xref: /freebsd/sys/net80211/ieee80211_ht.c (revision bffb67e30fc3a4e78c246286eb83152e078a5f6e)
1 /*-
2  * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  */
25 
26 #include <sys/cdefs.h>
27 #ifdef __FreeBSD__
28 __FBSDID("$FreeBSD$");
29 #endif
30 
31 /*
32  * IEEE 802.11n protocol support.
33  */
34 
35 #include "opt_inet.h"
36 #include "opt_wlan.h"
37 
38 #include <sys/param.h>
39 #include <sys/kernel.h>
40 #include <sys/systm.h>
41 #include <sys/endian.h>
42 
43 #include <sys/socket.h>
44 
45 #include <net/if.h>
46 #include <net/if_media.h>
47 #include <net/ethernet.h>
48 
49 #include <net80211/ieee80211_var.h>
50 #include <net80211/ieee80211_action.h>
51 #include <net80211/ieee80211_input.h>
52 
53 /* define here, used throughout file */
54 #define	MS(_v, _f)	(((_v) & _f) >> _f##_S)
55 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
56 
57 const struct ieee80211_mcs_rates ieee80211_htrates[IEEE80211_HTRATE_MAXSIZE] = {
58 	{  13,  14,   27,   30 },	/* MCS 0 */
59 	{  26,  29,   54,   60 },	/* MCS 1 */
60 	{  39,  43,   81,   90 },	/* MCS 2 */
61 	{  52,  58,  108,  120 },	/* MCS 3 */
62 	{  78,  87,  162,  180 },	/* MCS 4 */
63 	{ 104, 116,  216,  240 },	/* MCS 5 */
64 	{ 117, 130,  243,  270 },	/* MCS 6 */
65 	{ 130, 144,  270,  300 },	/* MCS 7 */
66 	{  26,  29,   54,   60 },	/* MCS 8 */
67 	{  52,  58,  108,  120 },	/* MCS 9 */
68 	{  78,  87,  162,  180 },	/* MCS 10 */
69 	{ 104, 116,  216,  240 },	/* MCS 11 */
70 	{ 156, 173,  324,  360 },	/* MCS 12 */
71 	{ 208, 231,  432,  480 },	/* MCS 13 */
72 	{ 234, 260,  486,  540 },	/* MCS 14 */
73 	{ 260, 289,  540,  600 },	/* MCS 15 */
74 	{  39,  43,   81,   90 },	/* MCS 16 */
75 	{  78,  87,  162,  180 },	/* MCS 17 */
76 	{ 117, 130,  243,  270 },	/* MCS 18 */
77 	{ 156, 173,  324,  360 },	/* MCS 19 */
78 	{ 234, 260,  486,  540 },	/* MCS 20 */
79 	{ 312, 347,  648,  720 },	/* MCS 21 */
80 	{ 351, 390,  729,  810 },	/* MCS 22 */
81 	{ 390, 433,  810,  900 },	/* MCS 23 */
82 	{  52,  58,  108,  120 },	/* MCS 24 */
83 	{ 104, 116,  216,  240 },	/* MCS 25 */
84 	{ 156, 173,  324,  360 },	/* MCS 26 */
85 	{ 208, 231,  432,  480 },	/* MCS 27 */
86 	{ 312, 347,  648,  720 },	/* MCS 28 */
87 	{ 416, 462,  864,  960 },	/* MCS 29 */
88 	{ 468, 520,  972, 1080 },	/* MCS 30 */
89 	{ 520, 578, 1080, 1200 },	/* MCS 31 */
90 	{   0,   0,   12,   13 },	/* MCS 32 */
91 	{  78,  87,  162,  180 },	/* MCS 33 */
92 	{ 104, 116,  216,  240 },	/* MCS 34 */
93 	{ 130, 144,  270,  300 },	/* MCS 35 */
94 	{ 117, 130,  243,  270 },	/* MCS 36 */
95 	{ 156, 173,  324,  360 },	/* MCS 37 */
96 	{ 195, 217,  405,  450 },	/* MCS 38 */
97 	{ 104, 116,  216,  240 },	/* MCS 39 */
98 	{ 130, 144,  270,  300 },	/* MCS 40 */
99 	{ 130, 144,  270,  300 },	/* MCS 41 */
100 	{ 156, 173,  324,  360 },	/* MCS 42 */
101 	{ 182, 202,  378,  420 },	/* MCS 43 */
102 	{ 182, 202,  378,  420 },	/* MCS 44 */
103 	{ 208, 231,  432,  480 },	/* MCS 45 */
104 	{ 156, 173,  324,  360 },	/* MCS 46 */
105 	{ 195, 217,  405,  450 },	/* MCS 47 */
106 	{ 195, 217,  405,  450 },	/* MCS 48 */
107 	{ 234, 260,  486,  540 },	/* MCS 49 */
108 	{ 273, 303,  567,  630 },	/* MCS 50 */
109 	{ 273, 303,  567,  630 },	/* MCS 51 */
110 	{ 312, 347,  648,  720 },	/* MCS 52 */
111 	{ 130, 144,  270,  300 },	/* MCS 53 */
112 	{ 156, 173,  324,  360 },	/* MCS 54 */
113 	{ 182, 202,  378,  420 },	/* MCS 55 */
114 	{ 156, 173,  324,  360 },	/* MCS 56 */
115 	{ 182, 202,  378,  420 },	/* MCS 57 */
116 	{ 208, 231,  432,  480 },	/* MCS 58 */
117 	{ 234, 260,  486,  540 },	/* MCS 59 */
118 	{ 208, 231,  432,  480 },	/* MCS 60 */
119 	{ 234, 260,  486,  540 },	/* MCS 61 */
120 	{ 260, 289,  540,  600 },	/* MCS 62 */
121 	{ 260, 289,  540,  600 },	/* MCS 63 */
122 	{ 286, 318,  594,  660 },	/* MCS 64 */
123 	{ 195, 217,  405,  450 },	/* MCS 65 */
124 	{ 234, 260,  486,  540 },	/* MCS 66 */
125 	{ 273, 303,  567,  630 },	/* MCS 67 */
126 	{ 234, 260,  486,  540 },	/* MCS 68 */
127 	{ 273, 303,  567,  630 },	/* MCS 69 */
128 	{ 312, 347,  648,  720 },	/* MCS 70 */
129 	{ 351, 390,  729,  810 },	/* MCS 71 */
130 	{ 312, 347,  648,  720 },	/* MCS 72 */
131 	{ 351, 390,  729,  810 },	/* MCS 73 */
132 	{ 390, 433,  810,  900 },	/* MCS 74 */
133 	{ 390, 433,  810,  900 },	/* MCS 75 */
134 	{ 429, 477,  891,  990 },	/* MCS 76 */
135 };
136 
137 static const struct ieee80211_htrateset ieee80211_rateset_11n =
138 	{ 16, {
139 	          0,   1,   2,   3,   4,  5,   6,  7,  8,  9,
140 		 10,  11,  12,  13,  14,  15 }
141 	};
142 
143 #ifdef IEEE80211_AMPDU_AGE
144 static	int ieee80211_ampdu_age = -1;	/* threshold for ampdu reorder q (ms) */
145 SYSCTL_PROC(_net_wlan, OID_AUTO, ampdu_age, CTLTYPE_INT | CTLFLAG_RW,
146 	&ieee80211_ampdu_age, 0, ieee80211_sysctl_msecs_ticks, "I",
147 	"AMPDU max reorder age (ms)");
148 #endif
149 
150 static	int ieee80211_recv_bar_ena = 1;
151 SYSCTL_INT(_net_wlan, OID_AUTO, recv_bar, CTLFLAG_RW, &ieee80211_recv_bar_ena,
152 	    0, "BAR frame processing (ena/dis)");
153 
154 static	int ieee80211_addba_timeout = -1;/* timeout for ADDBA response */
155 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_timeout, CTLTYPE_INT | CTLFLAG_RW,
156 	&ieee80211_addba_timeout, 0, ieee80211_sysctl_msecs_ticks, "I",
157 	"ADDBA request timeout (ms)");
158 static	int ieee80211_addba_backoff = -1;/* backoff after max ADDBA requests */
159 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_backoff, CTLTYPE_INT | CTLFLAG_RW,
160 	&ieee80211_addba_backoff, 0, ieee80211_sysctl_msecs_ticks, "I",
161 	"ADDBA request backoff (ms)");
162 static	int ieee80211_addba_maxtries = 3;/* max ADDBA requests before backoff */
163 SYSCTL_INT(_net_wlan, OID_AUTO, addba_maxtries, CTLTYPE_INT | CTLFLAG_RW,
164 	&ieee80211_addba_maxtries, 0, "max ADDBA requests sent before backoff");
165 
166 static	int ieee80211_bar_timeout = -1;	/* timeout waiting for BAR response */
167 static	int ieee80211_bar_maxtries = 50;/* max BAR requests before DELBA */
168 
169 static	ieee80211_recv_action_func ht_recv_action_ba_addba_request;
170 static	ieee80211_recv_action_func ht_recv_action_ba_addba_response;
171 static	ieee80211_recv_action_func ht_recv_action_ba_delba;
172 static	ieee80211_recv_action_func ht_recv_action_ht_mimopwrsave;
173 static	ieee80211_recv_action_func ht_recv_action_ht_txchwidth;
174 
175 static	ieee80211_send_action_func ht_send_action_ba_addba;
176 static	ieee80211_send_action_func ht_send_action_ba_delba;
177 static	ieee80211_send_action_func ht_send_action_ht_txchwidth;
178 
179 static void
180 ieee80211_ht_init(void)
181 {
182 	/*
183 	 * Setup HT parameters that depends on the clock frequency.
184 	 */
185 #ifdef IEEE80211_AMPDU_AGE
186 	ieee80211_ampdu_age = msecs_to_ticks(500);
187 #endif
188 	ieee80211_addba_timeout = msecs_to_ticks(250);
189 	ieee80211_addba_backoff = msecs_to_ticks(10*1000);
190 	ieee80211_bar_timeout = msecs_to_ticks(250);
191 	/*
192 	 * Register action frame handlers.
