1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 */ 27 28 /* 29 * IEEE 802.11n protocol support. 30 */ 31 32 #include "opt_inet.h" 33 #include "opt_wlan.h" 34 35 #include <sys/param.h> 36 #include <sys/kernel.h> 37 #include <sys/malloc.h> 38 #include <sys/systm.h> 39 #include <sys/endian.h> 40 41 #include <sys/socket.h> 42 43 #include <net/if.h> 44 #include <net/if_var.h> 45 #include <net/if_media.h> 46 #include <net/ethernet.h> 47 48 #include <net80211/ieee80211_var.h> 49 #include <net80211/ieee80211_action.h> 50 #include <net80211/ieee80211_input.h> 51 52 const struct ieee80211_mcs_rates ieee80211_htrates[IEEE80211_HTRATE_MAXSIZE] = { 53 { 13, 14, 27, 30 }, /* MCS 0 */ 54 { 26, 29, 54, 60 }, /* MCS 1 */ 55 { 39, 43, 81, 90 }, /* MCS 2 */ 56 { 52, 58, 108, 120 }, /* MCS 3 */ 57 { 78, 87, 162, 180 }, /* MCS 4 */ 58 { 104, 116, 216, 240 }, /* MCS 5 */ 59 { 117, 130, 243, 270 }, /* MCS 6 */ 60 { 130, 144, 270, 300 }, /* MCS 7 */ 61 { 26, 29, 54, 60 }, /* MCS 8 */ 62 { 52, 58, 108, 120 }, /* MCS 9 */ 63 { 78, 87, 162, 180 }, /* MCS 10 */ 64 { 104, 116, 216, 240 }, /* MCS 11 */ 65 { 156, 173, 324, 360 }, /* MCS 12 */ 66 { 208, 231, 432, 480 }, /* MCS 13 */ 67 { 234, 260, 486, 540 }, /* MCS 14 */ 68 { 260, 289, 540, 600 }, /* MCS 15 */ 69 { 39, 43, 81, 90 }, /* MCS 16 */ 70 { 78, 87, 162, 180 }, /* MCS 17 */ 71 { 117, 130, 243, 270 }, /* MCS 18 */ 72 { 156, 173, 324, 360 }, /* MCS 19 */ 73 { 234, 260, 486, 540 }, /* MCS 20 */ 74 { 312, 347, 648, 720 }, /* MCS 21 */ 75 { 351, 390, 729, 810 }, /* MCS 22 */ 76 { 390, 433, 810, 900 }, /* MCS 23 */ 77 { 52, 58, 108, 120 }, /* MCS 24 */ 78 { 104, 116, 216, 240 }, /* MCS 25 */ 79 { 156, 173, 324, 360 }, /* MCS 26 */ 80 { 208, 231, 432, 480 }, /* MCS 27 */ 81 { 312, 347, 648, 720 }, /* MCS 28 */ 82 { 416, 462, 864, 960 }, /* MCS 29 */ 83 { 468, 520, 972, 1080 }, /* MCS 30 */ 84 { 520, 578, 1080, 1200 }, /* MCS 31 */ 85 { 0, 0, 12, 13 }, /* MCS 32 */ 86 { 78, 87, 162, 180 }, /* MCS 33 */ 87 { 104, 116, 216, 240 }, /* MCS 34 */ 88 { 130, 144, 270, 300 }, /* MCS 35 */ 89 { 117, 130, 243, 270 }, /* MCS 36 */ 90 { 156, 173, 324, 360 }, /* MCS 37 */ 91 { 195, 217, 405, 450 }, /* MCS 38 */ 92 { 104, 116, 216, 240 }, /* MCS 39 */ 93 { 130, 144, 270, 300 }, /* MCS 40 */ 94 { 130, 144, 270, 300 }, /* MCS 41 */ 95 { 156, 173, 324, 360 }, /* MCS 42 */ 96 { 182, 202, 378, 420 }, /* MCS 43 */ 97 { 182, 202, 378, 420 }, /* MCS 44 */ 98 { 208, 231, 432, 480 }, /* MCS 45 */ 99 { 156, 173, 324, 360 }, /* MCS 46 */ 100 { 195, 217, 405, 450 }, /* MCS 47 */ 101 { 195, 217, 405, 450 }, /* MCS 48 */ 102 { 234, 260, 486, 540 }, /* MCS 49 */ 103 { 273, 303, 567, 630 }, /* MCS 50 */ 104 { 273, 303, 567, 630 }, /* MCS 51 */ 105 { 312, 347, 648, 720 }, /* MCS 52 */ 106 { 130, 144, 270, 300 }, /* MCS 53 */ 107 { 156, 173, 324, 360 }, /* MCS 54 */ 108 { 182, 202, 378, 420 }, /* MCS 55 */ 109 { 156, 173, 324, 360 }, /* MCS 56 */ 110 { 182, 202, 378, 420 }, /* MCS 57 */ 111 { 208, 231, 432, 480 }, /* MCS 58 */ 112 { 234, 260, 486, 540 }, /* MCS 59 */ 113 { 208, 231, 432, 480 }, /* MCS 60 */ 114 { 234, 260, 486, 540 }, /* MCS 61 */ 115 { 260, 289, 540, 600 }, /* MCS 62 */ 116 { 260, 289, 540, 600 }, /* MCS 63 */ 117 { 286, 318, 594, 660 }, /* MCS 64 */ 118 { 195, 217, 405, 450 }, /* MCS 65 */ 119 { 234, 260, 486, 540 }, /* MCS 66 */ 120 { 273, 303, 567, 630 }, /* MCS 67 */ 121 { 234, 260, 486, 540 }, /* MCS 68 */ 122 { 273, 303, 567, 630 }, /* MCS 69 */ 123 { 312, 347, 648, 720 }, /* MCS 70 */ 124 { 351, 390, 729, 810 }, /* MCS 71 */ 125 { 312, 347, 648, 720 }, /* MCS 72 */ 126 { 351, 390, 729, 810 }, /* MCS 73 */ 127 { 390, 433, 810, 900 }, /* MCS 74 */ 128 { 390, 433, 810, 900 }, /* MCS 75 */ 129 { 429, 477, 891, 990 }, /* MCS 76 */ 130 }; 131 132 static int ieee80211_ampdu_age = -1; /* threshold for ampdu reorder q (ms) */ 133 SYSCTL_PROC(_net_wlan, OID_AUTO, ampdu_age, 134 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 135 &ieee80211_ampdu_age, 0, ieee80211_sysctl_msecs_ticks, "I", 136 "AMPDU max reorder age (ms)"); 137 138 static int ieee80211_recv_bar_ena = 1; 139 SYSCTL_INT(_net_wlan, OID_AUTO, recv_bar, CTLFLAG_RW, &ieee80211_recv_bar_ena, 140 0, "BAR frame processing (ena/dis)"); 141 142 static int ieee80211_addba_timeout = -1;/* timeout for ADDBA response */ 143 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_timeout, 144 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 145 &ieee80211_addba_timeout, 0, ieee80211_sysctl_msecs_ticks, "I", 146 "ADDBA request timeout (ms)"); 147 static int ieee80211_addba_backoff = -1;/* backoff after max ADDBA requests */ 148 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_backoff, 149 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 150 &ieee80211_addba_backoff, 0, ieee80211_sysctl_msecs_ticks, "I", 151 "ADDBA request backoff (ms)"); 152 static int ieee80211_addba_maxtries = 3;/* max ADDBA requests before backoff */ 153 SYSCTL_INT(_net_wlan, OID_AUTO, addba_maxtries, CTLFLAG_RW, 154 &ieee80211_addba_maxtries, 0, "max ADDBA requests sent before backoff"); 155 156 static int ieee80211_bar_timeout = -1; /* timeout waiting for BAR response */ 157 static int ieee80211_bar_maxtries = 50;/* max BAR requests before DELBA */ 158 159 static ieee80211_recv_action_func ht_recv_action_ba_addba_request; 160 static ieee80211_recv_action_func ht_recv_action_ba_addba_response; 161 static ieee80211_recv_action_func ht_recv_action_ba_delba; 162 static ieee80211_recv_action_func ht_recv_action_ht_mimopwrsave; 163 static ieee80211_recv_action_func ht_recv_action_ht_txchwidth; 164 165 static ieee80211_send_action_func ht_send_action_ba_addba; 166 static ieee80211_send_action_func ht_send_action_ba_delba; 167 static ieee80211_send_action_func ht_send_action_ht_txchwidth; 168 169 static void 170 ieee80211_ht_init(void) 171 { 172 /* 173 * Setup HT parameters that depends on the clock frequency. 174 */ 175 ieee80211_ampdu_age = msecs_to_ticks(500); 176 ieee80211_addba_timeout = msecs_to_ticks(250); 177 ieee80211_addba_backoff = msecs_to_ticks(10*1000); 178 ieee80211_bar_timeout = msecs_to_ticks(250); 179 /* 180 * Register action frame handlers. 181 */ 182 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 183 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_recv_action_ba_addba_request); 184 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 185 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_recv_action_ba_addba_response); 186 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 187 IEEE80211_ACTION_BA_DELBA, ht_recv_action_ba_delba); 188 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 189 IEEE80211_ACTION_HT_MIMOPWRSAVE, ht_recv_action_ht_mimopwrsave); 190 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 191 IEEE80211_ACTION_HT_TXCHWIDTH, ht_recv_action_ht_txchwidth); 192 193 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 194 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_send_action_ba_addba); 195 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 196 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_send_action_ba_addba); 197 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 198 IEEE80211_ACTION_BA_DELBA, ht_send_action_ba_delba); 199 ieee80211_send_action_register(IEEE80211_ACTION_CAT_HT, 200 IEEE80211_ACTION_HT_TXCHWIDTH, ht_send_action_ht_txchwidth); 201 } 202 SYSINIT(wlan_ht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_ht_init, NULL); 203 204 static int ieee80211_ampdu_enable(struct ieee80211_node *ni, 205 struct ieee80211_tx_ampdu *tap); 206 static int ieee80211_addba_request(struct ieee80211_node *ni, 207 struct ieee80211_tx_ampdu *tap, 208 int dialogtoken, int baparamset, int batimeout); 209 static int ieee80211_addba_response(struct ieee80211_node *ni, 210 struct ieee80211_tx_ampdu *tap, 211 int code, int baparamset, int batimeout); 212 static void ieee80211_addba_stop(struct ieee80211_node *ni, 213 struct ieee80211_tx_ampdu *tap); 214 static void null_addba_response_timeout(struct ieee80211_node *ni, 215 struct ieee80211_tx_ampdu *tap); 216 217 static void ieee80211_bar_response(struct ieee80211_node *ni, 218 struct ieee80211_tx_ampdu *tap, int status); 219 static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap); 220 static void bar_stop_timer(struct ieee80211_tx_ampdu *tap); 221 static int ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *, 222 int baparamset, int batimeout, int baseqctl); 223 static void ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *); 224 225 void 226 ieee80211_ht_attach(struct ieee80211com *ic) 227 { 228 /* setup default aggregation policy */ 229 ic->ic_recv_action = ieee80211_recv_action; 230 ic->ic_send_action = ieee80211_send_action; 231 ic->ic_ampdu_enable = ieee80211_ampdu_enable; 232 ic->ic_addba_request = ieee80211_addba_request; 233 ic->ic_addba_response = ieee80211_addba_response; 234 ic->ic_addba_response_timeout = null_addba_response_timeout; 235 ic->ic_addba_stop = ieee80211_addba_stop; 236 ic->ic_bar_response = ieee80211_bar_response; 237 ic->ic_ampdu_rx_start = ampdu_rx_start; 238 ic->ic_ampdu_rx_stop = ampdu_rx_stop; 239 240 ic->ic_htprotmode = IEEE80211_PROT_RTSCTS; 241 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; 242 } 243 244 void 245 ieee80211_ht_detach(struct ieee80211com *ic) 246 { 247 } 248 249 void 250 ieee80211_ht_vattach(struct ieee80211vap *vap) 251 { 252 253 /* driver can override defaults */ 254 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_8K; 255 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_NA; 256 vap->iv_ampdu_limit = vap->iv_ampdu_rxmax; 257 vap->iv_amsdu_limit = vap->iv_htcaps & IEEE80211_HTCAP_MAXAMSDU; 258 /* tx aggregation traffic thresholds */ 259 vap->iv_ampdu_mintraffic[WME_AC_BK] = 128; 260 vap->iv_ampdu_mintraffic[WME_AC_BE] = 64; 261 vap->iv_ampdu_mintraffic[WME_AC_VO] = 32; 262 vap->iv_ampdu_mintraffic[WME_AC_VI] = 32; 263 264 vap->iv_htprotmode = IEEE80211_PROT_RTSCTS; 265 vap->iv_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; 266 267 if (vap->iv_htcaps & IEEE80211_HTC_HT) { 268 /* 269 * Device is HT capable; enable all HT-related 270 * facilities by default. 271 * XXX these choices may be too aggressive. 272 */ 273 vap->iv_flags_ht |= IEEE80211_FHT_HT 274 | IEEE80211_FHT_HTCOMPAT 275 ; 276 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI20) 277 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20; 278 /* XXX infer from channel list? */ 279 if (vap->iv_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 280 vap->iv_flags_ht |= IEEE80211_FHT_USEHT40; 281 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI40) 282 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40; 283 } 284 /* enable RIFS if capable */ 285 if (vap->iv_htcaps & IEEE80211_HTC_RIFS) 286 vap->iv_flags_ht |= IEEE80211_FHT_RIFS; 287 288 /* NB: A-MPDU and A-MSDU rx are mandated, these are tx only */ 289 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX; 290 if (vap->iv_htcaps & IEEE80211_HTC_AMPDU) 291 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX; 292 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX; 293 if (vap->iv_htcaps & IEEE80211_HTC_AMSDU) 294 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX; 295 296 if (vap->iv_htcaps & IEEE80211_HTCAP_TXSTBC) 297 vap->iv_flags_ht |= IEEE80211_FHT_STBC_TX; 298 if (vap->iv_htcaps & IEEE80211_HTCAP_RXSTBC) 299 vap->iv_flags_ht |= IEEE80211_FHT_STBC_RX; 300 301 if (vap->iv_htcaps & IEEE80211_HTCAP_LDPC) 302 vap->iv_flags_ht |= IEEE80211_FHT_LDPC_RX; 303 if (vap->iv_htcaps & IEEE80211_HTC_TXLDPC) 304 vap->iv_flags_ht |= IEEE80211_FHT_LDPC_TX; 305 } 306 /* NB: disable default legacy WDS, too many issues right now */ 307 if (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) 308 vap->iv_flags_ht &= ~IEEE80211_FHT_HT; 309 } 310 311 void 312 ieee80211_ht_vdetach(struct ieee80211vap *vap) 313 { 314 } 315 316 static int 317 ht_getrate(struct ieee80211com *ic, int index, enum ieee80211_phymode mode, 318 int ratetype) 319 { 320 int mword, rate; 321 322 mword = ieee80211_rate2media(ic, index | IEEE80211_RATE_MCS, mode); 323 if (IFM_SUBTYPE(mword) != IFM_IEEE80211_MCS) 324 return (0); 325 switch (ratetype) { 326 case 0: 327 rate = ieee80211_htrates[index].ht20_rate_800ns; 328 break; 329 case 1: 330 rate = ieee80211_htrates[index].ht20_rate_400ns; 331 break; 332 case 2: 333 rate = ieee80211_htrates[index].ht40_rate_800ns; 334 break; 335 default: 336 rate = ieee80211_htrates[index].ht40_rate_400ns; 337 break; 338 } 339 return (rate); 340 } 341 342 static struct printranges { 343 int minmcs; 344 int maxmcs; 345 int txstream; 346 int ratetype; 347 int htcapflags; 348 } ranges[] = { 349 { 0, 7, 1, 0, 0 }, 350 { 8, 15, 2, 0, 0 }, 351 { 16, 23, 3, 0, 0 }, 352 { 24, 31, 4, 0, 0 }, 353 { 32, 0, 1, 2, IEEE80211_HTC_TXMCS32 }, 354 { 33, 38, 2, 0, IEEE80211_HTC_TXUNEQUAL }, 355 { 39, 52, 3, 0, IEEE80211_HTC_TXUNEQUAL }, 356 { 53, 76, 4, 0, IEEE80211_HTC_TXUNEQUAL }, 357 { 0, 0, 0, 0, 0 }, 358 }; 359 360 static void 361 ht_rateprint(struct ieee80211com *ic, enum ieee80211_phymode mode, int ratetype) 362 { 363 int minrate, maxrate; 364 struct printranges *range; 365 366 for (range = ranges; range->txstream != 0; range++) { 367 if (ic->ic_txstream < range->txstream) 368 continue; 369 if (range->htcapflags && 370 (ic->ic_htcaps & range->htcapflags) == 0) 371 continue; 372 if (ratetype < range->ratetype) 373 continue; 374 minrate = ht_getrate(ic, range->minmcs, mode, ratetype); 375 maxrate = ht_getrate(ic, range->maxmcs, mode, ratetype); 376 if (range->maxmcs) { 377 ic_printf(ic, "MCS %d-%d: %d%sMbps - %d%sMbps\n", 378 range->minmcs, range->maxmcs, 379 minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""), 380 maxrate/2, ((maxrate & 0x1) != 0 ? ".5" : "")); 381 } else { 382 ic_printf(ic, "MCS %d: %d%sMbps\n", range->minmcs, 383 minrate/2, ((minrate & 0x1) != 0 ? ".5" : "")); 384 } 385 } 386 } 387 388 static void 389 ht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode) 390 { 391 const char *modestr = ieee80211_phymode_name[mode]; 392 393 ic_printf(ic, "%s MCS 20MHz\n", modestr); 394 ht_rateprint(ic, mode, 0); 395 if (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) { 396 ic_printf(ic, "%s MCS 20MHz SGI\n", modestr); 397 ht_rateprint(ic, mode, 1); 398 } 399 if (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 400 ic_printf(ic, "%s MCS 40MHz:\n", modestr); 401 ht_rateprint(ic, mode, 2); 402 } 403 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 404 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) { 405 ic_printf(ic, "%s MCS 40MHz SGI:\n", modestr); 406 ht_rateprint(ic, mode, 3); 407 } 408 } 409 410 void 411 ieee80211_ht_announce(struct ieee80211com *ic) 412 { 413 414 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 415 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 416 ic_printf(ic, "%dT%dR\n", ic->ic_txstream, ic->ic_rxstream); 417 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA)) 418 ht_announce(ic, IEEE80211_MODE_11NA); 419 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 420 ht_announce(ic, IEEE80211_MODE_11NG); 421 } 422 423 void 424 ieee80211_init_suphtrates(struct ieee80211com *ic) 425 { 426 #define ADDRATE(x) do { \ 427 htrateset->rs_rates[htrateset->rs_nrates] = x; \ 428 htrateset->rs_nrates++; \ 429 } while (0) 430 struct ieee80211_htrateset *htrateset = &ic->ic_sup_htrates; 431 int i; 432 433 memset(htrateset, 0, sizeof(struct ieee80211_htrateset)); 434 for (i = 0; i < ic->ic_txstream * 8; i++) 435 ADDRATE(i); 436 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 437 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32)) 438 ADDRATE(32); 439 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 440 if (ic->ic_txstream >= 2) { 441 for (i = 33; i <= 38; i++) 442 ADDRATE(i); 443 } 444 if (ic->ic_txstream >= 3) { 445 for (i = 39; i <= 52; i++) 446 ADDRATE(i); 447 } 448 if (ic->ic_txstream == 4) { 449 for (i = 53; i <= 76; i++) 450 ADDRATE(i); 451 } 452 } 453 #undef ADDRATE 454 } 455 456 /* 457 * Receive processing. 