1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 #ifdef __FreeBSD__ 30 #endif 31 32 /* 33 * IEEE 802.11n protocol support. 34 */ 35 36 #include "opt_inet.h" 37 #include "opt_wlan.h" 38 39 #include <sys/param.h> 40 #include <sys/kernel.h> 41 #include <sys/malloc.h> 42 #include <sys/systm.h> 43 #include <sys/endian.h> 44 45 #include <sys/socket.h> 46 47 #include <net/if.h> 48 #include <net/if_var.h> 49 #include <net/if_media.h> 50 #include <net/ethernet.h> 51 52 #include <net80211/ieee80211_var.h> 53 #include <net80211/ieee80211_action.h> 54 #include <net80211/ieee80211_input.h> 55 56 const struct ieee80211_mcs_rates ieee80211_htrates[IEEE80211_HTRATE_MAXSIZE] = { 57 { 13, 14, 27, 30 }, /* MCS 0 */ 58 { 26, 29, 54, 60 }, /* MCS 1 */ 59 { 39, 43, 81, 90 }, /* MCS 2 */ 60 { 52, 58, 108, 120 }, /* MCS 3 */ 61 { 78, 87, 162, 180 }, /* MCS 4 */ 62 { 104, 116, 216, 240 }, /* MCS 5 */ 63 { 117, 130, 243, 270 }, /* MCS 6 */ 64 { 130, 144, 270, 300 }, /* MCS 7 */ 65 { 26, 29, 54, 60 }, /* MCS 8 */ 66 { 52, 58, 108, 120 }, /* MCS 9 */ 67 { 78, 87, 162, 180 }, /* MCS 10 */ 68 { 104, 116, 216, 240 }, /* MCS 11 */ 69 { 156, 173, 324, 360 }, /* MCS 12 */ 70 { 208, 231, 432, 480 }, /* MCS 13 */ 71 { 234, 260, 486, 540 }, /* MCS 14 */ 72 { 260, 289, 540, 600 }, /* MCS 15 */ 73 { 39, 43, 81, 90 }, /* MCS 16 */ 74 { 78, 87, 162, 180 }, /* MCS 17 */ 75 { 117, 130, 243, 270 }, /* MCS 18 */ 76 { 156, 173, 324, 360 }, /* MCS 19 */ 77 { 234, 260, 486, 540 }, /* MCS 20 */ 78 { 312, 347, 648, 720 }, /* MCS 21 */ 79 { 351, 390, 729, 810 }, /* MCS 22 */ 80 { 390, 433, 810, 900 }, /* MCS 23 */ 81 { 52, 58, 108, 120 }, /* MCS 24 */ 82 { 104, 116, 216, 240 }, /* MCS 25 */ 83 { 156, 173, 324, 360 }, /* MCS 26 */ 84 { 208, 231, 432, 480 }, /* MCS 27 */ 85 { 312, 347, 648, 720 }, /* MCS 28 */ 86 { 416, 462, 864, 960 }, /* MCS 29 */ 87 { 468, 520, 972, 1080 }, /* MCS 30 */ 88 { 520, 578, 1080, 1200 }, /* MCS 31 */ 89 { 0, 0, 12, 13 }, /* MCS 32 */ 90 { 78, 87, 162, 180 }, /* MCS 33 */ 91 { 104, 116, 216, 240 }, /* MCS 34 */ 92 { 130, 144, 270, 300 }, /* MCS 35 */ 93 { 117, 130, 243, 270 }, /* MCS 36 */ 94 { 156, 173, 324, 360 }, /* MCS 37 */ 95 { 195, 217, 405, 450 }, /* MCS 38 */ 96 { 104, 116, 216, 240 }, /* MCS 39 */ 97 { 130, 144, 270, 300 }, /* MCS 40 */ 98 { 130, 144, 270, 300 }, /* MCS 41 */ 99 { 156, 173, 324, 360 }, /* MCS 42 */ 100 { 182, 202, 378, 420 }, /* MCS 43 */ 101 { 182, 202, 378, 420 }, /* MCS 44 */ 102 { 208, 231, 432, 480 }, /* MCS 45 */ 103 { 156, 173, 324, 360 }, /* MCS 46 */ 104 { 195, 217, 405, 450 }, /* MCS 47 */ 105 { 195, 217, 405, 450 }, /* MCS 48 */ 106 { 234, 260, 486, 540 }, /* MCS 49 */ 107 { 273, 303, 567, 630 }, /* MCS 50 */ 108 { 273, 303, 567, 630 }, /* MCS 51 */ 109 { 312, 347, 648, 720 }, /* MCS 52 */ 110 { 130, 144, 270, 300 }, /* MCS 53 */ 111 { 156, 173, 324, 360 }, /* MCS 54 */ 112 { 182, 202, 378, 420 }, /* MCS 55 */ 113 { 156, 173, 324, 360 }, /* MCS 56 */ 114 { 182, 202, 378, 420 }, /* MCS 57 */ 115 { 208, 231, 432, 480 }, /* MCS 58 */ 116 { 234, 260, 486, 540 }, /* MCS 59 */ 117 { 208, 231, 432, 480 }, /* MCS 60 */ 118 { 234, 260, 486, 540 }, /* MCS 61 */ 119 { 260, 289, 540, 600 }, /* MCS 62 */ 120 { 260, 289, 540, 600 }, /* MCS 63 */ 121 { 286, 318, 594, 660 }, /* MCS 64 */ 122 { 195, 217, 405, 450 }, /* MCS 65 */ 123 { 234, 260, 486, 540 }, /* MCS 66 */ 124 { 273, 303, 567, 630 }, /* MCS 67 */ 125 { 234, 260, 486, 540 }, /* MCS 68 */ 126 { 273, 303, 567, 630 }, /* MCS 69 */ 127 { 312, 347, 648, 720 }, /* MCS 70 */ 128 { 351, 390, 729, 810 }, /* MCS 71 */ 129 { 312, 347, 648, 720 }, /* MCS 72 */ 130 { 351, 390, 729, 810 }, /* MCS 73 */ 131 { 390, 433, 810, 900 }, /* MCS 74 */ 132 { 390, 433, 810, 900 }, /* MCS 75 */ 133 { 429, 477, 891, 990 }, /* MCS 76 */ 134 }; 135 136 static int ieee80211_ampdu_age = -1; /* threshold for ampdu reorder q (ms) */ 137 SYSCTL_PROC(_net_wlan, OID_AUTO, ampdu_age, 138 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 139 &ieee80211_ampdu_age, 0, ieee80211_sysctl_msecs_ticks, "I", 140 "AMPDU max reorder age (ms)"); 141 142 static int ieee80211_recv_bar_ena = 1; 143 SYSCTL_INT(_net_wlan, OID_AUTO, recv_bar, CTLFLAG_RW, &ieee80211_recv_bar_ena, 144 0, "BAR frame processing (ena/dis)"); 145 146 static int ieee80211_addba_timeout = -1;/* timeout for ADDBA response */ 147 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_timeout, 148 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 149 &ieee80211_addba_timeout, 0, ieee80211_sysctl_msecs_ticks, "I", 150 "ADDBA request timeout (ms)"); 151 static int ieee80211_addba_backoff = -1;/* backoff after max ADDBA requests */ 152 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_backoff, 153 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 154 &ieee80211_addba_backoff, 0, ieee80211_sysctl_msecs_ticks, "I", 155 "ADDBA request backoff (ms)"); 156 static int ieee80211_addba_maxtries = 3;/* max ADDBA requests before backoff */ 157 SYSCTL_INT(_net_wlan, OID_AUTO, addba_maxtries, CTLFLAG_RW, 158 &ieee80211_addba_maxtries, 0, "max ADDBA requests sent before backoff"); 159 160 static int ieee80211_bar_timeout = -1; /* timeout waiting for BAR response */ 161 static int ieee80211_bar_maxtries = 50;/* max BAR requests before DELBA */ 162 163 static ieee80211_recv_action_func ht_recv_action_ba_addba_request; 164 static ieee80211_recv_action_func ht_recv_action_ba_addba_response; 165 static ieee80211_recv_action_func ht_recv_action_ba_delba; 166 static ieee80211_recv_action_func ht_recv_action_ht_mimopwrsave; 167 static ieee80211_recv_action_func ht_recv_action_ht_txchwidth; 168 169 static ieee80211_send_action_func ht_send_action_ba_addba; 170 static ieee80211_send_action_func ht_send_action_ba_delba; 171 static ieee80211_send_action_func ht_send_action_ht_txchwidth; 172 173 static void 174 ieee80211_ht_init(void) 175 { 176 /* 177 * Setup HT parameters that depends on the clock frequency. 178 */ 179 ieee80211_ampdu_age = msecs_to_ticks(500); 180 ieee80211_addba_timeout = msecs_to_ticks(250); 181 ieee80211_addba_backoff = msecs_to_ticks(10*1000); 182 ieee80211_bar_timeout = msecs_to_ticks(250); 183 /* 184 * Register action frame handlers. 185 */ 186 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 187 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_recv_action_ba_addba_request); 188 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 189 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_recv_action_ba_addba_response); 190 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 191 IEEE80211_ACTION_BA_DELBA, ht_recv_action_ba_delba); 192 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 193 IEEE80211_ACTION_HT_MIMOPWRSAVE, ht_recv_action_ht_mimopwrsave); 194 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 195 IEEE80211_ACTION_HT_TXCHWIDTH, ht_recv_action_ht_txchwidth); 196 197 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 198 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_send_action_ba_addba); 199 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 200 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_send_action_ba_addba); 201 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 202 IEEE80211_ACTION_BA_DELBA, ht_send_action_ba_delba); 203 ieee80211_send_action_register(IEEE80211_ACTION_CAT_HT, 204 IEEE80211_ACTION_HT_TXCHWIDTH, ht_send_action_ht_txchwidth); 205 } 206 SYSINIT(wlan_ht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_ht_init, NULL); 207 208 static int ieee80211_ampdu_enable(struct ieee80211_node *ni, 209 struct ieee80211_tx_ampdu *tap); 210 static int ieee80211_addba_request(struct ieee80211_node *ni, 211 struct ieee80211_tx_ampdu *tap, 212 int dialogtoken, int baparamset, int batimeout); 213 static int ieee80211_addba_response(struct ieee80211_node *ni, 214 struct ieee80211_tx_ampdu *tap, 215 int code, int baparamset, int batimeout); 216 static void ieee80211_addba_stop(struct ieee80211_node *ni, 217 struct ieee80211_tx_ampdu *tap); 218 static void null_addba_response_timeout(struct ieee80211_node *ni, 219 struct ieee80211_tx_ampdu *tap); 220 221 static void ieee80211_bar_response(struct ieee80211_node *ni, 222 struct ieee80211_tx_ampdu *tap, int status); 223 static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap); 224 static void bar_stop_timer(struct ieee80211_tx_ampdu *tap); 225 static int ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *, 226 int baparamset, int batimeout, int baseqctl); 227 static void ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *); 228 229 void 230 ieee80211_ht_attach(struct ieee80211com *ic) 231 { 232 /* setup default aggregation policy */ 233 ic->ic_recv_action = ieee80211_recv_action; 234 ic->ic_send_action = ieee80211_send_action; 235 ic->ic_ampdu_enable = ieee80211_ampdu_enable; 236 ic->ic_addba_request = ieee80211_addba_request; 237 ic->ic_addba_response = ieee80211_addba_response; 238 ic->ic_addba_response_timeout = null_addba_response_timeout; 239 ic->ic_addba_stop = ieee80211_addba_stop; 240 ic->ic_bar_response = ieee80211_bar_response; 241 ic->ic_ampdu_rx_start = ampdu_rx_start; 242 ic->ic_ampdu_rx_stop = ampdu_rx_stop; 243 244 ic->ic_htprotmode = IEEE80211_PROT_RTSCTS; 245 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; 246 } 247 248 void 249 ieee80211_ht_detach(struct ieee80211com *ic) 250 { 251 } 252 253 void 254 ieee80211_ht_vattach(struct ieee80211vap *vap) 255 { 256 257 /* driver can override defaults */ 258 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_8K; 259 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_NA; 260 vap->iv_ampdu_limit = vap->iv_ampdu_rxmax; 261 vap->iv_amsdu_limit = vap->iv_htcaps & IEEE80211_HTCAP_MAXAMSDU; 262 /* tx aggregation traffic thresholds */ 263 vap->iv_ampdu_mintraffic[WME_AC_BK] = 128; 264 vap->iv_ampdu_mintraffic[WME_AC_BE] = 64; 265 vap->iv_ampdu_mintraffic[WME_AC_VO] = 32; 266 vap->iv_ampdu_mintraffic[WME_AC_VI] = 32; 267 268 vap->iv_htprotmode = IEEE80211_PROT_RTSCTS; 269 vap->iv_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; 270 271 if (vap->iv_htcaps & IEEE80211_HTC_HT) { 272 /* 273 * Device is HT capable; enable all HT-related 274 * facilities by default. 275 * XXX these choices may be too aggressive. 276 */ 277 vap->iv_flags_ht |= IEEE80211_FHT_HT 278 | IEEE80211_FHT_HTCOMPAT 279 ; 280 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI20) 281 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20; 282 /* XXX infer from channel list? */ 283 if (vap->iv_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 284 vap->iv_flags_ht |= IEEE80211_FHT_USEHT40; 285 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI40) 286 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40; 287 } 288 /* enable RIFS if capable */ 289 if (vap->iv_htcaps & IEEE80211_HTC_RIFS) 290 vap->iv_flags_ht |= IEEE80211_FHT_RIFS; 291 292 /* NB: A-MPDU and A-MSDU rx are mandated, these are tx only */ 293 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX; 294 if (vap->iv_htcaps & IEEE80211_HTC_AMPDU) 295 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX; 296 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX; 297 if (vap->iv_htcaps & IEEE80211_HTC_AMSDU) 298 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX; 299 300 if (vap->iv_htcaps & IEEE80211_HTCAP_TXSTBC) 301 vap->iv_flags_ht |= IEEE80211_FHT_STBC_TX; 302 if (vap->iv_htcaps & IEEE80211_HTCAP_RXSTBC) 303 vap->iv_flags_ht |= IEEE80211_FHT_STBC_RX; 304 305 if (vap->iv_htcaps & IEEE80211_HTCAP_LDPC) 306 vap->iv_flags_ht |= IEEE80211_FHT_LDPC_RX; 307 if (vap->iv_htcaps & IEEE80211_HTC_TXLDPC) 308 vap->iv_flags_ht |= IEEE80211_FHT_LDPC_TX; 309 } 310 /* NB: disable default legacy WDS, too many issues right now */ 311 if (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) 312 vap->iv_flags_ht &= ~IEEE80211_FHT_HT; 313 } 314 315 void 316 ieee80211_ht_vdetach(struct ieee80211vap *vap) 317 { 318 } 319 320 static int 321 ht_getrate(struct ieee80211com *ic, int index, enum ieee80211_phymode mode, 322 int ratetype) 323 { 324 int mword, rate; 325 326 mword = ieee80211_rate2media(ic, index | IEEE80211_RATE_MCS, mode); 327 if (IFM_SUBTYPE(mword) != IFM_IEEE80211_MCS) 328 return (0); 329 switch (ratetype) { 330 case 0: 331 rate = ieee80211_htrates[index].ht20_rate_800ns; 332 break; 333 case 1: 334 rate = ieee80211_htrates[index].ht20_rate_400ns; 335 break; 336 case 2: 337 rate = ieee80211_htrates[index].ht40_rate_800ns; 338 break; 339 default: 340 rate = ieee80211_htrates[index].ht40_rate_400ns; 341 break; 342 } 343 return (rate); 344 } 345 346 static struct printranges { 347 int minmcs; 348 int maxmcs; 349 int txstream; 350 int ratetype; 351 int htcapflags; 352 } ranges[] = { 353 { 0, 7, 1, 0, 0 }, 354 { 8, 15, 2, 0, 0 }, 355 { 16, 23, 3, 0, 0 }, 356 { 24, 31, 4, 0, 0 }, 357 { 32, 0, 1, 2, IEEE80211_HTC_TXMCS32 }, 358 { 33, 38, 2, 0, IEEE80211_HTC_TXUNEQUAL }, 359 { 39, 52, 3, 0, IEEE80211_HTC_TXUNEQUAL }, 360 { 53, 76, 4, 0, IEEE80211_HTC_TXUNEQUAL }, 361 { 0, 0, 0, 0, 0 }, 362 }; 363 364 static void 365 ht_rateprint(struct ieee80211com *ic, enum ieee80211_phymode mode, int ratetype) 366 { 367 int minrate, maxrate; 368 struct printranges *range; 369 370 for (range = ranges; range->txstream != 0; range++) { 371 if (ic->ic_txstream < range->txstream) 372 continue; 373 if (range->htcapflags && 374 (ic->ic_htcaps & range->htcapflags) == 0) 375 continue; 376 if (ratetype < range->ratetype) 377 continue; 378 minrate = ht_getrate(ic, range->minmcs, mode, ratetype); 379 maxrate = ht_getrate(ic, range->maxmcs, mode, ratetype); 380 if (range->maxmcs) { 381 ic_printf(ic, "MCS %d-%d: %d%sMbps - %d%sMbps\n", 382 range->minmcs, range->maxmcs, 383 minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""), 384 maxrate/2, ((maxrate & 0x1) != 0 ? ".5" : "")); 385 } else { 386 ic_printf(ic, "MCS %d: %d%sMbps\n", range->minmcs, 387 minrate/2, ((minrate & 0x1) != 0 ? ".5" : "")); 388 } 389 } 390 } 391 392 static void 393 ht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode) 394 { 395 const char *modestr = ieee80211_phymode_name[mode]; 396 397 ic_printf(ic, "%s MCS 20MHz\n", modestr); 398 ht_rateprint(ic, mode, 0); 399 if (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) { 400 ic_printf(ic, "%s MCS 20MHz SGI\n", modestr); 401 ht_rateprint(ic, mode, 1); 402 } 403 if (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 404 ic_printf(ic, "%s MCS 40MHz:\n", modestr); 405 ht_rateprint(ic, mode, 2); 406 } 407 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 408 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) { 409 ic_printf(ic, "%s MCS 40MHz SGI:\n", modestr); 410 ht_rateprint(ic, mode, 3); 411 } 412 } 413 414 void 415 ieee80211_ht_announce(struct ieee80211com *ic) 416 { 417 418 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 419 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 420 ic_printf(ic, "%dT%dR\n", ic->ic_txstream, ic->ic_rxstream); 421 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA)) 422 ht_announce(ic, IEEE80211_MODE_11NA); 423 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 424 ht_announce(ic, IEEE80211_MODE_11NG); 425 } 426 427 void 428 ieee80211_init_suphtrates(struct ieee80211com *ic) 429 { 430 #define ADDRATE(x) do { \ 431 htrateset->rs_rates[htrateset->rs_nrates] = x; \ 432 htrateset->rs_nrates++; \ 433 } while (0) 434 struct ieee80211_htrateset *htrateset = &ic->ic_sup_htrates; 435 int i; 436 437 memset(htrateset, 0, sizeof(struct ieee80211_htrateset)); 438 for (i = 0; i < ic->ic_txstream * 8; i++) 439 ADDRATE(i); 440 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 441 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32)) 442 ADDRATE(32); 443 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 444 if (ic->ic_txstream >= 2) { 445 for (i = 33; i <= 38; i++) 446 ADDRATE(i); 447 } 448 if (ic->ic_txstream >= 3) { 449 for (i = 39; i <= 52; i++) 450 ADDRATE(i); 451 } 452 if (ic->ic_txstream == 4) { 453 for (i = 53; i <= 76; i++) 454 ADDRATE(i); 455 } 456 } 457 #undef ADDRATE 458 } 459 460 /* 461 * Receive processing. 