1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 #ifdef __FreeBSD__ 30 __FBSDID("$FreeBSD$"); 31 #endif 32 33 /* 34 * IEEE 802.11n protocol support. 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_wlan.h" 39 40 #include <sys/param.h> 41 #include <sys/kernel.h> 42 #include <sys/malloc.h> 43 #include <sys/systm.h> 44 #include <sys/endian.h> 45 46 #include <sys/socket.h> 47 48 #include <net/if.h> 49 #include <net/if_var.h> 50 #include <net/if_media.h> 51 #include <net/ethernet.h> 52 53 #include <net80211/ieee80211_var.h> 54 #include <net80211/ieee80211_action.h> 55 #include <net80211/ieee80211_input.h> 56 57 const struct ieee80211_mcs_rates ieee80211_htrates[IEEE80211_HTRATE_MAXSIZE] = { 58 { 13, 14, 27, 30 }, /* MCS 0 */ 59 { 26, 29, 54, 60 }, /* MCS 1 */ 60 { 39, 43, 81, 90 }, /* MCS 2 */ 61 { 52, 58, 108, 120 }, /* MCS 3 */ 62 { 78, 87, 162, 180 }, /* MCS 4 */ 63 { 104, 116, 216, 240 }, /* MCS 5 */ 64 { 117, 130, 243, 270 }, /* MCS 6 */ 65 { 130, 144, 270, 300 }, /* MCS 7 */ 66 { 26, 29, 54, 60 }, /* MCS 8 */ 67 { 52, 58, 108, 120 }, /* MCS 9 */ 68 { 78, 87, 162, 180 }, /* MCS 10 */ 69 { 104, 116, 216, 240 }, /* MCS 11 */ 70 { 156, 173, 324, 360 }, /* MCS 12 */ 71 { 208, 231, 432, 480 }, /* MCS 13 */ 72 { 234, 260, 486, 540 }, /* MCS 14 */ 73 { 260, 289, 540, 600 }, /* MCS 15 */ 74 { 39, 43, 81, 90 }, /* MCS 16 */ 75 { 78, 87, 162, 180 }, /* MCS 17 */ 76 { 117, 130, 243, 270 }, /* MCS 18 */ 77 { 156, 173, 324, 360 }, /* MCS 19 */ 78 { 234, 260, 486, 540 }, /* MCS 20 */ 79 { 312, 347, 648, 720 }, /* MCS 21 */ 80 { 351, 390, 729, 810 }, /* MCS 22 */ 81 { 390, 433, 810, 900 }, /* MCS 23 */ 82 { 52, 58, 108, 120 }, /* MCS 24 */ 83 { 104, 116, 216, 240 }, /* MCS 25 */ 84 { 156, 173, 324, 360 }, /* MCS 26 */ 85 { 208, 231, 432, 480 }, /* MCS 27 */ 86 { 312, 347, 648, 720 }, /* MCS 28 */ 87 { 416, 462, 864, 960 }, /* MCS 29 */ 88 { 468, 520, 972, 1080 }, /* MCS 30 */ 89 { 520, 578, 1080, 1200 }, /* MCS 31 */ 90 { 0, 0, 12, 13 }, /* MCS 32 */ 91 { 78, 87, 162, 180 }, /* MCS 33 */ 92 { 104, 116, 216, 240 }, /* MCS 34 */ 93 { 130, 144, 270, 300 }, /* MCS 35 */ 94 { 117, 130, 243, 270 }, /* MCS 36 */ 95 { 156, 173, 324, 360 }, /* MCS 37 */ 96 { 195, 217, 405, 450 }, /* MCS 38 */ 97 { 104, 116, 216, 240 }, /* MCS 39 */ 98 { 130, 144, 270, 300 }, /* MCS 40 */ 99 { 130, 144, 270, 300 }, /* MCS 41 */ 100 { 156, 173, 324, 360 }, /* MCS 42 */ 101 { 182, 202, 378, 420 }, /* MCS 43 */ 102 { 182, 202, 378, 420 }, /* MCS 44 */ 103 { 208, 231, 432, 480 }, /* MCS 45 */ 104 { 156, 173, 324, 360 }, /* MCS 46 */ 105 { 195, 217, 405, 450 }, /* MCS 47 */ 106 { 195, 217, 405, 450 }, /* MCS 48 */ 107 { 234, 260, 486, 540 }, /* MCS 49 */ 108 { 273, 303, 567, 630 }, /* MCS 50 */ 109 { 273, 303, 567, 630 }, /* MCS 51 */ 110 { 312, 347, 648, 720 }, /* MCS 52 */ 111 { 130, 144, 270, 300 }, /* MCS 53 */ 112 { 156, 173, 324, 360 }, /* MCS 54 */ 113 { 182, 202, 378, 420 }, /* MCS 55 */ 114 { 156, 173, 324, 360 }, /* MCS 56 */ 115 { 182, 202, 378, 420 }, /* MCS 57 */ 116 { 208, 231, 432, 480 }, /* MCS 58 */ 117 { 234, 260, 486, 540 }, /* MCS 59 */ 118 { 208, 231, 432, 480 }, /* MCS 60 */ 119 { 234, 260, 486, 540 }, /* MCS 61 */ 120 { 260, 289, 540, 600 }, /* MCS 62 */ 121 { 260, 289, 540, 600 }, /* MCS 63 */ 122 { 286, 318, 594, 660 }, /* MCS 64 */ 123 { 195, 217, 405, 450 }, /* MCS 65 */ 124 { 234, 260, 486, 540 }, /* MCS 66 */ 125 { 273, 303, 567, 630 }, /* MCS 67 */ 126 { 234, 260, 486, 540 }, /* MCS 68 */ 127 { 273, 303, 567, 630 }, /* MCS 69 */ 128 { 312, 347, 648, 720 }, /* MCS 70 */ 129 { 351, 390, 729, 810 }, /* MCS 71 */ 130 { 312, 347, 648, 720 }, /* MCS 72 */ 131 { 351, 390, 729, 810 }, /* MCS 73 */ 132 { 390, 433, 810, 900 }, /* MCS 74 */ 133 { 390, 433, 810, 900 }, /* MCS 75 */ 134 { 429, 477, 891, 990 }, /* MCS 76 */ 135 }; 136 137 static int ieee80211_ampdu_age = -1; /* threshold for ampdu reorder q (ms) */ 138 SYSCTL_PROC(_net_wlan, OID_AUTO, ampdu_age, 139 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 140 &ieee80211_ampdu_age, 0, ieee80211_sysctl_msecs_ticks, "I", 141 "AMPDU max reorder age (ms)"); 142 143 static int ieee80211_recv_bar_ena = 1; 144 SYSCTL_INT(_net_wlan, OID_AUTO, recv_bar, CTLFLAG_RW, &ieee80211_recv_bar_ena, 145 0, "BAR frame processing (ena/dis)"); 146 147 static int ieee80211_addba_timeout = -1;/* timeout for ADDBA response */ 148 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_timeout, 149 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 150 &ieee80211_addba_timeout, 0, ieee80211_sysctl_msecs_ticks, "I", 151 "ADDBA request timeout (ms)"); 152 static int ieee80211_addba_backoff = -1;/* backoff after max ADDBA requests */ 153 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_backoff, 154 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 155 &ieee80211_addba_backoff, 0, ieee80211_sysctl_msecs_ticks, "I", 156 "ADDBA request backoff (ms)"); 157 static int ieee80211_addba_maxtries = 3;/* max ADDBA requests before backoff */ 158 SYSCTL_INT(_net_wlan, OID_AUTO, addba_maxtries, CTLFLAG_RW, 159 &ieee80211_addba_maxtries, 0, "max ADDBA requests sent before backoff"); 160 161 static int ieee80211_bar_timeout = -1; /* timeout waiting for BAR response */ 162 static int ieee80211_bar_maxtries = 50;/* max BAR requests before DELBA */ 163 164 static ieee80211_recv_action_func ht_recv_action_ba_addba_request; 165 static ieee80211_recv_action_func ht_recv_action_ba_addba_response; 166 static ieee80211_recv_action_func ht_recv_action_ba_delba; 167 static ieee80211_recv_action_func ht_recv_action_ht_mimopwrsave; 168 static ieee80211_recv_action_func ht_recv_action_ht_txchwidth; 169 170 static ieee80211_send_action_func ht_send_action_ba_addba; 171 static ieee80211_send_action_func ht_send_action_ba_delba; 172 static ieee80211_send_action_func ht_send_action_ht_txchwidth; 173 174 static void 175 ieee80211_ht_init(void) 176 { 177 /* 178 * Setup HT parameters that depends on the clock frequency. 179 */ 180 ieee80211_ampdu_age = msecs_to_ticks(500); 181 ieee80211_addba_timeout = msecs_to_ticks(250); 182 ieee80211_addba_backoff = msecs_to_ticks(10*1000); 183 ieee80211_bar_timeout = msecs_to_ticks(250); 184 /* 185 * Register action frame handlers. 186 */ 187 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 188 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_recv_action_ba_addba_request); 189 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 190 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_recv_action_ba_addba_response); 191 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 192 IEEE80211_ACTION_BA_DELBA, ht_recv_action_ba_delba); 193 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 194 IEEE80211_ACTION_HT_MIMOPWRSAVE, ht_recv_action_ht_mimopwrsave); 195 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 196 IEEE80211_ACTION_HT_TXCHWIDTH, ht_recv_action_ht_txchwidth); 197 198 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 199 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_send_action_ba_addba); 200 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 201 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_send_action_ba_addba); 202 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 203 IEEE80211_ACTION_BA_DELBA, ht_send_action_ba_delba); 204 ieee80211_send_action_register(IEEE80211_ACTION_CAT_HT, 205 IEEE80211_ACTION_HT_TXCHWIDTH, ht_send_action_ht_txchwidth); 206 } 207 SYSINIT(wlan_ht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_ht_init, NULL); 208 209 static int ieee80211_ampdu_enable(struct ieee80211_node *ni, 210 struct ieee80211_tx_ampdu *tap); 211 static int ieee80211_addba_request(struct ieee80211_node *ni, 212 struct ieee80211_tx_ampdu *tap, 213 int dialogtoken, int baparamset, int batimeout); 214 static int ieee80211_addba_response(struct ieee80211_node *ni, 215 struct ieee80211_tx_ampdu *tap, 216 int code, int baparamset, int batimeout); 217 static void ieee80211_addba_stop(struct ieee80211_node *ni, 218 struct ieee80211_tx_ampdu *tap); 219 static void null_addba_response_timeout(struct ieee80211_node *ni, 220 struct ieee80211_tx_ampdu *tap); 221 222 static void ieee80211_bar_response(struct ieee80211_node *ni, 223 struct ieee80211_tx_ampdu *tap, int status); 224 static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap); 225 static void bar_stop_timer(struct ieee80211_tx_ampdu *tap); 226 static int ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *, 227 int baparamset, int batimeout, int baseqctl); 228 static void ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *); 229 230 void 231 ieee80211_ht_attach(struct ieee80211com *ic) 232 { 233 /* setup default aggregation policy */ 234 ic->ic_recv_action = ieee80211_recv_action; 235 ic->ic_send_action = ieee80211_send_action; 236 ic->ic_ampdu_enable = ieee80211_ampdu_enable; 237 ic->ic_addba_request = ieee80211_addba_request; 238 ic->ic_addba_response = ieee80211_addba_response; 239 ic->ic_addba_response_timeout = null_addba_response_timeout; 240 ic->ic_addba_stop = ieee80211_addba_stop; 241 ic->ic_bar_response = ieee80211_bar_response; 242 ic->ic_ampdu_rx_start = ampdu_rx_start; 243 ic->ic_ampdu_rx_stop = ampdu_rx_stop; 244 245 ic->ic_htprotmode = IEEE80211_PROT_RTSCTS; 246 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; 247 } 248 249 void 250 ieee80211_ht_detach(struct ieee80211com *ic) 251 { 252 } 253 254 void 255 ieee80211_ht_vattach(struct ieee80211vap *vap) 256 { 257 258 /* driver can override defaults */ 259 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_8K; 260 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_NA; 261 vap->iv_ampdu_limit = vap->iv_ampdu_rxmax; 262 vap->iv_amsdu_limit = vap->iv_htcaps & IEEE80211_HTCAP_MAXAMSDU; 263 /* tx aggregation traffic thresholds */ 264 vap->iv_ampdu_mintraffic[WME_AC_BK] = 128; 265 vap->iv_ampdu_mintraffic[WME_AC_BE] = 64; 266 vap->iv_ampdu_mintraffic[WME_AC_VO] = 32; 267 vap->iv_ampdu_mintraffic[WME_AC_VI] = 32; 268 269 vap->iv_htprotmode = IEEE80211_PROT_RTSCTS; 270 vap->iv_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; 271 272 if (vap->iv_htcaps & IEEE80211_HTC_HT) { 273 /* 274 * Device is HT capable; enable all HT-related 275 * facilities by default. 276 * XXX these choices may be too aggressive. 277 */ 278 vap->iv_flags_ht |= IEEE80211_FHT_HT 279 | IEEE80211_FHT_HTCOMPAT 280 ; 281 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI20) 282 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20; 283 /* XXX infer from channel list? */ 284 if (vap->iv_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 285 vap->iv_flags_ht |= IEEE80211_FHT_USEHT40; 286 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI40) 287 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40; 288 } 289 /* enable RIFS if capable */ 290 if (vap->iv_htcaps & IEEE80211_HTC_RIFS) 291 vap->iv_flags_ht |= IEEE80211_FHT_RIFS; 292 293 /* NB: A-MPDU and A-MSDU rx are mandated, these are tx only */ 294 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX; 295 if (vap->iv_htcaps & IEEE80211_HTC_AMPDU) 296 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX; 297 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX; 298 if (vap->iv_htcaps & IEEE80211_HTC_AMSDU) 299 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX; 300 301 if (vap->iv_htcaps & IEEE80211_HTCAP_TXSTBC) 302 vap->iv_flags_ht |= IEEE80211_FHT_STBC_TX; 303 if (vap->iv_htcaps & IEEE80211_HTCAP_RXSTBC) 304 vap->iv_flags_ht |= IEEE80211_FHT_STBC_RX; 305 306 if (vap->iv_htcaps & IEEE80211_HTCAP_LDPC) 307 vap->iv_flags_ht |= IEEE80211_FHT_LDPC_RX; 308 if (vap->iv_htcaps & IEEE80211_HTC_TXLDPC) 309 vap->iv_flags_ht |= IEEE80211_FHT_LDPC_TX; 310 } 311 /* NB: disable default legacy WDS, too many issues right now */ 312 if (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) 313 vap->iv_flags_ht &= ~IEEE80211_FHT_HT; 314 } 315 316 void 317 ieee80211_ht_vdetach(struct ieee80211vap *vap) 318 { 319 } 320 321 static int 322 ht_getrate(struct ieee80211com *ic, int index, enum ieee80211_phymode mode, 323 int ratetype) 324 { 325 int mword, rate; 326 327 mword = ieee80211_rate2media(ic, index | IEEE80211_RATE_MCS, mode); 328 if (IFM_SUBTYPE(mword) != IFM_IEEE80211_MCS) 329 return (0); 330 switch (ratetype) { 331 case 0: 332 rate = ieee80211_htrates[index].ht20_rate_800ns; 333 break; 334 case 1: 335 rate = ieee80211_htrates[index].ht20_rate_400ns; 336 break; 337 case 2: 338 rate = ieee80211_htrates[index].ht40_rate_800ns; 339 break; 340 default: 341 rate = ieee80211_htrates[index].ht40_rate_400ns; 342 break; 343 } 344 return (rate); 345 } 346 347 static struct printranges { 348 int minmcs; 349 int maxmcs; 350 int txstream; 351 int ratetype; 352 int htcapflags; 353 } ranges[] = { 354 { 0, 7, 1, 0, 0 }, 355 { 8, 15, 2, 0, 0 }, 356 { 16, 23, 3, 0, 0 }, 357 { 24, 31, 4, 0, 0 }, 358 { 32, 0, 1, 2, IEEE80211_HTC_TXMCS32 }, 359 { 33, 38, 2, 0, IEEE80211_HTC_TXUNEQUAL }, 360 { 39, 52, 3, 0, IEEE80211_HTC_TXUNEQUAL }, 361 { 53, 76, 4, 0, IEEE80211_HTC_TXUNEQUAL }, 362 { 0, 0, 0, 0, 0 }, 363 }; 364 365 static void 366 ht_rateprint(struct ieee80211com *ic, enum ieee80211_phymode mode, int ratetype) 367 { 368 int minrate, maxrate; 369 struct printranges *range; 370 371 for (range = ranges; range->txstream != 0; range++) { 372 if (ic->ic_txstream < range->txstream) 373 continue; 374 if (range->htcapflags && 375 (ic->ic_htcaps & range->htcapflags) == 0) 376 continue; 377 if (ratetype < range->ratetype) 378 continue; 379 minrate = ht_getrate(ic, range->minmcs, mode, ratetype); 380 maxrate = ht_getrate(ic, range->maxmcs, mode, ratetype); 381 if (range->maxmcs) { 382 ic_printf(ic, "MCS %d-%d: %d%sMbps - %d%sMbps\n", 383 range->minmcs, range->maxmcs, 384 minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""), 385 maxrate/2, ((maxrate & 0x1) != 0 ? ".5" : "")); 386 } else { 387 ic_printf(ic, "MCS %d: %d%sMbps\n", range->minmcs, 388 minrate/2, ((minrate & 0x1) != 0 ? ".5" : "")); 389 } 390 } 391 } 392 393 static void 394 ht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode) 395 { 396 const char *modestr = ieee80211_phymode_name[mode]; 397 398 ic_printf(ic, "%s MCS 20MHz\n", modestr); 399 ht_rateprint(ic, mode, 0); 400 if (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) { 401 ic_printf(ic, "%s MCS 20MHz SGI\n", modestr); 402 ht_rateprint(ic, mode, 1); 403 } 404 if (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 405 ic_printf(ic, "%s MCS 40MHz:\n", modestr); 406 ht_rateprint(ic, mode, 2); 407 } 408 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 409 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) { 410 ic_printf(ic, "%s MCS 40MHz SGI:\n", modestr); 411 ht_rateprint(ic, mode, 3); 412 } 413 } 414 415 void 416 ieee80211_ht_announce(struct ieee80211com *ic) 417 { 418 419 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 420 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 421 ic_printf(ic, "%dT%dR\n", ic->ic_txstream, ic->ic_rxstream); 422 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA)) 423 ht_announce(ic, IEEE80211_MODE_11NA); 424 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 425 ht_announce(ic, IEEE80211_MODE_11NG); 426 } 427 428 void 429 ieee80211_init_suphtrates(struct ieee80211com *ic) 430 { 431 #define ADDRATE(x) do { \ 432 htrateset->rs_rates[htrateset->rs_nrates] = x; \ 433 htrateset->rs_nrates++; \ 434 } while (0) 435 struct ieee80211_htrateset *htrateset = &ic->ic_sup_htrates; 436 int i; 437 438 memset(htrateset, 0, sizeof(struct ieee80211_htrateset)); 439 for (i = 0; i < ic->ic_txstream * 8; i++) 440 ADDRATE(i); 441 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 442 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32)) 443 ADDRATE(32); 444 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 445 if (ic->ic_txstream >= 2) { 446 for (i = 33; i <= 38; i++) 447 ADDRATE(i); 448 } 449 if (ic->ic_txstream >= 3) { 450 for (i = 39; i <= 52; i++) 451 ADDRATE(i); 452 } 453 if (ic->ic_txstream == 4) { 454 for (i = 53; i <= 76; i++) 455 ADDRATE(i); 456 } 457 } 458 #undef ADDRATE 459 } 460 461 /* 462 * Receive processing. 