xref: /freebsd/sys/net80211/ieee80211_ht.c (revision d0b2dbfa0ecf2bbc9709efc5e20baf8e4b44bbbf)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 #ifdef __FreeBSD__
30 #endif
31 
32 /*
33  * IEEE 802.11n protocol support.
34  */
35 
36 #include "opt_inet.h"
37 #include "opt_wlan.h"
38 
39 #include <sys/param.h>
40 #include <sys/kernel.h>
41 #include <sys/malloc.h>
42 #include <sys/systm.h>
43 #include <sys/endian.h>
44 
45 #include <sys/socket.h>
46 
47 #include <net/if.h>
48 #include <net/if_var.h>
49 #include <net/if_media.h>
50 #include <net/ethernet.h>
51 
52 #include <net80211/ieee80211_var.h>
53 #include <net80211/ieee80211_action.h>
54 #include <net80211/ieee80211_input.h>
55 
56 const struct ieee80211_mcs_rates ieee80211_htrates[IEEE80211_HTRATE_MAXSIZE] = {
57 	{  13,  14,   27,   30 },	/* MCS 0 */
58 	{  26,  29,   54,   60 },	/* MCS 1 */
59 	{  39,  43,   81,   90 },	/* MCS 2 */
60 	{  52,  58,  108,  120 },	/* MCS 3 */
61 	{  78,  87,  162,  180 },	/* MCS 4 */
62 	{ 104, 116,  216,  240 },	/* MCS 5 */
63 	{ 117, 130,  243,  270 },	/* MCS 6 */
64 	{ 130, 144,  270,  300 },	/* MCS 7 */
65 	{  26,  29,   54,   60 },	/* MCS 8 */
66 	{  52,  58,  108,  120 },	/* MCS 9 */
67 	{  78,  87,  162,  180 },	/* MCS 10 */
68 	{ 104, 116,  216,  240 },	/* MCS 11 */
69 	{ 156, 173,  324,  360 },	/* MCS 12 */
70 	{ 208, 231,  432,  480 },	/* MCS 13 */
71 	{ 234, 260,  486,  540 },	/* MCS 14 */
72 	{ 260, 289,  540,  600 },	/* MCS 15 */
73 	{  39,  43,   81,   90 },	/* MCS 16 */
74 	{  78,  87,  162,  180 },	/* MCS 17 */
75 	{ 117, 130,  243,  270 },	/* MCS 18 */
76 	{ 156, 173,  324,  360 },	/* MCS 19 */
77 	{ 234, 260,  486,  540 },	/* MCS 20 */
78 	{ 312, 347,  648,  720 },	/* MCS 21 */
79 	{ 351, 390,  729,  810 },	/* MCS 22 */
80 	{ 390, 433,  810,  900 },	/* MCS 23 */
81 	{  52,  58,  108,  120 },	/* MCS 24 */
82 	{ 104, 116,  216,  240 },	/* MCS 25 */
83 	{ 156, 173,  324,  360 },	/* MCS 26 */
84 	{ 208, 231,  432,  480 },	/* MCS 27 */
85 	{ 312, 347,  648,  720 },	/* MCS 28 */
86 	{ 416, 462,  864,  960 },	/* MCS 29 */
87 	{ 468, 520,  972, 1080 },	/* MCS 30 */
88 	{ 520, 578, 1080, 1200 },	/* MCS 31 */
89 	{   0,   0,   12,   13 },	/* MCS 32 */
90 	{  78,  87,  162,  180 },	/* MCS 33 */
91 	{ 104, 116,  216,  240 },	/* MCS 34 */
92 	{ 130, 144,  270,  300 },	/* MCS 35 */
93 	{ 117, 130,  243,  270 },	/* MCS 36 */
94 	{ 156, 173,  324,  360 },	/* MCS 37 */
95 	{ 195, 217,  405,  450 },	/* MCS 38 */
96 	{ 104, 116,  216,  240 },	/* MCS 39 */
97 	{ 130, 144,  270,  300 },	/* MCS 40 */
98 	{ 130, 144,  270,  300 },	/* MCS 41 */
99 	{ 156, 173,  324,  360 },	/* MCS 42 */
100 	{ 182, 202,  378,  420 },	/* MCS 43 */
101 	{ 182, 202,  378,  420 },	/* MCS 44 */
102 	{ 208, 231,  432,  480 },	/* MCS 45 */
103 	{ 156, 173,  324,  360 },	/* MCS 46 */
104 	{ 195, 217,  405,  450 },	/* MCS 47 */
105 	{ 195, 217,  405,  450 },	/* MCS 48 */
106 	{ 234, 260,  486,  540 },	/* MCS 49 */
107 	{ 273, 303,  567,  630 },	/* MCS 50 */
108 	{ 273, 303,  567,  630 },	/* MCS 51 */
109 	{ 312, 347,  648,  720 },	/* MCS 52 */
110 	{ 130, 144,  270,  300 },	/* MCS 53 */
111 	{ 156, 173,  324,  360 },	/* MCS 54 */
112 	{ 182, 202,  378,  420 },	/* MCS 55 */
113 	{ 156, 173,  324,  360 },	/* MCS 56 */
114 	{ 182, 202,  378,  420 },	/* MCS 57 */
115 	{ 208, 231,  432,  480 },	/* MCS 58 */
116 	{ 234, 260,  486,  540 },	/* MCS 59 */
117 	{ 208, 231,  432,  480 },	/* MCS 60 */
118 	{ 234, 260,  486,  540 },	/* MCS 61 */
119 	{ 260, 289,  540,  600 },	/* MCS 62 */
120 	{ 260, 289,  540,  600 },	/* MCS 63 */
121 	{ 286, 318,  594,  660 },	/* MCS 64 */
122 	{ 195, 217,  405,  450 },	/* MCS 65 */
123 	{ 234, 260,  486,  540 },	/* MCS 66 */
124 	{ 273, 303,  567,  630 },	/* MCS 67 */
125 	{ 234, 260,  486,  540 },	/* MCS 68 */
126 	{ 273, 303,  567,  630 },	/* MCS 69 */
127 	{ 312, 347,  648,  720 },	/* MCS 70 */
128 	{ 351, 390,  729,  810 },	/* MCS 71 */
129 	{ 312, 347,  648,  720 },	/* MCS 72 */
130 	{ 351, 390,  729,  810 },	/* MCS 73 */
131 	{ 390, 433,  810,  900 },	/* MCS 74 */
132 	{ 390, 433,  810,  900 },	/* MCS 75 */
133 	{ 429, 477,  891,  990 },	/* MCS 76 */
134 };
135 
136 static	int ieee80211_ampdu_age = -1;	/* threshold for ampdu reorder q (ms) */
137 SYSCTL_PROC(_net_wlan, OID_AUTO, ampdu_age,
138     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
139     &ieee80211_ampdu_age, 0, ieee80211_sysctl_msecs_ticks, "I",
140     "AMPDU max reorder age (ms)");
141 
142 static	int ieee80211_recv_bar_ena = 1;
143 SYSCTL_INT(_net_wlan, OID_AUTO, recv_bar, CTLFLAG_RW, &ieee80211_recv_bar_ena,
144 	    0, "BAR frame processing (ena/dis)");
145 
146 static	int ieee80211_addba_timeout = -1;/* timeout for ADDBA response */
147 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_timeout,
148     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
149     &ieee80211_addba_timeout, 0, ieee80211_sysctl_msecs_ticks, "I",
150     "ADDBA request timeout (ms)");
151 static	int ieee80211_addba_backoff = -1;/* backoff after max ADDBA requests */
152 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_backoff,
153     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
154     &ieee80211_addba_backoff, 0, ieee80211_sysctl_msecs_ticks, "I",
155     "ADDBA request backoff (ms)");
156 static	int ieee80211_addba_maxtries = 3;/* max ADDBA requests before backoff */
157 SYSCTL_INT(_net_wlan, OID_AUTO, addba_maxtries, CTLFLAG_RW,
158 	&ieee80211_addba_maxtries, 0, "max ADDBA requests sent before backoff");
159 
160 static	int ieee80211_bar_timeout = -1;	/* timeout waiting for BAR response */
161 static	int ieee80211_bar_maxtries = 50;/* max BAR requests before DELBA */
162 
163 static	ieee80211_recv_action_func ht_recv_action_ba_addba_request;
164 static	ieee80211_recv_action_func ht_recv_action_ba_addba_response;
165 static	ieee80211_recv_action_func ht_recv_action_ba_delba;
166 static	ieee80211_recv_action_func ht_recv_action_ht_mimopwrsave;
167 static	ieee80211_recv_action_func ht_recv_action_ht_txchwidth;
168 
169 static	ieee80211_send_action_func ht_send_action_ba_addba;
170 static	ieee80211_send_action_func ht_send_action_ba_delba;
171 static	ieee80211_send_action_func ht_send_action_ht_txchwidth;
172 
173 static void
174 ieee80211_ht_init(void)
175 {
176 	/*
177 	 * Setup HT parameters that depends on the clock frequency.
178 	 */
179 	ieee80211_ampdu_age = msecs_to_ticks(500);
180 	ieee80211_addba_timeout = msecs_to_ticks(250);
181 	ieee80211_addba_backoff = msecs_to_ticks(10*1000);
182 	ieee80211_bar_timeout = msecs_to_ticks(250);
183 	/*
184 	 * Register action frame handlers.
185 	 */
186 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
187 	    IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_recv_action_ba_addba_request);
188 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
189 	    IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_recv_action_ba_addba_response);
190 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
191 	    IEEE80211_ACTION_BA_DELBA, ht_recv_action_ba_delba);
192 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT,
193 	    IEEE80211_ACTION_HT_MIMOPWRSAVE, ht_recv_action_ht_mimopwrsave);
194 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT,
195 	    IEEE80211_ACTION_HT_TXCHWIDTH, ht_recv_action_ht_txchwidth);
196 
197 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
198 	    IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_send_action_ba_addba);
199 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
200 	    IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_send_action_ba_addba);
201 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
202 	    IEEE80211_ACTION_BA_DELBA, ht_send_action_ba_delba);
203 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_HT,
204 	    IEEE80211_ACTION_HT_TXCHWIDTH, ht_send_action_ht_txchwidth);
205 }
206 SYSINIT(wlan_ht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_ht_init, NULL);
207 
208 static int ieee80211_ampdu_enable(struct ieee80211_node *ni,
209 	struct ieee80211_tx_ampdu *tap);
210 static int ieee80211_addba_request(struct ieee80211_node *ni,
211 	struct ieee80211_tx_ampdu *tap,
212 	int dialogtoken, int baparamset, int batimeout);
213 static int ieee80211_addba_response(struct ieee80211_node *ni,
214 	struct ieee80211_tx_ampdu *tap,
215 	int code, int baparamset, int batimeout);
216 static void ieee80211_addba_stop(struct ieee80211_node *ni,
217 	struct ieee80211_tx_ampdu *tap);
218 static void null_addba_response_timeout(struct ieee80211_node *ni,
219 	struct ieee80211_tx_ampdu *tap);
220 
221 static void ieee80211_bar_response(struct ieee80211_node *ni,
222 	struct ieee80211_tx_ampdu *tap, int status);
223 static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap);
224 static void bar_stop_timer(struct ieee80211_tx_ampdu *tap);
225 static int ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *,
226 	int baparamset, int batimeout, int baseqctl);
227 static void ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *);
228 
229 void
230 ieee80211_ht_attach(struct ieee80211com *ic)
231 {
232 	/* setup default aggregation policy */
233 	ic->ic_recv_action = ieee80211_recv_action;
234 	ic->ic_send_action = ieee80211_send_action;
235 	ic->ic_ampdu_enable = ieee80211_ampdu_enable;
236 	ic->ic_addba_request = ieee80211_addba_request;
237 	ic->ic_addba_response = ieee80211_addba_response;
238 	ic->ic_addba_response_timeout = null_addba_response_timeout;
239 	ic->ic_addba_stop = ieee80211_addba_stop;
240 	ic->ic_bar_response = ieee80211_bar_response;
241 	ic->ic_ampdu_rx_start = ampdu_rx_start;
242 	ic->ic_ampdu_rx_stop = ampdu_rx_stop;
243 
244 	ic->ic_htprotmode = IEEE80211_PROT_RTSCTS;
245 	ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE;
246 }
247 
248 void
249 ieee80211_ht_detach(struct ieee80211com *ic)
250 {
251 }
252 
253 void
254 ieee80211_ht_vattach(struct ieee80211vap *vap)
255 {
256 
257 	/* driver can override defaults */
258 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_8K;
259 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_NA;
260 	vap->iv_ampdu_limit = vap->iv_ampdu_rxmax;
261 	vap->iv_amsdu_limit = vap->iv_htcaps & IEEE80211_HTCAP_MAXAMSDU;
262 	/* tx aggregation traffic thresholds */
263 	vap->iv_ampdu_mintraffic[WME_AC_BK] = 128;
264 	vap->iv_ampdu_mintraffic[WME_AC_BE] = 64;
265 	vap->iv_ampdu_mintraffic[WME_AC_VO] = 32;
266 	vap->iv_ampdu_mintraffic[WME_AC_VI] = 32;
267 
268 	vap->iv_htprotmode = IEEE80211_PROT_RTSCTS;
269 	vap->iv_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE;
270 
271 	if (vap->iv_htcaps & IEEE80211_HTC_HT) {
272 		/*
273 		 * Device is HT capable; enable all HT-related
274 		 * facilities by default.
275 		 * XXX these choices may be too aggressive.
276 		 */
277 		vap->iv_flags_ht |= IEEE80211_FHT_HT
278 				 |  IEEE80211_FHT_HTCOMPAT
279 				 ;
280 		if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI20)
281 			vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20;
282 		/* XXX infer from channel list? */
283 		if (vap->iv_htcaps & IEEE80211_HTCAP_CHWIDTH40) {
284 			vap->iv_flags_ht |= IEEE80211_FHT_USEHT40;
285 			if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI40)
286 				vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40;
287 		}
288 		/* enable RIFS if capable */
289 		if (vap->iv_htcaps & IEEE80211_HTC_RIFS)
290 			vap->iv_flags_ht |= IEEE80211_FHT_RIFS;
291 
292 		/* NB: A-MPDU and A-MSDU rx are mandated, these are tx only */
293 		vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX;
294 		if (vap->iv_htcaps & IEEE80211_HTC_AMPDU)
295 			vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX;
296 		vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX;
297 		if (vap->iv_htcaps & IEEE80211_HTC_AMSDU)
298 			vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX;
299 
300 		if (vap->iv_htcaps & IEEE80211_HTCAP_TXSTBC)
301 			vap->iv_flags_ht |= IEEE80211_FHT_STBC_TX;
302 		if (vap->iv_htcaps & IEEE80211_HTCAP_RXSTBC)
303 			vap->iv_flags_ht |= IEEE80211_FHT_STBC_RX;
304 
305 		if (vap->iv_htcaps & IEEE80211_HTCAP_LDPC)
306 			vap->iv_flags_ht |= IEEE80211_FHT_LDPC_RX;
307 		if (vap->iv_htcaps & IEEE80211_HTC_TXLDPC)
308 			vap->iv_flags_ht |= IEEE80211_FHT_LDPC_TX;
309 	}
310 	/* NB: disable default legacy WDS, too many issues right now */
311 	if (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)
312 		vap->iv_flags_ht &= ~IEEE80211_FHT_HT;
313 }
314 
315 void
316 ieee80211_ht_vdetach(struct ieee80211vap *vap)
317 {
318 }
319 
320 static int
321 ht_getrate(struct ieee80211com *ic, int index, enum ieee80211_phymode mode,
322     int ratetype)
323 {
324 	int mword, rate;
325 
326 	mword = ieee80211_rate2media(ic, index | IEEE80211_RATE_MCS, mode);
327 	if (IFM_SUBTYPE(mword) != IFM_IEEE80211_MCS)
328 		return (0);
329 	switch (ratetype) {
330 	case 0:
331 		rate = ieee80211_htrates[index].ht20_rate_800ns;
332 		break;
333 	case 1:
334 		rate = ieee80211_htrates[index].ht20_rate_400ns;
335 		break;
336 	case 2:
337 		rate = ieee80211_htrates[index].ht40_rate_800ns;
338 		break;
339 	default:
340 		rate = ieee80211_htrates[index].ht40_rate_400ns;
341 		break;
342 	}
343 	return (rate);
344 }
345 
346 static struct printranges {
347 	int	minmcs;
348 	int	maxmcs;
349 	int	txstream;
350 	int	ratetype;
351 	int	htcapflags;
352 } ranges[] = {
353 	{  0,  7, 1, 0, 0 },
354 	{  8, 15, 2, 0, 0 },
355 	{ 16, 23, 3, 0, 0 },
356 	{ 24, 31, 4, 0, 0 },
357 	{ 32,  0, 1, 2, IEEE80211_HTC_TXMCS32 },
358 	{ 33, 38, 2, 0, IEEE80211_HTC_TXUNEQUAL },
359 	{ 39, 52, 3, 0, IEEE80211_HTC_TXUNEQUAL },
360 	{ 53, 76, 4, 0, IEEE80211_HTC_TXUNEQUAL },
361 	{  0,  0, 0, 0, 0 },
362 };
363 
364 static void
365 ht_rateprint(struct ieee80211com *ic, enum ieee80211_phymode mode, int ratetype)
366 {
367 	int minrate, maxrate;
368 	struct printranges *range;
369 
370 	for (range = ranges; range->txstream != 0; range++) {
371 		if (ic->ic_txstream < range->txstream)
372 			continue;
373 		if (range->htcapflags &&
374 		    (ic->ic_htcaps & range->htcapflags) == 0)
375 			continue;
376 		if (ratetype < range->ratetype)
377 			continue;
378 		minrate = ht_getrate(ic, range->minmcs, mode, ratetype);
379 		maxrate = ht_getrate(ic, range->maxmcs, mode, ratetype);
380 		if (range->maxmcs) {
381 			ic_printf(ic, "MCS %d-%d: %d%sMbps - %d%sMbps\n",
382 			    range->minmcs, range->maxmcs,
383 			    minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""),
384 			    maxrate/2, ((maxrate & 0x1) != 0 ? ".5" : ""));
385 		} else {
386 			ic_printf(ic, "MCS %d: %d%sMbps\n", range->minmcs,
387 			    minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""));
388 		}
389 	}
390 }
391 
392 static void
393 ht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode)
394 {
395 	const char *modestr = ieee80211_phymode_name[mode];
396 
397 	ic_printf(ic, "%s MCS 20MHz\n", modestr);
398 	ht_rateprint(ic, mode, 0);
399 	if (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) {
400 		ic_printf(ic, "%s MCS 20MHz SGI\n", modestr);
401 		ht_rateprint(ic, mode, 1);
402 	}
403 	if (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) {
404 		ic_printf(ic, "%s MCS 40MHz:\n", modestr);
405 		ht_rateprint(ic, mode, 2);
406 	}
407 	if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
408 	    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) {
409 		ic_printf(ic, "%s MCS 40MHz SGI:\n", modestr);
410 		ht_rateprint(ic, mode, 3);
411 	}
412 }
413 
414 void
415 ieee80211_ht_announce(struct ieee80211com *ic)
416 {
417 
418 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
419 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG))
420 		ic_printf(ic, "%dT%dR\n", ic->ic_txstream, ic->ic_rxstream);
421 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA))
422 		ht_announce(ic, IEEE80211_MODE_11NA);
423 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NG))
424 		ht_announce(ic, IEEE80211_MODE_11NG);
425 }
426 
427 void
428 ieee80211_init_suphtrates(struct ieee80211com *ic)
429 {
430 #define	ADDRATE(x)	do {						\
431 	htrateset->rs_rates[htrateset->rs_nrates] = x;			\
432 	htrateset->rs_nrates++;						\
433 } while (0)
434 	struct ieee80211_htrateset *htrateset = &ic->ic_sup_htrates;
435 	int i;
436 
437 	memset(htrateset, 0, sizeof(struct ieee80211_htrateset));
438 	for (i = 0; i < ic->ic_txstream * 8; i++)
439 		ADDRATE(i);
440 	if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
441 	    (ic->ic_htcaps & IEEE80211_HTC_TXMCS32))
442 		ADDRATE(32);
443 	if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) {
444 		if (ic->ic_txstream >= 2) {
445 			 for (i = 33; i <= 38; i++)
446 				ADDRATE(i);
447 		}
448 		if (ic->ic_txstream >= 3) {
449 			for (i = 39; i <= 52; i++)
450 				ADDRATE(i);
451 		}
452 		if (ic->ic_txstream == 4) {
453 			for (i = 53; i <= 76; i++)
454 				ADDRATE(i);
455 		}
456 	}
457 #undef	ADDRATE
458 }
459 
460 /*
461  * Receive processing.
