xref: /freebsd/sys/net80211/ieee80211_ht.c (revision dd21556857e8d40f66bf5ad54754d9d52669ebf7)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 /*
29  * IEEE 802.11n protocol support.
30  */
31 
32 #include "opt_inet.h"
33 #include "opt_wlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/kernel.h>
37 #include <sys/malloc.h>
38 #include <sys/systm.h>
39 #include <sys/endian.h>
40 
41 #include <sys/socket.h>
42 
43 #include <net/if.h>
44 #include <net/if_var.h>
45 #include <net/if_media.h>
46 #include <net/ethernet.h>
47 
48 #include <net80211/ieee80211_var.h>
49 #include <net80211/ieee80211_action.h>
50 #include <net80211/ieee80211_input.h>
51 
52 const struct ieee80211_mcs_rates ieee80211_htrates[IEEE80211_HTRATE_MAXSIZE] = {
53 	{  13,  14,   27,   30 },	/* MCS 0 */
54 	{  26,  29,   54,   60 },	/* MCS 1 */
55 	{  39,  43,   81,   90 },	/* MCS 2 */
56 	{  52,  58,  108,  120 },	/* MCS 3 */
57 	{  78,  87,  162,  180 },	/* MCS 4 */
58 	{ 104, 116,  216,  240 },	/* MCS 5 */
59 	{ 117, 130,  243,  270 },	/* MCS 6 */
60 	{ 130, 144,  270,  300 },	/* MCS 7 */
61 	{  26,  29,   54,   60 },	/* MCS 8 */
62 	{  52,  58,  108,  120 },	/* MCS 9 */
63 	{  78,  87,  162,  180 },	/* MCS 10 */
64 	{ 104, 116,  216,  240 },	/* MCS 11 */
65 	{ 156, 173,  324,  360 },	/* MCS 12 */
66 	{ 208, 231,  432,  480 },	/* MCS 13 */
67 	{ 234, 260,  486,  540 },	/* MCS 14 */
68 	{ 260, 289,  540,  600 },	/* MCS 15 */
69 	{  39,  43,   81,   90 },	/* MCS 16 */
70 	{  78,  87,  162,  180 },	/* MCS 17 */
71 	{ 117, 130,  243,  270 },	/* MCS 18 */
72 	{ 156, 173,  324,  360 },	/* MCS 19 */
73 	{ 234, 260,  486,  540 },	/* MCS 20 */
74 	{ 312, 347,  648,  720 },	/* MCS 21 */
75 	{ 351, 390,  729,  810 },	/* MCS 22 */
76 	{ 390, 433,  810,  900 },	/* MCS 23 */
77 	{  52,  58,  108,  120 },	/* MCS 24 */
78 	{ 104, 116,  216,  240 },	/* MCS 25 */
79 	{ 156, 173,  324,  360 },	/* MCS 26 */
80 	{ 208, 231,  432,  480 },	/* MCS 27 */
81 	{ 312, 347,  648,  720 },	/* MCS 28 */
82 	{ 416, 462,  864,  960 },	/* MCS 29 */
83 	{ 468, 520,  972, 1080 },	/* MCS 30 */
84 	{ 520, 578, 1080, 1200 },	/* MCS 31 */
85 	{   0,   0,   12,   13 },	/* MCS 32 */
86 	{  78,  87,  162,  180 },	/* MCS 33 */
87 	{ 104, 116,  216,  240 },	/* MCS 34 */
88 	{ 130, 144,  270,  300 },	/* MCS 35 */
89 	{ 117, 130,  243,  270 },	/* MCS 36 */
90 	{ 156, 173,  324,  360 },	/* MCS 37 */
91 	{ 195, 217,  405,  450 },	/* MCS 38 */
92 	{ 104, 116,  216,  240 },	/* MCS 39 */
93 	{ 130, 144,  270,  300 },	/* MCS 40 */
94 	{ 130, 144,  270,  300 },	/* MCS 41 */
95 	{ 156, 173,  324,  360 },	/* MCS 42 */
96 	{ 182, 202,  378,  420 },	/* MCS 43 */
97 	{ 182, 202,  378,  420 },	/* MCS 44 */
98 	{ 208, 231,  432,  480 },	/* MCS 45 */
99 	{ 156, 173,  324,  360 },	/* MCS 46 */
100 	{ 195, 217,  405,  450 },	/* MCS 47 */
101 	{ 195, 217,  405,  450 },	/* MCS 48 */
102 	{ 234, 260,  486,  540 },	/* MCS 49 */
103 	{ 273, 303,  567,  630 },	/* MCS 50 */
104 	{ 273, 303,  567,  630 },	/* MCS 51 */
105 	{ 312, 347,  648,  720 },	/* MCS 52 */
106 	{ 130, 144,  270,  300 },	/* MCS 53 */
107 	{ 156, 173,  324,  360 },	/* MCS 54 */
108 	{ 182, 202,  378,  420 },	/* MCS 55 */
109 	{ 156, 173,  324,  360 },	/* MCS 56 */
110 	{ 182, 202,  378,  420 },	/* MCS 57 */
111 	{ 208, 231,  432,  480 },	/* MCS 58 */
112 	{ 234, 260,  486,  540 },	/* MCS 59 */
113 	{ 208, 231,  432,  480 },	/* MCS 60 */
114 	{ 234, 260,  486,  540 },	/* MCS 61 */
115 	{ 260, 289,  540,  600 },	/* MCS 62 */
116 	{ 260, 289,  540,  600 },	/* MCS 63 */
117 	{ 286, 318,  594,  660 },	/* MCS 64 */
118 	{ 195, 217,  405,  450 },	/* MCS 65 */
119 	{ 234, 260,  486,  540 },	/* MCS 66 */
120 	{ 273, 303,  567,  630 },	/* MCS 67 */
121 	{ 234, 260,  486,  540 },	/* MCS 68 */
122 	{ 273, 303,  567,  630 },	/* MCS 69 */
123 	{ 312, 347,  648,  720 },	/* MCS 70 */
124 	{ 351, 390,  729,  810 },	/* MCS 71 */
125 	{ 312, 347,  648,  720 },	/* MCS 72 */
126 	{ 351, 390,  729,  810 },	/* MCS 73 */
127 	{ 390, 433,  810,  900 },	/* MCS 74 */
128 	{ 390, 433,  810,  900 },	/* MCS 75 */
129 	{ 429, 477,  891,  990 },	/* MCS 76 */
130 };
131 
132 static	int ieee80211_ampdu_age = -1;	/* threshold for ampdu reorder q (ms) */
133 SYSCTL_PROC(_net_wlan, OID_AUTO, ampdu_age,
134     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
135     &ieee80211_ampdu_age, 0, ieee80211_sysctl_msecs_ticks, "I",
136     "AMPDU max reorder age (ms)");
137 
138 static	int ieee80211_recv_bar_ena = 1;
139 SYSCTL_INT(_net_wlan, OID_AUTO, recv_bar, CTLFLAG_RW, &ieee80211_recv_bar_ena,
140 	    0, "BAR frame processing (ena/dis)");
141 
142 static	int ieee80211_addba_timeout = -1;/* timeout for ADDBA response */
143 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_timeout,
144     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
145     &ieee80211_addba_timeout, 0, ieee80211_sysctl_msecs_ticks, "I",
146     "ADDBA request timeout (ms)");
147 static	int ieee80211_addba_backoff = -1;/* backoff after max ADDBA requests */
148 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_backoff,
149     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
150     &ieee80211_addba_backoff, 0, ieee80211_sysctl_msecs_ticks, "I",
151     "ADDBA request backoff (ms)");
152 static	int ieee80211_addba_maxtries = 3;/* max ADDBA requests before backoff */
153 SYSCTL_INT(_net_wlan, OID_AUTO, addba_maxtries, CTLFLAG_RW,
154 	&ieee80211_addba_maxtries, 0, "max ADDBA requests sent before backoff");
155 
156 static	int ieee80211_bar_timeout = -1;	/* timeout waiting for BAR response */
157 static	int ieee80211_bar_maxtries = 50;/* max BAR requests before DELBA */
158 
159 static	ieee80211_recv_action_func ht_recv_action_ba_addba_request;
160 static	ieee80211_recv_action_func ht_recv_action_ba_addba_response;
161 static	ieee80211_recv_action_func ht_recv_action_ba_delba;
162 static	ieee80211_recv_action_func ht_recv_action_ht_mimopwrsave;
163 static	ieee80211_recv_action_func ht_recv_action_ht_txchwidth;
164 
165 static	ieee80211_send_action_func ht_send_action_ba_addba;
166 static	ieee80211_send_action_func ht_send_action_ba_delba;
167 static	ieee80211_send_action_func ht_send_action_ht_txchwidth;
168 
169 static void
170 ieee80211_ht_init(void)
171 {
172 	/*
173 	 * Setup HT parameters that depends on the clock frequency.
174 	 */
175 	ieee80211_ampdu_age = msecs_to_ticks(500);
176 	ieee80211_addba_timeout = msecs_to_ticks(250);
177 	ieee80211_addba_backoff = msecs_to_ticks(10*1000);
178 	ieee80211_bar_timeout = msecs_to_ticks(250);
179 	/*
180 	 * Register action frame handlers.
181 	 */
182 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
183 	    IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_recv_action_ba_addba_request);
184 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
185 	    IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_recv_action_ba_addba_response);
186 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
187 	    IEEE80211_ACTION_BA_DELBA, ht_recv_action_ba_delba);
188 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT,
189 	    IEEE80211_ACTION_HT_MIMOPWRSAVE, ht_recv_action_ht_mimopwrsave);
190 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT,
191 	    IEEE80211_ACTION_HT_TXCHWIDTH, ht_recv_action_ht_txchwidth);
192 
193 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
194 	    IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_send_action_ba_addba);
195 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
196 	    IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_send_action_ba_addba);
197 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
198 	    IEEE80211_ACTION_BA_DELBA, ht_send_action_ba_delba);
199 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_HT,
200 	    IEEE80211_ACTION_HT_TXCHWIDTH, ht_send_action_ht_txchwidth);
201 }
202 SYSINIT(wlan_ht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_ht_init, NULL);
203 
204 static int ieee80211_ampdu_enable(struct ieee80211_node *ni,
205 	struct ieee80211_tx_ampdu *tap);
206 static int ieee80211_addba_request(struct ieee80211_node *ni,
207 	struct ieee80211_tx_ampdu *tap,
208 	int dialogtoken, int baparamset, int batimeout);
209 static int ieee80211_addba_response(struct ieee80211_node *ni,
210 	struct ieee80211_tx_ampdu *tap,
211 	int code, int baparamset, int batimeout);
212 static void ieee80211_addba_stop(struct ieee80211_node *ni,
213 	struct ieee80211_tx_ampdu *tap);
214 static void null_addba_response_timeout(struct ieee80211_node *ni,
215 	struct ieee80211_tx_ampdu *tap);
216 
217 static void ieee80211_bar_response(struct ieee80211_node *ni,
218 	struct ieee80211_tx_ampdu *tap, int status);
219 static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap);
220 static void bar_stop_timer(struct ieee80211_tx_ampdu *tap);
221 static int ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *,
222 	int baparamset, int batimeout, int baseqctl);
223 static void ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *);
224 
225 void
226 ieee80211_ht_attach(struct ieee80211com *ic)
227 {
228 	/* setup default aggregation policy */
229 	ic->ic_recv_action = ieee80211_recv_action;
230 	ic->ic_send_action = ieee80211_send_action;
231 	ic->ic_ampdu_enable = ieee80211_ampdu_enable;
232 	ic->ic_addba_request = ieee80211_addba_request;
233 	ic->ic_addba_response = ieee80211_addba_response;
234 	ic->ic_addba_response_timeout = null_addba_response_timeout;
235 	ic->ic_addba_stop = ieee80211_addba_stop;
236 	ic->ic_bar_response = ieee80211_bar_response;
237 	ic->ic_ampdu_rx_start = ampdu_rx_start;
238 	ic->ic_ampdu_rx_stop = ampdu_rx_stop;
239 
240 	ic->ic_htprotmode = IEEE80211_PROT_RTSCTS;
241 	ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE;
242 }
243 
244 void
245 ieee80211_ht_detach(struct ieee80211com *ic)
246 {
247 }
248 
249 void
250 ieee80211_ht_vattach(struct ieee80211vap *vap)
251 {
252 
253 	/* driver can override defaults */
254 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_8K;
255 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_NA;
256 	vap->iv_ampdu_limit = vap->iv_ampdu_rxmax;
257 	vap->iv_amsdu_limit = vap->iv_htcaps & IEEE80211_HTCAP_MAXAMSDU;
258 	/* tx aggregation traffic thresholds */
259 	vap->iv_ampdu_mintraffic[WME_AC_BK] = 128;
260 	vap->iv_ampdu_mintraffic[WME_AC_BE] = 64;
261 	vap->iv_ampdu_mintraffic[WME_AC_VO] = 32;
262 	vap->iv_ampdu_mintraffic[WME_AC_VI] = 32;
263 
264 	vap->iv_htprotmode = IEEE80211_PROT_RTSCTS;
265 	vap->iv_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE;
266 
267 	if (vap->iv_htcaps & IEEE80211_HTC_HT) {
268 		/*
269 		 * Device is HT capable; enable all HT-related
270 		 * facilities by default.
271 		 * XXX these choices may be too aggressive.
272 		 */
273 		vap->iv_flags_ht |= IEEE80211_FHT_HT
274 				 |  IEEE80211_FHT_HTCOMPAT
275 				 ;
276 		if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI20)
277 			vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20;
278 		/* XXX infer from channel list? */
279 		if (vap->iv_htcaps & IEEE80211_HTCAP_CHWIDTH40) {
280 			vap->iv_flags_ht |= IEEE80211_FHT_USEHT40;
281 			if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI40)
282 				vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40;
283 		}
284 		/* enable RIFS if capable */
285 		if (vap->iv_htcaps & IEEE80211_HTC_RIFS)
286 			vap->iv_flags_ht |= IEEE80211_FHT_RIFS;
287 
288 		/* NB: A-MPDU and A-MSDU rx are mandated, these are tx only */
289 		vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX;
290 		if (vap->iv_htcaps & IEEE80211_HTC_AMPDU)
291 			vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX;
292 		vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX;
293 		if (vap->iv_htcaps & IEEE80211_HTC_AMSDU)
294 			vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX;
295 
296 		if (vap->iv_htcaps & IEEE80211_HTCAP_TXSTBC)
297 			vap->iv_flags_ht |= IEEE80211_FHT_STBC_TX;
298 		if (vap->iv_htcaps & IEEE80211_HTCAP_RXSTBC)
299 			vap->iv_flags_ht |= IEEE80211_FHT_STBC_RX;
300 
301 		if (vap->iv_htcaps & IEEE80211_HTCAP_LDPC)
302 			vap->iv_flags_ht |= IEEE80211_FHT_LDPC_RX;
303 		if (vap->iv_htcaps & IEEE80211_HTC_TXLDPC)
304 			vap->iv_flags_ht |= IEEE80211_FHT_LDPC_TX;
305 	}
306 	/* NB: disable default legacy WDS, too many issues right now */
307 	if (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)
308 		vap->iv_flags_ht &= ~IEEE80211_FHT_HT;
309 }
310 
311 void
312 ieee80211_ht_vdetach(struct ieee80211vap *vap)
313 {
314 }
315 
316 static int
317 ht_getrate(struct ieee80211com *ic, int index, enum ieee80211_phymode mode,
318     int ratetype)
319 {
320 	int mword, rate;
321 
322 	mword = ieee80211_rate2media(ic, index | IEEE80211_RATE_MCS, mode);
323 	if (IFM_SUBTYPE(mword) != IFM_IEEE80211_MCS)
324 		return (0);
325 	switch (ratetype) {
326 	case 0:
327 		rate = ieee80211_htrates[index].ht20_rate_800ns;
328 		break;
329 	case 1:
330 		rate = ieee80211_htrates[index].ht20_rate_400ns;
331 		break;
332 	case 2:
333 		rate = ieee80211_htrates[index].ht40_rate_800ns;
334 		break;
335 	default:
336 		rate = ieee80211_htrates[index].ht40_rate_400ns;
337 		break;
338 	}
339 	return (rate);
340 }
341 
342 static struct printranges {
343 	int	minmcs;
344 	int	maxmcs;
345 	int	txstream;
346 	int	ratetype;
347 	int	htcapflags;
348 } ranges[] = {
349 	{  0,  7, 1, 0, 0 },
350 	{  8, 15, 2, 0, 0 },
351 	{ 16, 23, 3, 0, 0 },
352 	{ 24, 31, 4, 0, 0 },
353 	{ 32,  0, 1, 2, IEEE80211_HTC_TXMCS32 },
354 	{ 33, 38, 2, 0, IEEE80211_HTC_TXUNEQUAL },
355 	{ 39, 52, 3, 0, IEEE80211_HTC_TXUNEQUAL },
356 	{ 53, 76, 4, 0, IEEE80211_HTC_TXUNEQUAL },
357 	{  0,  0, 0, 0, 0 },
358 };
359 
360 static void
361 ht_rateprint(struct ieee80211com *ic, enum ieee80211_phymode mode, int ratetype)
362 {
363 	int minrate, maxrate;
364 	struct printranges *range;
365 
366 	for (range = ranges; range->txstream != 0; range++) {
367 		if (ic->ic_txstream < range->txstream)
368 			continue;
369 		if (range->htcapflags &&
370 		    (ic->ic_htcaps & range->htcapflags) == 0)
371 			continue;
372 		if (ratetype < range->ratetype)
373 			continue;
374 		minrate = ht_getrate(ic, range->minmcs, mode, ratetype);
375 		maxrate = ht_getrate(ic, range->maxmcs, mode, ratetype);
376 		if (range->maxmcs) {
377 			ic_printf(ic, "MCS %d-%d: %d%sMbps - %d%sMbps\n",
378 			    range->minmcs, range->maxmcs,
379 			    minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""),
380 			    maxrate/2, ((maxrate & 0x1) != 0 ? ".5" : ""));
381 		} else {
382 			ic_printf(ic, "MCS %d: %d%sMbps\n", range->minmcs,
383 			    minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""));
384 		}
385 	}
386 }
387 
388 static void
389 ht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode)
390 {
391 	const char *modestr = ieee80211_phymode_name[mode];
392 
393 	ic_printf(ic, "%s MCS 20MHz\n", modestr);
394 	ht_rateprint(ic, mode, 0);
395 	if (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) {
396 		ic_printf(ic, "%s MCS 20MHz SGI\n", modestr);
397 		ht_rateprint(ic, mode, 1);
398 	}
399 	if (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) {
400 		ic_printf(ic, "%s MCS 40MHz:\n", modestr);
401 		ht_rateprint(ic, mode, 2);
402 	}
403 	if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
404 	    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) {
405 		ic_printf(ic, "%s MCS 40MHz SGI:\n", modestr);
406 		ht_rateprint(ic, mode, 3);
407 	}
408 }
409 
410 void
411 ieee80211_ht_announce(struct ieee80211com *ic)
412 {
413 
414 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
415 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG))
416 		ic_printf(ic, "%dT%dR\n", ic->ic_txstream, ic->ic_rxstream);
417 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA))
418 		ht_announce(ic, IEEE80211_MODE_11NA);
419 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NG))
420 		ht_announce(ic, IEEE80211_MODE_11NG);
421 }
422 
423 void
424 ieee80211_init_suphtrates(struct ieee80211com *ic)
425 {
426 #define	ADDRATE(x)	do {						\
427 	htrateset->rs_rates[htrateset->rs_nrates] = x;			\
428 	htrateset->rs_nrates++;						\
429 } while (0)
430 	struct ieee80211_htrateset *htrateset = &ic->ic_sup_htrates;
431 	int i;
432 
433 	memset(htrateset, 0, sizeof(struct ieee80211_htrateset));
434 	for (i = 0; i < ic->ic_txstream * 8; i++)
435 		ADDRATE(i);
436 	if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
437 	    (ic->ic_htcaps & IEEE80211_HTC_TXMCS32))
438 		ADDRATE(32);
439 	if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) {
440 		if (ic->ic_txstream >= 2) {
441 			 for (i = 33; i <= 38; i++)
442 				ADDRATE(i);
443 		}
444 		if (ic->ic_txstream >= 3) {
445 			for (i = 39; i <= 52; i++)
446 				ADDRATE(i);
447 		}
448 		if (ic->ic_txstream == 4) {
449 			for (i = 53; i <= 76; i++)
450 				ADDRATE(i);
451 		}
452 	}
453 #undef	ADDRATE
454 }
455 
456 /*
457  * Receive processing.