193 	 */
194 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
195 	    IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_recv_action_ba_addba_request);
196 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
197 	    IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_recv_action_ba_addba_response);
198 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
199 	    IEEE80211_ACTION_BA_DELBA, ht_recv_action_ba_delba);
200 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT,
201 	    IEEE80211_ACTION_HT_MIMOPWRSAVE, ht_recv_action_ht_mimopwrsave);
202 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT,
203 	    IEEE80211_ACTION_HT_TXCHWIDTH, ht_recv_action_ht_txchwidth);
204 
205 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
206 	    IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_send_action_ba_addba);
207 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
208 	    IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_send_action_ba_addba);
209 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
210 	    IEEE80211_ACTION_BA_DELBA, ht_send_action_ba_delba);
211 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_HT,
212 	    IEEE80211_ACTION_HT_TXCHWIDTH, ht_send_action_ht_txchwidth);
213 }
214 SYSINIT(wlan_ht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_ht_init, NULL);
215 
216 static int ieee80211_ampdu_enable(struct ieee80211_node *ni,
217 	struct ieee80211_tx_ampdu *tap);
218 static int ieee80211_addba_request(struct ieee80211_node *ni,
219 	struct ieee80211_tx_ampdu *tap,
220 	int dialogtoken, int baparamset, int batimeout);
221 static int ieee80211_addba_response(struct ieee80211_node *ni,
222 	struct ieee80211_tx_ampdu *tap,
223 	int code, int baparamset, int batimeout);
224 static void ieee80211_addba_stop(struct ieee80211_node *ni,
225 	struct ieee80211_tx_ampdu *tap);
226 static void ieee80211_bar_response(struct ieee80211_node *ni,
227 	struct ieee80211_tx_ampdu *tap, int status);
228 static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap);
229 static void bar_stop_timer(struct ieee80211_tx_ampdu *tap);
230 static int ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *,
231 	int baparamset, int batimeout, int baseqctl);
232 static void ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *);
233 
234 void
235 ieee80211_ht_attach(struct ieee80211com *ic)
236 {
237 	/* setup default aggregation policy */
238 	ic->ic_recv_action = ieee80211_recv_action;
239 	ic->ic_send_action = ieee80211_send_action;
240 	ic->ic_ampdu_enable = ieee80211_ampdu_enable;
241 	ic->ic_addba_request = ieee80211_addba_request;
242 	ic->ic_addba_response = ieee80211_addba_response;
243 	ic->ic_addba_stop = ieee80211_addba_stop;
244 	ic->ic_bar_response = ieee80211_bar_response;
245 	ic->ic_ampdu_rx_start = ampdu_rx_start;
246 	ic->ic_ampdu_rx_stop = ampdu_rx_stop;
247 
248 	ic->ic_htprotmode = IEEE80211_PROT_RTSCTS;
249 	ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE;
250 }
251 
252 void
253 ieee80211_ht_detach(struct ieee80211com *ic)
254 {
255 }
256 
257 void
258 ieee80211_ht_vattach(struct ieee80211vap *vap)
259 {
260 
261 	/* driver can override defaults */
262 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_8K;
263 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_NA;
264 	vap->iv_ampdu_limit = vap->iv_ampdu_rxmax;
265 	vap->iv_amsdu_limit = vap->iv_htcaps & IEEE80211_HTCAP_MAXAMSDU;
266 	/* tx aggregation traffic thresholds */
267 	vap->iv_ampdu_mintraffic[WME_AC_BK] = 128;
268 	vap->iv_ampdu_mintraffic[WME_AC_BE] = 64;
269 	vap->iv_ampdu_mintraffic[WME_AC_VO] = 32;
270 	vap->iv_ampdu_mintraffic[WME_AC_VI] = 32;
271 
272 	if (vap->iv_htcaps & IEEE80211_HTC_HT) {
273 		/*
274 		 * Device is HT capable; enable all HT-related
275 		 * facilities by default.
276 		 * XXX these choices may be too aggressive.
277 		 */
278 		vap->iv_flags_ht |= IEEE80211_FHT_HT
279 				 |  IEEE80211_FHT_HTCOMPAT
280 				 ;
281 		if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI20)
282 			vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20;
283 		/* XXX infer from channel list? */
284 		if (vap->iv_htcaps & IEEE80211_HTCAP_CHWIDTH40) {
285 			vap->iv_flags_ht |= IEEE80211_FHT_USEHT40;
286 			if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI40)
287 				vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40;
288 		}
289 		/* enable RIFS if capable */
290 		if (vap->iv_htcaps & IEEE80211_HTC_RIFS)
291 			vap->iv_flags_ht |= IEEE80211_FHT_RIFS;
292 
293 		/* NB: A-MPDU and A-MSDU rx are mandated, these are tx only */
294 		vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX;
295 		if (vap->iv_htcaps & IEEE80211_HTC_AMPDU)
296 			vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX;
297 		vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX;
298 		if (vap->iv_htcaps & IEEE80211_HTC_AMSDU)
299 			vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX;
300 	}
301 	/* NB: disable default legacy WDS, too many issues right now */
302 	if (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)
303 		vap->iv_flags_ht &= ~IEEE80211_FHT_HT;
304 }
305 
306 void
307 ieee80211_ht_vdetach(struct ieee80211vap *vap)
308 {
309 }
310 
311 static int
312 ht_getrate(struct ieee80211com *ic, int index, int mode, int ratetype)
313 {
314 	int mword, rate;
315 
316 	mword = ieee80211_rate2media(ic, index | IEEE80211_RATE_MCS, mode);
317 	if (IFM_SUBTYPE(mword) != IFM_IEEE80211_MCS)
318 		return (0);
319 	switch (ratetype) {
320 	case 0:
321 		rate = ieee80211_htrates[index].ht20_rate_800ns;
322 		break;
323 	case 1:
324 		rate = ieee80211_htrates[index].ht20_rate_400ns;
325 		break;
326 	case 2:
327 		rate = ieee80211_htrates[index].ht40_rate_800ns;
328 		break;
329 	default:
330 		rate = ieee80211_htrates[index].ht40_rate_400ns;
331 		break;
332 	}
333 	return (rate);
334 }
335 
336 static struct printranges {
337 	int	minmcs;
338 	int	maxmcs;
339 	int	txstream;
340 	int	ratetype;
341 	int	htcapflags;
342 } ranges[] = {
343 	{  0,  7, 1, 0, 0 },
344 	{  8, 15, 2, 0, 0 },
345 	{ 16, 23, 3, 0, 0 },
346 	{ 24, 31, 4, 0, 0 },
347 	{ 32,  0, 1, 2, IEEE80211_HTC_TXMCS32 },
348 	{ 33, 38, 2, 0, IEEE80211_HTC_TXUNEQUAL },
349 	{ 39, 52, 3, 0, IEEE80211_HTC_TXUNEQUAL },
350 	{ 53, 76, 4, 0, IEEE80211_HTC_TXUNEQUAL },
351 	{  0,  0, 0, 0, 0 },
352 };
353 
354 static void
355 ht_rateprint(struct ieee80211com *ic, int mode, int ratetype)
356 {
357 	struct ifnet *ifp = ic->ic_ifp;
358 	int minrate, maxrate;
359 	struct printranges *range;
360 
361 	for (range = ranges; range->txstream != 0; range++) {
362 		if (ic->ic_txstream < range->txstream)
363 			continue;
364 		if (range->htcapflags &&
365 		    (ic->ic_htcaps & range->htcapflags) == 0)
366 			continue;
367 		if (ratetype < range->ratetype)
368 			continue;
369 		minrate = ht_getrate(ic, range->minmcs, mode, ratetype);
370 		maxrate = ht_getrate(ic, range->maxmcs, mode, ratetype);
371 		if (range->maxmcs) {
372 			if_printf(ifp, "MCS %d-%d: %d%sMbps - %d%sMbps\n",
373 			    range->minmcs, range->maxmcs,
374 			    minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""),
375 			    maxrate/2, ((maxrate & 0x1) != 0 ? ".5" : ""));
376 		} else {
377 			if_printf(ifp, "MCS %d: %d%sMbps\n", range->minmcs,
378 			    minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""));
379 		}
380 	}
381 }
382 
383 static void
384 ht_announce(struct ieee80211com *ic, int mode)
385 {
386 	struct ifnet *ifp = ic->ic_ifp;
387 	const char *modestr = ieee80211_phymode_name[mode];
388 
389 	if_printf(ifp, "%s MCS 20Mhz\n", modestr);
390 	ht_rateprint(ic, mode, 0);
391 	if (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) {
392 		if_printf(ifp, "%s MCS 20Mhz SGI\n", modestr);
393 		ht_rateprint(ic, mode, 1);
394 	}
395 	if (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) {
396 		if_printf(ifp, "%s MCS 40Mhz:\n", modestr);
397 		ht_rateprint(ic, mode, 2);
398 	}
399 	if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
400 	    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) {
401 		if_printf(ifp, "%s MCS 40Mhz SGI:\n", modestr);
402 		ht_rateprint(ic, mode, 3);
403 	}
404 }
405 
406 void
407 ieee80211_ht_announce(struct ieee80211com *ic)
408 {
409 	struct ifnet *ifp = ic->ic_ifp;
410 
411 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
412 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG))
413 		if_printf(ifp, "%dT%dR\n", ic->ic_txstream, ic->ic_rxstream);
414 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA))
415 		ht_announce(ic, IEEE80211_MODE_11NA);
416 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NG))
417 		ht_announce(ic, IEEE80211_MODE_11NG);
418 }
419 
420 const struct ieee80211_htrateset *
421 ieee80211_get_suphtrates(struct ieee80211com *ic,
422 	const struct ieee80211_channel *c)
423 {
424 	return &ieee80211_rateset_11n;
425 }
426 
427 /*
428  * Receive processing.
429  */
430 
431 /*
432  * Decap the encapsulated A-MSDU frames and dispatch all but
433  * the last for delivery.  The last frame is returned for
434  * delivery via the normal path.
435  */
436 struct mbuf *
437 ieee80211_decap_amsdu(struct ieee80211_node *ni, struct mbuf *m)
438 {
439 	struct ieee80211vap *vap = ni->ni_vap;
440 	int framelen;
441 	struct mbuf *n;
442 
443 	/* discard 802.3 header inserted by ieee80211_decap */
444 	m_adj(m, sizeof(struct ether_header));
445 
446 	vap->iv_stats.is_amsdu_decap++;
447 
448 	for (;;) {
449 		/*
450 		 * Decap the first frame, bust it apart from the
451 		 * remainder and deliver.  We leave the last frame
452 		 * delivery to the caller (for consistency with other
453 		 * code paths, could also do it here).
454 		 */
455 		m = ieee80211_decap1(m, &framelen);
456 		if (m == NULL) {
457 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
458 			    ni->ni_macaddr, "a-msdu", "%s", "decap failed");
459 			vap->iv_stats.is_amsdu_tooshort++;
460 			return NULL;
461 		}
462 		if (m->m_pkthdr.len == framelen)
463 			break;
464 		n = m_split(m, framelen, M_NOWAIT);
465 		if (n == NULL) {
466 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
467 			    ni->ni_macaddr, "a-msdu",
468 			    "%s", "unable to split encapsulated frames");
469 			vap->iv_stats.is_amsdu_split++;
470 			m_freem(m);			/* NB: must reclaim */
471 			return NULL;
472 		}
473 		vap->iv_deliver_data(vap, ni, m);
474 
475 		/*
476 		 * Remove frame contents; each intermediate frame
477 		 * is required to be aligned to a 4-byte boundary.
478 		 */
479 		m = n;
480 		m_adj(m, roundup2(framelen, 4) - framelen);	/* padding */
481 	}
482 	return m;				/* last delivered by caller */
483 }
484 
485 /*
486  * Purge all frames in the A-MPDU re-order queue.
