * to dispatch frames after moving the BA window start. 683 */ 684 seqno = rap->rxa_start; 685 for (i = 0; i < rap->rxa_wnd; i++) { 686 m = rap->rxa_m[i]; 687 if (m != NULL) { 688 rap->rxa_m[i] = NULL; 689 rap->rxa_qbytes -= m->m_pkthdr.len; 690 rap->rxa_qframes--; 691 vap->iv_stats.is_ampdu_rx_oor++; 692 693 ampdu_dispatch(ni, m); 694 } else { 695 if (!IEEE80211_SEQ_BA_BEFORE(seqno, winstart)) 696 break; 697 } 698 seqno = IEEE80211_SEQ_INC(seqno); 699 } 700 /* 701 * If frames remain, copy the mbuf pointers down so 702 * they correspond to the offsets in the new window. 703 */ 704 if (rap->rxa_qframes != 0) { 705 int n = rap->rxa_qframes, j; 706 707 /* NB: this loop assumes i > 0 and/or rxa_m[0] is NULL */ 708 KASSERT(rap->rxa_m[0] == NULL, 709 ("%s: BA window slot 0 occupied", __func__)); 710 for (j = i+1; j < rap->rxa_wnd; j++) { 711 if (rap->rxa_m[j] != NULL) { 712 rap->rxa_m[j-i] = rap->rxa_m[j]; 713 rap->rxa_m[j] = NULL; 714 if (--n == 0) 715 break; 716 } 717 } 718 KASSERT(n == 0, ("%s: lost %d frames, qframes %d off %d " 719 "BA win <%d:%d> winstart %d", 720 __func__, n, rap->rxa_qframes, i, rap->rxa_start, 721 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 722 winstart)); 723 vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; 724 } 725 /* 726 * Move the start of the BA window; we use the 727 * sequence number of the last MSDU that was 728 * passed up the stack+1 or winstart if stopped on 729 * a gap in the reorder buffer. 730 */ 731 rap->rxa_start = seqno; 732 } 733 734 /* 735 * Process a received QoS data frame for an HT station. Handle 736 * A-MPDU reordering: if this frame is received out of order 737 * and falls within the BA window hold onto it. Otherwise if 738 * this frame completes a run, flush any pending frames. We 739 * return 1 if the frame is consumed. A 0 is returned if 740 * the frame should be processed normally by the caller. 741 */ 742 int 743 ieee80211_ampdu_reorder(struct ieee80211_node *ni, struct mbuf *m) 744 { 745 #define IEEE80211_FC0_QOSDATA \ 746 (IEEE80211_FC0_TYPE_DATA|IEEE80211_FC0_SUBTYPE_QOS|IEEE80211_FC0_VERSION_0) 747 #define PROCESS 0 /* caller should process frame */ 748 #define CONSUMED 1 /* frame consumed, caller does nothing */ 749 struct ieee80211vap *vap = ni->ni_vap; 750 struct ieee80211_qosframe *wh; 751 struct ieee80211_rx_ampdu *rap; 752 ieee80211_seq rxseq; 753 uint8_t tid; 754 int off; 755 756 KASSERT((m->m_flags & (M_AMPDU | M_AMPDU_MPDU)) == M_AMPDU, 757 ("!a-mpdu or already re-ordered, flags 0x%x", m->m_flags)); 758 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 759 760 /* NB: m_len known to be sufficient */ 761 wh = mtod(m, struct ieee80211_qosframe *); 762 if (wh->i_fc[0] != IEEE80211_FC0_QOSDATA) { 763 /* 764 * Not QoS data, shouldn't get here but just 765 * return it to the caller for processing. 766 */ 767 return PROCESS; 768 } 769 if (IEEE80211_IS_DSTODS(wh)) 770 tid = ((struct ieee80211_qosframe_addr4 *)wh)->i_qos[0]; 771 else 772 tid = wh->i_qos[0]; 773 tid &= IEEE80211_QOS_TID; 774 rap = &ni->ni_rx_ampdu[tid]; 775 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 776 /* 777 * No ADDBA request yet, don't touch. 778 */ 779 return PROCESS; 780 } 781 rxseq = le16toh(*(uint16_t *)wh->i_seq); 782 if ((rxseq & IEEE80211_SEQ_FRAG_MASK) != 0) { 783 /* 784 * Fragments are not allowed; toss. 785 */ 786 IEEE80211_DISCARD_MAC(vap, 787 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 788 "A-MPDU", "fragment, rxseq 0x%x tid %u%s", rxseq, tid, 789 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 790 vap->iv_stats.is_ampdu_rx_drop++; 791 IEEE80211_NODE_STAT(ni, rx_drop); 792 m_freem(m); 793 return CONSUMED; 794 } 795 rxseq >>= IEEE80211_SEQ_SEQ_SHIFT; 796 rap->rxa_nframes++; 797 again: 798 if (rxseq == rap->rxa_start) { 799 /* 800 * First frame in window. 801 */ 802 if (rap->rxa_qframes != 0) { 803 /* 804 * Dispatch as many packets as we can. 805 */ 806 KASSERT(rap->rxa_m[0] == NULL, ("unexpected dup")); 807 ampdu_dispatch(ni, m); 808 ampdu_rx_dispatch(rap, ni); 809 return CONSUMED; 810 } else { 811 /* 812 * In order; advance window and notify 813 * caller to dispatch directly. 814 */ 815 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 816 return PROCESS; 817 } 818 } 819 /* 820 * Frame is out of order; store if in the BA window. 821 */ 822 /* calculate offset in BA window */ 823 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 824 if (off < rap->rxa_wnd) { 825 /* 826 * Common case (hopefully): in the BA window. 827 * Sec 9.10.7.6.2 a) (p.137) 828 */ 829 #ifdef IEEE80211_AMPDU_AGE 830 /* 831 * Check for frames sitting too long in the reorder queue. 832 * This should only ever happen if frames are not delivered 833 * without the sender otherwise notifying us (e.g. with a 834 * BAR to move the window). Typically this happens because 835 * of vendor bugs that cause the sequence number to jump. 836 * When this happens we get a gap in the reorder queue that 837 * leaves frame sitting on the queue until they get pushed 838 * out due to window moves. When the vendor does not send 839 * BAR this move only happens due to explicit packet sends 840 * 841 * NB: we only track the time of the oldest frame in the 842 * reorder q; this means that if we flush we might push 843 * frames that still "new"; if this happens then subsequent 844 * frames will result in BA window moves which cost something 845 * but is still better than a big throughput dip. 846 */ 847 if (rap->rxa_qframes != 0) { 848 /* XXX honor batimeout? */ 849 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 850 /* 851 * Too long since we received the first 852 * frame; flush the reorder buffer. 853 */ 854 if (rap->rxa_qframes != 0) { 855 vap->iv_stats.is_ampdu_rx_age += 856 rap->rxa_qframes; 857 ampdu_rx_flush(ni, rap); 858 } 859 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 860 return PROCESS; 861 } 862 } else { 863 /* 864 * First frame, start aging timer. 865 */ 866 rap->rxa_age = ticks; 867 } 868 #endif /* IEEE80211_AMPDU_AGE */ 869 /* save packet */ 870 if (rap->rxa_m[off] == NULL) { 871 rap->rxa_m[off] = m; 872 rap->rxa_qframes++; 873 rap->rxa_qbytes += m->m_pkthdr.len; 874 vap->iv_stats.is_ampdu_rx_reorder++; 875 } else { 876 IEEE80211_DISCARD_MAC(vap, 877 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 878 ni->ni_macaddr, "a-mpdu duplicate", 879 "seqno %u tid %u BA win <%u:%u>", 880 rxseq, tid, rap->rxa_start, 881 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1)); 882 vap->iv_stats.is_rx_dup++; 883 IEEE80211_NODE_STAT(ni, rx_dup); 884 m_freem(m); 885 } 886 return CONSUMED; 887 } 888 if (off < IEEE80211_SEQ_BA_RANGE) { 889 /* 890 * Outside the BA window, but within range; 891 * flush the reorder q and move the window. 892 * Sec 9.10.7.6.2 b) (p.138) 893 */ 894 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 895 "move BA win <%u:%u> (%u frames) rxseq %u tid %u", 896 rap->rxa_start, 897 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 898 rap->rxa_qframes, rxseq, tid); 899 vap->iv_stats.is_ampdu_rx_move++; 900 901 /* 902 * The spec says to flush frames up to but not including: 903 * WinStart_B = rxseq - rap->rxa_wnd + 1 904 * Then insert the frame or notify the caller to process 905 * it immediately. We can safely do this by just starting 906 * over again because we know the frame will now be within 907 * the BA window. 908 */ 909 /* NB: rxa_wnd known to be >0 */ 910 ampdu_rx_flush_upto(ni, rap, 911 IEEE80211_SEQ_SUB(rxseq, rap->rxa_wnd-1)); 912 goto again; 913 } else { 914 /* 915 * Outside the BA window and out of range; toss. 916 * Sec 9.10.7.6.2 c) (p.138) 917 */ 918 IEEE80211_DISCARD_MAC(vap, 919 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 920 "MPDU", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 921 rap->rxa_start, 922 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 923 rap->rxa_qframes, rxseq, tid, 924 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 925 vap->iv_stats.is_ampdu_rx_drop++; 926 IEEE80211_NODE_STAT(ni, rx_drop); 927 m_freem(m); 928 return CONSUMED; 929 } 930 #undef CONSUMED 931 #undef PROCESS 932 #undef IEEE80211_FC0_QOSDATA 933 } 934 935 /* 936 * Process a BAR ctl frame. Dispatch all frames up to 937 * the sequence number of the frame. If this frame is 938 * out of range it's discarded. 939 */ 940 void 941 ieee80211_recv_bar(struct ieee80211_node *ni, struct mbuf *m0) 942 { 943 struct ieee80211vap *vap = ni->ni_vap; 944 struct ieee80211_frame_bar *wh; 945 struct ieee80211_rx_ampdu *rap; 946 ieee80211_seq rxseq; 947 int tid, off; 948 949 if (!ieee80211_recv_bar_ena) { 950 #if 0 951 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_11N, 952 ni->ni_macaddr, "BAR", "%s", "processing disabled"); 953 #endif 954 vap->iv_stats.is_ampdu_bar_bad++; 955 return; 956 } 957 wh = mtod(m0, struct ieee80211_frame_bar *); 958 /* XXX check basic BAR */ 959 tid = MS(le16toh(wh->i_ctl), IEEE80211_BAR_TID); 960 rap = &ni->ni_rx_ampdu[tid]; 961 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 962 /* 963 * No ADDBA request yet, don't touch. 