458  */
459 
460 /*
461  * Decap the encapsulated A-MSDU frames and dispatch all but
462  * the last for delivery.  The last frame is returned for
463  * delivery via the normal path.
464  */
465 struct mbuf *
466 ieee80211_decap_amsdu(struct ieee80211_node *ni, struct mbuf *m)
467 {
468 	struct ieee80211vap *vap = ni->ni_vap;
469 	int framelen;
470 	struct mbuf *n;
471 
472 	/* discard 802.3 header inserted by ieee80211_decap */
473 	m_adj(m, sizeof(struct ether_header));
474 
475 	vap->iv_stats.is_amsdu_decap++;
476 
477 	for (;;) {
478 		/*
479 		 * Decap the first frame, bust it apart from the
480 		 * remainder and deliver.  We leave the last frame
481 		 * delivery to the caller (for consistency with other
482 		 * code paths, could also do it here).
483 		 */
484 		m = ieee80211_decap1(m, &framelen);
485 		if (m == NULL) {
486 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
487 			    ni->ni_macaddr, "a-msdu", "%s", "decap failed");
488 			vap->iv_stats.is_amsdu_tooshort++;
489 			return NULL;
490 		}
491 		if (m->m_pkthdr.len == framelen)
492 			break;
493 		n = m_split(m, framelen, IEEE80211_M_NOWAIT);
494 		if (n == NULL) {
495 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
496 			    ni->ni_macaddr, "a-msdu",
497 			    "%s", "unable to split encapsulated frames");
498 			vap->iv_stats.is_amsdu_split++;
499 			m_freem(m);			/* NB: must reclaim */
500 			return NULL;
501 		}
502 		vap->iv_deliver_data(vap, ni, m);
503 
504 		/*
505 		 * Remove frame contents; each intermediate frame
506 		 * is required to be aligned to a 4-byte boundary.
507 		 */
508 		m = n;
509 		m_adj(m, roundup2(framelen, 4) - framelen);	/* padding */
510 	}
511 	return m;				/* last delivered by caller */
512 }
513 
514 static void
515 ampdu_rx_purge_slot(struct ieee80211_rx_ampdu *rap, int i)
516 {
517 	struct mbuf *m;
518 
519 	/* Walk the queue, removing frames as appropriate */
520 	for (;;) {
521 		m = mbufq_dequeue(&rap->rxa_mq[i]);
522 		if (m == NULL)
523 			break;
524 		rap->rxa_qbytes -= m->m_pkthdr.len;
525 		rap->rxa_qframes--;
526 		m_freem(m);
527 	}
528 }
529 
530 /*
531  * Add the given frame to the current RX reorder slot.
532  *
533  * For future offloaded A-MSDU handling where multiple frames with
534  * the same sequence number show up here, this routine will append
535  * those frames as long as they're appropriately tagged.
536  */
537 static int
538 ampdu_rx_add_slot(struct ieee80211_rx_ampdu *rap, int off, int tid,
539     ieee80211_seq rxseq,
540     struct ieee80211_node *ni,
541     struct mbuf *m,
542     const struct ieee80211_rx_stats *rxs)
543 {
544 	const struct ieee80211_rx_stats *rxs_final = NULL;
545 	struct ieee80211vap *vap = ni->ni_vap;
546 	int toss_dup;
547 #define	PROCESS		0	/* caller should process frame */
548 #define	CONSUMED	1	/* frame consumed, caller does nothing */
549 
550 	/*
551 	 * Figure out if this is a duplicate frame for the given slot.
552 	 *
553 	 * We're assuming that the driver will hand us all the frames
554 	 * for a given AMSDU decap pass and if we get /a/ frame
555 	 * for an AMSDU decap then we'll get all of them.
556 	 *
557 	 * The tricksy bit is that we don't know when the /end/ of
558 	 * the decap pass is, because we aren't tracking state here
559 	 * per-slot to know that we've finished receiving the frame list.
560 	 *
561 	 * The driver sets RX_F_AMSDU and RX_F_AMSDU_MORE to tell us
562 	 * what's going on; so ideally we'd just check the frame at the
563 	 * end of the reassembly slot to see if its F_AMSDU w/ no F_AMSDU_MORE -
564 	 * that means we've received the whole AMSDU decap pass.
565 	 */
566 
567 	/*
568 	 * Get the rxs of the final mbuf in the slot, if one exists.
569 	 */
570 	if (!mbufq_empty(&rap->rxa_mq[off])) {
571 		rxs_final = ieee80211_get_rx_params_ptr(mbufq_last(&rap->rxa_mq[off]));
572 	}
573 
574 	/* Default to tossing the duplicate frame */
575 	toss_dup = 1;
576 
577 	/*
578 	 * Check to see if the final frame has F_AMSDU and F_AMSDU set, AND
579 	 * this frame has F_AMSDU set (MORE or otherwise.)  That's a sign
580 	 * that more can come.
581 	 */
582 
583 	if ((rxs != NULL) && (rxs_final != NULL) &&
584 	    ieee80211_check_rxseq_amsdu(rxs) &&
585 	    ieee80211_check_rxseq_amsdu(rxs_final)) {
586 		if (! ieee80211_check_rxseq_amsdu_more(rxs_final)) {
587 			/*
588 			 * amsdu_more() returning 0 means "it's not the
589 			 * final frame" so we can append more
590 			 * frames here.
591 			 */
592 			toss_dup = 0;
593 		}
594 	}
595 
596 	/*
597 	 * If the list is empty OR we have determined we can put more
598 	 * driver decap'ed AMSDU frames in here, then insert.
599 	 */
600 	if (mbufq_empty(&rap->rxa_mq[off]) || (toss_dup == 0)) {
601 		if (mbufq_enqueue(&rap->rxa_mq[off], m) != 0) {
602 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
603 			    ni->ni_macaddr,
604 			    "a-mpdu queue fail",
605 			    "seqno %u tid %u BA win <%u:%u> off=%d, qlen=%d, maxqlen=%d",
606 			    rxseq, tid, rap->rxa_start,
607 			    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
608 			    off,
609 			    mbufq_len(&rap->rxa_mq[off]),
610 			    rap->rxa_mq[off].mq_maxlen);
611 			/* XXX error count */
612 			m_freem(m);
613 			return CONSUMED;
614 		}
615 		rap->rxa_qframes++;
616 		rap->rxa_qbytes += m->m_pkthdr.len;
617 		vap->iv_stats.is_ampdu_rx_reorder++;
618 		/*
619 		 * Statistics for AMSDU decap.
620 		 */
621 		if (rxs != NULL && ieee80211_check_rxseq_amsdu(rxs)) {
622 			if (ieee80211_check_rxseq_amsdu_more(rxs)) {
623 				/* more=1, AMSDU, end of batch */
624 				IEEE80211_NODE_STAT(ni, rx_amsdu_more_end);
625 			} else {
626 				IEEE80211_NODE_STAT(ni, rx_amsdu_more);
627 			}
628 		}
629 	} else {
630 		IEEE80211_DISCARD_MAC(vap,
631 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
632 		    ni->ni_macaddr, "a-mpdu duplicate",
633 		    "seqno %u tid %u BA win <%u:%u>",
634 		    rxseq, tid, rap->rxa_start,
635 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1));
636 		if (rxs != NULL) {
637 			IEEE80211_DISCARD_MAC(vap,
638 			    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
639 			    ni->ni_macaddr, "a-mpdu duplicate",
640 			    "seqno %d tid %u pktflags 0x%08x\n",
641 			    rxseq, tid, rxs->c_pktflags);
642 		}
643 		if (rxs_final != NULL) {
644 			IEEE80211_DISCARD_MAC(vap,
645 			    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
646 			    ni->ni_macaddr, "a-mpdu duplicate",
647 			    "final: pktflags 0x%08x\n",
648 			    rxs_final->c_pktflags);
649 		}
650 		vap->iv_stats.is_rx_dup++;
651 		IEEE80211_NODE_STAT(ni, rx_dup);
652 		m_freem(m);
653 	}
654 	return CONSUMED;
655 #undef	CONSUMED
656 #undef	PROCESS
657 }
658 
659 /*
660  * Purge all frames in the A-MPDU re-order queue.
661  */
662 static void
663 ampdu_rx_purge(struct ieee80211_rx_ampdu *rap)
664 {
665 	int i;
666 
667 	for (i = 0; i < rap->rxa_wnd; i++) {
668 		ampdu_rx_purge_slot(rap, i);
669 		if (rap->rxa_qframes == 0)
670 			break;
671 	}
672 	KASSERT(rap->rxa_qbytes == 0 && rap->rxa_qframes == 0,
673 	    ("lost %u data, %u frames on ampdu rx q",
674 	    rap->rxa_qbytes, rap->rxa_qframes));
675 }
676 
677 static void
678 ieee80211_ampdu_rx_init_rap(struct ieee80211_node *ni,
679     struct ieee80211_rx_ampdu *rap)
680 {
681 	int i;
682 
683 	/* XXX TODO: ensure the queues are empty */
684 	memset(rap, 0, sizeof(*rap));
685 	for (i = 0; i < IEEE80211_AGGR_BAWMAX; i++)
686 		mbufq_init(&rap->rxa_mq[i], 256);
687 }
688 
689 /*
690  * Start A-MPDU rx/re-order processing for the specified TID.
691  */
692 static int
693 ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
694 	int baparamset, int batimeout, int baseqctl)
695 {
696 	struct ieee80211vap *vap = ni->ni_vap;
697 	int bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ);
698 
699 	if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) {
700 		/*
701 		 * AMPDU previously setup and not terminated with a DELBA,
702 		 * flush the reorder q's in case anything remains.
703 		 */
704 		ampdu_rx_purge(rap);
705 	}
706 	ieee80211_ampdu_rx_init_rap(ni, rap);
707 	rap->rxa_wnd = (bufsiz == 0) ?
708 	    IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
709 	rap->rxa_start = _IEEE80211_MASKSHIFT(baseqctl, IEEE80211_BASEQ_START);
710 	rap->rxa_flags |=  IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND;
711 
712 	/* XXX this should be a configuration flag */
713 	if ((vap->iv_htcaps & IEEE80211_HTC_RX_AMSDU_AMPDU) &&
714 	    (_IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU)))
715 		rap->rxa_flags |= IEEE80211_AGGR_AMSDU;
716 	else
717 		rap->rxa_flags &= ~IEEE80211_AGGR_AMSDU;
718 
719 	return 0;
720 }
721 
722 /*
723  * Public function; manually setup the RX ampdu state.
724  */
725 int
726 ieee80211_ampdu_rx_start_ext(struct ieee80211_node *ni, int tid, int seq, int baw)
727 {
728 	struct ieee80211_rx_ampdu *rap;
729 
730 	/* XXX TODO: sanity check tid, seq, baw */
731 
732 	rap = &ni->ni_rx_ampdu[tid];
733 
734 	if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) {
735 		/*
736 		 * AMPDU previously setup and not terminated with a DELBA,
737 		 * flush the reorder q's in case anything remains.
738 		 */
739 		ampdu_rx_purge(rap);
740 	}
741 
742 	ieee80211_ampdu_rx_init_rap(ni, rap);
743 
744 	rap->rxa_wnd = (baw== 0) ?
745 	    IEEE80211_AGGR_BAWMAX : min(baw, IEEE80211_AGGR_BAWMAX);
746 	if (seq == -1) {
747 		/* Wait for the first RX frame, use that as BAW */
748 		rap->rxa_start = 0;
749 		rap->rxa_flags |= IEEE80211_AGGR_WAITRX;
750 	} else {
751 		rap->rxa_start = seq;
752 	}
753 	rap->rxa_flags |=  IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND;
754 
755 	/* XXX TODO: no amsdu flag */
756 
757 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni,
758 	    "%s: tid=%d, start=%d, wnd=%d, flags=0x%08x",
759 	    __func__,
760 	    tid,
761 	    seq,
762 	    rap->rxa_wnd,
763 	    rap->rxa_flags);
764 
765 	return 0;
766 }
767 
768 /*
769  * Public function; manually stop the RX AMPDU state.
770  */
771 void
772 ieee80211_ampdu_rx_stop_ext(struct ieee80211_node *ni, int tid)
773 {
774 	struct ieee80211_rx_ampdu *rap;
775 
776 	/* XXX TODO: sanity check tid, seq, baw */
777 	rap = &ni->ni_rx_ampdu[tid];
778 	ampdu_rx_stop(ni, rap);
779 }
780 
781 /*
782  * Stop A-MPDU rx processing for the specified TID.
783  */
784 static void
785 ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
786 {
787 
788 	ampdu_rx_purge(rap);
789 	rap->rxa_flags &= ~(IEEE80211_AGGR_RUNNING
790 	    | IEEE80211_AGGR_XCHGPEND
791 	    | IEEE80211_AGGR_WAITRX);
792 }
793 
794 /*
795  * Dispatch a frame from the A-MPDU reorder queue.  The
796  * frame is fed back into ieee80211_input marked with an
797  * M_AMPDU_MPDU flag so it doesn't come back to us (it also
798  * permits ieee80211_input to optimize re-processing).
799  */
800 static __inline void
801 ampdu_dispatch(struct ieee80211_node *ni, struct mbuf *m)
802 {
803 	m->m_flags |= M_AMPDU_MPDU;	/* bypass normal processing */
804 	/* NB: rssi and noise are ignored w/ M_AMPDU_MPDU set */
805 	(void) ieee80211_input(ni, m, 0, 0);
806 }
807 
808 static int
809 ampdu_dispatch_slot(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni,
810     int i)
811 {
812 	struct mbuf *m;
813 	int n = 0;
814 
815 	for (;;) {
816 		m = mbufq_dequeue(&rap->rxa_mq[i]);
817 		if (m == NULL)
818 			break;
819 		n++;
820 
821 		rap->rxa_qbytes -= m->m_pkthdr.len;
822 		rap->rxa_qframes--;
823 
824 		ampdu_dispatch(ni, m);
825 	}
826 	return (n);
827 }
828 
829 static void
830 ampdu_rx_moveup(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni,
831     int i, int winstart)
832 {
833 	struct ieee80211vap *vap = ni->ni_vap;
834 
835 	/*
836 	 * If frames remain, copy the mbuf pointers down so
837 	 * they correspond to the offsets in the new window.
838 	 */
839 	if (rap->rxa_qframes != 0) {
840 		int n = rap->rxa_qframes, j;
841 		for (j = i+1; j < rap->rxa_wnd; j++) {
842 			/*
843 			 * Concat the list contents over, which will
844 			 * blank the source list for us.
845 			 */
846 			if (mbufq_len(&rap->rxa_mq[j]) != 0) {
847 				n = n - mbufq_len(&rap->rxa_mq[j]);
848 				mbufq_concat(&rap->rxa_mq[j-i], &rap->rxa_mq[j]);
849 				KASSERT(n >= 0, ("%s: n < 0 (%d)", __func__, n));
850 				if (n == 0)
851 					break;
852 			}
853 		}
854 		KASSERT(n == 0, ("%s: lost %d frames, qframes %d off %d "
855 		    "BA win <%d:%d> winstart %d",
856 		    __func__, n, rap->rxa_qframes, i, rap->rxa_start,
857 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
858 		    winstart));
859 		vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes;
860 	}
861 }
862 
863 /*
864  * Dispatch as many frames as possible from the re-order queue.
865  * Frames will always be "at the front"; we process all frames
866  * up to the first empty slot in the window.  On completion we
867  * cleanup state if there are still pending frames in the current
868  * BA window.  We assume the frame at slot 0 is already handled
869  * by the caller; we always start at slot 1.
870  */
871 static void
872 ampdu_rx_dispatch(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni)
873 {
874 	struct ieee80211vap *vap = ni->ni_vap;
875 	int i, r, r2;
876 
877 	/* flush run of frames */
878 	r2 = 0;
879 	for (i = 1; i < rap->rxa_wnd; i++) {
880 		r = ampdu_dispatch_slot(rap, ni, i);
881 		if (r == 0)
882 			break;
883 		r2 += r;
884 	}
885 
886 	/* move up frames */
887 	ampdu_rx_moveup(rap, ni, i, -1);
888 
889 	/*
890 	 * Adjust the start of the BA window to
891 	 * reflect the frames just dispatched.
892 	 */
893 	rap->rxa_start = IEEE80211_SEQ_ADD(rap->rxa_start, i);
894 	vap->iv_stats.is_ampdu_rx_oor += r2;
895 
896 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni,
897 	    "%s: moved slot up %d slots to start at %d (%d frames)",
898 	    __func__,
899 	    i,
900 	    rap->rxa_start,
901 	    r2);
902 }
903 
904 /*
905  * Dispatch all frames in the A-MPDU re-order queue.
906  */
907 static void
908 ampdu_rx_flush(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
909 {
910 	int i, r;
911 
912 	for (i = 0; i < rap->rxa_wnd; i++) {
913 		r = ampdu_dispatch_slot(rap, ni, i);
914 		if (r == 0)
915 			continue;
916 		ni->ni_vap->iv_stats.is_ampdu_rx_oor += r;
917 
918 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni,
919 		    "%s: moved slot up %d slots to start at %d (%d frames)",
920 		    __func__,
921 		    1,
922 		    rap->rxa_start,
923 		    r);
924 
925 		if (rap->rxa_qframes == 0)
926 			break;
927 	}
928 }
929 
930 /*
931  * Dispatch all frames in the A-MPDU re-order queue
932  * preceding the specified sequence number.  This logic
933  * handles window moves due to a received MSDU or BAR.
934  */
935 static void
936 ampdu_rx_flush_upto(struct ieee80211_node *ni,
937 	struct ieee80211_rx_ampdu *rap, ieee80211_seq winstart)
938 {
939 	struct ieee80211vap *vap = ni->ni_vap;
940 	ieee80211_seq seqno;
941 	int i, r;
942 
943 	/*
944 	 * Flush any complete MSDU's with a sequence number lower
945 	 * than winstart.  Gaps may exist.  Note that we may actually
946 	 * dispatch frames past winstart if a run continues; this is
947 	 * an optimization that avoids having to do a separate pass
948 	 * to dispatch frames after moving the BA window start.