462  */
463 
464 /*
465  * Decap the encapsulated A-MSDU frames and dispatch all but
466  * the last for delivery.  The last frame is returned for
467  * delivery via the normal path.
468  */
469 struct mbuf *
470 ieee80211_decap_amsdu(struct ieee80211_node *ni, struct mbuf *m)
471 {
472 	struct ieee80211vap *vap = ni->ni_vap;
473 	int framelen;
474 	struct mbuf *n;
475 
476 	/* discard 802.3 header inserted by ieee80211_decap */
477 	m_adj(m, sizeof(struct ether_header));
478 
479 	vap->iv_stats.is_amsdu_decap++;
480 
481 	for (;;) {
482 		/*
483 		 * Decap the first frame, bust it apart from the
484 		 * remainder and deliver.  We leave the last frame
485 		 * delivery to the caller (for consistency with other
486 		 * code paths, could also do it here).
487 		 */
488 		m = ieee80211_decap1(m, &framelen);
489 		if (m == NULL) {
490 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
491 			    ni->ni_macaddr, "a-msdu", "%s", "decap failed");
492 			vap->iv_stats.is_amsdu_tooshort++;
493 			return NULL;
494 		}
495 		if (m->m_pkthdr.len == framelen)
496 			break;
497 		n = m_split(m, framelen, IEEE80211_M_NOWAIT);
498 		if (n == NULL) {
499 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
500 			    ni->ni_macaddr, "a-msdu",
501 			    "%s", "unable to split encapsulated frames");
502 			vap->iv_stats.is_amsdu_split++;
503 			m_freem(m);			/* NB: must reclaim */
504 			return NULL;
505 		}
506 		vap->iv_deliver_data(vap, ni, m);
507 
508 		/*
509 		 * Remove frame contents; each intermediate frame
510 		 * is required to be aligned to a 4-byte boundary.
511 		 */
512 		m = n;
513 		m_adj(m, roundup2(framelen, 4) - framelen);	/* padding */
514 	}
515 	return m;				/* last delivered by caller */
516 }
517 
518 static void
519 ampdu_rx_purge_slot(struct ieee80211_rx_ampdu *rap, int i)
520 {
521 	struct mbuf *m;
522 
523 	/* Walk the queue, removing frames as appropriate */
524 	while (mbufq_len(&rap->rxa_mq[i]) != 0) {
525 		m = mbufq_dequeue(&rap->rxa_mq[i]);
526 		if (m == NULL)
527 			break;
528 		rap->rxa_qbytes -= m->m_pkthdr.len;
529 		rap->rxa_qframes--;
530 		m_freem(m);
531 	}
532 }
533 
534 /*
535  * Add the given frame to the current RX reorder slot.
536  *
537  * For future offloaded A-MSDU handling where multiple frames with
538  * the same sequence number show up here, this routine will append
539  * those frames as long as they're appropriately tagged.
540  */
541 static int
542 ampdu_rx_add_slot(struct ieee80211_rx_ampdu *rap, int off, int tid,
543     ieee80211_seq rxseq,
544     struct ieee80211_node *ni,
545     struct mbuf *m,
546     const struct ieee80211_rx_stats *rxs)
547 {
548 	const struct ieee80211_rx_stats *rxs_final = NULL;
549 	struct ieee80211vap *vap = ni->ni_vap;
550 	int toss_dup;
551 #define	PROCESS		0	/* caller should process frame */
552 #define	CONSUMED	1	/* frame consumed, caller does nothing */
553 
554 	/*
555 	 * Figure out if this is a duplicate frame for the given slot.
556 	 *
557 	 * We're assuming that the driver will hand us all the frames
558 	 * for a given AMSDU decap pass and if we get /a/ frame
559 	 * for an AMSDU decap then we'll get all of them.
560 	 *
561 	 * The tricksy bit is that we don't know when the /end/ of
562 	 * the decap pass is, because we aren't tracking state here
563 	 * per-slot to know that we've finished receiving the frame list.
564 	 *
565 	 * The driver sets RX_F_AMSDU and RX_F_AMSDU_MORE to tell us
566 	 * what's going on; so ideally we'd just check the frame at the
567 	 * end of the reassembly slot to see if its F_AMSDU w/ no F_AMSDU_MORE -
568 	 * that means we've received the whole AMSDU decap pass.
569 	 */
570 
571 	/*
572 	 * Get the rxs of the final mbuf in the slot, if one exists.
573 	 */
574 	if (mbufq_len(&rap->rxa_mq[off]) != 0) {
575 		rxs_final = ieee80211_get_rx_params_ptr(mbufq_last(&rap->rxa_mq[off]));
576 	}
577 
578 	/* Default to tossing the duplicate frame */
579 	toss_dup = 1;
580 
581 	/*
582 	 * Check to see if the final frame has F_AMSDU and F_AMSDU set, AND
583 	 * this frame has F_AMSDU set (MORE or otherwise.)  That's a sign
584 	 * that more can come.
585 	 */
586 
587 	if ((rxs != NULL) && (rxs_final != NULL) &&
588 	    ieee80211_check_rxseq_amsdu(rxs) &&
589 	    ieee80211_check_rxseq_amsdu(rxs_final)) {
590 		if (! ieee80211_check_rxseq_amsdu_more(rxs_final)) {
591 			/*
592 			 * amsdu_more() returning 0 means "it's not the
593 			 * final frame" so we can append more
594 			 * frames here.
595 			 */
596 			toss_dup = 0;
597 		}
598 	}
599 
600 	/*
601 	 * If the list is empty OR we have determined we can put more
602 	 * driver decap'ed AMSDU frames in here, then insert.
603 	 */
604 	if ((mbufq_len(&rap->rxa_mq[off]) == 0) || (toss_dup == 0)) {
605 		if (mbufq_enqueue(&rap->rxa_mq[off], m) != 0) {
606 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
607 			    ni->ni_macaddr,
608 			    "a-mpdu queue fail",
609 			    "seqno %u tid %u BA win <%u:%u> off=%d, qlen=%d, maxqlen=%d",
610 			    rxseq, tid, rap->rxa_start,
611 			    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
612 			    off,
613 			    mbufq_len(&rap->rxa_mq[off]),
614 			    rap->rxa_mq[off].mq_maxlen);
615 			/* XXX error count */
616 			m_freem(m);
617 			return CONSUMED;
618 		}
619 		rap->rxa_qframes++;
620 		rap->rxa_qbytes += m->m_pkthdr.len;
621 		vap->iv_stats.is_ampdu_rx_reorder++;
622 		/*
623 		 * Statistics for AMSDU decap.
624 		 */
625 		if (rxs != NULL && ieee80211_check_rxseq_amsdu(rxs)) {
626 			if (ieee80211_check_rxseq_amsdu_more(rxs)) {
627 				/* more=1, AMSDU, end of batch */
628 				IEEE80211_NODE_STAT(ni, rx_amsdu_more_end);
629 			} else {
630 				IEEE80211_NODE_STAT(ni, rx_amsdu_more);
631 			}
632 		}
633 	} else {
634 		IEEE80211_DISCARD_MAC(vap,
635 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
636 		    ni->ni_macaddr, "a-mpdu duplicate",
637 		    "seqno %u tid %u BA win <%u:%u>",
638 		    rxseq, tid, rap->rxa_start,
639 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1));
640 		if (rxs != NULL) {
641 			IEEE80211_DISCARD_MAC(vap,
642 			    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
643 			    ni->ni_macaddr, "a-mpdu duplicate",
644 			    "seqno %d tid %u pktflags 0x%08x\n",
645 			    rxseq, tid, rxs->c_pktflags);
646 		}
647 		if (rxs_final != NULL) {
648 			IEEE80211_DISCARD_MAC(vap,
649 			    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
650 			    ni->ni_macaddr, "a-mpdu duplicate",
651 			    "final: pktflags 0x%08x\n",
652 			    rxs_final->c_pktflags);
653 		}
654 		vap->iv_stats.is_rx_dup++;
655 		IEEE80211_NODE_STAT(ni, rx_dup);
656 		m_freem(m);
657 	}
658 	return CONSUMED;
659 #undef	CONSUMED
660 #undef	PROCESS
661 }
662 
663 /*
664  * Purge all frames in the A-MPDU re-order queue.
665  */
666 static void
667 ampdu_rx_purge(struct ieee80211_rx_ampdu *rap)
668 {
669 	int i;
670 
671 	for (i = 0; i < rap->rxa_wnd; i++) {
672 		ampdu_rx_purge_slot(rap, i);
673 		if (rap->rxa_qframes == 0)
674 			break;
675 	}
676 	KASSERT(rap->rxa_qbytes == 0 && rap->rxa_qframes == 0,
677 	    ("lost %u data, %u frames on ampdu rx q",
678 	    rap->rxa_qbytes, rap->rxa_qframes));
679 }
680 
681 static void
682 ieee80211_ampdu_rx_init_rap(struct ieee80211_node *ni,
683     struct ieee80211_rx_ampdu *rap)
684 {
685 	int i;
686 
687 	/* XXX TODO: ensure the queues are empty */
688 	memset(rap, 0, sizeof(*rap));
689 	for (i = 0; i < IEEE80211_AGGR_BAWMAX; i++)
690 		mbufq_init(&rap->rxa_mq[i], 256);
691 }
692 
693 /*
694  * Start A-MPDU rx/re-order processing for the specified TID.
695  */
696 static int
697 ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
698 	int baparamset, int batimeout, int baseqctl)
699 {
700 	struct ieee80211vap *vap = ni->ni_vap;
701 	int bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ);
702 
703 	if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) {
704 		/*
705 		 * AMPDU previously setup and not terminated with a DELBA,
706 		 * flush the reorder q's in case anything remains.
707 		 */
708 		ampdu_rx_purge(rap);
709 	}
710 	ieee80211_ampdu_rx_init_rap(ni, rap);
711 	rap->rxa_wnd = (bufsiz == 0) ?
712 	    IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
713 	rap->rxa_start = _IEEE80211_MASKSHIFT(baseqctl, IEEE80211_BASEQ_START);
714 	rap->rxa_flags |=  IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND;
715 
716 	/* XXX this should be a configuration flag */
717 	if ((vap->iv_htcaps & IEEE80211_HTC_RX_AMSDU_AMPDU) &&
718 	    (_IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU)))
719 		rap->rxa_flags |= IEEE80211_AGGR_AMSDU;
720 	else
721 		rap->rxa_flags &= ~IEEE80211_AGGR_AMSDU;
722 
723 	return 0;
724 }
725 
726 /*
727  * Public function; manually setup the RX ampdu state.
728  */
729 int
730 ieee80211_ampdu_rx_start_ext(struct ieee80211_node *ni, int tid, int seq, int baw)
731 {
732 	struct ieee80211_rx_ampdu *rap;
733 
734 	/* XXX TODO: sanity check tid, seq, baw */
735 
736 	rap = &ni->ni_rx_ampdu[tid];
737 
738 	if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) {
739 		/*
740 		 * AMPDU previously setup and not terminated with a DELBA,
741 		 * flush the reorder q's in case anything remains.
742 		 */
743 		ampdu_rx_purge(rap);
744 	}
745 
746 	ieee80211_ampdu_rx_init_rap(ni, rap);
747 
748 	rap->rxa_wnd = (baw== 0) ?
749 	    IEEE80211_AGGR_BAWMAX : min(baw, IEEE80211_AGGR_BAWMAX);
750 	if (seq == -1) {
751 		/* Wait for the first RX frame, use that as BAW */
752 		rap->rxa_start = 0;
753 		rap->rxa_flags |= IEEE80211_AGGR_WAITRX;
754 	} else {
755 		rap->rxa_start = seq;
756 	}
757 	rap->rxa_flags |=  IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND;
758 
759 	/* XXX TODO: no amsdu flag */
760 
761 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni,
762 	    "%s: tid=%d, start=%d, wnd=%d, flags=0x%08x",
763 	    __func__,
764 	    tid,
765 	    seq,
766 	    rap->rxa_wnd,
767 	    rap->rxa_flags);
768 
769 	return 0;
770 }
771 
772 /*
773  * Public function; manually stop the RX AMPDU state.
774  */
775 void
776 ieee80211_ampdu_rx_stop_ext(struct ieee80211_node *ni, int tid)
777 {
778 	struct ieee80211_rx_ampdu *rap;
779 
780 	/* XXX TODO: sanity check tid, seq, baw */
781 	rap = &ni->ni_rx_ampdu[tid];
782 	ampdu_rx_stop(ni, rap);
783 }
784 
785 /*
786  * Stop A-MPDU rx processing for the specified TID.
787  */
788 static void
789 ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
790 {
791 
792 	ampdu_rx_purge(rap);
793 	rap->rxa_flags &= ~(IEEE80211_AGGR_RUNNING
794 	    | IEEE80211_AGGR_XCHGPEND
795 	    | IEEE80211_AGGR_WAITRX);
796 }
797 
798 /*
799  * Dispatch a frame from the A-MPDU reorder queue.  The
800  * frame is fed back into ieee80211_input marked with an
801  * M_AMPDU_MPDU flag so it doesn't come back to us (it also
802  * permits ieee80211_input to optimize re-processing).
803  */
804 static __inline void
805 ampdu_dispatch(struct ieee80211_node *ni, struct mbuf *m)
806 {
807 	m->m_flags |= M_AMPDU_MPDU;	/* bypass normal processing */
808 	/* NB: rssi and noise are ignored w/ M_AMPDU_MPDU set */
809 	(void) ieee80211_input(ni, m, 0, 0);
810 }
811 
812 static int
813 ampdu_dispatch_slot(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni,
814     int i)
815 {
816 	struct mbuf *m;
817 	int n = 0;
818 
819 	while (mbufq_len(&rap->rxa_mq[i]) != 0) {
820 		m = mbufq_dequeue(&rap->rxa_mq[i]);
821 		if (m == NULL)
822 			break;
823 		n++;
824 
825 		rap->rxa_qbytes -= m->m_pkthdr.len;
826 		rap->rxa_qframes--;
827 
828 		ampdu_dispatch(ni, m);
829 	}
830 	return (n);
831 }
832 
833 static void
834 ampdu_rx_moveup(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni,
835     int i, int winstart)
836 {
837 	struct ieee80211vap *vap = ni->ni_vap;
838 
839 	/*
840 	 * If frames remain, copy the mbuf pointers down so
841 	 * they correspond to the offsets in the new window.
842 	 */
843 	if (rap->rxa_qframes != 0) {
844 		int n = rap->rxa_qframes, j;
845 		for (j = i+1; j < rap->rxa_wnd; j++) {
846 			/*
847 			 * Concat the list contents over, which will
848 			 * blank the source list for us.
849 			 */
850 			if (mbufq_len(&rap->rxa_mq[j]) != 0) {
851 				n = n - mbufq_len(&rap->rxa_mq[j]);
852 				mbufq_concat(&rap->rxa_mq[j-i], &rap->rxa_mq[j]);
853 				KASSERT(n >= 0, ("%s: n < 0 (%d)", __func__, n));
854 				if (n == 0)
855 					break;
856 			}
857 		}
858 		KASSERT(n == 0, ("%s: lost %d frames, qframes %d off %d "
859 		    "BA win <%d:%d> winstart %d",
860 		    __func__, n, rap->rxa_qframes, i, rap->rxa_start,
861 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
862 		    winstart));
863 		vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes;
864 	}
865 }
866 
867 /*
868  * Dispatch as many frames as possible from the re-order queue.
869  * Frames will always be "at the front"; we process all frames
870  * up to the first empty slot in the window.  On completion we
871  * cleanup state if there are still pending frames in the current
872  * BA window.  We assume the frame at slot 0 is already handled
873  * by the caller; we always start at slot 1.
874  */
875 static void
876 ampdu_rx_dispatch(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni)
877 {
878 	struct ieee80211vap *vap = ni->ni_vap;
879 	int i, r, r2;
880 
881 	/* flush run of frames */
882 	r2 = 0;
883 	for (i = 1; i < rap->rxa_wnd; i++) {
884 		r = ampdu_dispatch_slot(rap, ni, i);
885 		if (r == 0)
886 			break;
887 		r2 += r;
888 	}
889 
890 	/* move up frames */
891 	ampdu_rx_moveup(rap, ni, i, -1);
892 
893 	/*
894 	 * Adjust the start of the BA window to
895 	 * reflect the frames just dispatched.
896 	 */
897 	rap->rxa_start = IEEE80211_SEQ_ADD(rap->rxa_start, i);
898 	vap->iv_stats.is_ampdu_rx_oor += r2;
899 
900 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni,
901 	    "%s: moved slot up %d slots to start at %d (%d frames)",
902 	    __func__,
903 	    i,
904 	    rap->rxa_start,
905 	    r2);
906 }
907 
908 /*
909  * Dispatch all frames in the A-MPDU re-order queue.