462 */ 463 464 /* 465 * Decap the encapsulated A-MSDU frames and dispatch all but 466 * the last for delivery. The last frame is returned for 467 * delivery via the normal path. 468 */ 469 struct mbuf * 470 ieee80211_decap_amsdu(struct ieee80211_node *ni, struct mbuf *m) 471 { 472 struct ieee80211vap *vap = ni->ni_vap; 473 int framelen; 474 struct mbuf *n; 475 476 /* discard 802.3 header inserted by ieee80211_decap */ 477 m_adj(m, sizeof(struct ether_header)); 478 479 vap->iv_stats.is_amsdu_decap++; 480 481 for (;;) { 482 /* 483 * Decap the first frame, bust it apart from the 484 * remainder and deliver. We leave the last frame 485 * delivery to the caller (for consistency with other 486 * code paths, could also do it here). 487 */ 488 m = ieee80211_decap1(m, &framelen); 489 if (m == NULL) { 490 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 491 ni->ni_macaddr, "a-msdu", "%s", "decap failed"); 492 vap->iv_stats.is_amsdu_tooshort++; 493 return NULL; 494 } 495 if (m->m_pkthdr.len == framelen) 496 break; 497 n = m_split(m, framelen, IEEE80211_M_NOWAIT); 498 if (n == NULL) { 499 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 500 ni->ni_macaddr, "a-msdu", 501 "%s", "unable to split encapsulated frames"); 502 vap->iv_stats.is_amsdu_split++; 503 m_freem(m); /* NB: must reclaim */ 504 return NULL; 505 } 506 vap->iv_deliver_data(vap, ni, m); 507 508 /* 509 * Remove frame contents; each intermediate frame 510 * is required to be aligned to a 4-byte boundary. 511 */ 512 m = n; 513 m_adj(m, roundup2(framelen, 4) - framelen); /* padding */ 514 } 515 return m; /* last delivered by caller */ 516 } 517 518 static void 519 ampdu_rx_purge_slot(struct ieee80211_rx_ampdu *rap, int i) 520 { 521 struct mbuf *m; 522 523 /* Walk the queue, removing frames as appropriate */ 524 while (mbufq_len(&rap->rxa_mq[i]) != 0) { 525 m = mbufq_dequeue(&rap->rxa_mq[i]); 526 if (m == NULL) 527 break; 528 rap->rxa_qbytes -= m->m_pkthdr.len; 529 rap->rxa_qframes--; 530 m_freem(m); 531 } 532 } 533 534 /* 535 * Add the given frame to the current RX reorder slot. 536 * 537 * For future offloaded A-MSDU handling where multiple frames with 538 * the same sequence number show up here, this routine will append 539 * those frames as long as they're appropriately tagged. 540 */ 541 static int 542 ampdu_rx_add_slot(struct ieee80211_rx_ampdu *rap, int off, int tid, 543 ieee80211_seq rxseq, 544 struct ieee80211_node *ni, 545 struct mbuf *m, 546 const struct ieee80211_rx_stats *rxs) 547 { 548 const struct ieee80211_rx_stats *rxs_final = NULL; 549 struct ieee80211vap *vap = ni->ni_vap; 550 int toss_dup; 551 #define PROCESS 0 /* caller should process frame */ 552 #define CONSUMED 1 /* frame consumed, caller does nothing */ 553 554 /* 555 * Figure out if this is a duplicate frame for the given slot. 556 * 557 * We're assuming that the driver will hand us all the frames 558 * for a given AMSDU decap pass and if we get /a/ frame 559 * for an AMSDU decap then we'll get all of them. 560 * 561 * The tricksy bit is that we don't know when the /end/ of 562 * the decap pass is, because we aren't tracking state here 563 * per-slot to know that we've finished receiving the frame list. 564 * 565 * The driver sets RX_F_AMSDU and RX_F_AMSDU_MORE to tell us 566 * what's going on; so ideally we'd just check the frame at the 567 * end of the reassembly slot to see if its F_AMSDU w/ no F_AMSDU_MORE - 568 * that means we've received the whole AMSDU decap pass. 569 */ 570 571 /* 572 * Get the rxs of the final mbuf in the slot, if one exists. 573 */ 574 if (mbufq_len(&rap->rxa_mq[off]) != 0) { 575 rxs_final = ieee80211_get_rx_params_ptr(mbufq_last(&rap->rxa_mq[off])); 576 } 577 578 /* Default to tossing the duplicate frame */ 579 toss_dup = 1; 580 581 /* 582 * Check to see if the final frame has F_AMSDU and F_AMSDU set, AND 583 * this frame has F_AMSDU set (MORE or otherwise.) That's a sign 584 * that more can come. 585 */ 586 587 if ((rxs != NULL) && (rxs_final != NULL) && 588 ieee80211_check_rxseq_amsdu(rxs) && 589 ieee80211_check_rxseq_amsdu(rxs_final)) { 590 if (! ieee80211_check_rxseq_amsdu_more(rxs_final)) { 591 /* 592 * amsdu_more() returning 0 means "it's not the 593 * final frame" so we can append more 594 * frames here. 595 */ 596 toss_dup = 0; 597 } 598 } 599 600 /* 601 * If the list is empty OR we have determined we can put more 602 * driver decap'ed AMSDU frames in here, then insert. 603 */ 604 if ((mbufq_len(&rap->rxa_mq[off]) == 0) || (toss_dup == 0)) { 605 if (mbufq_enqueue(&rap->rxa_mq[off], m) != 0) { 606 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 607 ni->ni_macaddr, 608 "a-mpdu queue fail", 609 "seqno %u tid %u BA win <%u:%u> off=%d, qlen=%d, maxqlen=%d", 610 rxseq, tid, rap->rxa_start, 611 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 612 off, 613 mbufq_len(&rap->rxa_mq[off]), 614 rap->rxa_mq[off].mq_maxlen); 615 /* XXX error count */ 616 m_freem(m); 617 return CONSUMED; 618 } 619 rap->rxa_qframes++; 620 rap->rxa_qbytes += m->m_pkthdr.len; 621 vap->iv_stats.is_ampdu_rx_reorder++; 622 /* 623 * Statistics for AMSDU decap. 624 */ 625 if (rxs != NULL && ieee80211_check_rxseq_amsdu(rxs)) { 626 if (ieee80211_check_rxseq_amsdu_more(rxs)) { 627 /* more=1, AMSDU, end of batch */ 628 IEEE80211_NODE_STAT(ni, rx_amsdu_more_end); 629 } else { 630 IEEE80211_NODE_STAT(ni, rx_amsdu_more); 631 } 632 } 633 } else { 634 IEEE80211_DISCARD_MAC(vap, 635 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 636 ni->ni_macaddr, "a-mpdu duplicate", 637 "seqno %u tid %u BA win <%u:%u>", 638 rxseq, tid, rap->rxa_start, 639 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1)); 640 if (rxs != NULL) { 641 IEEE80211_DISCARD_MAC(vap, 642 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 643 ni->ni_macaddr, "a-mpdu duplicate", 644 "seqno %d tid %u pktflags 0x%08x\n", 645 rxseq, tid, rxs->c_pktflags); 646 } 647 if (rxs_final != NULL) { 648 IEEE80211_DISCARD_MAC(vap, 649 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 650 ni->ni_macaddr, "a-mpdu duplicate", 651 "final: pktflags 0x%08x\n", 652 rxs_final->c_pktflags); 653 } 654 vap->iv_stats.is_rx_dup++; 655 IEEE80211_NODE_STAT(ni, rx_dup); 656 m_freem(m); 657 } 658 return CONSUMED; 659 #undef CONSUMED 660 #undef PROCESS 661 } 662 663 /* 664 * Purge all frames in the A-MPDU re-order queue. 665 */ 666 static void 667 ampdu_rx_purge(struct ieee80211_rx_ampdu *rap) 668 { 669 int i; 670 671 for (i = 0; i < rap->rxa_wnd; i++) { 672 ampdu_rx_purge_slot(rap, i); 673 if (rap->rxa_qframes == 0) 674 break; 675 } 676 KASSERT(rap->rxa_qbytes == 0 && rap->rxa_qframes == 0, 677 ("lost %u data, %u frames on ampdu rx q", 678 rap->rxa_qbytes, rap->rxa_qframes)); 679 } 680 681 static void 682 ieee80211_ampdu_rx_init_rap(struct ieee80211_node *ni, 683 struct ieee80211_rx_ampdu *rap) 684 { 685 int i; 686 687 /* XXX TODO: ensure the queues are empty */ 688 memset(rap, 0, sizeof(*rap)); 689 for (i = 0; i < IEEE80211_AGGR_BAWMAX; i++) 690 mbufq_init(&rap->rxa_mq[i], 256); 691 } 692 693 /* 694 * Start A-MPDU rx/re-order processing for the specified TID. 695 */ 696 static int 697 ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap, 698 int baparamset, int batimeout, int baseqctl) 699 { 700 struct ieee80211vap *vap = ni->ni_vap; 701 int bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ); 702 703 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 704 /* 705 * AMPDU previously setup and not terminated with a DELBA, 706 * flush the reorder q's in case anything remains. 707 */ 708 ampdu_rx_purge(rap); 709 } 710 ieee80211_ampdu_rx_init_rap(ni, rap); 711 rap->rxa_wnd = (bufsiz == 0) ? 712 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 713 rap->rxa_start = _IEEE80211_MASKSHIFT(baseqctl, IEEE80211_BASEQ_START); 714 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 715 716 /* XXX this should be a configuration flag */ 717 if ((vap->iv_htcaps & IEEE80211_HTC_RX_AMSDU_AMPDU) && 718 (_IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU))) 719 rap->rxa_flags |= IEEE80211_AGGR_AMSDU; 720 else 721 rap->rxa_flags &= ~IEEE80211_AGGR_AMSDU; 722 723 return 0; 724 } 725 726 /* 727 * Public function; manually setup the RX ampdu state. 728 */ 729 int 730 ieee80211_ampdu_rx_start_ext(struct ieee80211_node *ni, int tid, int seq, int baw) 731 { 732 struct ieee80211_rx_ampdu *rap; 733 734 /* XXX TODO: sanity check tid, seq, baw */ 735 736 rap = &ni->ni_rx_ampdu[tid]; 737 738 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 739 /* 740 * AMPDU previously setup and not terminated with a DELBA, 741 * flush the reorder q's in case anything remains. 742 */ 743 ampdu_rx_purge(rap); 744 } 745 746 ieee80211_ampdu_rx_init_rap(ni, rap); 747 748 rap->rxa_wnd = (baw== 0) ? 749 IEEE80211_AGGR_BAWMAX : min(baw, IEEE80211_AGGR_BAWMAX); 750 if (seq == -1) { 751 /* Wait for the first RX frame, use that as BAW */ 752 rap->rxa_start = 0; 753 rap->rxa_flags |= IEEE80211_AGGR_WAITRX; 754 } else { 755 rap->rxa_start = seq; 756 } 757 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 758 759 /* XXX TODO: no amsdu flag */ 760 761 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 762 "%s: tid=%d, start=%d, wnd=%d, flags=0x%08x", 763 __func__, 764 tid, 765 seq, 766 rap->rxa_wnd, 767 rap->rxa_flags); 768 769 return 0; 770 } 771 772 /* 773 * Public function; manually stop the RX AMPDU state. 774 */ 775 void 776 ieee80211_ampdu_rx_stop_ext(struct ieee80211_node *ni, int tid) 777 { 778 struct ieee80211_rx_ampdu *rap; 779 780 /* XXX TODO: sanity check tid, seq, baw */ 781 rap = &ni->ni_rx_ampdu[tid]; 782 ampdu_rx_stop(ni, rap); 783 } 784 785 /* 786 * Stop A-MPDU rx processing for the specified TID. 787 */ 788 static void 789 ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 790 { 791 792 ampdu_rx_purge(rap); 793 rap->rxa_flags &= ~(IEEE80211_AGGR_RUNNING 794 | IEEE80211_AGGR_XCHGPEND 795 | IEEE80211_AGGR_WAITRX); 796 } 797 798 /* 799 * Dispatch a frame from the A-MPDU reorder queue. The 800 * frame is fed back into ieee80211_input marked with an 801 * M_AMPDU_MPDU flag so it doesn't come back to us (it also 802 * permits ieee80211_input to optimize re-processing). 803 */ 804 static __inline void 805 ampdu_dispatch(struct ieee80211_node *ni, struct mbuf *m) 806 { 807 m->m_flags |= M_AMPDU_MPDU; /* bypass normal processing */ 808 /* NB: rssi and noise are ignored w/ M_AMPDU_MPDU set */ 809 (void) ieee80211_input(ni, m, 0, 0); 810 } 811 812 static int 813 ampdu_dispatch_slot(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni, 814 int i) 815 { 816 struct mbuf *m; 817 int n = 0; 818 819 while (mbufq_len(&rap->rxa_mq[i]) != 0) { 820 m = mbufq_dequeue(&rap->rxa_mq[i]); 821 if (m == NULL) 822 break; 823 n++; 824 825 rap->rxa_qbytes -= m->m_pkthdr.len; 826 rap->rxa_qframes--; 827 828 ampdu_dispatch(ni, m); 829 } 830 return (n); 831 } 832 833 static void 834 ampdu_rx_moveup(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni, 835 int i, int winstart) 836 { 837 struct ieee80211vap *vap = ni->ni_vap; 838 839 /* 840 * If frames remain, copy the mbuf pointers down so 841 * they correspond to the offsets in the new window. 842 */ 843 if (rap->rxa_qframes != 0) { 844 int n = rap->rxa_qframes, j; 845 for (j = i+1; j < rap->rxa_wnd; j++) { 846 /* 847 * Concat the list contents over, which will 848 * blank the source list for us. 849 */ 850 if (mbufq_len(&rap->rxa_mq[j]) != 0) { 851 n = n - mbufq_len(&rap->rxa_mq[j]); 852 mbufq_concat(&rap->rxa_mq[j-i], &rap->rxa_mq[j]); 853 KASSERT(n >= 0, ("%s: n < 0 (%d)", __func__, n)); 854 if (n == 0) 855 break; 856 } 857 } 858 KASSERT(n == 0, ("%s: lost %d frames, qframes %d off %d " 859 "BA win <%d:%d> winstart %d", 860 __func__, n, rap->rxa_qframes, i, rap->rxa_start, 861 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 862 winstart)); 863 vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; 864 } 865 } 866 867 /* 868 * Dispatch as many frames as possible from the re-order queue. 869 * Frames will always be "at the front"; we process all frames 870 * up to the first empty slot in the window. On completion we 871 * cleanup state if there are still pending frames in the current 872 * BA window. We assume the frame at slot 0 is already handled 873 * by the caller; we always start at slot 1. 874 */ 875 static void 876 ampdu_rx_dispatch(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni) 877 { 878 struct ieee80211vap *vap = ni->ni_vap; 879 int i, r, r2; 880 881 /* flush run of frames */ 882 r2 = 0; 883 for (i = 1; i < rap->rxa_wnd; i++) { 884 r = ampdu_dispatch_slot(rap, ni, i); 885 if (r == 0) 886 break; 887 r2 += r; 888 } 889 890 /* move up frames */ 891 ampdu_rx_moveup(rap, ni, i, -1); 892 893 /* 894 * Adjust the start of the BA window to 895 * reflect the frames just dispatched. 896 */ 897 rap->rxa_start = IEEE80211_SEQ_ADD(rap->rxa_start, i); 898 vap->iv_stats.is_ampdu_rx_oor += r2; 899 900 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 901 "%s: moved slot up %d slots to start at %d (%d frames)", 902 __func__, 903 i, 904 rap->rxa_start, 905 r2); 906 } 907 908 /* 909 * Dispatch all frames in the A-MPDU re-order queue. 