949 	 */
950 	seqno = rap->rxa_start;
951 	for (i = 0; i < rap->rxa_wnd; i++) {
952 		if ((r = mbufq_len(&rap->rxa_mq[i])) != 0) {
953 			(void) ampdu_dispatch_slot(rap, ni, i);
954 		} else {
955 			if (!IEEE80211_SEQ_BA_BEFORE(seqno, winstart))
956 				break;
957 		}
958 		vap->iv_stats.is_ampdu_rx_oor += r;
959 		seqno = IEEE80211_SEQ_INC(seqno);
960 
961 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni,
962 		    "%s: moved slot up %d slots to start at %d (%d frames)",
963 		    __func__,
964 		    1,
965 		    seqno,
966 		    r);
967 	}
968 
969 	/*
970 	 * If frames remain, copy the mbuf pointers down so
971 	 * they correspond to the offsets in the new window.
972 	 */
973 	ampdu_rx_moveup(rap, ni, i, winstart);
974 
975 	/*
976 	 * Move the start of the BA window; we use the
977 	 * sequence number of the last MSDU that was
978 	 * passed up the stack+1 or winstart if stopped on
979 	 * a gap in the reorder buffer.
980 	 */
981 	rap->rxa_start = seqno;
982 }
983 
984 /*
985  * Process a received QoS data frame for an HT station.  Handle
986  * A-MPDU reordering: if this frame is received out of order
987  * and falls within the BA window hold onto it.  Otherwise if
988  * this frame completes a run, flush any pending frames.  We
989  * return 1 if the frame is consumed.  A 0 is returned if
990  * the frame should be processed normally by the caller.
991  *
992  * A-MSDU: handle hardware decap'ed A-MSDU frames that are
993  * pretending to be MPDU's.  They're dispatched directly if
994  * able; or attempted to put into the receive reordering slot.
995  */
996 int
997 ieee80211_ampdu_reorder(struct ieee80211_node *ni, struct mbuf *m,
998     const struct ieee80211_rx_stats *rxs)
999 {
1000 #define	PROCESS		0	/* caller should process frame */
1001 #define	CONSUMED	1	/* frame consumed, caller does nothing */
1002 	struct ieee80211vap *vap = ni->ni_vap;
1003 	struct ieee80211_qosframe *wh;
1004 	struct ieee80211_rx_ampdu *rap;
1005 	ieee80211_seq rxseq;
1006 	uint8_t tid;
1007 	int off;
1008 	int amsdu = ieee80211_check_rxseq_amsdu(rxs);
1009 	int amsdu_end = ieee80211_check_rxseq_amsdu_more(rxs);
1010 
1011 	KASSERT((m->m_flags & (M_AMPDU | M_AMPDU_MPDU)) == M_AMPDU,
1012 	    ("!a-mpdu or already re-ordered, flags 0x%x", m->m_flags));
1013 	KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta"));
1014 
1015 	/* NB: m_len known to be sufficient */
1016 	wh = mtod(m, struct ieee80211_qosframe *);
1017 	if (!IEEE80211_IS_QOSDATA(wh)) {
1018 		/*
1019 		 * Not QoS data, shouldn't get here but just
1020 		 * return it to the caller for processing.
1021 		 */
1022 		return PROCESS;
1023 	}
1024 
1025 	/*
1026 	 * 802.11-2012 9.3.2.10 - Duplicate detection and recovery.
1027 	 *
1028 	 * Multicast QoS data frames are checked against a different
1029 	 * counter, not the per-TID counter.
1030 	 */
1031 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1032 		return PROCESS;
1033 
1034 	tid = ieee80211_getqos(wh)[0];
1035 	tid &= IEEE80211_QOS_TID;
1036 	rap = &ni->ni_rx_ampdu[tid];
1037 	if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
1038 		/*
1039 		 * No ADDBA request yet, don't touch.
1040 		 */
1041 		return PROCESS;
1042 	}
1043 	rxseq = le16toh(*(uint16_t *)wh->i_seq);
1044 	if ((rxseq & IEEE80211_SEQ_FRAG_MASK) != 0) {
1045 		/*
1046 		 * Fragments are not allowed; toss.
1047 		 */
1048 		IEEE80211_DISCARD_MAC(vap,
1049 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
1050 		    "A-MPDU", "fragment, rxseq 0x%x tid %u%s", rxseq, tid,
1051 		    wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
1052 		vap->iv_stats.is_ampdu_rx_drop++;
1053 		IEEE80211_NODE_STAT(ni, rx_drop);
1054 		m_freem(m);
1055 		return CONSUMED;
1056 	}
1057 	rxseq >>= IEEE80211_SEQ_SEQ_SHIFT;
1058 	rap->rxa_nframes++;
1059 
1060 	/*
1061 	 * Handle waiting for the first frame to define the BAW.
1062 	 * Some firmware doesn't provide the RX of the starting point
1063 	 * of the BAW and we have to cope.
1064 	 */
1065 	if (rap->rxa_flags & IEEE80211_AGGR_WAITRX) {
1066 		rap->rxa_flags &= ~IEEE80211_AGGR_WAITRX;
1067 		rap->rxa_start = rxseq;
1068 	}
1069 again:
1070 	if (rxseq == rap->rxa_start) {
1071 		/*
1072 		 * First frame in window.
1073 		 */
1074 		if (rap->rxa_qframes != 0) {
1075 			/*
1076 			 * Dispatch as many packets as we can.
1077 			 */
1078 			KASSERT(mbufq_empty(&rap->rxa_mq[0]), ("unexpected dup"));
1079 			ampdu_dispatch(ni, m);
1080 			ampdu_rx_dispatch(rap, ni);
1081 			return CONSUMED;
1082 		} else {
1083 			/*
1084 			 * In order; advance window if needed and notify
1085 			 * caller to dispatch directly.
1086 			 */
1087 			if (amsdu) {
1088 				if (amsdu_end) {
1089 					rap->rxa_start = IEEE80211_SEQ_INC(rxseq);
1090 					IEEE80211_NODE_STAT(ni, rx_amsdu_more_end);
1091 				} else {
1092 					IEEE80211_NODE_STAT(ni, rx_amsdu_more);
1093 				}
1094 			} else {
1095 				rap->rxa_start = IEEE80211_SEQ_INC(rxseq);
1096 			}
1097 			return PROCESS;
1098 		}
1099 	}
1100 	/*
1101 	 * Frame is out of order; store if in the BA window.
1102 	 */
1103 	/* calculate offset in BA window */
1104 	off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start);
1105 	if (off < rap->rxa_wnd) {
1106 		/*
1107 		 * Common case (hopefully): in the BA window.
1108 		 * Sec 9.10.7.6.2 a) (p.137)
1109 		 */
1110 
1111 		/*
1112 		 * Check for frames sitting too long in the reorder queue.
1113 		 * This should only ever happen if frames are not delivered
1114 		 * without the sender otherwise notifying us (e.g. with a
1115 		 * BAR to move the window).  Typically this happens because
1116 		 * of vendor bugs that cause the sequence number to jump.
1117 		 * When this happens we get a gap in the reorder queue that
1118 		 * leaves frame sitting on the queue until they get pushed
1119 		 * out due to window moves.  When the vendor does not send
1120 		 * BAR this move only happens due to explicit packet sends
1121 		 *
1122 		 * NB: we only track the time of the oldest frame in the
1123 		 * reorder q; this means that if we flush we might push
1124 		 * frames that still "new"; if this happens then subsequent
1125 		 * frames will result in BA window moves which cost something
1126 		 * but is still better than a big throughput dip.
1127 		 */
1128 		if (rap->rxa_qframes != 0) {
1129 			/* XXX honor batimeout? */
1130 			if (ticks - rap->rxa_age > ieee80211_ampdu_age) {
1131 				/*
1132 				 * Too long since we received the first
1133 				 * frame; flush the reorder buffer.
1134 				 */
1135 				if (rap->rxa_qframes != 0) {
1136 					vap->iv_stats.is_ampdu_rx_age +=
1137 					    rap->rxa_qframes;
1138 					ampdu_rx_flush(ni, rap);
1139 				}
1140 				/*
1141 				 * Advance the window if needed and notify
1142 				 * the caller to dispatch directly.
1143 				 */
1144 				if (amsdu) {
1145 					if (amsdu_end) {
1146 						rap->rxa_start =
1147 						    IEEE80211_SEQ_INC(rxseq);
1148 						IEEE80211_NODE_STAT(ni,
1149 						    rx_amsdu_more_end);
1150 					} else {
1151 						IEEE80211_NODE_STAT(ni,
1152 						    rx_amsdu_more);
1153 					}
1154 				} else {
1155 					rap->rxa_start =
1156 					    IEEE80211_SEQ_INC(rxseq);
1157 				}
1158 				return PROCESS;
1159 			}
1160 		} else {
1161 			/*
1162 			 * First frame, start aging timer.
1163 			 */
1164 			rap->rxa_age = ticks;
1165 		}
1166 
1167 		/* save packet - this consumes, no matter what */
1168 		ampdu_rx_add_slot(rap, off, tid, rxseq, ni, m, rxs);
1169 		return CONSUMED;
1170 	}
1171 	if (off < IEEE80211_SEQ_BA_RANGE) {
1172 		/*
1173 		 * Outside the BA window, but within range;
1174 		 * flush the reorder q and move the window.
1175 		 * Sec 9.10.7.6.2 b) (p.138)
1176 		 */
1177 		IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
1178 		    "move BA win <%u:%u> (%u frames) rxseq %u tid %u",
1179 		    rap->rxa_start,
1180 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
1181 		    rap->rxa_qframes, rxseq, tid);
1182 		vap->iv_stats.is_ampdu_rx_move++;
1183 
1184 		/*
1185 		 * The spec says to flush frames up to but not including:
1186 		 * 	WinStart_B = rxseq - rap->rxa_wnd + 1
1187 		 * Then insert the frame or notify the caller to process
1188 		 * it immediately.  We can safely do this by just starting
1189 		 * over again because we know the frame will now be within
1190 		 * the BA window.
1191 		 */
1192 		/* NB: rxa_wnd known to be >0 */
1193 		ampdu_rx_flush_upto(ni, rap,
1194 		    IEEE80211_SEQ_SUB(rxseq, rap->rxa_wnd-1));
1195 		goto again;
1196 	} else {
1197 		/*
1198 		 * Outside the BA window and out of range; toss.
1199 		 * Sec 9.10.7.6.2 c) (p.138)
1200 		 */
1201 		IEEE80211_DISCARD_MAC(vap,
1202 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
1203 		    "MPDU", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s",
1204 		    rap->rxa_start,
1205 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
1206 		    rap->rxa_qframes, rxseq, tid,
1207 		    wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
1208 		vap->iv_stats.is_ampdu_rx_drop++;
1209 		IEEE80211_NODE_STAT(ni, rx_drop);
1210 		m_freem(m);
1211 		return CONSUMED;
1212 	}
1213 #undef CONSUMED
1214 #undef PROCESS
1215 }
1216 
1217 /*
1218  * Process a BAR ctl frame.  Dispatch all frames up to
1219  * the sequence number of the frame.  If this frame is
1220  * out of range it's discarded.
1221  */
1222 void
1223 ieee80211_recv_bar(struct ieee80211_node *ni, struct mbuf *m0)
1224 {
1225 	struct ieee80211vap *vap = ni->ni_vap;
1226 	struct ieee80211_frame_bar *wh;
1227 	struct ieee80211_rx_ampdu *rap;
1228 	ieee80211_seq rxseq;
1229 	int tid, off;
1230 
1231 	if (!ieee80211_recv_bar_ena) {
1232 #if 0
1233 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_11N,
1234 		    ni->ni_macaddr, "BAR", "%s", "processing disabled");
1235 #endif
1236 		vap->iv_stats.is_ampdu_bar_bad++;
1237 		return;
1238 	}
1239 	wh = mtod(m0, struct ieee80211_frame_bar *);
1240 	/* XXX check basic BAR */
1241 	tid = _IEEE80211_MASKSHIFT(le16toh(wh->i_ctl), IEEE80211_BAR_TID);
1242 	rap = &ni->ni_rx_ampdu[tid];
1243 	if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
1244 		/*
1245 		 * No ADDBA request yet, don't touch.
1246 		 */
1247 		IEEE80211_DISCARD_MAC(vap,
1248 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
1249 		    ni->ni_macaddr, "BAR", "no BA stream, tid %u", tid);
1250 		vap->iv_stats.is_ampdu_bar_bad++;
1251 		return;
1252 	}
1253 	vap->iv_stats.is_ampdu_bar_rx++;
1254 	rxseq = le16toh(wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT;
1255 	if (rxseq == rap->rxa_start)
1256 		return;
1257 	/* calculate offset in BA window */
1258 	off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start);
1259 	if (off < IEEE80211_SEQ_BA_RANGE) {
1260 		/*
1261 		 * Flush the reorder q up to rxseq and move the window.
1262 		 * Sec 9.10.7.6.3 a) (p.138)
1263 		 */
1264 		IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
1265 		    "BAR moves BA win <%u:%u> (%u frames) rxseq %u tid %u",
1266 		    rap->rxa_start,
1267 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
1268 		    rap->rxa_qframes, rxseq, tid);
1269 		vap->iv_stats.is_ampdu_bar_move++;
1270 
1271 		ampdu_rx_flush_upto(ni, rap, rxseq);
1272 		if (off >= rap->rxa_wnd) {
1273 			/*
1274 			 * BAR specifies a window start to the right of BA
1275 			 * window; we must move it explicitly since
1276 			 * ampdu_rx_flush_upto will not.
1277 			 */
1278 			rap->rxa_start = rxseq;
1279 		}
1280 	} else {
1281 		/*
1282 		 * Out of range; toss.
1283 		 * Sec 9.10.7.6.3 b) (p.138)
1284 		 */
1285 		IEEE80211_DISCARD_MAC(vap,
1286 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
1287 		    "BAR", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s",
1288 		    rap->rxa_start,
1289 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
1290 		    rap->rxa_qframes, rxseq, tid,
1291 		    wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
1292 		vap->iv_stats.is_ampdu_bar_oow++;
1293 		IEEE80211_NODE_STAT(ni, rx_drop);
1294 	}
1295 }
1296 
1297 /*
1298  * Setup HT-specific state in a node.  Called only
1299  * when HT use is negotiated so we don't do extra
1300  * work for temporary and/or legacy sta's.
1301  */
1302 void
1303 ieee80211_ht_node_init(struct ieee80211_node *ni)
1304 {
1305 	struct ieee80211_tx_ampdu *tap;
1306 	int tid;
1307 
1308 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
1309 	    ni,
1310 	    "%s: called (%p)",
1311 	    __func__,
1312 	    ni);
1313 
1314 	if (ni->ni_flags & IEEE80211_NODE_HT) {
1315 		/*
1316 		 * Clean AMPDU state on re-associate.  This handles the case
1317 		 * where a station leaves w/o notifying us and then returns
1318 		 * before node is reaped for inactivity.
1319 		 */
1320 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
1321 		    ni,
1322 		    "%s: calling cleanup (%p)",
1323 		    __func__, ni);
1324 		ieee80211_ht_node_cleanup(ni);
1325 	}
1326 	for (tid = 0; tid < WME_NUM_TID; tid++) {
1327 		tap = &ni->ni_tx_ampdu[tid];
1328 		tap->txa_tid = tid;
1329 		tap->txa_ni = ni;
1330 		ieee80211_txampdu_init_pps(tap);
1331 		/* NB: further initialization deferred */
1332 		ieee80211_ampdu_rx_init_rap(ni, &ni->ni_rx_ampdu[tid]);
1333 	}
1334 	ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU |
1335 	    IEEE80211_NODE_AMSDU;
1336 }
1337 
1338 /*
1339  * Cleanup HT-specific state in a node.  Called only
1340  * when HT use has been marked.
1341  */
1342 void
1343 ieee80211_ht_node_cleanup(struct ieee80211_node *ni)
1344 {
1345 	struct ieee80211com *ic = ni->ni_ic;
1346 	int i;
1347 
1348 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
1349 	    ni,
1350 	    "%s: called (%p)",
1351 	    __func__, ni);
1352 
1353 	KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT node"));
1354 
1355 	/* XXX optimize this */
1356 	for (i = 0; i < WME_NUM_TID; i++) {
1357 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[i];
1358 		if (tap->txa_flags & IEEE80211_AGGR_SETUP)
1359 			ampdu_tx_stop(tap);
1360 	}
1361 	for (i = 0; i < WME_NUM_TID; i++)
1362 		ic->ic_ampdu_rx_stop(ni, &ni->ni_rx_ampdu[i]);
1363 
1364 	ni->ni_htcap = 0;
1365 	ni->ni_flags &= ~IEEE80211_NODE_HT_ALL;
1366 }
1367 
1368 /*
1369  * Age out HT resources for a station.
1370  */
1371 void
1372 ieee80211_ht_node_age(struct ieee80211_node *ni)
1373 {
1374 	struct ieee80211vap *vap = ni->ni_vap;
1375 	uint8_t tid;
1376 
1377 	KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta"));
1378 
1379 	for (tid = 0; tid < WME_NUM_TID; tid++) {
1380 		struct ieee80211_rx_ampdu *rap;
1381 
1382 		rap = &ni->ni_rx_ampdu[tid];
1383 		if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0)
1384 			continue;
1385 		if (rap->rxa_qframes == 0)
1386 			continue;
1387 		/*
1388 		 * Check for frames sitting too long in the reorder queue.
1389 		 * See above for more details on what's happening here.
1390 		 */
1391 		/* XXX honor batimeout? */
1392 		if (ticks - rap->rxa_age > ieee80211_ampdu_age) {
1393 			/*
1394 			 * Too long since we received the first
1395 			 * frame; flush the reorder buffer.
1396 			 */
1397 			vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes;
1398 			ampdu_rx_flush(ni, rap);
1399 		}
1400 	}
1401 }
1402 
1403 static struct ieee80211_channel *
1404 findhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int htflags)
1405 {
1406 	return ieee80211_find_channel(ic, c->ic_freq,
1407 	    (c->ic_flags &~ IEEE80211_CHAN_HT) | htflags);
1408 }
1409 
1410 /*
1411  * Adjust a channel to be HT/non-HT according to the vap's configuration.
1412  */
1413 struct ieee80211_channel *
1414 ieee80211_ht_adjust_channel(struct ieee80211com *ic,
1415 	struct ieee80211_channel *chan, int flags)
1416 {
1417 	struct ieee80211_channel *c;
1418 
1419 	if (flags & IEEE80211_FHT_HT) {
1420 		/* promote to HT if possible */
1421 		if (flags & IEEE80211_FHT_USEHT40) {
1422 			if (!IEEE80211_IS_CHAN_HT40(chan)) {
1423 				/* NB: arbitrarily pick ht40+ over ht40- */
1424 				c = findhtchan(ic, chan, IEEE80211_CHAN_HT40U);
1425 				if (c == NULL)
1426 					c = findhtchan(ic, chan,
1427 						IEEE80211_CHAN_HT40D);
1428 				if (c == NULL)
1429 					c = findhtchan(ic, chan,
1430 						IEEE80211_CHAN_HT20);
1431 				if (c != NULL)
1432 					chan = c;
1433 			}
1434 		} else if (!IEEE80211_IS_CHAN_HT20(chan)) {
1435 			c = findhtchan(ic, chan, IEEE80211_CHAN_HT20);
1436 			if (c != NULL)
1437 				chan = c;
1438 		}
1439 	} else if (IEEE80211_IS_CHAN_HT(chan)) {
1440 		/* demote to legacy, HT use is disabled */
1441 		c = ieee80211_find_channel(ic, chan->ic_freq,
1442 		    chan->ic_flags &~ IEEE80211_CHAN_HT);
1443 		if (c != NULL)
1444 			chan = c;
1445 	}
1446 	return chan;
1447 }
1448 
1449 /*
1450  * Setup HT-specific state for a legacy WDS peer.