910  */
911 static void
912 ampdu_rx_flush(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
913 {
914 	int i, r;
915 
916 	for (i = 0; i < rap->rxa_wnd; i++) {
917 		r = ampdu_dispatch_slot(rap, ni, i);
918 		if (r == 0)
919 			continue;
920 		ni->ni_vap->iv_stats.is_ampdu_rx_oor += r;
921 
922 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni,
923 		    "%s: moved slot up %d slots to start at %d (%d frames)",
924 		    __func__,
925 		    1,
926 		    rap->rxa_start,
927 		    r);
928 
929 		if (rap->rxa_qframes == 0)
930 			break;
931 	}
932 }
933 
934 /*
935  * Dispatch all frames in the A-MPDU re-order queue
936  * preceding the specified sequence number.  This logic
937  * handles window moves due to a received MSDU or BAR.
938  */
939 static void
940 ampdu_rx_flush_upto(struct ieee80211_node *ni,
941 	struct ieee80211_rx_ampdu *rap, ieee80211_seq winstart)
942 {
943 	struct ieee80211vap *vap = ni->ni_vap;
944 	ieee80211_seq seqno;
945 	int i, r;
946 
947 	/*
948 	 * Flush any complete MSDU's with a sequence number lower
949 	 * than winstart.  Gaps may exist.  Note that we may actually
950 	 * dispatch frames past winstart if a run continues; this is
951 	 * an optimization that avoids having to do a separate pass
952 	 * to dispatch frames after moving the BA window start.
953 	 */
954 	seqno = rap->rxa_start;
955 	for (i = 0; i < rap->rxa_wnd; i++) {
956 		if ((r = mbufq_len(&rap->rxa_mq[i])) != 0) {
957 			(void) ampdu_dispatch_slot(rap, ni, i);
958 		} else {
959 			if (!IEEE80211_SEQ_BA_BEFORE(seqno, winstart))
960 				break;
961 		}
962 		vap->iv_stats.is_ampdu_rx_oor += r;
963 		seqno = IEEE80211_SEQ_INC(seqno);
964 
965 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni,
966 		    "%s: moved slot up %d slots to start at %d (%d frames)",
967 		    __func__,
968 		    1,
969 		    seqno,
970 		    r);
971 	}
972 
973 	/*
974 	 * If frames remain, copy the mbuf pointers down so
975 	 * they correspond to the offsets in the new window.
976 	 */
977 	ampdu_rx_moveup(rap, ni, i, winstart);
978 
979 	/*
980 	 * Move the start of the BA window; we use the
981 	 * sequence number of the last MSDU that was
982 	 * passed up the stack+1 or winstart if stopped on
983 	 * a gap in the reorder buffer.
984 	 */
985 	rap->rxa_start = seqno;
986 }
987 
988 /*
989  * Process a received QoS data frame for an HT station.  Handle
990  * A-MPDU reordering: if this frame is received out of order
991  * and falls within the BA window hold onto it.  Otherwise if
992  * this frame completes a run, flush any pending frames.  We
993  * return 1 if the frame is consumed.  A 0 is returned if
994  * the frame should be processed normally by the caller.
995  *
996  * A-MSDU: handle hardware decap'ed A-MSDU frames that are
997  * pretending to be MPDU's.  They're dispatched directly if
998  * able; or attempted to put into the receive reordering slot.
999  */
1000 int
1001 ieee80211_ampdu_reorder(struct ieee80211_node *ni, struct mbuf *m,
1002     const struct ieee80211_rx_stats *rxs)
1003 {
1004 #define	PROCESS		0	/* caller should process frame */
1005 #define	CONSUMED	1	/* frame consumed, caller does nothing */
1006 	struct ieee80211vap *vap = ni->ni_vap;
1007 	struct ieee80211_qosframe *wh;
1008 	struct ieee80211_rx_ampdu *rap;
1009 	ieee80211_seq rxseq;
1010 	uint8_t tid;
1011 	int off;
1012 	int amsdu = ieee80211_check_rxseq_amsdu(rxs);
1013 	int amsdu_end = ieee80211_check_rxseq_amsdu_more(rxs);
1014 
1015 	KASSERT((m->m_flags & (M_AMPDU | M_AMPDU_MPDU)) == M_AMPDU,
1016 	    ("!a-mpdu or already re-ordered, flags 0x%x", m->m_flags));
1017 	KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta"));
1018 
1019 	/* NB: m_len known to be sufficient */
1020 	wh = mtod(m, struct ieee80211_qosframe *);
1021 	if (wh->i_fc[0] != IEEE80211_FC0_QOSDATA) {
1022 		/*
1023 		 * Not QoS data, shouldn't get here but just
1024 		 * return it to the caller for processing.
1025 		 */
1026 		return PROCESS;
1027 	}
1028 
1029 	/*
1030 	 * 802.11-2012 9.3.2.10 - Duplicate detection and recovery.
1031 	 *
1032 	 * Multicast QoS data frames are checked against a different
1033 	 * counter, not the per-TID counter.
1034 	 */
1035 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1036 		return PROCESS;
1037 
1038 	tid = ieee80211_getqos(wh)[0];
1039 	tid &= IEEE80211_QOS_TID;
1040 	rap = &ni->ni_rx_ampdu[tid];
1041 	if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
1042 		/*
1043 		 * No ADDBA request yet, don't touch.
1044 		 */
1045 		return PROCESS;
1046 	}
1047 	rxseq = le16toh(*(uint16_t *)wh->i_seq);
1048 	if ((rxseq & IEEE80211_SEQ_FRAG_MASK) != 0) {
1049 		/*
1050 		 * Fragments are not allowed; toss.
1051 		 */
1052 		IEEE80211_DISCARD_MAC(vap,
1053 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
1054 		    "A-MPDU", "fragment, rxseq 0x%x tid %u%s", rxseq, tid,
1055 		    wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
1056 		vap->iv_stats.is_ampdu_rx_drop++;
1057 		IEEE80211_NODE_STAT(ni, rx_drop);
1058 		m_freem(m);
1059 		return CONSUMED;
1060 	}
1061 	rxseq >>= IEEE80211_SEQ_SEQ_SHIFT;
1062 	rap->rxa_nframes++;
1063 
1064 	/*
1065 	 * Handle waiting for the first frame to define the BAW.
1066 	 * Some firmware doesn't provide the RX of the starting point
1067 	 * of the BAW and we have to cope.
1068 	 */
1069 	if (rap->rxa_flags & IEEE80211_AGGR_WAITRX) {
1070 		rap->rxa_flags &= ~IEEE80211_AGGR_WAITRX;
1071 		rap->rxa_start = rxseq;
1072 	}
1073 again:
1074 	if (rxseq == rap->rxa_start) {
1075 		/*
1076 		 * First frame in window.
1077 		 */
1078 		if (rap->rxa_qframes != 0) {
1079 			/*
1080 			 * Dispatch as many packets as we can.
1081 			 */
1082 			KASSERT((mbufq_len(&rap->rxa_mq[0]) == 0), ("unexpected dup"));
1083 			ampdu_dispatch(ni, m);
1084 			ampdu_rx_dispatch(rap, ni);
1085 			return CONSUMED;
1086 		} else {
1087 			/*
1088 			 * In order; advance window if needed and notify
1089 			 * caller to dispatch directly.
1090 			 */
1091 			if (amsdu) {
1092 				if (amsdu_end) {
1093 					rap->rxa_start = IEEE80211_SEQ_INC(rxseq);
1094 					IEEE80211_NODE_STAT(ni, rx_amsdu_more_end);
1095 				} else {
1096 					IEEE80211_NODE_STAT(ni, rx_amsdu_more);
1097 				}
1098 			} else {
1099 				rap->rxa_start = IEEE80211_SEQ_INC(rxseq);
1100 			}
1101 			return PROCESS;
1102 		}
1103 	}
1104 	/*
1105 	 * Frame is out of order; store if in the BA window.
1106 	 */
1107 	/* calculate offset in BA window */
1108 	off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start);
1109 	if (off < rap->rxa_wnd) {
1110 		/*
1111 		 * Common case (hopefully): in the BA window.
1112 		 * Sec 9.10.7.6.2 a) (p.137)
1113 		 */
1114 
1115 		/*
1116 		 * Check for frames sitting too long in the reorder queue.
1117 		 * This should only ever happen if frames are not delivered
1118 		 * without the sender otherwise notifying us (e.g. with a
1119 		 * BAR to move the window).  Typically this happens because
1120 		 * of vendor bugs that cause the sequence number to jump.
1121 		 * When this happens we get a gap in the reorder queue that
1122 		 * leaves frame sitting on the queue until they get pushed
1123 		 * out due to window moves.  When the vendor does not send
1124 		 * BAR this move only happens due to explicit packet sends
1125 		 *
1126 		 * NB: we only track the time of the oldest frame in the
1127 		 * reorder q; this means that if we flush we might push
1128 		 * frames that still "new"; if this happens then subsequent
1129 		 * frames will result in BA window moves which cost something
1130 		 * but is still better than a big throughput dip.
1131 		 */
1132 		if (rap->rxa_qframes != 0) {
1133 			/* XXX honor batimeout? */
1134 			if (ticks - rap->rxa_age > ieee80211_ampdu_age) {
1135 				/*
1136 				 * Too long since we received the first
1137 				 * frame; flush the reorder buffer.
1138 				 */
1139 				if (rap->rxa_qframes != 0) {
1140 					vap->iv_stats.is_ampdu_rx_age +=
1141 					    rap->rxa_qframes;
1142 					ampdu_rx_flush(ni, rap);
1143 				}
1144 				/*
1145 				 * Advance the window if needed and notify
1146 				 * the caller to dispatch directly.
1147 				 */
1148 				if (amsdu) {
1149 					if (amsdu_end) {
1150 						rap->rxa_start =
1151 						    IEEE80211_SEQ_INC(rxseq);
1152 						IEEE80211_NODE_STAT(ni,
1153 						    rx_amsdu_more_end);
1154 					} else {
1155 						IEEE80211_NODE_STAT(ni,
1156 						    rx_amsdu_more);
1157 					}
1158 				} else {
1159 					rap->rxa_start =
1160 					    IEEE80211_SEQ_INC(rxseq);
1161 				}
1162 				return PROCESS;
1163 			}
1164 		} else {
1165 			/*
1166 			 * First frame, start aging timer.
1167 			 */
1168 			rap->rxa_age = ticks;
1169 		}
1170 
1171 		/* save packet - this consumes, no matter what */
1172 		ampdu_rx_add_slot(rap, off, tid, rxseq, ni, m, rxs);
1173 		return CONSUMED;
1174 	}
1175 	if (off < IEEE80211_SEQ_BA_RANGE) {
1176 		/*
1177 		 * Outside the BA window, but within range;
1178 		 * flush the reorder q and move the window.
1179 		 * Sec 9.10.7.6.2 b) (p.138)
1180 		 */
1181 		IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
1182 		    "move BA win <%u:%u> (%u frames) rxseq %u tid %u",
1183 		    rap->rxa_start,
1184 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
1185 		    rap->rxa_qframes, rxseq, tid);
1186 		vap->iv_stats.is_ampdu_rx_move++;
1187 
1188 		/*
1189 		 * The spec says to flush frames up to but not including:
1190 		 * 	WinStart_B = rxseq - rap->rxa_wnd + 1
1191 		 * Then insert the frame or notify the caller to process
1192 		 * it immediately.  We can safely do this by just starting
1193 		 * over again because we know the frame will now be within
1194 		 * the BA window.
1195 		 */
1196 		/* NB: rxa_wnd known to be >0 */
1197 		ampdu_rx_flush_upto(ni, rap,
1198 		    IEEE80211_SEQ_SUB(rxseq, rap->rxa_wnd-1));
1199 		goto again;
1200 	} else {
1201 		/*
1202 		 * Outside the BA window and out of range; toss.
1203 		 * Sec 9.10.7.6.2 c) (p.138)
1204 		 */
1205 		IEEE80211_DISCARD_MAC(vap,
1206 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
1207 		    "MPDU", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s",
1208 		    rap->rxa_start,
1209 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
1210 		    rap->rxa_qframes, rxseq, tid,
1211 		    wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
1212 		vap->iv_stats.is_ampdu_rx_drop++;
1213 		IEEE80211_NODE_STAT(ni, rx_drop);
1214 		m_freem(m);
1215 		return CONSUMED;
1216 	}
1217 #undef CONSUMED
1218 #undef PROCESS
1219 }
1220 
1221 /*
1222  * Process a BAR ctl frame.  Dispatch all frames up to
1223  * the sequence number of the frame.  If this frame is
1224  * out of range it's discarded.
1225  */
1226 void
1227 ieee80211_recv_bar(struct ieee80211_node *ni, struct mbuf *m0)
1228 {
1229 	struct ieee80211vap *vap = ni->ni_vap;
1230 	struct ieee80211_frame_bar *wh;
1231 	struct ieee80211_rx_ampdu *rap;
1232 	ieee80211_seq rxseq;
1233 	int tid, off;
1234 
1235 	if (!ieee80211_recv_bar_ena) {
1236 #if 0
1237 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_11N,
1238 		    ni->ni_macaddr, "BAR", "%s", "processing disabled");
1239 #endif
1240 		vap->iv_stats.is_ampdu_bar_bad++;
1241 		return;
1242 	}
1243 	wh = mtod(m0, struct ieee80211_frame_bar *);
1244 	/* XXX check basic BAR */
1245 	tid = _IEEE80211_MASKSHIFT(le16toh(wh->i_ctl), IEEE80211_BAR_TID);
1246 	rap = &ni->ni_rx_ampdu[tid];
1247 	if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
1248 		/*
1249 		 * No ADDBA request yet, don't touch.
1250 		 */
1251 		IEEE80211_DISCARD_MAC(vap,
1252 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
1253 		    ni->ni_macaddr, "BAR", "no BA stream, tid %u", tid);
1254 		vap->iv_stats.is_ampdu_bar_bad++;
1255 		return;
1256 	}
1257 	vap->iv_stats.is_ampdu_bar_rx++;
1258 	rxseq = le16toh(wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT;
1259 	if (rxseq == rap->rxa_start)
1260 		return;
1261 	/* calculate offset in BA window */
1262 	off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start);
1263 	if (off < IEEE80211_SEQ_BA_RANGE) {
1264 		/*
1265 		 * Flush the reorder q up to rxseq and move the window.
1266 		 * Sec 9.10.7.6.3 a) (p.138)
1267 		 */
1268 		IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
1269 		    "BAR moves BA win <%u:%u> (%u frames) rxseq %u tid %u",
1270 		    rap->rxa_start,
1271 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
1272 		    rap->rxa_qframes, rxseq, tid);
1273 		vap->iv_stats.is_ampdu_bar_move++;
1274 
1275 		ampdu_rx_flush_upto(ni, rap, rxseq);
1276 		if (off >= rap->rxa_wnd) {
1277 			/*
1278 			 * BAR specifies a window start to the right of BA
1279 			 * window; we must move it explicitly since
1280 			 * ampdu_rx_flush_upto will not.
1281 			 */
1282 			rap->rxa_start = rxseq;
1283 		}
1284 	} else {
1285 		/*
1286 		 * Out of range; toss.
1287 		 * Sec 9.10.7.6.3 b) (p.138)
1288 		 */
1289 		IEEE80211_DISCARD_MAC(vap,
1290 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
1291 		    "BAR", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s",
1292 		    rap->rxa_start,
1293 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
1294 		    rap->rxa_qframes, rxseq, tid,
1295 		    wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
1296 		vap->iv_stats.is_ampdu_bar_oow++;
1297 		IEEE80211_NODE_STAT(ni, rx_drop);
1298 	}
1299 }
1300 
1301 /*
1302  * Setup HT-specific state in a node.  Called only
1303  * when HT use is negotiated so we don't do extra
1304  * work for temporary and/or legacy sta's.
1305  */
1306 void
1307 ieee80211_ht_node_init(struct ieee80211_node *ni)
1308 {
1309 	struct ieee80211_tx_ampdu *tap;
1310 	int tid;
1311 
1312 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
1313 	    ni,
1314 	    "%s: called (%p)",
1315 	    __func__,
1316 	    ni);
1317 
1318 	if (ni->ni_flags & IEEE80211_NODE_HT) {
1319 		/*
1320 		 * Clean AMPDU state on re-associate.  This handles the case
1321 		 * where a station leaves w/o notifying us and then returns
1322 		 * before node is reaped for inactivity.
1323 		 */
1324 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
1325 		    ni,
1326 		    "%s: calling cleanup (%p)",
1327 		    __func__, ni);
1328 		ieee80211_ht_node_cleanup(ni);
1329 	}
1330 	for (tid = 0; tid < WME_NUM_TID; tid++) {
1331 		tap = &ni->ni_tx_ampdu[tid];
1332 		tap->txa_tid = tid;
1333 		tap->txa_ni = ni;
1334 		ieee80211_txampdu_init_pps(tap);
1335 		/* NB: further initialization deferred */
1336 		ieee80211_ampdu_rx_init_rap(ni, &ni->ni_rx_ampdu[tid]);
1337 	}
1338 	ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU |
1339 	    IEEE80211_NODE_AMSDU;
1340 }
1341 
1342 /*
1343  * Cleanup HT-specific state in a node.  Called only
1344  * when HT use has been marked.
1345  */
1346 void
1347 ieee80211_ht_node_cleanup(struct ieee80211_node *ni)
1348 {
1349 	struct ieee80211com *ic = ni->ni_ic;
1350 	int i;
1351 
1352 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
1353 	    ni,
1354 	    "%s: called (%p)",
1355 	    __func__, ni);
1356 
1357 	KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT node"));
1358 
1359 	/* XXX optimize this */
1360 	for (i = 0; i < WME_NUM_TID; i++) {
1361 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[i];
1362 		if (tap->txa_flags & IEEE80211_AGGR_SETUP)
1363 			ampdu_tx_stop(tap);
1364 	}
1365 	for (i = 0; i < WME_NUM_TID; i++)
1366 		ic->ic_ampdu_rx_stop(ni, &ni->ni_rx_ampdu[i]);
1367 
1368 	ni->ni_htcap = 0;
1369 	ni->ni_flags &= ~IEEE80211_NODE_HT_ALL;
1370 }
1371 
1372 /*
1373  * Age out HT resources for a station.