487  */
488 static void
489 ampdu_rx_purge(struct ieee80211_rx_ampdu *rap)
490 {
491 	struct mbuf *m;
492 	int i;
493 
494 	for (i = 0; i < rap->rxa_wnd; i++) {
495 		m = rap->rxa_m[i];
496 		if (m != NULL) {
497 			rap->rxa_m[i] = NULL;
498 			rap->rxa_qbytes -= m->m_pkthdr.len;
499 			m_freem(m);
500 			if (--rap->rxa_qframes == 0)
501 				break;
502 		}
503 	}
504 	KASSERT(rap->rxa_qbytes == 0 && rap->rxa_qframes == 0,
505 	    ("lost %u data, %u frames on ampdu rx q",
506 	    rap->rxa_qbytes, rap->rxa_qframes));
507 }
508 
509 /*
510  * Start A-MPDU rx/re-order processing for the specified TID.
511  */
512 static int
513 ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
514 	int baparamset, int batimeout, int baseqctl)
515 {
516 	int bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
517 
518 	if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) {
519 		/*
520 		 * AMPDU previously setup and not terminated with a DELBA,
521 		 * flush the reorder q's in case anything remains.
522 		 */
523 		ampdu_rx_purge(rap);
524 	}
525 	memset(rap, 0, sizeof(*rap));
526 	rap->rxa_wnd = (bufsiz == 0) ?
527 	    IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
528 	rap->rxa_start = MS(baseqctl, IEEE80211_BASEQ_START);
529 	rap->rxa_flags |=  IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND;
530 
531 	return 0;
532 }
533 
534 /*
535  * Stop A-MPDU rx processing for the specified TID.
536  */
537 static void
538 ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
539 {
540 
541 	ampdu_rx_purge(rap);
542 	rap->rxa_flags &= ~(IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND);
543 }
544 
545 /*
546  * Dispatch a frame from the A-MPDU reorder queue.  The
547  * frame is fed back into ieee80211_input marked with an
548  * M_AMPDU_MPDU flag so it doesn't come back to us (it also
549  * permits ieee80211_input to optimize re-processing).
550  */
551 static __inline void
552 ampdu_dispatch(struct ieee80211_node *ni, struct mbuf *m)
553 {
554 	m->m_flags |= M_AMPDU_MPDU;	/* bypass normal processing */
555 	/* NB: rssi and noise are ignored w/ M_AMPDU_MPDU set */
556 	(void) ieee80211_input(ni, m, 0, 0);
557 }
558 
559 /*
560  * Dispatch as many frames as possible from the re-order queue.
561  * Frames will always be "at the front"; we process all frames
562  * up to the first empty slot in the window.  On completion we
563  * cleanup state if there are still pending frames in the current
564  * BA window.  We assume the frame at slot 0 is already handled
565  * by the caller; we always start at slot 1.
566  */
567 static void
568 ampdu_rx_dispatch(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni)
569 {
570 	struct ieee80211vap *vap = ni->ni_vap;
571 	struct mbuf *m;
572 	int i;
573 
574 	/* flush run of frames */
575 	for (i = 1; i < rap->rxa_wnd; i++) {
576 		m = rap->rxa_m[i];
577 		if (m == NULL)
578 			break;
579 		rap->rxa_m[i] = NULL;
580 		rap->rxa_qbytes -= m->m_pkthdr.len;
581 		rap->rxa_qframes--;
582 
583 		ampdu_dispatch(ni, m);
584 	}
585 	/*
586 	 * If frames remain, copy the mbuf pointers down so
587 	 * they correspond to the offsets in the new window.
588 	 */
589 	if (rap->rxa_qframes != 0) {
590 		int n = rap->rxa_qframes, j;
591 		for (j = i+1; j < rap->rxa_wnd; j++) {
592 			if (rap->rxa_m[j] != NULL) {
593 				rap->rxa_m[j-i] = rap->rxa_m[j];
594 				rap->rxa_m[j] = NULL;
595 				if (--n == 0)
596 					break;
597 			}
598 		}
599 		KASSERT(n == 0, ("lost %d frames", n));
600 		vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes;
601 	}
602 	/*
603 	 * Adjust the start of the BA window to
604 	 * reflect the frames just dispatched.
605 	 */
606 	rap->rxa_start = IEEE80211_SEQ_ADD(rap->rxa_start, i);
607 	vap->iv_stats.is_ampdu_rx_oor += i;
608 }
609 
610 #ifdef IEEE80211_AMPDU_AGE
611 /*
612  * Dispatch all frames in the A-MPDU re-order queue.
613  */
614 static void
615 ampdu_rx_flush(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
616 {
617 	struct ieee80211vap *vap = ni->ni_vap;
618 	struct mbuf *m;
619 	int i;
620 
621 	for (i = 0; i < rap->rxa_wnd; i++) {
622 		m = rap->rxa_m[i];
623 		if (m == NULL)
624 			continue;
625 		rap->rxa_m[i] = NULL;
626 		rap->rxa_qbytes -= m->m_pkthdr.len;
627 		rap->rxa_qframes--;
628 		vap->iv_stats.is_ampdu_rx_oor++;
629 
630 		ampdu_dispatch(ni, m);
631 		if (rap->rxa_qframes == 0)
632 			break;
633 	}
634 }
635 #endif /* IEEE80211_AMPDU_AGE */
636 
637 /*
638  * Dispatch all frames in the A-MPDU re-order queue
639  * preceding the specified sequence number.  This logic
640  * handles window moves due to a received MSDU or BAR.
641  */
642 static void
643 ampdu_rx_flush_upto(struct ieee80211_node *ni,
644 	struct ieee80211_rx_ampdu *rap, ieee80211_seq winstart)
645 {
646 	struct ieee80211vap *vap = ni->ni_vap;
647 	struct mbuf *m;
648 	ieee80211_seq seqno;
649 	int i;
650 
651 	/*
652 	 * Flush any complete MSDU's with a sequence number lower
653 	 * than winstart.  Gaps may exist.  Note that we may actually
654 	 * dispatch frames past winstart if a run continues; this is
655 	 * an optimization that avoids having to do a separate pass
656 	 * to dispatch frames after moving the BA window start.
657 	 */
658 	seqno = rap->rxa_start;
659 	for (i = 0; i < rap->rxa_wnd; i++) {
660 		m = rap->rxa_m[i];
661 		if (m != NULL) {
662 			rap->rxa_m[i] = NULL;
663 			rap->rxa_qbytes -= m->m_pkthdr.len;
664 			rap->rxa_qframes--;
665 			vap->iv_stats.is_ampdu_rx_oor++;
666 
667 			ampdu_dispatch(ni, m);
668 		} else {
669 			if (!IEEE80211_SEQ_BA_BEFORE(seqno, winstart))
670 				break;
671 		}
672 		seqno = IEEE80211_SEQ_INC(seqno);
673 	}
674 	/*
675 	 * If frames remain, copy the mbuf pointers down so
676 	 * they correspond to the offsets in the new window.
677 	 */
678 	if (rap->rxa_qframes != 0) {
679 		int n = rap->rxa_qframes, j;
680 
681 		/* NB: this loop assumes i > 0 and/or rxa_m[0] is NULL */
682 		KASSERT(rap->rxa_m[0] == NULL,
683 		    ("%s: BA window slot 0 occupied", __func__));
684 		for (j = i+1; j < rap->rxa_wnd; j++) {
685 			if (rap->rxa_m[j] != NULL) {
686 				rap->rxa_m[j-i] = rap->rxa_m[j];
687 				rap->rxa_m[j] = NULL;
688 				if (--n == 0)
689 					break;
690 			}
691 		}
692 		KASSERT(n == 0, ("%s: lost %d frames, qframes %d off %d "
693 		    "BA win <%d:%d> winstart %d",
694 		    __func__, n, rap->rxa_qframes, i, rap->rxa_start,
695 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
696 		    winstart));
697 		vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes;
698 	}
699 	/*
700 	 * Move the start of the BA window; we use the
701 	 * sequence number of the last MSDU that was
702 	 * passed up the stack+1 or winstart if stopped on
703 	 * a gap in the reorder buffer.
704 	 */
705 	rap->rxa_start = seqno;
706 }
707 
708 /*
709  * Process a received QoS data frame for an HT station.  Handle
710  * A-MPDU reordering: if this frame is received out of order
711  * and falls within the BA window hold onto it.  Otherwise if
712  * this frame completes a run, flush any pending frames.  We
713  * return 1 if the frame is consumed.  A 0 is returned if
714  * the frame should be processed normally by the caller.
715  */
716 int
717 ieee80211_ampdu_reorder(struct ieee80211_node *ni, struct mbuf *m)
718 {
719 #define	IEEE80211_FC0_QOSDATA \
720 	(IEEE80211_FC0_TYPE_DATA|IEEE80211_FC0_SUBTYPE_QOS|IEEE80211_FC0_VERSION_0)
721 #define	PROCESS		0	/* caller should process frame */
722 #define	CONSUMED	1	/* frame consumed, caller does nothing */
723 	struct ieee80211vap *vap = ni->ni_vap;
724 	struct ieee80211_qosframe *wh;
725 	struct ieee80211_rx_ampdu *rap;
726 	ieee80211_seq rxseq;
727 	uint8_t tid;
728 	int off;
729 
730 	KASSERT((m->m_flags & (M_AMPDU | M_AMPDU_MPDU)) == M_AMPDU,
731 	    ("!a-mpdu or already re-ordered, flags 0x%x", m->m_flags));
732 	KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta"));
733 
734 	/* NB: m_len known to be sufficient */
735 	wh = mtod(m, struct ieee80211_qosframe *);
736 	if (wh->i_fc[0] != IEEE80211_FC0_QOSDATA) {
737 		/*
738 		 * Not QoS data, shouldn't get here but just
739 		 * return it to the caller for processing.
740 		 */
741 		return PROCESS;
742 	}
743 	if (IEEE80211_IS_DSTODS(wh))
744 		tid = ((struct ieee80211_qosframe_addr4 *)wh)->i_qos[0];
745 	else
746 		tid = wh->i_qos[0];
747 	tid &= IEEE80211_QOS_TID;
748 	rap = &ni->ni_rx_ampdu[tid];
749 	if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
750 		/*
751 		 * No ADDBA request yet, don't touch.
752 		 */
753 		return PROCESS;
754 	}
755 	rxseq = le16toh(*(uint16_t *)wh->i_seq);
756 	if ((rxseq & IEEE80211_SEQ_FRAG_MASK) != 0) {
757 		/*
758 		 * Fragments are not allowed; toss.
759 		 */
760 		IEEE80211_DISCARD_MAC(vap,
761 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
762 		    "A-MPDU", "fragment, rxseq 0x%x tid %u%s", rxseq, tid,
763 		    wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
764 		vap->iv_stats.is_ampdu_rx_drop++;
765 		IEEE80211_NODE_STAT(ni, rx_drop);
766 		m_freem(m);
767 		return CONSUMED;
768 	}
769 	rxseq >>= IEEE80211_SEQ_SEQ_SHIFT;
770 	rap->rxa_nframes++;
771 again:
772 	if (rxseq == rap->rxa_start) {
773 		/*
774 		 * First frame in window.