1451  */
1452 void
1453 ieee80211_ht_wds_init(struct ieee80211_node *ni)
1454 {
1455 	struct ieee80211vap *vap = ni->ni_vap;
1456 	struct ieee80211_tx_ampdu *tap;
1457 	int tid;
1458 
1459 	KASSERT(vap->iv_flags_ht & IEEE80211_FHT_HT, ("no HT requested"));
1460 
1461 	/* XXX check scan cache in case peer has an ap and we have info */
1462 	/*
1463 	 * If setup with a legacy channel; locate an HT channel.
1464 	 * Otherwise if the inherited channel (from a companion
1465 	 * AP) is suitable use it so we use the same location
1466 	 * for the extension channel).
1467 	 */
1468 	ni->ni_chan = ieee80211_ht_adjust_channel(ni->ni_ic,
1469 	    ni->ni_chan, ieee80211_htchanflags(ni->ni_chan));
1470 
1471 	ni->ni_htcap = 0;
1472 	if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)
1473 		ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI20;
1474 	if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
1475 		ni->ni_htcap |= IEEE80211_HTCAP_CHWIDTH40;
1476 		ni->ni_chw = IEEE80211_STA_RX_BW_40;
1477 		if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
1478 			ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_ABOVE;
1479 		else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
1480 			ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_BELOW;
1481 		if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)
1482 			ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI40;
1483 	} else {
1484 		ni->ni_chw = IEEE80211_STA_RX_BW_20;
1485 		ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_NONE;
1486 	}
1487 	ni->ni_htctlchan = ni->ni_chan->ic_ieee;
1488 	if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
1489 		ni->ni_flags |= IEEE80211_NODE_RIFS;
1490 	/* XXX does it make sense to enable SMPS? */
1491 
1492 	ni->ni_htopmode = 0;		/* XXX need protection state */
1493 	ni->ni_htstbc = 0;		/* XXX need info */
1494 
1495 	for (tid = 0; tid < WME_NUM_TID; tid++) {
1496 		tap = &ni->ni_tx_ampdu[tid];
1497 		tap->txa_tid = tid;
1498 		ieee80211_txampdu_init_pps(tap);
1499 	}
1500 	/* NB: AMPDU tx/rx governed by IEEE80211_FHT_AMPDU_{TX,RX} */
1501 	ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU |
1502 	    IEEE80211_NODE_AMSDU;
1503 }
1504 
1505 /*
1506  * Notify a VAP of a change in the HTINFO ie if it's a hostap VAP.
1507  *
1508  * This is to be called from the deferred HT protection update
1509  * task once the flags are updated.
1510  */
1511 void
1512 ieee80211_htinfo_notify(struct ieee80211vap *vap)
1513 {
1514 
1515 	IEEE80211_LOCK_ASSERT(vap->iv_ic);
1516 
1517 	if (vap->iv_opmode != IEEE80211_M_HOSTAP)
1518 		return;
1519 	if (vap->iv_state != IEEE80211_S_RUN ||
1520 	    !IEEE80211_IS_CHAN_HT(vap->iv_bss->ni_chan))
1521 		return;
1522 
1523 	IEEE80211_NOTE(vap,
1524 	    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N,
1525 	    vap->iv_bss,
1526 	    "HT bss occupancy change: %d sta, %d ht, "
1527 	    "%d ht40%s, HT protmode now 0x%x"
1528 	    , vap->iv_sta_assoc
1529 	    , vap->iv_ht_sta_assoc
1530 	    , vap->iv_ht40_sta_assoc
1531 	    , (vap->iv_flags_ht & IEEE80211_FHT_NONHT_PR) ?
1532 		 ", non-HT sta present" : ""
1533 	    , vap->iv_curhtprotmode);
1534 
1535 	ieee80211_beacon_notify(vap, IEEE80211_BEACON_HTINFO);
1536 }
1537 
1538 /*
1539  * Calculate HT protection mode from current
1540  * state and handle updates.
1541  */
1542 static void
1543 htinfo_update(struct ieee80211vap *vap)
1544 {
1545 	struct ieee80211com *ic = vap->iv_ic;
1546 	uint8_t protmode;
1547 
1548 	if (vap->iv_sta_assoc != vap->iv_ht_sta_assoc) {
1549 		protmode = IEEE80211_HTINFO_OPMODE_MIXED
1550 			 | IEEE80211_HTINFO_NONHT_PRESENT;
1551 	} else if (vap->iv_flags_ht & IEEE80211_FHT_NONHT_PR) {
1552 		protmode = IEEE80211_HTINFO_OPMODE_PROTOPT
1553 			 | IEEE80211_HTINFO_NONHT_PRESENT;
1554 	} else if (ic->ic_bsschan != IEEE80211_CHAN_ANYC &&
1555 	    IEEE80211_IS_CHAN_HT40(ic->ic_bsschan) &&
1556 	    vap->iv_sta_assoc != vap->iv_ht40_sta_assoc) {
1557 		protmode = IEEE80211_HTINFO_OPMODE_HT20PR;
1558 	} else {
1559 		protmode = IEEE80211_HTINFO_OPMODE_PURE;
1560 	}
1561 	if (protmode != vap->iv_curhtprotmode) {
1562 		vap->iv_curhtprotmode = protmode;
1563 		/* Update VAP with new protection mode */
1564 		ieee80211_vap_update_ht_protmode(vap);
1565 	}
1566 }
1567 
1568 /*
1569  * Handle an HT station joining a BSS.
1570  */
1571 void
1572 ieee80211_ht_node_join(struct ieee80211_node *ni)
1573 {
1574 	struct ieee80211vap *vap = ni->ni_vap;
1575 
1576 	IEEE80211_LOCK_ASSERT(vap->iv_ic);
1577 
1578 	if (ni->ni_flags & IEEE80211_NODE_HT) {
1579 		vap->iv_ht_sta_assoc++;
1580 		if (ni->ni_chw == IEEE80211_STA_RX_BW_40)
1581 			vap->iv_ht40_sta_assoc++;
1582 	}
1583 	htinfo_update(vap);
1584 }
1585 
1586 /*
1587  * Handle an HT station leaving a BSS.
1588  */
1589 void
1590 ieee80211_ht_node_leave(struct ieee80211_node *ni)
1591 {
1592 	struct ieee80211vap *vap = ni->ni_vap;
1593 
1594 	IEEE80211_LOCK_ASSERT(vap->iv_ic);
1595 
1596 	if (ni->ni_flags & IEEE80211_NODE_HT) {
1597 		vap->iv_ht_sta_assoc--;
1598 		if (ni->ni_chw == IEEE80211_STA_RX_BW_40)
1599 			vap->iv_ht40_sta_assoc--;
1600 	}
1601 	htinfo_update(vap);
1602 }
1603 
1604 /*
1605  * Public version of htinfo_update; used for processing
1606  * beacon frames from overlapping bss.
1607  *
1608  * Caller can specify either IEEE80211_HTINFO_OPMODE_MIXED
1609  * (on receipt of a beacon that advertises MIXED) or
1610  * IEEE80211_HTINFO_OPMODE_PROTOPT (on receipt of a beacon
1611  * from an overlapping legacy bss).  We treat MIXED with
1612  * a higher precedence than PROTOPT (i.e. we will not change
1613  * change PROTOPT -> MIXED; only MIXED -> PROTOPT).  This
1614  * corresponds to how we handle things in htinfo_update.
1615  *
1616  */
1617 void
1618 ieee80211_htprot_update(struct ieee80211vap *vap, int protmode)
1619 {
1620 	struct ieee80211com *ic = vap->iv_ic;
1621 #define	OPMODE(x)	_IEEE80211_SHIFTMASK(x, IEEE80211_HTINFO_OPMODE)
1622 	IEEE80211_LOCK(ic);
1623 
1624 	/* track non-HT station presence */
1625 	KASSERT(protmode & IEEE80211_HTINFO_NONHT_PRESENT,
1626 	    ("protmode 0x%x", protmode));
1627 	vap->iv_flags_ht |= IEEE80211_FHT_NONHT_PR;
1628 	vap->iv_lastnonht = ticks;
1629 
1630 	if (protmode != vap->iv_curhtprotmode &&
1631 	    (OPMODE(vap->iv_curhtprotmode) != IEEE80211_HTINFO_OPMODE_MIXED ||
1632 	     OPMODE(protmode) == IEEE80211_HTINFO_OPMODE_PROTOPT)) {
1633 		vap->iv_curhtprotmode = protmode;
1634 		/* Update VAP with new protection mode */
1635 		ieee80211_vap_update_ht_protmode(vap);
1636 	}
1637 	IEEE80211_UNLOCK(ic);
1638 #undef OPMODE
1639 }
1640 
1641 /*
1642  * Time out presence of an overlapping bss with non-HT
1643  * stations.  When operating in hostap mode we listen for
1644  * beacons from other stations and if we identify a non-HT
1645  * station is present we update the opmode field of the
1646  * HTINFO ie.  To identify when all non-HT stations are
1647  * gone we time out this condition.
1648  */
1649 void
1650 ieee80211_ht_timeout(struct ieee80211vap *vap)
1651 {
1652 
1653 	IEEE80211_LOCK_ASSERT(vap->iv_ic);
1654 
1655 	if ((vap->iv_flags_ht & IEEE80211_FHT_NONHT_PR) &&
1656 	    ieee80211_time_after(ticks, vap->iv_lastnonht + IEEE80211_NONHT_PRESENT_AGE)) {
1657 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N,
1658 		    "%s", "time out non-HT STA present on channel");
1659 		vap->iv_flags_ht &= ~IEEE80211_FHT_NONHT_PR;
1660 		htinfo_update(vap);
1661 	}
1662 }
1663 
1664 /*
1665  * Process an 802.11n HT capabilities ie.
1666  */
1667 void
1668 ieee80211_parse_htcap(struct ieee80211_node *ni, const uint8_t *ie)
1669 {
1670 	if (ie[0] == IEEE80211_ELEMID_VENDOR) {
1671 		/*
1672 		 * Station used Vendor OUI ie to associate;
1673 		 * mark the node so when we respond we'll use
1674 		 * the Vendor OUI's and not the standard ie's.
1675 		 */
1676 		ni->ni_flags |= IEEE80211_NODE_HTCOMPAT;
1677 		ie += 4;
1678 	} else
1679 		ni->ni_flags &= ~IEEE80211_NODE_HTCOMPAT;
1680 
1681 	ni->ni_htcap = le16dec(ie +
1682 		__offsetof(struct ieee80211_ie_htcap, hc_cap));
1683 	ni->ni_htparam = ie[__offsetof(struct ieee80211_ie_htcap, hc_param)];
1684 }
1685 
1686 static void
1687 htinfo_parse(struct ieee80211_node *ni,
1688 	const struct ieee80211_ie_htinfo *htinfo)
1689 {
1690 	uint16_t w;
1691 
1692 	ni->ni_htctlchan = htinfo->hi_ctrlchannel;
1693 	ni->ni_ht2ndchan = _IEEE80211_SHIFTMASK(htinfo->hi_byte1,
1694 	    IEEE80211_HTINFO_2NDCHAN);
1695 	w = le16dec(&htinfo->hi_byte2);
1696 	ni->ni_htopmode = _IEEE80211_SHIFTMASK(w, IEEE80211_HTINFO_OPMODE);
1697 	w = le16dec(&htinfo->hi_byte45);
1698 	ni->ni_htstbc = _IEEE80211_SHIFTMASK(w, IEEE80211_HTINFO_BASIC_STBCMCS);
1699 }
1700 
1701 /*
1702  * Parse an 802.11n HT info ie and save useful information
1703  * to the node state.  Note this does not effect any state
1704  * changes such as for channel width change.
1705  */
1706 void
1707 ieee80211_parse_htinfo(struct ieee80211_node *ni, const uint8_t *ie)
1708 {
1709 	if (ie[0] == IEEE80211_ELEMID_VENDOR)
1710 		ie += 4;
1711 	htinfo_parse(ni, (const struct ieee80211_ie_htinfo *) ie);
1712 }
1713 
1714 /*
1715  * Handle 11n/11ac channel switch.
1716  *
1717  * Use the received HT/VHT ie's to identify the right channel to use.
1718  * If we cannot locate it in the channel table then fallback to
1719  * legacy operation.
1720  *
1721  * Note that we use this information to identify the node's
1722  * channel only; the caller is responsible for insuring any
1723  * required channel change is done (e.g. in sta mode when
1724  * parsing the contents of a beacon frame).
1725  */
1726 static int
1727 htinfo_update_chw(struct ieee80211_node *ni, int htflags, int vhtflags)
1728 {
1729 	struct ieee80211com *ic = ni->ni_ic;
1730 	struct ieee80211_channel *c;
1731 	int chanflags;
1732 	int ret = 0;
1733 
1734 	/*
1735 	 * First step - do HT/VHT only channel lookup based on operating mode
1736 	 * flags.  This involves masking out the VHT flags as well.
1737 	 * Otherwise we end up doing the full channel walk each time
1738 	 * we trigger this, which is expensive.
1739 	 */
1740 	chanflags = (ni->ni_chan->ic_flags &~
1741 	    (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags | vhtflags;
1742 
1743 	if (chanflags == ni->ni_chan->ic_flags)
1744 		goto done;
1745 
1746 	/*
1747 	 * If HT /or/ VHT flags have changed then check both.
1748 	 * We need to start by picking a HT channel anyway.
1749 	 */
1750 
1751 	c = NULL;
1752 	chanflags = (ni->ni_chan->ic_flags &~
1753 	    (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags;
1754 	/* XXX not right for ht40- */
1755 	c = ieee80211_find_channel(ic, ni->ni_chan->ic_freq, chanflags);
1756 	if (c == NULL && (htflags & IEEE80211_CHAN_HT40)) {
1757 		/*
1758 		 * No HT40 channel entry in our table; fall back
1759 		 * to HT20 operation.  This should not happen.
1760 		 */
1761 		c = findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT20);
1762 #if 0
1763 		IEEE80211_NOTE(ni->ni_vap,
1764 		    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni,
1765 		    "no HT40 channel (freq %u), falling back to HT20",
1766 		    ni->ni_chan->ic_freq);
1767 #endif
1768 		/* XXX stat */
1769 	}
1770 
1771 	/* Nothing found - leave it alone; move onto VHT */
1772 	if (c == NULL)
1773 		c = ni->ni_chan;
1774 
1775 	/*
1776 	 * If it's non-HT, then bail out now.
1777 	 */
1778 	if (! IEEE80211_IS_CHAN_HT(c)) {
1779 		IEEE80211_NOTE(ni->ni_vap,
1780 		    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni,
1781 		    "not HT; skipping VHT check (%u/0x%x)",
1782 		    c->ic_freq, c->ic_flags);
1783 		goto done;
1784 	}
1785 
1786 	/*
1787 	 * Next step - look at the current VHT flags and determine
1788 	 * if we need to upgrade.  Mask out the VHT and HT flags since
1789 	 * the vhtflags field will already have the correct HT
1790 	 * flags to use.
1791 	 */
1792 	if (IEEE80211_CONF_VHT(ic) && ni->ni_vhtcap != 0 && vhtflags != 0) {
1793 		chanflags = (c->ic_flags
1794 		    &~ (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT))
1795 		    | vhtflags;
1796 		IEEE80211_NOTE(ni->ni_vap,
1797 		    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N,
1798 		    ni,
1799 		    "%s: VHT; chanwidth=0x%02x; vhtflags=0x%08x",
1800 		    __func__, ni->ni_vht_chanwidth, vhtflags);
1801 
1802 		IEEE80211_NOTE(ni->ni_vap,
1803 		    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N,
1804 		    ni,
1805 		    "%s: VHT; trying lookup for %d/0x%08x",
1806 		    __func__, c->ic_freq, chanflags);
1807 		c = ieee80211_find_channel(ic, c->ic_freq, chanflags);
1808 	}
1809 
1810 	/* Finally, if it's changed */
1811 	if (c != NULL && c != ni->ni_chan) {
1812 		IEEE80211_NOTE(ni->ni_vap,
1813 		    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni,
1814 		    "switch station to %s%d channel %u/0x%x",
1815 		    IEEE80211_IS_CHAN_VHT(c) ? "VHT" : "HT",
1816 		    IEEE80211_IS_CHAN_VHT80(c) ? 80 :
1817 		      (IEEE80211_IS_CHAN_HT40(c) ? 40 : 20),
1818 		    c->ic_freq, c->ic_flags);
1819 		ni->ni_chan = c;
1820 		ret = 1;
1821 	}
1822 	/* NB: caller responsible for forcing any channel change */
1823 
1824 done:
1825 	/* update node's (11n) tx channel width */
1826 	ni->ni_chw = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ?
1827 	    IEEE80211_STA_RX_BW_40 : IEEE80211_STA_RX_BW_20;
1828 	return (ret);
1829 }
1830 
1831 /*
1832  * Update 11n MIMO PS state according to received htcap.
1833  */
1834 static __inline int
1835 htcap_update_mimo_ps(struct ieee80211_node *ni)
1836 {
1837 	uint16_t oflags = ni->ni_flags;
1838 
1839 	switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
1840 	case IEEE80211_HTCAP_SMPS_DYNAMIC:
1841 		ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
1842 		ni->ni_flags |= IEEE80211_NODE_MIMO_RTS;
1843 		break;
1844 	case IEEE80211_HTCAP_SMPS_ENA:
1845 		ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
1846 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
1847 		break;
1848 	case IEEE80211_HTCAP_SMPS_OFF:
1849 	default:		/* disable on rx of reserved value */
1850 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS;
1851 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
1852 		break;
1853 	}
1854 	return (oflags ^ ni->ni_flags);
1855 }
1856 
1857 /*
1858  * Update short GI state according to received htcap
1859  * and local settings.
1860  */
1861 static __inline void
1862 htcap_update_shortgi(struct ieee80211_node *ni)
1863 {
1864 	struct ieee80211vap *vap = ni->ni_vap;
1865 
1866 	ni->ni_flags &= ~(IEEE80211_NODE_SGI20|IEEE80211_NODE_SGI40);
1867 	if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) &&
1868 	    (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20))
1869 		ni->ni_flags |= IEEE80211_NODE_SGI20;
1870 	if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) &&
1871 	    (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40))
1872 		ni->ni_flags |= IEEE80211_NODE_SGI40;
1873 }
1874 
1875 /*
1876  * Update LDPC state according to received htcap
1877  * and local settings.
1878  */
1879 static __inline void
1880 htcap_update_ldpc(struct ieee80211_node *ni)
1881 {
1882 	struct ieee80211vap *vap = ni->ni_vap;
1883 
1884 	if ((ni->ni_htcap & IEEE80211_HTCAP_LDPC) &&
1885 	    (vap->iv_flags_ht & IEEE80211_FHT_LDPC_TX))
1886 		ni->ni_flags |= IEEE80211_NODE_LDPC;
1887 }
1888 
1889 /*
1890  * Parse and update HT-related state extracted from
1891  * the HT cap and info ie's.