463 */ 464 465 /* 466 * Decap the encapsulated A-MSDU frames and dispatch all but 467 * the last for delivery. The last frame is returned for 468 * delivery via the normal path. 469 */ 470 struct mbuf * 471 ieee80211_decap_amsdu(struct ieee80211_node *ni, struct mbuf *m) 472 { 473 struct ieee80211vap *vap = ni->ni_vap; 474 int framelen; 475 struct mbuf *n; 476 477 /* discard 802.3 header inserted by ieee80211_decap */ 478 m_adj(m, sizeof(struct ether_header)); 479 480 vap->iv_stats.is_amsdu_decap++; 481 482 for (;;) { 483 /* 484 * Decap the first frame, bust it apart from the 485 * remainder and deliver. We leave the last frame 486 * delivery to the caller (for consistency with other 487 * code paths, could also do it here). 488 */ 489 m = ieee80211_decap1(m, &framelen); 490 if (m == NULL) { 491 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 492 ni->ni_macaddr, "a-msdu", "%s", "decap failed"); 493 vap->iv_stats.is_amsdu_tooshort++; 494 return NULL; 495 } 496 if (m->m_pkthdr.len == framelen) 497 break; 498 n = m_split(m, framelen, M_NOWAIT); 499 if (n == NULL) { 500 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 501 ni->ni_macaddr, "a-msdu", 502 "%s", "unable to split encapsulated frames"); 503 vap->iv_stats.is_amsdu_split++; 504 m_freem(m); /* NB: must reclaim */ 505 return NULL; 506 } 507 vap->iv_deliver_data(vap, ni, m); 508 509 /* 510 * Remove frame contents; each intermediate frame 511 * is required to be aligned to a 4-byte boundary. 512 */ 513 m = n; 514 m_adj(m, roundup2(framelen, 4) - framelen); /* padding */ 515 } 516 return m; /* last delivered by caller */ 517 } 518 519 static void 520 ampdu_rx_purge_slot(struct ieee80211_rx_ampdu *rap, int i) 521 { 522 struct mbuf *m; 523 524 /* Walk the queue, removing frames as appropriate */ 525 while (mbufq_len(&rap->rxa_mq[i]) != 0) { 526 m = mbufq_dequeue(&rap->rxa_mq[i]); 527 if (m == NULL) 528 break; 529 rap->rxa_qbytes -= m->m_pkthdr.len; 530 rap->rxa_qframes--; 531 m_freem(m); 532 } 533 } 534 535 /* 536 * Add the given frame to the current RX reorder slot. 537 * 538 * For future offloaded A-MSDU handling where multiple frames with 539 * the same sequence number show up here, this routine will append 540 * those frames as long as they're appropriately tagged. 541 */ 542 static int 543 ampdu_rx_add_slot(struct ieee80211_rx_ampdu *rap, int off, int tid, 544 ieee80211_seq rxseq, 545 struct ieee80211_node *ni, 546 struct mbuf *m, 547 const struct ieee80211_rx_stats *rxs) 548 { 549 const struct ieee80211_rx_stats *rxs_final = NULL; 550 struct ieee80211vap *vap = ni->ni_vap; 551 int toss_dup; 552 #define PROCESS 0 /* caller should process frame */ 553 #define CONSUMED 1 /* frame consumed, caller does nothing */ 554 555 /* 556 * Figure out if this is a duplicate frame for the given slot. 557 * 558 * We're assuming that the driver will hand us all the frames 559 * for a given AMSDU decap pass and if we get /a/ frame 560 * for an AMSDU decap then we'll get all of them. 561 * 562 * The tricksy bit is that we don't know when the /end/ of 563 * the decap pass is, because we aren't tracking state here 564 * per-slot to know that we've finished receiving the frame list. 565 * 566 * The driver sets RX_F_AMSDU and RX_F_AMSDU_MORE to tell us 567 * what's going on; so ideally we'd just check the frame at the 568 * end of the reassembly slot to see if its F_AMSDU w/ no F_AMSDU_MORE - 569 * that means we've received the whole AMSDU decap pass. 570 */ 571 572 /* 573 * Get the rxs of the final mbuf in the slot, if one exists. 574 */ 575 if (mbufq_len(&rap->rxa_mq[off]) != 0) { 576 rxs_final = ieee80211_get_rx_params_ptr(mbufq_last(&rap->rxa_mq[off])); 577 } 578 579 /* Default to tossing the duplicate frame */ 580 toss_dup = 1; 581 582 /* 583 * Check to see if the final frame has F_AMSDU and F_AMSDU set, AND 584 * this frame has F_AMSDU set (MORE or otherwise.) That's a sign 585 * that more can come. 586 */ 587 588 if ((rxs != NULL) && (rxs_final != NULL) && 589 ieee80211_check_rxseq_amsdu(rxs) && 590 ieee80211_check_rxseq_amsdu(rxs_final)) { 591 if (! ieee80211_check_rxseq_amsdu_more(rxs_final)) { 592 /* 593 * amsdu_more() returning 0 means "it's not the 594 * final frame" so we can append more 595 * frames here. 596 */ 597 toss_dup = 0; 598 } 599 } 600 601 /* 602 * If the list is empty OR we have determined we can put more 603 * driver decap'ed AMSDU frames in here, then insert. 604 */ 605 if ((mbufq_len(&rap->rxa_mq[off]) == 0) || (toss_dup == 0)) { 606 if (mbufq_enqueue(&rap->rxa_mq[off], m) != 0) { 607 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 608 ni->ni_macaddr, 609 "a-mpdu queue fail", 610 "seqno %u tid %u BA win <%u:%u> off=%d, qlen=%d, maxqlen=%d", 611 rxseq, tid, rap->rxa_start, 612 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 613 off, 614 mbufq_len(&rap->rxa_mq[off]), 615 rap->rxa_mq[off].mq_maxlen); 616 /* XXX error count */ 617 m_freem(m); 618 return CONSUMED; 619 } 620 rap->rxa_qframes++; 621 rap->rxa_qbytes += m->m_pkthdr.len; 622 vap->iv_stats.is_ampdu_rx_reorder++; 623 /* 624 * Statistics for AMSDU decap. 625 */ 626 if (rxs != NULL && ieee80211_check_rxseq_amsdu(rxs)) { 627 if (ieee80211_check_rxseq_amsdu_more(rxs)) { 628 /* more=1, AMSDU, end of batch */ 629 IEEE80211_NODE_STAT(ni, rx_amsdu_more_end); 630 } else { 631 IEEE80211_NODE_STAT(ni, rx_amsdu_more); 632 } 633 } 634 } else { 635 IEEE80211_DISCARD_MAC(vap, 636 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 637 ni->ni_macaddr, "a-mpdu duplicate", 638 "seqno %u tid %u BA win <%u:%u>", 639 rxseq, tid, rap->rxa_start, 640 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1)); 641 if (rxs != NULL) { 642 IEEE80211_DISCARD_MAC(vap, 643 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 644 ni->ni_macaddr, "a-mpdu duplicate", 645 "seqno %d tid %u pktflags 0x%08x\n", 646 rxseq, tid, rxs->c_pktflags); 647 } 648 if (rxs_final != NULL) { 649 IEEE80211_DISCARD_MAC(vap, 650 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 651 ni->ni_macaddr, "a-mpdu duplicate", 652 "final: pktflags 0x%08x\n", 653 rxs_final->c_pktflags); 654 } 655 vap->iv_stats.is_rx_dup++; 656 IEEE80211_NODE_STAT(ni, rx_dup); 657 m_freem(m); 658 } 659 return CONSUMED; 660 #undef CONSUMED 661 #undef PROCESS 662 } 663 664 /* 665 * Purge all frames in the A-MPDU re-order queue. 666 */ 667 static void 668 ampdu_rx_purge(struct ieee80211_rx_ampdu *rap) 669 { 670 int i; 671 672 for (i = 0; i < rap->rxa_wnd; i++) { 673 ampdu_rx_purge_slot(rap, i); 674 if (rap->rxa_qframes == 0) 675 break; 676 } 677 KASSERT(rap->rxa_qbytes == 0 && rap->rxa_qframes == 0, 678 ("lost %u data, %u frames on ampdu rx q", 679 rap->rxa_qbytes, rap->rxa_qframes)); 680 } 681 682 static void 683 ieee80211_ampdu_rx_init_rap(struct ieee80211_node *ni, 684 struct ieee80211_rx_ampdu *rap) 685 { 686 int i; 687 688 /* XXX TODO: ensure the queues are empty */ 689 memset(rap, 0, sizeof(*rap)); 690 for (i = 0; i < IEEE80211_AGGR_BAWMAX; i++) 691 mbufq_init(&rap->rxa_mq[i], 256); 692 } 693 694 /* 695 * Start A-MPDU rx/re-order processing for the specified TID. 696 */ 697 static int 698 ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap, 699 int baparamset, int batimeout, int baseqctl) 700 { 701 struct ieee80211vap *vap = ni->ni_vap; 702 int bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ); 703 704 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 705 /* 706 * AMPDU previously setup and not terminated with a DELBA, 707 * flush the reorder q's in case anything remains. 708 */ 709 ampdu_rx_purge(rap); 710 } 711 ieee80211_ampdu_rx_init_rap(ni, rap); 712 rap->rxa_wnd = (bufsiz == 0) ? 713 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 714 rap->rxa_start = _IEEE80211_MASKSHIFT(baseqctl, IEEE80211_BASEQ_START); 715 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 716 717 /* XXX this should be a configuration flag */ 718 if ((vap->iv_htcaps & IEEE80211_HTC_RX_AMSDU_AMPDU) && 719 (_IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU))) 720 rap->rxa_flags |= IEEE80211_AGGR_AMSDU; 721 else 722 rap->rxa_flags &= ~IEEE80211_AGGR_AMSDU; 723 724 return 0; 725 } 726 727 /* 728 * Public function; manually setup the RX ampdu state. 729 */ 730 int 731 ieee80211_ampdu_rx_start_ext(struct ieee80211_node *ni, int tid, int seq, int baw) 732 { 733 struct ieee80211_rx_ampdu *rap; 734 735 /* XXX TODO: sanity check tid, seq, baw */ 736 737 rap = &ni->ni_rx_ampdu[tid]; 738 739 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 740 /* 741 * AMPDU previously setup and not terminated with a DELBA, 742 * flush the reorder q's in case anything remains. 743 */ 744 ampdu_rx_purge(rap); 745 } 746 747 ieee80211_ampdu_rx_init_rap(ni, rap); 748 749 rap->rxa_wnd = (baw== 0) ? 750 IEEE80211_AGGR_BAWMAX : min(baw, IEEE80211_AGGR_BAWMAX); 751 if (seq == -1) { 752 /* Wait for the first RX frame, use that as BAW */ 753 rap->rxa_start = 0; 754 rap->rxa_flags |= IEEE80211_AGGR_WAITRX; 755 } else { 756 rap->rxa_start = seq; 757 } 758 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 759 760 /* XXX TODO: no amsdu flag */ 761 762 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 763 "%s: tid=%d, start=%d, wnd=%d, flags=0x%08x", 764 __func__, 765 tid, 766 seq, 767 rap->rxa_wnd, 768 rap->rxa_flags); 769 770 return 0; 771 } 772 773 /* 774 * Public function; manually stop the RX AMPDU state. 775 */ 776 void 777 ieee80211_ampdu_rx_stop_ext(struct ieee80211_node *ni, int tid) 778 { 779 struct ieee80211_rx_ampdu *rap; 780 781 /* XXX TODO: sanity check tid, seq, baw */ 782 rap = &ni->ni_rx_ampdu[tid]; 783 ampdu_rx_stop(ni, rap); 784 } 785 786 /* 787 * Stop A-MPDU rx processing for the specified TID. 788 */ 789 static void 790 ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 791 { 792 793 ampdu_rx_purge(rap); 794 rap->rxa_flags &= ~(IEEE80211_AGGR_RUNNING 795 | IEEE80211_AGGR_XCHGPEND 796 | IEEE80211_AGGR_WAITRX); 797 } 798 799 /* 800 * Dispatch a frame from the A-MPDU reorder queue. The 801 * frame is fed back into ieee80211_input marked with an 802 * M_AMPDU_MPDU flag so it doesn't come back to us (it also 803 * permits ieee80211_input to optimize re-processing). 804 */ 805 static __inline void 806 ampdu_dispatch(struct ieee80211_node *ni, struct mbuf *m) 807 { 808 m->m_flags |= M_AMPDU_MPDU; /* bypass normal processing */ 809 /* NB: rssi and noise are ignored w/ M_AMPDU_MPDU set */ 810 (void) ieee80211_input(ni, m, 0, 0); 811 } 812 813 static int 814 ampdu_dispatch_slot(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni, 815 int i) 816 { 817 struct mbuf *m; 818 int n = 0; 819 820 while (mbufq_len(&rap->rxa_mq[i]) != 0) { 821 m = mbufq_dequeue(&rap->rxa_mq[i]); 822 if (m == NULL) 823 break; 824 n++; 825 826 rap->rxa_qbytes -= m->m_pkthdr.len; 827 rap->rxa_qframes--; 828 829 ampdu_dispatch(ni, m); 830 } 831 return (n); 832 } 833 834 static void 835 ampdu_rx_moveup(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni, 836 int i, int winstart) 837 { 838 struct ieee80211vap *vap = ni->ni_vap; 839 840 /* 841 * If frames remain, copy the mbuf pointers down so 842 * they correspond to the offsets in the new window. 843 */ 844 if (rap->rxa_qframes != 0) { 845 int n = rap->rxa_qframes, j; 846 for (j = i+1; j < rap->rxa_wnd; j++) { 847 /* 848 * Concat the list contents over, which will 849 * blank the source list for us. 850 */ 851 if (mbufq_len(&rap->rxa_mq[j]) != 0) { 852 n = n - mbufq_len(&rap->rxa_mq[j]); 853 mbufq_concat(&rap->rxa_mq[j-i], &rap->rxa_mq[j]); 854 KASSERT(n >= 0, ("%s: n < 0 (%d)", __func__, n)); 855 if (n == 0) 856 break; 857 } 858 } 859 KASSERT(n == 0, ("%s: lost %d frames, qframes %d off %d " 860 "BA win <%d:%d> winstart %d", 861 __func__, n, rap->rxa_qframes, i, rap->rxa_start, 862 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 863 winstart)); 864 vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; 865 } 866 } 867 868 /* 869 * Dispatch as many frames as possible from the re-order queue. 870 * Frames will always be "at the front"; we process all frames 871 * up to the first empty slot in the window. On completion we 872 * cleanup state if there are still pending frames in the current 873 * BA window. We assume the frame at slot 0 is already handled 874 * by the caller; we always start at slot 1. 875 */ 876 static void 877 ampdu_rx_dispatch(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni) 878 { 879 struct ieee80211vap *vap = ni->ni_vap; 880 int i, r, r2; 881 882 /* flush run of frames */ 883 r2 = 0; 884 for (i = 1; i < rap->rxa_wnd; i++) { 885 r = ampdu_dispatch_slot(rap, ni, i); 886 if (r == 0) 887 break; 888 r2 += r; 889 } 890 891 /* move up frames */ 892 ampdu_rx_moveup(rap, ni, i, -1); 893 894 /* 895 * Adjust the start of the BA window to 896 * reflect the frames just dispatched. 897 */ 898 rap->rxa_start = IEEE80211_SEQ_ADD(rap->rxa_start, i); 899 vap->iv_stats.is_ampdu_rx_oor += r2; 900 901 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 902 "%s: moved slot up %d slots to start at %d (%d frames)", 903 __func__, 904 i, 905 rap->rxa_start, 906 r2); 907 } 908 909 /* 910 * Dispatch all frames in the A-MPDU re-order queue. 