1374  */
1375 void
1376 ieee80211_ht_node_age(struct ieee80211_node *ni)
1377 {
1378 	struct ieee80211vap *vap = ni->ni_vap;
1379 	uint8_t tid;
1380 
1381 	KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta"));
1382 
1383 	for (tid = 0; tid < WME_NUM_TID; tid++) {
1384 		struct ieee80211_rx_ampdu *rap;
1385 
1386 		rap = &ni->ni_rx_ampdu[tid];
1387 		if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0)
1388 			continue;
1389 		if (rap->rxa_qframes == 0)
1390 			continue;
1391 		/*
1392 		 * Check for frames sitting too long in the reorder queue.
1393 		 * See above for more details on what's happening here.
1394 		 */
1395 		/* XXX honor batimeout? */
1396 		if (ticks - rap->rxa_age > ieee80211_ampdu_age) {
1397 			/*
1398 			 * Too long since we received the first
1399 			 * frame; flush the reorder buffer.
1400 			 */
1401 			vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes;
1402 			ampdu_rx_flush(ni, rap);
1403 		}
1404 	}
1405 }
1406 
1407 static struct ieee80211_channel *
1408 findhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int htflags)
1409 {
1410 	return ieee80211_find_channel(ic, c->ic_freq,
1411 	    (c->ic_flags &~ IEEE80211_CHAN_HT) | htflags);
1412 }
1413 
1414 /*
1415  * Adjust a channel to be HT/non-HT according to the vap's configuration.
1416  */
1417 struct ieee80211_channel *
1418 ieee80211_ht_adjust_channel(struct ieee80211com *ic,
1419 	struct ieee80211_channel *chan, int flags)
1420 {
1421 	struct ieee80211_channel *c;
1422 
1423 	if (flags & IEEE80211_FHT_HT) {
1424 		/* promote to HT if possible */
1425 		if (flags & IEEE80211_FHT_USEHT40) {
1426 			if (!IEEE80211_IS_CHAN_HT40(chan)) {
1427 				/* NB: arbitrarily pick ht40+ over ht40- */
1428 				c = findhtchan(ic, chan, IEEE80211_CHAN_HT40U);
1429 				if (c == NULL)
1430 					c = findhtchan(ic, chan,
1431 						IEEE80211_CHAN_HT40D);
1432 				if (c == NULL)
1433 					c = findhtchan(ic, chan,
1434 						IEEE80211_CHAN_HT20);
1435 				if (c != NULL)
1436 					chan = c;
1437 			}
1438 		} else if (!IEEE80211_IS_CHAN_HT20(chan)) {
1439 			c = findhtchan(ic, chan, IEEE80211_CHAN_HT20);
1440 			if (c != NULL)
1441 				chan = c;
1442 		}
1443 	} else if (IEEE80211_IS_CHAN_HT(chan)) {
1444 		/* demote to legacy, HT use is disabled */
1445 		c = ieee80211_find_channel(ic, chan->ic_freq,
1446 		    chan->ic_flags &~ IEEE80211_CHAN_HT);
1447 		if (c != NULL)
1448 			chan = c;
1449 	}
1450 	return chan;
1451 }
1452 
1453 /*
1454  * Setup HT-specific state for a legacy WDS peer.
1455  */
1456 void
1457 ieee80211_ht_wds_init(struct ieee80211_node *ni)
1458 {
1459 	struct ieee80211vap *vap = ni->ni_vap;
1460 	struct ieee80211_tx_ampdu *tap;
1461 	int tid;
1462 
1463 	KASSERT(vap->iv_flags_ht & IEEE80211_FHT_HT, ("no HT requested"));
1464 
1465 	/* XXX check scan cache in case peer has an ap and we have info */
1466 	/*
1467 	 * If setup with a legacy channel; locate an HT channel.
1468 	 * Otherwise if the inherited channel (from a companion
1469 	 * AP) is suitable use it so we use the same location
1470 	 * for the extension channel).
1471 	 */
1472 	ni->ni_chan = ieee80211_ht_adjust_channel(ni->ni_ic,
1473 	    ni->ni_chan, ieee80211_htchanflags(ni->ni_chan));
1474 
1475 	ni->ni_htcap = 0;
1476 	if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)
1477 		ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI20;
1478 	if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
1479 		ni->ni_htcap |= IEEE80211_HTCAP_CHWIDTH40;
1480 		ni->ni_chw = 40;
1481 		if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
1482 			ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_ABOVE;
1483 		else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
1484 			ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_BELOW;
1485 		if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)
1486 			ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI40;
1487 	} else {
1488 		ni->ni_chw = 20;
1489 		ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_NONE;
1490 	}
1491 	ni->ni_htctlchan = ni->ni_chan->ic_ieee;
1492 	if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
1493 		ni->ni_flags |= IEEE80211_NODE_RIFS;
1494 	/* XXX does it make sense to enable SMPS? */
1495 
1496 	ni->ni_htopmode = 0;		/* XXX need protection state */
1497 	ni->ni_htstbc = 0;		/* XXX need info */
1498 
1499 	for (tid = 0; tid < WME_NUM_TID; tid++) {
1500 		tap = &ni->ni_tx_ampdu[tid];
1501 		tap->txa_tid = tid;
1502 		ieee80211_txampdu_init_pps(tap);
1503 	}
1504 	/* NB: AMPDU tx/rx governed by IEEE80211_FHT_AMPDU_{TX,RX} */
1505 	ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU |
1506 	    IEEE80211_NODE_AMSDU;
1507 }
1508 
1509 /*
1510  * Notify a VAP of a change in the HTINFO ie if it's a hostap VAP.
1511  *
1512  * This is to be called from the deferred HT protection update
1513  * task once the flags are updated.
1514  */
1515 void
1516 ieee80211_htinfo_notify(struct ieee80211vap *vap)
1517 {
1518 
1519 	IEEE80211_LOCK_ASSERT(vap->iv_ic);
1520 
1521 	if (vap->iv_opmode != IEEE80211_M_HOSTAP)
1522 		return;
1523 	if (vap->iv_state != IEEE80211_S_RUN ||
1524 	    !IEEE80211_IS_CHAN_HT(vap->iv_bss->ni_chan))
1525 		return;
1526 
1527 	IEEE80211_NOTE(vap,
1528 	    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N,
1529 	    vap->iv_bss,
1530 	    "HT bss occupancy change: %d sta, %d ht, "
1531 	    "%d ht40%s, HT protmode now 0x%x"
1532 	    , vap->iv_sta_assoc
1533 	    , vap->iv_ht_sta_assoc
1534 	    , vap->iv_ht40_sta_assoc
1535 	    , (vap->iv_flags_ht & IEEE80211_FHT_NONHT_PR) ?
1536 		 ", non-HT sta present" : ""
1537 	    , vap->iv_curhtprotmode);
1538 
1539 	ieee80211_beacon_notify(vap, IEEE80211_BEACON_HTINFO);
1540 }
1541 
1542 /*
1543  * Calculate HT protection mode from current
1544  * state and handle updates.
1545  */
1546 static void
1547 htinfo_update(struct ieee80211vap *vap)
1548 {
1549 	struct ieee80211com *ic = vap->iv_ic;
1550 	uint8_t protmode;
1551 
1552 	if (vap->iv_sta_assoc != vap->iv_ht_sta_assoc) {
1553 		protmode = IEEE80211_HTINFO_OPMODE_MIXED
1554 			 | IEEE80211_HTINFO_NONHT_PRESENT;
1555 	} else if (vap->iv_flags_ht & IEEE80211_FHT_NONHT_PR) {
1556 		protmode = IEEE80211_HTINFO_OPMODE_PROTOPT
1557 			 | IEEE80211_HTINFO_NONHT_PRESENT;
1558 	} else if (ic->ic_bsschan != IEEE80211_CHAN_ANYC &&
1559 	    IEEE80211_IS_CHAN_HT40(ic->ic_bsschan) &&
1560 	    vap->iv_sta_assoc != vap->iv_ht40_sta_assoc) {
1561 		protmode = IEEE80211_HTINFO_OPMODE_HT20PR;
1562 	} else {
1563 		protmode = IEEE80211_HTINFO_OPMODE_PURE;
1564 	}
1565 	if (protmode != vap->iv_curhtprotmode) {
1566 		vap->iv_curhtprotmode = protmode;
1567 		/* Update VAP with new protection mode */
1568 		ieee80211_vap_update_ht_protmode(vap);
1569 	}
1570 }
1571 
1572 /*
1573  * Handle an HT station joining a BSS.
1574  */
1575 void
1576 ieee80211_ht_node_join(struct ieee80211_node *ni)
1577 {
1578 	struct ieee80211vap *vap = ni->ni_vap;
1579 
1580 	IEEE80211_LOCK_ASSERT(vap->iv_ic);
1581 
1582 	if (ni->ni_flags & IEEE80211_NODE_HT) {
1583 		vap->iv_ht_sta_assoc++;
1584 		if (ni->ni_chw == 40)
1585 			vap->iv_ht40_sta_assoc++;
1586 	}
1587 	htinfo_update(vap);
1588 }
1589 
1590 /*
1591  * Handle an HT station leaving a BSS.
1592  */
1593 void
1594 ieee80211_ht_node_leave(struct ieee80211_node *ni)
1595 {
1596 	struct ieee80211vap *vap = ni->ni_vap;
1597 
1598 	IEEE80211_LOCK_ASSERT(vap->iv_ic);
1599 
1600 	if (ni->ni_flags & IEEE80211_NODE_HT) {
1601 		vap->iv_ht_sta_assoc--;
1602 		if (ni->ni_chw == 40)
1603 			vap->iv_ht40_sta_assoc--;
1604 	}
1605 	htinfo_update(vap);
1606 }
1607 
1608 /*
1609  * Public version of htinfo_update; used for processing
1610  * beacon frames from overlapping bss.
1611  *
1612  * Caller can specify either IEEE80211_HTINFO_OPMODE_MIXED
1613  * (on receipt of a beacon that advertises MIXED) or
1614  * IEEE80211_HTINFO_OPMODE_PROTOPT (on receipt of a beacon
1615  * from an overlapping legacy bss).  We treat MIXED with
1616  * a higher precedence than PROTOPT (i.e. we will not change
1617  * change PROTOPT -> MIXED; only MIXED -> PROTOPT).  This
1618  * corresponds to how we handle things in htinfo_update.
1619  *
1620  */
1621 void
1622 ieee80211_htprot_update(struct ieee80211vap *vap, int protmode)
1623 {
1624 	struct ieee80211com *ic = vap->iv_ic;
1625 #define	OPMODE(x)	_IEEE80211_SHIFTMASK(x, IEEE80211_HTINFO_OPMODE)
1626 	IEEE80211_LOCK(ic);
1627 
1628 	/* track non-HT station presence */
1629 	KASSERT(protmode & IEEE80211_HTINFO_NONHT_PRESENT,
1630 	    ("protmode 0x%x", protmode));
1631 	vap->iv_flags_ht |= IEEE80211_FHT_NONHT_PR;
1632 	vap->iv_lastnonht = ticks;
1633 
1634 	if (protmode != vap->iv_curhtprotmode &&
1635 	    (OPMODE(vap->iv_curhtprotmode) != IEEE80211_HTINFO_OPMODE_MIXED ||
1636 	     OPMODE(protmode) == IEEE80211_HTINFO_OPMODE_PROTOPT)) {
1637 		vap->iv_curhtprotmode = protmode;
1638 		/* Update VAP with new protection mode */
1639 		ieee80211_vap_update_ht_protmode(vap);
1640 	}
1641 	IEEE80211_UNLOCK(ic);
1642 #undef OPMODE
1643 }
1644 
1645 /*
1646  * Time out presence of an overlapping bss with non-HT
1647  * stations.  When operating in hostap mode we listen for
1648  * beacons from other stations and if we identify a non-HT
1649  * station is present we update the opmode field of the
1650  * HTINFO ie.  To identify when all non-HT stations are
1651  * gone we time out this condition.
1652  */
1653 void
1654 ieee80211_ht_timeout(struct ieee80211vap *vap)
1655 {
1656 
1657 	IEEE80211_LOCK_ASSERT(vap->iv_ic);
1658 
1659 	if ((vap->iv_flags_ht & IEEE80211_FHT_NONHT_PR) &&
1660 	    ieee80211_time_after(ticks, vap->iv_lastnonht + IEEE80211_NONHT_PRESENT_AGE)) {
1661 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N,
1662 		    "%s", "time out non-HT STA present on channel");
1663 		vap->iv_flags_ht &= ~IEEE80211_FHT_NONHT_PR;
1664 		htinfo_update(vap);
1665 	}
1666 }
1667 
1668 /*
1669  * Process an 802.11n HT capabilities ie.
1670  */
1671 void
1672 ieee80211_parse_htcap(struct ieee80211_node *ni, const uint8_t *ie)
1673 {
1674 	if (ie[0] == IEEE80211_ELEMID_VENDOR) {
1675 		/*
1676 		 * Station used Vendor OUI ie to associate;
1677 		 * mark the node so when we respond we'll use
1678 		 * the Vendor OUI's and not the standard ie's.
1679 		 */
1680 		ni->ni_flags |= IEEE80211_NODE_HTCOMPAT;
1681 		ie += 4;
1682 	} else
1683 		ni->ni_flags &= ~IEEE80211_NODE_HTCOMPAT;
1684 
1685 	ni->ni_htcap = le16dec(ie +
1686 		__offsetof(struct ieee80211_ie_htcap, hc_cap));
1687 	ni->ni_htparam = ie[__offsetof(struct ieee80211_ie_htcap, hc_param)];
1688 }
1689 
1690 static void
1691 htinfo_parse(struct ieee80211_node *ni,
1692 	const struct ieee80211_ie_htinfo *htinfo)
1693 {
1694 	uint16_t w;
1695 
1696 	ni->ni_htctlchan = htinfo->hi_ctrlchannel;
1697 	ni->ni_ht2ndchan = _IEEE80211_SHIFTMASK(htinfo->hi_byte1,
1698 	    IEEE80211_HTINFO_2NDCHAN);
1699 	w = le16dec(&htinfo->hi_byte2);
1700 	ni->ni_htopmode = _IEEE80211_SHIFTMASK(w, IEEE80211_HTINFO_OPMODE);
1701 	w = le16dec(&htinfo->hi_byte45);
1702 	ni->ni_htstbc = _IEEE80211_SHIFTMASK(w, IEEE80211_HTINFO_BASIC_STBCMCS);
1703 }
1704 
1705 /*
1706  * Parse an 802.11n HT info ie and save useful information
1707  * to the node state.  Note this does not effect any state
1708  * changes such as for channel width change.
1709  */
1710 void
1711 ieee80211_parse_htinfo(struct ieee80211_node *ni, const uint8_t *ie)
1712 {
1713 	if (ie[0] == IEEE80211_ELEMID_VENDOR)
1714 		ie += 4;
1715 	htinfo_parse(ni, (const struct ieee80211_ie_htinfo *) ie);
1716 }
1717 
1718 /*
1719  * Handle 11n/11ac channel switch.
1720  *
1721  * Use the received HT/VHT ie's to identify the right channel to use.
1722  * If we cannot locate it in the channel table then fallback to
1723  * legacy operation.
1724  *
1725  * Note that we use this information to identify the node's
1726  * channel only; the caller is responsible for insuring any
1727  * required channel change is done (e.g. in sta mode when
1728  * parsing the contents of a beacon frame).
1729  */
1730 static int
1731 htinfo_update_chw(struct ieee80211_node *ni, int htflags, int vhtflags)
1732 {
1733 	struct ieee80211com *ic = ni->ni_ic;
1734 	struct ieee80211_channel *c;
1735 	int chanflags;
1736 	int ret = 0;
1737 
1738 	/*
1739 	 * First step - do HT/VHT only channel lookup based on operating mode
1740 	 * flags.  This involves masking out the VHT flags as well.
1741 	 * Otherwise we end up doing the full channel walk each time
1742 	 * we trigger this, which is expensive.
1743 	 */
1744 	chanflags = (ni->ni_chan->ic_flags &~
1745 	    (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags | vhtflags;
1746 
1747 	if (chanflags == ni->ni_chan->ic_flags)
1748 		goto done;
1749 
1750 	/*
1751 	 * If HT /or/ VHT flags have changed then check both.
1752 	 * We need to start by picking a HT channel anyway.
1753 	 */
1754 
1755 	c = NULL;
1756 	chanflags = (ni->ni_chan->ic_flags &~
1757 	    (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags;
1758 	/* XXX not right for ht40- */
1759 	c = ieee80211_find_channel(ic, ni->ni_chan->ic_freq, chanflags);
1760 	if (c == NULL && (htflags & IEEE80211_CHAN_HT40)) {
1761 		/*
1762 		 * No HT40 channel entry in our table; fall back
1763 		 * to HT20 operation.  This should not happen.
1764 		 */
1765 		c = findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT20);
1766 #if 0
1767 		IEEE80211_NOTE(ni->ni_vap,
1768 		    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni,
1769 		    "no HT40 channel (freq %u), falling back to HT20",
1770 		    ni->ni_chan->ic_freq);
1771 #endif
1772 		/* XXX stat */
1773 	}
1774 
1775 	/* Nothing found - leave it alone; move onto VHT */
1776 	if (c == NULL)
1777 		c = ni->ni_chan;
1778 
1779 	/*
1780 	 * If it's non-HT, then bail out now.
1781 	 */
1782 	if (! IEEE80211_IS_CHAN_HT(c)) {
1783 		IEEE80211_NOTE(ni->ni_vap,
1784 		    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni,
1785 		    "not HT; skipping VHT check (%u/0x%x)",
1786 		    c->ic_freq, c->ic_flags);
1787 		goto done;
1788 	}
1789 
1790 	/*
1791 	 * Next step - look at the current VHT flags and determine
1792 	 * if we need to upgrade.  Mask out the VHT and HT flags since
1793 	 * the vhtflags field will already have the correct HT
1794 	 * flags to use.
1795 	 */
1796 	if (IEEE80211_CONF_VHT(ic) && ni->ni_vhtcap != 0 && vhtflags != 0) {
1797 		chanflags = (c->ic_flags
1798 		    &~ (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT))
1799 		    | vhtflags;
1800 		IEEE80211_NOTE(ni->ni_vap,
1801 		    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N,
1802 		    ni,
1803 		    "%s: VHT; chanwidth=0x%02x; vhtflags=0x%08x",
1804 		    __func__, ni->ni_vht_chanwidth, vhtflags);
1805 
1806 		IEEE80211_NOTE(ni->ni_vap,
1807 		    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N,
1808 		    ni,
1809 		    "%s: VHT; trying lookup for %d/0x%08x",
1810 		    __func__, c->ic_freq, chanflags);
1811 		c = ieee80211_find_channel(ic, c->ic_freq, chanflags);
1812 	}
1813 
1814 	/* Finally, if it's changed */
1815 	if (c != NULL && c != ni->ni_chan) {
1816 		IEEE80211_NOTE(ni->ni_vap,
1817 		    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni,
1818 		    "switch station to %s%d channel %u/0x%x",
1819 		    IEEE80211_IS_CHAN_VHT(c) ? "VHT" : "HT",
1820 		    IEEE80211_IS_CHAN_VHT80(c) ? 80 :
1821 		      (IEEE80211_IS_CHAN_HT40(c) ? 40 : 20),
1822 		    c->ic_freq, c->ic_flags);
1823 		ni->ni_chan = c;
1824 		ret = 1;
1825 	}
1826 	/* NB: caller responsible for forcing any channel change */
1827 
1828 done:
1829 	/* update node's (11n) tx channel width */
1830 	ni->ni_chw = IEEE80211_IS_CHAN_HT40(ni->ni_chan)? 40 : 20;
1831 	return (ret);
1832 }
1833 
1834 /*
1835  * Update 11n MIMO PS state according to received htcap.