910 */ 911 static void 912 ampdu_rx_flush(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 913 { 914 int i, r; 915 916 for (i = 0; i < rap->rxa_wnd; i++) { 917 r = ampdu_dispatch_slot(rap, ni, i); 918 if (r == 0) 919 continue; 920 ni->ni_vap->iv_stats.is_ampdu_rx_oor += r; 921 922 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 923 "%s: moved slot up %d slots to start at %d (%d frames)", 924 __func__, 925 1, 926 rap->rxa_start, 927 r); 928 929 if (rap->rxa_qframes == 0) 930 break; 931 } 932 } 933 934 /* 935 * Dispatch all frames in the A-MPDU re-order queue 936 * preceding the specified sequence number. This logic 937 * handles window moves due to a received MSDU or BAR. 938 */ 939 static void 940 ampdu_rx_flush_upto(struct ieee80211_node *ni, 941 struct ieee80211_rx_ampdu *rap, ieee80211_seq winstart) 942 { 943 struct ieee80211vap *vap = ni->ni_vap; 944 ieee80211_seq seqno; 945 int i, r; 946 947 /* 948 * Flush any complete MSDU's with a sequence number lower 949 * than winstart. Gaps may exist. Note that we may actually 950 * dispatch frames past winstart if a run continues; this is 951 * an optimization that avoids having to do a separate pass 952 * to dispatch frames after moving the BA window start. 953 */ 954 seqno = rap->rxa_start; 955 for (i = 0; i < rap->rxa_wnd; i++) { 956 if ((r = mbufq_len(&rap->rxa_mq[i])) != 0) { 957 (void) ampdu_dispatch_slot(rap, ni, i); 958 } else { 959 if (!IEEE80211_SEQ_BA_BEFORE(seqno, winstart)) 960 break; 961 } 962 vap->iv_stats.is_ampdu_rx_oor += r; 963 seqno = IEEE80211_SEQ_INC(seqno); 964 965 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 966 "%s: moved slot up %d slots to start at %d (%d frames)", 967 __func__, 968 1, 969 seqno, 970 r); 971 } 972 973 /* 974 * If frames remain, copy the mbuf pointers down so 975 * they correspond to the offsets in the new window. 976 */ 977 ampdu_rx_moveup(rap, ni, i, winstart); 978 979 /* 980 * Move the start of the BA window; we use the 981 * sequence number of the last MSDU that was 982 * passed up the stack+1 or winstart if stopped on 983 * a gap in the reorder buffer. 984 */ 985 rap->rxa_start = seqno; 986 } 987 988 /* 989 * Process a received QoS data frame for an HT station. Handle 990 * A-MPDU reordering: if this frame is received out of order 991 * and falls within the BA window hold onto it. Otherwise if 992 * this frame completes a run, flush any pending frames. We 993 * return 1 if the frame is consumed. A 0 is returned if 994 * the frame should be processed normally by the caller. 995 * 996 * A-MSDU: handle hardware decap'ed A-MSDU frames that are 997 * pretending to be MPDU's. They're dispatched directly if 998 * able; or attempted to put into the receive reordering slot. 999 */ 1000 int 1001 ieee80211_ampdu_reorder(struct ieee80211_node *ni, struct mbuf *m, 1002 const struct ieee80211_rx_stats *rxs) 1003 { 1004 #define PROCESS 0 /* caller should process frame */ 1005 #define CONSUMED 1 /* frame consumed, caller does nothing */ 1006 struct ieee80211vap *vap = ni->ni_vap; 1007 struct ieee80211_qosframe *wh; 1008 struct ieee80211_rx_ampdu *rap; 1009 ieee80211_seq rxseq; 1010 uint8_t tid; 1011 int off; 1012 int amsdu = ieee80211_check_rxseq_amsdu(rxs); 1013 int amsdu_end = ieee80211_check_rxseq_amsdu_more(rxs); 1014 1015 KASSERT((m->m_flags & (M_AMPDU | M_AMPDU_MPDU)) == M_AMPDU, 1016 ("!a-mpdu or already re-ordered, flags 0x%x", m->m_flags)); 1017 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 1018 1019 /* NB: m_len known to be sufficient */ 1020 wh = mtod(m, struct ieee80211_qosframe *); 1021 if (wh->i_fc[0] != IEEE80211_FC0_QOSDATA) { 1022 /* 1023 * Not QoS data, shouldn't get here but just 1024 * return it to the caller for processing. 1025 */ 1026 return PROCESS; 1027 } 1028 1029 /* 1030 * 802.11-2012 9.3.2.10 - Duplicate detection and recovery. 1031 * 1032 * Multicast QoS data frames are checked against a different 1033 * counter, not the per-TID counter. 1034 */ 1035 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1036 return PROCESS; 1037 1038 tid = ieee80211_getqos(wh)[0]; 1039 tid &= IEEE80211_QOS_TID; 1040 rap = &ni->ni_rx_ampdu[tid]; 1041 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 1042 /* 1043 * No ADDBA request yet, don't touch. 1044 */ 1045 return PROCESS; 1046 } 1047 rxseq = le16toh(*(uint16_t *)wh->i_seq); 1048 if ((rxseq & IEEE80211_SEQ_FRAG_MASK) != 0) { 1049 /* 1050 * Fragments are not allowed; toss. 1051 */ 1052 IEEE80211_DISCARD_MAC(vap, 1053 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 1054 "A-MPDU", "fragment, rxseq 0x%x tid %u%s", rxseq, tid, 1055 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 1056 vap->iv_stats.is_ampdu_rx_drop++; 1057 IEEE80211_NODE_STAT(ni, rx_drop); 1058 m_freem(m); 1059 return CONSUMED; 1060 } 1061 rxseq >>= IEEE80211_SEQ_SEQ_SHIFT; 1062 rap->rxa_nframes++; 1063 1064 /* 1065 * Handle waiting for the first frame to define the BAW. 1066 * Some firmware doesn't provide the RX of the starting point 1067 * of the BAW and we have to cope. 1068 */ 1069 if (rap->rxa_flags & IEEE80211_AGGR_WAITRX) { 1070 rap->rxa_flags &= ~IEEE80211_AGGR_WAITRX; 1071 rap->rxa_start = rxseq; 1072 } 1073 again: 1074 if (rxseq == rap->rxa_start) { 1075 /* 1076 * First frame in window. 1077 */ 1078 if (rap->rxa_qframes != 0) { 1079 /* 1080 * Dispatch as many packets as we can. 1081 */ 1082 KASSERT((mbufq_len(&rap->rxa_mq[0]) == 0), ("unexpected dup")); 1083 ampdu_dispatch(ni, m); 1084 ampdu_rx_dispatch(rap, ni); 1085 return CONSUMED; 1086 } else { 1087 /* 1088 * In order; advance window if needed and notify 1089 * caller to dispatch directly. 1090 */ 1091 if (amsdu) { 1092 if (amsdu_end) { 1093 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 1094 IEEE80211_NODE_STAT(ni, rx_amsdu_more_end); 1095 } else { 1096 IEEE80211_NODE_STAT(ni, rx_amsdu_more); 1097 } 1098 } else { 1099 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 1100 } 1101 return PROCESS; 1102 } 1103 } 1104 /* 1105 * Frame is out of order; store if in the BA window. 1106 */ 1107 /* calculate offset in BA window */ 1108 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 1109 if (off < rap->rxa_wnd) { 1110 /* 1111 * Common case (hopefully): in the BA window. 1112 * Sec 9.10.7.6.2 a) (p.137) 1113 */ 1114 1115 /* 1116 * Check for frames sitting too long in the reorder queue. 1117 * This should only ever happen if frames are not delivered 1118 * without the sender otherwise notifying us (e.g. with a 1119 * BAR to move the window). Typically this happens because 1120 * of vendor bugs that cause the sequence number to jump. 1121 * When this happens we get a gap in the reorder queue that 1122 * leaves frame sitting on the queue until they get pushed 1123 * out due to window moves. When the vendor does not send 1124 * BAR this move only happens due to explicit packet sends 1125 * 1126 * NB: we only track the time of the oldest frame in the 1127 * reorder q; this means that if we flush we might push 1128 * frames that still "new"; if this happens then subsequent 1129 * frames will result in BA window moves which cost something 1130 * but is still better than a big throughput dip. 1131 */ 1132 if (rap->rxa_qframes != 0) { 1133 /* XXX honor batimeout? */ 1134 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 1135 /* 1136 * Too long since we received the first 1137 * frame; flush the reorder buffer. 1138 */ 1139 if (rap->rxa_qframes != 0) { 1140 vap->iv_stats.is_ampdu_rx_age += 1141 rap->rxa_qframes; 1142 ampdu_rx_flush(ni, rap); 1143 } 1144 /* 1145 * Advance the window if needed and notify 1146 * the caller to dispatch directly. 1147 */ 1148 if (amsdu) { 1149 if (amsdu_end) { 1150 rap->rxa_start = 1151 IEEE80211_SEQ_INC(rxseq); 1152 IEEE80211_NODE_STAT(ni, 1153 rx_amsdu_more_end); 1154 } else { 1155 IEEE80211_NODE_STAT(ni, 1156 rx_amsdu_more); 1157 } 1158 } else { 1159 rap->rxa_start = 1160 IEEE80211_SEQ_INC(rxseq); 1161 } 1162 return PROCESS; 1163 } 1164 } else { 1165 /* 1166 * First frame, start aging timer. 1167 */ 1168 rap->rxa_age = ticks; 1169 } 1170 1171 /* save packet - this consumes, no matter what */ 1172 ampdu_rx_add_slot(rap, off, tid, rxseq, ni, m, rxs); 1173 return CONSUMED; 1174 } 1175 if (off < IEEE80211_SEQ_BA_RANGE) { 1176 /* 1177 * Outside the BA window, but within range; 1178 * flush the reorder q and move the window. 1179 * Sec 9.10.7.6.2 b) (p.138) 1180 */ 1181 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1182 "move BA win <%u:%u> (%u frames) rxseq %u tid %u", 1183 rap->rxa_start, 1184 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1185 rap->rxa_qframes, rxseq, tid); 1186 vap->iv_stats.is_ampdu_rx_move++; 1187 1188 /* 1189 * The spec says to flush frames up to but not including: 1190 * WinStart_B = rxseq - rap->rxa_wnd + 1 1191 * Then insert the frame or notify the caller to process 1192 * it immediately. We can safely do this by just starting 1193 * over again because we know the frame will now be within 1194 * the BA window. 1195 */ 1196 /* NB: rxa_wnd known to be >0 */ 1197 ampdu_rx_flush_upto(ni, rap, 1198 IEEE80211_SEQ_SUB(rxseq, rap->rxa_wnd-1)); 1199 goto again; 1200 } else { 1201 /* 1202 * Outside the BA window and out of range; toss. 1203 * Sec 9.10.7.6.2 c) (p.138) 1204 */ 1205 IEEE80211_DISCARD_MAC(vap, 1206 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 1207 "MPDU", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 1208 rap->rxa_start, 1209 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1210 rap->rxa_qframes, rxseq, tid, 1211 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 1212 vap->iv_stats.is_ampdu_rx_drop++; 1213 IEEE80211_NODE_STAT(ni, rx_drop); 1214 m_freem(m); 1215 return CONSUMED; 1216 } 1217 #undef CONSUMED 1218 #undef PROCESS 1219 } 1220 1221 /* 1222 * Process a BAR ctl frame. Dispatch all frames up to 1223 * the sequence number of the frame. If this frame is 1224 * out of range it's discarded. 1225 */ 1226 void 1227 ieee80211_recv_bar(struct ieee80211_node *ni, struct mbuf *m0) 1228 { 1229 struct ieee80211vap *vap = ni->ni_vap; 1230 struct ieee80211_frame_bar *wh; 1231 struct ieee80211_rx_ampdu *rap; 1232 ieee80211_seq rxseq; 1233 int tid, off; 1234 1235 if (!ieee80211_recv_bar_ena) { 1236 #if 0 1237 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_11N, 1238 ni->ni_macaddr, "BAR", "%s", "processing disabled"); 1239 #endif 1240 vap->iv_stats.is_ampdu_bar_bad++; 1241 return; 1242 } 1243 wh = mtod(m0, struct ieee80211_frame_bar *); 1244 /* XXX check basic BAR */ 1245 tid = _IEEE80211_MASKSHIFT(le16toh(wh->i_ctl), IEEE80211_BAR_TID); 1246 rap = &ni->ni_rx_ampdu[tid]; 1247 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 1248 /* 1249 * No ADDBA request yet, don't touch. 1250 */ 1251 IEEE80211_DISCARD_MAC(vap, 1252 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 1253 ni->ni_macaddr, "BAR", "no BA stream, tid %u", tid); 1254 vap->iv_stats.is_ampdu_bar_bad++; 1255 return; 1256 } 1257 vap->iv_stats.is_ampdu_bar_rx++; 1258 rxseq = le16toh(wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT; 1259 if (rxseq == rap->rxa_start) 1260 return; 1261 /* calculate offset in BA window */ 1262 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 1263 if (off < IEEE80211_SEQ_BA_RANGE) { 1264 /* 1265 * Flush the reorder q up to rxseq and move the window. 1266 * Sec 9.10.7.6.3 a) (p.138) 1267 */ 1268 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1269 "BAR moves BA win <%u:%u> (%u frames) rxseq %u tid %u", 1270 rap->rxa_start, 1271 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1272 rap->rxa_qframes, rxseq, tid); 1273 vap->iv_stats.is_ampdu_bar_move++; 1274 1275 ampdu_rx_flush_upto(ni, rap, rxseq); 1276 if (off >= rap->rxa_wnd) { 1277 /* 1278 * BAR specifies a window start to the right of BA 1279 * window; we must move it explicitly since 1280 * ampdu_rx_flush_upto will not. 1281 */ 1282 rap->rxa_start = rxseq; 1283 } 1284 } else { 1285 /* 1286 * Out of range; toss. 1287 * Sec 9.10.7.6.3 b) (p.138) 1288 */ 1289 IEEE80211_DISCARD_MAC(vap, 1290 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 1291 "BAR", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 1292 rap->rxa_start, 1293 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1294 rap->rxa_qframes, rxseq, tid, 1295 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 1296 vap->iv_stats.is_ampdu_bar_oow++; 1297 IEEE80211_NODE_STAT(ni, rx_drop); 1298 } 1299 } 1300 1301 /* 1302 * Setup HT-specific state in a node. Called only 1303 * when HT use is negotiated so we don't do extra 1304 * work for temporary and/or legacy sta's. 1305 */ 1306 void 1307 ieee80211_ht_node_init(struct ieee80211_node *ni) 1308 { 1309 struct ieee80211_tx_ampdu *tap; 1310 int tid; 1311 1312 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1313 ni, 1314 "%s: called (%p)", 1315 __func__, 1316 ni); 1317 1318 if (ni->ni_flags & IEEE80211_NODE_HT) { 1319 /* 1320 * Clean AMPDU state on re-associate. This handles the case 1321 * where a station leaves w/o notifying us and then returns 1322 * before node is reaped for inactivity. 1323 */ 1324 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1325 ni, 1326 "%s: calling cleanup (%p)", 1327 __func__, ni); 1328 ieee80211_ht_node_cleanup(ni); 1329 } 1330 for (tid = 0; tid < WME_NUM_TID; tid++) { 1331 tap = &ni->ni_tx_ampdu[tid]; 1332 tap->txa_tid = tid; 1333 tap->txa_ni = ni; 1334 ieee80211_txampdu_init_pps(tap); 1335 /* NB: further initialization deferred */ 1336 ieee80211_ampdu_rx_init_rap(ni, &ni->ni_rx_ampdu[tid]); 1337 } 1338 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU | 1339 IEEE80211_NODE_AMSDU; 1340 } 1341 1342 /* 1343 * Cleanup HT-specific state in a node. Called only 1344 * when HT use has been marked. 1345 */ 1346 void 1347 ieee80211_ht_node_cleanup(struct ieee80211_node *ni) 1348 { 1349 struct ieee80211com *ic = ni->ni_ic; 1350 int i; 1351 1352 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1353 ni, 1354 "%s: called (%p)", 1355 __func__, ni); 1356 1357 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT node")); 1358 1359 /* XXX optimize this */ 1360 for (i = 0; i < WME_NUM_TID; i++) { 1361 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[i]; 1362 if (tap->txa_flags & IEEE80211_AGGR_SETUP) 1363 ampdu_tx_stop(tap); 1364 } 1365 for (i = 0; i < WME_NUM_TID; i++) 1366 ic->ic_ampdu_rx_stop(ni, &ni->ni_rx_ampdu[i]); 1367 1368 ni->ni_htcap = 0; 1369 ni->ni_flags &= ~IEEE80211_NODE_HT_ALL; 1370 } 1371 1372 /* 1373 * Age out HT resources for a station. 1374 */ 1375 void 1376 ieee80211_ht_node_age(struct ieee80211_node *ni) 1377 { 1378 struct ieee80211vap *vap = ni->ni_vap; 1379 uint8_t tid; 1380 1381 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 1382 1383 for (tid = 0; tid < WME_NUM_TID; tid++) { 1384 struct ieee80211_rx_ampdu *rap; 1385 1386 rap = &ni->ni_rx_ampdu[tid]; 1387 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) 1388 continue; 1389 if (rap->rxa_qframes == 0) 1390 continue; 1391 /* 1392 * Check for frames sitting too long in the reorder queue. 