1892  *
1893  * This is called from the STA management path and
1894  * the ieee80211_node_join() path.  It will take into
1895  * account the IEs discovered during scanning and
1896  * adjust things accordingly.
1897  */
1898 void
1899 ieee80211_ht_updateparams(struct ieee80211_node *ni,
1900 	const uint8_t *htcapie, const uint8_t *htinfoie)
1901 {
1902 	struct ieee80211vap *vap = ni->ni_vap;
1903 	const struct ieee80211_ie_htinfo *htinfo;
1904 
1905 	ieee80211_parse_htcap(ni, htcapie);
1906 	if (vap->iv_htcaps & IEEE80211_HTC_SMPS)
1907 		htcap_update_mimo_ps(ni);
1908 	htcap_update_shortgi(ni);
1909 	htcap_update_ldpc(ni);
1910 
1911 	if (htinfoie[0] == IEEE80211_ELEMID_VENDOR)
1912 		htinfoie += 4;
1913 	htinfo = (const struct ieee80211_ie_htinfo *) htinfoie;
1914 	htinfo_parse(ni, htinfo);
1915 
1916 	/*
1917 	 * Defer the node channel change; we need to now
1918 	 * update VHT parameters before we do it.
1919 	 */
1920 
1921 	if ((htinfo->hi_byte1 & IEEE80211_HTINFO_RIFSMODE_PERM) &&
1922 	    (vap->iv_flags_ht & IEEE80211_FHT_RIFS))
1923 		ni->ni_flags |= IEEE80211_NODE_RIFS;
1924 	else
1925 		ni->ni_flags &= ~IEEE80211_NODE_RIFS;
1926 }
1927 
1928 static uint32_t
1929 ieee80211_vht_get_vhtflags(struct ieee80211_node *ni, uint32_t htflags)
1930 {
1931 	struct ieee80211vap *vap = ni->ni_vap;
1932 	uint32_t vhtflags = 0;
1933 
1934 	vhtflags = 0;
1935 	if (ni->ni_flags & IEEE80211_NODE_VHT && vap->iv_vht_flags & IEEE80211_FVHT_VHT) {
1936 		if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_160MHZ) &&
1937 		    IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_IS_160MHZ(vap->iv_vht_cap.vht_cap_info) &&
1938 		    (vap->iv_vht_flags & IEEE80211_FVHT_USEVHT160)) {
1939 			vhtflags = IEEE80211_CHAN_VHT160;
1940 			/* Mirror the HT40 flags */
1941 			if (htflags == IEEE80211_CHAN_HT40U) {
1942 				vhtflags |= IEEE80211_CHAN_HT40U;
1943 			} else if (htflags == IEEE80211_CHAN_HT40D) {
1944 				vhtflags |= IEEE80211_CHAN_HT40D;
1945 			}
1946 		} else if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_80P80MHZ) &&
1947 		    IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_IS_160_80P80MHZ(vap->iv_vht_cap.vht_cap_info) &&
1948 		    (vap->iv_vht_flags & IEEE80211_FVHT_USEVHT80P80)) {
1949 			vhtflags = IEEE80211_CHAN_VHT80P80;
1950 			/* Mirror the HT40 flags */
1951 			if (htflags == IEEE80211_CHAN_HT40U) {
1952 				vhtflags |= IEEE80211_CHAN_HT40U;
1953 			} else if (htflags == IEEE80211_CHAN_HT40D) {
1954 				vhtflags |= IEEE80211_CHAN_HT40D;
1955 			}
1956 		} else if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_80MHZ) &&
1957 		    (vap->iv_vht_flags & IEEE80211_FVHT_USEVHT80)) {
1958 			vhtflags = IEEE80211_CHAN_VHT80;
1959 			/* Mirror the HT40 flags */
1960 			if (htflags == IEEE80211_CHAN_HT40U) {
1961 				vhtflags |= IEEE80211_CHAN_HT40U;
1962 			} else if (htflags == IEEE80211_CHAN_HT40D) {
1963 				vhtflags |= IEEE80211_CHAN_HT40D;
1964 			}
1965 		} else if (ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_USE_HT) {
1966 			/* Mirror the HT40 flags */
1967 			/*
1968 			 * XXX TODO: if ht40 is disabled, but vht40 isn't
1969 			 * disabled then this logic will get very, very sad.
1970 			 * It's quite possible the only sane thing to do is
1971 			 * to not have vht40 as an option, and just obey
1972 			 * 'ht40' as that flag.
1973 			 */
1974 			if ((htflags == IEEE80211_CHAN_HT40U) &&
1975 			    (vap->iv_vht_flags & IEEE80211_FVHT_USEVHT40)) {
1976 				vhtflags = IEEE80211_CHAN_VHT40U
1977 				    | IEEE80211_CHAN_HT40U;
1978 			} else if (htflags == IEEE80211_CHAN_HT40D &&
1979 			    (vap->iv_vht_flags & IEEE80211_FVHT_USEVHT40)) {
1980 				vhtflags = IEEE80211_CHAN_VHT40D
1981 				    | IEEE80211_CHAN_HT40D;
1982 			} else if (htflags == IEEE80211_CHAN_HT20) {
1983 				vhtflags = IEEE80211_CHAN_VHT20
1984 				    | IEEE80211_CHAN_HT20;
1985 			}
1986 		} else {
1987 			vhtflags = IEEE80211_CHAN_VHT20;
1988 		}
1989 	}
1990 	return (vhtflags);
1991 }
1992 
1993 /*
1994  * Final part of updating the HT parameters.
1995  *
1996  * This is called from the STA management path and
1997  * the ieee80211_node_join() path.  It will take into
1998  * account the IEs discovered during scanning and
1999  * adjust things accordingly.
2000  *
2001  * This is done after a call to ieee80211_ht_updateparams()
2002  * because it (and the upcoming VHT version of updateparams)
2003  * needs to ensure everything is parsed before htinfo_update_chw()
2004  * is called - which will change the channel config for the
2005  * node for us.
2006  */
2007 int
2008 ieee80211_ht_updateparams_final(struct ieee80211_node *ni,
2009 	const uint8_t *htcapie, const uint8_t *htinfoie)
2010 {
2011 	struct ieee80211vap *vap = ni->ni_vap;
2012 	const struct ieee80211_ie_htinfo *htinfo;
2013 	int htflags, vhtflags;
2014 	int ret = 0;
2015 
2016 	htinfo = (const struct ieee80211_ie_htinfo *) htinfoie;
2017 
2018 	htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ?
2019 	    IEEE80211_CHAN_HT20 : 0;
2020 
2021 	/* NB: honor operating mode constraint */
2022 	if ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH_2040) &&
2023 	    (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) {
2024 		if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_ABOVE)
2025 			htflags = IEEE80211_CHAN_HT40U;
2026 		else if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_BELOW)
2027 			htflags = IEEE80211_CHAN_HT40D;
2028 	}
2029 
2030 	/*
2031 	 * VHT flags - do much the same; check whether VHT is available
2032 	 * and if so, what our ideal channel use would be based on our
2033 	 * capabilities and the (pre-parsed) VHT info IE.
2034 	 */
2035 	vhtflags = ieee80211_vht_get_vhtflags(ni, htflags);
2036 
2037 	if (htinfo_update_chw(ni, htflags, vhtflags))
2038 		ret = 1;
2039 
2040 	return (ret);
2041 }
2042 
2043 /*
2044  * Parse and update HT-related state extracted from the HT cap ie
2045  * for a station joining an HT BSS.
2046  *
2047  * This is called from the hostap path for each station.
2048  */
2049 void
2050 ieee80211_ht_updatehtcap(struct ieee80211_node *ni, const uint8_t *htcapie)
2051 {
2052 	struct ieee80211vap *vap = ni->ni_vap;
2053 
2054 	ieee80211_parse_htcap(ni, htcapie);
2055 	if (vap->iv_htcaps & IEEE80211_HTC_SMPS)
2056 		htcap_update_mimo_ps(ni);
2057 	htcap_update_shortgi(ni);
2058 	htcap_update_ldpc(ni);
2059 }
2060 
2061 /*
2062  * Called once HT and VHT capabilities are parsed in hostap mode -
2063  * this will adjust the channel configuration of the given node
2064  * based on the configuration and capabilities.
2065  */
2066 void
2067 ieee80211_ht_updatehtcap_final(struct ieee80211_node *ni)
2068 {
2069 	struct ieee80211vap *vap = ni->ni_vap;
2070 	int htflags;
2071 	int vhtflags;
2072 
2073 	/* NB: honor operating mode constraint */
2074 	/* XXX 40 MHz intolerant */
2075 	htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ?
2076 	    IEEE80211_CHAN_HT20 : 0;
2077 	if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) &&
2078 	    (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) {
2079 		if (IEEE80211_IS_CHAN_HT40U(vap->iv_bss->ni_chan))
2080 			htflags = IEEE80211_CHAN_HT40U;
2081 		else if (IEEE80211_IS_CHAN_HT40D(vap->iv_bss->ni_chan))
2082 			htflags = IEEE80211_CHAN_HT40D;
2083 	}
2084 	/*
2085 	 * VHT flags - do much the same; check whether VHT is available
2086 	 * and if so, what our ideal channel use would be based on our
2087 	 * capabilities and the (pre-parsed) VHT info IE.
2088 	 */
2089 	vhtflags = ieee80211_vht_get_vhtflags(ni, htflags);
2090 
2091 	(void) htinfo_update_chw(ni, htflags, vhtflags);
2092 }
2093 
2094 /*
2095  * Install received HT rate set by parsing the HT cap ie.
2096  */
2097 int
2098 ieee80211_setup_htrates(struct ieee80211_node *ni, const uint8_t *ie, int flags)
2099 {
2100 	struct ieee80211com *ic = ni->ni_ic;
2101 	struct ieee80211vap *vap = ni->ni_vap;
2102 	const struct ieee80211_ie_htcap *htcap;
2103 	struct ieee80211_htrateset *rs;
2104 	int i, maxequalmcs, maxunequalmcs;
2105 
2106 	maxequalmcs = ic->ic_txstream * 8 - 1;
2107 	maxunequalmcs = 0;
2108 	if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) {
2109 		if (ic->ic_txstream >= 2)
2110 			maxunequalmcs = 38;
2111 		if (ic->ic_txstream >= 3)
2112 			maxunequalmcs = 52;
2113 		if (ic->ic_txstream >= 4)
2114 			maxunequalmcs = 76;
2115 	}
2116 
2117 	rs = &ni->ni_htrates;
2118 	memset(rs, 0, sizeof(*rs));
2119 	if (ie != NULL) {
2120 		if (ie[0] == IEEE80211_ELEMID_VENDOR)
2121 			ie += 4;
2122 		htcap = (const struct ieee80211_ie_htcap *) ie;
2123 		for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) {
2124 			if (isclr(htcap->hc_mcsset, i))
2125 				continue;
2126 			if (rs->rs_nrates == IEEE80211_HTRATE_MAXSIZE) {
2127 				IEEE80211_NOTE(vap,
2128 				    IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
2129 				    "WARNING, HT rate set too large; only "
2130 				    "using %u rates", IEEE80211_HTRATE_MAXSIZE);
2131 				vap->iv_stats.is_rx_rstoobig++;
2132 				break;
2133 			}
2134 			if (i <= 31 && i > maxequalmcs)
2135 				continue;
2136 			if (i == 32 &&
2137 			    (ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0)
2138 				continue;
2139 			if (i > 32 && i > maxunequalmcs)
2140 				continue;
2141 			rs->rs_rates[rs->rs_nrates++] = i;
2142 		}
2143 	}
2144 	return ieee80211_fix_rate(ni, (struct ieee80211_rateset *) rs, flags);
2145 }
2146 
2147 /*
2148  * Mark rates in a node's HT rate set as basic according
2149  * to the information in the supplied HT info ie.
2150  */
2151 void
2152 ieee80211_setup_basic_htrates(struct ieee80211_node *ni, const uint8_t *ie)
2153 {
2154 	const struct ieee80211_ie_htinfo *htinfo;
2155 	struct ieee80211_htrateset *rs;
2156 	int i, j;
2157 
2158 	if (ie[0] == IEEE80211_ELEMID_VENDOR)
2159 		ie += 4;
2160 	htinfo = (const struct ieee80211_ie_htinfo *) ie;
2161 	rs = &ni->ni_htrates;
2162 	if (rs->rs_nrates == 0) {
2163 		IEEE80211_NOTE(ni->ni_vap,
2164 		    IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
2165 		    "%s", "WARNING, empty HT rate set");
2166 		return;
2167 	}
2168 	for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) {
2169 		if (isclr(htinfo->hi_basicmcsset, i))
2170 			continue;
2171 		for (j = 0; j < rs->rs_nrates; j++)
2172 			if ((rs->rs_rates[j] & IEEE80211_RATE_VAL) == i)
2173 				rs->rs_rates[j] |= IEEE80211_RATE_BASIC;
2174 	}
2175 }
2176 
2177 static void
2178 ampdu_tx_setup(struct ieee80211_tx_ampdu *tap)
2179 {
2180 	callout_init(&tap->txa_timer, 1);
2181 	tap->txa_flags |= IEEE80211_AGGR_SETUP;
2182 	tap->txa_lastsample = ticks;
2183 }
2184 
2185 static void
2186 ampdu_tx_stop(struct ieee80211_tx_ampdu *tap)
2187 {
2188 	struct ieee80211_node *ni = tap->txa_ni;
2189 	struct ieee80211com *ic = ni->ni_ic;
2190 
2191 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2192 	    tap->txa_ni,
2193 	    "%s: called",
2194 	    __func__);
2195 
2196 	KASSERT(tap->txa_flags & IEEE80211_AGGR_SETUP,
2197 	    ("txa_flags 0x%x tid %d ac %d", tap->txa_flags, tap->txa_tid,
2198 	    TID_TO_WME_AC(tap->txa_tid)));
2199 
2200 	/*
2201 	 * Stop BA stream if setup so driver has a chance
2202 	 * to reclaim any resources it might have allocated.
2203 	 */
2204 	ic->ic_addba_stop(ni, tap);
2205 	/*
2206 	 * Stop any pending BAR transmit.
2207 	 */
2208 	bar_stop_timer(tap);
2209 
2210 	/*
2211 	 * Reset packet estimate.
2212 	 */
2213 	ieee80211_txampdu_init_pps(tap);
2214 
2215 	/* NB: clearing NAK means we may re-send ADDBA */
2216 	tap->txa_flags &= ~(IEEE80211_AGGR_SETUP | IEEE80211_AGGR_NAK);
2217 }
2218 
2219 /*
2220  * ADDBA response timeout.
2221  *
2222  * If software aggregation and per-TID queue management was done here,
2223  * that queue would be unpaused after the ADDBA timeout occurs.
2224  */
2225 static void
2226 addba_timeout(void *arg)
2227 {
2228 	struct ieee80211_tx_ampdu *tap = arg;
2229 	struct ieee80211_node *ni = tap->txa_ni;
2230 	struct ieee80211com *ic = ni->ni_ic;
2231 
2232 	/* XXX ? */
2233 	tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND;
2234 	tap->txa_attempts++;
2235 	ic->ic_addba_response_timeout(ni, tap);
2236 }
2237 
2238 static void
2239 addba_start_timeout(struct ieee80211_tx_ampdu *tap)
2240 {
2241 	/* XXX use CALLOUT_PENDING instead? */
2242 	callout_reset(&tap->txa_timer, ieee80211_addba_timeout,
2243 	    addba_timeout, tap);
2244 	tap->txa_flags |= IEEE80211_AGGR_XCHGPEND;
2245 	tap->txa_nextrequest = ticks + ieee80211_addba_timeout;
2246 }
2247 
2248 static void
2249 addba_stop_timeout(struct ieee80211_tx_ampdu *tap)
2250 {
2251 	/* XXX use CALLOUT_PENDING instead? */
2252 	if (tap->txa_flags & IEEE80211_AGGR_XCHGPEND) {
2253 		callout_stop(&tap->txa_timer);
2254 		tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND;
2255 	}
2256 }
2257 
2258 static void
2259 null_addba_response_timeout(struct ieee80211_node *ni,
2260     struct ieee80211_tx_ampdu *tap)
2261 {
2262 }
2263 
2264 /*
2265  * Default method for requesting A-MPDU tx aggregation.
2266  * We setup the specified state block and start a timer
2267  * to wait for an ADDBA response frame.
2268  */
2269 static int
2270 ieee80211_addba_request(struct ieee80211_node *ni,
2271 	struct ieee80211_tx_ampdu *tap,
2272 	int dialogtoken, int baparamset, int batimeout)
2273 {
2274 	int bufsiz;
2275 
2276 	/* XXX locking */
2277 	tap->txa_token = dialogtoken;
2278 	tap->txa_flags |= IEEE80211_AGGR_IMMEDIATE;
2279 	bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ);
2280 	tap->txa_wnd = (bufsiz == 0) ?
2281 	    IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
2282 	addba_start_timeout(tap);
2283 	return 1;
2284 }
2285 
2286 /*
2287  * Called by drivers that wish to request an ADDBA session be
2288  * setup.  This brings it up and starts the request timer.
2289  */
2290 int
2291 ieee80211_ampdu_tx_request_ext(struct ieee80211_node *ni, int tid)
2292 {
2293 	struct ieee80211_tx_ampdu *tap;
2294 
2295 	if (tid < 0 || tid > 15)
2296 		return (0);
2297 	tap = &ni->ni_tx_ampdu[tid];
2298 
2299 	/* XXX locking */
2300 	if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) {
2301 		/* do deferred setup of state */
2302 		ampdu_tx_setup(tap);
2303 	}
2304 	/* XXX hack for not doing proper locking */
2305 	tap->txa_flags &= ~IEEE80211_AGGR_NAK;
2306 	addba_start_timeout(tap);
2307 	return (1);
2308 }
2309 
2310 /*
2311  * Called by drivers that have marked a session as active.
2312  */
2313 int
2314 ieee80211_ampdu_tx_request_active_ext(struct ieee80211_node *ni, int tid,
2315     int status)
2316 {
2317 	struct ieee80211_tx_ampdu *tap;
2318 
2319 	if (tid < 0 || tid > 15)
2320 		return (0);
2321 	tap = &ni->ni_tx_ampdu[tid];
2322 
2323 	/* XXX locking */
2324 	addba_stop_timeout(tap);
2325 	if (status == 1) {
2326 		tap->txa_flags |= IEEE80211_AGGR_RUNNING;
2327 		tap->txa_attempts = 0;
2328 	} else {
2329 		/* mark tid so we don't try again */
2330 		tap->txa_flags |= IEEE80211_AGGR_NAK;
2331 	}
2332 	return (1);
2333 }
2334 
2335 /*
2336  * Default method for processing an A-MPDU tx aggregation
2337  * response.  We shutdown any pending timer and update the
2338  * state block according to the reply.
2339  */
2340 static int
2341 ieee80211_addba_response(struct ieee80211_node *ni,
2342 	struct ieee80211_tx_ampdu *tap,
2343 	int status, int baparamset, int batimeout)
2344 {
2345 	struct ieee80211vap *vap = ni->ni_vap;
2346 	int bufsiz;
2347 
2348 	/* XXX locking */
2349 	addba_stop_timeout(tap);
2350 	if (status == IEEE80211_STATUS_SUCCESS) {
2351 		bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ);
2352 		/* XXX override our request? */
2353 		tap->txa_wnd = (bufsiz == 0) ?