911 */ 912 static void 913 ampdu_rx_flush(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 914 { 915 int i, r; 916 917 for (i = 0; i < rap->rxa_wnd; i++) { 918 r = ampdu_dispatch_slot(rap, ni, i); 919 if (r == 0) 920 continue; 921 ni->ni_vap->iv_stats.is_ampdu_rx_oor += r; 922 923 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 924 "%s: moved slot up %d slots to start at %d (%d frames)", 925 __func__, 926 1, 927 rap->rxa_start, 928 r); 929 930 if (rap->rxa_qframes == 0) 931 break; 932 } 933 } 934 935 /* 936 * Dispatch all frames in the A-MPDU re-order queue 937 * preceding the specified sequence number. This logic 938 * handles window moves due to a received MSDU or BAR. 939 */ 940 static void 941 ampdu_rx_flush_upto(struct ieee80211_node *ni, 942 struct ieee80211_rx_ampdu *rap, ieee80211_seq winstart) 943 { 944 struct ieee80211vap *vap = ni->ni_vap; 945 ieee80211_seq seqno; 946 int i, r; 947 948 /* 949 * Flush any complete MSDU's with a sequence number lower 950 * than winstart. Gaps may exist. Note that we may actually 951 * dispatch frames past winstart if a run continues; this is 952 * an optimization that avoids having to do a separate pass 953 * to dispatch frames after moving the BA window start. 954 */ 955 seqno = rap->rxa_start; 956 for (i = 0; i < rap->rxa_wnd; i++) { 957 if ((r = mbufq_len(&rap->rxa_mq[i])) != 0) { 958 (void) ampdu_dispatch_slot(rap, ni, i); 959 } else { 960 if (!IEEE80211_SEQ_BA_BEFORE(seqno, winstart)) 961 break; 962 } 963 vap->iv_stats.is_ampdu_rx_oor += r; 964 seqno = IEEE80211_SEQ_INC(seqno); 965 966 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 967 "%s: moved slot up %d slots to start at %d (%d frames)", 968 __func__, 969 1, 970 seqno, 971 r); 972 } 973 974 /* 975 * If frames remain, copy the mbuf pointers down so 976 * they correspond to the offsets in the new window. 977 */ 978 ampdu_rx_moveup(rap, ni, i, winstart); 979 980 /* 981 * Move the start of the BA window; we use the 982 * sequence number of the last MSDU that was 983 * passed up the stack+1 or winstart if stopped on 984 * a gap in the reorder buffer. 985 */ 986 rap->rxa_start = seqno; 987 } 988 989 /* 990 * Process a received QoS data frame for an HT station. Handle 991 * A-MPDU reordering: if this frame is received out of order 992 * and falls within the BA window hold onto it. Otherwise if 993 * this frame completes a run, flush any pending frames. We 994 * return 1 if the frame is consumed. A 0 is returned if 995 * the frame should be processed normally by the caller. 996 * 997 * A-MSDU: handle hardware decap'ed A-MSDU frames that are 998 * pretending to be MPDU's. They're dispatched directly if 999 * able; or attempted to put into the receive reordering slot. 1000 */ 1001 int 1002 ieee80211_ampdu_reorder(struct ieee80211_node *ni, struct mbuf *m, 1003 const struct ieee80211_rx_stats *rxs) 1004 { 1005 #define PROCESS 0 /* caller should process frame */ 1006 #define CONSUMED 1 /* frame consumed, caller does nothing */ 1007 struct ieee80211vap *vap = ni->ni_vap; 1008 struct ieee80211_qosframe *wh; 1009 struct ieee80211_rx_ampdu *rap; 1010 ieee80211_seq rxseq; 1011 uint8_t tid; 1012 int off; 1013 int amsdu = ieee80211_check_rxseq_amsdu(rxs); 1014 int amsdu_end = ieee80211_check_rxseq_amsdu_more(rxs); 1015 1016 KASSERT((m->m_flags & (M_AMPDU | M_AMPDU_MPDU)) == M_AMPDU, 1017 ("!a-mpdu or already re-ordered, flags 0x%x", m->m_flags)); 1018 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 1019 1020 /* NB: m_len known to be sufficient */ 1021 wh = mtod(m, struct ieee80211_qosframe *); 1022 if (wh->i_fc[0] != IEEE80211_FC0_QOSDATA) { 1023 /* 1024 * Not QoS data, shouldn't get here but just 1025 * return it to the caller for processing. 1026 */ 1027 return PROCESS; 1028 } 1029 1030 /* 1031 * 802.11-2012 9.3.2.10 - Duplicate detection and recovery. 1032 * 1033 * Multicast QoS data frames are checked against a different 1034 * counter, not the per-TID counter. 1035 */ 1036 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1037 return PROCESS; 1038 1039 tid = ieee80211_getqos(wh)[0]; 1040 tid &= IEEE80211_QOS_TID; 1041 rap = &ni->ni_rx_ampdu[tid]; 1042 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 1043 /* 1044 * No ADDBA request yet, don't touch. 1045 */ 1046 return PROCESS; 1047 } 1048 rxseq = le16toh(*(uint16_t *)wh->i_seq); 1049 if ((rxseq & IEEE80211_SEQ_FRAG_MASK) != 0) { 1050 /* 1051 * Fragments are not allowed; toss. 1052 */ 1053 IEEE80211_DISCARD_MAC(vap, 1054 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 1055 "A-MPDU", "fragment, rxseq 0x%x tid %u%s", rxseq, tid, 1056 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 1057 vap->iv_stats.is_ampdu_rx_drop++; 1058 IEEE80211_NODE_STAT(ni, rx_drop); 1059 m_freem(m); 1060 return CONSUMED; 1061 } 1062 rxseq >>= IEEE80211_SEQ_SEQ_SHIFT; 1063 rap->rxa_nframes++; 1064 1065 /* 1066 * Handle waiting for the first frame to define the BAW. 1067 * Some firmware doesn't provide the RX of the starting point 1068 * of the BAW and we have to cope. 1069 */ 1070 if (rap->rxa_flags & IEEE80211_AGGR_WAITRX) { 1071 rap->rxa_flags &= ~IEEE80211_AGGR_WAITRX; 1072 rap->rxa_start = rxseq; 1073 } 1074 again: 1075 if (rxseq == rap->rxa_start) { 1076 /* 1077 * First frame in window. 1078 */ 1079 if (rap->rxa_qframes != 0) { 1080 /* 1081 * Dispatch as many packets as we can. 1082 */ 1083 KASSERT((mbufq_len(&rap->rxa_mq[0]) == 0), ("unexpected dup")); 1084 ampdu_dispatch(ni, m); 1085 ampdu_rx_dispatch(rap, ni); 1086 return CONSUMED; 1087 } else { 1088 /* 1089 * In order; advance window if needed and notify 1090 * caller to dispatch directly. 1091 */ 1092 if (amsdu) { 1093 if (amsdu_end) { 1094 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 1095 IEEE80211_NODE_STAT(ni, rx_amsdu_more_end); 1096 } else { 1097 IEEE80211_NODE_STAT(ni, rx_amsdu_more); 1098 } 1099 } else { 1100 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 1101 } 1102 return PROCESS; 1103 } 1104 } 1105 /* 1106 * Frame is out of order; store if in the BA window. 1107 */ 1108 /* calculate offset in BA window */ 1109 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 1110 if (off < rap->rxa_wnd) { 1111 /* 1112 * Common case (hopefully): in the BA window. 1113 * Sec 9.10.7.6.2 a) (p.137) 1114 */ 1115 1116 /* 1117 * Check for frames sitting too long in the reorder queue. 1118 * This should only ever happen if frames are not delivered 1119 * without the sender otherwise notifying us (e.g. with a 1120 * BAR to move the window). Typically this happens because 1121 * of vendor bugs that cause the sequence number to jump. 1122 * When this happens we get a gap in the reorder queue that 1123 * leaves frame sitting on the queue until they get pushed 1124 * out due to window moves. When the vendor does not send 1125 * BAR this move only happens due to explicit packet sends 1126 * 1127 * NB: we only track the time of the oldest frame in the 1128 * reorder q; this means that if we flush we might push 1129 * frames that still "new"; if this happens then subsequent 1130 * frames will result in BA window moves which cost something 1131 * but is still better than a big throughput dip. 1132 */ 1133 if (rap->rxa_qframes != 0) { 1134 /* XXX honor batimeout? */ 1135 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 1136 /* 1137 * Too long since we received the first 1138 * frame; flush the reorder buffer. 1139 */ 1140 if (rap->rxa_qframes != 0) { 1141 vap->iv_stats.is_ampdu_rx_age += 1142 rap->rxa_qframes; 1143 ampdu_rx_flush(ni, rap); 1144 } 1145 /* 1146 * Advance the window if needed and notify 1147 * the caller to dispatch directly. 1148 */ 1149 if (amsdu) { 1150 if (amsdu_end) { 1151 rap->rxa_start = 1152 IEEE80211_SEQ_INC(rxseq); 1153 IEEE80211_NODE_STAT(ni, 1154 rx_amsdu_more_end); 1155 } else { 1156 IEEE80211_NODE_STAT(ni, 1157 rx_amsdu_more); 1158 } 1159 } else { 1160 rap->rxa_start = 1161 IEEE80211_SEQ_INC(rxseq); 1162 } 1163 return PROCESS; 1164 } 1165 } else { 1166 /* 1167 * First frame, start aging timer. 1168 */ 1169 rap->rxa_age = ticks; 1170 } 1171 1172 /* save packet - this consumes, no matter what */ 1173 ampdu_rx_add_slot(rap, off, tid, rxseq, ni, m, rxs); 1174 return CONSUMED; 1175 } 1176 if (off < IEEE80211_SEQ_BA_RANGE) { 1177 /* 1178 * Outside the BA window, but within range; 1179 * flush the reorder q and move the window. 1180 * Sec 9.10.7.6.2 b) (p.138) 1181 */ 1182 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1183 "move BA win <%u:%u> (%u frames) rxseq %u tid %u", 1184 rap->rxa_start, 1185 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1186 rap->rxa_qframes, rxseq, tid); 1187 vap->iv_stats.is_ampdu_rx_move++; 1188 1189 /* 1190 * The spec says to flush frames up to but not including: 1191 * WinStart_B = rxseq - rap->rxa_wnd + 1 1192 * Then insert the frame or notify the caller to process 1193 * it immediately. We can safely do this by just starting 1194 * over again because we know the frame will now be within 1195 * the BA window. 1196 */ 1197 /* NB: rxa_wnd known to be >0 */ 1198 ampdu_rx_flush_upto(ni, rap, 1199 IEEE80211_SEQ_SUB(rxseq, rap->rxa_wnd-1)); 1200 goto again; 1201 } else { 1202 /* 1203 * Outside the BA window and out of range; toss. 1204 * Sec 9.10.7.6.2 c) (p.138) 1205 */ 1206 IEEE80211_DISCARD_MAC(vap, 1207 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 1208 "MPDU", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 1209 rap->rxa_start, 1210 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1211 rap->rxa_qframes, rxseq, tid, 1212 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 1213 vap->iv_stats.is_ampdu_rx_drop++; 1214 IEEE80211_NODE_STAT(ni, rx_drop); 1215 m_freem(m); 1216 return CONSUMED; 1217 } 1218 #undef CONSUMED 1219 #undef PROCESS 1220 } 1221 1222 /* 1223 * Process a BAR ctl frame. Dispatch all frames up to 1224 * the sequence number of the frame. If this frame is 1225 * out of range it's discarded. 1226 */ 1227 void 1228 ieee80211_recv_bar(struct ieee80211_node *ni, struct mbuf *m0) 1229 { 1230 struct ieee80211vap *vap = ni->ni_vap; 1231 struct ieee80211_frame_bar *wh; 1232 struct ieee80211_rx_ampdu *rap; 1233 ieee80211_seq rxseq; 1234 int tid, off; 1235 1236 if (!ieee80211_recv_bar_ena) { 1237 #if 0 1238 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_11N, 1239 ni->ni_macaddr, "BAR", "%s", "processing disabled"); 1240 #endif 1241 vap->iv_stats.is_ampdu_bar_bad++; 1242 return; 1243 } 1244 wh = mtod(m0, struct ieee80211_frame_bar *); 1245 /* XXX check basic BAR */ 1246 tid = _IEEE80211_MASKSHIFT(le16toh(wh->i_ctl), IEEE80211_BAR_TID); 1247 rap = &ni->ni_rx_ampdu[tid]; 1248 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 1249 /* 1250 * No ADDBA request yet, don't touch. 1251 */ 1252 IEEE80211_DISCARD_MAC(vap, 1253 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 1254 ni->ni_macaddr, "BAR", "no BA stream, tid %u", tid); 1255 vap->iv_stats.is_ampdu_bar_bad++; 1256 return; 1257 } 1258 vap->iv_stats.is_ampdu_bar_rx++; 1259 rxseq = le16toh(wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT; 1260 if (rxseq == rap->rxa_start) 1261 return; 1262 /* calculate offset in BA window */ 1263 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 1264 if (off < IEEE80211_SEQ_BA_RANGE) { 1265 /* 1266 * Flush the reorder q up to rxseq and move the window. 1267 * Sec 9.10.7.6.3 a) (p.138) 1268 */ 1269 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1270 "BAR moves BA win <%u:%u> (%u frames) rxseq %u tid %u", 1271 rap->rxa_start, 1272 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1273 rap->rxa_qframes, rxseq, tid); 1274 vap->iv_stats.is_ampdu_bar_move++; 1275 1276 ampdu_rx_flush_upto(ni, rap, rxseq); 1277 if (off >= rap->rxa_wnd) { 1278 /* 1279 * BAR specifies a window start to the right of BA 1280 * window; we must move it explicitly since 1281 * ampdu_rx_flush_upto will not. 1282 */ 1283 rap->rxa_start = rxseq; 1284 } 1285 } else { 1286 /* 1287 * Out of range; toss. 1288 * Sec 9.10.7.6.3 b) (p.138) 1289 */ 1290 IEEE80211_DISCARD_MAC(vap, 1291 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 1292 "BAR", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 1293 rap->rxa_start, 1294 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1295 rap->rxa_qframes, rxseq, tid, 1296 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 1297 vap->iv_stats.is_ampdu_bar_oow++; 1298 IEEE80211_NODE_STAT(ni, rx_drop); 1299 } 1300 } 1301 1302 /* 1303 * Setup HT-specific state in a node. Called only 1304 * when HT use is negotiated so we don't do extra 1305 * work for temporary and/or legacy sta's. 1306 */ 1307 void 1308 ieee80211_ht_node_init(struct ieee80211_node *ni) 1309 { 1310 struct ieee80211_tx_ampdu *tap; 1311 int tid; 1312 1313 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1314 ni, 1315 "%s: called (%p)", 1316 __func__, 1317 ni); 1318 1319 if (ni->ni_flags & IEEE80211_NODE_HT) { 1320 /* 1321 * Clean AMPDU state on re-associate. This handles the case 1322 * where a station leaves w/o notifying us and then returns 1323 * before node is reaped for inactivity. 1324 */ 1325 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1326 ni, 1327 "%s: calling cleanup (%p)", 1328 __func__, ni); 1329 ieee80211_ht_node_cleanup(ni); 1330 } 1331 for (tid = 0; tid < WME_NUM_TID; tid++) { 1332 tap = &ni->ni_tx_ampdu[tid]; 1333 tap->txa_tid = tid; 1334 tap->txa_ni = ni; 1335 ieee80211_txampdu_init_pps(tap); 1336 /* NB: further initialization deferred */ 1337 ieee80211_ampdu_rx_init_rap(ni, &ni->ni_rx_ampdu[tid]); 1338 } 1339 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU | 1340 IEEE80211_NODE_AMSDU; 1341 } 1342 1343 /* 1344 * Cleanup HT-specific state in a node. Called only 1345 * when HT use has been marked. 1346 */ 1347 void 1348 ieee80211_ht_node_cleanup(struct ieee80211_node *ni) 1349 { 1350 struct ieee80211com *ic = ni->ni_ic; 1351 int i; 1352 1353 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1354 ni, 1355 "%s: called (%p)", 1356 __func__, ni); 1357 1358 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT node")); 1359 1360 /* XXX optimize this */ 1361 for (i = 0; i < WME_NUM_TID; i++) { 1362 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[i]; 1363 if (tap->txa_flags & IEEE80211_AGGR_SETUP) 1364 ampdu_tx_stop(tap); 1365 } 1366 for (i = 0; i < WME_NUM_TID; i++) 1367 ic->ic_ampdu_rx_stop(ni, &ni->ni_rx_ampdu[i]); 1368 1369 ni->ni_htcap = 0; 1370 ni->ni_flags &= ~IEEE80211_NODE_HT_ALL; 1371 } 1372 1373 /* 1374 * Age out HT resources for a station. 1375 */ 1376 void 1377 ieee80211_ht_node_age(struct ieee80211_node *ni) 1378 { 1379 struct ieee80211vap *vap = ni->ni_vap; 1380 uint8_t tid; 1381 1382 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 1383 1384 for (tid = 0; tid < WME_NUM_TID; tid++) { 1385 struct ieee80211_rx_ampdu *rap; 1386 1387 rap = &ni->ni_rx_ampdu[tid]; 1388 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) 1389 continue; 1390 if (rap->rxa_qframes == 0) 1391 continue; 1392 /* 1393 * Check for frames sitting too long in the reorder queue. 