1836  */
1837 static __inline int
1838 htcap_update_mimo_ps(struct ieee80211_node *ni)
1839 {
1840 	uint16_t oflags = ni->ni_flags;
1841 
1842 	switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
1843 	case IEEE80211_HTCAP_SMPS_DYNAMIC:
1844 		ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
1845 		ni->ni_flags |= IEEE80211_NODE_MIMO_RTS;
1846 		break;
1847 	case IEEE80211_HTCAP_SMPS_ENA:
1848 		ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
1849 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
1850 		break;
1851 	case IEEE80211_HTCAP_SMPS_OFF:
1852 	default:		/* disable on rx of reserved value */
1853 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS;
1854 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
1855 		break;
1856 	}
1857 	return (oflags ^ ni->ni_flags);
1858 }
1859 
1860 /*
1861  * Update short GI state according to received htcap
1862  * and local settings.
1863  */
1864 static __inline void
1865 htcap_update_shortgi(struct ieee80211_node *ni)
1866 {
1867 	struct ieee80211vap *vap = ni->ni_vap;
1868 
1869 	ni->ni_flags &= ~(IEEE80211_NODE_SGI20|IEEE80211_NODE_SGI40);
1870 	if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) &&
1871 	    (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20))
1872 		ni->ni_flags |= IEEE80211_NODE_SGI20;
1873 	if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) &&
1874 	    (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40))
1875 		ni->ni_flags |= IEEE80211_NODE_SGI40;
1876 }
1877 
1878 /*
1879  * Update LDPC state according to received htcap
1880  * and local settings.
1881  */
1882 static __inline void
1883 htcap_update_ldpc(struct ieee80211_node *ni)
1884 {
1885 	struct ieee80211vap *vap = ni->ni_vap;
1886 
1887 	if ((ni->ni_htcap & IEEE80211_HTCAP_LDPC) &&
1888 	    (vap->iv_flags_ht & IEEE80211_FHT_LDPC_TX))
1889 		ni->ni_flags |= IEEE80211_NODE_LDPC;
1890 }
1891 
1892 /*
1893  * Parse and update HT-related state extracted from
1894  * the HT cap and info ie's.
1895  *
1896  * This is called from the STA management path and
1897  * the ieee80211_node_join() path.  It will take into
1898  * account the IEs discovered during scanning and
1899  * adjust things accordingly.
1900  */
1901 void
1902 ieee80211_ht_updateparams(struct ieee80211_node *ni,
1903 	const uint8_t *htcapie, const uint8_t *htinfoie)
1904 {
1905 	struct ieee80211vap *vap = ni->ni_vap;
1906 	const struct ieee80211_ie_htinfo *htinfo;
1907 
1908 	ieee80211_parse_htcap(ni, htcapie);
1909 	if (vap->iv_htcaps & IEEE80211_HTC_SMPS)
1910 		htcap_update_mimo_ps(ni);
1911 	htcap_update_shortgi(ni);
1912 	htcap_update_ldpc(ni);
1913 
1914 	if (htinfoie[0] == IEEE80211_ELEMID_VENDOR)
1915 		htinfoie += 4;
1916 	htinfo = (const struct ieee80211_ie_htinfo *) htinfoie;
1917 	htinfo_parse(ni, htinfo);
1918 
1919 	/*
1920 	 * Defer the node channel change; we need to now
1921 	 * update VHT parameters before we do it.
1922 	 */
1923 
1924 	if ((htinfo->hi_byte1 & IEEE80211_HTINFO_RIFSMODE_PERM) &&
1925 	    (vap->iv_flags_ht & IEEE80211_FHT_RIFS))
1926 		ni->ni_flags |= IEEE80211_NODE_RIFS;
1927 	else
1928 		ni->ni_flags &= ~IEEE80211_NODE_RIFS;
1929 }
1930 
1931 static uint32_t
1932 ieee80211_vht_get_vhtflags(struct ieee80211_node *ni, uint32_t htflags)
1933 {
1934 	struct ieee80211vap *vap = ni->ni_vap;
1935 	uint32_t vhtflags = 0;
1936 
1937 	vhtflags = 0;
1938 	if (ni->ni_flags & IEEE80211_NODE_VHT && vap->iv_flags_vht & IEEE80211_FVHT_VHT) {
1939 		if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_160MHZ) &&
1940 		    /* XXX 2 means "160MHz and 80+80MHz", 1 means "160MHz" */
1941 		    (_IEEE80211_MASKSHIFT(vap->iv_vhtcaps,
1942 		     IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) >= 1) &&
1943 		    (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT160)) {
1944 			vhtflags = IEEE80211_CHAN_VHT160;
1945 			/* Mirror the HT40 flags */
1946 			if (htflags == IEEE80211_CHAN_HT40U) {
1947 				vhtflags |= IEEE80211_CHAN_HT40U;
1948 			} else if (htflags == IEEE80211_CHAN_HT40D) {
1949 				vhtflags |= IEEE80211_CHAN_HT40D;
1950 			}
1951 		} else if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_80P80MHZ) &&
1952 		    /* XXX 2 means "160MHz and 80+80MHz" */
1953 		    (_IEEE80211_MASKSHIFT(vap->iv_vhtcaps,
1954 		     IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) == 2) &&
1955 		    (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT80P80)) {
1956 			vhtflags = IEEE80211_CHAN_VHT80P80;
1957 			/* Mirror the HT40 flags */
1958 			if (htflags == IEEE80211_CHAN_HT40U) {
1959 				vhtflags |= IEEE80211_CHAN_HT40U;
1960 			} else if (htflags == IEEE80211_CHAN_HT40D) {
1961 				vhtflags |= IEEE80211_CHAN_HT40D;
1962 			}
1963 		} else if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_80MHZ) &&
1964 		    (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT80)) {
1965 			vhtflags = IEEE80211_CHAN_VHT80;
1966 			/* Mirror the HT40 flags */
1967 			if (htflags == IEEE80211_CHAN_HT40U) {
1968 				vhtflags |= IEEE80211_CHAN_HT40U;
1969 			} else if (htflags == IEEE80211_CHAN_HT40D) {
1970 				vhtflags |= IEEE80211_CHAN_HT40D;
1971 			}
1972 		} else if (ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_USE_HT) {
1973 			/* Mirror the HT40 flags */
1974 			/*
1975 			 * XXX TODO: if ht40 is disabled, but vht40 isn't
1976 			 * disabled then this logic will get very, very sad.
1977 			 * It's quite possible the only sane thing to do is
1978 			 * to not have vht40 as an option, and just obey
1979 			 * 'ht40' as that flag.
1980 			 */
1981 			if ((htflags == IEEE80211_CHAN_HT40U) &&
1982 			    (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT40)) {
1983 				vhtflags = IEEE80211_CHAN_VHT40U
1984 				    | IEEE80211_CHAN_HT40U;
1985 			} else if (htflags == IEEE80211_CHAN_HT40D &&
1986 			    (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT40)) {
1987 				vhtflags = IEEE80211_CHAN_VHT40D
1988 				    | IEEE80211_CHAN_HT40D;
1989 			} else if (htflags == IEEE80211_CHAN_HT20) {
1990 				vhtflags = IEEE80211_CHAN_VHT20
1991 				    | IEEE80211_CHAN_HT20;
1992 			}
1993 		} else {
1994 			vhtflags = IEEE80211_CHAN_VHT20;
1995 		}
1996 	}
1997 	return (vhtflags);
1998 }
1999 
2000 /*
2001  * Final part of updating the HT parameters.
2002  *
2003  * This is called from the STA management path and
2004  * the ieee80211_node_join() path.  It will take into
2005  * account the IEs discovered during scanning and
2006  * adjust things accordingly.
2007  *
2008  * This is done after a call to ieee80211_ht_updateparams()
2009  * because it (and the upcoming VHT version of updateparams)
2010  * needs to ensure everything is parsed before htinfo_update_chw()
2011  * is called - which will change the channel config for the
2012  * node for us.
2013  */
2014 int
2015 ieee80211_ht_updateparams_final(struct ieee80211_node *ni,
2016 	const uint8_t *htcapie, const uint8_t *htinfoie)
2017 {
2018 	struct ieee80211vap *vap = ni->ni_vap;
2019 	const struct ieee80211_ie_htinfo *htinfo;
2020 	int htflags, vhtflags;
2021 	int ret = 0;
2022 
2023 	htinfo = (const struct ieee80211_ie_htinfo *) htinfoie;
2024 
2025 	htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ?
2026 	    IEEE80211_CHAN_HT20 : 0;
2027 
2028 	/* NB: honor operating mode constraint */
2029 	if ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH_2040) &&
2030 	    (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) {
2031 		if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_ABOVE)
2032 			htflags = IEEE80211_CHAN_HT40U;
2033 		else if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_BELOW)
2034 			htflags = IEEE80211_CHAN_HT40D;
2035 	}
2036 
2037 	/*
2038 	 * VHT flags - do much the same; check whether VHT is available
2039 	 * and if so, what our ideal channel use would be based on our
2040 	 * capabilities and the (pre-parsed) VHT info IE.
2041 	 */
2042 	vhtflags = ieee80211_vht_get_vhtflags(ni, htflags);
2043 
2044 	if (htinfo_update_chw(ni, htflags, vhtflags))
2045 		ret = 1;
2046 
2047 	return (ret);
2048 }
2049 
2050 /*
2051  * Parse and update HT-related state extracted from the HT cap ie
2052  * for a station joining an HT BSS.
2053  *
2054  * This is called from the hostap path for each station.
2055  */
2056 void
2057 ieee80211_ht_updatehtcap(struct ieee80211_node *ni, const uint8_t *htcapie)
2058 {
2059 	struct ieee80211vap *vap = ni->ni_vap;
2060 
2061 	ieee80211_parse_htcap(ni, htcapie);
2062 	if (vap->iv_htcaps & IEEE80211_HTC_SMPS)
2063 		htcap_update_mimo_ps(ni);
2064 	htcap_update_shortgi(ni);
2065 	htcap_update_ldpc(ni);
2066 }
2067 
2068 /*
2069  * Called once HT and VHT capabilities are parsed in hostap mode -
2070  * this will adjust the channel configuration of the given node
2071  * based on the configuration and capabilities.
2072  */
2073 void
2074 ieee80211_ht_updatehtcap_final(struct ieee80211_node *ni)
2075 {
2076 	struct ieee80211vap *vap = ni->ni_vap;
2077 	int htflags;
2078 	int vhtflags;
2079 
2080 	/* NB: honor operating mode constraint */
2081 	/* XXX 40 MHz intolerant */
2082 	htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ?
2083 	    IEEE80211_CHAN_HT20 : 0;
2084 	if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) &&
2085 	    (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) {
2086 		if (IEEE80211_IS_CHAN_HT40U(vap->iv_bss->ni_chan))
2087 			htflags = IEEE80211_CHAN_HT40U;
2088 		else if (IEEE80211_IS_CHAN_HT40D(vap->iv_bss->ni_chan))
2089 			htflags = IEEE80211_CHAN_HT40D;
2090 	}
2091 	/*
2092 	 * VHT flags - do much the same; check whether VHT is available
2093 	 * and if so, what our ideal channel use would be based on our
2094 	 * capabilities and the (pre-parsed) VHT info IE.
2095 	 */
2096 	vhtflags = ieee80211_vht_get_vhtflags(ni, htflags);
2097 
2098 	(void) htinfo_update_chw(ni, htflags, vhtflags);
2099 }
2100 
2101 /*
2102  * Install received HT rate set by parsing the HT cap ie.
2103  */
2104 int
2105 ieee80211_setup_htrates(struct ieee80211_node *ni, const uint8_t *ie, int flags)
2106 {
2107 	struct ieee80211com *ic = ni->ni_ic;
2108 	struct ieee80211vap *vap = ni->ni_vap;
2109 	const struct ieee80211_ie_htcap *htcap;
2110 	struct ieee80211_htrateset *rs;
2111 	int i, maxequalmcs, maxunequalmcs;
2112 
2113 	maxequalmcs = ic->ic_txstream * 8 - 1;
2114 	maxunequalmcs = 0;
2115 	if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) {
2116 		if (ic->ic_txstream >= 2)
2117 			maxunequalmcs = 38;
2118 		if (ic->ic_txstream >= 3)
2119 			maxunequalmcs = 52;
2120 		if (ic->ic_txstream >= 4)
2121 			maxunequalmcs = 76;
2122 	}
2123 
2124 	rs = &ni->ni_htrates;
2125 	memset(rs, 0, sizeof(*rs));
2126 	if (ie != NULL) {
2127 		if (ie[0] == IEEE80211_ELEMID_VENDOR)
2128 			ie += 4;
2129 		htcap = (const struct ieee80211_ie_htcap *) ie;
2130 		for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) {
2131 			if (isclr(htcap->hc_mcsset, i))
2132 				continue;
2133 			if (rs->rs_nrates == IEEE80211_HTRATE_MAXSIZE) {
2134 				IEEE80211_NOTE(vap,
2135 				    IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
2136 				    "WARNING, HT rate set too large; only "
2137 				    "using %u rates", IEEE80211_HTRATE_MAXSIZE);
2138 				vap->iv_stats.is_rx_rstoobig++;
2139 				break;
2140 			}
2141 			if (i <= 31 && i > maxequalmcs)
2142 				continue;
2143 			if (i == 32 &&
2144 			    (ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0)
2145 				continue;
2146 			if (i > 32 && i > maxunequalmcs)
2147 				continue;
2148 			rs->rs_rates[rs->rs_nrates++] = i;
2149 		}
2150 	}
2151 	return ieee80211_fix_rate(ni, (struct ieee80211_rateset *) rs, flags);
2152 }
2153 
2154 /*
2155  * Mark rates in a node's HT rate set as basic according
2156  * to the information in the supplied HT info ie.
2157  */
2158 void
2159 ieee80211_setup_basic_htrates(struct ieee80211_node *ni, const uint8_t *ie)
2160 {
2161 	const struct ieee80211_ie_htinfo *htinfo;
2162 	struct ieee80211_htrateset *rs;
2163 	int i, j;
2164 
2165 	if (ie[0] == IEEE80211_ELEMID_VENDOR)
2166 		ie += 4;
2167 	htinfo = (const struct ieee80211_ie_htinfo *) ie;
2168 	rs = &ni->ni_htrates;
2169 	if (rs->rs_nrates == 0) {
2170 		IEEE80211_NOTE(ni->ni_vap,
2171 		    IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
2172 		    "%s", "WARNING, empty HT rate set");
2173 		return;
2174 	}
2175 	for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) {
2176 		if (isclr(htinfo->hi_basicmcsset, i))
2177 			continue;
2178 		for (j = 0; j < rs->rs_nrates; j++)
2179 			if ((rs->rs_rates[j] & IEEE80211_RATE_VAL) == i)
2180 				rs->rs_rates[j] |= IEEE80211_RATE_BASIC;
2181 	}
2182 }
2183 
2184 static void
2185 ampdu_tx_setup(struct ieee80211_tx_ampdu *tap)
2186 {
2187 	callout_init(&tap->txa_timer, 1);
2188 	tap->txa_flags |= IEEE80211_AGGR_SETUP;
2189 	tap->txa_lastsample = ticks;
2190 }
2191 
2192 static void
2193 ampdu_tx_stop(struct ieee80211_tx_ampdu *tap)
2194 {
2195 	struct ieee80211_node *ni = tap->txa_ni;
2196 	struct ieee80211com *ic = ni->ni_ic;
2197 
2198 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2199 	    tap->txa_ni,
2200 	    "%s: called",
2201 	    __func__);
2202 
2203 	KASSERT(tap->txa_flags & IEEE80211_AGGR_SETUP,
2204 	    ("txa_flags 0x%x tid %d ac %d", tap->txa_flags, tap->txa_tid,
2205 	    TID_TO_WME_AC(tap->txa_tid)));
2206 
2207 	/*
2208 	 * Stop BA stream if setup so driver has a chance
2209 	 * to reclaim any resources it might have allocated.
2210 	 */
2211 	ic->ic_addba_stop(ni, tap);
2212 	/*
2213 	 * Stop any pending BAR transmit.
2214 	 */
2215 	bar_stop_timer(tap);
2216 
2217 	/*
2218 	 * Reset packet estimate.
2219 	 */
2220 	ieee80211_txampdu_init_pps(tap);
2221 
2222 	/* NB: clearing NAK means we may re-send ADDBA */
2223 	tap->txa_flags &= ~(IEEE80211_AGGR_SETUP | IEEE80211_AGGR_NAK);
2224 }
2225 
2226 /*
2227  * ADDBA response timeout.
2228  *
2229  * If software aggregation and per-TID queue management was done here,
2230  * that queue would be unpaused after the ADDBA timeout occurs.
2231  */
2232 static void
2233 addba_timeout(void *arg)
2234 {
2235 	struct ieee80211_tx_ampdu *tap = arg;
2236 	struct ieee80211_node *ni = tap->txa_ni;
2237 	struct ieee80211com *ic = ni->ni_ic;
2238 
2239 	/* XXX ? */
2240 	tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND;
2241 	tap->txa_attempts++;
2242 	ic->ic_addba_response_timeout(ni, tap);
2243 }
2244 
2245 static void
2246 addba_start_timeout(struct ieee80211_tx_ampdu *tap)
2247 {
2248 	/* XXX use CALLOUT_PENDING instead? */
2249 	callout_reset(&tap->txa_timer, ieee80211_addba_timeout,
2250 	    addba_timeout, tap);
2251 	tap->txa_flags |= IEEE80211_AGGR_XCHGPEND;
2252 	tap->txa_nextrequest = ticks + ieee80211_addba_timeout;
2253 }
2254 
2255 static void
2256 addba_stop_timeout(struct ieee80211_tx_ampdu *tap)
2257 {
2258 	/* XXX use CALLOUT_PENDING instead? */
2259 	if (tap->txa_flags & IEEE80211_AGGR_XCHGPEND) {
2260 		callout_stop(&tap->txa_timer);
2261 		tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND;
2262 	}
2263 }
2264 
2265 static void
2266 null_addba_response_timeout(struct ieee80211_node *ni,
2267     struct ieee80211_tx_ampdu *tap)
2268 {
2269 }
2270 
2271 /*
2272  * Default method for requesting A-MPDU tx aggregation.