964 */ 965 IEEE80211_DISCARD_MAC(vap, 966 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 967 ni->ni_macaddr, "BAR", "no BA stream, tid %u", tid); 968 vap->iv_stats.is_ampdu_bar_bad++; 969 return; 970 } 971 vap->iv_stats.is_ampdu_bar_rx++; 972 rxseq = le16toh(wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT; 973 if (rxseq == rap->rxa_start) 974 return; 975 /* calculate offset in BA window */ 976 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 977 if (off < IEEE80211_SEQ_BA_RANGE) { 978 /* 979 * Flush the reorder q up to rxseq and move the window. 980 * Sec 9.10.7.6.3 a) (p.138) 981 */ 982 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 983 "BAR moves BA win <%u:%u> (%u frames) rxseq %u tid %u", 984 rap->rxa_start, 985 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 986 rap->rxa_qframes, rxseq, tid); 987 vap->iv_stats.is_ampdu_bar_move++; 988 989 ampdu_rx_flush_upto(ni, rap, rxseq); 990 if (off >= rap->rxa_wnd) { 991 /* 992 * BAR specifies a window start to the right of BA 993 * window; we must move it explicitly since 994 * ampdu_rx_flush_upto will not. 995 */ 996 rap->rxa_start = rxseq; 997 } 998 } else { 999 /* 1000 * Out of range; toss. 1001 * Sec 9.10.7.6.3 b) (p.138) 1002 */ 1003 IEEE80211_DISCARD_MAC(vap, 1004 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 1005 "BAR", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 1006 rap->rxa_start, 1007 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1008 rap->rxa_qframes, rxseq, tid, 1009 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 1010 vap->iv_stats.is_ampdu_bar_oow++; 1011 IEEE80211_NODE_STAT(ni, rx_drop); 1012 } 1013 } 1014 1015 /* 1016 * Setup HT-specific state in a node. Called only 1017 * when HT use is negotiated so we don't do extra 1018 * work for temporary and/or legacy sta's. 1019 */ 1020 void 1021 ieee80211_ht_node_init(struct ieee80211_node *ni) 1022 { 1023 struct ieee80211_tx_ampdu *tap; 1024 int tid; 1025 1026 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1027 ni, 1028 "%s: called", 1029 __func__); 1030 1031 if (ni->ni_flags & IEEE80211_NODE_HT) { 1032 /* 1033 * Clean AMPDU state on re-associate. This handles the case 1034 * where a station leaves w/o notifying us and then returns 1035 * before node is reaped for inactivity. 1036 */ 1037 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1038 ni, 1039 "%s: calling cleanup", 1040 __func__); 1041 ieee80211_ht_node_cleanup(ni); 1042 } 1043 for (tid = 0; tid < WME_NUM_TID; tid++) { 1044 tap = &ni->ni_tx_ampdu[tid]; 1045 tap->txa_tid = tid; 1046 tap->txa_ni = ni; 1047 tap->txa_lastsample = ticks; 1048 /* NB: further initialization deferred */ 1049 } 1050 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU; 1051 } 1052 1053 /* 1054 * Cleanup HT-specific state in a node. Called only 1055 * when HT use has been marked. 1056 */ 1057 void 1058 ieee80211_ht_node_cleanup(struct ieee80211_node *ni) 1059 { 1060 struct ieee80211com *ic = ni->ni_ic; 1061 int i; 1062 1063 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1064 ni, 1065 "%s: called", 1066 __func__); 1067 1068 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT node")); 1069 1070 /* XXX optimize this */ 1071 for (i = 0; i < WME_NUM_TID; i++) { 1072 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[i]; 1073 if (tap->txa_flags & IEEE80211_AGGR_SETUP) 1074 ampdu_tx_stop(tap); 1075 } 1076 for (i = 0; i < WME_NUM_TID; i++) 1077 ic->ic_ampdu_rx_stop(ni, &ni->ni_rx_ampdu[i]); 1078 1079 ni->ni_htcap = 0; 1080 ni->ni_flags &= ~IEEE80211_NODE_HT_ALL; 1081 } 1082 1083 /* 1084 * Age out HT resources for a station. 1085 */ 1086 void 1087 ieee80211_ht_node_age(struct ieee80211_node *ni) 1088 { 1089 #ifdef IEEE80211_AMPDU_AGE 1090 struct ieee80211vap *vap = ni->ni_vap; 1091 uint8_t tid; 1092 #endif 1093 1094 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 1095 1096 #ifdef IEEE80211_AMPDU_AGE 1097 for (tid = 0; tid < WME_NUM_TID; tid++) { 1098 struct ieee80211_rx_ampdu *rap; 1099 1100 rap = &ni->ni_rx_ampdu[tid]; 1101 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) 1102 continue; 1103 if (rap->rxa_qframes == 0) 1104 continue; 1105 /* 1106 * Check for frames sitting too long in the reorder queue. 1107 * See above for more details on what's happening here. 1108 */ 1109 /* XXX honor batimeout? */ 1110 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 1111 /* 1112 * Too long since we received the first 1113 * frame; flush the reorder buffer. 1114 */ 1115 vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes; 1116 ampdu_rx_flush(ni, rap); 1117 } 1118 } 1119 #endif /* IEEE80211_AMPDU_AGE */ 1120 } 1121 1122 static struct ieee80211_channel * 1123 findhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int htflags) 1124 { 1125 return ieee80211_find_channel(ic, c->ic_freq, 1126 (c->ic_flags &~ IEEE80211_CHAN_HT) | htflags); 1127 } 1128 1129 /* 1130 * Adjust a channel to be HT/non-HT according to the vap's configuration. 1131 */ 1132 struct ieee80211_channel * 1133 ieee80211_ht_adjust_channel(struct ieee80211com *ic, 1134 struct ieee80211_channel *chan, int flags) 1135 { 1136 struct ieee80211_channel *c; 1137 1138 if (flags & IEEE80211_FHT_HT) { 1139 /* promote to HT if possible */ 1140 if (flags & IEEE80211_FHT_USEHT40) { 1141 if (!IEEE80211_IS_CHAN_HT40(chan)) { 1142 /* NB: arbitrarily pick ht40+ over ht40- */ 1143 c = findhtchan(ic, chan, IEEE80211_CHAN_HT40U); 1144 if (c == NULL) 1145 c = findhtchan(ic, chan, 1146 IEEE80211_CHAN_HT40D); 1147 if (c == NULL) 1148 c = findhtchan(ic, chan, 1149 IEEE80211_CHAN_HT20); 1150 if (c != NULL) 1151 chan = c; 1152 } 1153 } else if (!IEEE80211_IS_CHAN_HT20(chan)) { 1154 c = findhtchan(ic, chan, IEEE80211_CHAN_HT20); 1155 if (c != NULL) 1156 chan = c; 1157 } 1158 } else if (IEEE80211_IS_CHAN_HT(chan)) { 1159 /* demote to legacy, HT use is disabled */ 1160 c = ieee80211_find_channel(ic, chan->ic_freq, 1161 chan->ic_flags &~ IEEE80211_CHAN_HT); 1162 if (c != NULL) 1163 chan = c; 1164 } 1165 return chan; 1166 } 1167 1168 /* 1169 * Setup HT-specific state for a legacy WDS peer. 1170 */ 1171 void 1172 ieee80211_ht_wds_init(struct ieee80211_node *ni) 1173 { 1174 struct ieee80211vap *vap = ni->ni_vap; 1175 struct ieee80211_tx_ampdu *tap; 1176 int tid; 1177 1178 KASSERT(vap->iv_flags_ht & IEEE80211_FHT_HT, ("no HT requested")); 1179 1180 /* XXX check scan cache in case peer has an ap and we have info */ 1181 /* 1182 * If setup with a legacy channel; locate an HT channel. 1183 * Otherwise if the inherited channel (from a companion 1184 * AP) is suitable use it so we use the same location 1185 * for the extension channel). 1186 */ 1187 ni->ni_chan = ieee80211_ht_adjust_channel(ni->ni_ic, 1188 ni->ni_chan, ieee80211_htchanflags(ni->ni_chan)); 1189 1190 ni->ni_htcap = 0; 1191 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) 1192 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI20; 1193 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { 1194 ni->ni_htcap |= IEEE80211_HTCAP_CHWIDTH40; 1195 ni->ni_chw = 40; 1196 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 1197 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_ABOVE; 1198 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 1199 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_BELOW; 1200 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) 1201 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI40; 1202 } else { 1203 ni->ni_chw = 20; 1204 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_NONE; 1205 } 1206 ni->ni_htctlchan = ni->ni_chan->ic_ieee; 1207 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 1208 ni->ni_flags |= IEEE80211_NODE_RIFS; 1209 /* XXX does it make sense to enable SMPS? */ 1210 1211 ni->ni_htopmode = 0; /* XXX need protection state */ 1212 ni->ni_htstbc = 0; /* XXX need info */ 1213 1214 for (tid = 0; tid < WME_NUM_TID; tid++) { 1215 tap = &ni->ni_tx_ampdu[tid]; 1216 tap->txa_tid = tid; 1217 tap->txa_lastsample = ticks; 1218 } 1219 /* NB: AMPDU tx/rx governed by IEEE80211_FHT_AMPDU_{TX,RX} */ 1220 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU; 1221 } 1222 1223 /* 1224 * Notify hostap vaps of a change in the HTINFO ie. 1225 */ 1226 static void 1227 htinfo_notify(struct ieee80211com *ic) 1228 { 1229 struct ieee80211vap *vap; 1230 int first = 1; 1231 1232 IEEE80211_LOCK_ASSERT(ic); 1233 1234 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1235 if (vap->iv_opmode != IEEE80211_M_HOSTAP) 1236 continue; 1237 if (vap->iv_state != IEEE80211_S_RUN || 1238 !IEEE80211_IS_CHAN_HT(vap->iv_bss->ni_chan)) 1239 continue; 1240 if (first) { 1241 IEEE80211_NOTE(vap, 1242 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1243 vap->iv_bss, 1244 "HT bss occupancy change: %d sta, %d ht, " 1245 "%d ht40%s, HT protmode now 0x%x" 1246 , ic->ic_sta_assoc 1247 , ic->ic_ht_sta_assoc 1248 , ic->ic_ht40_sta_assoc 1249 , (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) ? 