1394 * See above for more details on what's happening here. 1395 */ 1396 /* XXX honor batimeout? */ 1397 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 1398 /* 1399 * Too long since we received the first 1400 * frame; flush the reorder buffer. 1401 */ 1402 vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes; 1403 ampdu_rx_flush(ni, rap); 1404 } 1405 } 1406 } 1407 1408 static struct ieee80211_channel * 1409 findhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int htflags) 1410 { 1411 return ieee80211_find_channel(ic, c->ic_freq, 1412 (c->ic_flags &~ IEEE80211_CHAN_HT) | htflags); 1413 } 1414 1415 /* 1416 * Adjust a channel to be HT/non-HT according to the vap's configuration. 1417 */ 1418 struct ieee80211_channel * 1419 ieee80211_ht_adjust_channel(struct ieee80211com *ic, 1420 struct ieee80211_channel *chan, int flags) 1421 { 1422 struct ieee80211_channel *c; 1423 1424 if (flags & IEEE80211_FHT_HT) { 1425 /* promote to HT if possible */ 1426 if (flags & IEEE80211_FHT_USEHT40) { 1427 if (!IEEE80211_IS_CHAN_HT40(chan)) { 1428 /* NB: arbitrarily pick ht40+ over ht40- */ 1429 c = findhtchan(ic, chan, IEEE80211_CHAN_HT40U); 1430 if (c == NULL) 1431 c = findhtchan(ic, chan, 1432 IEEE80211_CHAN_HT40D); 1433 if (c == NULL) 1434 c = findhtchan(ic, chan, 1435 IEEE80211_CHAN_HT20); 1436 if (c != NULL) 1437 chan = c; 1438 } 1439 } else if (!IEEE80211_IS_CHAN_HT20(chan)) { 1440 c = findhtchan(ic, chan, IEEE80211_CHAN_HT20); 1441 if (c != NULL) 1442 chan = c; 1443 } 1444 } else if (IEEE80211_IS_CHAN_HT(chan)) { 1445 /* demote to legacy, HT use is disabled */ 1446 c = ieee80211_find_channel(ic, chan->ic_freq, 1447 chan->ic_flags &~ IEEE80211_CHAN_HT); 1448 if (c != NULL) 1449 chan = c; 1450 } 1451 return chan; 1452 } 1453 1454 /* 1455 * Setup HT-specific state for a legacy WDS peer. 1456 */ 1457 void 1458 ieee80211_ht_wds_init(struct ieee80211_node *ni) 1459 { 1460 struct ieee80211vap *vap = ni->ni_vap; 1461 struct ieee80211_tx_ampdu *tap; 1462 int tid; 1463 1464 KASSERT(vap->iv_flags_ht & IEEE80211_FHT_HT, ("no HT requested")); 1465 1466 /* XXX check scan cache in case peer has an ap and we have info */ 1467 /* 1468 * If setup with a legacy channel; locate an HT channel. 1469 * Otherwise if the inherited channel (from a companion 1470 * AP) is suitable use it so we use the same location 1471 * for the extension channel). 1472 */ 1473 ni->ni_chan = ieee80211_ht_adjust_channel(ni->ni_ic, 1474 ni->ni_chan, ieee80211_htchanflags(ni->ni_chan)); 1475 1476 ni->ni_htcap = 0; 1477 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) 1478 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI20; 1479 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { 1480 ni->ni_htcap |= IEEE80211_HTCAP_CHWIDTH40; 1481 ni->ni_chw = 40; 1482 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 1483 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_ABOVE; 1484 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 1485 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_BELOW; 1486 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) 1487 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI40; 1488 } else { 1489 ni->ni_chw = 20; 1490 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_NONE; 1491 } 1492 ni->ni_htctlchan = ni->ni_chan->ic_ieee; 1493 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 1494 ni->ni_flags |= IEEE80211_NODE_RIFS; 1495 /* XXX does it make sense to enable SMPS? */ 1496 1497 ni->ni_htopmode = 0; /* XXX need protection state */ 1498 ni->ni_htstbc = 0; /* XXX need info */ 1499 1500 for (tid = 0; tid < WME_NUM_TID; tid++) { 1501 tap = &ni->ni_tx_ampdu[tid]; 1502 tap->txa_tid = tid; 1503 ieee80211_txampdu_init_pps(tap); 1504 } 1505 /* NB: AMPDU tx/rx governed by IEEE80211_FHT_AMPDU_{TX,RX} */ 1506 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU | 1507 IEEE80211_NODE_AMSDU; 1508 } 1509 1510 /* 1511 * Notify a VAP of a change in the HTINFO ie if it's a hostap VAP. 1512 * 1513 * This is to be called from the deferred HT protection update 1514 * task once the flags are updated. 1515 */ 1516 void 1517 ieee80211_htinfo_notify(struct ieee80211vap *vap) 1518 { 1519 1520 IEEE80211_LOCK_ASSERT(vap->iv_ic); 1521 1522 if (vap->iv_opmode != IEEE80211_M_HOSTAP) 1523 return; 1524 if (vap->iv_state != IEEE80211_S_RUN || 1525 !IEEE80211_IS_CHAN_HT(vap->iv_bss->ni_chan)) 1526 return; 1527 1528 IEEE80211_NOTE(vap, 1529 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1530 vap->iv_bss, 1531 "HT bss occupancy change: %d sta, %d ht, " 1532 "%d ht40%s, HT protmode now 0x%x" 1533 , vap->iv_sta_assoc 1534 , vap->iv_ht_sta_assoc 1535 , vap->iv_ht40_sta_assoc 1536 , (vap->iv_flags_ht & IEEE80211_FHT_NONHT_PR) ? 1537 ", non-HT sta present" : "" 1538 , vap->iv_curhtprotmode); 1539 1540 ieee80211_beacon_notify(vap, IEEE80211_BEACON_HTINFO); 1541 } 1542 1543 /* 1544 * Calculate HT protection mode from current 1545 * state and handle updates. 1546 */ 1547 static void 1548 htinfo_update(struct ieee80211vap *vap) 1549 { 1550 struct ieee80211com *ic = vap->iv_ic; 1551 uint8_t protmode; 1552 1553 if (vap->iv_sta_assoc != vap->iv_ht_sta_assoc) { 1554 protmode = IEEE80211_HTINFO_OPMODE_MIXED 1555 | IEEE80211_HTINFO_NONHT_PRESENT; 1556 } else if (vap->iv_flags_ht & IEEE80211_FHT_NONHT_PR) { 1557 protmode = IEEE80211_HTINFO_OPMODE_PROTOPT 1558 | IEEE80211_HTINFO_NONHT_PRESENT; 1559 } else if (ic->ic_bsschan != IEEE80211_CHAN_ANYC && 1560 IEEE80211_IS_CHAN_HT40(ic->ic_bsschan) && 1561 vap->iv_sta_assoc != vap->iv_ht40_sta_assoc) { 1562 protmode = IEEE80211_HTINFO_OPMODE_HT20PR; 1563 } else { 1564 protmode = IEEE80211_HTINFO_OPMODE_PURE; 1565 } 1566 if (protmode != vap->iv_curhtprotmode) { 1567 vap->iv_curhtprotmode = protmode; 1568 /* Update VAP with new protection mode */ 1569 ieee80211_vap_update_ht_protmode(vap); 1570 } 1571 } 1572 1573 /* 1574 * Handle an HT station joining a BSS. 1575 */ 1576 void 1577 ieee80211_ht_node_join(struct ieee80211_node *ni) 1578 { 1579 struct ieee80211vap *vap = ni->ni_vap; 1580 1581 IEEE80211_LOCK_ASSERT(vap->iv_ic); 1582 1583 if (ni->ni_flags & IEEE80211_NODE_HT) { 1584 vap->iv_ht_sta_assoc++; 1585 if (ni->ni_chw == 40) 1586 vap->iv_ht40_sta_assoc++; 1587 } 1588 htinfo_update(vap); 1589 } 1590 1591 /* 1592 * Handle an HT station leaving a BSS. 1593 */ 1594 void 1595 ieee80211_ht_node_leave(struct ieee80211_node *ni) 1596 { 1597 struct ieee80211vap *vap = ni->ni_vap; 1598 1599 IEEE80211_LOCK_ASSERT(vap->iv_ic); 1600 1601 if (ni->ni_flags & IEEE80211_NODE_HT) { 1602 vap->iv_ht_sta_assoc--; 1603 if (ni->ni_chw == 40) 1604 vap->iv_ht40_sta_assoc--; 1605 } 1606 htinfo_update(vap); 1607 } 1608 1609 /* 1610 * Public version of htinfo_update; used for processing 1611 * beacon frames from overlapping bss. 1612 * 1613 * Caller can specify either IEEE80211_HTINFO_OPMODE_MIXED 1614 * (on receipt of a beacon that advertises MIXED) or 1615 * IEEE80211_HTINFO_OPMODE_PROTOPT (on receipt of a beacon 1616 * from an overlapping legacy bss). We treat MIXED with 1617 * a higher precedence than PROTOPT (i.e. we will not change 1618 * change PROTOPT -> MIXED; only MIXED -> PROTOPT). This 1619 * corresponds to how we handle things in htinfo_update. 1620 * 1621 */ 1622 void 1623 ieee80211_htprot_update(struct ieee80211vap *vap, int protmode) 1624 { 1625 struct ieee80211com *ic = vap->iv_ic; 1626 #define OPMODE(x) _IEEE80211_SHIFTMASK(x, IEEE80211_HTINFO_OPMODE) 1627 IEEE80211_LOCK(ic); 1628 1629 /* track non-HT station presence */ 1630 KASSERT(protmode & IEEE80211_HTINFO_NONHT_PRESENT, 1631 ("protmode 0x%x", protmode)); 1632 vap->iv_flags_ht |= IEEE80211_FHT_NONHT_PR; 1633 vap->iv_lastnonht = ticks; 1634 1635 if (protmode != vap->iv_curhtprotmode && 1636 (OPMODE(vap->iv_curhtprotmode) != IEEE80211_HTINFO_OPMODE_MIXED || 1637 OPMODE(protmode) == IEEE80211_HTINFO_OPMODE_PROTOPT)) { 1638 vap->iv_curhtprotmode = protmode; 1639 /* Update VAP with new protection mode */ 1640 ieee80211_vap_update_ht_protmode(vap); 1641 } 1642 IEEE80211_UNLOCK(ic); 1643 #undef OPMODE 1644 } 1645 1646 /* 1647 * Time out presence of an overlapping bss with non-HT 1648 * stations. When operating in hostap mode we listen for 1649 * beacons from other stations and if we identify a non-HT 1650 * station is present we update the opmode field of the 1651 * HTINFO ie. To identify when all non-HT stations are 1652 * gone we time out this condition. 1653 */ 1654 void 1655 ieee80211_ht_timeout(struct ieee80211vap *vap) 1656 { 1657 1658 IEEE80211_LOCK_ASSERT(vap->iv_ic); 1659 1660 if ((vap->iv_flags_ht & IEEE80211_FHT_NONHT_PR) && 1661 ieee80211_time_after(ticks, vap->iv_lastnonht + IEEE80211_NONHT_PRESENT_AGE)) { 1662 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, 1663 "%s", "time out non-HT STA present on channel"); 1664 vap->iv_flags_ht &= ~IEEE80211_FHT_NONHT_PR; 1665 htinfo_update(vap); 1666 } 1667 } 1668 1669 /* 1670 * Process an 802.11n HT capabilities ie. 1671 */ 1672 void 1673 ieee80211_parse_htcap(struct ieee80211_node *ni, const uint8_t *ie) 1674 { 1675 if (ie[0] == IEEE80211_ELEMID_VENDOR) { 1676 /* 1677 * Station used Vendor OUI ie to associate; 1678 * mark the node so when we respond we'll use 1679 * the Vendor OUI's and not the standard ie's. 1680 */ 1681 ni->ni_flags |= IEEE80211_NODE_HTCOMPAT; 1682 ie += 4; 1683 } else 1684 ni->ni_flags &= ~IEEE80211_NODE_HTCOMPAT; 1685 1686 ni->ni_htcap = le16dec(ie + 1687 __offsetof(struct ieee80211_ie_htcap, hc_cap)); 1688 ni->ni_htparam = ie[__offsetof(struct ieee80211_ie_htcap, hc_param)]; 1689 } 1690 1691 static void 1692 htinfo_parse(struct ieee80211_node *ni, 1693 const struct ieee80211_ie_htinfo *htinfo) 1694 { 1695 uint16_t w; 1696 1697 ni->ni_htctlchan = htinfo->hi_ctrlchannel; 1698 ni->ni_ht2ndchan = _IEEE80211_SHIFTMASK(htinfo->hi_byte1, 1699 IEEE80211_HTINFO_2NDCHAN); 1700 w = le16dec(&htinfo->hi_byte2); 1701 ni->ni_htopmode = _IEEE80211_SHIFTMASK(w, IEEE80211_HTINFO_OPMODE); 1702 w = le16dec(&htinfo->hi_byte45); 1703 ni->ni_htstbc = _IEEE80211_SHIFTMASK(w, IEEE80211_HTINFO_BASIC_STBCMCS); 1704 } 1705 1706 /* 1707 * Parse an 802.11n HT info ie and save useful information 1708 * to the node state. Note this does not effect any state 1709 * changes such as for channel width change. 1710 */ 1711 void 1712 ieee80211_parse_htinfo(struct ieee80211_node *ni, const uint8_t *ie) 1713 { 1714 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1715 ie += 4; 1716 htinfo_parse(ni, (const struct ieee80211_ie_htinfo *) ie); 1717 } 1718 1719 /* 1720 * Handle 11n/11ac channel switch. 1721 * 1722 * Use the received HT/VHT ie's to identify the right channel to use. 1723 * If we cannot locate it in the channel table then fallback to 1724 * legacy operation. 1725 * 1726 * Note that we use this information to identify the node's 1727 * channel only; the caller is responsible for insuring any 1728 * required channel change is done (e.g. in sta mode when 1729 * parsing the contents of a beacon frame). 1730 */ 1731 static int 1732 htinfo_update_chw(struct ieee80211_node *ni, int htflags, int vhtflags) 1733 { 1734 struct ieee80211com *ic = ni->ni_ic; 1735 struct ieee80211_channel *c; 1736 int chanflags; 1737 int ret = 0; 1738 1739 /* 1740 * First step - do HT/VHT only channel lookup based on operating mode 1741 * flags. This involves masking out the VHT flags as well. 1742 * Otherwise we end up doing the full channel walk each time 1743 * we trigger this, which is expensive. 1744 */ 1745 chanflags = (ni->ni_chan->ic_flags &~ 1746 (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags | vhtflags; 1747 1748 if (chanflags == ni->ni_chan->ic_flags) 1749 goto done; 1750 1751 /* 1752 * If HT /or/ VHT flags have changed then check both. 1753 * We need to start by picking a HT channel anyway. 1754 */ 1755 1756 c = NULL; 1757 chanflags = (ni->ni_chan->ic_flags &~ 1758 (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags; 1759 /* XXX not right for ht40- */ 1760 c = ieee80211_find_channel(ic, ni->ni_chan->ic_freq, chanflags); 1761 if (c == NULL && (htflags & IEEE80211_CHAN_HT40)) { 1762 /* 1763 * No HT40 channel entry in our table; fall back 1764 * to HT20 operation. This should not happen. 1765 */ 1766 c = findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT20); 1767 #if 0 1768 IEEE80211_NOTE(ni->ni_vap, 1769 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1770 "no HT40 channel (freq %u), falling back to HT20", 1771 ni->ni_chan->ic_freq); 1772 #endif 1773 /* XXX stat */ 1774 } 1775 1776 /* Nothing found - leave it alone; move onto VHT */ 1777 if (c == NULL) 1778 c = ni->ni_chan; 1779 1780 /* 1781 * If it's non-HT, then bail out now. 1782 */ 1783 if (! IEEE80211_IS_CHAN_HT(c)) { 1784 IEEE80211_NOTE(ni->ni_vap, 1785 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1786 "not HT; skipping VHT check (%u/0x%x)", 1787 c->ic_freq, c->ic_flags); 1788 goto done; 1789 } 1790 1791 /* 1792 * Next step - look at the current VHT flags and determine 1793 * if we need to upgrade. Mask out the VHT and HT flags since 1794 * the vhtflags field will already have the correct HT 1795 * flags to use. 1796 */ 1797 if (IEEE80211_CONF_VHT(ic) && ni->ni_vhtcap != 0 && vhtflags != 0) { 1798 chanflags = (c->ic_flags 1799 &~ (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) 1800 | vhtflags; 1801 IEEE80211_NOTE(ni->ni_vap, 1802 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1803 ni, 1804 "%s: VHT; chanwidth=0x%02x; vhtflags=0x%08x", 1805 __func__, ni->ni_vht_chanwidth, vhtflags); 1806 1807 IEEE80211_NOTE(ni->ni_vap, 1808 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1809 ni, 1810 "%s: VHT; trying lookup for %d/0x%08x", 1811 __func__, c->ic_freq, chanflags); 1812 c = ieee80211_find_channel(ic, c->ic_freq, chanflags); 1813 } 1814 1815 /* Finally, if it's changed */ 1816 if (c != NULL && c != ni->ni_chan) { 1817 IEEE80211_NOTE(ni->ni_vap, 1818 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1819 "switch station to %s%d channel %u/0x%x", 1820 IEEE80211_IS_CHAN_VHT(c) ? "VHT" : "HT", 1821 IEEE80211_IS_CHAN_VHT80(c) ? 80 : 1822 (IEEE80211_IS_CHAN_HT40(c) ? 40 : 20), 1823 c->ic_freq, c->ic_flags); 1824 ni->ni_chan = c; 1825 ret = 1; 1826 } 1827 /* NB: caller responsible for forcing any channel change */ 1828 1829 done: 1830 /* update node's (11n) tx channel width */ 1831 ni->ni_chw = IEEE80211_IS_CHAN_HT40(ni->ni_chan)? 40 : 20; 1832 return (ret); 1833 } 1834 1835 /* 1836 * Update 11n MIMO PS state according to received htcap. 