2354 		    IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
2355 #ifdef __notyet__
2356 		tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_TID);
2357 #endif
2358 		tap->txa_flags |= IEEE80211_AGGR_RUNNING;
2359 		tap->txa_attempts = 0;
2360 		/* TODO: this should be a vap flag */
2361 		if ((vap->iv_htcaps & IEEE80211_HTC_TX_AMSDU_AMPDU) &&
2362 		    (ni->ni_flags & IEEE80211_NODE_AMSDU_TX) &&
2363 		    (_IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU)))
2364 			tap->txa_flags |= IEEE80211_AGGR_AMSDU;
2365 		else
2366 			tap->txa_flags &= ~IEEE80211_AGGR_AMSDU;
2367 	} else {
2368 		/* mark tid so we don't try again */
2369 		tap->txa_flags |= IEEE80211_AGGR_NAK;
2370 	}
2371 	return 1;
2372 }
2373 
2374 /*
2375  * Default method for stopping A-MPDU tx aggregation.
2376  * Any timer is cleared and we drain any pending frames.
2377  */
2378 static void
2379 ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
2380 {
2381 	/* XXX locking */
2382 	addba_stop_timeout(tap);
2383 	if (tap->txa_flags & IEEE80211_AGGR_RUNNING) {
2384 		/* XXX clear aggregation queue */
2385 		tap->txa_flags &= ~(IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_AMSDU);
2386 	}
2387 	tap->txa_attempts = 0;
2388 }
2389 
2390 /*
2391  * Process a received action frame using the default aggregation
2392  * policy.  We intercept ADDBA-related frames and use them to
2393  * update our aggregation state.  All other frames are passed up
2394  * for processing by ieee80211_recv_action.
2395  */
2396 static int
2397 ht_recv_action_ba_addba_request(struct ieee80211_node *ni,
2398 	const struct ieee80211_frame *wh,
2399 	const uint8_t *frm, const uint8_t *efrm)
2400 {
2401 	struct ieee80211com *ic = ni->ni_ic;
2402 	struct ieee80211vap *vap = ni->ni_vap;
2403 	struct ieee80211_rx_ampdu *rap;
2404 	uint8_t dialogtoken;
2405 	uint16_t baparamset, batimeout, baseqctl;
2406 	uint16_t args[5];
2407 	int tid;
2408 
2409 	dialogtoken = frm[2];
2410 	baparamset = le16dec(frm+3);
2411 	batimeout = le16dec(frm+5);
2412 	baseqctl = le16dec(frm+7);
2413 
2414 	tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_TID);
2415 
2416 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2417 	    "recv ADDBA request: dialogtoken %u baparamset 0x%x "
2418 	    "(tid %d bufsiz %d) batimeout %d baseqctl %d:%d amsdu %d",
2419 	    dialogtoken, baparamset,
2420 	    tid, _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ),
2421 	    batimeout,
2422 	    _IEEE80211_MASKSHIFT(baseqctl, IEEE80211_BASEQ_START),
2423 	    _IEEE80211_MASKSHIFT(baseqctl, IEEE80211_BASEQ_FRAG),
2424 	    _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU));
2425 
2426 	rap = &ni->ni_rx_ampdu[tid];
2427 
2428 	/* Send ADDBA response */
2429 	args[0] = dialogtoken;
2430 	/*
2431 	 * NB: We ack only if the sta associated with HT and
2432 	 * the ap is configured to do AMPDU rx (the latter
2433 	 * violates the 11n spec and is mostly for testing).
2434 	 */
2435 	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_RX) &&
2436 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX)) {
2437 		/* XXX TODO: handle ampdu_rx_start failure */
2438 		ic->ic_ampdu_rx_start(ni, rap,
2439 		    baparamset, batimeout, baseqctl);
2440 
2441 		args[1] = IEEE80211_STATUS_SUCCESS;
2442 	} else {
2443 		IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2444 		    ni, "reject ADDBA request: %s",
2445 		    ni->ni_flags & IEEE80211_NODE_AMPDU_RX ?
2446 		       "administratively disabled" :
2447 		       "not negotiated for station");
2448 		vap->iv_stats.is_addba_reject++;
2449 		args[1] = IEEE80211_STATUS_UNSPECIFIED;
2450 	}
2451 	/* XXX honor rap flags? */
2452 	args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE
2453 		| _IEEE80211_SHIFTMASK(tid, IEEE80211_BAPS_TID)
2454 		| _IEEE80211_SHIFTMASK(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ)
2455 		;
2456 
2457 	/*
2458 	 * TODO: we're out of iv_flags_ht fields; once
2459 	 * this is extended we should make this configurable.
2460 	 */
2461 	if ((baparamset & IEEE80211_BAPS_AMSDU) &&
2462 	    (ni->ni_flags & IEEE80211_NODE_AMSDU_RX) &&
2463 	    (vap->iv_htcaps & IEEE80211_HTC_RX_AMSDU_AMPDU))
2464 		args[2] |= IEEE80211_BAPS_AMSDU;
2465 
2466 	args[3] = 0;
2467 	args[4] = 0;
2468 	ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
2469 		IEEE80211_ACTION_BA_ADDBA_RESPONSE, args);
2470 	return 0;
2471 }
2472 
2473 static int
2474 ht_recv_action_ba_addba_response(struct ieee80211_node *ni,
2475 	const struct ieee80211_frame *wh,
2476 	const uint8_t *frm, const uint8_t *efrm)
2477 {
2478 	struct ieee80211com *ic = ni->ni_ic;
2479 	struct ieee80211vap *vap = ni->ni_vap;
2480 	struct ieee80211_tx_ampdu *tap;
2481 	uint8_t dialogtoken, policy;
2482 	uint16_t baparamset, batimeout, code;
2483 	int tid;
2484 #ifdef IEEE80211_DEBUG
2485 	int amsdu, bufsiz;
2486 #endif
2487 
2488 	dialogtoken = frm[2];
2489 	code = le16dec(frm+3);
2490 	baparamset = le16dec(frm+5);
2491 	tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_TID);
2492 #ifdef IEEE80211_DEBUG
2493 	bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ);
2494 	amsdu = !! _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU);
2495 #endif
2496 	policy = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_POLICY);
2497 	batimeout = le16dec(frm+7);
2498 
2499 	tap = &ni->ni_tx_ampdu[tid];
2500 	if ((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
2501 		IEEE80211_DISCARD_MAC(vap,
2502 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2503 		    ni->ni_macaddr, "ADDBA response",
2504 		    "no pending ADDBA, tid %d dialogtoken %u "
2505 		    "code %d", tid, dialogtoken, code);
2506 		vap->iv_stats.is_addba_norequest++;
2507 		return 0;
2508 	}
2509 	if (dialogtoken != tap->txa_token) {
2510 		IEEE80211_DISCARD_MAC(vap,
2511 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2512 		    ni->ni_macaddr, "ADDBA response",
2513 		    "dialogtoken mismatch: waiting for %d, "
2514 		    "received %d, tid %d code %d",
2515 		    tap->txa_token, dialogtoken, tid, code);
2516 		vap->iv_stats.is_addba_badtoken++;
2517 		return 0;
2518 	}
2519 	/* NB: assumes IEEE80211_AGGR_IMMEDIATE is 1 */
2520 	if (policy != (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE)) {
2521 		IEEE80211_DISCARD_MAC(vap,
2522 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2523 		    ni->ni_macaddr, "ADDBA response",
2524 		    "policy mismatch: expecting %s, "
2525 		    "received %s, tid %d code %d",
2526 		    tap->txa_flags & IEEE80211_AGGR_IMMEDIATE,
2527 		    policy, tid, code);
2528 		vap->iv_stats.is_addba_badpolicy++;
2529 		return 0;
2530 	}
2531 #if 0
2532 	/* XXX we take MIN in ieee80211_addba_response */
2533 	if (bufsiz > IEEE80211_AGGR_BAWMAX) {
2534 		IEEE80211_DISCARD_MAC(vap,
2535 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2536 		    ni->ni_macaddr, "ADDBA response",
2537 		    "BA window too large: max %d, "
2538 		    "received %d, tid %d code %d",
2539 		    bufsiz, IEEE80211_AGGR_BAWMAX, tid, code);
2540 		vap->iv_stats.is_addba_badbawinsize++;
2541 		return 0;
2542 	}
2543 #endif
2544 
2545 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2546 	    "recv ADDBA response: dialogtoken %u code %d "
2547 	    "baparamset 0x%x (tid %d bufsiz %d amsdu %d) batimeout %d",
2548 	    dialogtoken, code, baparamset, tid,
2549 	    bufsiz,
2550 	    amsdu,
2551 	    batimeout);
2552 	ic->ic_addba_response(ni, tap, code, baparamset, batimeout);
2553 	return 0;
2554 }
2555 
2556 static int
2557 ht_recv_action_ba_delba(struct ieee80211_node *ni,
2558 	const struct ieee80211_frame *wh,
2559 	const uint8_t *frm, const uint8_t *efrm)
2560 {
2561 	struct ieee80211com *ic = ni->ni_ic;
2562 	struct ieee80211_rx_ampdu *rap;
2563 	struct ieee80211_tx_ampdu *tap;
2564 	uint16_t baparamset;
2565 #ifdef IEEE80211_DEBUG
2566 	uint16_t code;
2567 #endif
2568 	int tid;
2569 
2570 	baparamset = le16dec(frm+2);
2571 #ifdef IEEE80211_DEBUG
2572 	code = le16dec(frm+4);
2573 #endif
2574 
2575 	tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_DELBAPS_TID);
2576 
2577 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2578 	    "recv DELBA: baparamset 0x%x (tid %d initiator %d) "
2579 	    "code %d", baparamset, tid,
2580 	    _IEEE80211_MASKSHIFT(baparamset, IEEE80211_DELBAPS_INIT), code);
2581 
2582 	if ((baparamset & IEEE80211_DELBAPS_INIT) == 0) {
2583 		tap = &ni->ni_tx_ampdu[tid];
2584 		ic->ic_addba_stop(ni, tap);
2585 	} else {
2586 		rap = &ni->ni_rx_ampdu[tid];
2587 		ic->ic_ampdu_rx_stop(ni, rap);
2588 	}
2589 	return 0;
2590 }
2591 
2592 static int
2593 ht_recv_action_ht_txchwidth(struct ieee80211_node *ni,
2594 	const struct ieee80211_frame *wh __unused,
2595 	const uint8_t *frm, const uint8_t *efrm __unused)
2596 {
2597 	int chw;
2598 
2599 	/* If 20/40 is not supported the chw cannot change. */
2600 	if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) == 0)
2601 		return (0);
2602 
2603 	chw = (frm[2] == IEEE80211_A_HT_TXCHWIDTH_2040) ?
2604 	    IEEE80211_STA_RX_BW_40 : IEEE80211_STA_RX_BW_20;
2605 
2606 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2607 	    "%s: HT txchwidth, width %d%s (%s)", __func__,
2608 	    chw, ni->ni_chw != chw ? "*" : "", ieee80211_ni_chw_to_str(chw));
2609 	if (chw != ni->ni_chw) {
2610 		/* XXX does this need to change the ht40 station count? */
2611 		ni->ni_chw = chw;
2612 		/* XXX notify on change */
2613 	}
2614 	return 0;
2615 }
2616 
2617 static int
2618 ht_recv_action_ht_mimopwrsave(struct ieee80211_node *ni,
2619 	const struct ieee80211_frame *wh,
2620 	const uint8_t *frm, const uint8_t *efrm)
2621 {
2622 	const struct ieee80211_action_ht_mimopowersave *mps =
2623 	    (const struct ieee80211_action_ht_mimopowersave *) frm;
2624 
2625 	/* XXX check iv_htcaps */
2626 	if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA)
2627 		ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
2628 	else
2629 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS;
2630 	if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_MODE)
2631 		ni->ni_flags |= IEEE80211_NODE_MIMO_RTS;
2632 	else
2633 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
2634 	/* XXX notify on change */
2635 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2636 	    "%s: HT MIMO PS (%s%s)", __func__,
2637 	    (ni->ni_flags & IEEE80211_NODE_MIMO_PS) ?  "on" : "off",
2638 	    (ni->ni_flags & IEEE80211_NODE_MIMO_RTS) ?  "+rts" : ""
2639 	);
2640 	return 0;
2641 }
2642 
2643 /*
2644  * Transmit processing.
2645  */
2646 
2647 /*
2648  * Check if A-MPDU should be requested/enabled for a stream.
2649  * We require a traffic rate above a per-AC threshold and we
2650  * also handle backoff from previous failed attempts.
2651  *
2652  * Drivers may override this method to bring in information
2653  * such as link state conditions in making the decision.
2654  */
2655 static int
2656 ieee80211_ampdu_enable(struct ieee80211_node *ni,
2657 	struct ieee80211_tx_ampdu *tap)
2658 {
2659 	struct ieee80211vap *vap = ni->ni_vap;
2660 
2661 	if (tap->txa_avgpps <
2662 	    vap->iv_ampdu_mintraffic[TID_TO_WME_AC(tap->txa_tid)])
2663 		return 0;
2664 	/* XXX check rssi? */
2665 	if (tap->txa_attempts >= ieee80211_addba_maxtries &&
2666 	    ieee80211_time_after(ticks, tap->txa_nextrequest)) {
2667 		/*
2668 		 * Don't retry too often; txa_nextrequest is set
2669 		 * to the minimum interval we'll retry after
2670 		 * ieee80211_addba_maxtries failed attempts are made.
2671 		 */
2672 		return 0;
2673 	}
2674 	IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
2675 	    "enable AMPDU on tid %d (%s), avgpps %d pkts %d attempt %d",
2676 	    tap->txa_tid, ieee80211_wme_acnames[TID_TO_WME_AC(tap->txa_tid)],
2677 	    tap->txa_avgpps, tap->txa_pkts, tap->txa_attempts);
2678 	return 1;
2679 }
2680 
2681 /*
2682  * Request A-MPDU tx aggregation.  Setup local state and
2683  * issue an ADDBA request.  BA use will only happen after
2684  * the other end replies with ADDBA response.
2685  */
2686 int
2687 ieee80211_ampdu_request(struct ieee80211_node *ni,
2688 	struct ieee80211_tx_ampdu *tap)
2689 {
2690 	struct ieee80211com *ic = ni->ni_ic;
2691 	uint16_t args[5];
2692 	int tid, dialogtoken;
2693 	static int tokens = 0;	/* XXX */
2694 
2695 	/* XXX locking */
2696 	if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) {
2697 		/* do deferred setup of state */
2698 		ampdu_tx_setup(tap);
2699 	}
2700 	/* XXX hack for not doing proper locking */
2701 	tap->txa_flags &= ~IEEE80211_AGGR_NAK;
2702 
2703 	dialogtoken = (tokens+1) % 63;		/* XXX */
2704 	tid = tap->txa_tid;
2705 
2706 	/*
2707 	 * XXX TODO: This is racy with any other parallel TX going on. :(
2708 	 */
2709 	tap->txa_start = ni->ni_txseqs[tid];
2710 
2711 	args[0] = dialogtoken;
2712 	args[1] = 0;	/* NB: status code not used */
2713 	args[2]	= IEEE80211_BAPS_POLICY_IMMEDIATE
2714 		| _IEEE80211_SHIFTMASK(tid, IEEE80211_BAPS_TID)
2715 		| _IEEE80211_SHIFTMASK(IEEE80211_AGGR_BAWMAX,
2716 		    IEEE80211_BAPS_BUFSIZ)
2717 		;
2718 
2719 	/* XXX TODO: this should be a flag, not iv_htcaps */
2720 	if ((ni->ni_flags & IEEE80211_NODE_AMSDU_TX) &&
2721 	    (ni->ni_vap->iv_htcaps & IEEE80211_HTC_TX_AMSDU_AMPDU))
2722 		args[2] |= IEEE80211_BAPS_AMSDU;
2723 
2724 	args[3] = 0;	/* batimeout */
2725 	/* NB: do first so there's no race against reply */
2726 	if (!ic->ic_addba_request(ni, tap, dialogtoken, args[2], args[3])) {
2727 		/* unable to setup state, don't make request */
2728 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2729 		    ni, "%s: could not setup BA stream for TID %d AC %d",
2730 		    __func__, tap->txa_tid, TID_TO_WME_AC(tap->txa_tid));
2731 		/* defer next try so we don't slam the driver with requests */
2732 		tap->txa_attempts = ieee80211_addba_maxtries;
2733 		/* NB: check in case driver wants to override */
2734 		if (tap->txa_nextrequest <= ticks)
2735 			tap->txa_nextrequest = ticks + ieee80211_addba_backoff;
2736 		return 0;
2737 	}
2738 	tokens = dialogtoken;			/* allocate token */
2739 	/* NB: after calling ic_addba_request so driver can set txa_start */
2740 	args[4] = _IEEE80211_SHIFTMASK(tap->txa_start, IEEE80211_BASEQ_START)
2741 		| _IEEE80211_SHIFTMASK(0, IEEE80211_BASEQ_FRAG)
2742 		;
2743 	return ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
2744 		IEEE80211_ACTION_BA_ADDBA_REQUEST, args);
2745 }
2746 
2747 /*
2748  * Terminate an AMPDU tx stream.  State is reclaimed
2749  * and the peer notified with a DelBA Action frame.
2750  */
2751 void
2752 ieee80211_ampdu_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
2753 	int reason)
2754 {
2755 	struct ieee80211com *ic = ni->ni_ic;
2756 	struct ieee80211vap *vap = ni->ni_vap;
2757 	uint16_t args[4];
2758 
2759 	/* XXX locking */
2760 	tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
2761 	if (IEEE80211_AMPDU_RUNNING(tap)) {
2762 		IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2763 		    ni, "%s: stop BA stream for TID %d (reason: %d (%s))",
2764 		    __func__, tap->txa_tid, reason,
2765 		    ieee80211_reason_to_string(reason));
2766 		vap->iv_stats.is_ampdu_stop++;
2767 
2768 		ic->ic_addba_stop(ni, tap);
2769 		args[0] = tap->txa_tid;
2770 		args[1] = IEEE80211_DELBAPS_INIT;
2771 		args[2] = reason;			/* XXX reason code */
2772 		ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
2773 			IEEE80211_ACTION_BA_DELBA, args);
2774 	} else {
2775 		IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2776 		    ni, "%s: BA stream for TID %d not running "
2777 		    "(reason: %d (%s))", __func__, tap->txa_tid, reason,
2778 		    ieee80211_reason_to_string(reason));
2779 		vap->iv_stats.is_ampdu_stop_failed++;
2780 	}
2781 }
2782 
2783 /* XXX */
2784 static void bar_start_timer(struct ieee80211_tx_ampdu *tap);
2785 
2786 static void
2787 bar_timeout(void *arg)
2788 {
2789 	struct ieee80211_tx_ampdu *tap = arg;
2790 	struct ieee80211_node *ni = tap->txa_ni;
2791 
2792 	KASSERT((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0,
2793 	    ("bar/addba collision, flags 0x%x", tap->txa_flags));
2794 
2795 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2796 	    ni, "%s: tid %u flags 0x%x attempts %d", __func__,
2797 	    tap->txa_tid, tap->txa_flags, tap->txa_attempts);
2798 
2799 	/* guard against race with bar_tx_complete */
2800 	if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0)
2801 		return;
2802 	/* XXX ? */
2803 	if (tap->txa_attempts >= ieee80211_bar_maxtries) {
2804 		struct ieee80211com *ic = ni->ni_ic;
2805 
2806 		ni->ni_vap->iv_stats.is_ampdu_bar_tx_fail++;
2807 		/*
2808 		 * If (at least) the last BAR TX timeout was due to
2809 		 * an ieee80211_send_bar() failures, then we need
2810 		 * to make sure we notify the driver that a BAR
2811 		 * TX did occur and fail.  This gives the driver
2812 		 * a chance to undo any queue pause that may
2813 		 * have occurred.