775 		 */
776 		if (rap->rxa_qframes != 0) {
777 			/*
778 			 * Dispatch as many packets as we can.
779 			 */
780 			KASSERT(rap->rxa_m[0] == NULL, ("unexpected dup"));
781 			ampdu_dispatch(ni, m);
782 			ampdu_rx_dispatch(rap, ni);
783 			return CONSUMED;
784 		} else {
785 			/*
786 			 * In order; advance window and notify
787 			 * caller to dispatch directly.
788 			 */
789 			rap->rxa_start = IEEE80211_SEQ_INC(rxseq);
790 			return PROCESS;
791 		}
792 	}
793 	/*
794 	 * Frame is out of order; store if in the BA window.
795 	 */
796 	/* calculate offset in BA window */
797 	off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start);
798 	if (off < rap->rxa_wnd) {
799 		/*
800 		 * Common case (hopefully): in the BA window.
801 		 * Sec 9.10.7.6.2 a) (p.137)
802 		 */
803 #ifdef IEEE80211_AMPDU_AGE
804 		/*
805 		 * Check for frames sitting too long in the reorder queue.
806 		 * This should only ever happen if frames are not delivered
807 		 * without the sender otherwise notifying us (e.g. with a
808 		 * BAR to move the window).  Typically this happens because
809 		 * of vendor bugs that cause the sequence number to jump.
810 		 * When this happens we get a gap in the reorder queue that
811 		 * leaves frame sitting on the queue until they get pushed
812 		 * out due to window moves.  When the vendor does not send
813 		 * BAR this move only happens due to explicit packet sends
814 		 *
815 		 * NB: we only track the time of the oldest frame in the
816 		 * reorder q; this means that if we flush we might push
817 		 * frames that still "new"; if this happens then subsequent
818 		 * frames will result in BA window moves which cost something
819 		 * but is still better than a big throughput dip.
820 		 */
821 		if (rap->rxa_qframes != 0) {
822 			/* XXX honor batimeout? */
823 			if (ticks - rap->rxa_age > ieee80211_ampdu_age) {
824 				/*
825 				 * Too long since we received the first
826 				 * frame; flush the reorder buffer.
827 				 */
828 				if (rap->rxa_qframes != 0) {
829 					vap->iv_stats.is_ampdu_rx_age +=
830 					    rap->rxa_qframes;
831 					ampdu_rx_flush(ni, rap);
832 				}
833 				rap->rxa_start = IEEE80211_SEQ_INC(rxseq);
834 				return PROCESS;
835 			}
836 		} else {
837 			/*
838 			 * First frame, start aging timer.
839 			 */
840 			rap->rxa_age = ticks;
841 		}
842 #endif /* IEEE80211_AMPDU_AGE */
843 		/* save packet */
844 		if (rap->rxa_m[off] == NULL) {
845 			rap->rxa_m[off] = m;
846 			rap->rxa_qframes++;
847 			rap->rxa_qbytes += m->m_pkthdr.len;
848 			vap->iv_stats.is_ampdu_rx_reorder++;
849 		} else {
850 			IEEE80211_DISCARD_MAC(vap,
851 			    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
852 			    ni->ni_macaddr, "a-mpdu duplicate",
853 			    "seqno %u tid %u BA win <%u:%u>",
854 			    rxseq, tid, rap->rxa_start,
855 			    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1));
856 			vap->iv_stats.is_rx_dup++;
857 			IEEE80211_NODE_STAT(ni, rx_dup);
858 			m_freem(m);
859 		}
860 		return CONSUMED;
861 	}
862 	if (off < IEEE80211_SEQ_BA_RANGE) {
863 		/*
864 		 * Outside the BA window, but within range;
865 		 * flush the reorder q and move the window.
866 		 * Sec 9.10.7.6.2 b) (p.138)
867 		 */
868 		IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
869 		    "move BA win <%u:%u> (%u frames) rxseq %u tid %u",
870 		    rap->rxa_start,
871 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
872 		    rap->rxa_qframes, rxseq, tid);
873 		vap->iv_stats.is_ampdu_rx_move++;
874 
875 		/*
876 		 * The spec says to flush frames up to but not including:
877 		 * 	WinStart_B = rxseq - rap->rxa_wnd + 1
878 		 * Then insert the frame or notify the caller to process
879 		 * it immediately.  We can safely do this by just starting
880 		 * over again because we know the frame will now be within
881 		 * the BA window.
882 		 */
883 		/* NB: rxa_wnd known to be >0 */
884 		ampdu_rx_flush_upto(ni, rap,
885 		    IEEE80211_SEQ_SUB(rxseq, rap->rxa_wnd-1));
886 		goto again;
887 	} else {
888 		/*
889 		 * Outside the BA window and out of range; toss.
890 		 * Sec 9.10.7.6.2 c) (p.138)
891 		 */
892 		IEEE80211_DISCARD_MAC(vap,
893 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
894 		    "MPDU", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s",
895 		    rap->rxa_start,
896 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
897 		    rap->rxa_qframes, rxseq, tid,
898 		    wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
899 		vap->iv_stats.is_ampdu_rx_drop++;
900 		IEEE80211_NODE_STAT(ni, rx_drop);
901 		m_freem(m);
902 		return CONSUMED;
903 	}
904 #undef CONSUMED
905 #undef PROCESS
906 #undef IEEE80211_FC0_QOSDATA
907 }
908 
909 /*
910  * Process a BAR ctl frame.  Dispatch all frames up to
911  * the sequence number of the frame.  If this frame is
912  * out of range it's discarded.
913  */
914 void
915 ieee80211_recv_bar(struct ieee80211_node *ni, struct mbuf *m0)
916 {
917 	struct ieee80211vap *vap = ni->ni_vap;
918 	struct ieee80211_frame_bar *wh;
919 	struct ieee80211_rx_ampdu *rap;
920 	ieee80211_seq rxseq;
921 	int tid, off;
922 
923 	if (!ieee80211_recv_bar_ena) {
924 #if 0
925 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_11N,
926 		    ni->ni_macaddr, "BAR", "%s", "processing disabled");
927 #endif
928 		vap->iv_stats.is_ampdu_bar_bad++;
929 		return;
930 	}
931 	wh = mtod(m0, struct ieee80211_frame_bar *);
932 	/* XXX check basic BAR */
933 	tid = MS(le16toh(wh->i_ctl), IEEE80211_BAR_TID);
934 	rap = &ni->ni_rx_ampdu[tid];
935 	if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
936 		/*
937 		 * No ADDBA request yet, don't touch.
938 		 */
939 		IEEE80211_DISCARD_MAC(vap,
940 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
941 		    ni->ni_macaddr, "BAR", "no BA stream, tid %u", tid);
942 		vap->iv_stats.is_ampdu_bar_bad++;
943 		return;
944 	}
945 	vap->iv_stats.is_ampdu_bar_rx++;
946 	rxseq = le16toh(wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT;
947 	if (rxseq == rap->rxa_start)
948 		return;
949 	/* calculate offset in BA window */
950 	off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start);
951 	if (off < IEEE80211_SEQ_BA_RANGE) {
952 		/*
953 		 * Flush the reorder q up to rxseq and move the window.
954 		 * Sec 9.10.7.6.3 a) (p.138)
955 		 */
956 		IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
957 		    "BAR moves BA win <%u:%u> (%u frames) rxseq %u tid %u",
958 		    rap->rxa_start,
959 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
960 		    rap->rxa_qframes, rxseq, tid);
961 		vap->iv_stats.is_ampdu_bar_move++;
962 
963 		ampdu_rx_flush_upto(ni, rap, rxseq);
964 		if (off >= rap->rxa_wnd) {
965 			/*
966 			 * BAR specifies a window start to the right of BA
967 			 * window; we must move it explicitly since
968 			 * ampdu_rx_flush_upto will not.
969 			 */
970 			rap->rxa_start = rxseq;
971 		}
972 	} else {
973 		/*
974 		 * Out of range; toss.
975 		 * Sec 9.10.7.6.3 b) (p.138)
976 		 */
977 		IEEE80211_DISCARD_MAC(vap,
978 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
979 		    "BAR", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s",
980 		    rap->rxa_start,
981 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
982 		    rap->rxa_qframes, rxseq, tid,
983 		    wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
984 		vap->iv_stats.is_ampdu_bar_oow++;
985 		IEEE80211_NODE_STAT(ni, rx_drop);
986 	}
987 }
988 
989 /*
990  * Setup HT-specific state in a node.  Called only
991  * when HT use is negotiated so we don't do extra
992  * work for temporary and/or legacy sta's.
993  */
994 void
995 ieee80211_ht_node_init(struct ieee80211_node *ni)
996 {
997 	struct ieee80211_tx_ampdu *tap;
998 	int ac;
999 
1000 	if (ni->ni_flags & IEEE80211_NODE_HT) {
1001 		/*
1002 		 * Clean AMPDU state on re-associate.  This handles the case
1003 		 * where a station leaves w/o notifying us and then returns
1004 		 * before node is reaped for inactivity.
1005 		 */
1006 		ieee80211_ht_node_cleanup(ni);
1007 	}
1008 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1009 		tap = &ni->ni_tx_ampdu[ac];
1010 		tap->txa_ac = ac;
1011 		tap->txa_ni = ni;
1012 		/* NB: further initialization deferred */
1013 	}
1014 	ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU;
1015 }
1016 
1017 /*
1018  * Cleanup HT-specific state in a node.  Called only
1019  * when HT use has been marked.
1020  */
1021 void
1022 ieee80211_ht_node_cleanup(struct ieee80211_node *ni)
1023 {
1024 	struct ieee80211com *ic = ni->ni_ic;
1025 	int i;
1026 
1027 	KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT node"));
1028 
1029 	/* XXX optimize this */
1030 	for (i = 0; i < WME_NUM_AC; i++) {
1031 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[i];
1032 		if (tap->txa_flags & IEEE80211_AGGR_SETUP)
1033 			ampdu_tx_stop(tap);
1034 	}
1035 	for (i = 0; i < WME_NUM_TID; i++)
1036 		ic->ic_ampdu_rx_stop(ni, &ni->ni_rx_ampdu[i]);
1037 
1038 	ni->ni_htcap = 0;
1039 	ni->ni_flags &= ~IEEE80211_NODE_HT_ALL;
1040 }
1041 
1042 /*
1043  * Age out HT resources for a station.
1044  */
1045 void
1046 ieee80211_ht_node_age(struct ieee80211_node *ni)
1047 {
1048 #ifdef IEEE80211_AMPDU_AGE
1049 	struct ieee80211vap *vap = ni->ni_vap;
1050 	uint8_t tid;
1051 #endif
1052 
1053 	KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta"));
1054 
1055 #ifdef IEEE80211_AMPDU_AGE
1056 	for (tid = 0; tid < WME_NUM_TID; tid++) {
1057 		struct ieee80211_rx_ampdu *rap;
1058 
1059 		rap = &ni->ni_rx_ampdu[tid];
1060 		if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0)
1061 			continue;
1062 		if (rap->rxa_qframes == 0)
1063 			continue;
1064 		/*
1065 		 * Check for frames sitting too long in the reorder queue.