458 */ 459 460 /* 461 * Decap the encapsulated A-MSDU frames and dispatch all but 462 * the last for delivery. The last frame is returned for 463 * delivery via the normal path. 464 */ 465 struct mbuf * 466 ieee80211_decap_amsdu(struct ieee80211_node *ni, struct mbuf *m) 467 { 468 struct ieee80211vap *vap = ni->ni_vap; 469 int framelen; 470 struct mbuf *n; 471 472 /* discard 802.3 header inserted by ieee80211_decap */ 473 m_adj(m, sizeof(struct ether_header)); 474 475 vap->iv_stats.is_amsdu_decap++; 476 477 for (;;) { 478 /* 479 * Decap the first frame, bust it apart from the 480 * remainder and deliver. We leave the last frame 481 * delivery to the caller (for consistency with other 482 * code paths, could also do it here). 483 */ 484 m = ieee80211_decap1(m, &framelen); 485 if (m == NULL) { 486 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 487 ni->ni_macaddr, "a-msdu", "%s", "decap failed"); 488 vap->iv_stats.is_amsdu_tooshort++; 489 return NULL; 490 } 491 if (m->m_pkthdr.len == framelen) 492 break; 493 n = m_split(m, framelen, IEEE80211_M_NOWAIT); 494 if (n == NULL) { 495 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 496 ni->ni_macaddr, "a-msdu", 497 "%s", "unable to split encapsulated frames"); 498 vap->iv_stats.is_amsdu_split++; 499 m_freem(m); /* NB: must reclaim */ 500 return NULL; 501 } 502 vap->iv_deliver_data(vap, ni, m); 503 504 /* 505 * Remove frame contents; each intermediate frame 506 * is required to be aligned to a 4-byte boundary. 507 */ 508 m = n; 509 m_adj(m, roundup2(framelen, 4) - framelen); /* padding */ 510 } 511 return m; /* last delivered by caller */ 512 } 513 514 static void 515 ampdu_rx_purge_slot(struct ieee80211_rx_ampdu *rap, int i) 516 { 517 struct mbuf *m; 518 519 /* Walk the queue, removing frames as appropriate */ 520 for (;;) { 521 m = mbufq_dequeue(&rap->rxa_mq[i]); 522 if (m == NULL) 523 break; 524 rap->rxa_qbytes -= m->m_pkthdr.len; 525 rap->rxa_qframes--; 526 m_freem(m); 527 } 528 } 529 530 /* 531 * Add the given frame to the current RX reorder slot. 532 * 533 * For future offloaded A-MSDU handling where multiple frames with 534 * the same sequence number show up here, this routine will append 535 * those frames as long as they're appropriately tagged. 536 */ 537 static int 538 ampdu_rx_add_slot(struct ieee80211_rx_ampdu *rap, int off, int tid, 539 ieee80211_seq rxseq, 540 struct ieee80211_node *ni, 541 struct mbuf *m, 542 const struct ieee80211_rx_stats *rxs) 543 { 544 const struct ieee80211_rx_stats *rxs_final = NULL; 545 struct ieee80211vap *vap = ni->ni_vap; 546 int toss_dup; 547 #define PROCESS 0 /* caller should process frame */ 548 #define CONSUMED 1 /* frame consumed, caller does nothing */ 549 550 /* 551 * Figure out if this is a duplicate frame for the given slot. 552 * 553 * We're assuming that the driver will hand us all the frames 554 * for a given AMSDU decap pass and if we get /a/ frame 555 * for an AMSDU decap then we'll get all of them. 556 * 557 * The tricksy bit is that we don't know when the /end/ of 558 * the decap pass is, because we aren't tracking state here 559 * per-slot to know that we've finished receiving the frame list. 560 * 561 * The driver sets RX_F_AMSDU and RX_F_AMSDU_MORE to tell us 562 * what's going on; so ideally we'd just check the frame at the 563 * end of the reassembly slot to see if its F_AMSDU w/ no F_AMSDU_MORE - 564 * that means we've received the whole AMSDU decap pass. 565 */ 566 567 /* 568 * Get the rxs of the final mbuf in the slot, if one exists. 569 */ 570 if (!mbufq_empty(&rap->rxa_mq[off])) { 571 rxs_final = ieee80211_get_rx_params_ptr(mbufq_last(&rap->rxa_mq[off])); 572 } 573 574 /* Default to tossing the duplicate frame */ 575 toss_dup = 1; 576 577 /* 578 * Check to see if the final frame has F_AMSDU and F_AMSDU set, AND 579 * this frame has F_AMSDU set (MORE or otherwise.) That's a sign 580 * that more can come. 581 */ 582 583 if ((rxs != NULL) && (rxs_final != NULL) && 584 ieee80211_check_rxseq_amsdu(rxs) && 585 ieee80211_check_rxseq_amsdu(rxs_final)) { 586 if (! ieee80211_check_rxseq_amsdu_more(rxs_final)) { 587 /* 588 * amsdu_more() returning 0 means "it's not the 589 * final frame" so we can append more 590 * frames here. 591 */ 592 toss_dup = 0; 593 } 594 } 595 596 /* 597 * If the list is empty OR we have determined we can put more 598 * driver decap'ed AMSDU frames in here, then insert. 599 */ 600 if (mbufq_empty(&rap->rxa_mq[off]) || (toss_dup == 0)) { 601 if (mbufq_enqueue(&rap->rxa_mq[off], m) != 0) { 602 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 603 ni->ni_macaddr, 604 "a-mpdu queue fail", 605 "seqno %u tid %u BA win <%u:%u> off=%d, qlen=%d, maxqlen=%d", 606 rxseq, tid, rap->rxa_start, 607 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 608 off, 609 mbufq_len(&rap->rxa_mq[off]), 610 rap->rxa_mq[off].mq_maxlen); 611 /* XXX error count */ 612 m_freem(m); 613 return CONSUMED; 614 } 615 rap->rxa_qframes++; 616 rap->rxa_qbytes += m->m_pkthdr.len; 617 vap->iv_stats.is_ampdu_rx_reorder++; 618 /* 619 * Statistics for AMSDU decap. 620 */ 621 if (rxs != NULL && ieee80211_check_rxseq_amsdu(rxs)) { 622 if (ieee80211_check_rxseq_amsdu_more(rxs)) { 623 /* more=1, AMSDU, end of batch */ 624 IEEE80211_NODE_STAT(ni, rx_amsdu_more_end); 625 } else { 626 IEEE80211_NODE_STAT(ni, rx_amsdu_more); 627 } 628 } 629 } else { 630 IEEE80211_DISCARD_MAC(vap, 631 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 632 ni->ni_macaddr, "a-mpdu duplicate", 633 "seqno %u tid %u BA win <%u:%u>", 634 rxseq, tid, rap->rxa_start, 635 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1)); 636 if (rxs != NULL) { 637 IEEE80211_DISCARD_MAC(vap, 638 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 639 ni->ni_macaddr, "a-mpdu duplicate", 640 "seqno %d tid %u pktflags 0x%08x\n", 641 rxseq, tid, rxs->c_pktflags); 642 } 643 if (rxs_final != NULL) { 644 IEEE80211_DISCARD_MAC(vap, 645 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 646 ni->ni_macaddr, "a-mpdu duplicate", 647 "final: pktflags 0x%08x\n", 648 rxs_final->c_pktflags); 649 } 650 vap->iv_stats.is_rx_dup++; 651 IEEE80211_NODE_STAT(ni, rx_dup); 652 m_freem(m); 653 } 654 return CONSUMED; 655 #undef CONSUMED 656 #undef PROCESS 657 } 658 659 /* 660 * Purge all frames in the A-MPDU re-order queue. 661 */ 662 static void 663 ampdu_rx_purge(struct ieee80211_rx_ampdu *rap) 664 { 665 int i; 666 667 for (i = 0; i < rap->rxa_wnd; i++) { 668 ampdu_rx_purge_slot(rap, i); 669 if (rap->rxa_qframes == 0) 670 break; 671 } 672 KASSERT(rap->rxa_qbytes == 0 && rap->rxa_qframes == 0, 673 ("lost %u data, %u frames on ampdu rx q", 674 rap->rxa_qbytes, rap->rxa_qframes)); 675 } 676 677 static void 678 ieee80211_ampdu_rx_init_rap(struct ieee80211_node *ni, 679 struct ieee80211_rx_ampdu *rap) 680 { 681 int i; 682 683 /* XXX TODO: ensure the queues are empty */ 684 memset(rap, 0, sizeof(*rap)); 685 for (i = 0; i < IEEE80211_AGGR_BAWMAX; i++) 686 mbufq_init(&rap->rxa_mq[i], 256); 687 } 688 689 /* 690 * Start A-MPDU rx/re-order processing for the specified TID. 691 */ 692 static int 693 ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap, 694 int baparamset, int batimeout, int baseqctl) 695 { 696 struct ieee80211vap *vap = ni->ni_vap; 697 int bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ); 698 699 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 700 /* 701 * AMPDU previously setup and not terminated with a DELBA, 702 * flush the reorder q's in case anything remains. 703 */ 704 ampdu_rx_purge(rap); 705 } 706 ieee80211_ampdu_rx_init_rap(ni, rap); 707 rap->rxa_wnd = (bufsiz == 0) ? 708 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 709 rap->rxa_start = _IEEE80211_MASKSHIFT(baseqctl, IEEE80211_BASEQ_START); 710 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 711 712 /* XXX this should be a configuration flag */ 713 if ((vap->iv_htcaps & IEEE80211_HTC_RX_AMSDU_AMPDU) && 714 (_IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU))) 715 rap->rxa_flags |= IEEE80211_AGGR_AMSDU; 716 else 717 rap->rxa_flags &= ~IEEE80211_AGGR_AMSDU; 718 719 return 0; 720 } 721 722 /* 723 * Public function; manually setup the RX ampdu state. 724 */ 725 int 726 ieee80211_ampdu_rx_start_ext(struct ieee80211_node *ni, int tid, int seq, int baw) 727 { 728 struct ieee80211_rx_ampdu *rap; 729 730 /* XXX TODO: sanity check tid, seq, baw */ 731 732 rap = &ni->ni_rx_ampdu[tid]; 733 734 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 735 /* 736 * AMPDU previously setup and not terminated with a DELBA, 737 * flush the reorder q's in case anything remains. 738 */ 739 ampdu_rx_purge(rap); 740 } 741 742 ieee80211_ampdu_rx_init_rap(ni, rap); 743 744 rap->rxa_wnd = (baw== 0) ? 745 IEEE80211_AGGR_BAWMAX : min(baw, IEEE80211_AGGR_BAWMAX); 746 if (seq == -1) { 747 /* Wait for the first RX frame, use that as BAW */ 748 rap->rxa_start = 0; 749 rap->rxa_flags |= IEEE80211_AGGR_WAITRX; 750 } else { 751 rap->rxa_start = seq; 752 } 753 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 754 755 /* XXX TODO: no amsdu flag */ 756 757 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 758 "%s: tid=%d, start=%d, wnd=%d, flags=0x%08x", 759 __func__, 760 tid, 761 seq, 762 rap->rxa_wnd, 763 rap->rxa_flags); 764 765 return 0; 766 } 767 768 /* 769 * Public function; manually stop the RX AMPDU state. 770 */ 771 void 772 ieee80211_ampdu_rx_stop_ext(struct ieee80211_node *ni, int tid) 773 { 774 struct ieee80211_rx_ampdu *rap; 775 776 /* XXX TODO: sanity check tid, seq, baw */ 777 rap = &ni->ni_rx_ampdu[tid]; 778 ampdu_rx_stop(ni, rap); 779 } 780 781 /* 782 * Stop A-MPDU rx processing for the specified TID. 783 */ 784 static void 785 ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 786 { 787 788 ampdu_rx_purge(rap); 789 rap->rxa_flags &= ~(IEEE80211_AGGR_RUNNING 790 | IEEE80211_AGGR_XCHGPEND 791 | IEEE80211_AGGR_WAITRX); 792 } 793 794 /* 795 * Dispatch a frame from the A-MPDU reorder queue. The 796 * frame is fed back into ieee80211_input marked with an 797 * M_AMPDU_MPDU flag so it doesn't come back to us (it also 798 * permits ieee80211_input to optimize re-processing). 799 */ 800 static __inline void 801 ampdu_dispatch(struct ieee80211_node *ni, struct mbuf *m) 802 { 803 m->m_flags |= M_AMPDU_MPDU; /* bypass normal processing */ 804 /* NB: rssi and noise are ignored w/ M_AMPDU_MPDU set */ 805 (void) ieee80211_input(ni, m, 0, 0); 806 } 807 808 static int 809 ampdu_dispatch_slot(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni, 810 int i) 811 { 812 struct mbuf *m; 813 int n = 0; 814 815 for (;;) { 816 m = mbufq_dequeue(&rap->rxa_mq[i]); 817 if (m == NULL) 818 break; 819 n++; 820 821 rap->rxa_qbytes -= m->m_pkthdr.len; 822 rap->rxa_qframes--; 823 824 ampdu_dispatch(ni, m); 825 } 826 return (n); 827 } 828 829 static void 830 ampdu_rx_moveup(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni, 831 int i, int winstart) 832 { 833 struct ieee80211vap *vap = ni->ni_vap; 834 835 /* 836 * If frames remain, copy the mbuf pointers down so 837 * they correspond to the offsets in the new window. 838 */ 839 if (rap->rxa_qframes != 0) { 840 int n = rap->rxa_qframes, j; 841 for (j = i+1; j < rap->rxa_wnd; j++) { 842 /* 843 * Concat the list contents over, which will 844 * blank the source list for us. 845 */ 846 if (mbufq_len(&rap->rxa_mq[j]) != 0) { 847 n = n - mbufq_len(&rap->rxa_mq[j]); 848 mbufq_concat(&rap->rxa_mq[j-i], &rap->rxa_mq[j]); 849 KASSERT(n >= 0, ("%s: n < 0 (%d)", __func__, n)); 850 if (n == 0) 851 break; 852 } 853 } 854 KASSERT(n == 0, ("%s: lost %d frames, qframes %d off %d " 855 "BA win <%d:%d> winstart %d", 856 __func__, n, rap->rxa_qframes, i, rap->rxa_start, 857 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 858 winstart)); 859 vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; 860 } 861 } 862 863 /* 864 * Dispatch as many frames as possible from the re-order queue. 865 * Frames will always be "at the front"; we process all frames 866 * up to the first empty slot in the window. On completion we 867 * cleanup state if there are still pending frames in the current 868 * BA window. We assume the frame at slot 0 is already handled 869 * by the caller; we always start at slot 1. 870 */ 871 static void 872 ampdu_rx_dispatch(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni) 873 { 874 struct ieee80211vap *vap = ni->ni_vap; 875 int i, r, r2; 876 877 /* flush run of frames */ 878 r2 = 0; 879 for (i = 1; i < rap->rxa_wnd; i++) { 880 r = ampdu_dispatch_slot(rap, ni, i); 881 if (r == 0) 882 break; 883 r2 += r; 884 } 885 886 /* move up frames */ 887 ampdu_rx_moveup(rap, ni, i, -1); 888 889 /* 890 * Adjust the start of the BA window to 891 * reflect the frames just dispatched. 892 */ 893 rap->rxa_start = IEEE80211_SEQ_ADD(rap->rxa_start, i); 894 vap->iv_stats.is_ampdu_rx_oor += r2; 895 896 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 897 "%s: moved slot up %d slots to start at %d (%d frames)", 898 __func__, 899 i, 900 rap->rxa_start, 901 r2); 902 } 903 904 /* 905 * Dispatch all frames in the A-MPDU re-order queue. 906 */ 907 static void 908 ampdu_rx_flush(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 909 { 910 int i, r; 911 912 for (i = 0; i < rap->rxa_wnd; i++) { 913 r = ampdu_dispatch_slot(rap, ni, i); 914 if (r == 0) 915 continue; 916 ni->ni_vap->iv_stats.is_ampdu_rx_oor += r; 917 918 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 919 "%s: moved slot up %d slots to start at %d (%d frames)", 920 __func__, 921 1, 922 rap->rxa_start, 923 r); 924 925 if (rap->rxa_qframes == 0) 926 break; 927 } 928 } 929 930 /* 931 * Dispatch all frames in the A-MPDU re-order queue 932 * preceding the specified sequence number. This logic 933 * handles window moves due to a received MSDU or BAR. 934 */ 935 static void 936 ampdu_rx_flush_upto(struct ieee80211_node *ni, 937 struct ieee80211_rx_ampdu *rap, ieee80211_seq winstart) 938 { 939 struct ieee80211vap *vap = ni->ni_vap; 940 ieee80211_seq seqno; 941 int i, r; 942 943 /* 944 * Flush any complete MSDU's with a sequence number lower 945 * than winstart. Gaps may exist. Note that we may actually 946 * dispatch frames past winstart if a run continues; this is 947 * an optimization that avoids having to do a separate pass 948 * to dispatch frames after moving the BA window start. 