1250 ", non-HT sta present" : "" 1251 , ic->ic_curhtprotmode); 1252 first = 0; 1253 } 1254 ieee80211_beacon_notify(vap, IEEE80211_BEACON_HTINFO); 1255 } 1256 } 1257 1258 /* 1259 * Calculate HT protection mode from current 1260 * state and handle updates. 1261 */ 1262 static void 1263 htinfo_update(struct ieee80211com *ic) 1264 { 1265 uint8_t protmode; 1266 1267 if (ic->ic_sta_assoc != ic->ic_ht_sta_assoc) { 1268 protmode = IEEE80211_HTINFO_OPMODE_MIXED 1269 | IEEE80211_HTINFO_NONHT_PRESENT; 1270 } else if (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) { 1271 protmode = IEEE80211_HTINFO_OPMODE_PROTOPT 1272 | IEEE80211_HTINFO_NONHT_PRESENT; 1273 } else if (ic->ic_bsschan != IEEE80211_CHAN_ANYC && 1274 IEEE80211_IS_CHAN_HT40(ic->ic_bsschan) && 1275 ic->ic_sta_assoc != ic->ic_ht40_sta_assoc) { 1276 protmode = IEEE80211_HTINFO_OPMODE_HT20PR; 1277 } else { 1278 protmode = IEEE80211_HTINFO_OPMODE_PURE; 1279 } 1280 if (protmode != ic->ic_curhtprotmode) { 1281 ic->ic_curhtprotmode = protmode; 1282 htinfo_notify(ic); 1283 } 1284 } 1285 1286 /* 1287 * Handle an HT station joining a BSS. 1288 */ 1289 void 1290 ieee80211_ht_node_join(struct ieee80211_node *ni) 1291 { 1292 struct ieee80211com *ic = ni->ni_ic; 1293 1294 IEEE80211_LOCK_ASSERT(ic); 1295 1296 if (ni->ni_flags & IEEE80211_NODE_HT) { 1297 ic->ic_ht_sta_assoc++; 1298 if (ni->ni_chw == 40) 1299 ic->ic_ht40_sta_assoc++; 1300 } 1301 htinfo_update(ic); 1302 } 1303 1304 /* 1305 * Handle an HT station leaving a BSS. 1306 */ 1307 void 1308 ieee80211_ht_node_leave(struct ieee80211_node *ni) 1309 { 1310 struct ieee80211com *ic = ni->ni_ic; 1311 1312 IEEE80211_LOCK_ASSERT(ic); 1313 1314 if (ni->ni_flags & IEEE80211_NODE_HT) { 1315 ic->ic_ht_sta_assoc--; 1316 if (ni->ni_chw == 40) 1317 ic->ic_ht40_sta_assoc--; 1318 } 1319 htinfo_update(ic); 1320 } 1321 1322 /* 1323 * Public version of htinfo_update; used for processing 1324 * beacon frames from overlapping bss. 1325 * 1326 * Caller can specify either IEEE80211_HTINFO_OPMODE_MIXED 1327 * (on receipt of a beacon that advertises MIXED) or 1328 * IEEE80211_HTINFO_OPMODE_PROTOPT (on receipt of a beacon 1329 * from an overlapping legacy bss). We treat MIXED with 1330 * a higher precedence than PROTOPT (i.e. we will not change 1331 * change PROTOPT -> MIXED; only MIXED -> PROTOPT). This 1332 * corresponds to how we handle things in htinfo_update. 1333 */ 1334 void 1335 ieee80211_htprot_update(struct ieee80211com *ic, int protmode) 1336 { 1337 #define OPMODE(x) SM(x, IEEE80211_HTINFO_OPMODE) 1338 IEEE80211_LOCK(ic); 1339 1340 /* track non-HT station presence */ 1341 KASSERT(protmode & IEEE80211_HTINFO_NONHT_PRESENT, 1342 ("protmode 0x%x", protmode)); 1343 ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR; 1344 ic->ic_lastnonht = ticks; 1345 1346 if (protmode != ic->ic_curhtprotmode && 1347 (OPMODE(ic->ic_curhtprotmode) != IEEE80211_HTINFO_OPMODE_MIXED || 1348 OPMODE(protmode) == IEEE80211_HTINFO_OPMODE_PROTOPT)) { 1349 /* push beacon update */ 1350 ic->ic_curhtprotmode = protmode; 1351 htinfo_notify(ic); 1352 } 1353 IEEE80211_UNLOCK(ic); 1354 #undef OPMODE 1355 } 1356 1357 /* 1358 * Time out presence of an overlapping bss with non-HT 1359 * stations. When operating in hostap mode we listen for 1360 * beacons from other stations and if we identify a non-HT 1361 * station is present we update the opmode field of the 1362 * HTINFO ie. To identify when all non-HT stations are 1363 * gone we time out this condition. 1364 */ 1365 void 1366 ieee80211_ht_timeout(struct ieee80211com *ic) 1367 { 1368 IEEE80211_LOCK_ASSERT(ic); 1369 1370 if ((ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) && 1371 time_after(ticks, ic->ic_lastnonht + IEEE80211_NONHT_PRESENT_AGE)) { 1372 #if 0 1373 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1374 "%s", "time out non-HT STA present on channel"); 1375 #endif 1376 ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR; 1377 htinfo_update(ic); 1378 } 1379 } 1380 1381 /* unalligned little endian access */ 1382 #define LE_READ_2(p) \ 1383 ((uint16_t) \ 1384 ((((const uint8_t *)(p))[0] ) | \ 1385 (((const uint8_t *)(p))[1] << 8))) 1386 1387 /* 1388 * Process an 802.11n HT capabilities ie. 1389 */ 1390 void 1391 ieee80211_parse_htcap(struct ieee80211_node *ni, const uint8_t *ie) 1392 { 1393 if (ie[0] == IEEE80211_ELEMID_VENDOR) { 1394 /* 1395 * Station used Vendor OUI ie to associate; 1396 * mark the node so when we respond we'll use 1397 * the Vendor OUI's and not the standard ie's. 1398 */ 1399 ni->ni_flags |= IEEE80211_NODE_HTCOMPAT; 1400 ie += 4; 1401 } else 1402 ni->ni_flags &= ~IEEE80211_NODE_HTCOMPAT; 1403 1404 ni->ni_htcap = LE_READ_2(ie + 1405 __offsetof(struct ieee80211_ie_htcap, hc_cap)); 1406 ni->ni_htparam = ie[__offsetof(struct ieee80211_ie_htcap, hc_param)]; 1407 } 1408 1409 static void 1410 htinfo_parse(struct ieee80211_node *ni, 1411 const struct ieee80211_ie_htinfo *htinfo) 1412 { 1413 uint16_t w; 1414 1415 ni->ni_htctlchan = htinfo->hi_ctrlchannel; 1416 ni->ni_ht2ndchan = SM(htinfo->hi_byte1, IEEE80211_HTINFO_2NDCHAN); 1417 w = LE_READ_2(&htinfo->hi_byte2); 1418 ni->ni_htopmode = SM(w, IEEE80211_HTINFO_OPMODE); 1419 w = LE_READ_2(&htinfo->hi_byte45); 1420 ni->ni_htstbc = SM(w, IEEE80211_HTINFO_BASIC_STBCMCS); 1421 } 1422 1423 /* 1424 * Parse an 802.11n HT info ie and save useful information 1425 * to the node state. Note this does not effect any state 1426 * changes such as for channel width change. 1427 */ 1428 void 1429 ieee80211_parse_htinfo(struct ieee80211_node *ni, const uint8_t *ie) 1430 { 1431 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1432 ie += 4; 1433 htinfo_parse(ni, (const struct ieee80211_ie_htinfo *) ie); 1434 } 1435 1436 /* 1437 * Handle 11n channel switch. Use the received HT ie's to 1438 * identify the right channel to use. If we cannot locate it 1439 * in the channel table then fallback to legacy operation. 1440 * Note that we use this information to identify the node's 1441 * channel only; the caller is responsible for insuring any 1442 * required channel change is done (e.g. in sta mode when 1443 * parsing the contents of a beacon frame). 1444 */ 1445 static int 1446 htinfo_update_chw(struct ieee80211_node *ni, int htflags) 1447 { 1448 struct ieee80211com *ic = ni->ni_ic; 1449 struct ieee80211_channel *c; 1450 int chanflags; 1451 int ret = 0; 1452 1453 chanflags = (ni->ni_chan->ic_flags &~ IEEE80211_CHAN_HT) | htflags; 1454 if (chanflags != ni->ni_chan->ic_flags) { 1455 /* XXX not right for ht40- */ 1456 c = ieee80211_find_channel(ic, ni->ni_chan->ic_freq, chanflags); 1457 if (c == NULL && (htflags & IEEE80211_CHAN_HT40)) { 1458 /* 1459 * No HT40 channel entry in our table; fall back 1460 * to HT20 operation. This should not happen. 1461 */ 1462 c = findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT20); 1463 #if 0 1464 IEEE80211_NOTE(ni->ni_vap, 1465 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1466 "no HT40 channel (freq %u), falling back to HT20", 1467 ni->ni_chan->ic_freq); 1468 #endif 1469 /* XXX stat */ 1470 } 1471 if (c != NULL && c != ni->ni_chan) { 1472 IEEE80211_NOTE(ni->ni_vap, 1473 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1474 "switch station to HT%d channel %u/0x%x", 1475 IEEE80211_IS_CHAN_HT40(c) ? 40 : 20, 1476 c->ic_freq, c->ic_flags); 1477 ni->ni_chan = c; 1478 ret = 1; 1479 } 1480 /* NB: caller responsible for forcing any channel change */ 1481 } 1482 /* update node's tx channel width */ 1483 ni->ni_chw = IEEE80211_IS_CHAN_HT40(ni->ni_chan)? 40 : 20; 1484 return (ret); 1485 } 1486 1487 /* 1488 * Update 11n MIMO PS state according to received htcap. 1489 */ 1490 static __inline int 1491 htcap_update_mimo_ps(struct ieee80211_node *ni) 1492 { 1493 uint16_t oflags = ni->ni_flags; 1494 1495 switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) { 1496 case IEEE80211_HTCAP_SMPS_DYNAMIC: 1497 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1498 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 1499 break; 1500 case IEEE80211_HTCAP_SMPS_ENA: 1501 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1502 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1503 break; 1504 case IEEE80211_HTCAP_SMPS_OFF: 1505 default: /* disable on rx of reserved value */ 1506 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 1507 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1508 break; 1509 } 1510 return (oflags ^ ni->ni_flags); 1511 } 1512 1513 /* 1514 * Update short GI state according to received htcap 1515 * and local settings. 