1393 * See above for more details on what's happening here. 1394 */ 1395 /* XXX honor batimeout? */ 1396 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 1397 /* 1398 * Too long since we received the first 1399 * frame; flush the reorder buffer. 1400 */ 1401 vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes; 1402 ampdu_rx_flush(ni, rap); 1403 } 1404 } 1405 } 1406 1407 static struct ieee80211_channel * 1408 findhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int htflags) 1409 { 1410 return ieee80211_find_channel(ic, c->ic_freq, 1411 (c->ic_flags &~ IEEE80211_CHAN_HT) | htflags); 1412 } 1413 1414 /* 1415 * Adjust a channel to be HT/non-HT according to the vap's configuration. 1416 */ 1417 struct ieee80211_channel * 1418 ieee80211_ht_adjust_channel(struct ieee80211com *ic, 1419 struct ieee80211_channel *chan, int flags) 1420 { 1421 struct ieee80211_channel *c; 1422 1423 if (flags & IEEE80211_FHT_HT) { 1424 /* promote to HT if possible */ 1425 if (flags & IEEE80211_FHT_USEHT40) { 1426 if (!IEEE80211_IS_CHAN_HT40(chan)) { 1427 /* NB: arbitrarily pick ht40+ over ht40- */ 1428 c = findhtchan(ic, chan, IEEE80211_CHAN_HT40U); 1429 if (c == NULL) 1430 c = findhtchan(ic, chan, 1431 IEEE80211_CHAN_HT40D); 1432 if (c == NULL) 1433 c = findhtchan(ic, chan, 1434 IEEE80211_CHAN_HT20); 1435 if (c != NULL) 1436 chan = c; 1437 } 1438 } else if (!IEEE80211_IS_CHAN_HT20(chan)) { 1439 c = findhtchan(ic, chan, IEEE80211_CHAN_HT20); 1440 if (c != NULL) 1441 chan = c; 1442 } 1443 } else if (IEEE80211_IS_CHAN_HT(chan)) { 1444 /* demote to legacy, HT use is disabled */ 1445 c = ieee80211_find_channel(ic, chan->ic_freq, 1446 chan->ic_flags &~ IEEE80211_CHAN_HT); 1447 if (c != NULL) 1448 chan = c; 1449 } 1450 return chan; 1451 } 1452 1453 /* 1454 * Setup HT-specific state for a legacy WDS peer. 1455 */ 1456 void 1457 ieee80211_ht_wds_init(struct ieee80211_node *ni) 1458 { 1459 struct ieee80211vap *vap = ni->ni_vap; 1460 struct ieee80211_tx_ampdu *tap; 1461 int tid; 1462 1463 KASSERT(vap->iv_flags_ht & IEEE80211_FHT_HT, ("no HT requested")); 1464 1465 /* XXX check scan cache in case peer has an ap and we have info */ 1466 /* 1467 * If setup with a legacy channel; locate an HT channel. 1468 * Otherwise if the inherited channel (from a companion 1469 * AP) is suitable use it so we use the same location 1470 * for the extension channel). 1471 */ 1472 ni->ni_chan = ieee80211_ht_adjust_channel(ni->ni_ic, 1473 ni->ni_chan, ieee80211_htchanflags(ni->ni_chan)); 1474 1475 ni->ni_htcap = 0; 1476 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) 1477 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI20; 1478 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { 1479 ni->ni_htcap |= IEEE80211_HTCAP_CHWIDTH40; 1480 ni->ni_chw = 40; 1481 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 1482 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_ABOVE; 1483 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 1484 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_BELOW; 1485 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) 1486 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI40; 1487 } else { 1488 ni->ni_chw = 20; 1489 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_NONE; 1490 } 1491 ni->ni_htctlchan = ni->ni_chan->ic_ieee; 1492 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 1493 ni->ni_flags |= IEEE80211_NODE_RIFS; 1494 /* XXX does it make sense to enable SMPS? */ 1495 1496 ni->ni_htopmode = 0; /* XXX need protection state */ 1497 ni->ni_htstbc = 0; /* XXX need info */ 1498 1499 for (tid = 0; tid < WME_NUM_TID; tid++) { 1500 tap = &ni->ni_tx_ampdu[tid]; 1501 tap->txa_tid = tid; 1502 ieee80211_txampdu_init_pps(tap); 1503 } 1504 /* NB: AMPDU tx/rx governed by IEEE80211_FHT_AMPDU_{TX,RX} */ 1505 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU | 1506 IEEE80211_NODE_AMSDU; 1507 } 1508 1509 /* 1510 * Notify a VAP of a change in the HTINFO ie if it's a hostap VAP. 1511 * 1512 * This is to be called from the deferred HT protection update 1513 * task once the flags are updated. 1514 */ 1515 void 1516 ieee80211_htinfo_notify(struct ieee80211vap *vap) 1517 { 1518 1519 IEEE80211_LOCK_ASSERT(vap->iv_ic); 1520 1521 if (vap->iv_opmode != IEEE80211_M_HOSTAP) 1522 return; 1523 if (vap->iv_state != IEEE80211_S_RUN || 1524 !IEEE80211_IS_CHAN_HT(vap->iv_bss->ni_chan)) 1525 return; 1526 1527 IEEE80211_NOTE(vap, 1528 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1529 vap->iv_bss, 1530 "HT bss occupancy change: %d sta, %d ht, " 1531 "%d ht40%s, HT protmode now 0x%x" 1532 , vap->iv_sta_assoc 1533 , vap->iv_ht_sta_assoc 1534 , vap->iv_ht40_sta_assoc 1535 , (vap->iv_flags_ht & IEEE80211_FHT_NONHT_PR) ? 1536 ", non-HT sta present" : "" 1537 , vap->iv_curhtprotmode); 1538 1539 ieee80211_beacon_notify(vap, IEEE80211_BEACON_HTINFO); 1540 } 1541 1542 /* 1543 * Calculate HT protection mode from current 1544 * state and handle updates. 1545 */ 1546 static void 1547 htinfo_update(struct ieee80211vap *vap) 1548 { 1549 struct ieee80211com *ic = vap->iv_ic; 1550 uint8_t protmode; 1551 1552 if (vap->iv_sta_assoc != vap->iv_ht_sta_assoc) { 1553 protmode = IEEE80211_HTINFO_OPMODE_MIXED 1554 | IEEE80211_HTINFO_NONHT_PRESENT; 1555 } else if (vap->iv_flags_ht & IEEE80211_FHT_NONHT_PR) { 1556 protmode = IEEE80211_HTINFO_OPMODE_PROTOPT 1557 | IEEE80211_HTINFO_NONHT_PRESENT; 1558 } else if (ic->ic_bsschan != IEEE80211_CHAN_ANYC && 1559 IEEE80211_IS_CHAN_HT40(ic->ic_bsschan) && 1560 vap->iv_sta_assoc != vap->iv_ht40_sta_assoc) { 1561 protmode = IEEE80211_HTINFO_OPMODE_HT20PR; 1562 } else { 1563 protmode = IEEE80211_HTINFO_OPMODE_PURE; 1564 } 1565 if (protmode != vap->iv_curhtprotmode) { 1566 vap->iv_curhtprotmode = protmode; 1567 /* Update VAP with new protection mode */ 1568 ieee80211_vap_update_ht_protmode(vap); 1569 } 1570 } 1571 1572 /* 1573 * Handle an HT station joining a BSS. 1574 */ 1575 void 1576 ieee80211_ht_node_join(struct ieee80211_node *ni) 1577 { 1578 struct ieee80211vap *vap = ni->ni_vap; 1579 1580 IEEE80211_LOCK_ASSERT(vap->iv_ic); 1581 1582 if (ni->ni_flags & IEEE80211_NODE_HT) { 1583 vap->iv_ht_sta_assoc++; 1584 if (ni->ni_chw == 40) 1585 vap->iv_ht40_sta_assoc++; 1586 } 1587 htinfo_update(vap); 1588 } 1589 1590 /* 1591 * Handle an HT station leaving a BSS. 1592 */ 1593 void 1594 ieee80211_ht_node_leave(struct ieee80211_node *ni) 1595 { 1596 struct ieee80211vap *vap = ni->ni_vap; 1597 1598 IEEE80211_LOCK_ASSERT(vap->iv_ic); 1599 1600 if (ni->ni_flags & IEEE80211_NODE_HT) { 1601 vap->iv_ht_sta_assoc--; 1602 if (ni->ni_chw == 40) 1603 vap->iv_ht40_sta_assoc--; 1604 } 1605 htinfo_update(vap); 1606 } 1607 1608 /* 1609 * Public version of htinfo_update; used for processing 1610 * beacon frames from overlapping bss. 1611 * 1612 * Caller can specify either IEEE80211_HTINFO_OPMODE_MIXED 1613 * (on receipt of a beacon that advertises MIXED) or 1614 * IEEE80211_HTINFO_OPMODE_PROTOPT (on receipt of a beacon 1615 * from an overlapping legacy bss). We treat MIXED with 1616 * a higher precedence than PROTOPT (i.e. we will not change 1617 * change PROTOPT -> MIXED; only MIXED -> PROTOPT). This 1618 * corresponds to how we handle things in htinfo_update. 1619 * 1620 */ 1621 void 1622 ieee80211_htprot_update(struct ieee80211vap *vap, int protmode) 1623 { 1624 struct ieee80211com *ic = vap->iv_ic; 1625 #define OPMODE(x) _IEEE80211_SHIFTMASK(x, IEEE80211_HTINFO_OPMODE) 1626 IEEE80211_LOCK(ic); 1627 1628 /* track non-HT station presence */ 1629 KASSERT(protmode & IEEE80211_HTINFO_NONHT_PRESENT, 1630 ("protmode 0x%x", protmode)); 1631 vap->iv_flags_ht |= IEEE80211_FHT_NONHT_PR; 1632 vap->iv_lastnonht = ticks; 1633 1634 if (protmode != vap->iv_curhtprotmode && 1635 (OPMODE(vap->iv_curhtprotmode) != IEEE80211_HTINFO_OPMODE_MIXED || 1636 OPMODE(protmode) == IEEE80211_HTINFO_OPMODE_PROTOPT)) { 1637 vap->iv_curhtprotmode = protmode; 1638 /* Update VAP with new protection mode */ 1639 ieee80211_vap_update_ht_protmode(vap); 1640 } 1641 IEEE80211_UNLOCK(ic); 1642 #undef OPMODE 1643 } 1644 1645 /* 1646 * Time out presence of an overlapping bss with non-HT 1647 * stations. When operating in hostap mode we listen for 1648 * beacons from other stations and if we identify a non-HT 1649 * station is present we update the opmode field of the 1650 * HTINFO ie. To identify when all non-HT stations are 1651 * gone we time out this condition. 1652 */ 1653 void 1654 ieee80211_ht_timeout(struct ieee80211vap *vap) 1655 { 1656 1657 IEEE80211_LOCK_ASSERT(vap->iv_ic); 1658 1659 if ((vap->iv_flags_ht & IEEE80211_FHT_NONHT_PR) && 1660 ieee80211_time_after(ticks, vap->iv_lastnonht + IEEE80211_NONHT_PRESENT_AGE)) { 1661 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, 1662 "%s", "time out non-HT STA present on channel"); 1663 vap->iv_flags_ht &= ~IEEE80211_FHT_NONHT_PR; 1664 htinfo_update(vap); 1665 } 1666 } 1667 1668 /* 1669 * Process an 802.11n HT capabilities ie. 1670 */ 1671 void 1672 ieee80211_parse_htcap(struct ieee80211_node *ni, const uint8_t *ie) 1673 { 1674 if (ie[0] == IEEE80211_ELEMID_VENDOR) { 1675 /* 1676 * Station used Vendor OUI ie to associate; 1677 * mark the node so when we respond we'll use 1678 * the Vendor OUI's and not the standard ie's. 1679 */ 1680 ni->ni_flags |= IEEE80211_NODE_HTCOMPAT; 1681 ie += 4; 1682 } else 1683 ni->ni_flags &= ~IEEE80211_NODE_HTCOMPAT; 1684 1685 ni->ni_htcap = le16dec(ie + 1686 __offsetof(struct ieee80211_ie_htcap, hc_cap)); 1687 ni->ni_htparam = ie[__offsetof(struct ieee80211_ie_htcap, hc_param)]; 1688 } 1689 1690 static void 1691 htinfo_parse(struct ieee80211_node *ni, 1692 const struct ieee80211_ie_htinfo *htinfo) 1693 { 1694 uint16_t w; 1695 1696 ni->ni_htctlchan = htinfo->hi_ctrlchannel; 1697 ni->ni_ht2ndchan = _IEEE80211_SHIFTMASK(htinfo->hi_byte1, 1698 IEEE80211_HTINFO_2NDCHAN); 1699 w = le16dec(&htinfo->hi_byte2); 1700 ni->ni_htopmode = _IEEE80211_SHIFTMASK(w, IEEE80211_HTINFO_OPMODE); 1701 w = le16dec(&htinfo->hi_byte45); 1702 ni->ni_htstbc = _IEEE80211_SHIFTMASK(w, IEEE80211_HTINFO_BASIC_STBCMCS); 1703 } 1704 1705 /* 1706 * Parse an 802.11n HT info ie and save useful information 1707 * to the node state. Note this does not effect any state 1708 * changes such as for channel width change. 1709 */ 1710 void 1711 ieee80211_parse_htinfo(struct ieee80211_node *ni, const uint8_t *ie) 1712 { 1713 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1714 ie += 4; 1715 htinfo_parse(ni, (const struct ieee80211_ie_htinfo *) ie); 1716 } 1717 1718 /* 1719 * Handle 11n/11ac channel switch. 1720 * 1721 * Use the received HT/VHT ie's to identify the right channel to use. 1722 * If we cannot locate it in the channel table then fallback to 1723 * legacy operation. 1724 * 1725 * Note that we use this information to identify the node's 1726 * channel only; the caller is responsible for insuring any 1727 * required channel change is done (e.g. in sta mode when 1728 * parsing the contents of a beacon frame). 1729 */ 1730 static int 1731 htinfo_update_chw(struct ieee80211_node *ni, int htflags, int vhtflags) 1732 { 1733 struct ieee80211com *ic = ni->ni_ic; 1734 struct ieee80211_channel *c; 1735 int chanflags; 1736 int ret = 0; 1737 1738 /* 1739 * First step - do HT/VHT only channel lookup based on operating mode 1740 * flags. This involves masking out the VHT flags as well. 1741 * Otherwise we end up doing the full channel walk each time 1742 * we trigger this, which is expensive. 1743 */ 1744 chanflags = (ni->ni_chan->ic_flags &~ 1745 (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags | vhtflags; 1746 1747 if (chanflags == ni->ni_chan->ic_flags) 1748 goto done; 1749 1750 /* 1751 * If HT /or/ VHT flags have changed then check both. 1752 * We need to start by picking a HT channel anyway. 1753 */ 1754 1755 c = NULL; 1756 chanflags = (ni->ni_chan->ic_flags &~ 1757 (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags; 1758 /* XXX not right for ht40- */ 1759 c = ieee80211_find_channel(ic, ni->ni_chan->ic_freq, chanflags); 1760 if (c == NULL && (htflags & IEEE80211_CHAN_HT40)) { 1761 /* 1762 * No HT40 channel entry in our table; fall back 1763 * to HT20 operation. This should not happen. 1764 */ 1765 c = findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT20); 1766 #if 0 1767 IEEE80211_NOTE(ni->ni_vap, 1768 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1769 "no HT40 channel (freq %u), falling back to HT20", 1770 ni->ni_chan->ic_freq); 1771 #endif 1772 /* XXX stat */ 1773 } 1774 1775 /* Nothing found - leave it alone; move onto VHT */ 1776 if (c == NULL) 1777 c = ni->ni_chan; 1778 1779 /* 1780 * If it's non-HT, then bail out now. 1781 */ 1782 if (! IEEE80211_IS_CHAN_HT(c)) { 1783 IEEE80211_NOTE(ni->ni_vap, 1784 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1785 "not HT; skipping VHT check (%u/0x%x)", 1786 c->ic_freq, c->ic_flags); 1787 goto done; 1788 } 1789 1790 /* 1791 * Next step - look at the current VHT flags and determine 1792 * if we need to upgrade. Mask out the VHT and HT flags since 1793 * the vhtflags field will already have the correct HT 1794 * flags to use. 1795 */ 1796 if (IEEE80211_CONF_VHT(ic) && ni->ni_vhtcap != 0 && vhtflags != 0) { 1797 chanflags = (c->ic_flags 1798 &~ (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) 1799 | vhtflags; 1800 IEEE80211_NOTE(ni->ni_vap, 1801 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1802 ni, 1803 "%s: VHT; chanwidth=0x%02x; vhtflags=0x%08x", 1804 __func__, ni->ni_vht_chanwidth, vhtflags); 1805 1806 IEEE80211_NOTE(ni->ni_vap, 1807 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1808 ni, 1809 "%s: VHT; trying lookup for %d/0x%08x", 1810 __func__, c->ic_freq, chanflags); 1811 c = ieee80211_find_channel(ic, c->ic_freq, chanflags); 1812 } 1813 1814 /* Finally, if it's changed */ 1815 if (c != NULL && c != ni->ni_chan) { 1816 IEEE80211_NOTE(ni->ni_vap, 1817 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1818 "switch station to %s%d channel %u/0x%x", 1819 IEEE80211_IS_CHAN_VHT(c) ? "VHT" : "HT", 1820 IEEE80211_IS_CHAN_VHT80(c) ? 80 : 1821 (IEEE80211_IS_CHAN_HT40(c) ? 40 : 20), 1822 c->ic_freq, c->ic_flags); 1823 ni->ni_chan = c; 1824 ret = 1; 1825 } 1826 /* NB: caller responsible for forcing any channel change */ 1827 1828 done: 1829 /* update node's (11n) tx channel width */ 1830 ni->ni_chw = IEEE80211_IS_CHAN_HT40(ni->ni_chan)? 40 : 20; 1831 return (ret); 1832 } 1833 1834 /* 1835 * Update 11n MIMO PS state according to received htcap. 