949 */ 950 seqno = rap->rxa_start; 951 for (i = 0; i < rap->rxa_wnd; i++) { 952 if ((r = mbufq_len(&rap->rxa_mq[i])) != 0) { 953 (void) ampdu_dispatch_slot(rap, ni, i); 954 } else { 955 if (!IEEE80211_SEQ_BA_BEFORE(seqno, winstart)) 956 break; 957 } 958 vap->iv_stats.is_ampdu_rx_oor += r; 959 seqno = IEEE80211_SEQ_INC(seqno); 960 961 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 962 "%s: moved slot up %d slots to start at %d (%d frames)", 963 __func__, 964 1, 965 seqno, 966 r); 967 } 968 969 /* 970 * If frames remain, copy the mbuf pointers down so 971 * they correspond to the offsets in the new window. 972 */ 973 ampdu_rx_moveup(rap, ni, i, winstart); 974 975 /* 976 * Move the start of the BA window; we use the 977 * sequence number of the last MSDU that was 978 * passed up the stack+1 or winstart if stopped on 979 * a gap in the reorder buffer. 980 */ 981 rap->rxa_start = seqno; 982 } 983 984 /* 985 * Process a received QoS data frame for an HT station. Handle 986 * A-MPDU reordering: if this frame is received out of order 987 * and falls within the BA window hold onto it. Otherwise if 988 * this frame completes a run, flush any pending frames. We 989 * return 1 if the frame is consumed. A 0 is returned if 990 * the frame should be processed normally by the caller. 991 * 992 * A-MSDU: handle hardware decap'ed A-MSDU frames that are 993 * pretending to be MPDU's. They're dispatched directly if 994 * able; or attempted to put into the receive reordering slot. 995 */ 996 int 997 ieee80211_ampdu_reorder(struct ieee80211_node *ni, struct mbuf *m, 998 const struct ieee80211_rx_stats *rxs) 999 { 1000 #define PROCESS 0 /* caller should process frame */ 1001 #define CONSUMED 1 /* frame consumed, caller does nothing */ 1002 struct ieee80211vap *vap = ni->ni_vap; 1003 struct ieee80211_qosframe *wh; 1004 struct ieee80211_rx_ampdu *rap; 1005 ieee80211_seq rxseq; 1006 uint8_t tid; 1007 int off; 1008 int amsdu = ieee80211_check_rxseq_amsdu(rxs); 1009 int amsdu_end = ieee80211_check_rxseq_amsdu_more(rxs); 1010 1011 KASSERT((m->m_flags & (M_AMPDU | M_AMPDU_MPDU)) == M_AMPDU, 1012 ("!a-mpdu or already re-ordered, flags 0x%x", m->m_flags)); 1013 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 1014 1015 /* NB: m_len known to be sufficient */ 1016 wh = mtod(m, struct ieee80211_qosframe *); 1017 if (!IEEE80211_IS_QOSDATA(wh)) { 1018 /* 1019 * Not QoS data, shouldn't get here but just 1020 * return it to the caller for processing. 1021 */ 1022 return PROCESS; 1023 } 1024 1025 /* 1026 * 802.11-2012 9.3.2.10 - Duplicate detection and recovery. 1027 * 1028 * Multicast QoS data frames are checked against a different 1029 * counter, not the per-TID counter. 1030 */ 1031 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1032 return PROCESS; 1033 1034 tid = ieee80211_getqos(wh)[0]; 1035 tid &= IEEE80211_QOS_TID; 1036 rap = &ni->ni_rx_ampdu[tid]; 1037 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 1038 /* 1039 * No ADDBA request yet, don't touch. 1040 */ 1041 return PROCESS; 1042 } 1043 rxseq = le16toh(*(uint16_t *)wh->i_seq); 1044 if ((rxseq & IEEE80211_SEQ_FRAG_MASK) != 0) { 1045 /* 1046 * Fragments are not allowed; toss. 1047 */ 1048 IEEE80211_DISCARD_MAC(vap, 1049 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 1050 "A-MPDU", "fragment, rxseq 0x%x tid %u%s", rxseq, tid, 1051 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 1052 vap->iv_stats.is_ampdu_rx_drop++; 1053 IEEE80211_NODE_STAT(ni, rx_drop); 1054 m_freem(m); 1055 return CONSUMED; 1056 } 1057 rxseq >>= IEEE80211_SEQ_SEQ_SHIFT; 1058 rap->rxa_nframes++; 1059 1060 /* 1061 * Handle waiting for the first frame to define the BAW. 1062 * Some firmware doesn't provide the RX of the starting point 1063 * of the BAW and we have to cope. 1064 */ 1065 if (rap->rxa_flags & IEEE80211_AGGR_WAITRX) { 1066 rap->rxa_flags &= ~IEEE80211_AGGR_WAITRX; 1067 rap->rxa_start = rxseq; 1068 } 1069 again: 1070 if (rxseq == rap->rxa_start) { 1071 /* 1072 * First frame in window. 1073 */ 1074 if (rap->rxa_qframes != 0) { 1075 /* 1076 * Dispatch as many packets as we can. 1077 */ 1078 KASSERT(mbufq_empty(&rap->rxa_mq[0]), ("unexpected dup")); 1079 ampdu_dispatch(ni, m); 1080 ampdu_rx_dispatch(rap, ni); 1081 return CONSUMED; 1082 } else { 1083 /* 1084 * In order; advance window if needed and notify 1085 * caller to dispatch directly. 1086 */ 1087 if (amsdu) { 1088 if (amsdu_end) { 1089 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 1090 IEEE80211_NODE_STAT(ni, rx_amsdu_more_end); 1091 } else { 1092 IEEE80211_NODE_STAT(ni, rx_amsdu_more); 1093 } 1094 } else { 1095 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 1096 } 1097 return PROCESS; 1098 } 1099 } 1100 /* 1101 * Frame is out of order; store if in the BA window. 1102 */ 1103 /* calculate offset in BA window */ 1104 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 1105 if (off < rap->rxa_wnd) { 1106 /* 1107 * Common case (hopefully): in the BA window. 1108 * Sec 9.10.7.6.2 a) (p.137) 1109 */ 1110 1111 /* 1112 * Check for frames sitting too long in the reorder queue. 1113 * This should only ever happen if frames are not delivered 1114 * without the sender otherwise notifying us (e.g. with a 1115 * BAR to move the window). Typically this happens because 1116 * of vendor bugs that cause the sequence number to jump. 1117 * When this happens we get a gap in the reorder queue that 1118 * leaves frame sitting on the queue until they get pushed 1119 * out due to window moves. When the vendor does not send 1120 * BAR this move only happens due to explicit packet sends 1121 * 1122 * NB: we only track the time of the oldest frame in the 1123 * reorder q; this means that if we flush we might push 1124 * frames that still "new"; if this happens then subsequent 1125 * frames will result in BA window moves which cost something 1126 * but is still better than a big throughput dip. 1127 */ 1128 if (rap->rxa_qframes != 0) { 1129 /* XXX honor batimeout? */ 1130 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 1131 /* 1132 * Too long since we received the first 1133 * frame; flush the reorder buffer. 1134 */ 1135 if (rap->rxa_qframes != 0) { 1136 vap->iv_stats.is_ampdu_rx_age += 1137 rap->rxa_qframes; 1138 ampdu_rx_flush(ni, rap); 1139 } 1140 /* 1141 * Advance the window if needed and notify 1142 * the caller to dispatch directly. 1143 */ 1144 if (amsdu) { 1145 if (amsdu_end) { 1146 rap->rxa_start = 1147 IEEE80211_SEQ_INC(rxseq); 1148 IEEE80211_NODE_STAT(ni, 1149 rx_amsdu_more_end); 1150 } else { 1151 IEEE80211_NODE_STAT(ni, 1152 rx_amsdu_more); 1153 } 1154 } else { 1155 rap->rxa_start = 1156 IEEE80211_SEQ_INC(rxseq); 1157 } 1158 return PROCESS; 1159 } 1160 } else { 1161 /* 1162 * First frame, start aging timer. 1163 */ 1164 rap->rxa_age = ticks; 1165 } 1166 1167 /* save packet - this consumes, no matter what */ 1168 ampdu_rx_add_slot(rap, off, tid, rxseq, ni, m, rxs); 1169 return CONSUMED; 1170 } 1171 if (off < IEEE80211_SEQ_BA_RANGE) { 1172 /* 1173 * Outside the BA window, but within range; 1174 * flush the reorder q and move the window. 1175 * Sec 9.10.7.6.2 b) (p.138) 1176 */ 1177 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1178 "move BA win <%u:%u> (%u frames) rxseq %u tid %u", 1179 rap->rxa_start, 1180 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1181 rap->rxa_qframes, rxseq, tid); 1182 vap->iv_stats.is_ampdu_rx_move++; 1183 1184 /* 1185 * The spec says to flush frames up to but not including: 1186 * WinStart_B = rxseq - rap->rxa_wnd + 1 1187 * Then insert the frame or notify the caller to process 1188 * it immediately. We can safely do this by just starting 1189 * over again because we know the frame will now be within 1190 * the BA window. 1191 */ 1192 /* NB: rxa_wnd known to be >0 */ 1193 ampdu_rx_flush_upto(ni, rap, 1194 IEEE80211_SEQ_SUB(rxseq, rap->rxa_wnd-1)); 1195 goto again; 1196 } else { 1197 /* 1198 * Outside the BA window and out of range; toss. 1199 * Sec 9.10.7.6.2 c) (p.138) 1200 */ 1201 IEEE80211_DISCARD_MAC(vap, 1202 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 1203 "MPDU", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 1204 rap->rxa_start, 1205 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1206 rap->rxa_qframes, rxseq, tid, 1207 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 1208 vap->iv_stats.is_ampdu_rx_drop++; 1209 IEEE80211_NODE_STAT(ni, rx_drop); 1210 m_freem(m); 1211 return CONSUMED; 1212 } 1213 #undef CONSUMED 1214 #undef PROCESS 1215 } 1216 1217 /* 1218 * Process a BAR ctl frame. Dispatch all frames up to 1219 * the sequence number of the frame. If this frame is 1220 * out of range it's discarded. 1221 */ 1222 void 1223 ieee80211_recv_bar(struct ieee80211_node *ni, struct mbuf *m0) 1224 { 1225 struct ieee80211vap *vap = ni->ni_vap; 1226 struct ieee80211_frame_bar *wh; 1227 struct ieee80211_rx_ampdu *rap; 1228 ieee80211_seq rxseq; 1229 int tid, off; 1230 1231 if (!ieee80211_recv_bar_ena) { 1232 #if 0 1233 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_11N, 1234 ni->ni_macaddr, "BAR", "%s", "processing disabled"); 1235 #endif 1236 vap->iv_stats.is_ampdu_bar_bad++; 1237 return; 1238 } 1239 wh = mtod(m0, struct ieee80211_frame_bar *); 1240 /* XXX check basic BAR */ 1241 tid = _IEEE80211_MASKSHIFT(le16toh(wh->i_ctl), IEEE80211_BAR_TID); 1242 rap = &ni->ni_rx_ampdu[tid]; 1243 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 1244 /* 1245 * No ADDBA request yet, don't touch. 1246 */ 1247 IEEE80211_DISCARD_MAC(vap, 1248 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 1249 ni->ni_macaddr, "BAR", "no BA stream, tid %u", tid); 1250 vap->iv_stats.is_ampdu_bar_bad++; 1251 return; 1252 } 1253 vap->iv_stats.is_ampdu_bar_rx++; 1254 rxseq = le16toh(wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT; 1255 if (rxseq == rap->rxa_start) 1256 return; 1257 /* calculate offset in BA window */ 1258 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 1259 if (off < IEEE80211_SEQ_BA_RANGE) { 1260 /* 1261 * Flush the reorder q up to rxseq and move the window. 1262 * Sec 9.10.7.6.3 a) (p.138) 1263 */ 1264 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1265 "BAR moves BA win <%u:%u> (%u frames) rxseq %u tid %u", 1266 rap->rxa_start, 1267 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1268 rap->rxa_qframes, rxseq, tid); 1269 vap->iv_stats.is_ampdu_bar_move++; 1270 1271 ampdu_rx_flush_upto(ni, rap, rxseq); 1272 if (off >= rap->rxa_wnd) { 1273 /* 1274 * BAR specifies a window start to the right of BA 1275 * window; we must move it explicitly since 1276 * ampdu_rx_flush_upto will not. 1277 */ 1278 rap->rxa_start = rxseq; 1279 } 1280 } else { 1281 /* 1282 * Out of range; toss. 1283 * Sec 9.10.7.6.3 b) (p.138) 1284 */ 1285 IEEE80211_DISCARD_MAC(vap, 1286 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 1287 "BAR", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 1288 rap->rxa_start, 1289 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1290 rap->rxa_qframes, rxseq, tid, 1291 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 1292 vap->iv_stats.is_ampdu_bar_oow++; 1293 IEEE80211_NODE_STAT(ni, rx_drop); 1294 } 1295 } 1296 1297 /* 1298 * Setup HT-specific state in a node. Called only 1299 * when HT use is negotiated so we don't do extra 1300 * work for temporary and/or legacy sta's. 1301 */ 1302 void 1303 ieee80211_ht_node_init(struct ieee80211_node *ni) 1304 { 1305 struct ieee80211_tx_ampdu *tap; 1306 int tid; 1307 1308 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1309 ni, 1310 "%s: called (%p)", 1311 __func__, 1312 ni); 1313 1314 if (ni->ni_flags & IEEE80211_NODE_HT) { 1315 /* 1316 * Clean AMPDU state on re-associate. This handles the case 1317 * where a station leaves w/o notifying us and then returns 1318 * before node is reaped for inactivity. 1319 */ 1320 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1321 ni, 1322 "%s: calling cleanup (%p)", 1323 __func__, ni); 1324 ieee80211_ht_node_cleanup(ni); 1325 } 1326 for (tid = 0; tid < WME_NUM_TID; tid++) { 1327 tap = &ni->ni_tx_ampdu[tid]; 1328 tap->txa_tid = tid; 1329 tap->txa_ni = ni; 1330 ieee80211_txampdu_init_pps(tap); 1331 /* NB: further initialization deferred */ 1332 ieee80211_ampdu_rx_init_rap(ni, &ni->ni_rx_ampdu[tid]); 1333 } 1334 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU | 1335 IEEE80211_NODE_AMSDU; 1336 } 1337 1338 /* 1339 * Cleanup HT-specific state in a node. Called only 1340 * when HT use has been marked. 1341 */ 1342 void 1343 ieee80211_ht_node_cleanup(struct ieee80211_node *ni) 1344 { 1345 struct ieee80211com *ic = ni->ni_ic; 1346 int i; 1347 1348 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1349 ni, 1350 "%s: called (%p)", 1351 __func__, ni); 1352 1353 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT node")); 1354 1355 /* XXX optimize this */ 1356 for (i = 0; i < WME_NUM_TID; i++) { 1357 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[i]; 1358 if (tap->txa_flags & IEEE80211_AGGR_SETUP) 1359 ampdu_tx_stop(tap); 1360 } 1361 for (i = 0; i < WME_NUM_TID; i++) 1362 ic->ic_ampdu_rx_stop(ni, &ni->ni_rx_ampdu[i]); 1363 1364 ni->ni_htcap = 0; 1365 ni->ni_flags &= ~IEEE80211_NODE_HT_ALL; 1366 } 1367 1368 /* 1369 * Age out HT resources for a station. 1370 */ 1371 void 1372 ieee80211_ht_node_age(struct ieee80211_node *ni) 1373 { 1374 struct ieee80211vap *vap = ni->ni_vap; 1375 uint8_t tid; 1376 1377 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 1378 1379 for (tid = 0; tid < WME_NUM_TID; tid++) { 1380 struct ieee80211_rx_ampdu *rap; 1381 1382 rap = &ni->ni_rx_ampdu[tid]; 1383 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) 1384 continue; 1385 if (rap->rxa_qframes == 0) 1386 continue; 1387 /* 1388 * Check for frames sitting too long in the reorder queue. 1389 * See above for more details on what's happening here. 1390 */ 1391 /* XXX honor batimeout? */ 1392 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 1393 /* 1394 * Too long since we received the first 1395 * frame; flush the reorder buffer. 1396 */ 1397 vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes; 1398 ampdu_rx_flush(ni, rap); 1399 } 1400 } 1401 } 1402 1403 static struct ieee80211_channel * 1404 findhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int htflags) 1405 { 1406 return ieee80211_find_channel(ic, c->ic_freq, 1407 (c->ic_flags &~ IEEE80211_CHAN_HT) | htflags); 1408 } 1409 1410 /* 1411 * Adjust a channel to be HT/non-HT according to the vap's configuration. 1412 */ 1413 struct ieee80211_channel * 1414 ieee80211_ht_adjust_channel(struct ieee80211com *ic, 1415 struct ieee80211_channel *chan, int flags) 1416 { 1417 struct ieee80211_channel *c; 1418 1419 if (flags & IEEE80211_FHT_HT) { 1420 /* promote to HT if possible */ 1421 if (flags & IEEE80211_FHT_USEHT40) { 1422 if (!IEEE80211_IS_CHAN_HT40(chan)) { 1423 /* NB: arbitrarily pick ht40+ over ht40- */ 1424 c = findhtchan(ic, chan, IEEE80211_CHAN_HT40U); 1425 if (c == NULL) 1426 c = findhtchan(ic, chan, 1427 IEEE80211_CHAN_HT40D); 1428 if (c == NULL) 1429 c = findhtchan(ic, chan, 1430 IEEE80211_CHAN_HT20); 1431 if (c != NULL) 1432 chan = c; 1433 } 1434 } else if (!IEEE80211_IS_CHAN_HT20(chan)) { 1435 c = findhtchan(ic, chan, IEEE80211_CHAN_HT20); 1436 if (c != NULL) 1437 chan = c; 1438 } 1439 } else if (IEEE80211_IS_CHAN_HT(chan)) { 1440 /* demote to legacy, HT use is disabled */ 1441 c = ieee80211_find_channel(ic, chan->ic_freq, 1442 chan->ic_flags &~ IEEE80211_CHAN_HT); 1443 if (c != NULL) 1444 chan = c; 1445 } 1446 return chan; 1447 } 1448 1449 /* 1450 * Setup HT-specific state for a legacy WDS peer. 1451 */ 1452 void 1453 ieee80211_ht_wds_init(struct ieee80211_node *ni) 1454 { 1455 struct ieee80211vap *vap = ni->ni_vap; 1456 struct ieee80211_tx_ampdu *tap; 1457 int tid; 1458 1459 KASSERT(vap->iv_flags_ht & IEEE80211_FHT_HT, ("no HT requested")); 1460 1461 /* XXX check scan cache in case peer has an ap and we have info */ 1462 /* 1463 * If setup with a legacy channel; locate an HT channel. 