1516 */ 1517 static __inline void 1518 htcap_update_shortgi(struct ieee80211_node *ni) 1519 { 1520 struct ieee80211vap *vap = ni->ni_vap; 1521 1522 ni->ni_flags &= ~(IEEE80211_NODE_SGI20|IEEE80211_NODE_SGI40); 1523 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) && 1524 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)) 1525 ni->ni_flags |= IEEE80211_NODE_SGI20; 1526 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) && 1527 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)) 1528 ni->ni_flags |= IEEE80211_NODE_SGI40; 1529 } 1530 1531 /* 1532 * Parse and update HT-related state extracted from 1533 * the HT cap and info ie's. 1534 */ 1535 int 1536 ieee80211_ht_updateparams(struct ieee80211_node *ni, 1537 const uint8_t *htcapie, const uint8_t *htinfoie) 1538 { 1539 struct ieee80211vap *vap = ni->ni_vap; 1540 const struct ieee80211_ie_htinfo *htinfo; 1541 int htflags; 1542 int ret = 0; 1543 1544 ieee80211_parse_htcap(ni, htcapie); 1545 if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS) 1546 htcap_update_mimo_ps(ni); 1547 htcap_update_shortgi(ni); 1548 1549 if (htinfoie[0] == IEEE80211_ELEMID_VENDOR) 1550 htinfoie += 4; 1551 htinfo = (const struct ieee80211_ie_htinfo *) htinfoie; 1552 htinfo_parse(ni, htinfo); 1553 1554 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 1555 IEEE80211_CHAN_HT20 : 0; 1556 /* NB: honor operating mode constraint */ 1557 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH_2040) && 1558 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 1559 if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_ABOVE) 1560 htflags = IEEE80211_CHAN_HT40U; 1561 else if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_BELOW) 1562 htflags = IEEE80211_CHAN_HT40D; 1563 } 1564 if (htinfo_update_chw(ni, htflags)) 1565 ret = 1; 1566 1567 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_RIFSMODE_PERM) && 1568 (vap->iv_flags_ht & IEEE80211_FHT_RIFS)) 1569 ni->ni_flags |= IEEE80211_NODE_RIFS; 1570 else 1571 ni->ni_flags &= ~IEEE80211_NODE_RIFS; 1572 1573 return (ret); 1574 } 1575 1576 /* 1577 * Parse and update HT-related state extracted from the HT cap ie 1578 * for a station joining an HT BSS. 1579 */ 1580 void 1581 ieee80211_ht_updatehtcap(struct ieee80211_node *ni, const uint8_t *htcapie) 1582 { 1583 struct ieee80211vap *vap = ni->ni_vap; 1584 int htflags; 1585 1586 ieee80211_parse_htcap(ni, htcapie); 1587 if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS) 1588 htcap_update_mimo_ps(ni); 1589 htcap_update_shortgi(ni); 1590 1591 /* NB: honor operating mode constraint */ 1592 /* XXX 40 MHz intolerant */ 1593 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 1594 IEEE80211_CHAN_HT20 : 0; 1595 if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) && 1596 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 1597 if (IEEE80211_IS_CHAN_HT40U(vap->iv_bss->ni_chan)) 1598 htflags = IEEE80211_CHAN_HT40U; 1599 else if (IEEE80211_IS_CHAN_HT40D(vap->iv_bss->ni_chan)) 1600 htflags = IEEE80211_CHAN_HT40D; 1601 } 1602 (void) htinfo_update_chw(ni, htflags); 1603 } 1604 1605 /* 1606 * Install received HT rate set by parsing the HT cap ie. 1607 */ 1608 int 1609 ieee80211_setup_htrates(struct ieee80211_node *ni, const uint8_t *ie, int flags) 1610 { 1611 struct ieee80211com *ic = ni->ni_ic; 1612 struct ieee80211vap *vap = ni->ni_vap; 1613 const struct ieee80211_ie_htcap *htcap; 1614 struct ieee80211_htrateset *rs; 1615 int i, maxequalmcs, maxunequalmcs; 1616 1617 maxequalmcs = ic->ic_txstream * 8 - 1; 1618 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 1619 if (ic->ic_txstream >= 2) 1620 maxunequalmcs = 38; 1621 if (ic->ic_txstream >= 3) 1622 maxunequalmcs = 52; 1623 if (ic->ic_txstream >= 4) 1624 maxunequalmcs = 76; 1625 } else 1626 maxunequalmcs = 0; 1627 1628 rs = &ni->ni_htrates; 1629 memset(rs, 0, sizeof(*rs)); 1630 if (ie != NULL) { 1631 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1632 ie += 4; 1633 htcap = (const struct ieee80211_ie_htcap *) ie; 1634 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 1635 if (isclr(htcap->hc_mcsset, i)) 1636 continue; 1637 if (rs->rs_nrates == IEEE80211_HTRATE_MAXSIZE) { 1638 IEEE80211_NOTE(vap, 1639 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 1640 "WARNING, HT rate set too large; only " 1641 "using %u rates", IEEE80211_HTRATE_MAXSIZE); 1642 vap->iv_stats.is_rx_rstoobig++; 1643 break; 1644 } 1645 if (i <= 31 && i > maxequalmcs) 1646 continue; 1647 if (i == 32 && 1648 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0) 1649 continue; 1650 if (i > 32 && i > maxunequalmcs) 1651 continue; 1652 rs->rs_rates[rs->rs_nrates++] = i; 1653 } 1654 } 1655 return ieee80211_fix_rate(ni, (struct ieee80211_rateset *) rs, flags); 1656 } 1657 1658 /* 1659 * Mark rates in a node's HT rate set as basic according 1660 * to the information in the supplied HT info ie. 1661 */ 1662 void 1663 ieee80211_setup_basic_htrates(struct ieee80211_node *ni, const uint8_t *ie) 1664 { 1665 const struct ieee80211_ie_htinfo *htinfo; 1666 struct ieee80211_htrateset *rs; 1667 int i, j; 1668 1669 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1670 ie += 4; 1671 htinfo = (const struct ieee80211_ie_htinfo *) ie; 1672 rs = &ni->ni_htrates; 1673 if (rs->rs_nrates == 0) { 1674 IEEE80211_NOTE(ni->ni_vap, 1675 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 1676 "%s", "WARNING, empty HT rate set"); 1677 return; 1678 } 1679 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 1680 if (isclr(htinfo->hi_basicmcsset, i)) 1681 continue; 1682 for (j = 0; j < rs->rs_nrates; j++) 1683 if ((rs->rs_rates[j] & IEEE80211_RATE_VAL) == i) 1684 rs->rs_rates[j] |= IEEE80211_RATE_BASIC; 1685 } 1686 } 1687 1688 static void 1689 ampdu_tx_setup(struct ieee80211_tx_ampdu *tap) 1690 { 1691 callout_init(&tap->txa_timer, 1); 1692 tap->txa_flags |= IEEE80211_AGGR_SETUP; 1693 tap->txa_lastsample = ticks; 1694 } 1695 1696 static void 1697 ampdu_tx_stop(struct ieee80211_tx_ampdu *tap) 1698 { 1699 struct ieee80211_node *ni = tap->txa_ni; 1700 struct ieee80211com *ic = ni->ni_ic; 1701 1702 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 1703 tap->txa_ni, 1704 "%s: called", 1705 __func__); 1706 1707 KASSERT(tap->txa_flags & IEEE80211_AGGR_SETUP, 1708 ("txa_flags 0x%x tid %d ac %d", tap->txa_flags, tap->txa_tid, 1709 TID_TO_WME_AC(tap->txa_tid))); 1710 1711 /* 1712 * Stop BA stream if setup so driver has a chance 1713 * to reclaim any resources it might have allocated. 1714 */ 1715 ic->ic_addba_stop(ni, tap); 1716 /* 1717 * Stop any pending BAR transmit. 1718 */ 1719 bar_stop_timer(tap); 1720 1721 /* 1722 * Reset packet estimate. 1723 */ 1724 tap->txa_lastsample = ticks; 1725 tap->txa_avgpps = 0; 1726 1727 /* NB: clearing NAK means we may re-send ADDBA */ 1728 tap->txa_flags &= ~(IEEE80211_AGGR_SETUP | IEEE80211_AGGR_NAK); 1729 } 1730 1731 /* 1732 * ADDBA response timeout. 1733 * 1734 * If software aggregation and per-TID queue management was done here, 1735 * that queue would be unpaused after the ADDBA timeout occurs. 1736 */ 1737 static void 1738 addba_timeout(void *arg) 1739 { 1740 struct ieee80211_tx_ampdu *tap = arg; 1741 struct ieee80211_node *ni = tap->txa_ni; 1742 struct ieee80211com *ic = ni->ni_ic; 1743 1744 /* XXX ? */ 1745 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 1746 tap->txa_attempts++; 1747 ic->ic_addba_response_timeout(ni, tap); 1748 } 1749 1750 static void 1751 addba_start_timeout(struct ieee80211_tx_ampdu *tap) 1752 { 1753 /* XXX use CALLOUT_PENDING instead? */ 1754 callout_reset(&tap->txa_timer, ieee80211_addba_timeout, 1755 addba_timeout, tap); 1756 tap->txa_flags |= IEEE80211_AGGR_XCHGPEND; 1757 tap->txa_nextrequest = ticks + ieee80211_addba_timeout; 1758 } 1759 1760 static void 1761 addba_stop_timeout(struct ieee80211_tx_ampdu *tap) 1762 { 1763 /* XXX use CALLOUT_PENDING instead? */ 1764 if (tap->txa_flags & IEEE80211_AGGR_XCHGPEND) { 1765 callout_stop(&tap->txa_timer); 1766 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 1767 } 1768 } 1769 1770 static void 1771 null_addba_response_timeout(struct ieee80211_node *ni, 1772 struct ieee80211_tx_ampdu *tap) 1773 { 1774 } 1775 1776 /* 1777 * Default method for requesting A-MPDU tx aggregation. 1778 * We setup the specified state block and start a timer 1779 * to wait for an ADDBA response frame. 1780 */ 1781 static int 1782 ieee80211_addba_request(struct ieee80211_node *ni, 1783 struct ieee80211_tx_ampdu *tap, 1784 int dialogtoken, int baparamset, int batimeout) 1785 { 1786 int bufsiz; 1787 1788 /* XXX locking */ 1789 tap->txa_token = dialogtoken; 1790 tap->txa_flags |= IEEE80211_AGGR_IMMEDIATE; 1791 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 1792 tap->txa_wnd = (bufsiz == 0) ? 1793 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 1794 addba_start_timeout(tap); 1795 return 1; 1796 } 1797 1798 /* 1799 * Default method for processing an A-MPDU tx aggregation 1800 * response. We shutdown any pending timer and update the 1801 * state block according to the reply. 1802 */ 1803 static int 1804 ieee80211_addba_response(struct ieee80211_node *ni, 1805 struct ieee80211_tx_ampdu *tap, 1806 int status, int baparamset, int batimeout) 1807 { 1808 int bufsiz, tid; 1809 1810 /* XXX locking */ 1811 addba_stop_timeout(tap); 1812 if (status == IEEE80211_STATUS_SUCCESS) { 1813 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 1814 /* XXX override our request? */ 1815 tap->txa_wnd = (bufsiz == 0) ? 