2273  * We setup the specified state block and start a timer
2274  * to wait for an ADDBA response frame.
2275  */
2276 static int
2277 ieee80211_addba_request(struct ieee80211_node *ni,
2278 	struct ieee80211_tx_ampdu *tap,
2279 	int dialogtoken, int baparamset, int batimeout)
2280 {
2281 	int bufsiz;
2282 
2283 	/* XXX locking */
2284 	tap->txa_token = dialogtoken;
2285 	tap->txa_flags |= IEEE80211_AGGR_IMMEDIATE;
2286 	bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ);
2287 	tap->txa_wnd = (bufsiz == 0) ?
2288 	    IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
2289 	addba_start_timeout(tap);
2290 	return 1;
2291 }
2292 
2293 /*
2294  * Called by drivers that wish to request an ADDBA session be
2295  * setup.  This brings it up and starts the request timer.
2296  */
2297 int
2298 ieee80211_ampdu_tx_request_ext(struct ieee80211_node *ni, int tid)
2299 {
2300 	struct ieee80211_tx_ampdu *tap;
2301 
2302 	if (tid < 0 || tid > 15)
2303 		return (0);
2304 	tap = &ni->ni_tx_ampdu[tid];
2305 
2306 	/* XXX locking */
2307 	if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) {
2308 		/* do deferred setup of state */
2309 		ampdu_tx_setup(tap);
2310 	}
2311 	/* XXX hack for not doing proper locking */
2312 	tap->txa_flags &= ~IEEE80211_AGGR_NAK;
2313 	addba_start_timeout(tap);
2314 	return (1);
2315 }
2316 
2317 /*
2318  * Called by drivers that have marked a session as active.
2319  */
2320 int
2321 ieee80211_ampdu_tx_request_active_ext(struct ieee80211_node *ni, int tid,
2322     int status)
2323 {
2324 	struct ieee80211_tx_ampdu *tap;
2325 
2326 	if (tid < 0 || tid > 15)
2327 		return (0);
2328 	tap = &ni->ni_tx_ampdu[tid];
2329 
2330 	/* XXX locking */
2331 	addba_stop_timeout(tap);
2332 	if (status == 1) {
2333 		tap->txa_flags |= IEEE80211_AGGR_RUNNING;
2334 		tap->txa_attempts = 0;
2335 	} else {
2336 		/* mark tid so we don't try again */
2337 		tap->txa_flags |= IEEE80211_AGGR_NAK;
2338 	}
2339 	return (1);
2340 }
2341 
2342 /*
2343  * Default method for processing an A-MPDU tx aggregation
2344  * response.  We shutdown any pending timer and update the
2345  * state block according to the reply.
2346  */
2347 static int
2348 ieee80211_addba_response(struct ieee80211_node *ni,
2349 	struct ieee80211_tx_ampdu *tap,
2350 	int status, int baparamset, int batimeout)
2351 {
2352 	struct ieee80211vap *vap = ni->ni_vap;
2353 	int bufsiz;
2354 
2355 	/* XXX locking */
2356 	addba_stop_timeout(tap);
2357 	if (status == IEEE80211_STATUS_SUCCESS) {
2358 		bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ);
2359 		/* XXX override our request? */
2360 		tap->txa_wnd = (bufsiz == 0) ?
2361 		    IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
2362 #ifdef __notyet__
2363 		tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_TID);
2364 #endif
2365 		tap->txa_flags |= IEEE80211_AGGR_RUNNING;
2366 		tap->txa_attempts = 0;
2367 		/* TODO: this should be a vap flag */
2368 		if ((vap->iv_htcaps & IEEE80211_HTC_TX_AMSDU_AMPDU) &&
2369 		    (ni->ni_flags & IEEE80211_NODE_AMSDU_TX) &&
2370 		    (_IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU)))
2371 			tap->txa_flags |= IEEE80211_AGGR_AMSDU;
2372 		else
2373 			tap->txa_flags &= ~IEEE80211_AGGR_AMSDU;
2374 	} else {
2375 		/* mark tid so we don't try again */
2376 		tap->txa_flags |= IEEE80211_AGGR_NAK;
2377 	}
2378 	return 1;
2379 }
2380 
2381 /*
2382  * Default method for stopping A-MPDU tx aggregation.
2383  * Any timer is cleared and we drain any pending frames.
2384  */
2385 static void
2386 ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
2387 {
2388 	/* XXX locking */
2389 	addba_stop_timeout(tap);
2390 	if (tap->txa_flags & IEEE80211_AGGR_RUNNING) {
2391 		/* XXX clear aggregation queue */
2392 		tap->txa_flags &= ~(IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_AMSDU);
2393 	}
2394 	tap->txa_attempts = 0;
2395 }
2396 
2397 /*
2398  * Process a received action frame using the default aggregation
2399  * policy.  We intercept ADDBA-related frames and use them to
2400  * update our aggregation state.  All other frames are passed up
2401  * for processing by ieee80211_recv_action.
2402  */
2403 static int
2404 ht_recv_action_ba_addba_request(struct ieee80211_node *ni,
2405 	const struct ieee80211_frame *wh,
2406 	const uint8_t *frm, const uint8_t *efrm)
2407 {
2408 	struct ieee80211com *ic = ni->ni_ic;
2409 	struct ieee80211vap *vap = ni->ni_vap;
2410 	struct ieee80211_rx_ampdu *rap;
2411 	uint8_t dialogtoken;
2412 	uint16_t baparamset, batimeout, baseqctl;
2413 	uint16_t args[5];
2414 	int tid;
2415 
2416 	dialogtoken = frm[2];
2417 	baparamset = le16dec(frm+3);
2418 	batimeout = le16dec(frm+5);
2419 	baseqctl = le16dec(frm+7);
2420 
2421 	tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_TID);
2422 
2423 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2424 	    "recv ADDBA request: dialogtoken %u baparamset 0x%x "
2425 	    "(tid %d bufsiz %d) batimeout %d baseqctl %d:%d amsdu %d",
2426 	    dialogtoken, baparamset,
2427 	    tid, _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ),
2428 	    batimeout,
2429 	    _IEEE80211_MASKSHIFT(baseqctl, IEEE80211_BASEQ_START),
2430 	    _IEEE80211_MASKSHIFT(baseqctl, IEEE80211_BASEQ_FRAG),
2431 	    _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU));
2432 
2433 	rap = &ni->ni_rx_ampdu[tid];
2434 
2435 	/* Send ADDBA response */
2436 	args[0] = dialogtoken;
2437 	/*
2438 	 * NB: We ack only if the sta associated with HT and
2439 	 * the ap is configured to do AMPDU rx (the latter
2440 	 * violates the 11n spec and is mostly for testing).
2441 	 */
2442 	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_RX) &&
2443 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX)) {
2444 		/* XXX TODO: handle ampdu_rx_start failure */
2445 		ic->ic_ampdu_rx_start(ni, rap,
2446 		    baparamset, batimeout, baseqctl);
2447 
2448 		args[1] = IEEE80211_STATUS_SUCCESS;
2449 	} else {
2450 		IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2451 		    ni, "reject ADDBA request: %s",
2452 		    ni->ni_flags & IEEE80211_NODE_AMPDU_RX ?
2453 		       "administratively disabled" :
2454 		       "not negotiated for station");
2455 		vap->iv_stats.is_addba_reject++;
2456 		args[1] = IEEE80211_STATUS_UNSPECIFIED;
2457 	}
2458 	/* XXX honor rap flags? */
2459 	args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE
2460 		| _IEEE80211_SHIFTMASK(tid, IEEE80211_BAPS_TID)
2461 		| _IEEE80211_SHIFTMASK(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ)
2462 		;
2463 
2464 	/*
2465 	 * TODO: we're out of iv_flags_ht fields; once
2466 	 * this is extended we should make this configurable.
2467 	 */
2468 	if ((baparamset & IEEE80211_BAPS_AMSDU) &&
2469 	    (ni->ni_flags & IEEE80211_NODE_AMSDU_RX) &&
2470 	    (vap->iv_htcaps & IEEE80211_HTC_RX_AMSDU_AMPDU))
2471 		args[2] |= IEEE80211_BAPS_AMSDU;
2472 
2473 	args[3] = 0;
2474 	args[4] = 0;
2475 	ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
2476 		IEEE80211_ACTION_BA_ADDBA_RESPONSE, args);
2477 	return 0;
2478 }
2479 
2480 static int
2481 ht_recv_action_ba_addba_response(struct ieee80211_node *ni,
2482 	const struct ieee80211_frame *wh,
2483 	const uint8_t *frm, const uint8_t *efrm)
2484 {
2485 	struct ieee80211com *ic = ni->ni_ic;
2486 	struct ieee80211vap *vap = ni->ni_vap;
2487 	struct ieee80211_tx_ampdu *tap;
2488 	uint8_t dialogtoken, policy;
2489 	uint16_t baparamset, batimeout, code;
2490 	int tid;
2491 #ifdef IEEE80211_DEBUG
2492 	int amsdu, bufsiz;
2493 #endif
2494 
2495 	dialogtoken = frm[2];
2496 	code = le16dec(frm+3);
2497 	baparamset = le16dec(frm+5);
2498 	tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_TID);
2499 #ifdef IEEE80211_DEBUG
2500 	bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ);
2501 	amsdu = !! _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU);
2502 #endif
2503 	policy = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_POLICY);
2504 	batimeout = le16dec(frm+7);
2505 
2506 	tap = &ni->ni_tx_ampdu[tid];
2507 	if ((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
2508 		IEEE80211_DISCARD_MAC(vap,
2509 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2510 		    ni->ni_macaddr, "ADDBA response",
2511 		    "no pending ADDBA, tid %d dialogtoken %u "
2512 		    "code %d", tid, dialogtoken, code);
2513 		vap->iv_stats.is_addba_norequest++;
2514 		return 0;
2515 	}
2516 	if (dialogtoken != tap->txa_token) {
2517 		IEEE80211_DISCARD_MAC(vap,
2518 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2519 		    ni->ni_macaddr, "ADDBA response",
2520 		    "dialogtoken mismatch: waiting for %d, "
2521 		    "received %d, tid %d code %d",
2522 		    tap->txa_token, dialogtoken, tid, code);
2523 		vap->iv_stats.is_addba_badtoken++;
2524 		return 0;
2525 	}
2526 	/* NB: assumes IEEE80211_AGGR_IMMEDIATE is 1 */
2527 	if (policy != (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE)) {
2528 		IEEE80211_DISCARD_MAC(vap,
2529 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2530 		    ni->ni_macaddr, "ADDBA response",
2531 		    "policy mismatch: expecting %s, "
2532 		    "received %s, tid %d code %d",
2533 		    tap->txa_flags & IEEE80211_AGGR_IMMEDIATE,
2534 		    policy, tid, code);
2535 		vap->iv_stats.is_addba_badpolicy++;
2536 		return 0;
2537 	}
2538 #if 0
2539 	/* XXX we take MIN in ieee80211_addba_response */
2540 	if (bufsiz > IEEE80211_AGGR_BAWMAX) {
2541 		IEEE80211_DISCARD_MAC(vap,
2542 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2543 		    ni->ni_macaddr, "ADDBA response",
2544 		    "BA window too large: max %d, "
2545 		    "received %d, tid %d code %d",
2546 		    bufsiz, IEEE80211_AGGR_BAWMAX, tid, code);
2547 		vap->iv_stats.is_addba_badbawinsize++;
2548 		return 0;
2549 	}
2550 #endif
2551 
2552 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2553 	    "recv ADDBA response: dialogtoken %u code %d "
2554 	    "baparamset 0x%x (tid %d bufsiz %d amsdu %d) batimeout %d",
2555 	    dialogtoken, code, baparamset, tid,
2556 	    bufsiz,
2557 	    amsdu,
2558 	    batimeout);
2559 	ic->ic_addba_response(ni, tap, code, baparamset, batimeout);
2560 	return 0;
2561 }
2562 
2563 static int
2564 ht_recv_action_ba_delba(struct ieee80211_node *ni,
2565 	const struct ieee80211_frame *wh,
2566 	const uint8_t *frm, const uint8_t *efrm)
2567 {
2568 	struct ieee80211com *ic = ni->ni_ic;
2569 	struct ieee80211_rx_ampdu *rap;
2570 	struct ieee80211_tx_ampdu *tap;
2571 	uint16_t baparamset;
2572 #ifdef IEEE80211_DEBUG
2573 	uint16_t code;
2574 #endif
2575 	int tid;
2576 
2577 	baparamset = le16dec(frm+2);
2578 #ifdef IEEE80211_DEBUG
2579 	code = le16dec(frm+4);
2580 #endif
2581 
2582 	tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_DELBAPS_TID);
2583 
2584 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2585 	    "recv DELBA: baparamset 0x%x (tid %d initiator %d) "
2586 	    "code %d", baparamset, tid,
2587 	    _IEEE80211_MASKSHIFT(baparamset, IEEE80211_DELBAPS_INIT), code);
2588 
2589 	if ((baparamset & IEEE80211_DELBAPS_INIT) == 0) {
2590 		tap = &ni->ni_tx_ampdu[tid];
2591 		ic->ic_addba_stop(ni, tap);
2592 	} else {
2593 		rap = &ni->ni_rx_ampdu[tid];
2594 		ic->ic_ampdu_rx_stop(ni, rap);
2595 	}
2596 	return 0;
2597 }
2598 
2599 static int
2600 ht_recv_action_ht_txchwidth(struct ieee80211_node *ni,
2601 	const struct ieee80211_frame *wh,
2602 	const uint8_t *frm, const uint8_t *efrm)
2603 {
2604 	int chw;
2605 
2606 	chw = (frm[2] == IEEE80211_A_HT_TXCHWIDTH_2040) ? 40 : 20;
2607 
2608 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2609 	    "%s: HT txchwidth, width %d%s",
2610 	    __func__, chw, ni->ni_chw != chw ? "*" : "");
2611 	if (chw != ni->ni_chw) {
2612 		/* XXX does this need to change the ht40 station count? */
2613 		ni->ni_chw = chw;
2614 		/* XXX notify on change */
2615 	}
2616 	return 0;
2617 }
2618 
2619 static int
2620 ht_recv_action_ht_mimopwrsave(struct ieee80211_node *ni,
2621 	const struct ieee80211_frame *wh,
2622 	const uint8_t *frm, const uint8_t *efrm)
2623 {
2624 	const struct ieee80211_action_ht_mimopowersave *mps =
2625 	    (const struct ieee80211_action_ht_mimopowersave *) frm;
2626 
2627 	/* XXX check iv_htcaps */
2628 	if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA)
2629 		ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
2630 	else
2631 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS;
2632 	if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_MODE)
2633 		ni->ni_flags |= IEEE80211_NODE_MIMO_RTS;
2634 	else
2635 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
2636 	/* XXX notify on change */
2637 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2638 	    "%s: HT MIMO PS (%s%s)", __func__,
2639 	    (ni->ni_flags & IEEE80211_NODE_MIMO_PS) ?  "on" : "off",
2640 	    (ni->ni_flags & IEEE80211_NODE_MIMO_RTS) ?  "+rts" : ""
2641 	);
2642 	return 0;
2643 }
2644 
2645 /*
2646  * Transmit processing.
2647  */
2648 
2649 /*
2650  * Check if A-MPDU should be requested/enabled for a stream.
2651  * We require a traffic rate above a per-AC threshold and we
2652  * also handle backoff from previous failed attempts.
2653  *
2654  * Drivers may override this method to bring in information
2655  * such as link state conditions in making the decision.
2656  */
2657 static int
2658 ieee80211_ampdu_enable(struct ieee80211_node *ni,
2659 	struct ieee80211_tx_ampdu *tap)
2660 {
2661 	struct ieee80211vap *vap = ni->ni_vap;
2662 
2663 	if (tap->txa_avgpps <
2664 	    vap->iv_ampdu_mintraffic[TID_TO_WME_AC(tap->txa_tid)])
2665 		return 0;
2666 	/* XXX check rssi? */
2667 	if (tap->txa_attempts >= ieee80211_addba_maxtries &&
2668 	    ieee80211_time_after(ticks, tap->txa_nextrequest)) {
2669 		/*
2670 		 * Don't retry too often; txa_nextrequest is set
2671 		 * to the minimum interval we'll retry after
2672 		 * ieee80211_addba_maxtries failed attempts are made.
2673 		 */
2674 		return 0;
2675 	}
2676 	IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
2677 	    "enable AMPDU on tid %d (%s), avgpps %d pkts %d attempt %d",
2678 	    tap->txa_tid, ieee80211_wme_acnames[TID_TO_WME_AC(tap->txa_tid)],
2679 	    tap->txa_avgpps, tap->txa_pkts, tap->txa_attempts);
2680 	return 1;
2681 }
2682 
2683 /*
2684  * Request A-MPDU tx aggregation.  Setup local state and
2685  * issue an ADDBA request.  BA use will only happen after
2686  * the other end replies with ADDBA response.