2814 		 */
2815 		ic->ic_bar_response(ni, tap, 1);
2816 		ieee80211_ampdu_stop(ni, tap, IEEE80211_REASON_TIMEOUT);
2817 	} else {
2818 		ni->ni_vap->iv_stats.is_ampdu_bar_tx_retry++;
2819 		if (ieee80211_send_bar(ni, tap, tap->txa_seqpending) != 0) {
2820 			IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2821 			    ni, "%s: failed to TX, starting timer\n",
2822 			    __func__);
2823 			/*
2824 			 * If ieee80211_send_bar() fails here, the
2825 			 * timer may have stopped and/or the pending
2826 			 * flag may be clear.  Because of this,
2827 			 * fake the BARPEND and reset the timer.
2828 			 * A retransmission attempt will then occur
2829 			 * during the next timeout.
2830 			 */
2831 			/* XXX locking */
2832 			tap->txa_flags |= IEEE80211_AGGR_BARPEND;
2833 			bar_start_timer(tap);
2834 		}
2835 	}
2836 }
2837 
2838 static void
2839 bar_start_timer(struct ieee80211_tx_ampdu *tap)
2840 {
2841 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2842 	    tap->txa_ni,
2843 	    "%s: called",
2844 	    __func__);
2845 	callout_reset(&tap->txa_timer, ieee80211_bar_timeout, bar_timeout, tap);
2846 }
2847 
2848 static void
2849 bar_stop_timer(struct ieee80211_tx_ampdu *tap)
2850 {
2851 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2852 	    tap->txa_ni,
2853 	    "%s: called",
2854 	    __func__);
2855 	callout_stop(&tap->txa_timer);
2856 }
2857 
2858 static void
2859 bar_tx_complete(struct ieee80211_node *ni, void *arg, int status)
2860 {
2861 	struct ieee80211_tx_ampdu *tap = arg;
2862 
2863 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2864 	    ni, "%s: tid %u flags 0x%x pending %d status %d",
2865 	    __func__, tap->txa_tid, tap->txa_flags,
2866 	    callout_pending(&tap->txa_timer), status);
2867 
2868 	ni->ni_vap->iv_stats.is_ampdu_bar_tx++;
2869 	/* XXX locking */
2870 	if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) &&
2871 	    callout_pending(&tap->txa_timer)) {
2872 		struct ieee80211com *ic = ni->ni_ic;
2873 
2874 		if (status == 0)		/* ACK'd */
2875 			bar_stop_timer(tap);
2876 		ic->ic_bar_response(ni, tap, status);
2877 		/* NB: just let timer expire so we pace requests */
2878 	}
2879 }
2880 
2881 static void
2882 ieee80211_bar_response(struct ieee80211_node *ni,
2883 	struct ieee80211_tx_ampdu *tap, int status)
2884 {
2885 
2886 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2887 	    tap->txa_ni,
2888 	    "%s: called",
2889 	    __func__);
2890 	if (status == 0) {		/* got ACK */
2891 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2892 		    ni, "BAR moves BA win <%u:%u> (%u frames) txseq %u tid %u",
2893 		    tap->txa_start,
2894 		    IEEE80211_SEQ_ADD(tap->txa_start, tap->txa_wnd-1),
2895 		    tap->txa_qframes, tap->txa_seqpending,
2896 		    tap->txa_tid);
2897 
2898 		/* NB: timer already stopped in bar_tx_complete */
2899 		tap->txa_start = tap->txa_seqpending;
2900 		tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
2901 	}
2902 }
2903 
2904 /*
2905  * Transmit a BAR frame to the specified node.  The
2906  * BAR contents are drawn from the supplied aggregation
2907  * state associated with the node.
2908  *
2909  * NB: we only handle immediate ACK w/ compressed bitmap.
2910  */
2911 int
2912 ieee80211_send_bar(struct ieee80211_node *ni,
2913 	struct ieee80211_tx_ampdu *tap, ieee80211_seq seq)
2914 {
2915 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2916 	struct ieee80211vap *vap = ni->ni_vap;
2917 	struct ieee80211com *ic = ni->ni_ic;
2918 	struct ieee80211_frame_bar *bar;
2919 	struct mbuf *m;
2920 	uint16_t barctl, barseqctl;
2921 	uint8_t *frm;
2922 	int tid, ret;
2923 
2924 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2925 	    tap->txa_ni,
2926 	    "%s: called",
2927 	    __func__);
2928 
2929 	if ((tap->txa_flags & IEEE80211_AGGR_RUNNING) == 0) {
2930 		/* no ADDBA response, should not happen */
2931 		/* XXX stat+msg */
2932 		return EINVAL;
2933 	}
2934 	/* XXX locking */
2935 	bar_stop_timer(tap);
2936 
2937 	ieee80211_ref_node(ni);
2938 
2939 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom, sizeof(*bar));
2940 	if (m == NULL)
2941 		senderr(ENOMEM, is_tx_nobuf);
2942 
2943 	if (!ieee80211_add_callback(m, bar_tx_complete, tap)) {
2944 		m_freem(m);
2945 		senderr(ENOMEM, is_tx_nobuf);	/* XXX */
2946 		/* NOTREACHED */
2947 	}
2948 
2949 	bar = mtod(m, struct ieee80211_frame_bar *);
2950 	bar->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2951 		IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR;
2952 	bar->i_fc[1] = 0;
2953 	IEEE80211_ADDR_COPY(bar->i_ra, ni->ni_macaddr);
2954 	IEEE80211_ADDR_COPY(bar->i_ta, vap->iv_myaddr);
2955 
2956 	tid = tap->txa_tid;
2957 	barctl 	= (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE ?
2958 			0 : IEEE80211_BAR_NOACK)
2959 		| IEEE80211_BAR_COMP
2960 		| _IEEE80211_SHIFTMASK(tid, IEEE80211_BAR_TID)
2961 		;
2962 	barseqctl = _IEEE80211_SHIFTMASK(seq, IEEE80211_BAR_SEQ_START);
2963 	/* NB: known to have proper alignment */
2964 	bar->i_ctl = htole16(barctl);
2965 	bar->i_seq = htole16(barseqctl);
2966 	m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_bar);
2967 
2968 	M_WME_SETAC(m, WME_AC_VO);
2969 
2970 	IEEE80211_NODE_STAT(ni, tx_mgmt);	/* XXX tx_ctl? */
2971 
2972 	/* XXX locking */
2973 	/* init/bump attempts counter */
2974 	if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0)
2975 		tap->txa_attempts = 1;
2976 	else
2977 		tap->txa_attempts++;
2978 	tap->txa_seqpending = seq;
2979 	tap->txa_flags |= IEEE80211_AGGR_BARPEND;
2980 
2981 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N,
2982 	    ni, "send BAR: tid %u ctl 0x%x start %u (attempt %d)",
2983 	    tid, barctl, seq, tap->txa_attempts);
2984 
2985 	/*
2986 	 * ic_raw_xmit will free the node reference
2987 	 * regardless of queue/TX success or failure.
2988 	 */
2989 	IEEE80211_TX_LOCK(ic);
2990 	ret = ieee80211_raw_output(vap, ni, m, NULL);
2991 	IEEE80211_TX_UNLOCK(ic);
2992 	if (ret != 0) {
2993 		IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N,
2994 		    ni, "send BAR: failed: (ret = %d)\n",
2995 		    ret);
2996 		/* xmit failed, clear state flag */
2997 		tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
2998 		vap->iv_stats.is_ampdu_bar_tx_fail++;
2999 		return ret;
3000 	}
3001 	/* XXX hack against tx complete happening before timer is started */
3002 	if (tap->txa_flags & IEEE80211_AGGR_BARPEND)
3003 		bar_start_timer(tap);
3004 	return 0;
3005 bad:
3006 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
3007 	    tap->txa_ni,
3008 	    "%s: bad! ret=%d",
3009 	    __func__, ret);
3010 	vap->iv_stats.is_ampdu_bar_tx_fail++;
3011 	ieee80211_free_node(ni);
3012 	return ret;
3013 #undef senderr
3014 }
3015 
3016 static int
3017 ht_action_output(struct ieee80211_node *ni, struct mbuf *m)
3018 {
3019 	struct ieee80211_bpf_params params;
3020 
3021 	memset(&params, 0, sizeof(params));
3022 	params.ibp_pri = WME_AC_VO;
3023 	params.ibp_rate0 = ni->ni_txparms->mgmtrate;
3024 	/* NB: we know all frames are unicast */
3025 	params.ibp_try0 = ni->ni_txparms->maxretry;
3026 	params.ibp_power = ni->ni_txpower;
3027 	return ieee80211_mgmt_output(ni, m, IEEE80211_FC0_SUBTYPE_ACTION,
3028 	     &params);
3029 }
3030 
3031 #define	ADDSHORT(frm, v) do {			\
3032 	frm[0] = (v) & 0xff;			\
3033 	frm[1] = (v) >> 8;			\
3034 	frm += 2;				\
3035 } while (0)
3036 
3037 /*
3038  * Send an action management frame.  The arguments are stuff
3039  * into a frame without inspection; the caller is assumed to
3040  * prepare them carefully (e.g. based on the aggregation state).
3041  */
3042 static int
3043 ht_send_action_ba_addba(struct ieee80211_node *ni,
3044 	int category, int action, void *arg0)
3045 {
3046 	struct ieee80211vap *vap = ni->ni_vap;
3047 	struct ieee80211com *ic = ni->ni_ic;
3048 	uint16_t *args = arg0;
3049 	struct mbuf *m;
3050 	uint8_t *frm;
3051 
3052 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
3053 	    "send ADDBA %s: dialogtoken %d status %d "
3054 	    "baparamset 0x%x (tid %d amsdu %d) batimeout 0x%x baseqctl 0x%x",
3055 	    (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ?
3056 		"request" : "response", args[0], args[1], args[2],
3057 	    _IEEE80211_MASKSHIFT(args[2], IEEE80211_BAPS_TID),
3058 	    _IEEE80211_MASKSHIFT(args[2], IEEE80211_BAPS_AMSDU),
3059 	    args[3], args[4]);
3060 
3061 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
3062 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
3063 	    ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
3064 	ieee80211_ref_node(ni);
3065 
3066 	m = ieee80211_getmgtframe(&frm,
3067 	    ic->ic_headroom + sizeof(struct ieee80211_frame),
3068 	    sizeof(uint16_t)	/* action+category */
3069 	    /* XXX may action payload */
3070 	    + sizeof(struct ieee80211_action_ba_addbaresponse)
3071 	);
3072 	if (m != NULL) {
3073 		*frm++ = category;
3074 		*frm++ = action;
3075 		*frm++ = args[0];		/* dialog token */
3076 		if (action == IEEE80211_ACTION_BA_ADDBA_RESPONSE)
3077 			ADDSHORT(frm, args[1]);	/* status code */
3078 		ADDSHORT(frm, args[2]);		/* baparamset */
3079 		ADDSHORT(frm, args[3]);		/* batimeout */
3080 		if (action == IEEE80211_ACTION_BA_ADDBA_REQUEST)
3081 			ADDSHORT(frm, args[4]);	/* baseqctl */
3082 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3083 		return ht_action_output(ni, m);
3084 	} else {
3085 		vap->iv_stats.is_tx_nobuf++;
3086 		ieee80211_free_node(ni);
3087 		return ENOMEM;
3088 	}
3089 }
3090 
3091 static int
3092 ht_send_action_ba_delba(struct ieee80211_node *ni,
3093 	int category, int action, void *arg0)
3094 {
3095 	struct ieee80211vap *vap = ni->ni_vap;
3096 	struct ieee80211com *ic = ni->ni_ic;
3097 	uint16_t *args = arg0;
3098 	struct mbuf *m;
3099 	uint16_t baparamset;
3100 	uint8_t *frm;
3101 
3102 	baparamset = _IEEE80211_SHIFTMASK(args[0], IEEE80211_DELBAPS_TID)
3103 		   | args[1]
3104 		   ;
3105 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
3106 	    "send DELBA action: tid %d, initiator %d reason %d (%s)",
3107 	    args[0], args[1], args[2], ieee80211_reason_to_string(args[2]));
3108 
3109 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
3110 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
3111 	    ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
3112 	ieee80211_ref_node(ni);
3113 
3114 	m = ieee80211_getmgtframe(&frm,
3115 	    ic->ic_headroom + sizeof(struct ieee80211_frame),
3116 	    sizeof(uint16_t)	/* action+category */
3117 	    /* XXX may action payload */
3118 	    + sizeof(struct ieee80211_action_ba_addbaresponse)
3119 	);
3120 	if (m != NULL) {
3121 		*frm++ = category;
3122 		*frm++ = action;
3123 		ADDSHORT(frm, baparamset);
3124 		ADDSHORT(frm, args[2]);		/* reason code */
3125 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3126 		return ht_action_output(ni, m);
3127 	} else {
3128 		vap->iv_stats.is_tx_nobuf++;
3129 		ieee80211_free_node(ni);
3130 		return ENOMEM;
3131 	}
3132 }
3133 
3134 static int
3135 ht_send_action_ht_txchwidth(struct ieee80211_node *ni,
3136 	int category, int action, void *arg0)
3137 {
3138 	struct ieee80211vap *vap = ni->ni_vap;
3139 	struct ieee80211com *ic = ni->ni_ic;
3140 	struct mbuf *m;
3141 	uint8_t *frm;
3142 
3143 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
3144 	    "send HT txchwidth: width %d",
3145 	    IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 40 : 20);
3146 
3147 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
3148 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
3149 	    ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
3150 	ieee80211_ref_node(ni);
3151 
3152 	m = ieee80211_getmgtframe(&frm,
3153 	    ic->ic_headroom + sizeof(struct ieee80211_frame),
3154 	    sizeof(uint16_t)	/* action+category */
3155 	    /* XXX may action payload */
3156 	    + sizeof(struct ieee80211_action_ba_addbaresponse)
3157 	);
3158 	if (m != NULL) {
3159 		*frm++ = category;
3160 		*frm++ = action;
3161 		*frm++ = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ?
3162 			IEEE80211_A_HT_TXCHWIDTH_2040 :
3163 			IEEE80211_A_HT_TXCHWIDTH_20;
3164 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3165 		return ht_action_output(ni, m);
3166 	} else {
3167 		vap->iv_stats.is_tx_nobuf++;
3168 		ieee80211_free_node(ni);
3169 		return ENOMEM;
3170 	}
3171 }
3172 #undef ADDSHORT
3173 
3174 /*
3175  * Construct the MCS bit mask for inclusion in an HT capabilities
3176  * information element.
3177  */
3178 static void
3179 ieee80211_set_mcsset(struct ieee80211com *ic, uint8_t *frm)
3180 {
3181 	int i;
3182 	uint8_t txparams;
3183 
3184 	KASSERT((ic->ic_rxstream > 0 && ic->ic_rxstream <= 4),
3185 	    ("ic_rxstream %d out of range", ic->ic_rxstream));
3186 	KASSERT((ic->ic_txstream > 0 && ic->ic_txstream <= 4),
3187 	    ("ic_txstream %d out of range", ic->ic_txstream));
3188 
3189 	for (i = 0; i < ic->ic_rxstream * 8; i++)
3190 		setbit(frm, i);
3191 	if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
3192 	    (ic->ic_htcaps & IEEE80211_HTC_RXMCS32))
3193 		setbit(frm, 32);
3194 	if (ic->ic_htcaps & IEEE80211_HTC_RXUNEQUAL) {
3195 		if (ic->ic_rxstream >= 2) {
3196 			for (i = 33; i <= 38; i++)
3197 				setbit(frm, i);
3198 		}
3199 		if (ic->ic_rxstream >= 3) {
3200 			for (i = 39; i <= 52; i++)
3201 				setbit(frm, i);
3202 		}
3203 		if (ic->ic_rxstream >= 4) {
3204 			for (i = 53; i <= 76; i++)
3205 				setbit(frm, i);
3206 		}
3207 	}
3208 
3209 	txparams = 0x1;			/* TX MCS set defined */
3210 	if (ic->ic_rxstream != ic->ic_txstream) {
3211 		txparams |= 0x2;		/* TX RX MCS not equal */
3212 		txparams |= (ic->ic_txstream - 1) << 2;	/* num TX streams */
3213 		if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL)
3214 			txparams |= 0x16;	/* TX unequal modulation sup */
3215 	}
3216 
3217 	frm[12] = txparams;
3218 }
3219 
3220 /*
3221  * Add body of an HTCAP information element.
3222  */
3223 static uint8_t *
3224 ieee80211_add_htcap_body(uint8_t *frm, struct ieee80211_node *ni)
3225 {
3226 #define	ADDSHORT(frm, v) do {			\
3227 	frm[0] = (v) & 0xff;			\
3228 	frm[1] = (v) >> 8;			\
3229 	frm += 2;				\
3230 } while (0)
3231 	struct ieee80211com *ic = ni->ni_ic;
3232 	struct ieee80211vap *vap = ni->ni_vap;
3233 	uint16_t caps, extcaps;
3234 	int rxmax, density;
3235 
3236 	/* HT capabilities */
3237 	caps = vap->iv_htcaps & 0xffff;
3238 	/*
3239 	 * Note channel width depends on whether we are operating as
3240 	 * a sta or not.  When operating as a sta we are generating
3241 	 * a request based on our desired configuration.  Otherwise
3242 	 * we are operational and the channel attributes identify
3243 	 * how we've been setup (which might be different if a fixed
3244 	 * channel is specified).
3245 	 */
3246 	if (vap->iv_opmode == IEEE80211_M_STA) {
3247 		/* override 20/40 use based on config */
3248 		if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)
3249 			caps |= IEEE80211_HTCAP_CHWIDTH40;
3250 		else
3251 			caps &= ~IEEE80211_HTCAP_CHWIDTH40;
3252 
3253 		/* Start by using the advertised settings */
3254 		rxmax = _IEEE80211_MASKSHIFT(ni->ni_htparam,
3255 		    IEEE80211_HTCAP_MAXRXAMPDU);
3256 		density = _IEEE80211_MASKSHIFT(ni->ni_htparam,
3257 		    IEEE80211_HTCAP_MPDUDENSITY);
3258 
3259 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N,
3260 		    "%s: advertised rxmax=%d, density=%d, vap rxmax=%d, density=%d\n",
3261 		    __func__,
3262 		    rxmax,
3263 		    density,
3264 		    vap->iv_ampdu_rxmax,
3265 		    vap->iv_ampdu_density);
3266 
3267 		/* Cap at VAP rxmax */
3268 		if (rxmax > vap->iv_ampdu_rxmax)
3269 			rxmax = vap->iv_ampdu_rxmax;
3270 
3271 		/*
3272 		 * If the VAP ampdu density value greater, use that.