1816 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 1817 /* XXX AC/TID */ 1818 tid = MS(baparamset, IEEE80211_BAPS_TID); 1819 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 1820 tap->txa_attempts = 0; 1821 } else { 1822 /* mark tid so we don't try again */ 1823 tap->txa_flags |= IEEE80211_AGGR_NAK; 1824 } 1825 return 1; 1826 } 1827 1828 /* 1829 * Default method for stopping A-MPDU tx aggregation. 1830 * Any timer is cleared and we drain any pending frames. 1831 */ 1832 static void 1833 ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 1834 { 1835 /* XXX locking */ 1836 addba_stop_timeout(tap); 1837 if (tap->txa_flags & IEEE80211_AGGR_RUNNING) { 1838 /* XXX clear aggregation queue */ 1839 tap->txa_flags &= ~IEEE80211_AGGR_RUNNING; 1840 } 1841 tap->txa_attempts = 0; 1842 } 1843 1844 /* 1845 * Process a received action frame using the default aggregation 1846 * policy. We intercept ADDBA-related frames and use them to 1847 * update our aggregation state. All other frames are passed up 1848 * for processing by ieee80211_recv_action. 1849 */ 1850 static int 1851 ht_recv_action_ba_addba_request(struct ieee80211_node *ni, 1852 const struct ieee80211_frame *wh, 1853 const uint8_t *frm, const uint8_t *efrm) 1854 { 1855 struct ieee80211com *ic = ni->ni_ic; 1856 struct ieee80211vap *vap = ni->ni_vap; 1857 struct ieee80211_rx_ampdu *rap; 1858 uint8_t dialogtoken; 1859 uint16_t baparamset, batimeout, baseqctl; 1860 uint16_t args[5]; 1861 int tid; 1862 1863 dialogtoken = frm[2]; 1864 baparamset = LE_READ_2(frm+3); 1865 batimeout = LE_READ_2(frm+5); 1866 baseqctl = LE_READ_2(frm+7); 1867 1868 tid = MS(baparamset, IEEE80211_BAPS_TID); 1869 1870 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 1871 "recv ADDBA request: dialogtoken %u baparamset 0x%x " 1872 "(tid %d bufsiz %d) batimeout %d baseqctl %d:%d", 1873 dialogtoken, baparamset, 1874 tid, MS(baparamset, IEEE80211_BAPS_BUFSIZ), 1875 batimeout, 1876 MS(baseqctl, IEEE80211_BASEQ_START), 1877 MS(baseqctl, IEEE80211_BASEQ_FRAG)); 1878 1879 rap = &ni->ni_rx_ampdu[tid]; 1880 1881 /* Send ADDBA response */ 1882 args[0] = dialogtoken; 1883 /* 1884 * NB: We ack only if the sta associated with HT and 1885 * the ap is configured to do AMPDU rx (the latter 1886 * violates the 11n spec and is mostly for testing). 1887 */ 1888 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_RX) && 1889 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX)) { 1890 /* XXX handle ampdu_rx_start failure */ 1891 ic->ic_ampdu_rx_start(ni, rap, 1892 baparamset, batimeout, baseqctl); 1893 1894 args[1] = IEEE80211_STATUS_SUCCESS; 1895 } else { 1896 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 1897 ni, "reject ADDBA request: %s", 1898 ni->ni_flags & IEEE80211_NODE_AMPDU_RX ? 1899 "administratively disabled" : 1900 "not negotiated for station"); 1901 vap->iv_stats.is_addba_reject++; 1902 args[1] = IEEE80211_STATUS_UNSPECIFIED; 1903 } 1904 /* XXX honor rap flags? */ 1905 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 1906 | SM(tid, IEEE80211_BAPS_TID) 1907 | SM(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ) 1908 ; 1909 args[3] = 0; 1910 args[4] = 0; 1911 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 1912 IEEE80211_ACTION_BA_ADDBA_RESPONSE, args); 1913 return 0; 1914 } 1915 1916 static int 1917 ht_recv_action_ba_addba_response(struct ieee80211_node *ni, 1918 const struct ieee80211_frame *wh, 1919 const uint8_t *frm, const uint8_t *efrm) 1920 { 1921 struct ieee80211com *ic = ni->ni_ic; 1922 struct ieee80211vap *vap = ni->ni_vap; 1923 struct ieee80211_tx_ampdu *tap; 1924 uint8_t dialogtoken, policy; 1925 uint16_t baparamset, batimeout, code; 1926 int tid, bufsiz; 1927 1928 dialogtoken = frm[2]; 1929 code = LE_READ_2(frm+3); 1930 baparamset = LE_READ_2(frm+5); 1931 tid = MS(baparamset, IEEE80211_BAPS_TID); 1932 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 1933 policy = MS(baparamset, IEEE80211_BAPS_POLICY); 1934 batimeout = LE_READ_2(frm+7); 1935 1936 tap = &ni->ni_tx_ampdu[tid]; 1937 if ((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 1938 IEEE80211_DISCARD_MAC(vap, 1939 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 1940 ni->ni_macaddr, "ADDBA response", 1941 "no pending ADDBA, tid %d dialogtoken %u " 1942 "code %d", tid, dialogtoken, code); 1943 vap->iv_stats.is_addba_norequest++; 1944 return 0; 1945 } 1946 if (dialogtoken != tap->txa_token) { 1947 IEEE80211_DISCARD_MAC(vap, 1948 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 1949 ni->ni_macaddr, "ADDBA response", 1950 "dialogtoken mismatch: waiting for %d, " 1951 "received %d, tid %d code %d", 1952 tap->txa_token, dialogtoken, tid, code); 1953 vap->iv_stats.is_addba_badtoken++; 1954 return 0; 1955 } 1956 /* NB: assumes IEEE80211_AGGR_IMMEDIATE is 1 */ 1957 if (policy != (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE)) { 1958 IEEE80211_DISCARD_MAC(vap, 1959 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 1960 ni->ni_macaddr, "ADDBA response", 1961 "policy mismatch: expecting %s, " 1962 "received %s, tid %d code %d", 1963 tap->txa_flags & IEEE80211_AGGR_IMMEDIATE, 1964 policy, tid, code); 1965 vap->iv_stats.is_addba_badpolicy++; 1966 return 0; 1967 } 1968 #if 0 1969 /* XXX we take MIN in ieee80211_addba_response */ 1970 if (bufsiz > IEEE80211_AGGR_BAWMAX) { 1971 IEEE80211_DISCARD_MAC(vap, 1972 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 1973 ni->ni_macaddr, "ADDBA response", 1974 "BA window too large: max %d, " 1975 "received %d, tid %d code %d", 1976 bufsiz, IEEE80211_AGGR_BAWMAX, tid, code); 1977 vap->iv_stats.is_addba_badbawinsize++; 1978 return 0; 1979 } 1980 #endif 1981 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 1982 "recv ADDBA response: dialogtoken %u code %d " 1983 "baparamset 0x%x (tid %d bufsiz %d) batimeout %d", 1984 dialogtoken, code, baparamset, tid, bufsiz, 1985 batimeout); 1986 ic->ic_addba_response(ni, tap, code, baparamset, batimeout); 1987 return 0; 1988 } 1989 1990 static int 1991 ht_recv_action_ba_delba(struct ieee80211_node *ni, 1992 const struct ieee80211_frame *wh, 1993 const uint8_t *frm, const uint8_t *efrm) 1994 { 1995 struct ieee80211com *ic = ni->ni_ic; 1996 struct ieee80211_rx_ampdu *rap; 1997 struct ieee80211_tx_ampdu *tap; 1998 uint16_t baparamset, code; 1999 int tid; 2000 2001 baparamset = LE_READ_2(frm+2); 2002 code = LE_READ_2(frm+4); 2003 2004 tid = MS(baparamset, IEEE80211_DELBAPS_TID); 2005 2006 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2007 "recv DELBA: baparamset 0x%x (tid %d initiator %d) " 2008 "code %d", baparamset, tid, 2009 MS(baparamset, IEEE80211_DELBAPS_INIT), code); 2010 2011 if ((baparamset & IEEE80211_DELBAPS_INIT) == 0) { 2012 tap = &ni->ni_tx_ampdu[tid]; 2013 ic->ic_addba_stop(ni, tap); 2014 } else { 2015 rap = &ni->ni_rx_ampdu[tid]; 2016 ic->ic_ampdu_rx_stop(ni, rap); 2017 } 2018 return 0; 2019 } 2020 2021 static int 2022 ht_recv_action_ht_txchwidth(struct ieee80211_node *ni, 2023 const struct ieee80211_frame *wh, 2024 const uint8_t *frm, const uint8_t *efrm) 2025 { 2026 int chw; 2027 2028 chw = (frm[2] == IEEE80211_A_HT_TXCHWIDTH_2040) ? 40 : 20; 2029 2030 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2031 "%s: HT txchwidth, width %d%s", 2032 __func__, chw, ni->ni_chw != chw ? "*" : ""); 2033 if (chw != ni->ni_chw) { 2034 ni->ni_chw = chw; 2035 /* XXX notify on change */ 2036 } 2037 return 0; 2038 } 2039 2040 static int 2041 ht_recv_action_ht_mimopwrsave(struct ieee80211_node *ni, 2042 const struct ieee80211_frame *wh, 2043 const uint8_t *frm, const uint8_t *efrm) 2044 { 2045 const struct ieee80211_action_ht_mimopowersave *mps = 2046 (const struct ieee80211_action_ht_mimopowersave *) frm; 2047 2048 /* XXX check iv_htcaps */ 2049 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA) 2050 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 2051 else 2052 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 2053 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_MODE) 2054 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 2055 else 2056 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 2057 /* XXX notify on change */ 2058 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2059 "%s: HT MIMO PS (%s%s)", __func__, 2060 (ni->ni_flags & IEEE80211_NODE_MIMO_PS) ? "on" : "off", 2061 (ni->ni_flags & IEEE80211_NODE_MIMO_RTS) ? "+rts" : "" 2062 ); 2063 return 0; 2064 } 2065 2066 /* 2067 * Transmit processing. 2068 */ 2069 2070 /* 2071 * Check if A-MPDU should be requested/enabled for a stream. 2072 * We require a traffic rate above a per-AC threshold and we 2073 * also handle backoff from previous failed attempts. 2074 * 2075 * Drivers may override this method to bring in information 2076 * such as link state conditions in making the decision. 