1464 * Otherwise if the inherited channel (from a companion 1465 * AP) is suitable use it so we use the same location 1466 * for the extension channel). 1467 */ 1468 ni->ni_chan = ieee80211_ht_adjust_channel(ni->ni_ic, 1469 ni->ni_chan, ieee80211_htchanflags(ni->ni_chan)); 1470 1471 ni->ni_htcap = 0; 1472 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) 1473 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI20; 1474 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { 1475 ni->ni_htcap |= IEEE80211_HTCAP_CHWIDTH40; 1476 ni->ni_chw = IEEE80211_STA_RX_BW_40; 1477 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 1478 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_ABOVE; 1479 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 1480 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_BELOW; 1481 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) 1482 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI40; 1483 } else { 1484 ni->ni_chw = IEEE80211_STA_RX_BW_20; 1485 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_NONE; 1486 } 1487 ni->ni_htctlchan = ni->ni_chan->ic_ieee; 1488 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 1489 ni->ni_flags |= IEEE80211_NODE_RIFS; 1490 /* XXX does it make sense to enable SMPS? */ 1491 1492 ni->ni_htopmode = 0; /* XXX need protection state */ 1493 ni->ni_htstbc = 0; /* XXX need info */ 1494 1495 for (tid = 0; tid < WME_NUM_TID; tid++) { 1496 tap = &ni->ni_tx_ampdu[tid]; 1497 tap->txa_tid = tid; 1498 ieee80211_txampdu_init_pps(tap); 1499 } 1500 /* NB: AMPDU tx/rx governed by IEEE80211_FHT_AMPDU_{TX,RX} */ 1501 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU | 1502 IEEE80211_NODE_AMSDU; 1503 } 1504 1505 /* 1506 * Notify a VAP of a change in the HTINFO ie if it's a hostap VAP. 1507 * 1508 * This is to be called from the deferred HT protection update 1509 * task once the flags are updated. 1510 */ 1511 void 1512 ieee80211_htinfo_notify(struct ieee80211vap *vap) 1513 { 1514 1515 IEEE80211_LOCK_ASSERT(vap->iv_ic); 1516 1517 if (vap->iv_opmode != IEEE80211_M_HOSTAP) 1518 return; 1519 if (vap->iv_state != IEEE80211_S_RUN || 1520 !IEEE80211_IS_CHAN_HT(vap->iv_bss->ni_chan)) 1521 return; 1522 1523 IEEE80211_NOTE(vap, 1524 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1525 vap->iv_bss, 1526 "HT bss occupancy change: %d sta, %d ht, " 1527 "%d ht40%s, HT protmode now 0x%x" 1528 , vap->iv_sta_assoc 1529 , vap->iv_ht_sta_assoc 1530 , vap->iv_ht40_sta_assoc 1531 , (vap->iv_flags_ht & IEEE80211_FHT_NONHT_PR) ? 1532 ", non-HT sta present" : "" 1533 , vap->iv_curhtprotmode); 1534 1535 ieee80211_beacon_notify(vap, IEEE80211_BEACON_HTINFO); 1536 } 1537 1538 /* 1539 * Calculate HT protection mode from current 1540 * state and handle updates. 1541 */ 1542 static void 1543 htinfo_update(struct ieee80211vap *vap) 1544 { 1545 struct ieee80211com *ic = vap->iv_ic; 1546 uint8_t protmode; 1547 1548 if (vap->iv_sta_assoc != vap->iv_ht_sta_assoc) { 1549 protmode = IEEE80211_HTINFO_OPMODE_MIXED 1550 | IEEE80211_HTINFO_NONHT_PRESENT; 1551 } else if (vap->iv_flags_ht & IEEE80211_FHT_NONHT_PR) { 1552 protmode = IEEE80211_HTINFO_OPMODE_PROTOPT 1553 | IEEE80211_HTINFO_NONHT_PRESENT; 1554 } else if (ic->ic_bsschan != IEEE80211_CHAN_ANYC && 1555 IEEE80211_IS_CHAN_HT40(ic->ic_bsschan) && 1556 vap->iv_sta_assoc != vap->iv_ht40_sta_assoc) { 1557 protmode = IEEE80211_HTINFO_OPMODE_HT20PR; 1558 } else { 1559 protmode = IEEE80211_HTINFO_OPMODE_PURE; 1560 } 1561 if (protmode != vap->iv_curhtprotmode) { 1562 vap->iv_curhtprotmode = protmode; 1563 /* Update VAP with new protection mode */ 1564 ieee80211_vap_update_ht_protmode(vap); 1565 } 1566 } 1567 1568 /* 1569 * Handle an HT station joining a BSS. 1570 */ 1571 void 1572 ieee80211_ht_node_join(struct ieee80211_node *ni) 1573 { 1574 struct ieee80211vap *vap = ni->ni_vap; 1575 1576 IEEE80211_LOCK_ASSERT(vap->iv_ic); 1577 1578 if (ni->ni_flags & IEEE80211_NODE_HT) { 1579 vap->iv_ht_sta_assoc++; 1580 if (ni->ni_chw == IEEE80211_STA_RX_BW_40) 1581 vap->iv_ht40_sta_assoc++; 1582 } 1583 htinfo_update(vap); 1584 } 1585 1586 /* 1587 * Handle an HT station leaving a BSS. 1588 */ 1589 void 1590 ieee80211_ht_node_leave(struct ieee80211_node *ni) 1591 { 1592 struct ieee80211vap *vap = ni->ni_vap; 1593 1594 IEEE80211_LOCK_ASSERT(vap->iv_ic); 1595 1596 if (ni->ni_flags & IEEE80211_NODE_HT) { 1597 vap->iv_ht_sta_assoc--; 1598 if (ni->ni_chw == IEEE80211_STA_RX_BW_40) 1599 vap->iv_ht40_sta_assoc--; 1600 } 1601 htinfo_update(vap); 1602 } 1603 1604 /* 1605 * Public version of htinfo_update; used for processing 1606 * beacon frames from overlapping bss. 1607 * 1608 * Caller can specify either IEEE80211_HTINFO_OPMODE_MIXED 1609 * (on receipt of a beacon that advertises MIXED) or 1610 * IEEE80211_HTINFO_OPMODE_PROTOPT (on receipt of a beacon 1611 * from an overlapping legacy bss). We treat MIXED with 1612 * a higher precedence than PROTOPT (i.e. we will not change 1613 * change PROTOPT -> MIXED; only MIXED -> PROTOPT). This 1614 * corresponds to how we handle things in htinfo_update. 1615 * 1616 */ 1617 void 1618 ieee80211_htprot_update(struct ieee80211vap *vap, int protmode) 1619 { 1620 struct ieee80211com *ic = vap->iv_ic; 1621 #define OPMODE(x) _IEEE80211_SHIFTMASK(x, IEEE80211_HTINFO_OPMODE) 1622 IEEE80211_LOCK(ic); 1623 1624 /* track non-HT station presence */ 1625 KASSERT(protmode & IEEE80211_HTINFO_NONHT_PRESENT, 1626 ("protmode 0x%x", protmode)); 1627 vap->iv_flags_ht |= IEEE80211_FHT_NONHT_PR; 1628 vap->iv_lastnonht = ticks; 1629 1630 if (protmode != vap->iv_curhtprotmode && 1631 (OPMODE(vap->iv_curhtprotmode) != IEEE80211_HTINFO_OPMODE_MIXED || 1632 OPMODE(protmode) == IEEE80211_HTINFO_OPMODE_PROTOPT)) { 1633 vap->iv_curhtprotmode = protmode; 1634 /* Update VAP with new protection mode */ 1635 ieee80211_vap_update_ht_protmode(vap); 1636 } 1637 IEEE80211_UNLOCK(ic); 1638 #undef OPMODE 1639 } 1640 1641 /* 1642 * Time out presence of an overlapping bss with non-HT 1643 * stations. When operating in hostap mode we listen for 1644 * beacons from other stations and if we identify a non-HT 1645 * station is present we update the opmode field of the 1646 * HTINFO ie. To identify when all non-HT stations are 1647 * gone we time out this condition. 1648 */ 1649 void 1650 ieee80211_ht_timeout(struct ieee80211vap *vap) 1651 { 1652 1653 IEEE80211_LOCK_ASSERT(vap->iv_ic); 1654 1655 if ((vap->iv_flags_ht & IEEE80211_FHT_NONHT_PR) && 1656 ieee80211_time_after(ticks, vap->iv_lastnonht + IEEE80211_NONHT_PRESENT_AGE)) { 1657 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, 1658 "%s", "time out non-HT STA present on channel"); 1659 vap->iv_flags_ht &= ~IEEE80211_FHT_NONHT_PR; 1660 htinfo_update(vap); 1661 } 1662 } 1663 1664 /* 1665 * Process an 802.11n HT capabilities ie. 1666 */ 1667 void 1668 ieee80211_parse_htcap(struct ieee80211_node *ni, const uint8_t *ie) 1669 { 1670 if (ie[0] == IEEE80211_ELEMID_VENDOR) { 1671 /* 1672 * Station used Vendor OUI ie to associate; 1673 * mark the node so when we respond we'll use 1674 * the Vendor OUI's and not the standard ie's. 1675 */ 1676 ni->ni_flags |= IEEE80211_NODE_HTCOMPAT; 1677 ie += 4; 1678 } else 1679 ni->ni_flags &= ~IEEE80211_NODE_HTCOMPAT; 1680 1681 ni->ni_htcap = le16dec(ie + 1682 __offsetof(struct ieee80211_ie_htcap, hc_cap)); 1683 ni->ni_htparam = ie[__offsetof(struct ieee80211_ie_htcap, hc_param)]; 1684 } 1685 1686 static void 1687 htinfo_parse(struct ieee80211_node *ni, 1688 const struct ieee80211_ie_htinfo *htinfo) 1689 { 1690 uint16_t w; 1691 1692 ni->ni_htctlchan = htinfo->hi_ctrlchannel; 1693 ni->ni_ht2ndchan = _IEEE80211_SHIFTMASK(htinfo->hi_byte1, 1694 IEEE80211_HTINFO_2NDCHAN); 1695 w = le16dec(&htinfo->hi_byte2); 1696 ni->ni_htopmode = _IEEE80211_SHIFTMASK(w, IEEE80211_HTINFO_OPMODE); 1697 w = le16dec(&htinfo->hi_byte45); 1698 ni->ni_htstbc = _IEEE80211_SHIFTMASK(w, IEEE80211_HTINFO_BASIC_STBCMCS); 1699 } 1700 1701 /* 1702 * Parse an 802.11n HT info ie and save useful information 1703 * to the node state. Note this does not effect any state 1704 * changes such as for channel width change. 1705 */ 1706 void 1707 ieee80211_parse_htinfo(struct ieee80211_node *ni, const uint8_t *ie) 1708 { 1709 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1710 ie += 4; 1711 htinfo_parse(ni, (const struct ieee80211_ie_htinfo *) ie); 1712 } 1713 1714 /* 1715 * Handle 11n/11ac channel switch. 1716 * 1717 * Use the received HT/VHT ie's to identify the right channel to use. 1718 * If we cannot locate it in the channel table then fallback to 1719 * legacy operation. 1720 * 1721 * Note that we use this information to identify the node's 1722 * channel only; the caller is responsible for insuring any 1723 * required channel change is done (e.g. in sta mode when 1724 * parsing the contents of a beacon frame). 1725 */ 1726 static int 1727 htinfo_update_chw(struct ieee80211_node *ni, int htflags, int vhtflags) 1728 { 1729 struct ieee80211com *ic = ni->ni_ic; 1730 struct ieee80211_channel *c; 1731 int chanflags; 1732 int ret = 0; 1733 1734 /* 1735 * First step - do HT/VHT only channel lookup based on operating mode 1736 * flags. This involves masking out the VHT flags as well. 1737 * Otherwise we end up doing the full channel walk each time 1738 * we trigger this, which is expensive. 1739 */ 1740 chanflags = (ni->ni_chan->ic_flags &~ 1741 (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags | vhtflags; 1742 1743 if (chanflags == ni->ni_chan->ic_flags) 1744 goto done; 1745 1746 /* 1747 * If HT /or/ VHT flags have changed then check both. 1748 * We need to start by picking a HT channel anyway. 1749 */ 1750 1751 c = NULL; 1752 chanflags = (ni->ni_chan->ic_flags &~ 1753 (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags; 1754 /* XXX not right for ht40- */ 1755 c = ieee80211_find_channel(ic, ni->ni_chan->ic_freq, chanflags); 1756 if (c == NULL && (htflags & IEEE80211_CHAN_HT40)) { 1757 /* 1758 * No HT40 channel entry in our table; fall back 1759 * to HT20 operation. This should not happen. 1760 */ 1761 c = findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT20); 1762 #if 0 1763 IEEE80211_NOTE(ni->ni_vap, 1764 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1765 "no HT40 channel (freq %u), falling back to HT20", 1766 ni->ni_chan->ic_freq); 1767 #endif 1768 /* XXX stat */ 1769 } 1770 1771 /* Nothing found - leave it alone; move onto VHT */ 1772 if (c == NULL) 1773 c = ni->ni_chan; 1774 1775 /* 1776 * If it's non-HT, then bail out now. 1777 */ 1778 if (! IEEE80211_IS_CHAN_HT(c)) { 1779 IEEE80211_NOTE(ni->ni_vap, 1780 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1781 "not HT; skipping VHT check (%u/0x%x)", 1782 c->ic_freq, c->ic_flags); 1783 goto done; 1784 } 1785 1786 /* 1787 * Next step - look at the current VHT flags and determine 1788 * if we need to upgrade. Mask out the VHT and HT flags since 1789 * the vhtflags field will already have the correct HT 1790 * flags to use. 1791 */ 1792 if (IEEE80211_CONF_VHT(ic) && ni->ni_vhtcap != 0 && vhtflags != 0) { 1793 chanflags = (c->ic_flags 1794 &~ (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) 1795 | vhtflags; 1796 IEEE80211_NOTE(ni->ni_vap, 1797 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1798 ni, 1799 "%s: VHT; chanwidth=0x%02x; vhtflags=0x%08x", 1800 __func__, ni->ni_vht_chanwidth, vhtflags); 1801 1802 IEEE80211_NOTE(ni->ni_vap, 1803 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1804 ni, 1805 "%s: VHT; trying lookup for %d/0x%08x", 1806 __func__, c->ic_freq, chanflags); 1807 c = ieee80211_find_channel(ic, c->ic_freq, chanflags); 1808 } 1809 1810 /* Finally, if it's changed */ 1811 if (c != NULL && c != ni->ni_chan) { 1812 IEEE80211_NOTE(ni->ni_vap, 1813 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1814 "switch station to %s%d channel %u/0x%x", 1815 IEEE80211_IS_CHAN_VHT(c) ? "VHT" : "HT", 1816 IEEE80211_IS_CHAN_VHT80(c) ? 80 : 1817 (IEEE80211_IS_CHAN_HT40(c) ? 40 : 20), 1818 c->ic_freq, c->ic_flags); 1819 ni->ni_chan = c; 1820 ret = 1; 1821 } 1822 /* NB: caller responsible for forcing any channel change */ 1823 1824 done: 1825 /* update node's (11n) tx channel width */ 1826 ni->ni_chw = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 1827 IEEE80211_STA_RX_BW_40 : IEEE80211_STA_RX_BW_20; 1828 return (ret); 1829 } 1830 1831 /* 1832 * Update 11n MIMO PS state according to received htcap. 1833 */ 1834 static __inline int 1835 htcap_update_mimo_ps(struct ieee80211_node *ni) 1836 { 1837 uint16_t oflags = ni->ni_flags; 1838 1839 switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) { 1840 case IEEE80211_HTCAP_SMPS_DYNAMIC: 1841 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1842 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 1843 break; 1844 case IEEE80211_HTCAP_SMPS_ENA: 1845 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1846 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1847 break; 1848 case IEEE80211_HTCAP_SMPS_OFF: 1849 default: /* disable on rx of reserved value */ 1850 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 1851 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1852 break; 1853 } 1854 return (oflags ^ ni->ni_flags); 1855 } 1856 1857 /* 1858 * Update short GI state according to received htcap 1859 * and local settings. 1860 */ 1861 static __inline void 1862 htcap_update_shortgi(struct ieee80211_node *ni) 1863 { 1864 struct ieee80211vap *vap = ni->ni_vap; 1865 1866 ni->ni_flags &= ~(IEEE80211_NODE_SGI20|IEEE80211_NODE_SGI40); 1867 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) && 1868 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)) 1869 ni->ni_flags |= IEEE80211_NODE_SGI20; 1870 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) && 1871 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)) 1872 ni->ni_flags |= IEEE80211_NODE_SGI40; 1873 } 1874 1875 /* 1876 * Update LDPC state according to received htcap 1877 * and local settings. 1878 */ 1879 static __inline void 1880 htcap_update_ldpc(struct ieee80211_node *ni) 1881 { 1882 struct ieee80211vap *vap = ni->ni_vap; 1883 1884 if ((ni->ni_htcap & IEEE80211_HTCAP_LDPC) && 1885 (vap->iv_flags_ht & IEEE80211_FHT_LDPC_TX)) 1886 ni->ni_flags |= IEEE80211_NODE_LDPC; 1887 } 1888 1889 /* 1890 * Parse and update HT-related state extracted from 1891 * the HT cap and info ie's. 1892 * 1893 * This is called from the STA management path and 1894 * the ieee80211_node_join() path. It will take into 1895 * account the IEs discovered during scanning and 1896 * adjust things accordingly. 