2687  */
2688 int
2689 ieee80211_ampdu_request(struct ieee80211_node *ni,
2690 	struct ieee80211_tx_ampdu *tap)
2691 {
2692 	struct ieee80211com *ic = ni->ni_ic;
2693 	uint16_t args[5];
2694 	int tid, dialogtoken;
2695 	static int tokens = 0;	/* XXX */
2696 
2697 	/* XXX locking */
2698 	if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) {
2699 		/* do deferred setup of state */
2700 		ampdu_tx_setup(tap);
2701 	}
2702 	/* XXX hack for not doing proper locking */
2703 	tap->txa_flags &= ~IEEE80211_AGGR_NAK;
2704 
2705 	dialogtoken = (tokens+1) % 63;		/* XXX */
2706 	tid = tap->txa_tid;
2707 
2708 	/*
2709 	 * XXX TODO: This is racy with any other parallel TX going on. :(
2710 	 */
2711 	tap->txa_start = ni->ni_txseqs[tid];
2712 
2713 	args[0] = dialogtoken;
2714 	args[1] = 0;	/* NB: status code not used */
2715 	args[2]	= IEEE80211_BAPS_POLICY_IMMEDIATE
2716 		| _IEEE80211_SHIFTMASK(tid, IEEE80211_BAPS_TID)
2717 		| _IEEE80211_SHIFTMASK(IEEE80211_AGGR_BAWMAX,
2718 		    IEEE80211_BAPS_BUFSIZ)
2719 		;
2720 
2721 	/* XXX TODO: this should be a flag, not iv_htcaps */
2722 	if ((ni->ni_flags & IEEE80211_NODE_AMSDU_TX) &&
2723 	    (ni->ni_vap->iv_htcaps & IEEE80211_HTC_TX_AMSDU_AMPDU))
2724 		args[2] |= IEEE80211_BAPS_AMSDU;
2725 
2726 	args[3] = 0;	/* batimeout */
2727 	/* NB: do first so there's no race against reply */
2728 	if (!ic->ic_addba_request(ni, tap, dialogtoken, args[2], args[3])) {
2729 		/* unable to setup state, don't make request */
2730 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2731 		    ni, "%s: could not setup BA stream for TID %d AC %d",
2732 		    __func__, tap->txa_tid, TID_TO_WME_AC(tap->txa_tid));
2733 		/* defer next try so we don't slam the driver with requests */
2734 		tap->txa_attempts = ieee80211_addba_maxtries;
2735 		/* NB: check in case driver wants to override */
2736 		if (tap->txa_nextrequest <= ticks)
2737 			tap->txa_nextrequest = ticks + ieee80211_addba_backoff;
2738 		return 0;
2739 	}
2740 	tokens = dialogtoken;			/* allocate token */
2741 	/* NB: after calling ic_addba_request so driver can set txa_start */
2742 	args[4] = _IEEE80211_SHIFTMASK(tap->txa_start, IEEE80211_BASEQ_START)
2743 		| _IEEE80211_SHIFTMASK(0, IEEE80211_BASEQ_FRAG)
2744 		;
2745 	return ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
2746 		IEEE80211_ACTION_BA_ADDBA_REQUEST, args);
2747 }
2748 
2749 /*
2750  * Terminate an AMPDU tx stream.  State is reclaimed
2751  * and the peer notified with a DelBA Action frame.
2752  */
2753 void
2754 ieee80211_ampdu_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
2755 	int reason)
2756 {
2757 	struct ieee80211com *ic = ni->ni_ic;
2758 	struct ieee80211vap *vap = ni->ni_vap;
2759 	uint16_t args[4];
2760 
2761 	/* XXX locking */
2762 	tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
2763 	if (IEEE80211_AMPDU_RUNNING(tap)) {
2764 		IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2765 		    ni, "%s: stop BA stream for TID %d (reason: %d (%s))",
2766 		    __func__, tap->txa_tid, reason,
2767 		    ieee80211_reason_to_string(reason));
2768 		vap->iv_stats.is_ampdu_stop++;
2769 
2770 		ic->ic_addba_stop(ni, tap);
2771 		args[0] = tap->txa_tid;
2772 		args[1] = IEEE80211_DELBAPS_INIT;
2773 		args[2] = reason;			/* XXX reason code */
2774 		ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
2775 			IEEE80211_ACTION_BA_DELBA, args);
2776 	} else {
2777 		IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2778 		    ni, "%s: BA stream for TID %d not running "
2779 		    "(reason: %d (%s))", __func__, tap->txa_tid, reason,
2780 		    ieee80211_reason_to_string(reason));
2781 		vap->iv_stats.is_ampdu_stop_failed++;
2782 	}
2783 }
2784 
2785 /* XXX */
2786 static void bar_start_timer(struct ieee80211_tx_ampdu *tap);
2787 
2788 static void
2789 bar_timeout(void *arg)
2790 {
2791 	struct ieee80211_tx_ampdu *tap = arg;
2792 	struct ieee80211_node *ni = tap->txa_ni;
2793 
2794 	KASSERT((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0,
2795 	    ("bar/addba collision, flags 0x%x", tap->txa_flags));
2796 
2797 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2798 	    ni, "%s: tid %u flags 0x%x attempts %d", __func__,
2799 	    tap->txa_tid, tap->txa_flags, tap->txa_attempts);
2800 
2801 	/* guard against race with bar_tx_complete */
2802 	if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0)
2803 		return;
2804 	/* XXX ? */
2805 	if (tap->txa_attempts >= ieee80211_bar_maxtries) {
2806 		struct ieee80211com *ic = ni->ni_ic;
2807 
2808 		ni->ni_vap->iv_stats.is_ampdu_bar_tx_fail++;
2809 		/*
2810 		 * If (at least) the last BAR TX timeout was due to
2811 		 * an ieee80211_send_bar() failures, then we need
2812 		 * to make sure we notify the driver that a BAR
2813 		 * TX did occur and fail.  This gives the driver
2814 		 * a chance to undo any queue pause that may
2815 		 * have occurred.
2816 		 */
2817 		ic->ic_bar_response(ni, tap, 1);
2818 		ieee80211_ampdu_stop(ni, tap, IEEE80211_REASON_TIMEOUT);
2819 	} else {
2820 		ni->ni_vap->iv_stats.is_ampdu_bar_tx_retry++;
2821 		if (ieee80211_send_bar(ni, tap, tap->txa_seqpending) != 0) {
2822 			IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2823 			    ni, "%s: failed to TX, starting timer\n",
2824 			    __func__);
2825 			/*
2826 			 * If ieee80211_send_bar() fails here, the
2827 			 * timer may have stopped and/or the pending
2828 			 * flag may be clear.  Because of this,
2829 			 * fake the BARPEND and reset the timer.
2830 			 * A retransmission attempt will then occur
2831 			 * during the next timeout.
2832 			 */
2833 			/* XXX locking */
2834 			tap->txa_flags |= IEEE80211_AGGR_BARPEND;
2835 			bar_start_timer(tap);
2836 		}
2837 	}
2838 }
2839 
2840 static void
2841 bar_start_timer(struct ieee80211_tx_ampdu *tap)
2842 {
2843 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2844 	    tap->txa_ni,
2845 	    "%s: called",
2846 	    __func__);
2847 	callout_reset(&tap->txa_timer, ieee80211_bar_timeout, bar_timeout, tap);
2848 }
2849 
2850 static void
2851 bar_stop_timer(struct ieee80211_tx_ampdu *tap)
2852 {
2853 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2854 	    tap->txa_ni,
2855 	    "%s: called",
2856 	    __func__);
2857 	callout_stop(&tap->txa_timer);
2858 }
2859 
2860 static void
2861 bar_tx_complete(struct ieee80211_node *ni, void *arg, int status)
2862 {
2863 	struct ieee80211_tx_ampdu *tap = arg;
2864 
2865 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2866 	    ni, "%s: tid %u flags 0x%x pending %d status %d",
2867 	    __func__, tap->txa_tid, tap->txa_flags,
2868 	    callout_pending(&tap->txa_timer), status);
2869 
2870 	ni->ni_vap->iv_stats.is_ampdu_bar_tx++;
2871 	/* XXX locking */
2872 	if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) &&
2873 	    callout_pending(&tap->txa_timer)) {
2874 		struct ieee80211com *ic = ni->ni_ic;
2875 
2876 		if (status == 0)		/* ACK'd */
2877 			bar_stop_timer(tap);
2878 		ic->ic_bar_response(ni, tap, status);
2879 		/* NB: just let timer expire so we pace requests */
2880 	}
2881 }
2882 
2883 static void
2884 ieee80211_bar_response(struct ieee80211_node *ni,
2885 	struct ieee80211_tx_ampdu *tap, int status)
2886 {
2887 
2888 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2889 	    tap->txa_ni,
2890 	    "%s: called",
2891 	    __func__);
2892 	if (status == 0) {		/* got ACK */
2893 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2894 		    ni, "BAR moves BA win <%u:%u> (%u frames) txseq %u tid %u",
2895 		    tap->txa_start,
2896 		    IEEE80211_SEQ_ADD(tap->txa_start, tap->txa_wnd-1),
2897 		    tap->txa_qframes, tap->txa_seqpending,
2898 		    tap->txa_tid);
2899 
2900 		/* NB: timer already stopped in bar_tx_complete */
2901 		tap->txa_start = tap->txa_seqpending;
2902 		tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
2903 	}
2904 }
2905 
2906 /*
2907  * Transmit a BAR frame to the specified node.  The
2908  * BAR contents are drawn from the supplied aggregation
2909  * state associated with the node.
2910  *
2911  * NB: we only handle immediate ACK w/ compressed bitmap.
2912  */
2913 int
2914 ieee80211_send_bar(struct ieee80211_node *ni,
2915 	struct ieee80211_tx_ampdu *tap, ieee80211_seq seq)
2916 {
2917 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2918 	struct ieee80211vap *vap = ni->ni_vap;
2919 	struct ieee80211com *ic = ni->ni_ic;
2920 	struct ieee80211_frame_bar *bar;
2921 	struct mbuf *m;
2922 	uint16_t barctl, barseqctl;
2923 	uint8_t *frm;
2924 	int tid, ret;
2925 
2926 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2927 	    tap->txa_ni,
2928 	    "%s: called",
2929 	    __func__);
2930 
2931 	if ((tap->txa_flags & IEEE80211_AGGR_RUNNING) == 0) {
2932 		/* no ADDBA response, should not happen */
2933 		/* XXX stat+msg */
2934 		return EINVAL;
2935 	}
2936 	/* XXX locking */
2937 	bar_stop_timer(tap);
2938 
2939 	ieee80211_ref_node(ni);
2940 
2941 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom, sizeof(*bar));
2942 	if (m == NULL)
2943 		senderr(ENOMEM, is_tx_nobuf);
2944 
2945 	if (!ieee80211_add_callback(m, bar_tx_complete, tap)) {
2946 		m_freem(m);
2947 		senderr(ENOMEM, is_tx_nobuf);	/* XXX */
2948 		/* NOTREACHED */
2949 	}
2950 
2951 	bar = mtod(m, struct ieee80211_frame_bar *);
2952 	bar->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2953 		IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR;
2954 	bar->i_fc[1] = 0;
2955 	IEEE80211_ADDR_COPY(bar->i_ra, ni->ni_macaddr);
2956 	IEEE80211_ADDR_COPY(bar->i_ta, vap->iv_myaddr);
2957 
2958 	tid = tap->txa_tid;
2959 	barctl 	= (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE ?
2960 			0 : IEEE80211_BAR_NOACK)
2961 		| IEEE80211_BAR_COMP
2962 		| _IEEE80211_SHIFTMASK(tid, IEEE80211_BAR_TID)
2963 		;
2964 	barseqctl = _IEEE80211_SHIFTMASK(seq, IEEE80211_BAR_SEQ_START);
2965 	/* NB: known to have proper alignment */
2966 	bar->i_ctl = htole16(barctl);
2967 	bar->i_seq = htole16(barseqctl);
2968 	m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_bar);
2969 
2970 	M_WME_SETAC(m, WME_AC_VO);
2971 
2972 	IEEE80211_NODE_STAT(ni, tx_mgmt);	/* XXX tx_ctl? */
2973 
2974 	/* XXX locking */
2975 	/* init/bump attempts counter */
2976 	if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0)
2977 		tap->txa_attempts = 1;
2978 	else
2979 		tap->txa_attempts++;
2980 	tap->txa_seqpending = seq;
2981 	tap->txa_flags |= IEEE80211_AGGR_BARPEND;
2982 
2983 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N,
2984 	    ni, "send BAR: tid %u ctl 0x%x start %u (attempt %d)",
2985 	    tid, barctl, seq, tap->txa_attempts);
2986 
2987 	/*
2988 	 * ic_raw_xmit will free the node reference
2989 	 * regardless of queue/TX success or failure.
2990 	 */
2991 	IEEE80211_TX_LOCK(ic);
2992 	ret = ieee80211_raw_output(vap, ni, m, NULL);
2993 	IEEE80211_TX_UNLOCK(ic);
2994 	if (ret != 0) {
2995 		IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N,
2996 		    ni, "send BAR: failed: (ret = %d)\n",
2997 		    ret);
2998 		/* xmit failed, clear state flag */
2999 		tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
3000 		vap->iv_stats.is_ampdu_bar_tx_fail++;
3001 		return ret;
3002 	}
3003 	/* XXX hack against tx complete happening before timer is started */
3004 	if (tap->txa_flags & IEEE80211_AGGR_BARPEND)
3005 		bar_start_timer(tap);
3006 	return 0;
3007 bad:
3008 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
3009 	    tap->txa_ni,
3010 	    "%s: bad! ret=%d",
3011 	    __func__, ret);
3012 	vap->iv_stats.is_ampdu_bar_tx_fail++;
3013 	ieee80211_free_node(ni);
3014 	return ret;
3015 #undef senderr
3016 }
3017 
3018 static int
3019 ht_action_output(struct ieee80211_node *ni, struct mbuf *m)
3020 {
3021 	struct ieee80211_bpf_params params;
3022 
3023 	memset(&params, 0, sizeof(params));
3024 	params.ibp_pri = WME_AC_VO;
3025 	params.ibp_rate0 = ni->ni_txparms->mgmtrate;
3026 	/* NB: we know all frames are unicast */
3027 	params.ibp_try0 = ni->ni_txparms->maxretry;
3028 	params.ibp_power = ni->ni_txpower;
3029 	return ieee80211_mgmt_output(ni, m, IEEE80211_FC0_SUBTYPE_ACTION,
3030 	     &params);
3031 }
3032 
3033 #define	ADDSHORT(frm, v) do {			\
3034 	frm[0] = (v) & 0xff;			\
3035 	frm[1] = (v) >> 8;			\
3036 	frm += 2;				\
3037 } while (0)
3038 
3039 /*
3040  * Send an action management frame.  The arguments are stuff
3041  * into a frame without inspection; the caller is assumed to
3042  * prepare them carefully (e.g. based on the aggregation state).
3043  */
3044 static int
3045 ht_send_action_ba_addba(struct ieee80211_node *ni,
3046 	int category, int action, void *arg0)
3047 {
3048 	struct ieee80211vap *vap = ni->ni_vap;
3049 	struct ieee80211com *ic = ni->ni_ic;
3050 	uint16_t *args = arg0;
3051 	struct mbuf *m;
3052 	uint8_t *frm;
3053 
3054 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
3055 	    "send ADDBA %s: dialogtoken %d status %d "
3056 	    "baparamset 0x%x (tid %d amsdu %d) batimeout 0x%x baseqctl 0x%x",
3057 	    (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ?
3058 		"request" : "response", args[0], args[1], args[2],
3059 	    _IEEE80211_MASKSHIFT(args[2], IEEE80211_BAPS_TID),
3060 	    _IEEE80211_MASKSHIFT(args[2], IEEE80211_BAPS_AMSDU),
3061 	    args[3], args[4]);
3062 
3063 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
3064 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
3065 	    ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
3066 	ieee80211_ref_node(ni);
3067 
3068 	m = ieee80211_getmgtframe(&frm,
3069 	    ic->ic_headroom + sizeof(struct ieee80211_frame),
3070 	    sizeof(uint16_t)	/* action+category */
3071 	    /* XXX may action payload */
3072 	    + sizeof(struct ieee80211_action_ba_addbaresponse)
3073 	);
3074 	if (m != NULL) {
3075 		*frm++ = category;
3076 		*frm++ = action;
3077 		*frm++ = args[0];		/* dialog token */
3078 		if (action == IEEE80211_ACTION_BA_ADDBA_RESPONSE)
3079 			ADDSHORT(frm, args[1]);	/* status code */
3080 		ADDSHORT(frm, args[2]);		/* baparamset */
3081 		ADDSHORT(frm, args[3]);		/* batimeout */
3082 		if (action == IEEE80211_ACTION_BA_ADDBA_REQUEST)
3083 			ADDSHORT(frm, args[4]);	/* baseqctl */
3084 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3085 		return ht_action_output(ni, m);
3086 	} else {
3087 		vap->iv_stats.is_tx_nobuf++;
3088 		ieee80211_free_node(ni);
3089 		return ENOMEM;
3090 	}
3091 }
3092 
3093 static int
3094 ht_send_action_ba_delba(struct ieee80211_node *ni,
3095 	int category, int action, void *arg0)
3096 {
3097 	struct ieee80211vap *vap = ni->ni_vap;
3098 	struct ieee80211com *ic = ni->ni_ic;
3099 	uint16_t *args = arg0;
3100 	struct mbuf *m;
3101 	uint16_t baparamset;
3102 	uint8_t *frm;
3103 
3104 	baparamset = _IEEE80211_SHIFTMASK(args[0], IEEE80211_DELBAPS_TID)
3105 		   | args[1]
3106 		   ;
3107 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
3108 	    "send DELBA action: tid %d, initiator %d reason %d (%s)",
3109 	    args[0], args[1], args[2], ieee80211_reason_to_string(args[2]));
3110 
3111 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
3112 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
3113 	    ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
3114 	ieee80211_ref_node(ni);
3115 
3116 	m = ieee80211_getmgtframe(&frm,
3117 	    ic->ic_headroom + sizeof(struct ieee80211_frame),
3118 	    sizeof(uint16_t)	/* action+category */
3119 	    /* XXX may action payload */
3120 	    + sizeof(struct ieee80211_action_ba_addbaresponse)
3121 	);
3122 	if (m != NULL) {
3123 		*frm++ = category;
3124 		*frm++ = action;
3125 		ADDSHORT(frm, baparamset);
3126 		ADDSHORT(frm, args[2]);		/* reason code */
3127 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3128 		return ht_action_output(ni, m);
3129 	} else {
3130 		vap->iv_stats.is_tx_nobuf++;
3131 		ieee80211_free_node(ni);
3132 		return ENOMEM;
3133 	}
3134 }
3135 
3136 static int
3137 ht_send_action_ht_txchwidth(struct ieee80211_node *ni,
3138 	int category, int action, void *arg0)
3139 {
3140 	struct ieee80211vap *vap = ni->ni_vap;
3141 	struct ieee80211com *ic = ni->ni_ic;
3142 	struct mbuf *m;
3143 	uint8_t *frm;
3144 
3145 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
3146 	    "send HT txchwidth: width %d",
3147 	    IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 40 : 20);
3148 
3149 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
3150 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
3151 	    ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
3152 	ieee80211_ref_node(ni);
3153 
3154 	m = ieee80211_getmgtframe(&frm,
3155 	    ic->ic_headroom + sizeof(struct ieee80211_frame),
3156 	    sizeof(uint16_t)	/* action+category */
3157 	    /* XXX may action payload */
3158 	    + sizeof(struct ieee80211_action_ba_addbaresponse)
3159 	);
3160 	if (m != NULL) {
3161 		*frm++ = category;
3162 		*frm++ = action;
3163 		*frm++ = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ?
3164 			IEEE80211_A_HT_TXCHWIDTH_2040 :
3165 			IEEE80211_A_HT_TXCHWIDTH_20;
3166 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3167 		return ht_action_output(ni, m);
3168 	} else {
3169 		vap->iv_stats.is_tx_nobuf++;
3170 		ieee80211_free_node(ni);
3171 		return ENOMEM;
3172 	}
3173 }
3174 #undef ADDSHORT
3175 
3176 /*
3177  * Construct the MCS bit mask for inclusion in an HT capabilities
3178  * information element.