2077 */ 2078 static int 2079 ieee80211_ampdu_enable(struct ieee80211_node *ni, 2080 struct ieee80211_tx_ampdu *tap) 2081 { 2082 struct ieee80211vap *vap = ni->ni_vap; 2083 2084 if (tap->txa_avgpps < 2085 vap->iv_ampdu_mintraffic[TID_TO_WME_AC(tap->txa_tid)]) 2086 return 0; 2087 /* XXX check rssi? */ 2088 if (tap->txa_attempts >= ieee80211_addba_maxtries && 2089 ticks < tap->txa_nextrequest) { 2090 /* 2091 * Don't retry too often; txa_nextrequest is set 2092 * to the minimum interval we'll retry after 2093 * ieee80211_addba_maxtries failed attempts are made. 2094 */ 2095 return 0; 2096 } 2097 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 2098 "enable AMPDU on tid %d (%s), avgpps %d pkts %d", 2099 tap->txa_tid, ieee80211_wme_acnames[TID_TO_WME_AC(tap->txa_tid)], 2100 tap->txa_avgpps, tap->txa_pkts); 2101 return 1; 2102 } 2103 2104 /* 2105 * Request A-MPDU tx aggregation. Setup local state and 2106 * issue an ADDBA request. BA use will only happen after 2107 * the other end replies with ADDBA response. 2108 */ 2109 int 2110 ieee80211_ampdu_request(struct ieee80211_node *ni, 2111 struct ieee80211_tx_ampdu *tap) 2112 { 2113 struct ieee80211com *ic = ni->ni_ic; 2114 uint16_t args[5]; 2115 int tid, dialogtoken; 2116 static int tokens = 0; /* XXX */ 2117 2118 /* XXX locking */ 2119 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 2120 /* do deferred setup of state */ 2121 ampdu_tx_setup(tap); 2122 } 2123 /* XXX hack for not doing proper locking */ 2124 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 2125 2126 dialogtoken = (tokens+1) % 63; /* XXX */ 2127 tid = tap->txa_tid; 2128 tap->txa_start = ni->ni_txseqs[tid]; 2129 2130 args[0] = dialogtoken; 2131 args[1] = 0; /* NB: status code not used */ 2132 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 2133 | SM(tid, IEEE80211_BAPS_TID) 2134 | SM(IEEE80211_AGGR_BAWMAX, IEEE80211_BAPS_BUFSIZ) 2135 ; 2136 args[3] = 0; /* batimeout */ 2137 /* NB: do first so there's no race against reply */ 2138 if (!ic->ic_addba_request(ni, tap, dialogtoken, args[2], args[3])) { 2139 /* unable to setup state, don't make request */ 2140 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2141 ni, "%s: could not setup BA stream for TID %d AC %d", 2142 __func__, tap->txa_tid, TID_TO_WME_AC(tap->txa_tid)); 2143 /* defer next try so we don't slam the driver with requests */ 2144 tap->txa_attempts = ieee80211_addba_maxtries; 2145 /* NB: check in case driver wants to override */ 2146 if (tap->txa_nextrequest <= ticks) 2147 tap->txa_nextrequest = ticks + ieee80211_addba_backoff; 2148 return 0; 2149 } 2150 tokens = dialogtoken; /* allocate token */ 2151 /* NB: after calling ic_addba_request so driver can set txa_start */ 2152 args[4] = SM(tap->txa_start, IEEE80211_BASEQ_START) 2153 | SM(0, IEEE80211_BASEQ_FRAG) 2154 ; 2155 return ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2156 IEEE80211_ACTION_BA_ADDBA_REQUEST, args); 2157 } 2158 2159 /* 2160 * Terminate an AMPDU tx stream. State is reclaimed 2161 * and the peer notified with a DelBA Action frame. 2162 */ 2163 void 2164 ieee80211_ampdu_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 2165 int reason) 2166 { 2167 struct ieee80211com *ic = ni->ni_ic; 2168 struct ieee80211vap *vap = ni->ni_vap; 2169 uint16_t args[4]; 2170 2171 /* XXX locking */ 2172 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2173 if (IEEE80211_AMPDU_RUNNING(tap)) { 2174 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2175 ni, "%s: stop BA stream for TID %d (reason %d)", 2176 __func__, tap->txa_tid, reason); 2177 vap->iv_stats.is_ampdu_stop++; 2178 2179 ic->ic_addba_stop(ni, tap); 2180 args[0] = tap->txa_tid; 2181 args[1] = IEEE80211_DELBAPS_INIT; 2182 args[2] = reason; /* XXX reason code */ 2183 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2184 IEEE80211_ACTION_BA_DELBA, args); 2185 } else { 2186 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2187 ni, "%s: BA stream for TID %d not running (reason %d)", 2188 __func__, tap->txa_tid, reason); 2189 vap->iv_stats.is_ampdu_stop_failed++; 2190 } 2191 } 2192 2193 /* XXX */ 2194 static void bar_start_timer(struct ieee80211_tx_ampdu *tap); 2195 2196 static void 2197 bar_timeout(void *arg) 2198 { 2199 struct ieee80211_tx_ampdu *tap = arg; 2200 struct ieee80211_node *ni = tap->txa_ni; 2201 2202 KASSERT((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0, 2203 ("bar/addba collision, flags 0x%x", tap->txa_flags)); 2204 2205 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2206 ni, "%s: tid %u flags 0x%x attempts %d", __func__, 2207 tap->txa_tid, tap->txa_flags, tap->txa_attempts); 2208 2209 /* guard against race with bar_tx_complete */ 2210 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2211 return; 2212 /* XXX ? */ 2213 if (tap->txa_attempts >= ieee80211_bar_maxtries) { 2214 struct ieee80211com *ic = ni->ni_ic; 2215 2216 ni->ni_vap->iv_stats.is_ampdu_bar_tx_fail++; 2217 /* 2218 * If (at least) the last BAR TX timeout was due to 2219 * an ieee80211_send_bar() failures, then we need 2220 * to make sure we notify the driver that a BAR 2221 * TX did occur and fail. This gives the driver 2222 * a chance to undo any queue pause that may 2223 * have occured. 2224 */ 2225 ic->ic_bar_response(ni, tap, 1); 2226 ieee80211_ampdu_stop(ni, tap, IEEE80211_REASON_TIMEOUT); 2227 } else { 2228 ni->ni_vap->iv_stats.is_ampdu_bar_tx_retry++; 2229 if (ieee80211_send_bar(ni, tap, tap->txa_seqpending) != 0) { 2230 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2231 ni, "%s: failed to TX, starting timer\n", 2232 __func__); 2233 /* 2234 * If ieee80211_send_bar() fails here, the 2235 * timer may have stopped and/or the pending 2236 * flag may be clear. Because of this, 2237 * fake the BARPEND and reset the timer. 2238 * A retransmission attempt will then occur 2239 * during the next timeout. 2240 */ 2241 /* XXX locking */ 2242 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2243 bar_start_timer(tap); 2244 } 2245 } 2246 } 2247 2248 static void 2249 bar_start_timer(struct ieee80211_tx_ampdu *tap) 2250 { 2251 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2252 tap->txa_ni, 2253 "%s: called", 2254 __func__); 2255 callout_reset(&tap->txa_timer, ieee80211_bar_timeout, bar_timeout, tap); 2256 } 2257 2258 static void 2259 bar_stop_timer(struct ieee80211_tx_ampdu *tap) 2260 { 2261 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2262 tap->txa_ni, 2263 "%s: called", 2264 __func__); 2265 callout_stop(&tap->txa_timer); 2266 } 2267 2268 static void 2269 bar_tx_complete(struct ieee80211_node *ni, void *arg, int status) 2270 { 2271 struct ieee80211_tx_ampdu *tap = arg; 2272 2273 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2274 ni, "%s: tid %u flags 0x%x pending %d status %d", 2275 __func__, tap->txa_tid, tap->txa_flags, 2276 callout_pending(&tap->txa_timer), status); 2277 2278 ni->ni_vap->iv_stats.is_ampdu_bar_tx++; 2279 /* XXX locking */ 2280 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) && 2281 callout_pending(&tap->txa_timer)) { 2282 struct ieee80211com *ic = ni->ni_ic; 2283 2284 if (status == 0) /* ACK'd */ 2285 bar_stop_timer(tap); 2286 ic->ic_bar_response(ni, tap, status); 2287 /* NB: just let timer expire so we pace requests */ 2288 } 2289 } 2290 2291 static void 2292 ieee80211_bar_response(struct ieee80211_node *ni, 2293 struct ieee80211_tx_ampdu *tap, int status) 2294 { 2295 2296 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2297 tap->txa_ni, 2298 "%s: called", 2299 __func__); 2300 if (status == 0) { /* got ACK */ 2301 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2302 ni, "BAR moves BA win <%u:%u> (%u frames) txseq %u tid %u", 2303 tap->txa_start, 2304 IEEE80211_SEQ_ADD(tap->txa_start, tap->txa_wnd-1), 2305 tap->txa_qframes, tap->txa_seqpending, 2306 tap->txa_tid); 2307 2308 /* NB: timer already stopped in bar_tx_complete */ 2309 tap->txa_start = tap->txa_seqpending; 2310 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2311 } 2312 } 2313 2314 /* 2315 * Transmit a BAR frame to the specified node. The 2316 * BAR contents are drawn from the supplied aggregation 2317 * state associated with the node. 2318 * 2319 * NB: we only handle immediate ACK w/ compressed bitmap. 2320 */ 2321 int 2322 ieee80211_send_bar(struct ieee80211_node *ni, 2323 struct ieee80211_tx_ampdu *tap, ieee80211_seq seq) 2324 { 2325 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2326 struct ieee80211vap *vap = ni->ni_vap; 2327 struct ieee80211com *ic = ni->ni_ic; 2328 struct ieee80211_frame_bar *bar; 2329 struct mbuf *m; 2330 uint16_t barctl, barseqctl; 2331 uint8_t *frm; 2332 int tid, ret; 2333 2334 2335 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2336 tap->txa_ni, 2337 "%s: called", 2338 __func__); 2339 2340 if ((tap->txa_flags & IEEE80211_AGGR_RUNNING) == 0) { 2341 /* no ADDBA response, should not happen */ 2342 /* XXX stat+msg */ 2343 return EINVAL; 2344 } 2345 /* XXX locking */ 2346 bar_stop_timer(tap); 2347 2348 ieee80211_ref_node(ni); 2349 2350 m = ieee80211_getmgtframe(&frm, ic->ic_headroom, sizeof(*bar)); 2351 if (m == NULL) 2352 senderr(ENOMEM, is_tx_nobuf); 2353 2354 if (!ieee80211_add_callback(m, bar_tx_complete, tap)) { 2355 m_freem(m); 2356 senderr(ENOMEM, is_tx_nobuf); /* XXX */ 2357 /* NOTREACHED */ 2358 } 2359 2360 bar = mtod(m, struct ieee80211_frame_bar *); 2361 bar->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2362 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR; 2363 bar->i_fc[1] = 0; 2364 IEEE80211_ADDR_COPY(bar->i_ra, ni->ni_macaddr); 2365 IEEE80211_ADDR_COPY(bar->i_ta, vap->iv_myaddr); 2366 2367 tid = tap->txa_tid; 2368 barctl = (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE ? 