1897 */ 1898 void 1899 ieee80211_ht_updateparams(struct ieee80211_node *ni, 1900 const uint8_t *htcapie, const uint8_t *htinfoie) 1901 { 1902 struct ieee80211vap *vap = ni->ni_vap; 1903 const struct ieee80211_ie_htinfo *htinfo; 1904 1905 ieee80211_parse_htcap(ni, htcapie); 1906 if (vap->iv_htcaps & IEEE80211_HTC_SMPS) 1907 htcap_update_mimo_ps(ni); 1908 htcap_update_shortgi(ni); 1909 htcap_update_ldpc(ni); 1910 1911 if (htinfoie[0] == IEEE80211_ELEMID_VENDOR) 1912 htinfoie += 4; 1913 htinfo = (const struct ieee80211_ie_htinfo *) htinfoie; 1914 htinfo_parse(ni, htinfo); 1915 1916 /* 1917 * Defer the node channel change; we need to now 1918 * update VHT parameters before we do it. 1919 */ 1920 1921 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_RIFSMODE_PERM) && 1922 (vap->iv_flags_ht & IEEE80211_FHT_RIFS)) 1923 ni->ni_flags |= IEEE80211_NODE_RIFS; 1924 else 1925 ni->ni_flags &= ~IEEE80211_NODE_RIFS; 1926 } 1927 1928 static uint32_t 1929 ieee80211_vht_get_vhtflags(struct ieee80211_node *ni, uint32_t htflags) 1930 { 1931 struct ieee80211vap *vap = ni->ni_vap; 1932 uint32_t vhtflags = 0; 1933 1934 vhtflags = 0; 1935 if (ni->ni_flags & IEEE80211_NODE_VHT && vap->iv_vht_flags & IEEE80211_FVHT_VHT) { 1936 if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_160MHZ) && 1937 IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_IS_160MHZ(vap->iv_vht_cap.vht_cap_info) && 1938 (vap->iv_vht_flags & IEEE80211_FVHT_USEVHT160)) { 1939 vhtflags = IEEE80211_CHAN_VHT160; 1940 /* Mirror the HT40 flags */ 1941 if (htflags == IEEE80211_CHAN_HT40U) { 1942 vhtflags |= IEEE80211_CHAN_HT40U; 1943 } else if (htflags == IEEE80211_CHAN_HT40D) { 1944 vhtflags |= IEEE80211_CHAN_HT40D; 1945 } 1946 } else if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_80P80MHZ) && 1947 IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_IS_160_80P80MHZ(vap->iv_vht_cap.vht_cap_info) && 1948 (vap->iv_vht_flags & IEEE80211_FVHT_USEVHT80P80)) { 1949 vhtflags = IEEE80211_CHAN_VHT80P80; 1950 /* Mirror the HT40 flags */ 1951 if (htflags == IEEE80211_CHAN_HT40U) { 1952 vhtflags |= IEEE80211_CHAN_HT40U; 1953 } else if (htflags == IEEE80211_CHAN_HT40D) { 1954 vhtflags |= IEEE80211_CHAN_HT40D; 1955 } 1956 } else if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_80MHZ) && 1957 (vap->iv_vht_flags & IEEE80211_FVHT_USEVHT80)) { 1958 vhtflags = IEEE80211_CHAN_VHT80; 1959 /* Mirror the HT40 flags */ 1960 if (htflags == IEEE80211_CHAN_HT40U) { 1961 vhtflags |= IEEE80211_CHAN_HT40U; 1962 } else if (htflags == IEEE80211_CHAN_HT40D) { 1963 vhtflags |= IEEE80211_CHAN_HT40D; 1964 } 1965 } else if (ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_USE_HT) { 1966 /* Mirror the HT40 flags */ 1967 /* 1968 * XXX TODO: if ht40 is disabled, but vht40 isn't 1969 * disabled then this logic will get very, very sad. 1970 * It's quite possible the only sane thing to do is 1971 * to not have vht40 as an option, and just obey 1972 * 'ht40' as that flag. 1973 */ 1974 if ((htflags == IEEE80211_CHAN_HT40U) && 1975 (vap->iv_vht_flags & IEEE80211_FVHT_USEVHT40)) { 1976 vhtflags = IEEE80211_CHAN_VHT40U 1977 | IEEE80211_CHAN_HT40U; 1978 } else if (htflags == IEEE80211_CHAN_HT40D && 1979 (vap->iv_vht_flags & IEEE80211_FVHT_USEVHT40)) { 1980 vhtflags = IEEE80211_CHAN_VHT40D 1981 | IEEE80211_CHAN_HT40D; 1982 } else if (htflags == IEEE80211_CHAN_HT20) { 1983 vhtflags = IEEE80211_CHAN_VHT20 1984 | IEEE80211_CHAN_HT20; 1985 } 1986 } else { 1987 vhtflags = IEEE80211_CHAN_VHT20; 1988 } 1989 } 1990 return (vhtflags); 1991 } 1992 1993 /* 1994 * Final part of updating the HT parameters. 1995 * 1996 * This is called from the STA management path and 1997 * the ieee80211_node_join() path. It will take into 1998 * account the IEs discovered during scanning and 1999 * adjust things accordingly. 2000 * 2001 * This is done after a call to ieee80211_ht_updateparams() 2002 * because it (and the upcoming VHT version of updateparams) 2003 * needs to ensure everything is parsed before htinfo_update_chw() 2004 * is called - which will change the channel config for the 2005 * node for us. 2006 */ 2007 int 2008 ieee80211_ht_updateparams_final(struct ieee80211_node *ni, 2009 const uint8_t *htcapie, const uint8_t *htinfoie) 2010 { 2011 struct ieee80211vap *vap = ni->ni_vap; 2012 const struct ieee80211_ie_htinfo *htinfo; 2013 int htflags, vhtflags; 2014 int ret = 0; 2015 2016 htinfo = (const struct ieee80211_ie_htinfo *) htinfoie; 2017 2018 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 2019 IEEE80211_CHAN_HT20 : 0; 2020 2021 /* NB: honor operating mode constraint */ 2022 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH_2040) && 2023 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 2024 if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_ABOVE) 2025 htflags = IEEE80211_CHAN_HT40U; 2026 else if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_BELOW) 2027 htflags = IEEE80211_CHAN_HT40D; 2028 } 2029 2030 /* 2031 * VHT flags - do much the same; check whether VHT is available 2032 * and if so, what our ideal channel use would be based on our 2033 * capabilities and the (pre-parsed) VHT info IE. 2034 */ 2035 vhtflags = ieee80211_vht_get_vhtflags(ni, htflags); 2036 2037 if (htinfo_update_chw(ni, htflags, vhtflags)) 2038 ret = 1; 2039 2040 return (ret); 2041 } 2042 2043 /* 2044 * Parse and update HT-related state extracted from the HT cap ie 2045 * for a station joining an HT BSS. 2046 * 2047 * This is called from the hostap path for each station. 2048 */ 2049 void 2050 ieee80211_ht_updatehtcap(struct ieee80211_node *ni, const uint8_t *htcapie) 2051 { 2052 struct ieee80211vap *vap = ni->ni_vap; 2053 2054 ieee80211_parse_htcap(ni, htcapie); 2055 if (vap->iv_htcaps & IEEE80211_HTC_SMPS) 2056 htcap_update_mimo_ps(ni); 2057 htcap_update_shortgi(ni); 2058 htcap_update_ldpc(ni); 2059 } 2060 2061 /* 2062 * Called once HT and VHT capabilities are parsed in hostap mode - 2063 * this will adjust the channel configuration of the given node 2064 * based on the configuration and capabilities. 2065 */ 2066 void 2067 ieee80211_ht_updatehtcap_final(struct ieee80211_node *ni) 2068 { 2069 struct ieee80211vap *vap = ni->ni_vap; 2070 int htflags; 2071 int vhtflags; 2072 2073 /* NB: honor operating mode constraint */ 2074 /* XXX 40 MHz intolerant */ 2075 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 2076 IEEE80211_CHAN_HT20 : 0; 2077 if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) && 2078 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 2079 if (IEEE80211_IS_CHAN_HT40U(vap->iv_bss->ni_chan)) 2080 htflags = IEEE80211_CHAN_HT40U; 2081 else if (IEEE80211_IS_CHAN_HT40D(vap->iv_bss->ni_chan)) 2082 htflags = IEEE80211_CHAN_HT40D; 2083 } 2084 /* 2085 * VHT flags - do much the same; check whether VHT is available 2086 * and if so, what our ideal channel use would be based on our 2087 * capabilities and the (pre-parsed) VHT info IE. 2088 */ 2089 vhtflags = ieee80211_vht_get_vhtflags(ni, htflags); 2090 2091 (void) htinfo_update_chw(ni, htflags, vhtflags); 2092 } 2093 2094 /* 2095 * Install received HT rate set by parsing the HT cap ie. 2096 */ 2097 int 2098 ieee80211_setup_htrates(struct ieee80211_node *ni, const uint8_t *ie, int flags) 2099 { 2100 struct ieee80211com *ic = ni->ni_ic; 2101 struct ieee80211vap *vap = ni->ni_vap; 2102 const struct ieee80211_ie_htcap *htcap; 2103 struct ieee80211_htrateset *rs; 2104 int i, maxequalmcs, maxunequalmcs; 2105 2106 maxequalmcs = ic->ic_txstream * 8 - 1; 2107 maxunequalmcs = 0; 2108 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 2109 if (ic->ic_txstream >= 2) 2110 maxunequalmcs = 38; 2111 if (ic->ic_txstream >= 3) 2112 maxunequalmcs = 52; 2113 if (ic->ic_txstream >= 4) 2114 maxunequalmcs = 76; 2115 } 2116 2117 rs = &ni->ni_htrates; 2118 memset(rs, 0, sizeof(*rs)); 2119 if (ie != NULL) { 2120 if (ie[0] == IEEE80211_ELEMID_VENDOR) 2121 ie += 4; 2122 htcap = (const struct ieee80211_ie_htcap *) ie; 2123 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 2124 if (isclr(htcap->hc_mcsset, i)) 2125 continue; 2126 if (rs->rs_nrates == IEEE80211_HTRATE_MAXSIZE) { 2127 IEEE80211_NOTE(vap, 2128 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 2129 "WARNING, HT rate set too large; only " 2130 "using %u rates", IEEE80211_HTRATE_MAXSIZE); 2131 vap->iv_stats.is_rx_rstoobig++; 2132 break; 2133 } 2134 if (i <= 31 && i > maxequalmcs) 2135 continue; 2136 if (i == 32 && 2137 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0) 2138 continue; 2139 if (i > 32 && i > maxunequalmcs) 2140 continue; 2141 rs->rs_rates[rs->rs_nrates++] = i; 2142 } 2143 } 2144 return ieee80211_fix_rate(ni, (struct ieee80211_rateset *) rs, flags); 2145 } 2146 2147 /* 2148 * Mark rates in a node's HT rate set as basic according 2149 * to the information in the supplied HT info ie. 2150 */ 2151 void 2152 ieee80211_setup_basic_htrates(struct ieee80211_node *ni, const uint8_t *ie) 2153 { 2154 const struct ieee80211_ie_htinfo *htinfo; 2155 struct ieee80211_htrateset *rs; 2156 int i, j; 2157 2158 if (ie[0] == IEEE80211_ELEMID_VENDOR) 2159 ie += 4; 2160 htinfo = (const struct ieee80211_ie_htinfo *) ie; 2161 rs = &ni->ni_htrates; 2162 if (rs->rs_nrates == 0) { 2163 IEEE80211_NOTE(ni->ni_vap, 2164 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 2165 "%s", "WARNING, empty HT rate set"); 2166 return; 2167 } 2168 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 2169 if (isclr(htinfo->hi_basicmcsset, i)) 2170 continue; 2171 for (j = 0; j < rs->rs_nrates; j++) 2172 if ((rs->rs_rates[j] & IEEE80211_RATE_VAL) == i) 2173 rs->rs_rates[j] |= IEEE80211_RATE_BASIC; 2174 } 2175 } 2176 2177 static void 2178 ampdu_tx_setup(struct ieee80211_tx_ampdu *tap) 2179 { 2180 callout_init(&tap->txa_timer, 1); 2181 tap->txa_flags |= IEEE80211_AGGR_SETUP; 2182 tap->txa_lastsample = ticks; 2183 } 2184 2185 static void 2186 ampdu_tx_stop(struct ieee80211_tx_ampdu *tap) 2187 { 2188 struct ieee80211_node *ni = tap->txa_ni; 2189 struct ieee80211com *ic = ni->ni_ic; 2190 2191 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2192 tap->txa_ni, 2193 "%s: called", 2194 __func__); 2195 2196 KASSERT(tap->txa_flags & IEEE80211_AGGR_SETUP, 2197 ("txa_flags 0x%x tid %d ac %d", tap->txa_flags, tap->txa_tid, 2198 TID_TO_WME_AC(tap->txa_tid))); 2199 2200 /* 2201 * Stop BA stream if setup so driver has a chance 2202 * to reclaim any resources it might have allocated. 2203 */ 2204 ic->ic_addba_stop(ni, tap); 2205 /* 2206 * Stop any pending BAR transmit. 2207 */ 2208 bar_stop_timer(tap); 2209 2210 /* 2211 * Reset packet estimate. 2212 */ 2213 ieee80211_txampdu_init_pps(tap); 2214 2215 /* NB: clearing NAK means we may re-send ADDBA */ 2216 tap->txa_flags &= ~(IEEE80211_AGGR_SETUP | IEEE80211_AGGR_NAK); 2217 } 2218 2219 /* 2220 * ADDBA response timeout. 2221 * 2222 * If software aggregation and per-TID queue management was done here, 2223 * that queue would be unpaused after the ADDBA timeout occurs. 2224 */ 2225 static void 2226 addba_timeout(void *arg) 2227 { 2228 struct ieee80211_tx_ampdu *tap = arg; 2229 struct ieee80211_node *ni = tap->txa_ni; 2230 struct ieee80211com *ic = ni->ni_ic; 2231 2232 /* XXX ? */ 2233 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 2234 tap->txa_attempts++; 2235 ic->ic_addba_response_timeout(ni, tap); 2236 } 2237 2238 static void 2239 addba_start_timeout(struct ieee80211_tx_ampdu *tap) 2240 { 2241 /* XXX use CALLOUT_PENDING instead? */ 2242 callout_reset(&tap->txa_timer, ieee80211_addba_timeout, 2243 addba_timeout, tap); 2244 tap->txa_flags |= IEEE80211_AGGR_XCHGPEND; 2245 tap->txa_nextrequest = ticks + ieee80211_addba_timeout; 2246 } 2247 2248 static void 2249 addba_stop_timeout(struct ieee80211_tx_ampdu *tap) 2250 { 2251 /* XXX use CALLOUT_PENDING instead? */ 2252 if (tap->txa_flags & IEEE80211_AGGR_XCHGPEND) { 2253 callout_stop(&tap->txa_timer); 2254 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 2255 } 2256 } 2257 2258 static void 2259 null_addba_response_timeout(struct ieee80211_node *ni, 2260 struct ieee80211_tx_ampdu *tap) 2261 { 2262 } 2263 2264 /* 2265 * Default method for requesting A-MPDU tx aggregation. 2266 * We setup the specified state block and start a timer 2267 * to wait for an ADDBA response frame. 2268 */ 2269 static int 2270 ieee80211_addba_request(struct ieee80211_node *ni, 2271 struct ieee80211_tx_ampdu *tap, 2272 int dialogtoken, int baparamset, int batimeout) 2273 { 2274 int bufsiz; 2275 2276 /* XXX locking */ 2277 tap->txa_token = dialogtoken; 2278 tap->txa_flags |= IEEE80211_AGGR_IMMEDIATE; 2279 bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ); 2280 tap->txa_wnd = (bufsiz == 0) ? 2281 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 2282 addba_start_timeout(tap); 2283 return 1; 2284 } 2285 2286 /* 2287 * Called by drivers that wish to request an ADDBA session be 2288 * setup. This brings it up and starts the request timer. 2289 */ 2290 int 2291 ieee80211_ampdu_tx_request_ext(struct ieee80211_node *ni, int tid) 2292 { 2293 struct ieee80211_tx_ampdu *tap; 2294 2295 if (tid < 0 || tid > 15) 2296 return (0); 2297 tap = &ni->ni_tx_ampdu[tid]; 2298 2299 /* XXX locking */ 2300 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 2301 /* do deferred setup of state */ 2302 ampdu_tx_setup(tap); 2303 } 2304 /* XXX hack for not doing proper locking */ 2305 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 2306 addba_start_timeout(tap); 2307 return (1); 2308 } 2309 2310 /* 2311 * Called by drivers that have marked a session as active. 2312 */ 2313 int 2314 ieee80211_ampdu_tx_request_active_ext(struct ieee80211_node *ni, int tid, 2315 int status) 2316 { 2317 struct ieee80211_tx_ampdu *tap; 2318 2319 if (tid < 0 || tid > 15) 2320 return (0); 2321 tap = &ni->ni_tx_ampdu[tid]; 2322 2323 /* XXX locking */ 2324 addba_stop_timeout(tap); 2325 if (status == 1) { 2326 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 2327 tap->txa_attempts = 0; 2328 } else { 2329 /* mark tid so we don't try again */ 2330 tap->txa_flags |= IEEE80211_AGGR_NAK; 2331 } 2332 return (1); 2333 } 2334 2335 /* 2336 * Default method for processing an A-MPDU tx aggregation 2337 * response. We shutdown any pending timer and update the 2338 * state block according to the reply. 2339 */ 2340 static int 2341 ieee80211_addba_response(struct ieee80211_node *ni, 2342 struct ieee80211_tx_ampdu *tap, 2343 int status, int baparamset, int batimeout) 2344 { 2345 struct ieee80211vap *vap = ni->ni_vap; 2346 int bufsiz; 2347 2348 /* XXX locking */ 2349 addba_stop_timeout(tap); 2350 if (status == IEEE80211_STATUS_SUCCESS) { 2351 bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ); 2352 /* XXX override our request? */ 2353 tap->txa_wnd = (bufsiz == 0) ? 2354 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 2355 #ifdef __notyet__ 2356 tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_TID); 2357 #endif 2358 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 2359 tap->txa_attempts = 0; 2360 /* TODO: this should be a vap flag */ 2361 if ((vap->iv_htcaps & IEEE80211_HTC_TX_AMSDU_AMPDU) && 2362 (ni->ni_flags & IEEE80211_NODE_AMSDU_TX) && 2363 (_IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU))) 2364 tap->txa_flags |= IEEE80211_AGGR_AMSDU; 2365 else 2366 tap->txa_flags &= ~IEEE80211_AGGR_AMSDU; 2367 } else { 2368 /* mark tid so we don't try again */ 2369 tap->txa_flags |= IEEE80211_AGGR_NAK; 2370 } 2371 return 1; 2372 } 2373 2374 /* 2375 * Default method for stopping A-MPDU tx aggregation. 