1836 */ 1837 static __inline int 1838 htcap_update_mimo_ps(struct ieee80211_node *ni) 1839 { 1840 uint16_t oflags = ni->ni_flags; 1841 1842 switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) { 1843 case IEEE80211_HTCAP_SMPS_DYNAMIC: 1844 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1845 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 1846 break; 1847 case IEEE80211_HTCAP_SMPS_ENA: 1848 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1849 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1850 break; 1851 case IEEE80211_HTCAP_SMPS_OFF: 1852 default: /* disable on rx of reserved value */ 1853 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 1854 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1855 break; 1856 } 1857 return (oflags ^ ni->ni_flags); 1858 } 1859 1860 /* 1861 * Update short GI state according to received htcap 1862 * and local settings. 1863 */ 1864 static __inline void 1865 htcap_update_shortgi(struct ieee80211_node *ni) 1866 { 1867 struct ieee80211vap *vap = ni->ni_vap; 1868 1869 ni->ni_flags &= ~(IEEE80211_NODE_SGI20|IEEE80211_NODE_SGI40); 1870 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) && 1871 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)) 1872 ni->ni_flags |= IEEE80211_NODE_SGI20; 1873 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) && 1874 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)) 1875 ni->ni_flags |= IEEE80211_NODE_SGI40; 1876 } 1877 1878 /* 1879 * Update LDPC state according to received htcap 1880 * and local settings. 1881 */ 1882 static __inline void 1883 htcap_update_ldpc(struct ieee80211_node *ni) 1884 { 1885 struct ieee80211vap *vap = ni->ni_vap; 1886 1887 if ((ni->ni_htcap & IEEE80211_HTCAP_LDPC) && 1888 (vap->iv_flags_ht & IEEE80211_FHT_LDPC_TX)) 1889 ni->ni_flags |= IEEE80211_NODE_LDPC; 1890 } 1891 1892 /* 1893 * Parse and update HT-related state extracted from 1894 * the HT cap and info ie's. 1895 * 1896 * This is called from the STA management path and 1897 * the ieee80211_node_join() path. It will take into 1898 * account the IEs discovered during scanning and 1899 * adjust things accordingly. 1900 */ 1901 void 1902 ieee80211_ht_updateparams(struct ieee80211_node *ni, 1903 const uint8_t *htcapie, const uint8_t *htinfoie) 1904 { 1905 struct ieee80211vap *vap = ni->ni_vap; 1906 const struct ieee80211_ie_htinfo *htinfo; 1907 1908 ieee80211_parse_htcap(ni, htcapie); 1909 if (vap->iv_htcaps & IEEE80211_HTC_SMPS) 1910 htcap_update_mimo_ps(ni); 1911 htcap_update_shortgi(ni); 1912 htcap_update_ldpc(ni); 1913 1914 if (htinfoie[0] == IEEE80211_ELEMID_VENDOR) 1915 htinfoie += 4; 1916 htinfo = (const struct ieee80211_ie_htinfo *) htinfoie; 1917 htinfo_parse(ni, htinfo); 1918 1919 /* 1920 * Defer the node channel change; we need to now 1921 * update VHT parameters before we do it. 1922 */ 1923 1924 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_RIFSMODE_PERM) && 1925 (vap->iv_flags_ht & IEEE80211_FHT_RIFS)) 1926 ni->ni_flags |= IEEE80211_NODE_RIFS; 1927 else 1928 ni->ni_flags &= ~IEEE80211_NODE_RIFS; 1929 } 1930 1931 static uint32_t 1932 ieee80211_vht_get_vhtflags(struct ieee80211_node *ni, uint32_t htflags) 1933 { 1934 struct ieee80211vap *vap = ni->ni_vap; 1935 uint32_t vhtflags = 0; 1936 1937 vhtflags = 0; 1938 if (ni->ni_flags & IEEE80211_NODE_VHT && vap->iv_flags_vht & IEEE80211_FVHT_VHT) { 1939 if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_160MHZ) && 1940 /* XXX 2 means "160MHz and 80+80MHz", 1 means "160MHz" */ 1941 (_IEEE80211_MASKSHIFT(vap->iv_vhtcaps, 1942 IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) >= 1) && 1943 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT160)) { 1944 vhtflags = IEEE80211_CHAN_VHT160; 1945 /* Mirror the HT40 flags */ 1946 if (htflags == IEEE80211_CHAN_HT40U) { 1947 vhtflags |= IEEE80211_CHAN_HT40U; 1948 } else if (htflags == IEEE80211_CHAN_HT40D) { 1949 vhtflags |= IEEE80211_CHAN_HT40D; 1950 } 1951 } else if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_80P80MHZ) && 1952 /* XXX 2 means "160MHz and 80+80MHz" */ 1953 (_IEEE80211_MASKSHIFT(vap->iv_vhtcaps, 1954 IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) == 2) && 1955 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT80P80)) { 1956 vhtflags = IEEE80211_CHAN_VHT80P80; 1957 /* Mirror the HT40 flags */ 1958 if (htflags == IEEE80211_CHAN_HT40U) { 1959 vhtflags |= IEEE80211_CHAN_HT40U; 1960 } else if (htflags == IEEE80211_CHAN_HT40D) { 1961 vhtflags |= IEEE80211_CHAN_HT40D; 1962 } 1963 } else if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_80MHZ) && 1964 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT80)) { 1965 vhtflags = IEEE80211_CHAN_VHT80; 1966 /* Mirror the HT40 flags */ 1967 if (htflags == IEEE80211_CHAN_HT40U) { 1968 vhtflags |= IEEE80211_CHAN_HT40U; 1969 } else if (htflags == IEEE80211_CHAN_HT40D) { 1970 vhtflags |= IEEE80211_CHAN_HT40D; 1971 } 1972 } else if (ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_USE_HT) { 1973 /* Mirror the HT40 flags */ 1974 /* 1975 * XXX TODO: if ht40 is disabled, but vht40 isn't 1976 * disabled then this logic will get very, very sad. 1977 * It's quite possible the only sane thing to do is 1978 * to not have vht40 as an option, and just obey 1979 * 'ht40' as that flag. 1980 */ 1981 if ((htflags == IEEE80211_CHAN_HT40U) && 1982 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT40)) { 1983 vhtflags = IEEE80211_CHAN_VHT40U 1984 | IEEE80211_CHAN_HT40U; 1985 } else if (htflags == IEEE80211_CHAN_HT40D && 1986 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT40)) { 1987 vhtflags = IEEE80211_CHAN_VHT40D 1988 | IEEE80211_CHAN_HT40D; 1989 } else if (htflags == IEEE80211_CHAN_HT20) { 1990 vhtflags = IEEE80211_CHAN_VHT20 1991 | IEEE80211_CHAN_HT20; 1992 } 1993 } else { 1994 vhtflags = IEEE80211_CHAN_VHT20; 1995 } 1996 } 1997 return (vhtflags); 1998 } 1999 2000 /* 2001 * Final part of updating the HT parameters. 2002 * 2003 * This is called from the STA management path and 2004 * the ieee80211_node_join() path. It will take into 2005 * account the IEs discovered during scanning and 2006 * adjust things accordingly. 2007 * 2008 * This is done after a call to ieee80211_ht_updateparams() 2009 * because it (and the upcoming VHT version of updateparams) 2010 * needs to ensure everything is parsed before htinfo_update_chw() 2011 * is called - which will change the channel config for the 2012 * node for us. 2013 */ 2014 int 2015 ieee80211_ht_updateparams_final(struct ieee80211_node *ni, 2016 const uint8_t *htcapie, const uint8_t *htinfoie) 2017 { 2018 struct ieee80211vap *vap = ni->ni_vap; 2019 const struct ieee80211_ie_htinfo *htinfo; 2020 int htflags, vhtflags; 2021 int ret = 0; 2022 2023 htinfo = (const struct ieee80211_ie_htinfo *) htinfoie; 2024 2025 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 2026 IEEE80211_CHAN_HT20 : 0; 2027 2028 /* NB: honor operating mode constraint */ 2029 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH_2040) && 2030 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 2031 if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_ABOVE) 2032 htflags = IEEE80211_CHAN_HT40U; 2033 else if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_BELOW) 2034 htflags = IEEE80211_CHAN_HT40D; 2035 } 2036 2037 /* 2038 * VHT flags - do much the same; check whether VHT is available 2039 * and if so, what our ideal channel use would be based on our 2040 * capabilities and the (pre-parsed) VHT info IE. 2041 */ 2042 vhtflags = ieee80211_vht_get_vhtflags(ni, htflags); 2043 2044 if (htinfo_update_chw(ni, htflags, vhtflags)) 2045 ret = 1; 2046 2047 return (ret); 2048 } 2049 2050 /* 2051 * Parse and update HT-related state extracted from the HT cap ie 2052 * for a station joining an HT BSS. 2053 * 2054 * This is called from the hostap path for each station. 2055 */ 2056 void 2057 ieee80211_ht_updatehtcap(struct ieee80211_node *ni, const uint8_t *htcapie) 2058 { 2059 struct ieee80211vap *vap = ni->ni_vap; 2060 2061 ieee80211_parse_htcap(ni, htcapie); 2062 if (vap->iv_htcaps & IEEE80211_HTC_SMPS) 2063 htcap_update_mimo_ps(ni); 2064 htcap_update_shortgi(ni); 2065 htcap_update_ldpc(ni); 2066 } 2067 2068 /* 2069 * Called once HT and VHT capabilities are parsed in hostap mode - 2070 * this will adjust the channel configuration of the given node 2071 * based on the configuration and capabilities. 2072 */ 2073 void 2074 ieee80211_ht_updatehtcap_final(struct ieee80211_node *ni) 2075 { 2076 struct ieee80211vap *vap = ni->ni_vap; 2077 int htflags; 2078 int vhtflags; 2079 2080 /* NB: honor operating mode constraint */ 2081 /* XXX 40 MHz intolerant */ 2082 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 2083 IEEE80211_CHAN_HT20 : 0; 2084 if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) && 2085 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 2086 if (IEEE80211_IS_CHAN_HT40U(vap->iv_bss->ni_chan)) 2087 htflags = IEEE80211_CHAN_HT40U; 2088 else if (IEEE80211_IS_CHAN_HT40D(vap->iv_bss->ni_chan)) 2089 htflags = IEEE80211_CHAN_HT40D; 2090 } 2091 /* 2092 * VHT flags - do much the same; check whether VHT is available 2093 * and if so, what our ideal channel use would be based on our 2094 * capabilities and the (pre-parsed) VHT info IE. 2095 */ 2096 vhtflags = ieee80211_vht_get_vhtflags(ni, htflags); 2097 2098 (void) htinfo_update_chw(ni, htflags, vhtflags); 2099 } 2100 2101 /* 2102 * Install received HT rate set by parsing the HT cap ie. 2103 */ 2104 int 2105 ieee80211_setup_htrates(struct ieee80211_node *ni, const uint8_t *ie, int flags) 2106 { 2107 struct ieee80211com *ic = ni->ni_ic; 2108 struct ieee80211vap *vap = ni->ni_vap; 2109 const struct ieee80211_ie_htcap *htcap; 2110 struct ieee80211_htrateset *rs; 2111 int i, maxequalmcs, maxunequalmcs; 2112 2113 maxequalmcs = ic->ic_txstream * 8 - 1; 2114 maxunequalmcs = 0; 2115 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 2116 if (ic->ic_txstream >= 2) 2117 maxunequalmcs = 38; 2118 if (ic->ic_txstream >= 3) 2119 maxunequalmcs = 52; 2120 if (ic->ic_txstream >= 4) 2121 maxunequalmcs = 76; 2122 } 2123 2124 rs = &ni->ni_htrates; 2125 memset(rs, 0, sizeof(*rs)); 2126 if (ie != NULL) { 2127 if (ie[0] == IEEE80211_ELEMID_VENDOR) 2128 ie += 4; 2129 htcap = (const struct ieee80211_ie_htcap *) ie; 2130 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 2131 if (isclr(htcap->hc_mcsset, i)) 2132 continue; 2133 if (rs->rs_nrates == IEEE80211_HTRATE_MAXSIZE) { 2134 IEEE80211_NOTE(vap, 2135 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 2136 "WARNING, HT rate set too large; only " 2137 "using %u rates", IEEE80211_HTRATE_MAXSIZE); 2138 vap->iv_stats.is_rx_rstoobig++; 2139 break; 2140 } 2141 if (i <= 31 && i > maxequalmcs) 2142 continue; 2143 if (i == 32 && 2144 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0) 2145 continue; 2146 if (i > 32 && i > maxunequalmcs) 2147 continue; 2148 rs->rs_rates[rs->rs_nrates++] = i; 2149 } 2150 } 2151 return ieee80211_fix_rate(ni, (struct ieee80211_rateset *) rs, flags); 2152 } 2153 2154 /* 2155 * Mark rates in a node's HT rate set as basic according 2156 * to the information in the supplied HT info ie. 2157 */ 2158 void 2159 ieee80211_setup_basic_htrates(struct ieee80211_node *ni, const uint8_t *ie) 2160 { 2161 const struct ieee80211_ie_htinfo *htinfo; 2162 struct ieee80211_htrateset *rs; 2163 int i, j; 2164 2165 if (ie[0] == IEEE80211_ELEMID_VENDOR) 2166 ie += 4; 2167 htinfo = (const struct ieee80211_ie_htinfo *) ie; 2168 rs = &ni->ni_htrates; 2169 if (rs->rs_nrates == 0) { 2170 IEEE80211_NOTE(ni->ni_vap, 2171 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 2172 "%s", "WARNING, empty HT rate set"); 2173 return; 2174 } 2175 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 2176 if (isclr(htinfo->hi_basicmcsset, i)) 2177 continue; 2178 for (j = 0; j < rs->rs_nrates; j++) 2179 if ((rs->rs_rates[j] & IEEE80211_RATE_VAL) == i) 2180 rs->rs_rates[j] |= IEEE80211_RATE_BASIC; 2181 } 2182 } 2183 2184 static void 2185 ampdu_tx_setup(struct ieee80211_tx_ampdu *tap) 2186 { 2187 callout_init(&tap->txa_timer, 1); 2188 tap->txa_flags |= IEEE80211_AGGR_SETUP; 2189 tap->txa_lastsample = ticks; 2190 } 2191 2192 static void 2193 ampdu_tx_stop(struct ieee80211_tx_ampdu *tap) 2194 { 2195 struct ieee80211_node *ni = tap->txa_ni; 2196 struct ieee80211com *ic = ni->ni_ic; 2197 2198 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2199 tap->txa_ni, 2200 "%s: called", 2201 __func__); 2202 2203 KASSERT(tap->txa_flags & IEEE80211_AGGR_SETUP, 2204 ("txa_flags 0x%x tid %d ac %d", tap->txa_flags, tap->txa_tid, 2205 TID_TO_WME_AC(tap->txa_tid))); 2206 2207 /* 2208 * Stop BA stream if setup so driver has a chance 2209 * to reclaim any resources it might have allocated. 2210 */ 2211 ic->ic_addba_stop(ni, tap); 2212 /* 2213 * Stop any pending BAR transmit. 2214 */ 2215 bar_stop_timer(tap); 2216 2217 /* 2218 * Reset packet estimate. 2219 */ 2220 ieee80211_txampdu_init_pps(tap); 2221 2222 /* NB: clearing NAK means we may re-send ADDBA */ 2223 tap->txa_flags &= ~(IEEE80211_AGGR_SETUP | IEEE80211_AGGR_NAK); 2224 } 2225 2226 /* 2227 * ADDBA response timeout. 2228 * 2229 * If software aggregation and per-TID queue management was done here, 2230 * that queue would be unpaused after the ADDBA timeout occurs. 2231 */ 2232 static void 2233 addba_timeout(void *arg) 2234 { 2235 struct ieee80211_tx_ampdu *tap = arg; 2236 struct ieee80211_node *ni = tap->txa_ni; 2237 struct ieee80211com *ic = ni->ni_ic; 2238 2239 /* XXX ? */ 2240 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 2241 tap->txa_attempts++; 2242 ic->ic_addba_response_timeout(ni, tap); 2243 } 2244 2245 static void 2246 addba_start_timeout(struct ieee80211_tx_ampdu *tap) 2247 { 2248 /* XXX use CALLOUT_PENDING instead? */ 2249 callout_reset(&tap->txa_timer, ieee80211_addba_timeout, 2250 addba_timeout, tap); 2251 tap->txa_flags |= IEEE80211_AGGR_XCHGPEND; 2252 tap->txa_nextrequest = ticks + ieee80211_addba_timeout; 2253 } 2254 2255 static void 2256 addba_stop_timeout(struct ieee80211_tx_ampdu *tap) 2257 { 2258 /* XXX use CALLOUT_PENDING instead? */ 2259 if (tap->txa_flags & IEEE80211_AGGR_XCHGPEND) { 2260 callout_stop(&tap->txa_timer); 2261 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 2262 } 2263 } 2264 2265 static void 2266 null_addba_response_timeout(struct ieee80211_node *ni, 2267 struct ieee80211_tx_ampdu *tap) 2268 { 2269 } 2270 2271 /* 2272 * Default method for requesting A-MPDU tx aggregation. 2273 * We setup the specified state block and start a timer 2274 * to wait for an ADDBA response frame. 2275 */ 2276 static int 2277 ieee80211_addba_request(struct ieee80211_node *ni, 2278 struct ieee80211_tx_ampdu *tap, 2279 int dialogtoken, int baparamset, int batimeout) 2280 { 2281 int bufsiz; 2282 2283 /* XXX locking */ 2284 tap->txa_token = dialogtoken; 2285 tap->txa_flags |= IEEE80211_AGGR_IMMEDIATE; 2286 bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ); 2287 tap->txa_wnd = (bufsiz == 0) ? 