1066 		 * See above for more details on what's happening here.
1067 		 */
1068 		/* XXX honor batimeout? */
1069 		if (ticks - rap->rxa_age > ieee80211_ampdu_age) {
1070 			/*
1071 			 * Too long since we received the first
1072 			 * frame; flush the reorder buffer.
1073 			 */
1074 			vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes;
1075 			ampdu_rx_flush(ni, rap);
1076 		}
1077 	}
1078 #endif /* IEEE80211_AMPDU_AGE */
1079 }
1080 
1081 static struct ieee80211_channel *
1082 findhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int htflags)
1083 {
1084 	return ieee80211_find_channel(ic, c->ic_freq,
1085 	    (c->ic_flags &~ IEEE80211_CHAN_HT) | htflags);
1086 }
1087 
1088 /*
1089  * Adjust a channel to be HT/non-HT according to the vap's configuration.
1090  */
1091 struct ieee80211_channel *
1092 ieee80211_ht_adjust_channel(struct ieee80211com *ic,
1093 	struct ieee80211_channel *chan, int flags)
1094 {
1095 	struct ieee80211_channel *c;
1096 
1097 	if (flags & IEEE80211_FHT_HT) {
1098 		/* promote to HT if possible */
1099 		if (flags & IEEE80211_FHT_USEHT40) {
1100 			if (!IEEE80211_IS_CHAN_HT40(chan)) {
1101 				/* NB: arbitrarily pick ht40+ over ht40- */
1102 				c = findhtchan(ic, chan, IEEE80211_CHAN_HT40U);
1103 				if (c == NULL)
1104 					c = findhtchan(ic, chan,
1105 						IEEE80211_CHAN_HT40D);
1106 				if (c == NULL)
1107 					c = findhtchan(ic, chan,
1108 						IEEE80211_CHAN_HT20);
1109 				if (c != NULL)
1110 					chan = c;
1111 			}
1112 		} else if (!IEEE80211_IS_CHAN_HT20(chan)) {
1113 			c = findhtchan(ic, chan, IEEE80211_CHAN_HT20);
1114 			if (c != NULL)
1115 				chan = c;
1116 		}
1117 	} else if (IEEE80211_IS_CHAN_HT(chan)) {
1118 		/* demote to legacy, HT use is disabled */
1119 		c = ieee80211_find_channel(ic, chan->ic_freq,
1120 		    chan->ic_flags &~ IEEE80211_CHAN_HT);
1121 		if (c != NULL)
1122 			chan = c;
1123 	}
1124 	return chan;
1125 }
1126 
1127 /*
1128  * Setup HT-specific state for a legacy WDS peer.
1129  */
1130 void
1131 ieee80211_ht_wds_init(struct ieee80211_node *ni)
1132 {
1133 	struct ieee80211vap *vap = ni->ni_vap;
1134 	struct ieee80211_tx_ampdu *tap;
1135 	int ac;
1136 
1137 	KASSERT(vap->iv_flags_ht & IEEE80211_FHT_HT, ("no HT requested"));
1138 
1139 	/* XXX check scan cache in case peer has an ap and we have info */
1140 	/*
1141 	 * If setup with a legacy channel; locate an HT channel.
1142 	 * Otherwise if the inherited channel (from a companion
1143 	 * AP) is suitable use it so we use the same location
1144 	 * for the extension channel).
1145 	 */
1146 	ni->ni_chan = ieee80211_ht_adjust_channel(ni->ni_ic,
1147 	    ni->ni_chan, ieee80211_htchanflags(ni->ni_chan));
1148 
1149 	ni->ni_htcap = 0;
1150 	if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)
1151 		ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI20;
1152 	if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
1153 		ni->ni_htcap |= IEEE80211_HTCAP_CHWIDTH40;
1154 		ni->ni_chw = 40;
1155 		if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
1156 			ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_ABOVE;
1157 		else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
1158 			ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_BELOW;
1159 		if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)
1160 			ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI40;
1161 	} else {
1162 		ni->ni_chw = 20;
1163 		ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_NONE;
1164 	}
1165 	ni->ni_htctlchan = ni->ni_chan->ic_ieee;
1166 	if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
1167 		ni->ni_flags |= IEEE80211_NODE_RIFS;
1168 	/* XXX does it make sense to enable SMPS? */
1169 
1170 	ni->ni_htopmode = 0;		/* XXX need protection state */
1171 	ni->ni_htstbc = 0;		/* XXX need info */
1172 
1173 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1174 		tap = &ni->ni_tx_ampdu[ac];
1175 		tap->txa_ac = ac;
1176 	}
1177 	/* NB: AMPDU tx/rx governed by IEEE80211_FHT_AMPDU_{TX,RX} */
1178 	ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU;
1179 }
1180 
1181 /*
1182  * Notify hostap vaps of a change in the HTINFO ie.
1183  */
1184 static void
1185 htinfo_notify(struct ieee80211com *ic)
1186 {
1187 	struct ieee80211vap *vap;
1188 	int first = 1;
1189 
1190 	IEEE80211_LOCK_ASSERT(ic);
1191 
1192 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1193 		if (vap->iv_opmode != IEEE80211_M_HOSTAP)
1194 			continue;
1195 		if (vap->iv_state != IEEE80211_S_RUN ||
1196 		    !IEEE80211_IS_CHAN_HT(vap->iv_bss->ni_chan))
1197 			continue;
1198 		if (first) {
1199 			IEEE80211_NOTE(vap,
1200 			    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N,
1201 			    vap->iv_bss,
1202 			    "HT bss occupancy change: %d sta, %d ht, "
1203 			    "%d ht40%s, HT protmode now 0x%x"
1204 			    , ic->ic_sta_assoc
1205 			    , ic->ic_ht_sta_assoc
1206 			    , ic->ic_ht40_sta_assoc
1207 			    , (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) ?
1208 				 ", non-HT sta present" : ""
1209 			    , ic->ic_curhtprotmode);
1210 			first = 0;
1211 		}
1212 		ieee80211_beacon_notify(vap, IEEE80211_BEACON_HTINFO);
1213 	}
1214 }
1215 
1216 /*
1217  * Calculate HT protection mode from current
1218  * state and handle updates.
1219  */
1220 static void
1221 htinfo_update(struct ieee80211com *ic)
1222 {
1223 	uint8_t protmode;
1224 
1225 	if (ic->ic_sta_assoc != ic->ic_ht_sta_assoc) {
1226 		protmode = IEEE80211_HTINFO_OPMODE_MIXED
1227 			 | IEEE80211_HTINFO_NONHT_PRESENT;
1228 	} else if (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) {
1229 		protmode = IEEE80211_HTINFO_OPMODE_PROTOPT
1230 			 | IEEE80211_HTINFO_NONHT_PRESENT;
1231 	} else if (ic->ic_bsschan != IEEE80211_CHAN_ANYC &&
1232 	    IEEE80211_IS_CHAN_HT40(ic->ic_bsschan) &&
1233 	    ic->ic_sta_assoc != ic->ic_ht40_sta_assoc) {
1234 		protmode = IEEE80211_HTINFO_OPMODE_HT20PR;
1235 	} else {
1236 		protmode = IEEE80211_HTINFO_OPMODE_PURE;
1237 	}
1238 	if (protmode != ic->ic_curhtprotmode) {
1239 		ic->ic_curhtprotmode = protmode;
1240 		htinfo_notify(ic);
1241 	}
1242 }
1243 
1244 /*
1245  * Handle an HT station joining a BSS.
1246  */
1247 void
1248 ieee80211_ht_node_join(struct ieee80211_node *ni)
1249 {
1250 	struct ieee80211com *ic = ni->ni_ic;
1251 
1252 	IEEE80211_LOCK_ASSERT(ic);
1253 
1254 	if (ni->ni_flags & IEEE80211_NODE_HT) {
1255 		ic->ic_ht_sta_assoc++;
1256 		if (ni->ni_chw == 40)
1257 			ic->ic_ht40_sta_assoc++;
1258 	}
1259 	htinfo_update(ic);
1260 }
1261 
1262 /*
1263  * Handle an HT station leaving a BSS.
1264  */
1265 void
1266 ieee80211_ht_node_leave(struct ieee80211_node *ni)
1267 {
1268 	struct ieee80211com *ic = ni->ni_ic;
1269 
1270 	IEEE80211_LOCK_ASSERT(ic);
1271 
1272 	if (ni->ni_flags & IEEE80211_NODE_HT) {
1273 		ic->ic_ht_sta_assoc--;
1274 		if (ni->ni_chw == 40)
1275 			ic->ic_ht40_sta_assoc--;
1276 	}
1277 	htinfo_update(ic);
1278 }
1279 
1280 /*
1281  * Public version of htinfo_update; used for processing
1282  * beacon frames from overlapping bss.
1283  *
1284  * Caller can specify either IEEE80211_HTINFO_OPMODE_MIXED
1285  * (on receipt of a beacon that advertises MIXED) or
1286  * IEEE80211_HTINFO_OPMODE_PROTOPT (on receipt of a beacon
1287  * from an overlapping legacy bss).  We treat MIXED with
1288  * a higher precedence than PROTOPT (i.e. we will not change
1289  * change PROTOPT -> MIXED; only MIXED -> PROTOPT).  This
1290  * corresponds to how we handle things in htinfo_update.
1291  */
1292 void
1293 ieee80211_htprot_update(struct ieee80211com *ic, int protmode)
1294 {
1295 #define	OPMODE(x)	SM(x, IEEE80211_HTINFO_OPMODE)
1296 	IEEE80211_LOCK(ic);
1297 
1298 	/* track non-HT station presence */
1299 	KASSERT(protmode & IEEE80211_HTINFO_NONHT_PRESENT,
1300 	    ("protmode 0x%x", protmode));
1301 	ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR;
1302 	ic->ic_lastnonht = ticks;
1303 
1304 	if (protmode != ic->ic_curhtprotmode &&
1305 	    (OPMODE(ic->ic_curhtprotmode) != IEEE80211_HTINFO_OPMODE_MIXED ||
1306 	     OPMODE(protmode) == IEEE80211_HTINFO_OPMODE_PROTOPT)) {
1307 		/* push beacon update */
1308 		ic->ic_curhtprotmode = protmode;
1309 		htinfo_notify(ic);
1310 	}
1311 	IEEE80211_UNLOCK(ic);
1312 #undef OPMODE
1313 }
1314 
1315 /*
1316  * Time out presence of an overlapping bss with non-HT
1317  * stations.  When operating in hostap mode we listen for
1318  * beacons from other stations and if we identify a non-HT
1319  * station is present we update the opmode field of the
1320  * HTINFO ie.  To identify when all non-HT stations are
1321  * gone we time out this condition.