2376 * Any timer is cleared and we drain any pending frames. 2377 */ 2378 static void 2379 ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 2380 { 2381 /* XXX locking */ 2382 addba_stop_timeout(tap); 2383 if (tap->txa_flags & IEEE80211_AGGR_RUNNING) { 2384 /* XXX clear aggregation queue */ 2385 tap->txa_flags &= ~(IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_AMSDU); 2386 } 2387 tap->txa_attempts = 0; 2388 } 2389 2390 /* 2391 * Process a received action frame using the default aggregation 2392 * policy. We intercept ADDBA-related frames and use them to 2393 * update our aggregation state. All other frames are passed up 2394 * for processing by ieee80211_recv_action. 2395 */ 2396 static int 2397 ht_recv_action_ba_addba_request(struct ieee80211_node *ni, 2398 const struct ieee80211_frame *wh, 2399 const uint8_t *frm, const uint8_t *efrm) 2400 { 2401 struct ieee80211com *ic = ni->ni_ic; 2402 struct ieee80211vap *vap = ni->ni_vap; 2403 struct ieee80211_rx_ampdu *rap; 2404 uint8_t dialogtoken; 2405 uint16_t baparamset, batimeout, baseqctl; 2406 uint16_t args[5]; 2407 int tid; 2408 2409 dialogtoken = frm[2]; 2410 baparamset = le16dec(frm+3); 2411 batimeout = le16dec(frm+5); 2412 baseqctl = le16dec(frm+7); 2413 2414 tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_TID); 2415 2416 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2417 "recv ADDBA request: dialogtoken %u baparamset 0x%x " 2418 "(tid %d bufsiz %d) batimeout %d baseqctl %d:%d amsdu %d", 2419 dialogtoken, baparamset, 2420 tid, _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ), 2421 batimeout, 2422 _IEEE80211_MASKSHIFT(baseqctl, IEEE80211_BASEQ_START), 2423 _IEEE80211_MASKSHIFT(baseqctl, IEEE80211_BASEQ_FRAG), 2424 _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU)); 2425 2426 rap = &ni->ni_rx_ampdu[tid]; 2427 2428 /* Send ADDBA response */ 2429 args[0] = dialogtoken; 2430 /* 2431 * NB: We ack only if the sta associated with HT and 2432 * the ap is configured to do AMPDU rx (the latter 2433 * violates the 11n spec and is mostly for testing). 2434 */ 2435 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_RX) && 2436 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX)) { 2437 /* XXX TODO: handle ampdu_rx_start failure */ 2438 ic->ic_ampdu_rx_start(ni, rap, 2439 baparamset, batimeout, baseqctl); 2440 2441 args[1] = IEEE80211_STATUS_SUCCESS; 2442 } else { 2443 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2444 ni, "reject ADDBA request: %s", 2445 ni->ni_flags & IEEE80211_NODE_AMPDU_RX ? 2446 "administratively disabled" : 2447 "not negotiated for station"); 2448 vap->iv_stats.is_addba_reject++; 2449 args[1] = IEEE80211_STATUS_UNSPECIFIED; 2450 } 2451 /* XXX honor rap flags? */ 2452 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 2453 | _IEEE80211_SHIFTMASK(tid, IEEE80211_BAPS_TID) 2454 | _IEEE80211_SHIFTMASK(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ) 2455 ; 2456 2457 /* 2458 * TODO: we're out of iv_flags_ht fields; once 2459 * this is extended we should make this configurable. 2460 */ 2461 if ((baparamset & IEEE80211_BAPS_AMSDU) && 2462 (ni->ni_flags & IEEE80211_NODE_AMSDU_RX) && 2463 (vap->iv_htcaps & IEEE80211_HTC_RX_AMSDU_AMPDU)) 2464 args[2] |= IEEE80211_BAPS_AMSDU; 2465 2466 args[3] = 0; 2467 args[4] = 0; 2468 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2469 IEEE80211_ACTION_BA_ADDBA_RESPONSE, args); 2470 return 0; 2471 } 2472 2473 static int 2474 ht_recv_action_ba_addba_response(struct ieee80211_node *ni, 2475 const struct ieee80211_frame *wh, 2476 const uint8_t *frm, const uint8_t *efrm) 2477 { 2478 struct ieee80211com *ic = ni->ni_ic; 2479 struct ieee80211vap *vap = ni->ni_vap; 2480 struct ieee80211_tx_ampdu *tap; 2481 uint8_t dialogtoken, policy; 2482 uint16_t baparamset, batimeout, code; 2483 int tid; 2484 #ifdef IEEE80211_DEBUG 2485 int amsdu, bufsiz; 2486 #endif 2487 2488 dialogtoken = frm[2]; 2489 code = le16dec(frm+3); 2490 baparamset = le16dec(frm+5); 2491 tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_TID); 2492 #ifdef IEEE80211_DEBUG 2493 bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ); 2494 amsdu = !! _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU); 2495 #endif 2496 policy = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_POLICY); 2497 batimeout = le16dec(frm+7); 2498 2499 tap = &ni->ni_tx_ampdu[tid]; 2500 if ((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 2501 IEEE80211_DISCARD_MAC(vap, 2502 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2503 ni->ni_macaddr, "ADDBA response", 2504 "no pending ADDBA, tid %d dialogtoken %u " 2505 "code %d", tid, dialogtoken, code); 2506 vap->iv_stats.is_addba_norequest++; 2507 return 0; 2508 } 2509 if (dialogtoken != tap->txa_token) { 2510 IEEE80211_DISCARD_MAC(vap, 2511 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2512 ni->ni_macaddr, "ADDBA response", 2513 "dialogtoken mismatch: waiting for %d, " 2514 "received %d, tid %d code %d", 2515 tap->txa_token, dialogtoken, tid, code); 2516 vap->iv_stats.is_addba_badtoken++; 2517 return 0; 2518 } 2519 /* NB: assumes IEEE80211_AGGR_IMMEDIATE is 1 */ 2520 if (policy != (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE)) { 2521 IEEE80211_DISCARD_MAC(vap, 2522 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2523 ni->ni_macaddr, "ADDBA response", 2524 "policy mismatch: expecting %s, " 2525 "received %s, tid %d code %d", 2526 tap->txa_flags & IEEE80211_AGGR_IMMEDIATE, 2527 policy, tid, code); 2528 vap->iv_stats.is_addba_badpolicy++; 2529 return 0; 2530 } 2531 #if 0 2532 /* XXX we take MIN in ieee80211_addba_response */ 2533 if (bufsiz > IEEE80211_AGGR_BAWMAX) { 2534 IEEE80211_DISCARD_MAC(vap, 2535 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2536 ni->ni_macaddr, "ADDBA response", 2537 "BA window too large: max %d, " 2538 "received %d, tid %d code %d", 2539 bufsiz, IEEE80211_AGGR_BAWMAX, tid, code); 2540 vap->iv_stats.is_addba_badbawinsize++; 2541 return 0; 2542 } 2543 #endif 2544 2545 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2546 "recv ADDBA response: dialogtoken %u code %d " 2547 "baparamset 0x%x (tid %d bufsiz %d amsdu %d) batimeout %d", 2548 dialogtoken, code, baparamset, tid, 2549 bufsiz, 2550 amsdu, 2551 batimeout); 2552 ic->ic_addba_response(ni, tap, code, baparamset, batimeout); 2553 return 0; 2554 } 2555 2556 static int 2557 ht_recv_action_ba_delba(struct ieee80211_node *ni, 2558 const struct ieee80211_frame *wh, 2559 const uint8_t *frm, const uint8_t *efrm) 2560 { 2561 struct ieee80211com *ic = ni->ni_ic; 2562 struct ieee80211_rx_ampdu *rap; 2563 struct ieee80211_tx_ampdu *tap; 2564 uint16_t baparamset; 2565 #ifdef IEEE80211_DEBUG 2566 uint16_t code; 2567 #endif 2568 int tid; 2569 2570 baparamset = le16dec(frm+2); 2571 #ifdef IEEE80211_DEBUG 2572 code = le16dec(frm+4); 2573 #endif 2574 2575 tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_DELBAPS_TID); 2576 2577 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2578 "recv DELBA: baparamset 0x%x (tid %d initiator %d) " 2579 "code %d", baparamset, tid, 2580 _IEEE80211_MASKSHIFT(baparamset, IEEE80211_DELBAPS_INIT), code); 2581 2582 if ((baparamset & IEEE80211_DELBAPS_INIT) == 0) { 2583 tap = &ni->ni_tx_ampdu[tid]; 2584 ic->ic_addba_stop(ni, tap); 2585 } else { 2586 rap = &ni->ni_rx_ampdu[tid]; 2587 ic->ic_ampdu_rx_stop(ni, rap); 2588 } 2589 return 0; 2590 } 2591 2592 static int 2593 ht_recv_action_ht_txchwidth(struct ieee80211_node *ni, 2594 const struct ieee80211_frame *wh __unused, 2595 const uint8_t *frm, const uint8_t *efrm __unused) 2596 { 2597 int chw; 2598 2599 /* If 20/40 is not supported the chw cannot change. */ 2600 if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) == 0) 2601 return (0); 2602 2603 chw = (frm[2] == IEEE80211_A_HT_TXCHWIDTH_2040) ? 2604 IEEE80211_STA_RX_BW_40 : IEEE80211_STA_RX_BW_20; 2605 2606 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2607 "%s: HT txchwidth, width %d%s (%s)", __func__, 2608 chw, ni->ni_chw != chw ? "*" : "", ieee80211_ni_chw_to_str(chw)); 2609 if (chw != ni->ni_chw) { 2610 /* XXX does this need to change the ht40 station count? */ 2611 ni->ni_chw = chw; 2612 /* XXX notify on change */ 2613 } 2614 return 0; 2615 } 2616 2617 static int 2618 ht_recv_action_ht_mimopwrsave(struct ieee80211_node *ni, 2619 const struct ieee80211_frame *wh, 2620 const uint8_t *frm, const uint8_t *efrm) 2621 { 2622 const struct ieee80211_action_ht_mimopowersave *mps = 2623 (const struct ieee80211_action_ht_mimopowersave *) frm; 2624 2625 /* XXX check iv_htcaps */ 2626 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA) 2627 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 2628 else 2629 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 2630 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_MODE) 2631 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 2632 else 2633 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 2634 /* XXX notify on change */ 2635 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2636 "%s: HT MIMO PS (%s%s)", __func__, 2637 (ni->ni_flags & IEEE80211_NODE_MIMO_PS) ? "on" : "off", 2638 (ni->ni_flags & IEEE80211_NODE_MIMO_RTS) ? "+rts" : "" 2639 ); 2640 return 0; 2641 } 2642 2643 /* 2644 * Transmit processing. 2645 */ 2646 2647 /* 2648 * Check if A-MPDU should be requested/enabled for a stream. 2649 * We require a traffic rate above a per-AC threshold and we 2650 * also handle backoff from previous failed attempts. 2651 * 2652 * Drivers may override this method to bring in information 2653 * such as link state conditions in making the decision. 2654 */ 2655 static int 2656 ieee80211_ampdu_enable(struct ieee80211_node *ni, 2657 struct ieee80211_tx_ampdu *tap) 2658 { 2659 struct ieee80211vap *vap = ni->ni_vap; 2660 2661 if (tap->txa_avgpps < 2662 vap->iv_ampdu_mintraffic[TID_TO_WME_AC(tap->txa_tid)]) 2663 return 0; 2664 /* XXX check rssi? */ 2665 if (tap->txa_attempts >= ieee80211_addba_maxtries && 2666 ieee80211_time_after(ticks, tap->txa_nextrequest)) { 2667 /* 2668 * Don't retry too often; txa_nextrequest is set 2669 * to the minimum interval we'll retry after 2670 * ieee80211_addba_maxtries failed attempts are made. 2671 */ 2672 return 0; 2673 } 2674 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 2675 "enable AMPDU on tid %d (%s), avgpps %d pkts %d attempt %d", 2676 tap->txa_tid, ieee80211_wme_acnames[TID_TO_WME_AC(tap->txa_tid)], 2677 tap->txa_avgpps, tap->txa_pkts, tap->txa_attempts); 2678 return 1; 2679 } 2680 2681 /* 2682 * Request A-MPDU tx aggregation. Setup local state and 2683 * issue an ADDBA request. BA use will only happen after 2684 * the other end replies with ADDBA response. 2685 */ 2686 int 2687 ieee80211_ampdu_request(struct ieee80211_node *ni, 2688 struct ieee80211_tx_ampdu *tap) 2689 { 2690 struct ieee80211com *ic = ni->ni_ic; 2691 uint16_t args[5]; 2692 int tid, dialogtoken; 2693 static int tokens = 0; /* XXX */ 2694 2695 /* XXX locking */ 2696 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 2697 /* do deferred setup of state */ 2698 ampdu_tx_setup(tap); 2699 } 2700 /* XXX hack for not doing proper locking */ 2701 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 2702 2703 dialogtoken = (tokens+1) % 63; /* XXX */ 2704 tid = tap->txa_tid; 2705 2706 /* 2707 * XXX TODO: This is racy with any other parallel TX going on. :( 2708 */ 2709 tap->txa_start = ni->ni_txseqs[tid]; 2710 2711 args[0] = dialogtoken; 2712 args[1] = 0; /* NB: status code not used */ 2713 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 2714 | _IEEE80211_SHIFTMASK(tid, IEEE80211_BAPS_TID) 2715 | _IEEE80211_SHIFTMASK(IEEE80211_AGGR_BAWMAX, 2716 IEEE80211_BAPS_BUFSIZ) 2717 ; 2718 2719 /* XXX TODO: this should be a flag, not iv_htcaps */ 2720 if ((ni->ni_flags & IEEE80211_NODE_AMSDU_TX) && 2721 (ni->ni_vap->iv_htcaps & IEEE80211_HTC_TX_AMSDU_AMPDU)) 2722 args[2] |= IEEE80211_BAPS_AMSDU; 2723 2724 args[3] = 0; /* batimeout */ 2725 /* NB: do first so there's no race against reply */ 2726 if (!ic->ic_addba_request(ni, tap, dialogtoken, args[2], args[3])) { 2727 /* unable to setup state, don't make request */ 2728 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2729 ni, "%s: could not setup BA stream for TID %d AC %d", 2730 __func__, tap->txa_tid, TID_TO_WME_AC(tap->txa_tid)); 2731 /* defer next try so we don't slam the driver with requests */ 2732 tap->txa_attempts = ieee80211_addba_maxtries; 2733 /* NB: check in case driver wants to override */ 2734 if (tap->txa_nextrequest <= ticks) 2735 tap->txa_nextrequest = ticks + ieee80211_addba_backoff; 2736 return 0; 2737 } 2738 tokens = dialogtoken; /* allocate token */ 2739 /* NB: after calling ic_addba_request so driver can set txa_start */ 2740 args[4] = _IEEE80211_SHIFTMASK(tap->txa_start, IEEE80211_BASEQ_START) 2741 | _IEEE80211_SHIFTMASK(0, IEEE80211_BASEQ_FRAG) 2742 ; 2743 return ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2744 IEEE80211_ACTION_BA_ADDBA_REQUEST, args); 2745 } 2746 2747 /* 2748 * Terminate an AMPDU tx stream. State is reclaimed 2749 * and the peer notified with a DelBA Action frame. 2750 */ 2751 void 2752 ieee80211_ampdu_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 2753 int reason) 2754 { 2755 struct ieee80211com *ic = ni->ni_ic; 2756 struct ieee80211vap *vap = ni->ni_vap; 2757 uint16_t args[4]; 2758 2759 /* XXX locking */ 2760 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2761 if (IEEE80211_AMPDU_RUNNING(tap)) { 2762 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2763 ni, "%s: stop BA stream for TID %d (reason: %d (%s))", 2764 __func__, tap->txa_tid, reason, 2765 ieee80211_reason_to_string(reason)); 2766 vap->iv_stats.is_ampdu_stop++; 2767 2768 ic->ic_addba_stop(ni, tap); 2769 args[0] = tap->txa_tid; 2770 args[1] = IEEE80211_DELBAPS_INIT; 2771 args[2] = reason; /* XXX reason code */ 2772 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2773 IEEE80211_ACTION_BA_DELBA, args); 2774 } else { 2775 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2776 ni, "%s: BA stream for TID %d not running " 2777 "(reason: %d (%s))", __func__, tap->txa_tid, reason, 2778 ieee80211_reason_to_string(reason)); 2779 vap->iv_stats.is_ampdu_stop_failed++; 2780 } 2781 } 2782 2783 /* XXX */ 2784 static void bar_start_timer(struct ieee80211_tx_ampdu *tap); 2785 2786 static void 2787 bar_timeout(void *arg) 2788 { 2789 struct ieee80211_tx_ampdu *tap = arg; 2790 struct ieee80211_node *ni = tap->txa_ni; 2791 2792 KASSERT((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0, 2793 ("bar/addba collision, flags 0x%x", tap->txa_flags)); 2794 2795 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2796 ni, "%s: tid %u flags 0x%x attempts %d", __func__, 2797 tap->txa_tid, tap->txa_flags, tap->txa_attempts); 2798 2799 /* guard against race with bar_tx_complete */ 2800 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2801 return; 2802 /* XXX ? */ 2803 if (tap->txa_attempts >= ieee80211_bar_maxtries) { 2804 struct ieee80211com *ic = ni->ni_ic; 2805 2806 ni->ni_vap->iv_stats.is_ampdu_bar_tx_fail++; 2807 /* 2808 * If (at least) the last BAR TX timeout was due to 2809 * an ieee80211_send_bar() failures, then we need 2810 * to make sure we notify the driver that a BAR 2811 * TX did occur and fail. This gives the driver 2812 * a chance to undo any queue pause that may 2813 * have occurred. 