2288 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 2289 addba_start_timeout(tap); 2290 return 1; 2291 } 2292 2293 /* 2294 * Called by drivers that wish to request an ADDBA session be 2295 * setup. This brings it up and starts the request timer. 2296 */ 2297 int 2298 ieee80211_ampdu_tx_request_ext(struct ieee80211_node *ni, int tid) 2299 { 2300 struct ieee80211_tx_ampdu *tap; 2301 2302 if (tid < 0 || tid > 15) 2303 return (0); 2304 tap = &ni->ni_tx_ampdu[tid]; 2305 2306 /* XXX locking */ 2307 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 2308 /* do deferred setup of state */ 2309 ampdu_tx_setup(tap); 2310 } 2311 /* XXX hack for not doing proper locking */ 2312 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 2313 addba_start_timeout(tap); 2314 return (1); 2315 } 2316 2317 /* 2318 * Called by drivers that have marked a session as active. 2319 */ 2320 int 2321 ieee80211_ampdu_tx_request_active_ext(struct ieee80211_node *ni, int tid, 2322 int status) 2323 { 2324 struct ieee80211_tx_ampdu *tap; 2325 2326 if (tid < 0 || tid > 15) 2327 return (0); 2328 tap = &ni->ni_tx_ampdu[tid]; 2329 2330 /* XXX locking */ 2331 addba_stop_timeout(tap); 2332 if (status == 1) { 2333 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 2334 tap->txa_attempts = 0; 2335 } else { 2336 /* mark tid so we don't try again */ 2337 tap->txa_flags |= IEEE80211_AGGR_NAK; 2338 } 2339 return (1); 2340 } 2341 2342 /* 2343 * Default method for processing an A-MPDU tx aggregation 2344 * response. We shutdown any pending timer and update the 2345 * state block according to the reply. 2346 */ 2347 static int 2348 ieee80211_addba_response(struct ieee80211_node *ni, 2349 struct ieee80211_tx_ampdu *tap, 2350 int status, int baparamset, int batimeout) 2351 { 2352 struct ieee80211vap *vap = ni->ni_vap; 2353 int bufsiz; 2354 2355 /* XXX locking */ 2356 addba_stop_timeout(tap); 2357 if (status == IEEE80211_STATUS_SUCCESS) { 2358 bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ); 2359 /* XXX override our request? */ 2360 tap->txa_wnd = (bufsiz == 0) ? 2361 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 2362 #ifdef __notyet__ 2363 tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_TID); 2364 #endif 2365 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 2366 tap->txa_attempts = 0; 2367 /* TODO: this should be a vap flag */ 2368 if ((vap->iv_htcaps & IEEE80211_HTC_TX_AMSDU_AMPDU) && 2369 (ni->ni_flags & IEEE80211_NODE_AMSDU_TX) && 2370 (_IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU))) 2371 tap->txa_flags |= IEEE80211_AGGR_AMSDU; 2372 else 2373 tap->txa_flags &= ~IEEE80211_AGGR_AMSDU; 2374 } else { 2375 /* mark tid so we don't try again */ 2376 tap->txa_flags |= IEEE80211_AGGR_NAK; 2377 } 2378 return 1; 2379 } 2380 2381 /* 2382 * Default method for stopping A-MPDU tx aggregation. 2383 * Any timer is cleared and we drain any pending frames. 2384 */ 2385 static void 2386 ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 2387 { 2388 /* XXX locking */ 2389 addba_stop_timeout(tap); 2390 if (tap->txa_flags & IEEE80211_AGGR_RUNNING) { 2391 /* XXX clear aggregation queue */ 2392 tap->txa_flags &= ~(IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_AMSDU); 2393 } 2394 tap->txa_attempts = 0; 2395 } 2396 2397 /* 2398 * Process a received action frame using the default aggregation 2399 * policy. We intercept ADDBA-related frames and use them to 2400 * update our aggregation state. All other frames are passed up 2401 * for processing by ieee80211_recv_action. 2402 */ 2403 static int 2404 ht_recv_action_ba_addba_request(struct ieee80211_node *ni, 2405 const struct ieee80211_frame *wh, 2406 const uint8_t *frm, const uint8_t *efrm) 2407 { 2408 struct ieee80211com *ic = ni->ni_ic; 2409 struct ieee80211vap *vap = ni->ni_vap; 2410 struct ieee80211_rx_ampdu *rap; 2411 uint8_t dialogtoken; 2412 uint16_t baparamset, batimeout, baseqctl; 2413 uint16_t args[5]; 2414 int tid; 2415 2416 dialogtoken = frm[2]; 2417 baparamset = le16dec(frm+3); 2418 batimeout = le16dec(frm+5); 2419 baseqctl = le16dec(frm+7); 2420 2421 tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_TID); 2422 2423 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2424 "recv ADDBA request: dialogtoken %u baparamset 0x%x " 2425 "(tid %d bufsiz %d) batimeout %d baseqctl %d:%d amsdu %d", 2426 dialogtoken, baparamset, 2427 tid, _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ), 2428 batimeout, 2429 _IEEE80211_MASKSHIFT(baseqctl, IEEE80211_BASEQ_START), 2430 _IEEE80211_MASKSHIFT(baseqctl, IEEE80211_BASEQ_FRAG), 2431 _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU)); 2432 2433 rap = &ni->ni_rx_ampdu[tid]; 2434 2435 /* Send ADDBA response */ 2436 args[0] = dialogtoken; 2437 /* 2438 * NB: We ack only if the sta associated with HT and 2439 * the ap is configured to do AMPDU rx (the latter 2440 * violates the 11n spec and is mostly for testing). 2441 */ 2442 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_RX) && 2443 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX)) { 2444 /* XXX TODO: handle ampdu_rx_start failure */ 2445 ic->ic_ampdu_rx_start(ni, rap, 2446 baparamset, batimeout, baseqctl); 2447 2448 args[1] = IEEE80211_STATUS_SUCCESS; 2449 } else { 2450 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2451 ni, "reject ADDBA request: %s", 2452 ni->ni_flags & IEEE80211_NODE_AMPDU_RX ? 2453 "administratively disabled" : 2454 "not negotiated for station"); 2455 vap->iv_stats.is_addba_reject++; 2456 args[1] = IEEE80211_STATUS_UNSPECIFIED; 2457 } 2458 /* XXX honor rap flags? */ 2459 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 2460 | _IEEE80211_SHIFTMASK(tid, IEEE80211_BAPS_TID) 2461 | _IEEE80211_SHIFTMASK(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ) 2462 ; 2463 2464 /* 2465 * TODO: we're out of iv_flags_ht fields; once 2466 * this is extended we should make this configurable. 2467 */ 2468 if ((baparamset & IEEE80211_BAPS_AMSDU) && 2469 (ni->ni_flags & IEEE80211_NODE_AMSDU_RX) && 2470 (vap->iv_htcaps & IEEE80211_HTC_RX_AMSDU_AMPDU)) 2471 args[2] |= IEEE80211_BAPS_AMSDU; 2472 2473 args[3] = 0; 2474 args[4] = 0; 2475 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2476 IEEE80211_ACTION_BA_ADDBA_RESPONSE, args); 2477 return 0; 2478 } 2479 2480 static int 2481 ht_recv_action_ba_addba_response(struct ieee80211_node *ni, 2482 const struct ieee80211_frame *wh, 2483 const uint8_t *frm, const uint8_t *efrm) 2484 { 2485 struct ieee80211com *ic = ni->ni_ic; 2486 struct ieee80211vap *vap = ni->ni_vap; 2487 struct ieee80211_tx_ampdu *tap; 2488 uint8_t dialogtoken, policy; 2489 uint16_t baparamset, batimeout, code; 2490 int tid; 2491 #ifdef IEEE80211_DEBUG 2492 int amsdu, bufsiz; 2493 #endif 2494 2495 dialogtoken = frm[2]; 2496 code = le16dec(frm+3); 2497 baparamset = le16dec(frm+5); 2498 tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_TID); 2499 #ifdef IEEE80211_DEBUG 2500 bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ); 2501 amsdu = !! _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU); 2502 #endif 2503 policy = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_POLICY); 2504 batimeout = le16dec(frm+7); 2505 2506 tap = &ni->ni_tx_ampdu[tid]; 2507 if ((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 2508 IEEE80211_DISCARD_MAC(vap, 2509 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2510 ni->ni_macaddr, "ADDBA response", 2511 "no pending ADDBA, tid %d dialogtoken %u " 2512 "code %d", tid, dialogtoken, code); 2513 vap->iv_stats.is_addba_norequest++; 2514 return 0; 2515 } 2516 if (dialogtoken != tap->txa_token) { 2517 IEEE80211_DISCARD_MAC(vap, 2518 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2519 ni->ni_macaddr, "ADDBA response", 2520 "dialogtoken mismatch: waiting for %d, " 2521 "received %d, tid %d code %d", 2522 tap->txa_token, dialogtoken, tid, code); 2523 vap->iv_stats.is_addba_badtoken++; 2524 return 0; 2525 } 2526 /* NB: assumes IEEE80211_AGGR_IMMEDIATE is 1 */ 2527 if (policy != (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE)) { 2528 IEEE80211_DISCARD_MAC(vap, 2529 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2530 ni->ni_macaddr, "ADDBA response", 2531 "policy mismatch: expecting %s, " 2532 "received %s, tid %d code %d", 2533 tap->txa_flags & IEEE80211_AGGR_IMMEDIATE, 2534 policy, tid, code); 2535 vap->iv_stats.is_addba_badpolicy++; 2536 return 0; 2537 } 2538 #if 0 2539 /* XXX we take MIN in ieee80211_addba_response */ 2540 if (bufsiz > IEEE80211_AGGR_BAWMAX) { 2541 IEEE80211_DISCARD_MAC(vap, 2542 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2543 ni->ni_macaddr, "ADDBA response", 2544 "BA window too large: max %d, " 2545 "received %d, tid %d code %d", 2546 bufsiz, IEEE80211_AGGR_BAWMAX, tid, code); 2547 vap->iv_stats.is_addba_badbawinsize++; 2548 return 0; 2549 } 2550 #endif 2551 2552 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2553 "recv ADDBA response: dialogtoken %u code %d " 2554 "baparamset 0x%x (tid %d bufsiz %d amsdu %d) batimeout %d", 2555 dialogtoken, code, baparamset, tid, 2556 bufsiz, 2557 amsdu, 2558 batimeout); 2559 ic->ic_addba_response(ni, tap, code, baparamset, batimeout); 2560 return 0; 2561 } 2562 2563 static int 2564 ht_recv_action_ba_delba(struct ieee80211_node *ni, 2565 const struct ieee80211_frame *wh, 2566 const uint8_t *frm, const uint8_t *efrm) 2567 { 2568 struct ieee80211com *ic = ni->ni_ic; 2569 struct ieee80211_rx_ampdu *rap; 2570 struct ieee80211_tx_ampdu *tap; 2571 uint16_t baparamset; 2572 #ifdef IEEE80211_DEBUG 2573 uint16_t code; 2574 #endif 2575 int tid; 2576 2577 baparamset = le16dec(frm+2); 2578 #ifdef IEEE80211_DEBUG 2579 code = le16dec(frm+4); 2580 #endif 2581 2582 tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_DELBAPS_TID); 2583 2584 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2585 "recv DELBA: baparamset 0x%x (tid %d initiator %d) " 2586 "code %d", baparamset, tid, 2587 _IEEE80211_MASKSHIFT(baparamset, IEEE80211_DELBAPS_INIT), code); 2588 2589 if ((baparamset & IEEE80211_DELBAPS_INIT) == 0) { 2590 tap = &ni->ni_tx_ampdu[tid]; 2591 ic->ic_addba_stop(ni, tap); 2592 } else { 2593 rap = &ni->ni_rx_ampdu[tid]; 2594 ic->ic_ampdu_rx_stop(ni, rap); 2595 } 2596 return 0; 2597 } 2598 2599 static int 2600 ht_recv_action_ht_txchwidth(struct ieee80211_node *ni, 2601 const struct ieee80211_frame *wh, 2602 const uint8_t *frm, const uint8_t *efrm) 2603 { 2604 int chw; 2605 2606 chw = (frm[2] == IEEE80211_A_HT_TXCHWIDTH_2040) ? 40 : 20; 2607 2608 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2609 "%s: HT txchwidth, width %d%s", 2610 __func__, chw, ni->ni_chw != chw ? "*" : ""); 2611 if (chw != ni->ni_chw) { 2612 /* XXX does this need to change the ht40 station count? */ 2613 ni->ni_chw = chw; 2614 /* XXX notify on change */ 2615 } 2616 return 0; 2617 } 2618 2619 static int 2620 ht_recv_action_ht_mimopwrsave(struct ieee80211_node *ni, 2621 const struct ieee80211_frame *wh, 2622 const uint8_t *frm, const uint8_t *efrm) 2623 { 2624 const struct ieee80211_action_ht_mimopowersave *mps = 2625 (const struct ieee80211_action_ht_mimopowersave *) frm; 2626 2627 /* XXX check iv_htcaps */ 2628 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA) 2629 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 2630 else 2631 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 2632 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_MODE) 2633 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 2634 else 2635 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 2636 /* XXX notify on change */ 2637 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2638 "%s: HT MIMO PS (%s%s)", __func__, 2639 (ni->ni_flags & IEEE80211_NODE_MIMO_PS) ? "on" : "off", 2640 (ni->ni_flags & IEEE80211_NODE_MIMO_RTS) ? "+rts" : "" 2641 ); 2642 return 0; 2643 } 2644 2645 /* 2646 * Transmit processing. 2647 */ 2648 2649 /* 2650 * Check if A-MPDU should be requested/enabled for a stream. 2651 * We require a traffic rate above a per-AC threshold and we 2652 * also handle backoff from previous failed attempts. 2653 * 2654 * Drivers may override this method to bring in information 2655 * such as link state conditions in making the decision. 2656 */ 2657 static int 2658 ieee80211_ampdu_enable(struct ieee80211_node *ni, 2659 struct ieee80211_tx_ampdu *tap) 2660 { 2661 struct ieee80211vap *vap = ni->ni_vap; 2662 2663 if (tap->txa_avgpps < 2664 vap->iv_ampdu_mintraffic[TID_TO_WME_AC(tap->txa_tid)]) 2665 return 0; 2666 /* XXX check rssi? */ 2667 if (tap->txa_attempts >= ieee80211_addba_maxtries && 2668 ieee80211_time_after(ticks, tap->txa_nextrequest)) { 2669 /* 2670 * Don't retry too often; txa_nextrequest is set 2671 * to the minimum interval we'll retry after 2672 * ieee80211_addba_maxtries failed attempts are made. 2673 */ 2674 return 0; 2675 } 2676 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 2677 "enable AMPDU on tid %d (%s), avgpps %d pkts %d attempt %d", 2678 tap->txa_tid, ieee80211_wme_acnames[TID_TO_WME_AC(tap->txa_tid)], 2679 tap->txa_avgpps, tap->txa_pkts, tap->txa_attempts); 2680 return 1; 2681 } 2682 2683 /* 2684 * Request A-MPDU tx aggregation. Setup local state and 2685 * issue an ADDBA request. BA use will only happen after 2686 * the other end replies with ADDBA response. 2687 */ 2688 int 2689 ieee80211_ampdu_request(struct ieee80211_node *ni, 2690 struct ieee80211_tx_ampdu *tap) 2691 { 2692 struct ieee80211com *ic = ni->ni_ic; 2693 uint16_t args[5]; 2694 int tid, dialogtoken; 2695 static int tokens = 0; /* XXX */ 2696 2697 /* XXX locking */ 2698 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 2699 /* do deferred setup of state */ 2700 ampdu_tx_setup(tap); 2701 } 2702 /* XXX hack for not doing proper locking */ 2703 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 2704 2705 dialogtoken = (tokens+1) % 63; /* XXX */ 2706 tid = tap->txa_tid; 2707 2708 /* 2709 * XXX TODO: This is racy with any other parallel TX going on. :( 2710 */ 2711 tap->txa_start = ni->ni_txseqs[tid]; 2712 2713 args[0] = dialogtoken; 2714 args[1] = 0; /* NB: status code not used */ 2715 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 2716 | _IEEE80211_SHIFTMASK(tid, IEEE80211_BAPS_TID) 2717 | _IEEE80211_SHIFTMASK(IEEE80211_AGGR_BAWMAX, 2718 IEEE80211_BAPS_BUFSIZ) 2719 ; 2720 2721 /* XXX TODO: this should be a flag, not iv_htcaps */ 2722 if ((ni->ni_flags & IEEE80211_NODE_AMSDU_TX) && 2723 (ni->ni_vap->iv_htcaps & IEEE80211_HTC_TX_AMSDU_AMPDU)) 2724 args[2] |= IEEE80211_BAPS_AMSDU; 2725 2726 args[3] = 0; /* batimeout */ 2727 /* NB: do first so there's no race against reply */ 2728 if (!ic->ic_addba_request(ni, tap, dialogtoken, args[2], args[3])) { 2729 /* unable to setup state, don't make request */ 2730 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2731 ni, "%s: could not setup BA stream for TID %d AC %d", 2732 __func__, tap->txa_tid, TID_TO_WME_AC(tap->txa_tid)); 2733 /* defer next try so we don't slam the driver with requests */ 2734 tap->txa_attempts = ieee80211_addba_maxtries; 2735 /* NB: check in case driver wants to override */ 2736 if (tap->txa_nextrequest <= ticks) 2737 tap->txa_nextrequest = ticks + ieee80211_addba_backoff; 2738 return 0; 2739 } 2740 tokens = dialogtoken; /* allocate token */ 2741 /* NB: after calling ic_addba_request so driver can set txa_start */ 2742 args[4] = _IEEE80211_SHIFTMASK(tap->txa_start, IEEE80211_BASEQ_START) 2743 | _IEEE80211_SHIFTMASK(0, IEEE80211_BASEQ_FRAG) 2744 ; 2745 return ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2746 IEEE80211_ACTION_BA_ADDBA_REQUEST, args); 2747 } 2748 2749 /* 2750 * Terminate an AMPDU tx stream. State is reclaimed 2751 * and the peer notified with a DelBA Action frame. 