3273 		 *
3274 		 * (Larger density value == larger minimum gap between A-MPDU
3275 		 * subframes.)
3276 		 */
3277 		if (vap->iv_ampdu_density > density)
3278 			density = vap->iv_ampdu_density;
3279 
3280 		/*
3281 		 * NB: Hardware might support HT40 on some but not all
3282 		 * channels. We can't determine this earlier because only
3283 		 * after association the channel is upgraded to HT based
3284 		 * on the negotiated capabilities.
3285 		 */
3286 		if (ni->ni_chan != IEEE80211_CHAN_ANYC &&
3287 		    findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40U) == NULL &&
3288 		    findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40D) == NULL)
3289 			caps &= ~IEEE80211_HTCAP_CHWIDTH40;
3290 	} else {
3291 		/* override 20/40 use based on current channel */
3292 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
3293 			caps |= IEEE80211_HTCAP_CHWIDTH40;
3294 		else
3295 			caps &= ~IEEE80211_HTCAP_CHWIDTH40;
3296 
3297 		/* XXX TODO should it start by using advertised settings? */
3298 		rxmax = vap->iv_ampdu_rxmax;
3299 		density = vap->iv_ampdu_density;
3300 	}
3301 
3302 	/* adjust short GI based on channel and config */
3303 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0)
3304 		caps &= ~IEEE80211_HTCAP_SHORTGI20;
3305 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 ||
3306 	    (caps & IEEE80211_HTCAP_CHWIDTH40) == 0)
3307 		caps &= ~IEEE80211_HTCAP_SHORTGI40;
3308 
3309 	/* adjust STBC based on receive capabilities */
3310 	if ((vap->iv_flags_ht & IEEE80211_FHT_STBC_RX) == 0)
3311 		caps &= ~IEEE80211_HTCAP_RXSTBC;
3312 
3313 	/* adjust LDPC based on receive capabilites */
3314 	if ((vap->iv_flags_ht & IEEE80211_FHT_LDPC_RX) == 0)
3315 		caps &= ~IEEE80211_HTCAP_LDPC;
3316 
3317 	ADDSHORT(frm, caps);
3318 
3319 	/* HT parameters */
3320 	*frm = _IEEE80211_SHIFTMASK(rxmax, IEEE80211_HTCAP_MAXRXAMPDU)
3321 	     | _IEEE80211_SHIFTMASK(density, IEEE80211_HTCAP_MPDUDENSITY)
3322 	     ;
3323 	frm++;
3324 
3325 	/* pre-zero remainder of ie */
3326 	memset(frm, 0, sizeof(struct ieee80211_ie_htcap) -
3327 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset));
3328 
3329 	/* supported MCS set */
3330 	/*
3331 	 * XXX: For sta mode the rate set should be restricted based
3332 	 * on the AP's capabilities, but ni_htrates isn't setup when
3333 	 * we're called to form an AssocReq frame so for now we're
3334 	 * restricted to the device capabilities.
3335 	 */
3336 	ieee80211_set_mcsset(ni->ni_ic, frm);
3337 
3338 	frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) -
3339 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset);
3340 
3341 	/* HT extended capabilities */
3342 	extcaps = vap->iv_htextcaps & 0xffff;
3343 
3344 	ADDSHORT(frm, extcaps);
3345 
3346 	frm += sizeof(struct ieee80211_ie_htcap) -
3347 		__offsetof(struct ieee80211_ie_htcap, hc_txbf);
3348 
3349 	return frm;
3350 #undef ADDSHORT
3351 }
3352 
3353 /*
3354  * Add 802.11n HT capabilities information element
3355  */
3356 uint8_t *
3357 ieee80211_add_htcap(uint8_t *frm, struct ieee80211_node *ni)
3358 {
3359 	frm[0] = IEEE80211_ELEMID_HTCAP;
3360 	frm[1] = sizeof(struct ieee80211_ie_htcap) - 2;
3361 	return ieee80211_add_htcap_body(frm + 2, ni);
3362 }
3363 
3364 /*
3365  * Non-associated probe request - add HT capabilities based on
3366  * the current channel configuration.
3367  */
3368 static uint8_t *
3369 ieee80211_add_htcap_body_ch(uint8_t *frm, struct ieee80211vap *vap,
3370     struct ieee80211_channel *c)
3371 {
3372 #define	ADDSHORT(frm, v) do {			\
3373 	frm[0] = (v) & 0xff;			\
3374 	frm[1] = (v) >> 8;			\
3375 	frm += 2;				\
3376 } while (0)
3377 	struct ieee80211com *ic = vap->iv_ic;
3378 	uint16_t caps, extcaps;
3379 	int rxmax, density;
3380 
3381 	/* HT capabilities */
3382 	caps = vap->iv_htcaps & 0xffff;
3383 
3384 	/*
3385 	 * We don't use this in STA mode; only in IBSS mode.
3386 	 * So in IBSS mode we base our HTCAP flags on the
3387 	 * given channel.
3388 	 */
3389 
3390 	/* override 20/40 use based on current channel */
3391 	if (IEEE80211_IS_CHAN_HT40(c))
3392 		caps |= IEEE80211_HTCAP_CHWIDTH40;
3393 	else
3394 		caps &= ~IEEE80211_HTCAP_CHWIDTH40;
3395 
3396 	/* Use the currently configured values */
3397 	rxmax = vap->iv_ampdu_rxmax;
3398 	density = vap->iv_ampdu_density;
3399 
3400 	/* adjust short GI based on channel and config */
3401 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0)
3402 		caps &= ~IEEE80211_HTCAP_SHORTGI20;
3403 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 ||
3404 	    (caps & IEEE80211_HTCAP_CHWIDTH40) == 0)
3405 		caps &= ~IEEE80211_HTCAP_SHORTGI40;
3406 	ADDSHORT(frm, caps);
3407 
3408 	/* HT parameters */
3409 	*frm = _IEEE80211_SHIFTMASK(rxmax, IEEE80211_HTCAP_MAXRXAMPDU)
3410 	     | _IEEE80211_SHIFTMASK(density, IEEE80211_HTCAP_MPDUDENSITY)
3411 	     ;
3412 	frm++;
3413 
3414 	/* pre-zero remainder of ie */
3415 	memset(frm, 0, sizeof(struct ieee80211_ie_htcap) -
3416 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset));
3417 
3418 	/* supported MCS set */
3419 	/*
3420 	 * XXX: For sta mode the rate set should be restricted based
3421 	 * on the AP's capabilities, but ni_htrates isn't setup when
3422 	 * we're called to form an AssocReq frame so for now we're
3423 	 * restricted to the device capabilities.
3424 	 */
3425 	ieee80211_set_mcsset(ic, frm);
3426 
3427 	frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) -
3428 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset);
3429 
3430 	/* HT extended capabilities */
3431 	extcaps = vap->iv_htextcaps & 0xffff;
3432 
3433 	ADDSHORT(frm, extcaps);
3434 
3435 	frm += sizeof(struct ieee80211_ie_htcap) -
3436 		__offsetof(struct ieee80211_ie_htcap, hc_txbf);
3437 
3438 	return frm;
3439 #undef ADDSHORT
3440 }
3441 
3442 /*
3443  * Add 802.11n HT capabilities information element
3444  */
3445 uint8_t *
3446 ieee80211_add_htcap_ch(uint8_t *frm, struct ieee80211vap *vap,
3447     struct ieee80211_channel *c)
3448 {
3449 	frm[0] = IEEE80211_ELEMID_HTCAP;
3450 	frm[1] = sizeof(struct ieee80211_ie_htcap) - 2;
3451 	return ieee80211_add_htcap_body_ch(frm + 2, vap, c);
3452 }
3453 
3454 /*
3455  * Add Broadcom OUI wrapped standard HTCAP ie; this is
3456  * used for compatibility w/ pre-draft implementations.
3457  */
3458 uint8_t *
3459 ieee80211_add_htcap_vendor(uint8_t *frm, struct ieee80211_node *ni)
3460 {
3461 	frm[0] = IEEE80211_ELEMID_VENDOR;
3462 	frm[1] = 4 + sizeof(struct ieee80211_ie_htcap) - 2;
3463 	frm[2] = (BCM_OUI >> 0) & 0xff;
3464 	frm[3] = (BCM_OUI >> 8) & 0xff;
3465 	frm[4] = (BCM_OUI >> 16) & 0xff;
3466 	frm[5] = BCM_OUI_HTCAP;
3467 	return ieee80211_add_htcap_body(frm + 6, ni);
3468 }
3469 
3470 /*
3471  * Construct the MCS bit mask of basic rates
3472  * for inclusion in an HT information element.
3473  */
3474 static void
3475 ieee80211_set_basic_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs)
3476 {
3477 	int i;
3478 
3479 	for (i = 0; i < rs->rs_nrates; i++) {
3480 		int r = rs->rs_rates[i] & IEEE80211_RATE_VAL;
3481 		if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) &&
3482 		    r < IEEE80211_HTRATE_MAXSIZE) {
3483 			/* NB: this assumes a particular implementation */
3484 			setbit(frm, r);
3485 		}
3486 	}
3487 }
3488 
3489 /*
3490  * Update the HTINFO ie for a beacon frame.
3491  */
3492 void
3493 ieee80211_ht_update_beacon(struct ieee80211vap *vap,
3494 	struct ieee80211_beacon_offsets *bo)
3495 {
3496 #define	PROTMODE	(IEEE80211_HTINFO_OPMODE|IEEE80211_HTINFO_NONHT_PRESENT)
3497 	struct ieee80211_node *ni;
3498 	const struct ieee80211_channel *bsschan;
3499 	struct ieee80211com *ic = vap->iv_ic;
3500 	struct ieee80211_ie_htinfo *ht =
3501 	   (struct ieee80211_ie_htinfo *) bo->bo_htinfo;
3502 
3503 	ni = ieee80211_ref_node(vap->iv_bss);
3504 	bsschan = ni->ni_chan;
3505 
3506 	/* XXX only update on channel change */
3507 	ht->hi_ctrlchannel = ieee80211_chan2ieee(ic, bsschan);
3508 	if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
3509 		ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PERM;
3510 	else
3511 		ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PROH;
3512 	if (IEEE80211_IS_CHAN_HT40U(bsschan))
3513 		ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_ABOVE;
3514 	else if (IEEE80211_IS_CHAN_HT40D(bsschan))
3515 		ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_BELOW;
3516 	else
3517 		ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_NONE;
3518 	if (IEEE80211_IS_CHAN_HT40(bsschan))
3519 		ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040;
3520 
3521 	/* protection mode */
3522 	/*
3523 	 * XXX TODO: this uses the global flag, not the per-VAP flag.
3524 	 * Eventually (once the protection modes are done per-channel
3525 	 * rather than per-VAP) we can flip this over to be per-VAP but
3526 	 * using the channel protection mode.
3527 	 */
3528 	ht->hi_byte2 = (ht->hi_byte2 &~ PROTMODE) | ic->ic_curhtprotmode;
3529 
3530 	ieee80211_free_node(ni);
3531 
3532 	/* XXX propagate to vendor ie's */
3533 #undef PROTMODE
3534 }
3535 
3536 /*
3537  * Add body of an HTINFO information element.
3538  *
3539  * NB: We don't use struct ieee80211_ie_htinfo because we can
3540  * be called to fillin both a standard ie and a compat ie that
3541  * has a vendor OUI at the front.
3542  */
3543 static uint8_t *
3544 ieee80211_add_htinfo_body(uint8_t *frm, struct ieee80211_node *ni)
3545 {
3546 	struct ieee80211vap *vap = ni->ni_vap;
3547 	struct ieee80211com *ic = ni->ni_ic;
3548 
3549 	/* pre-zero remainder of ie */
3550 	memset(frm, 0, sizeof(struct ieee80211_ie_htinfo) - 2);
3551 
3552 	/* primary/control channel center */
3553 	*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
3554 
3555 	if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
3556 		frm[0] = IEEE80211_HTINFO_RIFSMODE_PERM;
3557 	else
3558 		frm[0] = IEEE80211_HTINFO_RIFSMODE_PROH;
3559 	if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
3560 		frm[0] |= IEEE80211_HTINFO_2NDCHAN_ABOVE;
3561 	else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
3562 		frm[0] |= IEEE80211_HTINFO_2NDCHAN_BELOW;
3563 	else
3564 		frm[0] |= IEEE80211_HTINFO_2NDCHAN_NONE;
3565 	if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
3566 		frm[0] |= IEEE80211_HTINFO_TXWIDTH_2040;
3567 
3568 	/*
3569 	 * Add current protection mode.  Unlike for beacons,
3570 	 * this will respect the per-VAP flags.
3571 	 */
3572 	frm[1] = vap->iv_curhtprotmode;
3573 
3574 	frm += 5;
3575 
3576 	/* basic MCS set */
3577 	ieee80211_set_basic_htrates(frm, &ni->ni_htrates);
3578 	frm += sizeof(struct ieee80211_ie_htinfo) -
3579 		__offsetof(struct ieee80211_ie_htinfo, hi_basicmcsset);
3580 	return frm;
3581 }
3582 
3583 /*
3584  * Add 802.11n HT information element.
3585  */
3586 uint8_t *
3587 ieee80211_add_htinfo(uint8_t *frm, struct ieee80211_node *ni)
3588 {
3589 	frm[0] = IEEE80211_ELEMID_HTINFO;
3590 	frm[1] = sizeof(struct ieee80211_ie_htinfo) - 2;
3591 	return ieee80211_add_htinfo_body(frm + 2, ni);
3592 }
3593 
3594 /*
3595  * Add Broadcom OUI wrapped standard HTINFO ie; this is
3596  * used for compatibility w/ pre-draft implementations.
3597  */
3598 uint8_t *
3599 ieee80211_add_htinfo_vendor(uint8_t *frm, struct ieee80211_node *ni)
3600 {
3601 	frm[0] = IEEE80211_ELEMID_VENDOR;
3602 	frm[1] = 4 + sizeof(struct ieee80211_ie_htinfo) - 2;
3603 	frm[2] = (BCM_OUI >> 0) & 0xff;
3604 	frm[3] = (BCM_OUI >> 8) & 0xff;
3605 	frm[4] = (BCM_OUI >> 16) & 0xff;
3606 	frm[5] = BCM_OUI_HTINFO;
3607 	return ieee80211_add_htinfo_body(frm + 6, ni);
3608 }
3609 
3610 /*
3611  * Get the HT density for the given 802.11n node.
3612  *
3613  * Take into account the density advertised from the peer.
3614  * Larger values are longer A-MPDU density spacing values, and
3615  * we want to obey them per station if we get them.
3616  */
3617 int
3618 ieee80211_ht_get_node_ampdu_density(const struct ieee80211_node *ni)
3619 {
3620 	struct ieee80211vap *vap;
3621 	int peer_mpdudensity;
3622 
3623 	vap = ni->ni_vap;
3624 	peer_mpdudensity =
3625 	    _IEEE80211_MASKSHIFT(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY);
3626 	if (vap->iv_ampdu_density > peer_mpdudensity)
3627 		peer_mpdudensity = vap->iv_ampdu_density;
3628 	return (peer_mpdudensity);
3629 }
3630 
3631 /*
3632  * Get the transmit A-MPDU limit for the given 802.11n node.
3633  *
3634  * Take into account the limit advertised from the peer.
3635  * Smaller values indicate smaller maximum A-MPDU sizes, and
3636  * should be used when forming an A-MPDU to the given peer.
3637  */
3638 int
3639 ieee80211_ht_get_node_ampdu_limit(const struct ieee80211_node *ni)
3640 {
3641 	struct ieee80211vap *vap;
3642 	int peer_mpdulimit;
3643 
3644 	vap = ni->ni_vap;
3645 	peer_mpdulimit =
3646 	    _IEEE80211_MASKSHIFT(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU);
3647 
3648 	return (MIN(vap->iv_ampdu_limit, peer_mpdulimit));
3649 }
3650 
3651 /*
3652  * Return true if short-GI is available when transmitting to
3653  * the given node at 20MHz.
3654  *
3655  * Ensure it's configured and available in the VAP / driver as
3656  * well as the node.
3657  */
3658 bool
3659 ieee80211_ht_check_tx_shortgi_20(const struct ieee80211_node *ni)
3660 {
3661 	const struct ieee80211vap *vap;
3662 	const struct ieee80211com *ic;
3663 
3664 	if (! ieee80211_ht_check_tx_ht(ni))
3665 		return (false);
3666 
3667 	vap = ni->ni_vap;
3668 	ic = ni->ni_ic;
3669 
3670 	return ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) &&
3671 	    (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) &&
3672 	    (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20));
3673 }
3674 
3675 /*
3676  * Return true if short-GI is available when transmitting to
3677  * the given node at 40MHz.
3678  *
3679  * Ensure it's configured and available in the VAP / driver as
3680  * well as the node and BSS.
3681  */
3682 bool
3683 ieee80211_ht_check_tx_shortgi_40(const struct ieee80211_node *ni)
3684 {
3685 	const struct ieee80211vap *vap;
3686 	const struct ieee80211com *ic;
3687 
3688 	if (! ieee80211_ht_check_tx_ht40(ni))
3689 		return (false);
3690 
3691 	vap = ni->ni_vap;
3692 	ic = ni->ni_ic;
3693 
3694 	return ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40) &&
3695 	    (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) &&
3696 	    (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40));
3697 }
3698 
3699 /*
3700  * Return true if HT rates can be used for the given node.
3701  *
3702  * There are some situations seen in the wild, wild past where
3703  * HT APs would announce HT but no HT rates.
3704  */
3705 bool
3706 ieee80211_ht_check_tx_ht(const struct ieee80211_node *ni)
3707 {
3708 	const struct ieee80211vap *vap;
3709 	const struct ieee80211_channel *bss_chan;
3710 
3711 	if (ni == NULL || ni->ni_chan == IEEE80211_CHAN_ANYC ||
3712 	    ni->ni_vap == NULL || ni->ni_vap->iv_bss == NULL)
3713 		return (false);
3714 
3715 	vap = ni->ni_vap;
3716 	bss_chan = vap->iv_bss->ni_chan;
3717 
3718 	if (bss_chan == IEEE80211_CHAN_ANYC)
3719 		return (false);
3720 
3721 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
3722 	    ni->ni_htrates.rs_nrates == 0)
3723 		return (false);
3724 	return (IEEE80211_IS_CHAN_HT(ni->ni_chan));
3725 }
3726 
3727 /*
3728  * Return true if HT40 rates can be transmitted to the given node.
3729  *
3730  * This verifies that the BSS is HT40 capable and the current
3731  * node channel width is 40MHz.
3732  */
3733 bool
3734 ieee80211_ht_check_tx_ht40(const struct ieee80211_node *ni)
3735 {
3736 	struct ieee80211vap *vap;
3737 	struct ieee80211_channel *bss_chan;
3738 
3739 	if (! ieee80211_ht_check_tx_ht(ni))
3740 		return (false);
3741 
3742 	vap = ni->ni_vap;
3743 	bss_chan = vap->iv_bss->ni_chan;
3744 
3745 	return (IEEE80211_IS_CHAN_HT40(bss_chan) &&
3746 	    IEEE80211_IS_CHAN_HT40(ni->ni_chan) &&
3747 	    (ni->ni_chw == IEEE80211_STA_RX_BW_40));
3748 }
3749