2814 */ 2815 ic->ic_bar_response(ni, tap, 1); 2816 ieee80211_ampdu_stop(ni, tap, IEEE80211_REASON_TIMEOUT); 2817 } else { 2818 ni->ni_vap->iv_stats.is_ampdu_bar_tx_retry++; 2819 if (ieee80211_send_bar(ni, tap, tap->txa_seqpending) != 0) { 2820 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2821 ni, "%s: failed to TX, starting timer\n", 2822 __func__); 2823 /* 2824 * If ieee80211_send_bar() fails here, the 2825 * timer may have stopped and/or the pending 2826 * flag may be clear. Because of this, 2827 * fake the BARPEND and reset the timer. 2828 * A retransmission attempt will then occur 2829 * during the next timeout. 2830 */ 2831 /* XXX locking */ 2832 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2833 bar_start_timer(tap); 2834 } 2835 } 2836 } 2837 2838 static void 2839 bar_start_timer(struct ieee80211_tx_ampdu *tap) 2840 { 2841 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2842 tap->txa_ni, 2843 "%s: called", 2844 __func__); 2845 callout_reset(&tap->txa_timer, ieee80211_bar_timeout, bar_timeout, tap); 2846 } 2847 2848 static void 2849 bar_stop_timer(struct ieee80211_tx_ampdu *tap) 2850 { 2851 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2852 tap->txa_ni, 2853 "%s: called", 2854 __func__); 2855 callout_stop(&tap->txa_timer); 2856 } 2857 2858 static void 2859 bar_tx_complete(struct ieee80211_node *ni, void *arg, int status) 2860 { 2861 struct ieee80211_tx_ampdu *tap = arg; 2862 2863 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2864 ni, "%s: tid %u flags 0x%x pending %d status %d", 2865 __func__, tap->txa_tid, tap->txa_flags, 2866 callout_pending(&tap->txa_timer), status); 2867 2868 ni->ni_vap->iv_stats.is_ampdu_bar_tx++; 2869 /* XXX locking */ 2870 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) && 2871 callout_pending(&tap->txa_timer)) { 2872 struct ieee80211com *ic = ni->ni_ic; 2873 2874 if (status == 0) /* ACK'd */ 2875 bar_stop_timer(tap); 2876 ic->ic_bar_response(ni, tap, status); 2877 /* NB: just let timer expire so we pace requests */ 2878 } 2879 } 2880 2881 static void 2882 ieee80211_bar_response(struct ieee80211_node *ni, 2883 struct ieee80211_tx_ampdu *tap, int status) 2884 { 2885 2886 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2887 tap->txa_ni, 2888 "%s: called", 2889 __func__); 2890 if (status == 0) { /* got ACK */ 2891 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2892 ni, "BAR moves BA win <%u:%u> (%u frames) txseq %u tid %u", 2893 tap->txa_start, 2894 IEEE80211_SEQ_ADD(tap->txa_start, tap->txa_wnd-1), 2895 tap->txa_qframes, tap->txa_seqpending, 2896 tap->txa_tid); 2897 2898 /* NB: timer already stopped in bar_tx_complete */ 2899 tap->txa_start = tap->txa_seqpending; 2900 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2901 } 2902 } 2903 2904 /* 2905 * Transmit a BAR frame to the specified node. The 2906 * BAR contents are drawn from the supplied aggregation 2907 * state associated with the node. 2908 * 2909 * NB: we only handle immediate ACK w/ compressed bitmap. 2910 */ 2911 int 2912 ieee80211_send_bar(struct ieee80211_node *ni, 2913 struct ieee80211_tx_ampdu *tap, ieee80211_seq seq) 2914 { 2915 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2916 struct ieee80211vap *vap = ni->ni_vap; 2917 struct ieee80211com *ic = ni->ni_ic; 2918 struct ieee80211_frame_bar *bar; 2919 struct mbuf *m; 2920 uint16_t barctl, barseqctl; 2921 uint8_t *frm; 2922 int tid, ret; 2923 2924 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2925 tap->txa_ni, 2926 "%s: called", 2927 __func__); 2928 2929 if ((tap->txa_flags & IEEE80211_AGGR_RUNNING) == 0) { 2930 /* no ADDBA response, should not happen */ 2931 /* XXX stat+msg */ 2932 return EINVAL; 2933 } 2934 /* XXX locking */ 2935 bar_stop_timer(tap); 2936 2937 ieee80211_ref_node(ni); 2938 2939 m = ieee80211_getmgtframe(&frm, ic->ic_headroom, sizeof(*bar)); 2940 if (m == NULL) 2941 senderr(ENOMEM, is_tx_nobuf); 2942 2943 if (!ieee80211_add_callback(m, bar_tx_complete, tap)) { 2944 m_freem(m); 2945 senderr(ENOMEM, is_tx_nobuf); /* XXX */ 2946 /* NOTREACHED */ 2947 } 2948 2949 bar = mtod(m, struct ieee80211_frame_bar *); 2950 bar->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2951 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR; 2952 bar->i_fc[1] = 0; 2953 IEEE80211_ADDR_COPY(bar->i_ra, ni->ni_macaddr); 2954 IEEE80211_ADDR_COPY(bar->i_ta, vap->iv_myaddr); 2955 2956 tid = tap->txa_tid; 2957 barctl = (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE ? 2958 0 : IEEE80211_BAR_NOACK) 2959 | IEEE80211_BAR_COMP 2960 | _IEEE80211_SHIFTMASK(tid, IEEE80211_BAR_TID) 2961 ; 2962 barseqctl = _IEEE80211_SHIFTMASK(seq, IEEE80211_BAR_SEQ_START); 2963 /* NB: known to have proper alignment */ 2964 bar->i_ctl = htole16(barctl); 2965 bar->i_seq = htole16(barseqctl); 2966 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_bar); 2967 2968 M_WME_SETAC(m, WME_AC_VO); 2969 2970 IEEE80211_NODE_STAT(ni, tx_mgmt); /* XXX tx_ctl? */ 2971 2972 /* XXX locking */ 2973 /* init/bump attempts counter */ 2974 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2975 tap->txa_attempts = 1; 2976 else 2977 tap->txa_attempts++; 2978 tap->txa_seqpending = seq; 2979 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2980 2981 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2982 ni, "send BAR: tid %u ctl 0x%x start %u (attempt %d)", 2983 tid, barctl, seq, tap->txa_attempts); 2984 2985 /* 2986 * ic_raw_xmit will free the node reference 2987 * regardless of queue/TX success or failure. 2988 */ 2989 IEEE80211_TX_LOCK(ic); 2990 ret = ieee80211_raw_output(vap, ni, m, NULL); 2991 IEEE80211_TX_UNLOCK(ic); 2992 if (ret != 0) { 2993 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2994 ni, "send BAR: failed: (ret = %d)\n", 2995 ret); 2996 /* xmit failed, clear state flag */ 2997 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2998 vap->iv_stats.is_ampdu_bar_tx_fail++; 2999 return ret; 3000 } 3001 /* XXX hack against tx complete happening before timer is started */ 3002 if (tap->txa_flags & IEEE80211_AGGR_BARPEND) 3003 bar_start_timer(tap); 3004 return 0; 3005 bad: 3006 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 3007 tap->txa_ni, 3008 "%s: bad! ret=%d", 3009 __func__, ret); 3010 vap->iv_stats.is_ampdu_bar_tx_fail++; 3011 ieee80211_free_node(ni); 3012 return ret; 3013 #undef senderr 3014 } 3015 3016 static int 3017 ht_action_output(struct ieee80211_node *ni, struct mbuf *m) 3018 { 3019 struct ieee80211_bpf_params params; 3020 3021 memset(¶ms, 0, sizeof(params)); 3022 params.ibp_pri = WME_AC_VO; 3023 params.ibp_rate0 = ni->ni_txparms->mgmtrate; 3024 /* NB: we know all frames are unicast */ 3025 params.ibp_try0 = ni->ni_txparms->maxretry; 3026 params.ibp_power = ni->ni_txpower; 3027 return ieee80211_mgmt_output(ni, m, IEEE80211_FC0_SUBTYPE_ACTION, 3028 ¶ms); 3029 } 3030 3031 #define ADDSHORT(frm, v) do { \ 3032 frm[0] = (v) & 0xff; \ 3033 frm[1] = (v) >> 8; \ 3034 frm += 2; \ 3035 } while (0) 3036 3037 /* 3038 * Send an action management frame. The arguments are stuff 3039 * into a frame without inspection; the caller is assumed to 3040 * prepare them carefully (e.g. based on the aggregation state). 3041 */ 3042 static int 3043 ht_send_action_ba_addba(struct ieee80211_node *ni, 3044 int category, int action, void *arg0) 3045 { 3046 struct ieee80211vap *vap = ni->ni_vap; 3047 struct ieee80211com *ic = ni->ni_ic; 3048 uint16_t *args = arg0; 3049 struct mbuf *m; 3050 uint8_t *frm; 3051 3052 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 3053 "send ADDBA %s: dialogtoken %d status %d " 3054 "baparamset 0x%x (tid %d amsdu %d) batimeout 0x%x baseqctl 0x%x", 3055 (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ? 3056 "request" : "response", args[0], args[1], args[2], 3057 _IEEE80211_MASKSHIFT(args[2], IEEE80211_BAPS_TID), 3058 _IEEE80211_MASKSHIFT(args[2], IEEE80211_BAPS_AMSDU), 3059 args[3], args[4]); 3060 3061 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 3062 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 3063 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 3064 ieee80211_ref_node(ni); 3065 3066 m = ieee80211_getmgtframe(&frm, 3067 ic->ic_headroom + sizeof(struct ieee80211_frame), 3068 sizeof(uint16_t) /* action+category */ 3069 /* XXX may action payload */ 3070 + sizeof(struct ieee80211_action_ba_addbaresponse) 3071 ); 3072 if (m != NULL) { 3073 *frm++ = category; 3074 *frm++ = action; 3075 *frm++ = args[0]; /* dialog token */ 3076 if (action == IEEE80211_ACTION_BA_ADDBA_RESPONSE) 3077 ADDSHORT(frm, args[1]); /* status code */ 3078 ADDSHORT(frm, args[2]); /* baparamset */ 3079 ADDSHORT(frm, args[3]); /* batimeout */ 3080 if (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) 3081 ADDSHORT(frm, args[4]); /* baseqctl */ 3082 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3083 return ht_action_output(ni, m); 3084 } else { 3085 vap->iv_stats.is_tx_nobuf++; 3086 ieee80211_free_node(ni); 3087 return ENOMEM; 3088 } 3089 } 3090 3091 static int 3092 ht_send_action_ba_delba(struct ieee80211_node *ni, 3093 int category, int action, void *arg0) 3094 { 3095 struct ieee80211vap *vap = ni->ni_vap; 3096 struct ieee80211com *ic = ni->ni_ic; 3097 uint16_t *args = arg0; 3098 struct mbuf *m; 3099 uint16_t baparamset; 3100 uint8_t *frm; 3101 3102 baparamset = _IEEE80211_SHIFTMASK(args[0], IEEE80211_DELBAPS_TID) 3103 | args[1] 3104 ; 3105 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 3106 "send DELBA action: tid %d, initiator %d reason %d (%s)", 3107 args[0], args[1], args[2], ieee80211_reason_to_string(args[2])); 3108 3109 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 3110 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 3111 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 3112 ieee80211_ref_node(ni); 3113 3114 m = ieee80211_getmgtframe(&frm, 3115 ic->ic_headroom + sizeof(struct ieee80211_frame), 3116 sizeof(uint16_t) /* action+category */ 3117 /* XXX may action payload */ 3118 + sizeof(struct ieee80211_action_ba_addbaresponse) 3119 ); 3120 if (m != NULL) { 3121 *frm++ = category; 3122 *frm++ = action; 3123 ADDSHORT(frm, baparamset); 3124 ADDSHORT(frm, args[2]); /* reason code */ 3125 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3126 return ht_action_output(ni, m); 3127 } else { 3128 vap->iv_stats.is_tx_nobuf++; 3129 ieee80211_free_node(ni); 3130 return ENOMEM; 3131 } 3132 } 3133 3134 static int 3135 ht_send_action_ht_txchwidth(struct ieee80211_node *ni, 3136 int category, int action, void *arg0) 3137 { 3138 struct ieee80211vap *vap = ni->ni_vap; 3139 struct ieee80211com *ic = ni->ni_ic; 3140 struct mbuf *m; 3141 uint8_t *frm; 3142 3143 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 3144 "send HT txchwidth: width %d", 3145 IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 40 : 20); 3146 3147 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 3148 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 3149 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 3150 ieee80211_ref_node(ni); 3151 3152 m = ieee80211_getmgtframe(&frm, 3153 ic->ic_headroom + sizeof(struct ieee80211_frame), 3154 sizeof(uint16_t) /* action+category */ 3155 /* XXX may action payload */ 3156 + sizeof(struct ieee80211_action_ba_addbaresponse) 3157 ); 3158 if (m != NULL) { 3159 *frm++ = category; 3160 *frm++ = action; 3161 *frm++ = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 3162 IEEE80211_A_HT_TXCHWIDTH_2040 : 3163 IEEE80211_A_HT_TXCHWIDTH_20; 3164 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3165 return ht_action_output(ni, m); 3166 } else { 3167 vap->iv_stats.is_tx_nobuf++; 3168 ieee80211_free_node(ni); 3169 return ENOMEM; 3170 } 3171 } 3172 #undef ADDSHORT 3173 3174 /* 3175 * Construct the MCS bit mask for inclusion in an HT capabilities 3176 * information element. 3177 */ 3178 static void 3179 ieee80211_set_mcsset(struct ieee80211com *ic, uint8_t *frm) 3180 { 3181 int i; 3182 uint8_t txparams; 3183 3184 KASSERT((ic->ic_rxstream > 0 && ic->ic_rxstream <= 4), 3185 ("ic_rxstream %d out of range", ic->ic_rxstream)); 3186 KASSERT((ic->ic_txstream > 0 && ic->ic_txstream <= 4), 3187 ("ic_txstream %d out of range", ic->ic_txstream)); 3188 3189 for (i = 0; i < ic->ic_rxstream * 8; i++) 3190 setbit(frm, i); 3191 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 3192 (ic->ic_htcaps & IEEE80211_HTC_RXMCS32)) 3193 setbit(frm, 32); 3194 if (ic->ic_htcaps & IEEE80211_HTC_RXUNEQUAL) { 3195 if (ic->ic_rxstream >= 2) { 3196 for (i = 33; i <= 38; i++) 3197 setbit(frm, i); 3198 } 3199 if (ic->ic_rxstream >= 3) { 3200 for (i = 39; i <= 52; i++) 3201 setbit(frm, i); 3202 } 3203 if (ic->ic_rxstream >= 4) { 3204 for (i = 53; i <= 76; i++) 3205 setbit(frm, i); 3206 } 3207 } 3208 3209 txparams = 0x1; /* TX MCS set defined */ 3210 if (ic->ic_rxstream != ic->ic_txstream) { 3211 txparams |= 0x2; /* TX RX MCS not equal */ 3212 txparams |= (ic->ic_txstream - 1) << 2; /* num TX streams */ 3213 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) 3214 txparams |= 0x16; /* TX unequal modulation sup */ 3215 } 3216 3217 frm[12] = txparams; 3218 } 3219 3220 /* 3221 * Add body of an HTCAP information element. 3222 */ 3223 static uint8_t * 3224 ieee80211_add_htcap_body(uint8_t *frm, struct ieee80211_node *ni) 3225 { 3226 #define ADDSHORT(frm, v) do { \ 3227 frm[0] = (v) & 0xff; \ 3228 frm[1] = (v) >> 8; \ 3229 frm += 2; \ 3230 } while (0) 3231 struct ieee80211com *ic = ni->ni_ic; 3232 struct ieee80211vap *vap = ni->ni_vap; 3233 uint16_t caps, extcaps; 3234 int rxmax, density; 3235 3236 /* HT capabilities */ 3237 caps = vap->iv_htcaps & 0xffff; 3238 /* 3239 * Note channel width depends on whether we are operating as 3240 * a sta or not. When operating as a sta we are generating 3241 * a request based on our desired configuration. Otherwise 3242 * we are operational and the channel attributes identify 3243 * how we've been setup (which might be different if a fixed 3244 * channel is specified). 3245 */ 3246 if (vap->iv_opmode == IEEE80211_M_STA) { 3247 /* override 20/40 use based on config */ 3248 if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40) 3249 caps |= IEEE80211_HTCAP_CHWIDTH40; 3250 else 3251 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3252 3253 /* Start by using the advertised settings */ 3254 rxmax = _IEEE80211_MASKSHIFT(ni->ni_htparam, 3255 IEEE80211_HTCAP_MAXRXAMPDU); 3256 density = _IEEE80211_MASKSHIFT(ni->ni_htparam, 3257 IEEE80211_HTCAP_MPDUDENSITY); 3258 3259 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, 3260 "%s: advertised rxmax=%d, density=%d, vap rxmax=%d, density=%d\n", 3261 __func__, 3262 rxmax, 3263 density, 3264 vap->iv_ampdu_rxmax, 3265 vap->iv_ampdu_density); 3266 3267 /* Cap at VAP rxmax */ 3268 if (rxmax > vap->iv_ampdu_rxmax) 3269 rxmax = vap->iv_ampdu_rxmax; 3270 3271 /* 3272 * If the VAP ampdu density value greater, use that. 3273 * 3274 * (Larger density value == larger minimum gap between A-MPDU 3275 * subframes.) 