2752 */ 2753 void 2754 ieee80211_ampdu_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 2755 int reason) 2756 { 2757 struct ieee80211com *ic = ni->ni_ic; 2758 struct ieee80211vap *vap = ni->ni_vap; 2759 uint16_t args[4]; 2760 2761 /* XXX locking */ 2762 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2763 if (IEEE80211_AMPDU_RUNNING(tap)) { 2764 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2765 ni, "%s: stop BA stream for TID %d (reason: %d (%s))", 2766 __func__, tap->txa_tid, reason, 2767 ieee80211_reason_to_string(reason)); 2768 vap->iv_stats.is_ampdu_stop++; 2769 2770 ic->ic_addba_stop(ni, tap); 2771 args[0] = tap->txa_tid; 2772 args[1] = IEEE80211_DELBAPS_INIT; 2773 args[2] = reason; /* XXX reason code */ 2774 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2775 IEEE80211_ACTION_BA_DELBA, args); 2776 } else { 2777 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2778 ni, "%s: BA stream for TID %d not running " 2779 "(reason: %d (%s))", __func__, tap->txa_tid, reason, 2780 ieee80211_reason_to_string(reason)); 2781 vap->iv_stats.is_ampdu_stop_failed++; 2782 } 2783 } 2784 2785 /* XXX */ 2786 static void bar_start_timer(struct ieee80211_tx_ampdu *tap); 2787 2788 static void 2789 bar_timeout(void *arg) 2790 { 2791 struct ieee80211_tx_ampdu *tap = arg; 2792 struct ieee80211_node *ni = tap->txa_ni; 2793 2794 KASSERT((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0, 2795 ("bar/addba collision, flags 0x%x", tap->txa_flags)); 2796 2797 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2798 ni, "%s: tid %u flags 0x%x attempts %d", __func__, 2799 tap->txa_tid, tap->txa_flags, tap->txa_attempts); 2800 2801 /* guard against race with bar_tx_complete */ 2802 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2803 return; 2804 /* XXX ? */ 2805 if (tap->txa_attempts >= ieee80211_bar_maxtries) { 2806 struct ieee80211com *ic = ni->ni_ic; 2807 2808 ni->ni_vap->iv_stats.is_ampdu_bar_tx_fail++; 2809 /* 2810 * If (at least) the last BAR TX timeout was due to 2811 * an ieee80211_send_bar() failures, then we need 2812 * to make sure we notify the driver that a BAR 2813 * TX did occur and fail. This gives the driver 2814 * a chance to undo any queue pause that may 2815 * have occurred. 2816 */ 2817 ic->ic_bar_response(ni, tap, 1); 2818 ieee80211_ampdu_stop(ni, tap, IEEE80211_REASON_TIMEOUT); 2819 } else { 2820 ni->ni_vap->iv_stats.is_ampdu_bar_tx_retry++; 2821 if (ieee80211_send_bar(ni, tap, tap->txa_seqpending) != 0) { 2822 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2823 ni, "%s: failed to TX, starting timer\n", 2824 __func__); 2825 /* 2826 * If ieee80211_send_bar() fails here, the 2827 * timer may have stopped and/or the pending 2828 * flag may be clear. Because of this, 2829 * fake the BARPEND and reset the timer. 2830 * A retransmission attempt will then occur 2831 * during the next timeout. 2832 */ 2833 /* XXX locking */ 2834 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2835 bar_start_timer(tap); 2836 } 2837 } 2838 } 2839 2840 static void 2841 bar_start_timer(struct ieee80211_tx_ampdu *tap) 2842 { 2843 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2844 tap->txa_ni, 2845 "%s: called", 2846 __func__); 2847 callout_reset(&tap->txa_timer, ieee80211_bar_timeout, bar_timeout, tap); 2848 } 2849 2850 static void 2851 bar_stop_timer(struct ieee80211_tx_ampdu *tap) 2852 { 2853 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2854 tap->txa_ni, 2855 "%s: called", 2856 __func__); 2857 callout_stop(&tap->txa_timer); 2858 } 2859 2860 static void 2861 bar_tx_complete(struct ieee80211_node *ni, void *arg, int status) 2862 { 2863 struct ieee80211_tx_ampdu *tap = arg; 2864 2865 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2866 ni, "%s: tid %u flags 0x%x pending %d status %d", 2867 __func__, tap->txa_tid, tap->txa_flags, 2868 callout_pending(&tap->txa_timer), status); 2869 2870 ni->ni_vap->iv_stats.is_ampdu_bar_tx++; 2871 /* XXX locking */ 2872 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) && 2873 callout_pending(&tap->txa_timer)) { 2874 struct ieee80211com *ic = ni->ni_ic; 2875 2876 if (status == 0) /* ACK'd */ 2877 bar_stop_timer(tap); 2878 ic->ic_bar_response(ni, tap, status); 2879 /* NB: just let timer expire so we pace requests */ 2880 } 2881 } 2882 2883 static void 2884 ieee80211_bar_response(struct ieee80211_node *ni, 2885 struct ieee80211_tx_ampdu *tap, int status) 2886 { 2887 2888 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2889 tap->txa_ni, 2890 "%s: called", 2891 __func__); 2892 if (status == 0) { /* got ACK */ 2893 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2894 ni, "BAR moves BA win <%u:%u> (%u frames) txseq %u tid %u", 2895 tap->txa_start, 2896 IEEE80211_SEQ_ADD(tap->txa_start, tap->txa_wnd-1), 2897 tap->txa_qframes, tap->txa_seqpending, 2898 tap->txa_tid); 2899 2900 /* NB: timer already stopped in bar_tx_complete */ 2901 tap->txa_start = tap->txa_seqpending; 2902 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2903 } 2904 } 2905 2906 /* 2907 * Transmit a BAR frame to the specified node. The 2908 * BAR contents are drawn from the supplied aggregation 2909 * state associated with the node. 2910 * 2911 * NB: we only handle immediate ACK w/ compressed bitmap. 2912 */ 2913 int 2914 ieee80211_send_bar(struct ieee80211_node *ni, 2915 struct ieee80211_tx_ampdu *tap, ieee80211_seq seq) 2916 { 2917 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2918 struct ieee80211vap *vap = ni->ni_vap; 2919 struct ieee80211com *ic = ni->ni_ic; 2920 struct ieee80211_frame_bar *bar; 2921 struct mbuf *m; 2922 uint16_t barctl, barseqctl; 2923 uint8_t *frm; 2924 int tid, ret; 2925 2926 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2927 tap->txa_ni, 2928 "%s: called", 2929 __func__); 2930 2931 if ((tap->txa_flags & IEEE80211_AGGR_RUNNING) == 0) { 2932 /* no ADDBA response, should not happen */ 2933 /* XXX stat+msg */ 2934 return EINVAL; 2935 } 2936 /* XXX locking */ 2937 bar_stop_timer(tap); 2938 2939 ieee80211_ref_node(ni); 2940 2941 m = ieee80211_getmgtframe(&frm, ic->ic_headroom, sizeof(*bar)); 2942 if (m == NULL) 2943 senderr(ENOMEM, is_tx_nobuf); 2944 2945 if (!ieee80211_add_callback(m, bar_tx_complete, tap)) { 2946 m_freem(m); 2947 senderr(ENOMEM, is_tx_nobuf); /* XXX */ 2948 /* NOTREACHED */ 2949 } 2950 2951 bar = mtod(m, struct ieee80211_frame_bar *); 2952 bar->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2953 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR; 2954 bar->i_fc[1] = 0; 2955 IEEE80211_ADDR_COPY(bar->i_ra, ni->ni_macaddr); 2956 IEEE80211_ADDR_COPY(bar->i_ta, vap->iv_myaddr); 2957 2958 tid = tap->txa_tid; 2959 barctl = (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE ? 2960 0 : IEEE80211_BAR_NOACK) 2961 | IEEE80211_BAR_COMP 2962 | _IEEE80211_SHIFTMASK(tid, IEEE80211_BAR_TID) 2963 ; 2964 barseqctl = _IEEE80211_SHIFTMASK(seq, IEEE80211_BAR_SEQ_START); 2965 /* NB: known to have proper alignment */ 2966 bar->i_ctl = htole16(barctl); 2967 bar->i_seq = htole16(barseqctl); 2968 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_bar); 2969 2970 M_WME_SETAC(m, WME_AC_VO); 2971 2972 IEEE80211_NODE_STAT(ni, tx_mgmt); /* XXX tx_ctl? */ 2973 2974 /* XXX locking */ 2975 /* init/bump attempts counter */ 2976 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2977 tap->txa_attempts = 1; 2978 else 2979 tap->txa_attempts++; 2980 tap->txa_seqpending = seq; 2981 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2982 2983 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2984 ni, "send BAR: tid %u ctl 0x%x start %u (attempt %d)", 2985 tid, barctl, seq, tap->txa_attempts); 2986 2987 /* 2988 * ic_raw_xmit will free the node reference 2989 * regardless of queue/TX success or failure. 2990 */ 2991 IEEE80211_TX_LOCK(ic); 2992 ret = ieee80211_raw_output(vap, ni, m, NULL); 2993 IEEE80211_TX_UNLOCK(ic); 2994 if (ret != 0) { 2995 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2996 ni, "send BAR: failed: (ret = %d)\n", 2997 ret); 2998 /* xmit failed, clear state flag */ 2999 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 3000 vap->iv_stats.is_ampdu_bar_tx_fail++; 3001 return ret; 3002 } 3003 /* XXX hack against tx complete happening before timer is started */ 3004 if (tap->txa_flags & IEEE80211_AGGR_BARPEND) 3005 bar_start_timer(tap); 3006 return 0; 3007 bad: 3008 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 3009 tap->txa_ni, 3010 "%s: bad! ret=%d", 3011 __func__, ret); 3012 vap->iv_stats.is_ampdu_bar_tx_fail++; 3013 ieee80211_free_node(ni); 3014 return ret; 3015 #undef senderr 3016 } 3017 3018 static int 3019 ht_action_output(struct ieee80211_node *ni, struct mbuf *m) 3020 { 3021 struct ieee80211_bpf_params params; 3022 3023 memset(¶ms, 0, sizeof(params)); 3024 params.ibp_pri = WME_AC_VO; 3025 params.ibp_rate0 = ni->ni_txparms->mgmtrate; 3026 /* NB: we know all frames are unicast */ 3027 params.ibp_try0 = ni->ni_txparms->maxretry; 3028 params.ibp_power = ni->ni_txpower; 3029 return ieee80211_mgmt_output(ni, m, IEEE80211_FC0_SUBTYPE_ACTION, 3030 ¶ms); 3031 } 3032 3033 #define ADDSHORT(frm, v) do { \ 3034 frm[0] = (v) & 0xff; \ 3035 frm[1] = (v) >> 8; \ 3036 frm += 2; \ 3037 } while (0) 3038 3039 /* 3040 * Send an action management frame. The arguments are stuff 3041 * into a frame without inspection; the caller is assumed to 3042 * prepare them carefully (e.g. based on the aggregation state). 3043 */ 3044 static int 3045 ht_send_action_ba_addba(struct ieee80211_node *ni, 3046 int category, int action, void *arg0) 3047 { 3048 struct ieee80211vap *vap = ni->ni_vap; 3049 struct ieee80211com *ic = ni->ni_ic; 3050 uint16_t *args = arg0; 3051 struct mbuf *m; 3052 uint8_t *frm; 3053 3054 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 3055 "send ADDBA %s: dialogtoken %d status %d " 3056 "baparamset 0x%x (tid %d amsdu %d) batimeout 0x%x baseqctl 0x%x", 3057 (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ? 3058 "request" : "response", args[0], args[1], args[2], 3059 _IEEE80211_MASKSHIFT(args[2], IEEE80211_BAPS_TID), 3060 _IEEE80211_MASKSHIFT(args[2], IEEE80211_BAPS_AMSDU), 3061 args[3], args[4]); 3062 3063 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 3064 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 3065 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 3066 ieee80211_ref_node(ni); 3067 3068 m = ieee80211_getmgtframe(&frm, 3069 ic->ic_headroom + sizeof(struct ieee80211_frame), 3070 sizeof(uint16_t) /* action+category */ 3071 /* XXX may action payload */ 3072 + sizeof(struct ieee80211_action_ba_addbaresponse) 3073 ); 3074 if (m != NULL) { 3075 *frm++ = category; 3076 *frm++ = action; 3077 *frm++ = args[0]; /* dialog token */ 3078 if (action == IEEE80211_ACTION_BA_ADDBA_RESPONSE) 3079 ADDSHORT(frm, args[1]); /* status code */ 3080 ADDSHORT(frm, args[2]); /* baparamset */ 3081 ADDSHORT(frm, args[3]); /* batimeout */ 3082 if (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) 3083 ADDSHORT(frm, args[4]); /* baseqctl */ 3084 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3085 return ht_action_output(ni, m); 3086 } else { 3087 vap->iv_stats.is_tx_nobuf++; 3088 ieee80211_free_node(ni); 3089 return ENOMEM; 3090 } 3091 } 3092 3093 static int 3094 ht_send_action_ba_delba(struct ieee80211_node *ni, 3095 int category, int action, void *arg0) 3096 { 3097 struct ieee80211vap *vap = ni->ni_vap; 3098 struct ieee80211com *ic = ni->ni_ic; 3099 uint16_t *args = arg0; 3100 struct mbuf *m; 3101 uint16_t baparamset; 3102 uint8_t *frm; 3103 3104 baparamset = _IEEE80211_SHIFTMASK(args[0], IEEE80211_DELBAPS_TID) 3105 | args[1] 3106 ; 3107 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 3108 "send DELBA action: tid %d, initiator %d reason %d (%s)", 3109 args[0], args[1], args[2], ieee80211_reason_to_string(args[2])); 3110 3111 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 3112 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 3113 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 3114 ieee80211_ref_node(ni); 3115 3116 m = ieee80211_getmgtframe(&frm, 3117 ic->ic_headroom + sizeof(struct ieee80211_frame), 3118 sizeof(uint16_t) /* action+category */ 3119 /* XXX may action payload */ 3120 + sizeof(struct ieee80211_action_ba_addbaresponse) 3121 ); 3122 if (m != NULL) { 3123 *frm++ = category; 3124 *frm++ = action; 3125 ADDSHORT(frm, baparamset); 3126 ADDSHORT(frm, args[2]); /* reason code */ 3127 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3128 return ht_action_output(ni, m); 3129 } else { 3130 vap->iv_stats.is_tx_nobuf++; 3131 ieee80211_free_node(ni); 3132 return ENOMEM; 3133 } 3134 } 3135 3136 static int 3137 ht_send_action_ht_txchwidth(struct ieee80211_node *ni, 3138 int category, int action, void *arg0) 3139 { 3140 struct ieee80211vap *vap = ni->ni_vap; 3141 struct ieee80211com *ic = ni->ni_ic; 3142 struct mbuf *m; 3143 uint8_t *frm; 3144 3145 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 3146 "send HT txchwidth: width %d", 3147 IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 40 : 20); 3148 3149 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 3150 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 3151 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 3152 ieee80211_ref_node(ni); 3153 3154 m = ieee80211_getmgtframe(&frm, 3155 ic->ic_headroom + sizeof(struct ieee80211_frame), 3156 sizeof(uint16_t) /* action+category */ 3157 /* XXX may action payload */ 3158 + sizeof(struct ieee80211_action_ba_addbaresponse) 3159 ); 3160 if (m != NULL) { 3161 *frm++ = category; 3162 *frm++ = action; 3163 *frm++ = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 3164 IEEE80211_A_HT_TXCHWIDTH_2040 : 3165 IEEE80211_A_HT_TXCHWIDTH_20; 3166 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3167 return ht_action_output(ni, m); 3168 } else { 3169 vap->iv_stats.is_tx_nobuf++; 3170 ieee80211_free_node(ni); 3171 return ENOMEM; 3172 } 3173 } 3174 #undef ADDSHORT 3175 3176 /* 3177 * Construct the MCS bit mask for inclusion in an HT capabilities 3178 * information element. 