1837 */ 1838 static __inline int 1839 htcap_update_mimo_ps(struct ieee80211_node *ni) 1840 { 1841 uint16_t oflags = ni->ni_flags; 1842 1843 switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) { 1844 case IEEE80211_HTCAP_SMPS_DYNAMIC: 1845 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1846 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 1847 break; 1848 case IEEE80211_HTCAP_SMPS_ENA: 1849 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1850 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1851 break; 1852 case IEEE80211_HTCAP_SMPS_OFF: 1853 default: /* disable on rx of reserved value */ 1854 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 1855 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1856 break; 1857 } 1858 return (oflags ^ ni->ni_flags); 1859 } 1860 1861 /* 1862 * Update short GI state according to received htcap 1863 * and local settings. 1864 */ 1865 static __inline void 1866 htcap_update_shortgi(struct ieee80211_node *ni) 1867 { 1868 struct ieee80211vap *vap = ni->ni_vap; 1869 1870 ni->ni_flags &= ~(IEEE80211_NODE_SGI20|IEEE80211_NODE_SGI40); 1871 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) && 1872 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)) 1873 ni->ni_flags |= IEEE80211_NODE_SGI20; 1874 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) && 1875 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)) 1876 ni->ni_flags |= IEEE80211_NODE_SGI40; 1877 } 1878 1879 /* 1880 * Update LDPC state according to received htcap 1881 * and local settings. 1882 */ 1883 static __inline void 1884 htcap_update_ldpc(struct ieee80211_node *ni) 1885 { 1886 struct ieee80211vap *vap = ni->ni_vap; 1887 1888 if ((ni->ni_htcap & IEEE80211_HTCAP_LDPC) && 1889 (vap->iv_flags_ht & IEEE80211_FHT_LDPC_TX)) 1890 ni->ni_flags |= IEEE80211_NODE_LDPC; 1891 } 1892 1893 /* 1894 * Parse and update HT-related state extracted from 1895 * the HT cap and info ie's. 1896 * 1897 * This is called from the STA management path and 1898 * the ieee80211_node_join() path. It will take into 1899 * account the IEs discovered during scanning and 1900 * adjust things accordingly. 1901 */ 1902 void 1903 ieee80211_ht_updateparams(struct ieee80211_node *ni, 1904 const uint8_t *htcapie, const uint8_t *htinfoie) 1905 { 1906 struct ieee80211vap *vap = ni->ni_vap; 1907 const struct ieee80211_ie_htinfo *htinfo; 1908 1909 ieee80211_parse_htcap(ni, htcapie); 1910 if (vap->iv_htcaps & IEEE80211_HTC_SMPS) 1911 htcap_update_mimo_ps(ni); 1912 htcap_update_shortgi(ni); 1913 htcap_update_ldpc(ni); 1914 1915 if (htinfoie[0] == IEEE80211_ELEMID_VENDOR) 1916 htinfoie += 4; 1917 htinfo = (const struct ieee80211_ie_htinfo *) htinfoie; 1918 htinfo_parse(ni, htinfo); 1919 1920 /* 1921 * Defer the node channel change; we need to now 1922 * update VHT parameters before we do it. 1923 */ 1924 1925 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_RIFSMODE_PERM) && 1926 (vap->iv_flags_ht & IEEE80211_FHT_RIFS)) 1927 ni->ni_flags |= IEEE80211_NODE_RIFS; 1928 else 1929 ni->ni_flags &= ~IEEE80211_NODE_RIFS; 1930 } 1931 1932 static uint32_t 1933 ieee80211_vht_get_vhtflags(struct ieee80211_node *ni, uint32_t htflags) 1934 { 1935 struct ieee80211vap *vap = ni->ni_vap; 1936 uint32_t vhtflags = 0; 1937 1938 vhtflags = 0; 1939 if (ni->ni_flags & IEEE80211_NODE_VHT && vap->iv_flags_vht & IEEE80211_FVHT_VHT) { 1940 if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_160MHZ) && 1941 /* XXX 2 means "160MHz and 80+80MHz", 1 means "160MHz" */ 1942 (_IEEE80211_MASKSHIFT(vap->iv_vhtcaps, 1943 IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) >= 1) && 1944 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT160)) { 1945 vhtflags = IEEE80211_CHAN_VHT160; 1946 /* Mirror the HT40 flags */ 1947 if (htflags == IEEE80211_CHAN_HT40U) { 1948 vhtflags |= IEEE80211_CHAN_HT40U; 1949 } else if (htflags == IEEE80211_CHAN_HT40D) { 1950 vhtflags |= IEEE80211_CHAN_HT40D; 1951 } 1952 } else if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_80P80MHZ) && 1953 /* XXX 2 means "160MHz and 80+80MHz" */ 1954 (_IEEE80211_MASKSHIFT(vap->iv_vhtcaps, 1955 IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) == 2) && 1956 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT80P80)) { 1957 vhtflags = IEEE80211_CHAN_VHT80P80; 1958 /* Mirror the HT40 flags */ 1959 if (htflags == IEEE80211_CHAN_HT40U) { 1960 vhtflags |= IEEE80211_CHAN_HT40U; 1961 } else if (htflags == IEEE80211_CHAN_HT40D) { 1962 vhtflags |= IEEE80211_CHAN_HT40D; 1963 } 1964 } else if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_80MHZ) && 1965 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT80)) { 1966 vhtflags = IEEE80211_CHAN_VHT80; 1967 /* Mirror the HT40 flags */ 1968 if (htflags == IEEE80211_CHAN_HT40U) { 1969 vhtflags |= IEEE80211_CHAN_HT40U; 1970 } else if (htflags == IEEE80211_CHAN_HT40D) { 1971 vhtflags |= IEEE80211_CHAN_HT40D; 1972 } 1973 } else if (ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_USE_HT) { 1974 /* Mirror the HT40 flags */ 1975 /* 1976 * XXX TODO: if ht40 is disabled, but vht40 isn't 1977 * disabled then this logic will get very, very sad. 1978 * It's quite possible the only sane thing to do is 1979 * to not have vht40 as an option, and just obey 1980 * 'ht40' as that flag. 1981 */ 1982 if ((htflags == IEEE80211_CHAN_HT40U) && 1983 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT40)) { 1984 vhtflags = IEEE80211_CHAN_VHT40U 1985 | IEEE80211_CHAN_HT40U; 1986 } else if (htflags == IEEE80211_CHAN_HT40D && 1987 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT40)) { 1988 vhtflags = IEEE80211_CHAN_VHT40D 1989 | IEEE80211_CHAN_HT40D; 1990 } else if (htflags == IEEE80211_CHAN_HT20) { 1991 vhtflags = IEEE80211_CHAN_VHT20 1992 | IEEE80211_CHAN_HT20; 1993 } 1994 } else { 1995 vhtflags = IEEE80211_CHAN_VHT20; 1996 } 1997 } 1998 return (vhtflags); 1999 } 2000 2001 /* 2002 * Final part of updating the HT parameters. 2003 * 2004 * This is called from the STA management path and 2005 * the ieee80211_node_join() path. It will take into 2006 * account the IEs discovered during scanning and 2007 * adjust things accordingly. 2008 * 2009 * This is done after a call to ieee80211_ht_updateparams() 2010 * because it (and the upcoming VHT version of updateparams) 2011 * needs to ensure everything is parsed before htinfo_update_chw() 2012 * is called - which will change the channel config for the 2013 * node for us. 2014 */ 2015 int 2016 ieee80211_ht_updateparams_final(struct ieee80211_node *ni, 2017 const uint8_t *htcapie, const uint8_t *htinfoie) 2018 { 2019 struct ieee80211vap *vap = ni->ni_vap; 2020 const struct ieee80211_ie_htinfo *htinfo; 2021 int htflags, vhtflags; 2022 int ret = 0; 2023 2024 htinfo = (const struct ieee80211_ie_htinfo *) htinfoie; 2025 2026 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 2027 IEEE80211_CHAN_HT20 : 0; 2028 2029 /* NB: honor operating mode constraint */ 2030 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH_2040) && 2031 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 2032 if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_ABOVE) 2033 htflags = IEEE80211_CHAN_HT40U; 2034 else if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_BELOW) 2035 htflags = IEEE80211_CHAN_HT40D; 2036 } 2037 2038 /* 2039 * VHT flags - do much the same; check whether VHT is available 2040 * and if so, what our ideal channel use would be based on our 2041 * capabilities and the (pre-parsed) VHT info IE. 2042 */ 2043 vhtflags = ieee80211_vht_get_vhtflags(ni, htflags); 2044 2045 if (htinfo_update_chw(ni, htflags, vhtflags)) 2046 ret = 1; 2047 2048 return (ret); 2049 } 2050 2051 /* 2052 * Parse and update HT-related state extracted from the HT cap ie 2053 * for a station joining an HT BSS. 2054 * 2055 * This is called from the hostap path for each station. 2056 */ 2057 void 2058 ieee80211_ht_updatehtcap(struct ieee80211_node *ni, const uint8_t *htcapie) 2059 { 2060 struct ieee80211vap *vap = ni->ni_vap; 2061 2062 ieee80211_parse_htcap(ni, htcapie); 2063 if (vap->iv_htcaps & IEEE80211_HTC_SMPS) 2064 htcap_update_mimo_ps(ni); 2065 htcap_update_shortgi(ni); 2066 htcap_update_ldpc(ni); 2067 } 2068 2069 /* 2070 * Called once HT and VHT capabilities are parsed in hostap mode - 2071 * this will adjust the channel configuration of the given node 2072 * based on the configuration and capabilities. 2073 */ 2074 void 2075 ieee80211_ht_updatehtcap_final(struct ieee80211_node *ni) 2076 { 2077 struct ieee80211vap *vap = ni->ni_vap; 2078 int htflags; 2079 int vhtflags; 2080 2081 /* NB: honor operating mode constraint */ 2082 /* XXX 40 MHz intolerant */ 2083 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 2084 IEEE80211_CHAN_HT20 : 0; 2085 if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) && 2086 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 2087 if (IEEE80211_IS_CHAN_HT40U(vap->iv_bss->ni_chan)) 2088 htflags = IEEE80211_CHAN_HT40U; 2089 else if (IEEE80211_IS_CHAN_HT40D(vap->iv_bss->ni_chan)) 2090 htflags = IEEE80211_CHAN_HT40D; 2091 } 2092 /* 2093 * VHT flags - do much the same; check whether VHT is available 2094 * and if so, what our ideal channel use would be based on our 2095 * capabilities and the (pre-parsed) VHT info IE. 2096 */ 2097 vhtflags = ieee80211_vht_get_vhtflags(ni, htflags); 2098 2099 (void) htinfo_update_chw(ni, htflags, vhtflags); 2100 } 2101 2102 /* 2103 * Install received HT rate set by parsing the HT cap ie. 2104 */ 2105 int 2106 ieee80211_setup_htrates(struct ieee80211_node *ni, const uint8_t *ie, int flags) 2107 { 2108 struct ieee80211com *ic = ni->ni_ic; 2109 struct ieee80211vap *vap = ni->ni_vap; 2110 const struct ieee80211_ie_htcap *htcap; 2111 struct ieee80211_htrateset *rs; 2112 int i, maxequalmcs, maxunequalmcs; 2113 2114 maxequalmcs = ic->ic_txstream * 8 - 1; 2115 maxunequalmcs = 0; 2116 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 2117 if (ic->ic_txstream >= 2) 2118 maxunequalmcs = 38; 2119 if (ic->ic_txstream >= 3) 2120 maxunequalmcs = 52; 2121 if (ic->ic_txstream >= 4) 2122 maxunequalmcs = 76; 2123 } 2124 2125 rs = &ni->ni_htrates; 2126 memset(rs, 0, sizeof(*rs)); 2127 if (ie != NULL) { 2128 if (ie[0] == IEEE80211_ELEMID_VENDOR) 2129 ie += 4; 2130 htcap = (const struct ieee80211_ie_htcap *) ie; 2131 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 2132 if (isclr(htcap->hc_mcsset, i)) 2133 continue; 2134 if (rs->rs_nrates == IEEE80211_HTRATE_MAXSIZE) { 2135 IEEE80211_NOTE(vap, 2136 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 2137 "WARNING, HT rate set too large; only " 2138 "using %u rates", IEEE80211_HTRATE_MAXSIZE); 2139 vap->iv_stats.is_rx_rstoobig++; 2140 break; 2141 } 2142 if (i <= 31 && i > maxequalmcs) 2143 continue; 2144 if (i == 32 && 2145 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0) 2146 continue; 2147 if (i > 32 && i > maxunequalmcs) 2148 continue; 2149 rs->rs_rates[rs->rs_nrates++] = i; 2150 } 2151 } 2152 return ieee80211_fix_rate(ni, (struct ieee80211_rateset *) rs, flags); 2153 } 2154 2155 /* 2156 * Mark rates in a node's HT rate set as basic according 2157 * to the information in the supplied HT info ie. 2158 */ 2159 void 2160 ieee80211_setup_basic_htrates(struct ieee80211_node *ni, const uint8_t *ie) 2161 { 2162 const struct ieee80211_ie_htinfo *htinfo; 2163 struct ieee80211_htrateset *rs; 2164 int i, j; 2165 2166 if (ie[0] == IEEE80211_ELEMID_VENDOR) 2167 ie += 4; 2168 htinfo = (const struct ieee80211_ie_htinfo *) ie; 2169 rs = &ni->ni_htrates; 2170 if (rs->rs_nrates == 0) { 2171 IEEE80211_NOTE(ni->ni_vap, 2172 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 2173 "%s", "WARNING, empty HT rate set"); 2174 return; 2175 } 2176 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 2177 if (isclr(htinfo->hi_basicmcsset, i)) 2178 continue; 2179 for (j = 0; j < rs->rs_nrates; j++) 2180 if ((rs->rs_rates[j] & IEEE80211_RATE_VAL) == i) 2181 rs->rs_rates[j] |= IEEE80211_RATE_BASIC; 2182 } 2183 } 2184 2185 static void 2186 ampdu_tx_setup(struct ieee80211_tx_ampdu *tap) 2187 { 2188 callout_init(&tap->txa_timer, 1); 2189 tap->txa_flags |= IEEE80211_AGGR_SETUP; 2190 tap->txa_lastsample = ticks; 2191 } 2192 2193 static void 2194 ampdu_tx_stop(struct ieee80211_tx_ampdu *tap) 2195 { 2196 struct ieee80211_node *ni = tap->txa_ni; 2197 struct ieee80211com *ic = ni->ni_ic; 2198 2199 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2200 tap->txa_ni, 2201 "%s: called", 2202 __func__); 2203 2204 KASSERT(tap->txa_flags & IEEE80211_AGGR_SETUP, 2205 ("txa_flags 0x%x tid %d ac %d", tap->txa_flags, tap->txa_tid, 2206 TID_TO_WME_AC(tap->txa_tid))); 2207 2208 /* 2209 * Stop BA stream if setup so driver has a chance 2210 * to reclaim any resources it might have allocated. 2211 */ 2212 ic->ic_addba_stop(ni, tap); 2213 /* 2214 * Stop any pending BAR transmit. 2215 */ 2216 bar_stop_timer(tap); 2217 2218 /* 2219 * Reset packet estimate. 2220 */ 2221 ieee80211_txampdu_init_pps(tap); 2222 2223 /* NB: clearing NAK means we may re-send ADDBA */ 2224 tap->txa_flags &= ~(IEEE80211_AGGR_SETUP | IEEE80211_AGGR_NAK); 2225 } 2226 2227 /* 2228 * ADDBA response timeout. 2229 * 2230 * If software aggregation and per-TID queue management was done here, 2231 * that queue would be unpaused after the ADDBA timeout occurs. 2232 */ 2233 static void 2234 addba_timeout(void *arg) 2235 { 2236 struct ieee80211_tx_ampdu *tap = arg; 2237 struct ieee80211_node *ni = tap->txa_ni; 2238 struct ieee80211com *ic = ni->ni_ic; 2239 2240 /* XXX ? */ 2241 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 2242 tap->txa_attempts++; 2243 ic->ic_addba_response_timeout(ni, tap); 2244 } 2245 2246 static void 2247 addba_start_timeout(struct ieee80211_tx_ampdu *tap) 2248 { 2249 /* XXX use CALLOUT_PENDING instead? */ 2250 callout_reset(&tap->txa_timer, ieee80211_addba_timeout, 2251 addba_timeout, tap); 2252 tap->txa_flags |= IEEE80211_AGGR_XCHGPEND; 2253 tap->txa_nextrequest = ticks + ieee80211_addba_timeout; 2254 } 2255 2256 static void 2257 addba_stop_timeout(struct ieee80211_tx_ampdu *tap) 2258 { 2259 /* XXX use CALLOUT_PENDING instead? */ 2260 if (tap->txa_flags & IEEE80211_AGGR_XCHGPEND) { 2261 callout_stop(&tap->txa_timer); 2262 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 2263 } 2264 } 2265 2266 static void 2267 null_addba_response_timeout(struct ieee80211_node *ni, 2268 struct ieee80211_tx_ampdu *tap) 2269 { 2270 } 2271 2272 /* 2273 * Default method for requesting A-MPDU tx aggregation. 2274 * We setup the specified state block and start a timer 2275 * to wait for an ADDBA response frame. 2276 */ 2277 static int 2278 ieee80211_addba_request(struct ieee80211_node *ni, 2279 struct ieee80211_tx_ampdu *tap, 2280 int dialogtoken, int baparamset, int batimeout) 2281 { 2282 int bufsiz; 2283 2284 /* XXX locking */ 2285 tap->txa_token = dialogtoken; 2286 tap->txa_flags |= IEEE80211_AGGR_IMMEDIATE; 2287 bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ); 2288 tap->txa_wnd = (bufsiz == 0) ? 