3276 */ 3277 if (vap->iv_ampdu_density > density) 3278 density = vap->iv_ampdu_density; 3279 3280 /* 3281 * NB: Hardware might support HT40 on some but not all 3282 * channels. We can't determine this earlier because only 3283 * after association the channel is upgraded to HT based 3284 * on the negotiated capabilities. 3285 */ 3286 if (ni->ni_chan != IEEE80211_CHAN_ANYC && 3287 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40U) == NULL && 3288 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40D) == NULL) 3289 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3290 } else { 3291 /* override 20/40 use based on current channel */ 3292 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 3293 caps |= IEEE80211_HTCAP_CHWIDTH40; 3294 else 3295 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3296 3297 /* XXX TODO should it start by using advertised settings? */ 3298 rxmax = vap->iv_ampdu_rxmax; 3299 density = vap->iv_ampdu_density; 3300 } 3301 3302 /* adjust short GI based on channel and config */ 3303 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) 3304 caps &= ~IEEE80211_HTCAP_SHORTGI20; 3305 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || 3306 (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) 3307 caps &= ~IEEE80211_HTCAP_SHORTGI40; 3308 3309 /* adjust STBC based on receive capabilities */ 3310 if ((vap->iv_flags_ht & IEEE80211_FHT_STBC_RX) == 0) 3311 caps &= ~IEEE80211_HTCAP_RXSTBC; 3312 3313 /* adjust LDPC based on receive capabilites */ 3314 if ((vap->iv_flags_ht & IEEE80211_FHT_LDPC_RX) == 0) 3315 caps &= ~IEEE80211_HTCAP_LDPC; 3316 3317 ADDSHORT(frm, caps); 3318 3319 /* HT parameters */ 3320 *frm = _IEEE80211_SHIFTMASK(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) 3321 | _IEEE80211_SHIFTMASK(density, IEEE80211_HTCAP_MPDUDENSITY) 3322 ; 3323 frm++; 3324 3325 /* pre-zero remainder of ie */ 3326 memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - 3327 __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); 3328 3329 /* supported MCS set */ 3330 /* 3331 * XXX: For sta mode the rate set should be restricted based 3332 * on the AP's capabilities, but ni_htrates isn't setup when 3333 * we're called to form an AssocReq frame so for now we're 3334 * restricted to the device capabilities. 3335 */ 3336 ieee80211_set_mcsset(ni->ni_ic, frm); 3337 3338 frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - 3339 __offsetof(struct ieee80211_ie_htcap, hc_mcsset); 3340 3341 /* HT extended capabilities */ 3342 extcaps = vap->iv_htextcaps & 0xffff; 3343 3344 ADDSHORT(frm, extcaps); 3345 3346 frm += sizeof(struct ieee80211_ie_htcap) - 3347 __offsetof(struct ieee80211_ie_htcap, hc_txbf); 3348 3349 return frm; 3350 #undef ADDSHORT 3351 } 3352 3353 /* 3354 * Add 802.11n HT capabilities information element 3355 */ 3356 uint8_t * 3357 ieee80211_add_htcap(uint8_t *frm, struct ieee80211_node *ni) 3358 { 3359 frm[0] = IEEE80211_ELEMID_HTCAP; 3360 frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; 3361 return ieee80211_add_htcap_body(frm + 2, ni); 3362 } 3363 3364 /* 3365 * Non-associated probe request - add HT capabilities based on 3366 * the current channel configuration. 3367 */ 3368 static uint8_t * 3369 ieee80211_add_htcap_body_ch(uint8_t *frm, struct ieee80211vap *vap, 3370 struct ieee80211_channel *c) 3371 { 3372 #define ADDSHORT(frm, v) do { \ 3373 frm[0] = (v) & 0xff; \ 3374 frm[1] = (v) >> 8; \ 3375 frm += 2; \ 3376 } while (0) 3377 struct ieee80211com *ic = vap->iv_ic; 3378 uint16_t caps, extcaps; 3379 int rxmax, density; 3380 3381 /* HT capabilities */ 3382 caps = vap->iv_htcaps & 0xffff; 3383 3384 /* 3385 * We don't use this in STA mode; only in IBSS mode. 3386 * So in IBSS mode we base our HTCAP flags on the 3387 * given channel. 3388 */ 3389 3390 /* override 20/40 use based on current channel */ 3391 if (IEEE80211_IS_CHAN_HT40(c)) 3392 caps |= IEEE80211_HTCAP_CHWIDTH40; 3393 else 3394 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3395 3396 /* Use the currently configured values */ 3397 rxmax = vap->iv_ampdu_rxmax; 3398 density = vap->iv_ampdu_density; 3399 3400 /* adjust short GI based on channel and config */ 3401 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) 3402 caps &= ~IEEE80211_HTCAP_SHORTGI20; 3403 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || 3404 (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) 3405 caps &= ~IEEE80211_HTCAP_SHORTGI40; 3406 ADDSHORT(frm, caps); 3407 3408 /* HT parameters */ 3409 *frm = _IEEE80211_SHIFTMASK(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) 3410 | _IEEE80211_SHIFTMASK(density, IEEE80211_HTCAP_MPDUDENSITY) 3411 ; 3412 frm++; 3413 3414 /* pre-zero remainder of ie */ 3415 memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - 3416 __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); 3417 3418 /* supported MCS set */ 3419 /* 3420 * XXX: For sta mode the rate set should be restricted based 3421 * on the AP's capabilities, but ni_htrates isn't setup when 3422 * we're called to form an AssocReq frame so for now we're 3423 * restricted to the device capabilities. 3424 */ 3425 ieee80211_set_mcsset(ic, frm); 3426 3427 frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - 3428 __offsetof(struct ieee80211_ie_htcap, hc_mcsset); 3429 3430 /* HT extended capabilities */ 3431 extcaps = vap->iv_htextcaps & 0xffff; 3432 3433 ADDSHORT(frm, extcaps); 3434 3435 frm += sizeof(struct ieee80211_ie_htcap) - 3436 __offsetof(struct ieee80211_ie_htcap, hc_txbf); 3437 3438 return frm; 3439 #undef ADDSHORT 3440 } 3441 3442 /* 3443 * Add 802.11n HT capabilities information element 3444 */ 3445 uint8_t * 3446 ieee80211_add_htcap_ch(uint8_t *frm, struct ieee80211vap *vap, 3447 struct ieee80211_channel *c) 3448 { 3449 frm[0] = IEEE80211_ELEMID_HTCAP; 3450 frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; 3451 return ieee80211_add_htcap_body_ch(frm + 2, vap, c); 3452 } 3453 3454 /* 3455 * Add Broadcom OUI wrapped standard HTCAP ie; this is 3456 * used for compatibility w/ pre-draft implementations. 3457 */ 3458 uint8_t * 3459 ieee80211_add_htcap_vendor(uint8_t *frm, struct ieee80211_node *ni) 3460 { 3461 frm[0] = IEEE80211_ELEMID_VENDOR; 3462 frm[1] = 4 + sizeof(struct ieee80211_ie_htcap) - 2; 3463 frm[2] = (BCM_OUI >> 0) & 0xff; 3464 frm[3] = (BCM_OUI >> 8) & 0xff; 3465 frm[4] = (BCM_OUI >> 16) & 0xff; 3466 frm[5] = BCM_OUI_HTCAP; 3467 return ieee80211_add_htcap_body(frm + 6, ni); 3468 } 3469 3470 /* 3471 * Construct the MCS bit mask of basic rates 3472 * for inclusion in an HT information element. 3473 */ 3474 static void 3475 ieee80211_set_basic_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs) 3476 { 3477 int i; 3478 3479 for (i = 0; i < rs->rs_nrates; i++) { 3480 int r = rs->rs_rates[i] & IEEE80211_RATE_VAL; 3481 if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) && 3482 r < IEEE80211_HTRATE_MAXSIZE) { 3483 /* NB: this assumes a particular implementation */ 3484 setbit(frm, r); 3485 } 3486 } 3487 } 3488 3489 /* 3490 * Update the HTINFO ie for a beacon frame. 3491 */ 3492 void 3493 ieee80211_ht_update_beacon(struct ieee80211vap *vap, 3494 struct ieee80211_beacon_offsets *bo) 3495 { 3496 #define PROTMODE (IEEE80211_HTINFO_OPMODE|IEEE80211_HTINFO_NONHT_PRESENT) 3497 struct ieee80211_node *ni; 3498 const struct ieee80211_channel *bsschan; 3499 struct ieee80211com *ic = vap->iv_ic; 3500 struct ieee80211_ie_htinfo *ht = 3501 (struct ieee80211_ie_htinfo *) bo->bo_htinfo; 3502 3503 ni = ieee80211_ref_node(vap->iv_bss); 3504 bsschan = ni->ni_chan; 3505 3506 /* XXX only update on channel change */ 3507 ht->hi_ctrlchannel = ieee80211_chan2ieee(ic, bsschan); 3508 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 3509 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PERM; 3510 else 3511 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PROH; 3512 if (IEEE80211_IS_CHAN_HT40U(bsschan)) 3513 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 3514 else if (IEEE80211_IS_CHAN_HT40D(bsschan)) 3515 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_BELOW; 3516 else 3517 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_NONE; 3518 if (IEEE80211_IS_CHAN_HT40(bsschan)) 3519 ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040; 3520 3521 /* protection mode */ 3522 /* 3523 * XXX TODO: this uses the global flag, not the per-VAP flag. 3524 * Eventually (once the protection modes are done per-channel 3525 * rather than per-VAP) we can flip this over to be per-VAP but 3526 * using the channel protection mode. 3527 */ 3528 ht->hi_byte2 = (ht->hi_byte2 &~ PROTMODE) | ic->ic_curhtprotmode; 3529 3530 ieee80211_free_node(ni); 3531 3532 /* XXX propagate to vendor ie's */ 3533 #undef PROTMODE 3534 } 3535 3536 /* 3537 * Add body of an HTINFO information element. 3538 * 3539 * NB: We don't use struct ieee80211_ie_htinfo because we can 3540 * be called to fillin both a standard ie and a compat ie that 3541 * has a vendor OUI at the front. 3542 */ 3543 static uint8_t * 3544 ieee80211_add_htinfo_body(uint8_t *frm, struct ieee80211_node *ni) 3545 { 3546 struct ieee80211vap *vap = ni->ni_vap; 3547 struct ieee80211com *ic = ni->ni_ic; 3548 3549 /* pre-zero remainder of ie */ 3550 memset(frm, 0, sizeof(struct ieee80211_ie_htinfo) - 2); 3551 3552 /* primary/control channel center */ 3553 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 3554 3555 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 3556 frm[0] = IEEE80211_HTINFO_RIFSMODE_PERM; 3557 else 3558 frm[0] = IEEE80211_HTINFO_RIFSMODE_PROH; 3559 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 3560 frm[0] |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 3561 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 3562 frm[0] |= IEEE80211_HTINFO_2NDCHAN_BELOW; 3563 else 3564 frm[0] |= IEEE80211_HTINFO_2NDCHAN_NONE; 3565 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 3566 frm[0] |= IEEE80211_HTINFO_TXWIDTH_2040; 3567 3568 /* 3569 * Add current protection mode. Unlike for beacons, 3570 * this will respect the per-VAP flags. 3571 */ 3572 frm[1] = vap->iv_curhtprotmode; 3573 3574 frm += 5; 3575 3576 /* basic MCS set */ 3577 ieee80211_set_basic_htrates(frm, &ni->ni_htrates); 3578 frm += sizeof(struct ieee80211_ie_htinfo) - 3579 __offsetof(struct ieee80211_ie_htinfo, hi_basicmcsset); 3580 return frm; 3581 } 3582 3583 /* 3584 * Add 802.11n HT information element. 3585 */ 3586 uint8_t * 3587 ieee80211_add_htinfo(uint8_t *frm, struct ieee80211_node *ni) 3588 { 3589 frm[0] = IEEE80211_ELEMID_HTINFO; 3590 frm[1] = sizeof(struct ieee80211_ie_htinfo) - 2; 3591 return ieee80211_add_htinfo_body(frm + 2, ni); 3592 } 3593 3594 /* 3595 * Add Broadcom OUI wrapped standard HTINFO ie; this is 3596 * used for compatibility w/ pre-draft implementations. 3597 */ 3598 uint8_t * 3599 ieee80211_add_htinfo_vendor(uint8_t *frm, struct ieee80211_node *ni) 3600 { 3601 frm[0] = IEEE80211_ELEMID_VENDOR; 3602 frm[1] = 4 + sizeof(struct ieee80211_ie_htinfo) - 2; 3603 frm[2] = (BCM_OUI >> 0) & 0xff; 3604 frm[3] = (BCM_OUI >> 8) & 0xff; 3605 frm[4] = (BCM_OUI >> 16) & 0xff; 3606 frm[5] = BCM_OUI_HTINFO; 3607 return ieee80211_add_htinfo_body(frm + 6, ni); 3608 } 3609 3610 /* 3611 * Get the HT density for the given 802.11n node. 3612 * 3613 * Take into account the density advertised from the peer. 3614 * Larger values are longer A-MPDU density spacing values, and 3615 * we want to obey them per station if we get them. 3616 */ 3617 int 3618 ieee80211_ht_get_node_ampdu_density(const struct ieee80211_node *ni) 3619 { 3620 struct ieee80211vap *vap; 3621 int peer_mpdudensity; 3622 3623 vap = ni->ni_vap; 3624 peer_mpdudensity = 3625 _IEEE80211_MASKSHIFT(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY); 3626 if (vap->iv_ampdu_density > peer_mpdudensity) 3627 peer_mpdudensity = vap->iv_ampdu_density; 3628 return (peer_mpdudensity); 3629 } 3630 3631 /* 3632 * Get the transmit A-MPDU limit for the given 802.11n node. 3633 * 3634 * Take into account the limit advertised from the peer. 3635 * Smaller values indicate smaller maximum A-MPDU sizes, and 3636 * should be used when forming an A-MPDU to the given peer. 3637 */ 3638 int 3639 ieee80211_ht_get_node_ampdu_limit(const struct ieee80211_node *ni) 3640 { 3641 struct ieee80211vap *vap; 3642 int peer_mpdulimit; 3643 3644 vap = ni->ni_vap; 3645 peer_mpdulimit = 3646 _IEEE80211_MASKSHIFT(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU); 3647 3648 return (MIN(vap->iv_ampdu_limit, peer_mpdulimit)); 3649 } 3650 3651 /* 3652 * Return true if short-GI is available when transmitting to 3653 * the given node at 20MHz. 3654 * 3655 * Ensure it's configured and available in the VAP / driver as 3656 * well as the node. 3657 */ 3658 bool 3659 ieee80211_ht_check_tx_shortgi_20(const struct ieee80211_node *ni) 3660 { 3661 const struct ieee80211vap *vap; 3662 const struct ieee80211com *ic; 3663 3664 if (! ieee80211_ht_check_tx_ht(ni)) 3665 return (false); 3666 3667 vap = ni->ni_vap; 3668 ic = ni->ni_ic; 3669 3670 return ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) && 3671 (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) && 3672 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)); 3673 } 3674 3675 /* 3676 * Return true if short-GI is available when transmitting to 3677 * the given node at 40MHz. 3678 * 3679 * Ensure it's configured and available in the VAP / driver as 3680 * well as the node and BSS. 3681 */ 3682 bool 3683 ieee80211_ht_check_tx_shortgi_40(const struct ieee80211_node *ni) 3684 { 3685 const struct ieee80211vap *vap; 3686 const struct ieee80211com *ic; 3687 3688 if (! ieee80211_ht_check_tx_ht40(ni)) 3689 return (false); 3690 3691 vap = ni->ni_vap; 3692 ic = ni->ni_ic; 3693 3694 return ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40) && 3695 (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) && 3696 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)); 3697 } 3698 3699 /* 3700 * Return true if HT rates can be used for the given node. 3701 * 3702 * There are some situations seen in the wild, wild past where 3703 * HT APs would announce HT but no HT rates. 3704 */ 3705 bool 3706 ieee80211_ht_check_tx_ht(const struct ieee80211_node *ni) 3707 { 3708 const struct ieee80211vap *vap; 3709 const struct ieee80211_channel *bss_chan; 3710 3711 if (ni == NULL || ni->ni_chan == IEEE80211_CHAN_ANYC || 3712 ni->ni_vap == NULL || ni->ni_vap->iv_bss == NULL) 3713 return (false); 3714 3715 vap = ni->ni_vap; 3716 bss_chan = vap->iv_bss->ni_chan; 3717 3718 if (bss_chan == IEEE80211_CHAN_ANYC) 3719 return (false); 3720 3721 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && 3722 ni->ni_htrates.rs_nrates == 0) 3723 return (false); 3724 return (IEEE80211_IS_CHAN_HT(ni->ni_chan)); 3725 } 3726 3727 /* 3728 * Return true if HT40 rates can be transmitted to the given node. 3729 * 3730 * This verifies that the BSS is HT40 capable and the current 3731 * node channel width is 40MHz. 3732 */ 3733 bool 3734 ieee80211_ht_check_tx_ht40(const struct ieee80211_node *ni) 3735 { 3736 struct ieee80211vap *vap; 3737 struct ieee80211_channel *bss_chan; 3738 3739 if (! ieee80211_ht_check_tx_ht(ni)) 3740 return (false); 3741 3742 vap = ni->ni_vap; 3743 bss_chan = vap->iv_bss->ni_chan; 3744 3745 return (IEEE80211_IS_CHAN_HT40(bss_chan) && 3746 IEEE80211_IS_CHAN_HT40(ni->ni_chan) && 3747 (ni->ni_chw == IEEE80211_STA_RX_BW_40)); 3748 } 3749