1322  */
1323 void
1324 ieee80211_ht_timeout(struct ieee80211com *ic)
1325 {
1326 	IEEE80211_LOCK_ASSERT(ic);
1327 
1328 	if ((ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) &&
1329 	    time_after(ticks, ic->ic_lastnonht + IEEE80211_NONHT_PRESENT_AGE)) {
1330 #if 0
1331 		IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
1332 		    "%s", "time out non-HT STA present on channel");
1333 #endif
1334 		ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR;
1335 		htinfo_update(ic);
1336 	}
1337 }
1338 
1339 /* unalligned little endian access */
1340 #define LE_READ_2(p)					\
1341 	((uint16_t)					\
1342 	 ((((const uint8_t *)(p))[0]      ) |		\
1343 	  (((const uint8_t *)(p))[1] <<  8)))
1344 
1345 /*
1346  * Process an 802.11n HT capabilities ie.
1347  */
1348 void
1349 ieee80211_parse_htcap(struct ieee80211_node *ni, const uint8_t *ie)
1350 {
1351 	if (ie[0] == IEEE80211_ELEMID_VENDOR) {
1352 		/*
1353 		 * Station used Vendor OUI ie to associate;
1354 		 * mark the node so when we respond we'll use
1355 		 * the Vendor OUI's and not the standard ie's.
1356 		 */
1357 		ni->ni_flags |= IEEE80211_NODE_HTCOMPAT;
1358 		ie += 4;
1359 	} else
1360 		ni->ni_flags &= ~IEEE80211_NODE_HTCOMPAT;
1361 
1362 	ni->ni_htcap = LE_READ_2(ie +
1363 		__offsetof(struct ieee80211_ie_htcap, hc_cap));
1364 	ni->ni_htparam = ie[__offsetof(struct ieee80211_ie_htcap, hc_param)];
1365 }
1366 
1367 static void
1368 htinfo_parse(struct ieee80211_node *ni,
1369 	const struct ieee80211_ie_htinfo *htinfo)
1370 {
1371 	uint16_t w;
1372 
1373 	ni->ni_htctlchan = htinfo->hi_ctrlchannel;
1374 	ni->ni_ht2ndchan = SM(htinfo->hi_byte1, IEEE80211_HTINFO_2NDCHAN);
1375 	w = LE_READ_2(&htinfo->hi_byte2);
1376 	ni->ni_htopmode = SM(w, IEEE80211_HTINFO_OPMODE);
1377 	w = LE_READ_2(&htinfo->hi_byte45);
1378 	ni->ni_htstbc = SM(w, IEEE80211_HTINFO_BASIC_STBCMCS);
1379 }
1380 
1381 /*
1382  * Parse an 802.11n HT info ie and save useful information
1383  * to the node state.  Note this does not effect any state
1384  * changes such as for channel width change.
1385  */
1386 void
1387 ieee80211_parse_htinfo(struct ieee80211_node *ni, const uint8_t *ie)
1388 {
1389 	if (ie[0] == IEEE80211_ELEMID_VENDOR)
1390 		ie += 4;
1391 	htinfo_parse(ni, (const struct ieee80211_ie_htinfo *) ie);
1392 }
1393 
1394 /*
1395  * Handle 11n channel switch.  Use the received HT ie's to
1396  * identify the right channel to use.  If we cannot locate it
1397  * in the channel table then fallback to legacy operation.
1398  * Note that we use this information to identify the node's
1399  * channel only; the caller is responsible for insuring any
1400  * required channel change is done (e.g. in sta mode when
1401  * parsing the contents of a beacon frame).
1402  */
1403 static void
1404 htinfo_update_chw(struct ieee80211_node *ni, int htflags)
1405 {
1406 	struct ieee80211com *ic = ni->ni_ic;
1407 	struct ieee80211_channel *c;
1408 	int chanflags;
1409 
1410 	chanflags = (ni->ni_chan->ic_flags &~ IEEE80211_CHAN_HT) | htflags;
1411 	if (chanflags != ni->ni_chan->ic_flags) {
1412 		/* XXX not right for ht40- */
1413 		c = ieee80211_find_channel(ic, ni->ni_chan->ic_freq, chanflags);
1414 		if (c == NULL && (htflags & IEEE80211_CHAN_HT40)) {
1415 			/*
1416 			 * No HT40 channel entry in our table; fall back
1417 			 * to HT20 operation.  This should not happen.
1418 			 */
1419 			c = findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT20);
1420 #if 0
1421 			IEEE80211_NOTE(ni->ni_vap,
1422 			    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni,
1423 			    "no HT40 channel (freq %u), falling back to HT20",
1424 			    ni->ni_chan->ic_freq);
1425 #endif
1426 			/* XXX stat */
1427 		}
1428 		if (c != NULL && c != ni->ni_chan) {
1429 			IEEE80211_NOTE(ni->ni_vap,
1430 			    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni,
1431 			    "switch station to HT%d channel %u/0x%x",
1432 			    IEEE80211_IS_CHAN_HT40(c) ? 40 : 20,
1433 			    c->ic_freq, c->ic_flags);
1434 			ni->ni_chan = c;
1435 		}
1436 		/* NB: caller responsible for forcing any channel change */
1437 	}
1438 	/* update node's tx channel width */
1439 	ni->ni_chw = IEEE80211_IS_CHAN_HT40(ni->ni_chan)? 40 : 20;
1440 }
1441 
1442 /*
1443  * Update 11n MIMO PS state according to received htcap.
1444  */
1445 static __inline int
1446 htcap_update_mimo_ps(struct ieee80211_node *ni)
1447 {
1448 	uint16_t oflags = ni->ni_flags;
1449 
1450 	switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
1451 	case IEEE80211_HTCAP_SMPS_DYNAMIC:
1452 		ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
1453 		ni->ni_flags |= IEEE80211_NODE_MIMO_RTS;
1454 		break;
1455 	case IEEE80211_HTCAP_SMPS_ENA:
1456 		ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
1457 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
1458 		break;
1459 	case IEEE80211_HTCAP_SMPS_OFF:
1460 	default:		/* disable on rx of reserved value */
1461 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS;
1462 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
1463 		break;
1464 	}
1465 	return (oflags ^ ni->ni_flags);
1466 }
1467 
1468 /*
1469  * Update short GI state according to received htcap
1470  * and local settings.
1471  */
1472 static __inline void
1473 htcap_update_shortgi(struct ieee80211_node *ni)
1474 {
1475 	struct ieee80211vap *vap = ni->ni_vap;
1476 
1477 	ni->ni_flags &= ~(IEEE80211_NODE_SGI20|IEEE80211_NODE_SGI40);
1478 	if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) &&
1479 	    (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20))
1480 		ni->ni_flags |= IEEE80211_NODE_SGI20;
1481 	if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) &&
1482 	    (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40))
1483 		ni->ni_flags |= IEEE80211_NODE_SGI40;
1484 }
1485 
1486 /*
1487  * Parse and update HT-related state extracted from
1488  * the HT cap and info ie's.
1489  */
1490 void
1491 ieee80211_ht_updateparams(struct ieee80211_node *ni,
1492 	const uint8_t *htcapie, const uint8_t *htinfoie)
1493 {
1494 	struct ieee80211vap *vap = ni->ni_vap;
1495 	const struct ieee80211_ie_htinfo *htinfo;
1496 	int htflags;
1497 
1498 	ieee80211_parse_htcap(ni, htcapie);
1499 	if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS)
1500 		htcap_update_mimo_ps(ni);
1501 	htcap_update_shortgi(ni);
1502 
1503 	if (htinfoie[0] == IEEE80211_ELEMID_VENDOR)
1504 		htinfoie += 4;
1505 	htinfo = (const struct ieee80211_ie_htinfo *) htinfoie;
1506 	htinfo_parse(ni, htinfo);
1507 
1508 	htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ?
1509 	    IEEE80211_CHAN_HT20 : 0;
1510 	/* NB: honor operating mode constraint */
1511 	if ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH_2040) &&
1512 	    (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) {
1513 		if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_ABOVE)
1514 			htflags = IEEE80211_CHAN_HT40U;
1515 		else if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_BELOW)
1516 			htflags = IEEE80211_CHAN_HT40D;
1517 	}
1518 	htinfo_update_chw(ni, htflags);
1519 
1520 	if ((htinfo->hi_byte1 & IEEE80211_HTINFO_RIFSMODE_PERM) &&
1521 	    (vap->iv_flags_ht & IEEE80211_FHT_RIFS))
1522 		ni->ni_flags |= IEEE80211_NODE_RIFS;
1523 	else
1524 		ni->ni_flags &= ~IEEE80211_NODE_RIFS;
1525 }
1526 
1527 /*
1528  * Parse and update HT-related state extracted from the HT cap ie
1529  * for a station joining an HT BSS.
1530  */
1531 void
1532 ieee80211_ht_updatehtcap(struct ieee80211_node *ni, const uint8_t *htcapie)
1533 {
1534 	struct ieee80211vap *vap = ni->ni_vap;
1535 	int htflags;
1536 
1537 	ieee80211_parse_htcap(ni, htcapie);
1538 	if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS)
1539 		htcap_update_mimo_ps(ni);
1540 	htcap_update_shortgi(ni);
1541 
1542 	/* NB: honor operating mode constraint */
1543 	/* XXX 40 MHZ intolerant */
1544 	htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ?
1545 	    IEEE80211_CHAN_HT20 : 0;
1546 	if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) &&
1547 	    (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) {
1548 		if (IEEE80211_IS_CHAN_HT40U(vap->iv_bss->ni_chan))
1549 			htflags = IEEE80211_CHAN_HT40U;
1550 		else if (IEEE80211_IS_CHAN_HT40D(vap->iv_bss->ni_chan))
1551 			htflags = IEEE80211_CHAN_HT40D;
1552 	}
1553 	htinfo_update_chw(ni, htflags);
1554 }
1555 
1556 /*
1557  * Install received HT rate set by parsing the HT cap ie.
1558  */
1559 int
1560 ieee80211_setup_htrates(struct ieee80211_node *ni, const uint8_t *ie, int flags)
1561 {
1562 	struct ieee80211vap *vap = ni->ni_vap;
1563 	const struct ieee80211_ie_htcap *htcap;
1564 	struct ieee80211_htrateset *rs;
1565 	int i;
1566 
1567 	rs = &ni->ni_htrates;
1568 	memset(rs, 0, sizeof(*rs));
1569 	if (ie != NULL) {
1570 		if (ie[0] == IEEE80211_ELEMID_VENDOR)
1571 			ie += 4;
1572 		htcap = (const struct ieee80211_ie_htcap *) ie;
1573 		for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) {
1574 			if (isclr(htcap->hc_mcsset, i))
1575 				continue;
1576 			if (rs->rs_nrates == IEEE80211_HTRATE_MAXSIZE) {
1577 				IEEE80211_NOTE(vap,
1578 				    IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
1579 				    "WARNING, HT rate set too large; only "
1580 				    "using %u rates", IEEE80211_HTRATE_MAXSIZE);
1581 				vap->iv_stats.is_rx_rstoobig++;
1582 				break;
1583 			}
1584 			rs->rs_rates[rs->rs_nrates++] = i;
1585 		}
1586 	}
1587 	return ieee80211_fix_rate(ni, (struct ieee80211_rateset *) rs, flags);
1588 }
1589 
1590 /*
1591  * Mark rates in a node's HT rate set as basic according
1592  * to the information in the supplied HT info ie.