2369 0 : IEEE80211_BAR_NOACK) 2370 | IEEE80211_BAR_COMP 2371 | SM(tid, IEEE80211_BAR_TID) 2372 ; 2373 barseqctl = SM(seq, IEEE80211_BAR_SEQ_START); 2374 /* NB: known to have proper alignment */ 2375 bar->i_ctl = htole16(barctl); 2376 bar->i_seq = htole16(barseqctl); 2377 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_bar); 2378 2379 M_WME_SETAC(m, WME_AC_VO); 2380 2381 IEEE80211_NODE_STAT(ni, tx_mgmt); /* XXX tx_ctl? */ 2382 2383 /* XXX locking */ 2384 /* init/bump attempts counter */ 2385 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2386 tap->txa_attempts = 1; 2387 else 2388 tap->txa_attempts++; 2389 tap->txa_seqpending = seq; 2390 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2391 2392 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2393 ni, "send BAR: tid %u ctl 0x%x start %u (attempt %d)", 2394 tid, barctl, seq, tap->txa_attempts); 2395 2396 /* 2397 * ic_raw_xmit will free the node reference 2398 * regardless of queue/TX success or failure. 2399 */ 2400 IEEE80211_TX_LOCK(ic); 2401 ret = ieee80211_raw_output(vap, ni, m, NULL); 2402 IEEE80211_TX_UNLOCK(ic); 2403 if (ret != 0) { 2404 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2405 ni, "send BAR: failed: (ret = %d)\n", 2406 ret); 2407 /* xmit failed, clear state flag */ 2408 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2409 vap->iv_stats.is_ampdu_bar_tx_fail++; 2410 return ret; 2411 } 2412 /* XXX hack against tx complete happening before timer is started */ 2413 if (tap->txa_flags & IEEE80211_AGGR_BARPEND) 2414 bar_start_timer(tap); 2415 return 0; 2416 bad: 2417 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2418 tap->txa_ni, 2419 "%s: bad! ret=%d", 2420 __func__, ret); 2421 vap->iv_stats.is_ampdu_bar_tx_fail++; 2422 ieee80211_free_node(ni); 2423 return ret; 2424 #undef senderr 2425 } 2426 2427 static int 2428 ht_action_output(struct ieee80211_node *ni, struct mbuf *m) 2429 { 2430 struct ieee80211_bpf_params params; 2431 2432 memset(¶ms, 0, sizeof(params)); 2433 params.ibp_pri = WME_AC_VO; 2434 params.ibp_rate0 = ni->ni_txparms->mgmtrate; 2435 /* NB: we know all frames are unicast */ 2436 params.ibp_try0 = ni->ni_txparms->maxretry; 2437 params.ibp_power = ni->ni_txpower; 2438 return ieee80211_mgmt_output(ni, m, IEEE80211_FC0_SUBTYPE_ACTION, 2439 ¶ms); 2440 } 2441 2442 #define ADDSHORT(frm, v) do { \ 2443 frm[0] = (v) & 0xff; \ 2444 frm[1] = (v) >> 8; \ 2445 frm += 2; \ 2446 } while (0) 2447 2448 /* 2449 * Send an action management frame. The arguments are stuff 2450 * into a frame without inspection; the caller is assumed to 2451 * prepare them carefully (e.g. based on the aggregation state). 2452 */ 2453 static int 2454 ht_send_action_ba_addba(struct ieee80211_node *ni, 2455 int category, int action, void *arg0) 2456 { 2457 struct ieee80211vap *vap = ni->ni_vap; 2458 struct ieee80211com *ic = ni->ni_ic; 2459 uint16_t *args = arg0; 2460 struct mbuf *m; 2461 uint8_t *frm; 2462 2463 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2464 "send ADDBA %s: dialogtoken %d status %d " 2465 "baparamset 0x%x (tid %d) batimeout 0x%x baseqctl 0x%x", 2466 (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ? 2467 "request" : "response", 2468 args[0], args[1], args[2], MS(args[2], IEEE80211_BAPS_TID), 2469 args[3], args[4]); 2470 2471 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2472 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2473 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2474 ieee80211_ref_node(ni); 2475 2476 m = ieee80211_getmgtframe(&frm, 2477 ic->ic_headroom + sizeof(struct ieee80211_frame), 2478 sizeof(uint16_t) /* action+category */ 2479 /* XXX may action payload */ 2480 + sizeof(struct ieee80211_action_ba_addbaresponse) 2481 ); 2482 if (m != NULL) { 2483 *frm++ = category; 2484 *frm++ = action; 2485 *frm++ = args[0]; /* dialog token */ 2486 if (action == IEEE80211_ACTION_BA_ADDBA_RESPONSE) 2487 ADDSHORT(frm, args[1]); /* status code */ 2488 ADDSHORT(frm, args[2]); /* baparamset */ 2489 ADDSHORT(frm, args[3]); /* batimeout */ 2490 if (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) 2491 ADDSHORT(frm, args[4]); /* baseqctl */ 2492 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2493 return ht_action_output(ni, m); 2494 } else { 2495 vap->iv_stats.is_tx_nobuf++; 2496 ieee80211_free_node(ni); 2497 return ENOMEM; 2498 } 2499 } 2500 2501 static int 2502 ht_send_action_ba_delba(struct ieee80211_node *ni, 2503 int category, int action, void *arg0) 2504 { 2505 struct ieee80211vap *vap = ni->ni_vap; 2506 struct ieee80211com *ic = ni->ni_ic; 2507 uint16_t *args = arg0; 2508 struct mbuf *m; 2509 uint16_t baparamset; 2510 uint8_t *frm; 2511 2512 baparamset = SM(args[0], IEEE80211_DELBAPS_TID) 2513 | args[1] 2514 ; 2515 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2516 "send DELBA action: tid %d, initiator %d reason %d", 2517 args[0], args[1], args[2]); 2518 2519 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2520 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2521 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2522 ieee80211_ref_node(ni); 2523 2524 m = ieee80211_getmgtframe(&frm, 2525 ic->ic_headroom + sizeof(struct ieee80211_frame), 2526 sizeof(uint16_t) /* action+category */ 2527 /* XXX may action payload */ 2528 + sizeof(struct ieee80211_action_ba_addbaresponse) 2529 ); 2530 if (m != NULL) { 2531 *frm++ = category; 2532 *frm++ = action; 2533 ADDSHORT(frm, baparamset); 2534 ADDSHORT(frm, args[2]); /* reason code */ 2535 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2536 return ht_action_output(ni, m); 2537 } else { 2538 vap->iv_stats.is_tx_nobuf++; 2539 ieee80211_free_node(ni); 2540 return ENOMEM; 2541 } 2542 } 2543 2544 static int 2545 ht_send_action_ht_txchwidth(struct ieee80211_node *ni, 2546 int category, int action, void *arg0) 2547 { 2548 struct ieee80211vap *vap = ni->ni_vap; 2549 struct ieee80211com *ic = ni->ni_ic; 2550 struct mbuf *m; 2551 uint8_t *frm; 2552 2553 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2554 "send HT txchwidth: width %d", 2555 IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 40 : 20); 2556 2557 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2558 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2559 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2560 ieee80211_ref_node(ni); 2561 2562 m = ieee80211_getmgtframe(&frm, 2563 ic->ic_headroom + sizeof(struct ieee80211_frame), 2564 sizeof(uint16_t) /* action+category */ 2565 /* XXX may action payload */ 2566 + sizeof(struct ieee80211_action_ba_addbaresponse) 2567 ); 2568 if (m != NULL) { 2569 *frm++ = category; 2570 *frm++ = action; 2571 *frm++ = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 2572 IEEE80211_A_HT_TXCHWIDTH_2040 : 2573 IEEE80211_A_HT_TXCHWIDTH_20; 2574 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2575 return ht_action_output(ni, m); 2576 } else { 2577 vap->iv_stats.is_tx_nobuf++; 2578 ieee80211_free_node(ni); 2579 return ENOMEM; 2580 } 2581 } 2582 #undef ADDSHORT 2583 2584 /* 2585 * Construct the MCS bit mask for inclusion in an HT capabilities 2586 * information element. 2587 */ 2588 static void 2589 ieee80211_set_mcsset(struct ieee80211com *ic, uint8_t *frm) 2590 { 2591 int i; 2592 uint8_t txparams; 2593 2594 KASSERT((ic->ic_rxstream > 0 && ic->ic_rxstream <= 4), 2595 ("ic_rxstream %d out of range", ic->ic_rxstream)); 2596 KASSERT((ic->ic_txstream > 0 && ic->ic_txstream <= 4), 2597 ("ic_txstream %d out of range", ic->ic_txstream)); 2598 2599 for (i = 0; i < ic->ic_rxstream * 8; i++) 2600 setbit(frm, i); 2601 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 2602 (ic->ic_htcaps & IEEE80211_HTC_RXMCS32)) 2603 setbit(frm, 32); 2604 if (ic->ic_htcaps & IEEE80211_HTC_RXUNEQUAL) { 2605 if (ic->ic_rxstream >= 2) { 2606 for (i = 33; i <= 38; i++) 2607 setbit(frm, i); 2608 } 2609 if (ic->ic_rxstream >= 3) { 2610 for (i = 39; i <= 52; i++) 2611 setbit(frm, i); 2612 } 2613 if (ic->ic_txstream >= 4) { 2614 for (i = 53; i <= 76; i++) 2615 setbit(frm, i); 2616 } 2617 } 2618 2619 if (ic->ic_rxstream != ic->ic_txstream) { 2620 txparams = 0x1; /* TX MCS set defined */ 2621 txparams |= 0x2; /* TX RX MCS not equal */ 2622 txparams |= (ic->ic_txstream - 1) << 2; /* num TX streams */ 2623 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) 2624 txparams |= 0x16; /* TX unequal modulation sup */ 2625 } else 2626 txparams = 0; 2627 frm[12] = txparams; 2628 } 2629 2630 /* 2631 * Add body of an HTCAP information element. 