3179 */ 3180 static void 3181 ieee80211_set_mcsset(struct ieee80211com *ic, uint8_t *frm) 3182 { 3183 int i; 3184 uint8_t txparams; 3185 3186 KASSERT((ic->ic_rxstream > 0 && ic->ic_rxstream <= 4), 3187 ("ic_rxstream %d out of range", ic->ic_rxstream)); 3188 KASSERT((ic->ic_txstream > 0 && ic->ic_txstream <= 4), 3189 ("ic_txstream %d out of range", ic->ic_txstream)); 3190 3191 for (i = 0; i < ic->ic_rxstream * 8; i++) 3192 setbit(frm, i); 3193 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 3194 (ic->ic_htcaps & IEEE80211_HTC_RXMCS32)) 3195 setbit(frm, 32); 3196 if (ic->ic_htcaps & IEEE80211_HTC_RXUNEQUAL) { 3197 if (ic->ic_rxstream >= 2) { 3198 for (i = 33; i <= 38; i++) 3199 setbit(frm, i); 3200 } 3201 if (ic->ic_rxstream >= 3) { 3202 for (i = 39; i <= 52; i++) 3203 setbit(frm, i); 3204 } 3205 if (ic->ic_rxstream >= 4) { 3206 for (i = 53; i <= 76; i++) 3207 setbit(frm, i); 3208 } 3209 } 3210 3211 txparams = 0x1; /* TX MCS set defined */ 3212 if (ic->ic_rxstream != ic->ic_txstream) { 3213 txparams |= 0x2; /* TX RX MCS not equal */ 3214 txparams |= (ic->ic_txstream - 1) << 2; /* num TX streams */ 3215 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) 3216 txparams |= 0x16; /* TX unequal modulation sup */ 3217 } 3218 3219 frm[12] = txparams; 3220 } 3221 3222 /* 3223 * Add body of an HTCAP information element. 3224 */ 3225 static uint8_t * 3226 ieee80211_add_htcap_body(uint8_t *frm, struct ieee80211_node *ni) 3227 { 3228 #define ADDSHORT(frm, v) do { \ 3229 frm[0] = (v) & 0xff; \ 3230 frm[1] = (v) >> 8; \ 3231 frm += 2; \ 3232 } while (0) 3233 struct ieee80211com *ic = ni->ni_ic; 3234 struct ieee80211vap *vap = ni->ni_vap; 3235 uint16_t caps, extcaps; 3236 int rxmax, density; 3237 3238 /* HT capabilities */ 3239 caps = vap->iv_htcaps & 0xffff; 3240 /* 3241 * Note channel width depends on whether we are operating as 3242 * a sta or not. When operating as a sta we are generating 3243 * a request based on our desired configuration. Otherwise 3244 * we are operational and the channel attributes identify 3245 * how we've been setup (which might be different if a fixed 3246 * channel is specified). 3247 */ 3248 if (vap->iv_opmode == IEEE80211_M_STA) { 3249 /* override 20/40 use based on config */ 3250 if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40) 3251 caps |= IEEE80211_HTCAP_CHWIDTH40; 3252 else 3253 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3254 3255 /* Start by using the advertised settings */ 3256 rxmax = _IEEE80211_MASKSHIFT(ni->ni_htparam, 3257 IEEE80211_HTCAP_MAXRXAMPDU); 3258 density = _IEEE80211_MASKSHIFT(ni->ni_htparam, 3259 IEEE80211_HTCAP_MPDUDENSITY); 3260 3261 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, 3262 "%s: advertised rxmax=%d, density=%d, vap rxmax=%d, density=%d\n", 3263 __func__, 3264 rxmax, 3265 density, 3266 vap->iv_ampdu_rxmax, 3267 vap->iv_ampdu_density); 3268 3269 /* Cap at VAP rxmax */ 3270 if (rxmax > vap->iv_ampdu_rxmax) 3271 rxmax = vap->iv_ampdu_rxmax; 3272 3273 /* 3274 * If the VAP ampdu density value greater, use that. 3275 * 3276 * (Larger density value == larger minimum gap between A-MPDU 3277 * subframes.) 3278 */ 3279 if (vap->iv_ampdu_density > density) 3280 density = vap->iv_ampdu_density; 3281 3282 /* 3283 * NB: Hardware might support HT40 on some but not all 3284 * channels. We can't determine this earlier because only 3285 * after association the channel is upgraded to HT based 3286 * on the negotiated capabilities. 3287 */ 3288 if (ni->ni_chan != IEEE80211_CHAN_ANYC && 3289 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40U) == NULL && 3290 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40D) == NULL) 3291 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3292 } else { 3293 /* override 20/40 use based on current channel */ 3294 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 3295 caps |= IEEE80211_HTCAP_CHWIDTH40; 3296 else 3297 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3298 3299 /* XXX TODO should it start by using advertised settings? */ 3300 rxmax = vap->iv_ampdu_rxmax; 3301 density = vap->iv_ampdu_density; 3302 } 3303 3304 /* adjust short GI based on channel and config */ 3305 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) 3306 caps &= ~IEEE80211_HTCAP_SHORTGI20; 3307 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || 3308 (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) 3309 caps &= ~IEEE80211_HTCAP_SHORTGI40; 3310 3311 /* adjust STBC based on receive capabilities */ 3312 if ((vap->iv_flags_ht & IEEE80211_FHT_STBC_RX) == 0) 3313 caps &= ~IEEE80211_HTCAP_RXSTBC; 3314 3315 /* adjust LDPC based on receive capabilites */ 3316 if ((vap->iv_flags_ht & IEEE80211_FHT_LDPC_RX) == 0) 3317 caps &= ~IEEE80211_HTCAP_LDPC; 3318 3319 ADDSHORT(frm, caps); 3320 3321 /* HT parameters */ 3322 *frm = _IEEE80211_SHIFTMASK(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) 3323 | _IEEE80211_SHIFTMASK(density, IEEE80211_HTCAP_MPDUDENSITY) 3324 ; 3325 frm++; 3326 3327 /* pre-zero remainder of ie */ 3328 memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - 3329 __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); 3330 3331 /* supported MCS set */ 3332 /* 3333 * XXX: For sta mode the rate set should be restricted based 3334 * on the AP's capabilities, but ni_htrates isn't setup when 3335 * we're called to form an AssocReq frame so for now we're 3336 * restricted to the device capabilities. 3337 */ 3338 ieee80211_set_mcsset(ni->ni_ic, frm); 3339 3340 frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - 3341 __offsetof(struct ieee80211_ie_htcap, hc_mcsset); 3342 3343 /* HT extended capabilities */ 3344 extcaps = vap->iv_htextcaps & 0xffff; 3345 3346 ADDSHORT(frm, extcaps); 3347 3348 frm += sizeof(struct ieee80211_ie_htcap) - 3349 __offsetof(struct ieee80211_ie_htcap, hc_txbf); 3350 3351 return frm; 3352 #undef ADDSHORT 3353 } 3354 3355 /* 3356 * Add 802.11n HT capabilities information element 3357 */ 3358 uint8_t * 3359 ieee80211_add_htcap(uint8_t *frm, struct ieee80211_node *ni) 3360 { 3361 frm[0] = IEEE80211_ELEMID_HTCAP; 3362 frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; 3363 return ieee80211_add_htcap_body(frm + 2, ni); 3364 } 3365 3366 /* 3367 * Non-associated probe request - add HT capabilities based on 3368 * the current channel configuration. 3369 */ 3370 static uint8_t * 3371 ieee80211_add_htcap_body_ch(uint8_t *frm, struct ieee80211vap *vap, 3372 struct ieee80211_channel *c) 3373 { 3374 #define ADDSHORT(frm, v) do { \ 3375 frm[0] = (v) & 0xff; \ 3376 frm[1] = (v) >> 8; \ 3377 frm += 2; \ 3378 } while (0) 3379 struct ieee80211com *ic = vap->iv_ic; 3380 uint16_t caps, extcaps; 3381 int rxmax, density; 3382 3383 /* HT capabilities */ 3384 caps = vap->iv_htcaps & 0xffff; 3385 3386 /* 3387 * We don't use this in STA mode; only in IBSS mode. 3388 * So in IBSS mode we base our HTCAP flags on the 3389 * given channel. 3390 */ 3391 3392 /* override 20/40 use based on current channel */ 3393 if (IEEE80211_IS_CHAN_HT40(c)) 3394 caps |= IEEE80211_HTCAP_CHWIDTH40; 3395 else 3396 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3397 3398 /* Use the currently configured values */ 3399 rxmax = vap->iv_ampdu_rxmax; 3400 density = vap->iv_ampdu_density; 3401 3402 /* adjust short GI based on channel and config */ 3403 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) 3404 caps &= ~IEEE80211_HTCAP_SHORTGI20; 3405 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || 3406 (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) 3407 caps &= ~IEEE80211_HTCAP_SHORTGI40; 3408 ADDSHORT(frm, caps); 3409 3410 /* HT parameters */ 3411 *frm = _IEEE80211_SHIFTMASK(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) 3412 | _IEEE80211_SHIFTMASK(density, IEEE80211_HTCAP_MPDUDENSITY) 3413 ; 3414 frm++; 3415 3416 /* pre-zero remainder of ie */ 3417 memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - 3418 __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); 3419 3420 /* supported MCS set */ 3421 /* 3422 * XXX: For sta mode the rate set should be restricted based 3423 * on the AP's capabilities, but ni_htrates isn't setup when 3424 * we're called to form an AssocReq frame so for now we're 3425 * restricted to the device capabilities. 3426 */ 3427 ieee80211_set_mcsset(ic, frm); 3428 3429 frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - 3430 __offsetof(struct ieee80211_ie_htcap, hc_mcsset); 3431 3432 /* HT extended capabilities */ 3433 extcaps = vap->iv_htextcaps & 0xffff; 3434 3435 ADDSHORT(frm, extcaps); 3436 3437 frm += sizeof(struct ieee80211_ie_htcap) - 3438 __offsetof(struct ieee80211_ie_htcap, hc_txbf); 3439 3440 return frm; 3441 #undef ADDSHORT 3442 } 3443 3444 /* 3445 * Add 802.11n HT capabilities information element 3446 */ 3447 uint8_t * 3448 ieee80211_add_htcap_ch(uint8_t *frm, struct ieee80211vap *vap, 3449 struct ieee80211_channel *c) 3450 { 3451 frm[0] = IEEE80211_ELEMID_HTCAP; 3452 frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; 3453 return ieee80211_add_htcap_body_ch(frm + 2, vap, c); 3454 } 3455 3456 /* 3457 * Add Broadcom OUI wrapped standard HTCAP ie; this is 3458 * used for compatibility w/ pre-draft implementations. 3459 */ 3460 uint8_t * 3461 ieee80211_add_htcap_vendor(uint8_t *frm, struct ieee80211_node *ni) 3462 { 3463 frm[0] = IEEE80211_ELEMID_VENDOR; 3464 frm[1] = 4 + sizeof(struct ieee80211_ie_htcap) - 2; 3465 frm[2] = (BCM_OUI >> 0) & 0xff; 3466 frm[3] = (BCM_OUI >> 8) & 0xff; 3467 frm[4] = (BCM_OUI >> 16) & 0xff; 3468 frm[5] = BCM_OUI_HTCAP; 3469 return ieee80211_add_htcap_body(frm + 6, ni); 3470 } 3471 3472 /* 3473 * Construct the MCS bit mask of basic rates 3474 * for inclusion in an HT information element. 3475 */ 3476 static void 3477 ieee80211_set_basic_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs) 3478 { 3479 int i; 3480 3481 for (i = 0; i < rs->rs_nrates; i++) { 3482 int r = rs->rs_rates[i] & IEEE80211_RATE_VAL; 3483 if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) && 3484 r < IEEE80211_HTRATE_MAXSIZE) { 3485 /* NB: this assumes a particular implementation */ 3486 setbit(frm, r); 3487 } 3488 } 3489 } 3490 3491 /* 3492 * Update the HTINFO ie for a beacon frame. 3493 */ 3494 void 3495 ieee80211_ht_update_beacon(struct ieee80211vap *vap, 3496 struct ieee80211_beacon_offsets *bo) 3497 { 3498 #define PROTMODE (IEEE80211_HTINFO_OPMODE|IEEE80211_HTINFO_NONHT_PRESENT) 3499 struct ieee80211_node *ni; 3500 const struct ieee80211_channel *bsschan; 3501 struct ieee80211com *ic = vap->iv_ic; 3502 struct ieee80211_ie_htinfo *ht = 3503 (struct ieee80211_ie_htinfo *) bo->bo_htinfo; 3504 3505 ni = ieee80211_ref_node(vap->iv_bss); 3506 bsschan = ni->ni_chan; 3507 3508 /* XXX only update on channel change */ 3509 ht->hi_ctrlchannel = ieee80211_chan2ieee(ic, bsschan); 3510 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 3511 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PERM; 3512 else 3513 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PROH; 3514 if (IEEE80211_IS_CHAN_HT40U(bsschan)) 3515 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 3516 else if (IEEE80211_IS_CHAN_HT40D(bsschan)) 3517 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_BELOW; 3518 else 3519 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_NONE; 3520 if (IEEE80211_IS_CHAN_HT40(bsschan)) 3521 ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040; 3522 3523 /* protection mode */ 3524 /* 3525 * XXX TODO: this uses the global flag, not the per-VAP flag. 3526 * Eventually (once the protection modes are done per-channel 3527 * rather than per-VAP) we can flip this over to be per-VAP but 3528 * using the channel protection mode. 3529 */ 3530 ht->hi_byte2 = (ht->hi_byte2 &~ PROTMODE) | ic->ic_curhtprotmode; 3531 3532 ieee80211_free_node(ni); 3533 3534 /* XXX propagate to vendor ie's */ 3535 #undef PROTMODE 3536 } 3537 3538 /* 3539 * Add body of an HTINFO information element. 3540 * 3541 * NB: We don't use struct ieee80211_ie_htinfo because we can 3542 * be called to fillin both a standard ie and a compat ie that 3543 * has a vendor OUI at the front. 3544 */ 3545 static uint8_t * 3546 ieee80211_add_htinfo_body(uint8_t *frm, struct ieee80211_node *ni) 3547 { 3548 struct ieee80211vap *vap = ni->ni_vap; 3549 struct ieee80211com *ic = ni->ni_ic; 3550 3551 /* pre-zero remainder of ie */ 3552 memset(frm, 0, sizeof(struct ieee80211_ie_htinfo) - 2); 3553 3554 /* primary/control channel center */ 3555 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 3556 3557 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 3558 frm[0] = IEEE80211_HTINFO_RIFSMODE_PERM; 3559 else 3560 frm[0] = IEEE80211_HTINFO_RIFSMODE_PROH; 3561 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 3562 frm[0] |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 3563 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 3564 frm[0] |= IEEE80211_HTINFO_2NDCHAN_BELOW; 3565 else 3566 frm[0] |= IEEE80211_HTINFO_2NDCHAN_NONE; 3567 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 3568 frm[0] |= IEEE80211_HTINFO_TXWIDTH_2040; 3569 3570 /* 3571 * Add current protection mode. Unlike for beacons, 3572 * this will respect the per-VAP flags. 3573 */ 3574 frm[1] = vap->iv_curhtprotmode; 3575 3576 frm += 5; 3577 3578 /* basic MCS set */ 3579 ieee80211_set_basic_htrates(frm, &ni->ni_htrates); 3580 frm += sizeof(struct ieee80211_ie_htinfo) - 3581 __offsetof(struct ieee80211_ie_htinfo, hi_basicmcsset); 3582 return frm; 3583 } 3584 3585 /* 3586 * Add 802.11n HT information element. 3587 */ 3588 uint8_t * 3589 ieee80211_add_htinfo(uint8_t *frm, struct ieee80211_node *ni) 3590 { 3591 frm[0] = IEEE80211_ELEMID_HTINFO; 3592 frm[1] = sizeof(struct ieee80211_ie_htinfo) - 2; 3593 return ieee80211_add_htinfo_body(frm + 2, ni); 3594 } 3595 3596 /* 3597 * Add Broadcom OUI wrapped standard HTINFO ie; this is 3598 * used for compatibility w/ pre-draft implementations. 3599 */ 3600 uint8_t * 3601 ieee80211_add_htinfo_vendor(uint8_t *frm, struct ieee80211_node *ni) 3602 { 3603 frm[0] = IEEE80211_ELEMID_VENDOR; 3604 frm[1] = 4 + sizeof(struct ieee80211_ie_htinfo) - 2; 3605 frm[2] = (BCM_OUI >> 0) & 0xff; 3606 frm[3] = (BCM_OUI >> 8) & 0xff; 3607 frm[4] = (BCM_OUI >> 16) & 0xff; 3608 frm[5] = BCM_OUI_HTINFO; 3609 return ieee80211_add_htinfo_body(frm + 6, ni); 3610 } 3611