3179  */
3180 static void
3181 ieee80211_set_mcsset(struct ieee80211com *ic, uint8_t *frm)
3182 {
3183 	int i;
3184 	uint8_t txparams;
3185 
3186 	KASSERT((ic->ic_rxstream > 0 && ic->ic_rxstream <= 4),
3187 	    ("ic_rxstream %d out of range", ic->ic_rxstream));
3188 	KASSERT((ic->ic_txstream > 0 && ic->ic_txstream <= 4),
3189 	    ("ic_txstream %d out of range", ic->ic_txstream));
3190 
3191 	for (i = 0; i < ic->ic_rxstream * 8; i++)
3192 		setbit(frm, i);
3193 	if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
3194 	    (ic->ic_htcaps & IEEE80211_HTC_RXMCS32))
3195 		setbit(frm, 32);
3196 	if (ic->ic_htcaps & IEEE80211_HTC_RXUNEQUAL) {
3197 		if (ic->ic_rxstream >= 2) {
3198 			for (i = 33; i <= 38; i++)
3199 				setbit(frm, i);
3200 		}
3201 		if (ic->ic_rxstream >= 3) {
3202 			for (i = 39; i <= 52; i++)
3203 				setbit(frm, i);
3204 		}
3205 		if (ic->ic_rxstream >= 4) {
3206 			for (i = 53; i <= 76; i++)
3207 				setbit(frm, i);
3208 		}
3209 	}
3210 
3211 	txparams = 0x1;			/* TX MCS set defined */
3212 	if (ic->ic_rxstream != ic->ic_txstream) {
3213 		txparams |= 0x2;		/* TX RX MCS not equal */
3214 		txparams |= (ic->ic_txstream - 1) << 2;	/* num TX streams */
3215 		if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL)
3216 			txparams |= 0x16;	/* TX unequal modulation sup */
3217 	}
3218 
3219 	frm[12] = txparams;
3220 }
3221 
3222 /*
3223  * Add body of an HTCAP information element.
3224  */
3225 static uint8_t *
3226 ieee80211_add_htcap_body(uint8_t *frm, struct ieee80211_node *ni)
3227 {
3228 #define	ADDSHORT(frm, v) do {			\
3229 	frm[0] = (v) & 0xff;			\
3230 	frm[1] = (v) >> 8;			\
3231 	frm += 2;				\
3232 } while (0)
3233 	struct ieee80211com *ic = ni->ni_ic;
3234 	struct ieee80211vap *vap = ni->ni_vap;
3235 	uint16_t caps, extcaps;
3236 	int rxmax, density;
3237 
3238 	/* HT capabilities */
3239 	caps = vap->iv_htcaps & 0xffff;
3240 	/*
3241 	 * Note channel width depends on whether we are operating as
3242 	 * a sta or not.  When operating as a sta we are generating
3243 	 * a request based on our desired configuration.  Otherwise
3244 	 * we are operational and the channel attributes identify
3245 	 * how we've been setup (which might be different if a fixed
3246 	 * channel is specified).
3247 	 */
3248 	if (vap->iv_opmode == IEEE80211_M_STA) {
3249 		/* override 20/40 use based on config */
3250 		if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)
3251 			caps |= IEEE80211_HTCAP_CHWIDTH40;
3252 		else
3253 			caps &= ~IEEE80211_HTCAP_CHWIDTH40;
3254 
3255 		/* Start by using the advertised settings */
3256 		rxmax = _IEEE80211_MASKSHIFT(ni->ni_htparam,
3257 		    IEEE80211_HTCAP_MAXRXAMPDU);
3258 		density = _IEEE80211_MASKSHIFT(ni->ni_htparam,
3259 		    IEEE80211_HTCAP_MPDUDENSITY);
3260 
3261 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N,
3262 		    "%s: advertised rxmax=%d, density=%d, vap rxmax=%d, density=%d\n",
3263 		    __func__,
3264 		    rxmax,
3265 		    density,
3266 		    vap->iv_ampdu_rxmax,
3267 		    vap->iv_ampdu_density);
3268 
3269 		/* Cap at VAP rxmax */
3270 		if (rxmax > vap->iv_ampdu_rxmax)
3271 			rxmax = vap->iv_ampdu_rxmax;
3272 
3273 		/*
3274 		 * If the VAP ampdu density value greater, use that.
3275 		 *
3276 		 * (Larger density value == larger minimum gap between A-MPDU
3277 		 * subframes.)
3278 		 */
3279 		if (vap->iv_ampdu_density > density)
3280 			density = vap->iv_ampdu_density;
3281 
3282 		/*
3283 		 * NB: Hardware might support HT40 on some but not all
3284 		 * channels. We can't determine this earlier because only
3285 		 * after association the channel is upgraded to HT based
3286 		 * on the negotiated capabilities.
3287 		 */
3288 		if (ni->ni_chan != IEEE80211_CHAN_ANYC &&
3289 		    findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40U) == NULL &&
3290 		    findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40D) == NULL)
3291 			caps &= ~IEEE80211_HTCAP_CHWIDTH40;
3292 	} else {
3293 		/* override 20/40 use based on current channel */
3294 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
3295 			caps |= IEEE80211_HTCAP_CHWIDTH40;
3296 		else
3297 			caps &= ~IEEE80211_HTCAP_CHWIDTH40;
3298 
3299 		/* XXX TODO should it start by using advertised settings? */
3300 		rxmax = vap->iv_ampdu_rxmax;
3301 		density = vap->iv_ampdu_density;
3302 	}
3303 
3304 	/* adjust short GI based on channel and config */
3305 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0)
3306 		caps &= ~IEEE80211_HTCAP_SHORTGI20;
3307 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 ||
3308 	    (caps & IEEE80211_HTCAP_CHWIDTH40) == 0)
3309 		caps &= ~IEEE80211_HTCAP_SHORTGI40;
3310 
3311 	/* adjust STBC based on receive capabilities */
3312 	if ((vap->iv_flags_ht & IEEE80211_FHT_STBC_RX) == 0)
3313 		caps &= ~IEEE80211_HTCAP_RXSTBC;
3314 
3315 	/* adjust LDPC based on receive capabilites */
3316 	if ((vap->iv_flags_ht & IEEE80211_FHT_LDPC_RX) == 0)
3317 		caps &= ~IEEE80211_HTCAP_LDPC;
3318 
3319 	ADDSHORT(frm, caps);
3320 
3321 	/* HT parameters */
3322 	*frm = _IEEE80211_SHIFTMASK(rxmax, IEEE80211_HTCAP_MAXRXAMPDU)
3323 	     | _IEEE80211_SHIFTMASK(density, IEEE80211_HTCAP_MPDUDENSITY)
3324 	     ;
3325 	frm++;
3326 
3327 	/* pre-zero remainder of ie */
3328 	memset(frm, 0, sizeof(struct ieee80211_ie_htcap) -
3329 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset));
3330 
3331 	/* supported MCS set */
3332 	/*
3333 	 * XXX: For sta mode the rate set should be restricted based
3334 	 * on the AP's capabilities, but ni_htrates isn't setup when
3335 	 * we're called to form an AssocReq frame so for now we're
3336 	 * restricted to the device capabilities.
3337 	 */
3338 	ieee80211_set_mcsset(ni->ni_ic, frm);
3339 
3340 	frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) -
3341 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset);
3342 
3343 	/* HT extended capabilities */
3344 	extcaps = vap->iv_htextcaps & 0xffff;
3345 
3346 	ADDSHORT(frm, extcaps);
3347 
3348 	frm += sizeof(struct ieee80211_ie_htcap) -
3349 		__offsetof(struct ieee80211_ie_htcap, hc_txbf);
3350 
3351 	return frm;
3352 #undef ADDSHORT
3353 }
3354 
3355 /*
3356  * Add 802.11n HT capabilities information element
3357  */
3358 uint8_t *
3359 ieee80211_add_htcap(uint8_t *frm, struct ieee80211_node *ni)
3360 {
3361 	frm[0] = IEEE80211_ELEMID_HTCAP;
3362 	frm[1] = sizeof(struct ieee80211_ie_htcap) - 2;
3363 	return ieee80211_add_htcap_body(frm + 2, ni);
3364 }
3365 
3366 /*
3367  * Non-associated probe request - add HT capabilities based on
3368  * the current channel configuration.
3369  */
3370 static uint8_t *
3371 ieee80211_add_htcap_body_ch(uint8_t *frm, struct ieee80211vap *vap,
3372     struct ieee80211_channel *c)
3373 {
3374 #define	ADDSHORT(frm, v) do {			\
3375 	frm[0] = (v) & 0xff;			\
3376 	frm[1] = (v) >> 8;			\
3377 	frm += 2;				\
3378 } while (0)
3379 	struct ieee80211com *ic = vap->iv_ic;
3380 	uint16_t caps, extcaps;
3381 	int rxmax, density;
3382 
3383 	/* HT capabilities */
3384 	caps = vap->iv_htcaps & 0xffff;
3385 
3386 	/*
3387 	 * We don't use this in STA mode; only in IBSS mode.
3388 	 * So in IBSS mode we base our HTCAP flags on the
3389 	 * given channel.
3390 	 */
3391 
3392 	/* override 20/40 use based on current channel */
3393 	if (IEEE80211_IS_CHAN_HT40(c))
3394 		caps |= IEEE80211_HTCAP_CHWIDTH40;
3395 	else
3396 		caps &= ~IEEE80211_HTCAP_CHWIDTH40;
3397 
3398 	/* Use the currently configured values */
3399 	rxmax = vap->iv_ampdu_rxmax;
3400 	density = vap->iv_ampdu_density;
3401 
3402 	/* adjust short GI based on channel and config */
3403 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0)
3404 		caps &= ~IEEE80211_HTCAP_SHORTGI20;
3405 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 ||
3406 	    (caps & IEEE80211_HTCAP_CHWIDTH40) == 0)
3407 		caps &= ~IEEE80211_HTCAP_SHORTGI40;
3408 	ADDSHORT(frm, caps);
3409 
3410 	/* HT parameters */
3411 	*frm = _IEEE80211_SHIFTMASK(rxmax, IEEE80211_HTCAP_MAXRXAMPDU)
3412 	     | _IEEE80211_SHIFTMASK(density, IEEE80211_HTCAP_MPDUDENSITY)
3413 	     ;
3414 	frm++;
3415 
3416 	/* pre-zero remainder of ie */
3417 	memset(frm, 0, sizeof(struct ieee80211_ie_htcap) -
3418 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset));
3419 
3420 	/* supported MCS set */
3421 	/*
3422 	 * XXX: For sta mode the rate set should be restricted based
3423 	 * on the AP's capabilities, but ni_htrates isn't setup when
3424 	 * we're called to form an AssocReq frame so for now we're
3425 	 * restricted to the device capabilities.
3426 	 */
3427 	ieee80211_set_mcsset(ic, frm);
3428 
3429 	frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) -
3430 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset);
3431 
3432 	/* HT extended capabilities */
3433 	extcaps = vap->iv_htextcaps & 0xffff;
3434 
3435 	ADDSHORT(frm, extcaps);
3436 
3437 	frm += sizeof(struct ieee80211_ie_htcap) -
3438 		__offsetof(struct ieee80211_ie_htcap, hc_txbf);
3439 
3440 	return frm;
3441 #undef ADDSHORT
3442 }
3443 
3444 /*
3445  * Add 802.11n HT capabilities information element
3446  */
3447 uint8_t *
3448 ieee80211_add_htcap_ch(uint8_t *frm, struct ieee80211vap *vap,
3449     struct ieee80211_channel *c)
3450 {
3451 	frm[0] = IEEE80211_ELEMID_HTCAP;
3452 	frm[1] = sizeof(struct ieee80211_ie_htcap) - 2;
3453 	return ieee80211_add_htcap_body_ch(frm + 2, vap, c);
3454 }
3455 
3456 /*
3457  * Add Broadcom OUI wrapped standard HTCAP ie; this is
3458  * used for compatibility w/ pre-draft implementations.
3459  */
3460 uint8_t *
3461 ieee80211_add_htcap_vendor(uint8_t *frm, struct ieee80211_node *ni)
3462 {
3463 	frm[0] = IEEE80211_ELEMID_VENDOR;
3464 	frm[1] = 4 + sizeof(struct ieee80211_ie_htcap) - 2;
3465 	frm[2] = (BCM_OUI >> 0) & 0xff;
3466 	frm[3] = (BCM_OUI >> 8) & 0xff;
3467 	frm[4] = (BCM_OUI >> 16) & 0xff;
3468 	frm[5] = BCM_OUI_HTCAP;
3469 	return ieee80211_add_htcap_body(frm + 6, ni);
3470 }
3471 
3472 /*
3473  * Construct the MCS bit mask of basic rates
3474  * for inclusion in an HT information element.
3475  */
3476 static void
3477 ieee80211_set_basic_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs)
3478 {
3479 	int i;
3480 
3481 	for (i = 0; i < rs->rs_nrates; i++) {
3482 		int r = rs->rs_rates[i] & IEEE80211_RATE_VAL;
3483 		if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) &&
3484 		    r < IEEE80211_HTRATE_MAXSIZE) {
3485 			/* NB: this assumes a particular implementation */
3486 			setbit(frm, r);
3487 		}
3488 	}
3489 }
3490 
3491 /*
3492  * Update the HTINFO ie for a beacon frame.
3493  */
3494 void
3495 ieee80211_ht_update_beacon(struct ieee80211vap *vap,
3496 	struct ieee80211_beacon_offsets *bo)
3497 {
3498 #define	PROTMODE	(IEEE80211_HTINFO_OPMODE|IEEE80211_HTINFO_NONHT_PRESENT)
3499 	struct ieee80211_node *ni;
3500 	const struct ieee80211_channel *bsschan;
3501 	struct ieee80211com *ic = vap->iv_ic;
3502 	struct ieee80211_ie_htinfo *ht =
3503 	   (struct ieee80211_ie_htinfo *) bo->bo_htinfo;
3504 
3505 	ni = ieee80211_ref_node(vap->iv_bss);
3506 	bsschan = ni->ni_chan;
3507 
3508 	/* XXX only update on channel change */
3509 	ht->hi_ctrlchannel = ieee80211_chan2ieee(ic, bsschan);
3510 	if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
3511 		ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PERM;
3512 	else
3513 		ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PROH;
3514 	if (IEEE80211_IS_CHAN_HT40U(bsschan))
3515 		ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_ABOVE;
3516 	else if (IEEE80211_IS_CHAN_HT40D(bsschan))
3517 		ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_BELOW;
3518 	else
3519 		ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_NONE;
3520 	if (IEEE80211_IS_CHAN_HT40(bsschan))
3521 		ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040;
3522 
3523 	/* protection mode */
3524 	/*
3525 	 * XXX TODO: this uses the global flag, not the per-VAP flag.
3526 	 * Eventually (once the protection modes are done per-channel
3527 	 * rather than per-VAP) we can flip this over to be per-VAP but
3528 	 * using the channel protection mode.
3529 	 */
3530 	ht->hi_byte2 = (ht->hi_byte2 &~ PROTMODE) | ic->ic_curhtprotmode;
3531 
3532 	ieee80211_free_node(ni);
3533 
3534 	/* XXX propagate to vendor ie's */
3535 #undef PROTMODE
3536 }
3537 
3538 /*
3539  * Add body of an HTINFO information element.
3540  *
3541  * NB: We don't use struct ieee80211_ie_htinfo because we can
3542  * be called to fillin both a standard ie and a compat ie that
3543  * has a vendor OUI at the front.
3544  */
3545 static uint8_t *
3546 ieee80211_add_htinfo_body(uint8_t *frm, struct ieee80211_node *ni)
3547 {
3548 	struct ieee80211vap *vap = ni->ni_vap;
3549 	struct ieee80211com *ic = ni->ni_ic;
3550 
3551 	/* pre-zero remainder of ie */
3552 	memset(frm, 0, sizeof(struct ieee80211_ie_htinfo) - 2);
3553 
3554 	/* primary/control channel center */
3555 	*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
3556 
3557 	if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
3558 		frm[0] = IEEE80211_HTINFO_RIFSMODE_PERM;
3559 	else
3560 		frm[0] = IEEE80211_HTINFO_RIFSMODE_PROH;
3561 	if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
3562 		frm[0] |= IEEE80211_HTINFO_2NDCHAN_ABOVE;
3563 	else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
3564 		frm[0] |= IEEE80211_HTINFO_2NDCHAN_BELOW;
3565 	else
3566 		frm[0] |= IEEE80211_HTINFO_2NDCHAN_NONE;
3567 	if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
3568 		frm[0] |= IEEE80211_HTINFO_TXWIDTH_2040;
3569 
3570 	/*
3571 	 * Add current protection mode.  Unlike for beacons,
3572 	 * this will respect the per-VAP flags.
3573 	 */
3574 	frm[1] = vap->iv_curhtprotmode;
3575 
3576 	frm += 5;
3577 
3578 	/* basic MCS set */
3579 	ieee80211_set_basic_htrates(frm, &ni->ni_htrates);
3580 	frm += sizeof(struct ieee80211_ie_htinfo) -
3581 		__offsetof(struct ieee80211_ie_htinfo, hi_basicmcsset);
3582 	return frm;
3583 }
3584 
3585 /*
3586  * Add 802.11n HT information element.
3587  */
3588 uint8_t *
3589 ieee80211_add_htinfo(uint8_t *frm, struct ieee80211_node *ni)
3590 {
3591 	frm[0] = IEEE80211_ELEMID_HTINFO;
3592 	frm[1] = sizeof(struct ieee80211_ie_htinfo) - 2;
3593 	return ieee80211_add_htinfo_body(frm + 2, ni);
3594 }
3595 
3596 /*
3597  * Add Broadcom OUI wrapped standard HTINFO ie; this is
3598  * used for compatibility w/ pre-draft implementations.
3599  */
3600 uint8_t *
3601 ieee80211_add_htinfo_vendor(uint8_t *frm, struct ieee80211_node *ni)
3602 {
3603 	frm[0] = IEEE80211_ELEMID_VENDOR;
3604 	frm[1] = 4 + sizeof(struct ieee80211_ie_htinfo) - 2;
3605 	frm[2] = (BCM_OUI >> 0) & 0xff;
3606 	frm[3] = (BCM_OUI >> 8) & 0xff;
3607 	frm[4] = (BCM_OUI >> 16) & 0xff;
3608 	frm[5] = BCM_OUI_HTINFO;
3609 	return ieee80211_add_htinfo_body(frm + 6, ni);
3610 }
3611