2289 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 2290 addba_start_timeout(tap); 2291 return 1; 2292 } 2293 2294 /* 2295 * Called by drivers that wish to request an ADDBA session be 2296 * setup. This brings it up and starts the request timer. 2297 */ 2298 int 2299 ieee80211_ampdu_tx_request_ext(struct ieee80211_node *ni, int tid) 2300 { 2301 struct ieee80211_tx_ampdu *tap; 2302 2303 if (tid < 0 || tid > 15) 2304 return (0); 2305 tap = &ni->ni_tx_ampdu[tid]; 2306 2307 /* XXX locking */ 2308 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 2309 /* do deferred setup of state */ 2310 ampdu_tx_setup(tap); 2311 } 2312 /* XXX hack for not doing proper locking */ 2313 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 2314 addba_start_timeout(tap); 2315 return (1); 2316 } 2317 2318 /* 2319 * Called by drivers that have marked a session as active. 2320 */ 2321 int 2322 ieee80211_ampdu_tx_request_active_ext(struct ieee80211_node *ni, int tid, 2323 int status) 2324 { 2325 struct ieee80211_tx_ampdu *tap; 2326 2327 if (tid < 0 || tid > 15) 2328 return (0); 2329 tap = &ni->ni_tx_ampdu[tid]; 2330 2331 /* XXX locking */ 2332 addba_stop_timeout(tap); 2333 if (status == 1) { 2334 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 2335 tap->txa_attempts = 0; 2336 } else { 2337 /* mark tid so we don't try again */ 2338 tap->txa_flags |= IEEE80211_AGGR_NAK; 2339 } 2340 return (1); 2341 } 2342 2343 /* 2344 * Default method for processing an A-MPDU tx aggregation 2345 * response. We shutdown any pending timer and update the 2346 * state block according to the reply. 2347 */ 2348 static int 2349 ieee80211_addba_response(struct ieee80211_node *ni, 2350 struct ieee80211_tx_ampdu *tap, 2351 int status, int baparamset, int batimeout) 2352 { 2353 struct ieee80211vap *vap = ni->ni_vap; 2354 int bufsiz; 2355 2356 /* XXX locking */ 2357 addba_stop_timeout(tap); 2358 if (status == IEEE80211_STATUS_SUCCESS) { 2359 bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ); 2360 /* XXX override our request? */ 2361 tap->txa_wnd = (bufsiz == 0) ? 2362 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 2363 #ifdef __notyet__ 2364 tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_TID); 2365 #endif 2366 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 2367 tap->txa_attempts = 0; 2368 /* TODO: this should be a vap flag */ 2369 if ((vap->iv_htcaps & IEEE80211_HTC_TX_AMSDU_AMPDU) && 2370 (ni->ni_flags & IEEE80211_NODE_AMSDU_TX) && 2371 (_IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU))) 2372 tap->txa_flags |= IEEE80211_AGGR_AMSDU; 2373 else 2374 tap->txa_flags &= ~IEEE80211_AGGR_AMSDU; 2375 } else { 2376 /* mark tid so we don't try again */ 2377 tap->txa_flags |= IEEE80211_AGGR_NAK; 2378 } 2379 return 1; 2380 } 2381 2382 /* 2383 * Default method for stopping A-MPDU tx aggregation. 2384 * Any timer is cleared and we drain any pending frames. 2385 */ 2386 static void 2387 ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 2388 { 2389 /* XXX locking */ 2390 addba_stop_timeout(tap); 2391 if (tap->txa_flags & IEEE80211_AGGR_RUNNING) { 2392 /* XXX clear aggregation queue */ 2393 tap->txa_flags &= ~(IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_AMSDU); 2394 } 2395 tap->txa_attempts = 0; 2396 } 2397 2398 /* 2399 * Process a received action frame using the default aggregation 2400 * policy. We intercept ADDBA-related frames and use them to 2401 * update our aggregation state. All other frames are passed up 2402 * for processing by ieee80211_recv_action. 2403 */ 2404 static int 2405 ht_recv_action_ba_addba_request(struct ieee80211_node *ni, 2406 const struct ieee80211_frame *wh, 2407 const uint8_t *frm, const uint8_t *efrm) 2408 { 2409 struct ieee80211com *ic = ni->ni_ic; 2410 struct ieee80211vap *vap = ni->ni_vap; 2411 struct ieee80211_rx_ampdu *rap; 2412 uint8_t dialogtoken; 2413 uint16_t baparamset, batimeout, baseqctl; 2414 uint16_t args[5]; 2415 int tid; 2416 2417 dialogtoken = frm[2]; 2418 baparamset = le16dec(frm+3); 2419 batimeout = le16dec(frm+5); 2420 baseqctl = le16dec(frm+7); 2421 2422 tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_TID); 2423 2424 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2425 "recv ADDBA request: dialogtoken %u baparamset 0x%x " 2426 "(tid %d bufsiz %d) batimeout %d baseqctl %d:%d amsdu %d", 2427 dialogtoken, baparamset, 2428 tid, _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ), 2429 batimeout, 2430 _IEEE80211_MASKSHIFT(baseqctl, IEEE80211_BASEQ_START), 2431 _IEEE80211_MASKSHIFT(baseqctl, IEEE80211_BASEQ_FRAG), 2432 _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU)); 2433 2434 rap = &ni->ni_rx_ampdu[tid]; 2435 2436 /* Send ADDBA response */ 2437 args[0] = dialogtoken; 2438 /* 2439 * NB: We ack only if the sta associated with HT and 2440 * the ap is configured to do AMPDU rx (the latter 2441 * violates the 11n spec and is mostly for testing). 2442 */ 2443 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_RX) && 2444 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX)) { 2445 /* XXX TODO: handle ampdu_rx_start failure */ 2446 ic->ic_ampdu_rx_start(ni, rap, 2447 baparamset, batimeout, baseqctl); 2448 2449 args[1] = IEEE80211_STATUS_SUCCESS; 2450 } else { 2451 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2452 ni, "reject ADDBA request: %s", 2453 ni->ni_flags & IEEE80211_NODE_AMPDU_RX ? 2454 "administratively disabled" : 2455 "not negotiated for station"); 2456 vap->iv_stats.is_addba_reject++; 2457 args[1] = IEEE80211_STATUS_UNSPECIFIED; 2458 } 2459 /* XXX honor rap flags? */ 2460 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 2461 | _IEEE80211_SHIFTMASK(tid, IEEE80211_BAPS_TID) 2462 | _IEEE80211_SHIFTMASK(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ) 2463 ; 2464 2465 /* 2466 * TODO: we're out of iv_flags_ht fields; once 2467 * this is extended we should make this configurable. 2468 */ 2469 if ((baparamset & IEEE80211_BAPS_AMSDU) && 2470 (ni->ni_flags & IEEE80211_NODE_AMSDU_RX) && 2471 (vap->iv_htcaps & IEEE80211_HTC_RX_AMSDU_AMPDU)) 2472 args[2] |= IEEE80211_BAPS_AMSDU; 2473 2474 args[3] = 0; 2475 args[4] = 0; 2476 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2477 IEEE80211_ACTION_BA_ADDBA_RESPONSE, args); 2478 return 0; 2479 } 2480 2481 static int 2482 ht_recv_action_ba_addba_response(struct ieee80211_node *ni, 2483 const struct ieee80211_frame *wh, 2484 const uint8_t *frm, const uint8_t *efrm) 2485 { 2486 struct ieee80211com *ic = ni->ni_ic; 2487 struct ieee80211vap *vap = ni->ni_vap; 2488 struct ieee80211_tx_ampdu *tap; 2489 uint8_t dialogtoken, policy; 2490 uint16_t baparamset, batimeout, code; 2491 int tid; 2492 #ifdef IEEE80211_DEBUG 2493 int amsdu, bufsiz; 2494 #endif 2495 2496 dialogtoken = frm[2]; 2497 code = le16dec(frm+3); 2498 baparamset = le16dec(frm+5); 2499 tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_TID); 2500 #ifdef IEEE80211_DEBUG 2501 bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ); 2502 amsdu = !! _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU); 2503 #endif 2504 policy = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_POLICY); 2505 batimeout = le16dec(frm+7); 2506 2507 tap = &ni->ni_tx_ampdu[tid]; 2508 if ((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 2509 IEEE80211_DISCARD_MAC(vap, 2510 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2511 ni->ni_macaddr, "ADDBA response", 2512 "no pending ADDBA, tid %d dialogtoken %u " 2513 "code %d", tid, dialogtoken, code); 2514 vap->iv_stats.is_addba_norequest++; 2515 return 0; 2516 } 2517 if (dialogtoken != tap->txa_token) { 2518 IEEE80211_DISCARD_MAC(vap, 2519 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2520 ni->ni_macaddr, "ADDBA response", 2521 "dialogtoken mismatch: waiting for %d, " 2522 "received %d, tid %d code %d", 2523 tap->txa_token, dialogtoken, tid, code); 2524 vap->iv_stats.is_addba_badtoken++; 2525 return 0; 2526 } 2527 /* NB: assumes IEEE80211_AGGR_IMMEDIATE is 1 */ 2528 if (policy != (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE)) { 2529 IEEE80211_DISCARD_MAC(vap, 2530 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2531 ni->ni_macaddr, "ADDBA response", 2532 "policy mismatch: expecting %s, " 2533 "received %s, tid %d code %d", 2534 tap->txa_flags & IEEE80211_AGGR_IMMEDIATE, 2535 policy, tid, code); 2536 vap->iv_stats.is_addba_badpolicy++; 2537 return 0; 2538 } 2539 #if 0 2540 /* XXX we take MIN in ieee80211_addba_response */ 2541 if (bufsiz > IEEE80211_AGGR_BAWMAX) { 2542 IEEE80211_DISCARD_MAC(vap, 2543 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2544 ni->ni_macaddr, "ADDBA response", 2545 "BA window too large: max %d, " 2546 "received %d, tid %d code %d", 2547 bufsiz, IEEE80211_AGGR_BAWMAX, tid, code); 2548 vap->iv_stats.is_addba_badbawinsize++; 2549 return 0; 2550 } 2551 #endif 2552 2553 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2554 "recv ADDBA response: dialogtoken %u code %d " 2555 "baparamset 0x%x (tid %d bufsiz %d amsdu %d) batimeout %d", 2556 dialogtoken, code, baparamset, tid, 2557 bufsiz, 2558 amsdu, 2559 batimeout); 2560 ic->ic_addba_response(ni, tap, code, baparamset, batimeout); 2561 return 0; 2562 } 2563 2564 static int 2565 ht_recv_action_ba_delba(struct ieee80211_node *ni, 2566 const struct ieee80211_frame *wh, 2567 const uint8_t *frm, const uint8_t *efrm) 2568 { 2569 struct ieee80211com *ic = ni->ni_ic; 2570 struct ieee80211_rx_ampdu *rap; 2571 struct ieee80211_tx_ampdu *tap; 2572 uint16_t baparamset; 2573 #ifdef IEEE80211_DEBUG 2574 uint16_t code; 2575 #endif 2576 int tid; 2577 2578 baparamset = le16dec(frm+2); 2579 #ifdef IEEE80211_DEBUG 2580 code = le16dec(frm+4); 2581 #endif 2582 2583 tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_DELBAPS_TID); 2584 2585 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2586 "recv DELBA: baparamset 0x%x (tid %d initiator %d) " 2587 "code %d", baparamset, tid, 2588 _IEEE80211_MASKSHIFT(baparamset, IEEE80211_DELBAPS_INIT), code); 2589 2590 if ((baparamset & IEEE80211_DELBAPS_INIT) == 0) { 2591 tap = &ni->ni_tx_ampdu[tid]; 2592 ic->ic_addba_stop(ni, tap); 2593 } else { 2594 rap = &ni->ni_rx_ampdu[tid]; 2595 ic->ic_ampdu_rx_stop(ni, rap); 2596 } 2597 return 0; 2598 } 2599 2600 static int 2601 ht_recv_action_ht_txchwidth(struct ieee80211_node *ni, 2602 const struct ieee80211_frame *wh, 2603 const uint8_t *frm, const uint8_t *efrm) 2604 { 2605 int chw; 2606 2607 chw = (frm[2] == IEEE80211_A_HT_TXCHWIDTH_2040) ? 40 : 20; 2608 2609 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2610 "%s: HT txchwidth, width %d%s", 2611 __func__, chw, ni->ni_chw != chw ? "*" : ""); 2612 if (chw != ni->ni_chw) { 2613 /* XXX does this need to change the ht40 station count? */ 2614 ni->ni_chw = chw; 2615 /* XXX notify on change */ 2616 } 2617 return 0; 2618 } 2619 2620 static int 2621 ht_recv_action_ht_mimopwrsave(struct ieee80211_node *ni, 2622 const struct ieee80211_frame *wh, 2623 const uint8_t *frm, const uint8_t *efrm) 2624 { 2625 const struct ieee80211_action_ht_mimopowersave *mps = 2626 (const struct ieee80211_action_ht_mimopowersave *) frm; 2627 2628 /* XXX check iv_htcaps */ 2629 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA) 2630 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 2631 else 2632 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 2633 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_MODE) 2634 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 2635 else 2636 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 2637 /* XXX notify on change */ 2638 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2639 "%s: HT MIMO PS (%s%s)", __func__, 2640 (ni->ni_flags & IEEE80211_NODE_MIMO_PS) ? "on" : "off", 2641 (ni->ni_flags & IEEE80211_NODE_MIMO_RTS) ? "+rts" : "" 2642 ); 2643 return 0; 2644 } 2645 2646 /* 2647 * Transmit processing. 2648 */ 2649 2650 /* 2651 * Check if A-MPDU should be requested/enabled for a stream. 2652 * We require a traffic rate above a per-AC threshold and we 2653 * also handle backoff from previous failed attempts. 2654 * 2655 * Drivers may override this method to bring in information 2656 * such as link state conditions in making the decision. 2657 */ 2658 static int 2659 ieee80211_ampdu_enable(struct ieee80211_node *ni, 2660 struct ieee80211_tx_ampdu *tap) 2661 { 2662 struct ieee80211vap *vap = ni->ni_vap; 2663 2664 if (tap->txa_avgpps < 2665 vap->iv_ampdu_mintraffic[TID_TO_WME_AC(tap->txa_tid)]) 2666 return 0; 2667 /* XXX check rssi? */ 2668 if (tap->txa_attempts >= ieee80211_addba_maxtries && 2669 ieee80211_time_after(ticks, tap->txa_nextrequest)) { 2670 /* 2671 * Don't retry too often; txa_nextrequest is set 2672 * to the minimum interval we'll retry after 2673 * ieee80211_addba_maxtries failed attempts are made. 2674 */ 2675 return 0; 2676 } 2677 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 2678 "enable AMPDU on tid %d (%s), avgpps %d pkts %d attempt %d", 2679 tap->txa_tid, ieee80211_wme_acnames[TID_TO_WME_AC(tap->txa_tid)], 2680 tap->txa_avgpps, tap->txa_pkts, tap->txa_attempts); 2681 return 1; 2682 } 2683 2684 /* 2685 * Request A-MPDU tx aggregation. Setup local state and 2686 * issue an ADDBA request. BA use will only happen after 2687 * the other end replies with ADDBA response. 2688 */ 2689 int 2690 ieee80211_ampdu_request(struct ieee80211_node *ni, 2691 struct ieee80211_tx_ampdu *tap) 2692 { 2693 struct ieee80211com *ic = ni->ni_ic; 2694 uint16_t args[5]; 2695 int tid, dialogtoken; 2696 static int tokens = 0; /* XXX */ 2697 2698 /* XXX locking */ 2699 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 2700 /* do deferred setup of state */ 2701 ampdu_tx_setup(tap); 2702 } 2703 /* XXX hack for not doing proper locking */ 2704 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 2705 2706 dialogtoken = (tokens+1) % 63; /* XXX */ 2707 tid = tap->txa_tid; 2708 2709 /* 2710 * XXX TODO: This is racy with any other parallel TX going on. :( 2711 */ 2712 tap->txa_start = ni->ni_txseqs[tid]; 2713 2714 args[0] = dialogtoken; 2715 args[1] = 0; /* NB: status code not used */ 2716 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 2717 | _IEEE80211_SHIFTMASK(tid, IEEE80211_BAPS_TID) 2718 | _IEEE80211_SHIFTMASK(IEEE80211_AGGR_BAWMAX, 2719 IEEE80211_BAPS_BUFSIZ) 2720 ; 2721 2722 /* XXX TODO: this should be a flag, not iv_htcaps */ 2723 if ((ni->ni_flags & IEEE80211_NODE_AMSDU_TX) && 2724 (ni->ni_vap->iv_htcaps & IEEE80211_HTC_TX_AMSDU_AMPDU)) 2725 args[2] |= IEEE80211_BAPS_AMSDU; 2726 2727 args[3] = 0; /* batimeout */ 2728 /* NB: do first so there's no race against reply */ 2729 if (!ic->ic_addba_request(ni, tap, dialogtoken, args[2], args[3])) { 2730 /* unable to setup state, don't make request */ 2731 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2732 ni, "%s: could not setup BA stream for TID %d AC %d", 2733 __func__, tap->txa_tid, TID_TO_WME_AC(tap->txa_tid)); 2734 /* defer next try so we don't slam the driver with requests */ 2735 tap->txa_attempts = ieee80211_addba_maxtries; 2736 /* NB: check in case driver wants to override */ 2737 if (tap->txa_nextrequest <= ticks) 2738 tap->txa_nextrequest = ticks + ieee80211_addba_backoff; 2739 return 0; 2740 } 2741 tokens = dialogtoken; /* allocate token */ 2742 /* NB: after calling ic_addba_request so driver can set txa_start */ 2743 args[4] = _IEEE80211_SHIFTMASK(tap->txa_start, IEEE80211_BASEQ_START) 2744 | _IEEE80211_SHIFTMASK(0, IEEE80211_BASEQ_FRAG) 2745 ; 2746 return ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2747 IEEE80211_ACTION_BA_ADDBA_REQUEST, args); 2748 } 2749 2750 /* 2751 * Terminate an AMPDU tx stream. State is reclaimed 2752 * and the peer notified with a DelBA Action frame. 