2632 */ 2633 static uint8_t * 2634 ieee80211_add_htcap_body(uint8_t *frm, struct ieee80211_node *ni) 2635 { 2636 #define ADDSHORT(frm, v) do { \ 2637 frm[0] = (v) & 0xff; \ 2638 frm[1] = (v) >> 8; \ 2639 frm += 2; \ 2640 } while (0) 2641 struct ieee80211com *ic = ni->ni_ic; 2642 struct ieee80211vap *vap = ni->ni_vap; 2643 uint16_t caps, extcaps; 2644 int rxmax, density; 2645 2646 /* HT capabilities */ 2647 caps = vap->iv_htcaps & 0xffff; 2648 /* 2649 * Note channel width depends on whether we are operating as 2650 * a sta or not. When operating as a sta we are generating 2651 * a request based on our desired configuration. Otherwise 2652 * we are operational and the channel attributes identify 2653 * how we've been setup (which might be different if a fixed 2654 * channel is specified). 2655 */ 2656 if (vap->iv_opmode == IEEE80211_M_STA) { 2657 /* override 20/40 use based on config */ 2658 if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40) 2659 caps |= IEEE80211_HTCAP_CHWIDTH40; 2660 else 2661 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2662 2663 /* Start by using the advertised settings */ 2664 rxmax = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU); 2665 density = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY); 2666 2667 /* Cap at VAP rxmax */ 2668 if (rxmax > vap->iv_ampdu_rxmax) 2669 rxmax = vap->iv_ampdu_rxmax; 2670 2671 /* 2672 * If the VAP ampdu density value greater, use that. 2673 * 2674 * (Larger density value == larger minimum gap between A-MPDU 2675 * subframes.) 2676 */ 2677 if (vap->iv_ampdu_density > density) 2678 density = vap->iv_ampdu_density; 2679 2680 /* 2681 * NB: Hardware might support HT40 on some but not all 2682 * channels. We can't determine this earlier because only 2683 * after association the channel is upgraded to HT based 2684 * on the negotiated capabilities. 2685 */ 2686 if (ni->ni_chan != IEEE80211_CHAN_ANYC && 2687 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40U) == NULL && 2688 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40D) == NULL) 2689 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2690 } else { 2691 /* override 20/40 use based on current channel */ 2692 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 2693 caps |= IEEE80211_HTCAP_CHWIDTH40; 2694 else 2695 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2696 2697 /* XXX TODO should it start by using advertised settings? */ 2698 rxmax = vap->iv_ampdu_rxmax; 2699 density = vap->iv_ampdu_density; 2700 } 2701 2702 /* adjust short GI based on channel and config */ 2703 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) 2704 caps &= ~IEEE80211_HTCAP_SHORTGI20; 2705 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || 2706 (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) 2707 caps &= ~IEEE80211_HTCAP_SHORTGI40; 2708 ADDSHORT(frm, caps); 2709 2710 /* HT parameters */ 2711 *frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) 2712 | SM(density, IEEE80211_HTCAP_MPDUDENSITY) 2713 ; 2714 frm++; 2715 2716 /* pre-zero remainder of ie */ 2717 memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - 2718 __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); 2719 2720 /* supported MCS set */ 2721 /* 2722 * XXX: For sta mode the rate set should be restricted based 2723 * on the AP's capabilities, but ni_htrates isn't setup when 2724 * we're called to form an AssocReq frame so for now we're 2725 * restricted to the device capabilities. 2726 */ 2727 ieee80211_set_mcsset(ni->ni_ic, frm); 2728 2729 frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - 2730 __offsetof(struct ieee80211_ie_htcap, hc_mcsset); 2731 2732 /* HT extended capabilities */ 2733 extcaps = vap->iv_htextcaps & 0xffff; 2734 2735 ADDSHORT(frm, extcaps); 2736 2737 frm += sizeof(struct ieee80211_ie_htcap) - 2738 __offsetof(struct ieee80211_ie_htcap, hc_txbf); 2739 2740 return frm; 2741 #undef ADDSHORT 2742 } 2743 2744 /* 2745 * Add 802.11n HT capabilities information element 2746 */ 2747 uint8_t * 2748 ieee80211_add_htcap(uint8_t *frm, struct ieee80211_node *ni) 2749 { 2750 frm[0] = IEEE80211_ELEMID_HTCAP; 2751 frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; 2752 return ieee80211_add_htcap_body(frm + 2, ni); 2753 } 2754 2755 /* 2756 * Add Broadcom OUI wrapped standard HTCAP ie; this is 2757 * used for compatibility w/ pre-draft implementations. 2758 */ 2759 uint8_t * 2760 ieee80211_add_htcap_vendor(uint8_t *frm, struct ieee80211_node *ni) 2761 { 2762 frm[0] = IEEE80211_ELEMID_VENDOR; 2763 frm[1] = 4 + sizeof(struct ieee80211_ie_htcap) - 2; 2764 frm[2] = (BCM_OUI >> 0) & 0xff; 2765 frm[3] = (BCM_OUI >> 8) & 0xff; 2766 frm[4] = (BCM_OUI >> 16) & 0xff; 2767 frm[5] = BCM_OUI_HTCAP; 2768 return ieee80211_add_htcap_body(frm + 6, ni); 2769 } 2770 2771 /* 2772 * Construct the MCS bit mask of basic rates 2773 * for inclusion in an HT information element. 2774 */ 2775 static void 2776 ieee80211_set_basic_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs) 2777 { 2778 int i; 2779 2780 for (i = 0; i < rs->rs_nrates; i++) { 2781 int r = rs->rs_rates[i] & IEEE80211_RATE_VAL; 2782 if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) && 2783 r < IEEE80211_HTRATE_MAXSIZE) { 2784 /* NB: this assumes a particular implementation */ 2785 setbit(frm, r); 2786 } 2787 } 2788 } 2789 2790 /* 2791 * Update the HTINFO ie for a beacon frame. 2792 */ 2793 void 2794 ieee80211_ht_update_beacon(struct ieee80211vap *vap, 2795 struct ieee80211_beacon_offsets *bo) 2796 { 2797 #define PROTMODE (IEEE80211_HTINFO_OPMODE|IEEE80211_HTINFO_NONHT_PRESENT) 2798 struct ieee80211_node *ni; 2799 const struct ieee80211_channel *bsschan; 2800 struct ieee80211com *ic = vap->iv_ic; 2801 struct ieee80211_ie_htinfo *ht = 2802 (struct ieee80211_ie_htinfo *) bo->bo_htinfo; 2803 2804 ni = ieee80211_ref_node(vap->iv_bss); 2805 bsschan = ni->ni_chan; 2806 2807 /* XXX only update on channel change */ 2808 ht->hi_ctrlchannel = ieee80211_chan2ieee(ic, bsschan); 2809 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 2810 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PERM; 2811 else 2812 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PROH; 2813 if (IEEE80211_IS_CHAN_HT40U(bsschan)) 2814 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 2815 else if (IEEE80211_IS_CHAN_HT40D(bsschan)) 2816 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_BELOW; 2817 else 2818 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_NONE; 2819 if (IEEE80211_IS_CHAN_HT40(bsschan)) 2820 ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040; 2821 2822 /* protection mode */ 2823 ht->hi_byte2 = (ht->hi_byte2 &~ PROTMODE) | ic->ic_curhtprotmode; 2824 2825 ieee80211_free_node(ni); 2826 2827 /* XXX propagate to vendor ie's */ 2828 #undef PROTMODE 2829 } 2830 2831 /* 2832 * Add body of an HTINFO information element. 2833 * 2834 * NB: We don't use struct ieee80211_ie_htinfo because we can 2835 * be called to fillin both a standard ie and a compat ie that 2836 * has a vendor OUI at the front. 2837 */ 2838 static uint8_t * 2839 ieee80211_add_htinfo_body(uint8_t *frm, struct ieee80211_node *ni) 2840 { 2841 struct ieee80211vap *vap = ni->ni_vap; 2842 struct ieee80211com *ic = ni->ni_ic; 2843 2844 /* pre-zero remainder of ie */ 2845 memset(frm, 0, sizeof(struct ieee80211_ie_htinfo) - 2); 2846 2847 /* primary/control channel center */ 2848 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 2849 2850 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 2851 frm[0] = IEEE80211_HTINFO_RIFSMODE_PERM; 2852 else 2853 frm[0] = IEEE80211_HTINFO_RIFSMODE_PROH; 2854 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 2855 frm[0] |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 2856 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 2857 frm[0] |= IEEE80211_HTINFO_2NDCHAN_BELOW; 2858 else 2859 frm[0] |= IEEE80211_HTINFO_2NDCHAN_NONE; 2860 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 2861 frm[0] |= IEEE80211_HTINFO_TXWIDTH_2040; 2862 2863 frm[1] = ic->ic_curhtprotmode; 2864 2865 frm += 5; 2866 2867 /* basic MCS set */ 2868 ieee80211_set_basic_htrates(frm, &ni->ni_htrates); 2869 frm += sizeof(struct ieee80211_ie_htinfo) - 2870 __offsetof(struct ieee80211_ie_htinfo, hi_basicmcsset); 2871 return frm; 2872 } 2873 2874 /* 2875 * Add 802.11n HT information information element. 2876 */ 2877 uint8_t * 2878 ieee80211_add_htinfo(uint8_t *frm, struct ieee80211_node *ni) 2879 { 2880 frm[0] = IEEE80211_ELEMID_HTINFO; 2881 frm[1] = sizeof(struct ieee80211_ie_htinfo) - 2; 2882 return ieee80211_add_htinfo_body(frm + 2, ni); 2883 } 2884 2885 /* 2886 * Add Broadcom OUI wrapped standard HTINFO ie; this is 2887 * used for compatibility w/ pre-draft implementations. 2888 */ 2889 uint8_t * 2890 ieee80211_add_htinfo_vendor(uint8_t *frm, struct ieee80211_node *ni) 2891 { 2892 frm[0] = IEEE80211_ELEMID_VENDOR; 2893 frm[1] = 4 + sizeof(struct ieee80211_ie_htinfo) - 2; 2894 frm[2] = (BCM_OUI >> 0) & 0xff; 2895 frm[3] = (BCM_OUI >> 8) & 0xff; 2896 frm[4] = (BCM_OUI >> 16) & 0xff; 2897 frm[5] = BCM_OUI_HTINFO; 2898 return ieee80211_add_htinfo_body(frm + 6, ni); 2899 } 2900