1593  */
1594 void
1595 ieee80211_setup_basic_htrates(struct ieee80211_node *ni, const uint8_t *ie)
1596 {
1597 	const struct ieee80211_ie_htinfo *htinfo;
1598 	struct ieee80211_htrateset *rs;
1599 	int i, j;
1600 
1601 	if (ie[0] == IEEE80211_ELEMID_VENDOR)
1602 		ie += 4;
1603 	htinfo = (const struct ieee80211_ie_htinfo *) ie;
1604 	rs = &ni->ni_htrates;
1605 	if (rs->rs_nrates == 0) {
1606 		IEEE80211_NOTE(ni->ni_vap,
1607 		    IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
1608 		    "%s", "WARNING, empty HT rate set");
1609 		return;
1610 	}
1611 	for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) {
1612 		if (isclr(htinfo->hi_basicmcsset, i))
1613 			continue;
1614 		for (j = 0; j < rs->rs_nrates; j++)
1615 			if ((rs->rs_rates[j] & IEEE80211_RATE_VAL) == i)
1616 				rs->rs_rates[j] |= IEEE80211_RATE_BASIC;
1617 	}
1618 }
1619 
1620 static void
1621 ampdu_tx_setup(struct ieee80211_tx_ampdu *tap)
1622 {
1623 	callout_init(&tap->txa_timer, CALLOUT_MPSAFE);
1624 	tap->txa_flags |= IEEE80211_AGGR_SETUP;
1625 }
1626 
1627 static void
1628 ampdu_tx_stop(struct ieee80211_tx_ampdu *tap)
1629 {
1630 	struct ieee80211_node *ni = tap->txa_ni;
1631 	struct ieee80211com *ic = ni->ni_ic;
1632 
1633 	KASSERT(tap->txa_flags & IEEE80211_AGGR_SETUP,
1634 	    ("txa_flags 0x%x ac %d", tap->txa_flags, tap->txa_ac));
1635 
1636 	/*
1637 	 * Stop BA stream if setup so driver has a chance
1638 	 * to reclaim any resources it might have allocated.
1639 	 */
1640 	ic->ic_addba_stop(ni, tap);
1641 	/*
1642 	 * Stop any pending BAR transmit.
1643 	 */
1644 	bar_stop_timer(tap);
1645 
1646 	tap->txa_lastsample = 0;
1647 	tap->txa_avgpps = 0;
1648 	/* NB: clearing NAK means we may re-send ADDBA */
1649 	tap->txa_flags &= ~(IEEE80211_AGGR_SETUP | IEEE80211_AGGR_NAK);
1650 }
1651 
1652 static void
1653 addba_timeout(void *arg)
1654 {
1655 	struct ieee80211_tx_ampdu *tap = arg;
1656 
1657 	/* XXX ? */
1658 	tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND;
1659 	tap->txa_attempts++;
1660 }
1661 
1662 static void
1663 addba_start_timeout(struct ieee80211_tx_ampdu *tap)
1664 {
1665 	/* XXX use CALLOUT_PENDING instead? */
1666 	callout_reset(&tap->txa_timer, ieee80211_addba_timeout,
1667 	    addba_timeout, tap);
1668 	tap->txa_flags |= IEEE80211_AGGR_XCHGPEND;
1669 	tap->txa_nextrequest = ticks + ieee80211_addba_timeout;
1670 }
1671 
1672 static void
1673 addba_stop_timeout(struct ieee80211_tx_ampdu *tap)
1674 {
1675 	/* XXX use CALLOUT_PENDING instead? */
1676 	if (tap->txa_flags & IEEE80211_AGGR_XCHGPEND) {
1677 		callout_stop(&tap->txa_timer);
1678 		tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND;
1679 	}
1680 }
1681 
1682 /*
1683  * Default method for requesting A-MPDU tx aggregation.
1684  * We setup the specified state block and start a timer
1685  * to wait for an ADDBA response frame.
1686  */
1687 static int
1688 ieee80211_addba_request(struct ieee80211_node *ni,
1689 	struct ieee80211_tx_ampdu *tap,
1690 	int dialogtoken, int baparamset, int batimeout)
1691 {
1692 	int bufsiz;
1693 
1694 	/* XXX locking */
1695 	tap->txa_token = dialogtoken;
1696 	tap->txa_flags |= IEEE80211_AGGR_IMMEDIATE;
1697 	bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
1698 	tap->txa_wnd = (bufsiz == 0) ?
1699 	    IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
1700 	addba_start_timeout(tap);
1701 	return 1;
1702 }
1703 
1704 /*
1705  * Default method for processing an A-MPDU tx aggregation
1706  * response.  We shutdown any pending timer and update the
1707  * state block according to the reply.
1708  */
1709 static int
1710 ieee80211_addba_response(struct ieee80211_node *ni,
1711 	struct ieee80211_tx_ampdu *tap,
1712 	int status, int baparamset, int batimeout)
1713 {
1714 	int bufsiz, tid;
1715 
1716 	/* XXX locking */
1717 	addba_stop_timeout(tap);
1718 	if (status == IEEE80211_STATUS_SUCCESS) {
1719 		bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
1720 		/* XXX override our request? */
1721 		tap->txa_wnd = (bufsiz == 0) ?
1722 		    IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
1723 		/* XXX AC/TID */
1724 		tid = MS(baparamset, IEEE80211_BAPS_TID);
1725 		tap->txa_flags |= IEEE80211_AGGR_RUNNING;
1726 		tap->txa_attempts = 0;
1727 	} else {
1728 		/* mark tid so we don't try again */
1729 		tap->txa_flags |= IEEE80211_AGGR_NAK;
1730 	}
1731 	return 1;
1732 }
1733 
1734 /*
1735  * Default method for stopping A-MPDU tx aggregation.
1736  * Any timer is cleared and we drain any pending frames.
1737  */
1738 static void
1739 ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
1740 {
1741 	/* XXX locking */
1742 	addba_stop_timeout(tap);
1743 	if (tap->txa_flags & IEEE80211_AGGR_RUNNING) {
1744 		/* XXX clear aggregation queue */
1745 		tap->txa_flags &= ~IEEE80211_AGGR_RUNNING;
1746 	}
1747 	tap->txa_attempts = 0;
1748 }
1749 
1750 /*
1751  * Process a received action frame using the default aggregation
1752  * policy.  We intercept ADDBA-related frames and use them to
1753  * update our aggregation state.  All other frames are passed up
1754  * for processing by ieee80211_recv_action.
1755  */
1756 static int
1757 ht_recv_action_ba_addba_request(struct ieee80211_node *ni,
1758 	const struct ieee80211_frame *wh,
1759 	const uint8_t *frm, const uint8_t *efrm)
1760 {
1761 	struct ieee80211com *ic = ni->ni_ic;
1762 	struct ieee80211vap *vap = ni->ni_vap;
1763 	struct ieee80211_rx_ampdu *rap;
1764 	uint8_t dialogtoken;
1765 	uint16_t baparamset, batimeout, baseqctl;
1766 	uint16_t args[5];
1767 	int tid;
1768 
1769 	dialogtoken = frm[2];
1770 	baparamset = LE_READ_2(frm+3);
1771 	batimeout = LE_READ_2(frm+5);
1772 	baseqctl = LE_READ_2(frm+7);
1773 
1774 	tid = MS(baparamset, IEEE80211_BAPS_TID);
1775 
1776 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
1777 	    "recv ADDBA request: dialogtoken %u baparamset 0x%x "
1778 	    "(tid %d bufsiz %d) batimeout %d baseqctl %d:%d",
1779 	    dialogtoken, baparamset,
1780 	    tid, MS(baparamset, IEEE80211_BAPS_BUFSIZ),
1781 	    batimeout,
1782 	    MS(baseqctl, IEEE80211_BASEQ_START),
1783 	    MS(baseqctl, IEEE80211_BASEQ_FRAG));
1784 
1785 	rap = &ni->ni_rx_ampdu[tid];
1786 
1787 	/* Send ADDBA response */
1788 	args[0] = dialogtoken;
1789 	/*
1790 	 * NB: We ack only if the sta associated with HT and
1791 	 * the ap is configured to do AMPDU rx (the latter
1792 	 * violates the 11n spec and is mostly for testing).
1793 	 */
1794 	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_RX) &&
1795 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX)) {
1796 		/* XXX handle ampdu_rx_start failure */
1797 		ic->ic_ampdu_rx_start(ni, rap,
1798 		    baparamset, batimeout, baseqctl);
1799 
1800 		args[1] = IEEE80211_STATUS_SUCCESS;
1801 	} else {
1802 		IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
1803 		    ni, "reject ADDBA request: %s",
1804 		    ni->ni_flags & IEEE80211_NODE_AMPDU_RX ?