2753 */ 2754 void 2755 ieee80211_ampdu_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 2756 int reason) 2757 { 2758 struct ieee80211com *ic = ni->ni_ic; 2759 struct ieee80211vap *vap = ni->ni_vap; 2760 uint16_t args[4]; 2761 2762 /* XXX locking */ 2763 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2764 if (IEEE80211_AMPDU_RUNNING(tap)) { 2765 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2766 ni, "%s: stop BA stream for TID %d (reason: %d (%s))", 2767 __func__, tap->txa_tid, reason, 2768 ieee80211_reason_to_string(reason)); 2769 vap->iv_stats.is_ampdu_stop++; 2770 2771 ic->ic_addba_stop(ni, tap); 2772 args[0] = tap->txa_tid; 2773 args[1] = IEEE80211_DELBAPS_INIT; 2774 args[2] = reason; /* XXX reason code */ 2775 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2776 IEEE80211_ACTION_BA_DELBA, args); 2777 } else { 2778 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2779 ni, "%s: BA stream for TID %d not running " 2780 "(reason: %d (%s))", __func__, tap->txa_tid, reason, 2781 ieee80211_reason_to_string(reason)); 2782 vap->iv_stats.is_ampdu_stop_failed++; 2783 } 2784 } 2785 2786 /* XXX */ 2787 static void bar_start_timer(struct ieee80211_tx_ampdu *tap); 2788 2789 static void 2790 bar_timeout(void *arg) 2791 { 2792 struct ieee80211_tx_ampdu *tap = arg; 2793 struct ieee80211_node *ni = tap->txa_ni; 2794 2795 KASSERT((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0, 2796 ("bar/addba collision, flags 0x%x", tap->txa_flags)); 2797 2798 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2799 ni, "%s: tid %u flags 0x%x attempts %d", __func__, 2800 tap->txa_tid, tap->txa_flags, tap->txa_attempts); 2801 2802 /* guard against race with bar_tx_complete */ 2803 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2804 return; 2805 /* XXX ? */ 2806 if (tap->txa_attempts >= ieee80211_bar_maxtries) { 2807 struct ieee80211com *ic = ni->ni_ic; 2808 2809 ni->ni_vap->iv_stats.is_ampdu_bar_tx_fail++; 2810 /* 2811 * If (at least) the last BAR TX timeout was due to 2812 * an ieee80211_send_bar() failures, then we need 2813 * to make sure we notify the driver that a BAR 2814 * TX did occur and fail. This gives the driver 2815 * a chance to undo any queue pause that may 2816 * have occurred. 2817 */ 2818 ic->ic_bar_response(ni, tap, 1); 2819 ieee80211_ampdu_stop(ni, tap, IEEE80211_REASON_TIMEOUT); 2820 } else { 2821 ni->ni_vap->iv_stats.is_ampdu_bar_tx_retry++; 2822 if (ieee80211_send_bar(ni, tap, tap->txa_seqpending) != 0) { 2823 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2824 ni, "%s: failed to TX, starting timer\n", 2825 __func__); 2826 /* 2827 * If ieee80211_send_bar() fails here, the 2828 * timer may have stopped and/or the pending 2829 * flag may be clear. Because of this, 2830 * fake the BARPEND and reset the timer. 2831 * A retransmission attempt will then occur 2832 * during the next timeout. 2833 */ 2834 /* XXX locking */ 2835 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2836 bar_start_timer(tap); 2837 } 2838 } 2839 } 2840 2841 static void 2842 bar_start_timer(struct ieee80211_tx_ampdu *tap) 2843 { 2844 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2845 tap->txa_ni, 2846 "%s: called", 2847 __func__); 2848 callout_reset(&tap->txa_timer, ieee80211_bar_timeout, bar_timeout, tap); 2849 } 2850 2851 static void 2852 bar_stop_timer(struct ieee80211_tx_ampdu *tap) 2853 { 2854 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2855 tap->txa_ni, 2856 "%s: called", 2857 __func__); 2858 callout_stop(&tap->txa_timer); 2859 } 2860 2861 static void 2862 bar_tx_complete(struct ieee80211_node *ni, void *arg, int status) 2863 { 2864 struct ieee80211_tx_ampdu *tap = arg; 2865 2866 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2867 ni, "%s: tid %u flags 0x%x pending %d status %d", 2868 __func__, tap->txa_tid, tap->txa_flags, 2869 callout_pending(&tap->txa_timer), status); 2870 2871 ni->ni_vap->iv_stats.is_ampdu_bar_tx++; 2872 /* XXX locking */ 2873 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) && 2874 callout_pending(&tap->txa_timer)) { 2875 struct ieee80211com *ic = ni->ni_ic; 2876 2877 if (status == 0) /* ACK'd */ 2878 bar_stop_timer(tap); 2879 ic->ic_bar_response(ni, tap, status); 2880 /* NB: just let timer expire so we pace requests */ 2881 } 2882 } 2883 2884 static void 2885 ieee80211_bar_response(struct ieee80211_node *ni, 2886 struct ieee80211_tx_ampdu *tap, int status) 2887 { 2888 2889 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2890 tap->txa_ni, 2891 "%s: called", 2892 __func__); 2893 if (status == 0) { /* got ACK */ 2894 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2895 ni, "BAR moves BA win <%u:%u> (%u frames) txseq %u tid %u", 2896 tap->txa_start, 2897 IEEE80211_SEQ_ADD(tap->txa_start, tap->txa_wnd-1), 2898 tap->txa_qframes, tap->txa_seqpending, 2899 tap->txa_tid); 2900 2901 /* NB: timer already stopped in bar_tx_complete */ 2902 tap->txa_start = tap->txa_seqpending; 2903 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2904 } 2905 } 2906 2907 /* 2908 * Transmit a BAR frame to the specified node. The 2909 * BAR contents are drawn from the supplied aggregation 2910 * state associated with the node. 2911 * 2912 * NB: we only handle immediate ACK w/ compressed bitmap. 2913 */ 2914 int 2915 ieee80211_send_bar(struct ieee80211_node *ni, 2916 struct ieee80211_tx_ampdu *tap, ieee80211_seq seq) 2917 { 2918 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2919 struct ieee80211vap *vap = ni->ni_vap; 2920 struct ieee80211com *ic = ni->ni_ic; 2921 struct ieee80211_frame_bar *bar; 2922 struct mbuf *m; 2923 uint16_t barctl, barseqctl; 2924 uint8_t *frm; 2925 int tid, ret; 2926 2927 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2928 tap->txa_ni, 2929 "%s: called", 2930 __func__); 2931 2932 if ((tap->txa_flags & IEEE80211_AGGR_RUNNING) == 0) { 2933 /* no ADDBA response, should not happen */ 2934 /* XXX stat+msg */ 2935 return EINVAL; 2936 } 2937 /* XXX locking */ 2938 bar_stop_timer(tap); 2939 2940 ieee80211_ref_node(ni); 2941 2942 m = ieee80211_getmgtframe(&frm, ic->ic_headroom, sizeof(*bar)); 2943 if (m == NULL) 2944 senderr(ENOMEM, is_tx_nobuf); 2945 2946 if (!ieee80211_add_callback(m, bar_tx_complete, tap)) { 2947 m_freem(m); 2948 senderr(ENOMEM, is_tx_nobuf); /* XXX */ 2949 /* NOTREACHED */ 2950 } 2951 2952 bar = mtod(m, struct ieee80211_frame_bar *); 2953 bar->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2954 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR; 2955 bar->i_fc[1] = 0; 2956 IEEE80211_ADDR_COPY(bar->i_ra, ni->ni_macaddr); 2957 IEEE80211_ADDR_COPY(bar->i_ta, vap->iv_myaddr); 2958 2959 tid = tap->txa_tid; 2960 barctl = (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE ? 2961 0 : IEEE80211_BAR_NOACK) 2962 | IEEE80211_BAR_COMP 2963 | _IEEE80211_SHIFTMASK(tid, IEEE80211_BAR_TID) 2964 ; 2965 barseqctl = _IEEE80211_SHIFTMASK(seq, IEEE80211_BAR_SEQ_START); 2966 /* NB: known to have proper alignment */ 2967 bar->i_ctl = htole16(barctl); 2968 bar->i_seq = htole16(barseqctl); 2969 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_bar); 2970 2971 M_WME_SETAC(m, WME_AC_VO); 2972 2973 IEEE80211_NODE_STAT(ni, tx_mgmt); /* XXX tx_ctl? */ 2974 2975 /* XXX locking */ 2976 /* init/bump attempts counter */ 2977 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2978 tap->txa_attempts = 1; 2979 else 2980 tap->txa_attempts++; 2981 tap->txa_seqpending = seq; 2982 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2983 2984 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2985 ni, "send BAR: tid %u ctl 0x%x start %u (attempt %d)", 2986 tid, barctl, seq, tap->txa_attempts); 2987 2988 /* 2989 * ic_raw_xmit will free the node reference 2990 * regardless of queue/TX success or failure. 2991 */ 2992 IEEE80211_TX_LOCK(ic); 2993 ret = ieee80211_raw_output(vap, ni, m, NULL); 2994 IEEE80211_TX_UNLOCK(ic); 2995 if (ret != 0) { 2996 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2997 ni, "send BAR: failed: (ret = %d)\n", 2998 ret); 2999 /* xmit failed, clear state flag */ 3000 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 3001 vap->iv_stats.is_ampdu_bar_tx_fail++; 3002 return ret; 3003 } 3004 /* XXX hack against tx complete happening before timer is started */ 3005 if (tap->txa_flags & IEEE80211_AGGR_BARPEND) 3006 bar_start_timer(tap); 3007 return 0; 3008 bad: 3009 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 3010 tap->txa_ni, 3011 "%s: bad! ret=%d", 3012 __func__, ret); 3013 vap->iv_stats.is_ampdu_bar_tx_fail++; 3014 ieee80211_free_node(ni); 3015 return ret; 3016 #undef senderr 3017 } 3018 3019 static int 3020 ht_action_output(struct ieee80211_node *ni, struct mbuf *m) 3021 { 3022 struct ieee80211_bpf_params params; 3023 3024 memset(¶ms, 0, sizeof(params)); 3025 params.ibp_pri = WME_AC_VO; 3026 params.ibp_rate0 = ni->ni_txparms->mgmtrate; 3027 /* NB: we know all frames are unicast */ 3028 params.ibp_try0 = ni->ni_txparms->maxretry; 3029 params.ibp_power = ni->ni_txpower; 3030 return ieee80211_mgmt_output(ni, m, IEEE80211_FC0_SUBTYPE_ACTION, 3031 ¶ms); 3032 } 3033 3034 #define ADDSHORT(frm, v) do { \ 3035 frm[0] = (v) & 0xff; \ 3036 frm[1] = (v) >> 8; \ 3037 frm += 2; \ 3038 } while (0) 3039 3040 /* 3041 * Send an action management frame. The arguments are stuff 3042 * into a frame without inspection; the caller is assumed to 3043 * prepare them carefully (e.g. based on the aggregation state). 3044 */ 3045 static int 3046 ht_send_action_ba_addba(struct ieee80211_node *ni, 3047 int category, int action, void *arg0) 3048 { 3049 struct ieee80211vap *vap = ni->ni_vap; 3050 struct ieee80211com *ic = ni->ni_ic; 3051 uint16_t *args = arg0; 3052 struct mbuf *m; 3053 uint8_t *frm; 3054 3055 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 3056 "send ADDBA %s: dialogtoken %d status %d " 3057 "baparamset 0x%x (tid %d amsdu %d) batimeout 0x%x baseqctl 0x%x", 3058 (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ? 3059 "request" : "response", args[0], args[1], args[2], 3060 _IEEE80211_MASKSHIFT(args[2], IEEE80211_BAPS_TID), 3061 _IEEE80211_MASKSHIFT(args[2], IEEE80211_BAPS_AMSDU), 3062 args[3], args[4]); 3063 3064 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 3065 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 3066 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 3067 ieee80211_ref_node(ni); 3068 3069 m = ieee80211_getmgtframe(&frm, 3070 ic->ic_headroom + sizeof(struct ieee80211_frame), 3071 sizeof(uint16_t) /* action+category */ 3072 /* XXX may action payload */ 3073 + sizeof(struct ieee80211_action_ba_addbaresponse) 3074 ); 3075 if (m != NULL) { 3076 *frm++ = category; 3077 *frm++ = action; 3078 *frm++ = args[0]; /* dialog token */ 3079 if (action == IEEE80211_ACTION_BA_ADDBA_RESPONSE) 3080 ADDSHORT(frm, args[1]); /* status code */ 3081 ADDSHORT(frm, args[2]); /* baparamset */ 3082 ADDSHORT(frm, args[3]); /* batimeout */ 3083 if (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) 3084 ADDSHORT(frm, args[4]); /* baseqctl */ 3085 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3086 return ht_action_output(ni, m); 3087 } else { 3088 vap->iv_stats.is_tx_nobuf++; 3089 ieee80211_free_node(ni); 3090 return ENOMEM; 3091 } 3092 } 3093 3094 static int 3095 ht_send_action_ba_delba(struct ieee80211_node *ni, 3096 int category, int action, void *arg0) 3097 { 3098 struct ieee80211vap *vap = ni->ni_vap; 3099 struct ieee80211com *ic = ni->ni_ic; 3100 uint16_t *args = arg0; 3101 struct mbuf *m; 3102 uint16_t baparamset; 3103 uint8_t *frm; 3104 3105 baparamset = _IEEE80211_SHIFTMASK(args[0], IEEE80211_DELBAPS_TID) 3106 | args[1] 3107 ; 3108 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 3109 "send DELBA action: tid %d, initiator %d reason %d (%s)", 3110 args[0], args[1], args[2], ieee80211_reason_to_string(args[2])); 3111 3112 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 3113 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 3114 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 3115 ieee80211_ref_node(ni); 3116 3117 m = ieee80211_getmgtframe(&frm, 3118 ic->ic_headroom + sizeof(struct ieee80211_frame), 3119 sizeof(uint16_t) /* action+category */ 3120 /* XXX may action payload */ 3121 + sizeof(struct ieee80211_action_ba_addbaresponse) 3122 ); 3123 if (m != NULL) { 3124 *frm++ = category; 3125 *frm++ = action; 3126 ADDSHORT(frm, baparamset); 3127 ADDSHORT(frm, args[2]); /* reason code */ 3128 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3129 return ht_action_output(ni, m); 3130 } else { 3131 vap->iv_stats.is_tx_nobuf++; 3132 ieee80211_free_node(ni); 3133 return ENOMEM; 3134 } 3135 } 3136 3137 static int 3138 ht_send_action_ht_txchwidth(struct ieee80211_node *ni, 3139 int category, int action, void *arg0) 3140 { 3141 struct ieee80211vap *vap = ni->ni_vap; 3142 struct ieee80211com *ic = ni->ni_ic; 3143 struct mbuf *m; 3144 uint8_t *frm; 3145 3146 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 3147 "send HT txchwidth: width %d", 3148 IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 40 : 20); 3149 3150 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 3151 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 3152 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 3153 ieee80211_ref_node(ni); 3154 3155 m = ieee80211_getmgtframe(&frm, 3156 ic->ic_headroom + sizeof(struct ieee80211_frame), 3157 sizeof(uint16_t) /* action+category */ 3158 /* XXX may action payload */ 3159 + sizeof(struct ieee80211_action_ba_addbaresponse) 3160 ); 3161 if (m != NULL) { 3162 *frm++ = category; 3163 *frm++ = action; 3164 *frm++ = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 3165 IEEE80211_A_HT_TXCHWIDTH_2040 : 3166 IEEE80211_A_HT_TXCHWIDTH_20; 3167 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3168 return ht_action_output(ni, m); 3169 } else { 3170 vap->iv_stats.is_tx_nobuf++; 3171 ieee80211_free_node(ni); 3172 return ENOMEM; 3173 } 3174 } 3175 #undef ADDSHORT 3176 3177 /* 3178 * Construct the MCS bit mask for inclusion in an HT capabilities 3179 * information element. 3180 */ 3181 static void 3182 ieee80211_set_mcsset(struct ieee80211com *ic, uint8_t *frm) 3183 { 3184 int i; 3185 uint8_t txparams; 3186 3187 KASSERT((ic->ic_rxstream > 0 && ic->ic_rxstream <= 4), 3188 ("ic_rxstream %d out of range", ic->ic_rxstream)); 3189 KASSERT((ic->ic_txstream > 0 && ic->ic_txstream <= 4), 3190 ("ic_txstream %d out of range", ic->ic_txstream)); 3191 3192 for (i = 0; i < ic->ic_rxstream * 8; i++) 3193 setbit(frm, i); 3194 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 3195 (ic->ic_htcaps & IEEE80211_HTC_RXMCS32)) 3196 setbit(frm, 32); 3197 if (ic->ic_htcaps & IEEE80211_HTC_RXUNEQUAL) { 3198 if (ic->ic_rxstream >= 2) { 3199 for (i = 33; i <= 38; i++) 3200 setbit(frm, i); 3201 } 3202 if (ic->ic_rxstream >= 3) { 3203 for (i = 39; i <= 52; i++) 3204 setbit(frm, i); 3205 } 3206 if (ic->ic_txstream >= 4) { 3207 for (i = 53; i <= 76; i++) 3208 setbit(frm, i); 3209 } 3210 } 3211 3212 if (ic->ic_rxstream != ic->ic_txstream) { 3213 txparams = 0x1; /* TX MCS set defined */ 3214 txparams |= 0x2; /* TX RX MCS not equal */ 3215 txparams |= (ic->ic_txstream - 1) << 2; /* num TX streams */ 3216 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) 3217 txparams |= 0x16; /* TX unequal modulation sup */ 3218 } else 3219 txparams = 0; 3220 frm[12] = txparams; 3221 } 3222 3223 /* 3224 * Add body of an HTCAP information element. 3225 */ 3226 static uint8_t * 3227 ieee80211_add_htcap_body(uint8_t *frm, struct ieee80211_node *ni) 3228 { 3229 #define ADDSHORT(frm, v) do { \ 3230 frm[0] = (v) & 0xff; \ 3231 frm[1] = (v) >> 8; \ 3232 frm += 2; \ 3233 } while (0) 3234 struct ieee80211com *ic = ni->ni_ic; 3235 struct ieee80211vap *vap = ni->ni_vap; 3236 uint16_t caps, extcaps; 3237 int rxmax, density; 3238 3239 /* HT capabilities */ 3240 caps = vap->iv_htcaps & 0xffff; 3241 /* 3242 * Note channel width depends on whether we are operating as 3243 * a sta or not. When operating as a sta we are generating 3244 * a request based on our desired configuration. Otherwise 3245 * we are operational and the channel attributes identify 3246 * how we've been setup (which might be different if a fixed 3247 * channel is specified). 3248 */ 3249 if (vap->iv_opmode == IEEE80211_M_STA) { 3250 /* override 20/40 use based on config */ 3251 if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40) 3252 caps |= IEEE80211_HTCAP_CHWIDTH40; 3253 else 3254 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3255 3256 /* Start by using the advertised settings */ 3257 rxmax = _IEEE80211_MASKSHIFT(ni->ni_htparam, 3258 IEEE80211_HTCAP_MAXRXAMPDU); 3259 density = _IEEE80211_MASKSHIFT(ni->ni_htparam, 3260 IEEE80211_HTCAP_MPDUDENSITY); 3261 3262 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, 3263 "%s: advertised rxmax=%d, density=%d, vap rxmax=%d, density=%d\n", 3264 __func__, 3265 rxmax, 3266 density, 3267 vap->iv_ampdu_rxmax, 3268 vap->iv_ampdu_density); 3269 3270 /* Cap at VAP rxmax */ 3271 if (rxmax > vap->iv_ampdu_rxmax) 3272 rxmax = vap->iv_ampdu_rxmax; 3273 3274 /* 3275 * If the VAP ampdu density value greater, use that. 3276 * 3277 * (Larger density value == larger minimum gap between A-MPDU 3278 * subframes.) 3279 */ 3280 if (vap->iv_ampdu_density > density) 3281 density = vap->iv_ampdu_density; 3282 3283 /* 3284 * NB: Hardware might support HT40 on some but not all 3285 * channels. We can't determine this earlier because only 3286 * after association the channel is upgraded to HT based 3287 * on the negotiated capabilities. 3288 */ 3289 if (ni->ni_chan != IEEE80211_CHAN_ANYC && 3290 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40U) == NULL && 3291 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40D) == NULL) 3292 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3293 } else { 3294 /* override 20/40 use based on current channel */ 3295 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 3296 caps |= IEEE80211_HTCAP_CHWIDTH40; 3297 else 3298 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3299 3300 /* XXX TODO should it start by using advertised settings? */ 3301 rxmax = vap->iv_ampdu_rxmax; 3302 density = vap->iv_ampdu_density; 3303 } 3304 3305 /* adjust short GI based on channel and config */ 3306 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) 3307 caps &= ~IEEE80211_HTCAP_SHORTGI20; 3308 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || 3309 (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) 3310 caps &= ~IEEE80211_HTCAP_SHORTGI40; 3311 3312 /* adjust STBC based on receive capabilities */ 3313 if ((vap->iv_flags_ht & IEEE80211_FHT_STBC_RX) == 0) 3314 caps &= ~IEEE80211_HTCAP_RXSTBC; 3315 3316 /* adjust LDPC based on receive capabilites */ 3317 if ((vap->iv_flags_ht & IEEE80211_FHT_LDPC_RX) == 0) 3318 caps &= ~IEEE80211_HTCAP_LDPC; 3319 3320 ADDSHORT(frm, caps); 3321 3322 /* HT parameters */ 3323 *frm = _IEEE80211_SHIFTMASK(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) 3324 | _IEEE80211_SHIFTMASK(density, IEEE80211_HTCAP_MPDUDENSITY) 3325 ; 3326 frm++; 3327 3328 /* pre-zero remainder of ie */ 3329 memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - 3330 __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); 3331 3332 /* supported MCS set */ 3333 /* 3334 * XXX: For sta mode the rate set should be restricted based 3335 * on the AP's capabilities, but ni_htrates isn't setup when 3336 * we're called to form an AssocReq frame so for now we're 3337 * restricted to the device capabilities. 3338 */ 3339 ieee80211_set_mcsset(ni->ni_ic, frm); 3340 3341 frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - 3342 __offsetof(struct ieee80211_ie_htcap, hc_mcsset); 3343 3344 /* HT extended capabilities */ 3345 extcaps = vap->iv_htextcaps & 0xffff; 3346 3347 ADDSHORT(frm, extcaps); 3348 3349 frm += sizeof(struct ieee80211_ie_htcap) - 3350 __offsetof(struct ieee80211_ie_htcap, hc_txbf); 3351 3352 return frm; 3353 #undef ADDSHORT 3354 } 3355 3356 /* 3357 * Add 802.11n HT capabilities information element 3358 */ 3359 uint8_t * 3360 ieee80211_add_htcap(uint8_t *frm, struct ieee80211_node *ni) 3361 { 3362 frm[0] = IEEE80211_ELEMID_HTCAP; 3363 frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; 3364 return ieee80211_add_htcap_body(frm + 2, ni); 3365 } 3366 3367 /* 3368 * Non-associated probe request - add HT capabilities based on 3369 * the current channel configuration. 3370 */ 3371 static uint8_t * 3372 ieee80211_add_htcap_body_ch(uint8_t *frm, struct ieee80211vap *vap, 3373 struct ieee80211_channel *c) 3374 { 3375 #define ADDSHORT(frm, v) do { \ 3376 frm[0] = (v) & 0xff; \ 3377 frm[1] = (v) >> 8; \ 3378 frm += 2; \ 3379 } while (0) 3380 struct ieee80211com *ic = vap->iv_ic; 3381 uint16_t caps, extcaps; 3382 int rxmax, density; 3383 3384 /* HT capabilities */ 3385 caps = vap->iv_htcaps & 0xffff; 3386 3387 /* 3388 * We don't use this in STA mode; only in IBSS mode. 3389 * So in IBSS mode we base our HTCAP flags on the 3390 * given channel. 3391 */ 3392 3393 /* override 20/40 use based on current channel */ 3394 if (IEEE80211_IS_CHAN_HT40(c)) 3395 caps |= IEEE80211_HTCAP_CHWIDTH40; 3396 else 3397 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3398 3399 /* Use the currently configured values */ 3400 rxmax = vap->iv_ampdu_rxmax; 3401 density = vap->iv_ampdu_density; 3402 3403 /* adjust short GI based on channel and config */ 3404 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) 3405 caps &= ~IEEE80211_HTCAP_SHORTGI20; 3406 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || 3407 (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) 3408 caps &= ~IEEE80211_HTCAP_SHORTGI40; 3409 ADDSHORT(frm, caps); 3410 3411 /* HT parameters */ 3412 *frm = _IEEE80211_SHIFTMASK(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) 3413 | _IEEE80211_SHIFTMASK(density, IEEE80211_HTCAP_MPDUDENSITY) 3414 ; 3415 frm++; 3416 3417 /* pre-zero remainder of ie */ 3418 memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - 3419 __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); 3420 3421 /* supported MCS set */ 3422 /* 3423 * XXX: For sta mode the rate set should be restricted based 3424 * on the AP's capabilities, but ni_htrates isn't setup when 3425 * we're called to form an AssocReq frame so for now we're 3426 * restricted to the device capabilities. 3427 */ 3428 ieee80211_set_mcsset(ic, frm); 3429 3430 frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - 3431 __offsetof(struct ieee80211_ie_htcap, hc_mcsset); 3432 3433 /* HT extended capabilities */ 3434 extcaps = vap->iv_htextcaps & 0xffff; 3435 3436 ADDSHORT(frm, extcaps); 3437 3438 frm += sizeof(struct ieee80211_ie_htcap) - 3439 __offsetof(struct ieee80211_ie_htcap, hc_txbf); 3440 3441 return frm; 3442 #undef ADDSHORT 3443 } 3444 3445 /* 3446 * Add 802.11n HT capabilities information element 3447 */ 3448 uint8_t * 3449 ieee80211_add_htcap_ch(uint8_t *frm, struct ieee80211vap *vap, 3450 struct ieee80211_channel *c) 3451 { 3452 frm[0] = IEEE80211_ELEMID_HTCAP; 3453 frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; 3454 return ieee80211_add_htcap_body_ch(frm + 2, vap, c); 3455 } 3456 3457 /* 3458 * Add Broadcom OUI wrapped standard HTCAP ie; this is 3459 * used for compatibility w/ pre-draft implementations. 3460 */ 3461 uint8_t * 3462 ieee80211_add_htcap_vendor(uint8_t *frm, struct ieee80211_node *ni) 3463 { 3464 frm[0] = IEEE80211_ELEMID_VENDOR; 3465 frm[1] = 4 + sizeof(struct ieee80211_ie_htcap) - 2; 3466 frm[2] = (BCM_OUI >> 0) & 0xff; 3467 frm[3] = (BCM_OUI >> 8) & 0xff; 3468 frm[4] = (BCM_OUI >> 16) & 0xff; 3469 frm[5] = BCM_OUI_HTCAP; 3470 return ieee80211_add_htcap_body(frm + 6, ni); 3471 } 3472 3473 /* 3474 * Construct the MCS bit mask of basic rates 3475 * for inclusion in an HT information element. 3476 */ 3477 static void 3478 ieee80211_set_basic_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs) 3479 { 3480 int i; 3481 3482 for (i = 0; i < rs->rs_nrates; i++) { 3483 int r = rs->rs_rates[i] & IEEE80211_RATE_VAL; 3484 if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) && 3485 r < IEEE80211_HTRATE_MAXSIZE) { 3486 /* NB: this assumes a particular implementation */ 3487 setbit(frm, r); 3488 } 3489 } 3490 } 3491 3492 /* 3493 * Update the HTINFO ie for a beacon frame. 3494 */ 3495 void 3496 ieee80211_ht_update_beacon(struct ieee80211vap *vap, 3497 struct ieee80211_beacon_offsets *bo) 3498 { 3499 #define PROTMODE (IEEE80211_HTINFO_OPMODE|IEEE80211_HTINFO_NONHT_PRESENT) 3500 struct ieee80211_node *ni; 3501 const struct ieee80211_channel *bsschan; 3502 struct ieee80211com *ic = vap->iv_ic; 3503 struct ieee80211_ie_htinfo *ht = 3504 (struct ieee80211_ie_htinfo *) bo->bo_htinfo; 3505 3506 ni = ieee80211_ref_node(vap->iv_bss); 3507 bsschan = ni->ni_chan; 3508 3509 /* XXX only update on channel change */ 3510 ht->hi_ctrlchannel = ieee80211_chan2ieee(ic, bsschan); 3511 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 3512 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PERM; 3513 else 3514 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PROH; 3515 if (IEEE80211_IS_CHAN_HT40U(bsschan)) 3516 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 3517 else if (IEEE80211_IS_CHAN_HT40D(bsschan)) 3518 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_BELOW; 3519 else 3520 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_NONE; 3521 if (IEEE80211_IS_CHAN_HT40(bsschan)) 3522 ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040; 3523 3524 /* protection mode */ 3525 /* 3526 * XXX TODO: this uses the global flag, not the per-VAP flag. 3527 * Eventually (once the protection modes are done per-channel 3528 * rather than per-VAP) we can flip this over to be per-VAP but 3529 * using the channel protection mode. 3530 */ 3531 ht->hi_byte2 = (ht->hi_byte2 &~ PROTMODE) | ic->ic_curhtprotmode; 3532 3533 ieee80211_free_node(ni); 3534 3535 /* XXX propagate to vendor ie's */ 3536 #undef PROTMODE 3537 } 3538 3539 /* 3540 * Add body of an HTINFO information element. 3541 * 3542 * NB: We don't use struct ieee80211_ie_htinfo because we can 3543 * be called to fillin both a standard ie and a compat ie that 3544 * has a vendor OUI at the front. 3545 */ 3546 static uint8_t * 3547 ieee80211_add_htinfo_body(uint8_t *frm, struct ieee80211_node *ni) 3548 { 3549 struct ieee80211vap *vap = ni->ni_vap; 3550 struct ieee80211com *ic = ni->ni_ic; 3551 3552 /* pre-zero remainder of ie */ 3553 memset(frm, 0, sizeof(struct ieee80211_ie_htinfo) - 2); 3554 3555 /* primary/control channel center */ 3556 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 3557 3558 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 3559 frm[0] = IEEE80211_HTINFO_RIFSMODE_PERM; 3560 else 3561 frm[0] = IEEE80211_HTINFO_RIFSMODE_PROH; 3562 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 3563 frm[0] |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 3564 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 3565 frm[0] |= IEEE80211_HTINFO_2NDCHAN_BELOW; 3566 else 3567 frm[0] |= IEEE80211_HTINFO_2NDCHAN_NONE; 3568 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 3569 frm[0] |= IEEE80211_HTINFO_TXWIDTH_2040; 3570 3571 /* 3572 * Add current protection mode. Unlike for beacons, 3573 * this will respect the per-VAP flags. 3574 */ 3575 frm[1] = vap->iv_curhtprotmode; 3576 3577 frm += 5; 3578 3579 /* basic MCS set */ 3580 ieee80211_set_basic_htrates(frm, &ni->ni_htrates); 3581 frm += sizeof(struct ieee80211_ie_htinfo) - 3582 __offsetof(struct ieee80211_ie_htinfo, hi_basicmcsset); 3583 return frm; 3584 } 3585 3586 /* 3587 * Add 802.11n HT information element. 3588 */ 3589 uint8_t * 3590 ieee80211_add_htinfo(uint8_t *frm, struct ieee80211_node *ni) 3591 { 3592 frm[0] = IEEE80211_ELEMID_HTINFO; 3593 frm[1] = sizeof(struct ieee80211_ie_htinfo) - 2; 3594 return ieee80211_add_htinfo_body(frm + 2, ni); 3595 } 3596 3597 /* 3598 * Add Broadcom OUI wrapped standard HTINFO ie; this is 3599 * used for compatibility w/ pre-draft implementations. 3600 */ 3601 uint8_t * 3602 ieee80211_add_htinfo_vendor(uint8_t *frm, struct ieee80211_node *ni) 3603 { 3604 frm[0] = IEEE80211_ELEMID_VENDOR; 3605 frm[1] = 4 + sizeof(struct ieee80211_ie_htinfo) - 2; 3606 frm[2] = (BCM_OUI >> 0) & 0xff; 3607 frm[3] = (BCM_OUI >> 8) & 0xff; 3608 frm[4] = (BCM_OUI >> 16) & 0xff; 3609 frm[5] = BCM_OUI_HTINFO; 3610 return ieee80211_add_htinfo_body(frm + 6, ni); 3611 } 3612