1805 		       "administratively disabled" :
1806 		       "not negotiated for station");
1807 		vap->iv_stats.is_addba_reject++;
1808 		args[1] = IEEE80211_STATUS_UNSPECIFIED;
1809 	}
1810 	/* XXX honor rap flags? */
1811 	args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE
1812 		| SM(tid, IEEE80211_BAPS_TID)
1813 		| SM(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ)
1814 		;
1815 	args[3] = 0;
1816 	args[4] = 0;
1817 	ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
1818 		IEEE80211_ACTION_BA_ADDBA_RESPONSE, args);
1819 	return 0;
1820 }
1821 
1822 static int
1823 ht_recv_action_ba_addba_response(struct ieee80211_node *ni,
1824 	const struct ieee80211_frame *wh,
1825 	const uint8_t *frm, const uint8_t *efrm)
1826 {
1827 	struct ieee80211com *ic = ni->ni_ic;
1828 	struct ieee80211vap *vap = ni->ni_vap;
1829 	struct ieee80211_tx_ampdu *tap;
1830 	uint8_t dialogtoken, policy;
1831 	uint16_t baparamset, batimeout, code;
1832 	int tid, ac, bufsiz;
1833 
1834 	dialogtoken = frm[2];
1835 	code = LE_READ_2(frm+3);
1836 	baparamset = LE_READ_2(frm+5);
1837 	tid = MS(baparamset, IEEE80211_BAPS_TID);
1838 	bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
1839 	policy = MS(baparamset, IEEE80211_BAPS_POLICY);
1840 	batimeout = LE_READ_2(frm+7);
1841 
1842 	ac = TID_TO_WME_AC(tid);
1843 	tap = &ni->ni_tx_ampdu[ac];
1844 	if ((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
1845 		IEEE80211_DISCARD_MAC(vap,
1846 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
1847 		    ni->ni_macaddr, "ADDBA response",
1848 		    "no pending ADDBA, tid %d dialogtoken %u "
1849 		    "code %d", tid, dialogtoken, code);
1850 		vap->iv_stats.is_addba_norequest++;
1851 		return 0;
1852 	}
1853 	if (dialogtoken != tap->txa_token) {
1854 		IEEE80211_DISCARD_MAC(vap,
1855 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
1856 		    ni->ni_macaddr, "ADDBA response",
1857 		    "dialogtoken mismatch: waiting for %d, "
1858 		    "received %d, tid %d code %d",
1859 		    tap->txa_token, dialogtoken, tid, code);
1860 		vap->iv_stats.is_addba_badtoken++;
1861 		return 0;
1862 	}
1863 	/* NB: assumes IEEE80211_AGGR_IMMEDIATE is 1 */
1864 	if (policy != (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE)) {
1865 		IEEE80211_DISCARD_MAC(vap,
1866 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
1867 		    ni->ni_macaddr, "ADDBA response",
1868 		    "policy mismatch: expecting %s, "
1869 		    "received %s, tid %d code %d",
1870 		    tap->txa_flags & IEEE80211_AGGR_IMMEDIATE,
1871 		    policy, tid, code);
1872 		vap->iv_stats.is_addba_badpolicy++;
1873 		return 0;
1874 	}
1875 #if 0
1876 	/* XXX we take MIN in ieee80211_addba_response */
1877 	if (bufsiz > IEEE80211_AGGR_BAWMAX) {
1878 		IEEE80211_DISCARD_MAC(vap,
1879 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
1880 		    ni->ni_macaddr, "ADDBA response",
1881 		    "BA window too large: max %d, "
1882 		    "received %d, tid %d code %d",
1883 		    bufsiz, IEEE80211_AGGR_BAWMAX, tid, code);
1884 		vap->iv_stats.is_addba_badbawinsize++;
1885 		return 0;
1886 	}
1887 #endif
1888 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
1889 	    "recv ADDBA response: dialogtoken %u code %d "
1890 	    "baparamset 0x%x (tid %d bufsiz %d) batimeout %d",
1891 	    dialogtoken, code, baparamset, tid, bufsiz,
1892 	    batimeout);
1893 	ic->ic_addba_response(ni, tap, code, baparamset, batimeout);
1894 	return 0;
1895 }
1896 
1897 static int
1898 ht_recv_action_ba_delba(struct ieee80211_node *ni,
1899 	const struct ieee80211_frame *wh,
1900 	const uint8_t *frm, const uint8_t *efrm)
1901 {
1902 	struct ieee80211com *ic = ni->ni_ic;
1903 	struct ieee80211_rx_ampdu *rap;
1904 	struct ieee80211_tx_ampdu *tap;
1905 	uint16_t baparamset, code;
1906 	int tid, ac;
1907 
1908 	baparamset = LE_READ_2(frm+2);
1909 	code = LE_READ_2(frm+4);
1910 
1911 	tid = MS(baparamset, IEEE80211_DELBAPS_TID);
1912 
1913 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
1914 	    "recv DELBA: baparamset 0x%x (tid %d initiator %d) "
1915 	    "code %d", baparamset, tid,
1916 	    MS(baparamset, IEEE80211_DELBAPS_INIT), code);
1917 
1918 	if ((baparamset & IEEE80211_DELBAPS_INIT) == 0) {
1919 		ac = TID_TO_WME_AC(tid);
1920 		tap = &ni->ni_tx_ampdu[ac];
1921 		ic->ic_addba_stop(ni, tap);
1922 	} else {
1923 		rap = &ni->ni_rx_ampdu[tid];
1924 		ic->ic_ampdu_rx_stop(ni, rap);
1925 	}
1926 	return 0;
1927 }
1928 
1929 static int
1930 ht_recv_action_ht_txchwidth(struct ieee80211_node *ni,
1931 	const struct ieee80211_frame *wh,
1932 	const uint8_t *frm, const uint8_t *efrm)
1933 {
1934 	int chw;
1935 
1936 	chw = (frm[2] == IEEE80211_A_HT_TXCHWIDTH_2040) ? 40 : 20;
1937 
1938 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
1939 	    "%s: HT txchwidth, width %d%s",
1940 	    __func__, chw, ni->ni_chw != chw ? "*" : "");
1941 	if (chw != ni->ni_chw) {
1942 		ni->ni_chw = chw;
1943 		/* XXX notify on change */
1944 	}
1945 	return 0;
1946 }
1947 
1948 static int
1949 ht_recv_action_ht_mimopwrsave(struct ieee80211_node *ni,
1950 	const struct ieee80211_frame *wh,
1951 	const uint8_t *frm, const uint8_t *efrm)
1952 {
1953 	const struct ieee80211_action_ht_mimopowersave *mps =
1954 	    (const struct ieee80211_action_ht_mimopowersave *) frm;
1955 
1956 	/* XXX check iv_htcaps */
1957 	if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA)
1958 		ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
1959 	else
1960 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS;
1961 	if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_MODE)
1962 		ni->ni_flags |= IEEE80211_NODE_MIMO_RTS;
1963 	else
1964 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
1965 	/* XXX notify on change */
1966 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
1967 	    "%s: HT MIMO PS (%s%s)", __func__,
1968 	    (ni->ni_flags & IEEE80211_NODE_MIMO_PS) ?  "on" : "off",
1969 	    (ni->ni_flags & IEEE80211_NODE_MIMO_RTS) ?  "+rts" : ""
1970 	);
1971 	return 0;
1972 }
1973 
1974 /*
1975  * Transmit processing.
1976  */
1977 
1978 /*
1979  * Check if A-MPDU should be requested/enabled for a stream.
1980  * We require a traffic rate above a per-AC threshold and we
1981  * also handle backoff from previous failed attempts.
1982  *
1983  * Drivers may override this method to bring in information
1984  * such as link state conditions in making the decision.
1985  */
1986 static int
1987 ieee80211_ampdu_enable(struct ieee80211_node *ni,
1988 	struct ieee80211_tx_ampdu *tap)
1989 {
1990 	struct ieee80211vap *vap = ni->ni_vap;
1991 
1992 	if (tap->txa_avgpps < vap->iv_ampdu_mintraffic[tap->txa_ac])
1993 		return 0;
1994 	/* XXX check rssi? */
1995 	if (tap->txa_attempts >= ieee80211_addba_maxtries &&
1996 	    ticks < tap->txa_nextrequest) {
1997 		/*
1998 		 * Don't retry too often; txa_nextrequest is set
1999 		 * to the minimum interval we'll retry after
2000 		 * ieee80211_addba_maxtries failed attempts are made.
2001 		 */
2002 		return 0;
2003 	}
2004 	IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
2005 	    "enable AMPDU on %s, avgpps %d pkts %d",
2006 	    ieee80211_wme_acnames[tap->txa_ac], tap->txa_avgpps, tap->txa_pkts);
2007 	return 1;
2008 }
2009 
2010 /*
2011  * Request A-MPDU tx aggregation.  Setup local state and
2012  * issue an ADDBA request.  BA use will only happen after
2013  * the other end replies with ADDBA response.
2014  */
2015 int
2016 ieee80211_ampdu_request(struct ieee80211_node *ni,
2017 	struct ieee80211_tx_ampdu *tap)
2018 {
2019 	struct ieee80211com *ic = ni->ni_ic;
2020 	uint16_t args[5];
2021 	int tid, dialogtoken;
2022 	static int tokens = 0;	/* XXX */
2023 
2024 	/* XXX locking */
2025 	if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) {
2026 		/* do deferred setup of state */
2027 		ampdu_tx_setup(tap);
2028 	}
2029 	/* XXX hack for not doing proper locking */
2030 	tap->txa_flags &= ~IEEE80211_AGGR_NAK;
2031 
2032 	dialogtoken = (tokens+1) % 63;		/* XXX */
2033 	tid = WME_AC_TO_TID(tap->txa_ac);
2034 	tap->txa_start = ni->ni_txseqs[tid];
2035 
2036 	args[0] = dialogtoken;
2037 	args[1] = 0;	/* NB: status code not used */
2038 	args[2]	= IEEE80211_BAPS_POLICY_IMMEDIATE
2039 		| SM(tid, IEEE80211_BAPS_TID)
2040 		| SM(IEEE80211_AGGR_BAWMAX, IEEE80211_BAPS_BUFSIZ)
2041 		;
2042 	args[3] = 0;	/* batimeout */
2043 	/* NB: do first so there's no race against reply */
2044 	if (!ic->ic_addba_request(ni, tap, dialogtoken, args[2], args[3])) {
2045 		/* unable to setup state, don't make request */
2046 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2047 		    ni, "%s: could not setup BA stream for AC %d",
2048 		    __func__, tap->txa_ac);
2049 		/* defer next try so we don't slam the driver with requests */
2050 		tap->txa_attempts = ieee80211_addba_maxtries;
2051 		/* NB: check in case driver wants to override */
2052 		if (tap->txa_nextrequest <= ticks)
2053 			tap->txa_nextrequest = ticks + ieee80211_addba_backoff;
2054 		return 0;
2055 	}
2056 	tokens = dialogtoken;			/* allocate token */
2057 	/* NB: after calling ic_addba_request so driver can set txa_start */
2058 	args[4] = SM(tap->txa_start, IEEE80211_BASEQ_START)
2059 		| SM(0, IEEE80211_BASEQ_FRAG)
2060 		;
2061 	return ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
2062 		IEEE80211_ACTION_BA_ADDBA_REQUEST, args);
2063 }
2064 
2065 /*
2066  * Terminate an AMPDU tx stream.  State is reclaimed
2067  * and the peer notified with a DelBA Action frame.
2068  */
2069 void
2070 ieee80211_ampdu_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
2071 	int reason)
2072 {
2073 	struct ieee80211com *ic = ni->ni_ic;
2074 	struct ieee80211vap *vap = ni->ni_vap;
2075 	uint16_t args[4];
2076 
2077 	/* XXX locking */
2078 	tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
2079 	if (IEEE80211_AMPDU_RUNNING(tap)) {
2080 		IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2081 		    ni, "%s: stop BA stream for AC %d (reason %d)",
2082 		    __func__, tap->txa_ac, reason);
2083 		vap->iv_stats.is_ampdu_stop++;
2084 
2085 		ic->ic_addba_stop(ni, tap);
2086 		args[0] = WME_AC_TO_TID(tap->txa_ac);
2087 		args[1] = IEEE80211_DELBAPS_INIT;
2088 		args[2] = reason;			/* XXX reason code */
2089 		ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
2090 			IEEE80211_ACTION_BA_DELBA, args);
2091 	} else {
2092 		IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2093 		    ni, "%s: BA stream for AC %d not running (reason %d)",
2094 		    __func__, tap->txa_ac, reason);
2095 		vap->iv_stats.is_ampdu_stop_failed++;
2096 	}
2097 }
2098 
2099 static void
2100 bar_timeout(void *arg)
2101 {
2102 	struct ieee80211_tx_ampdu *tap = arg;
2103 	struct ieee80211_node *ni = tap->txa_ni;
2104 
2105 	KASSERT((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0,
2106 	    ("bar/addba collision, flags 0x%x", tap->txa_flags));
2107 
2108 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2109 	    ni, "%s: tid %u flags 0x%x attempts %d", __func__,
2110 	    tap->txa_ac, tap->txa_flags, tap->txa_attempts);
2111 
2112 	/* guard against race with bar_tx_complete */
2113 	if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0)
2114 		return;
2115 	/* XXX ? */
2116 	if (tap->txa_attempts >= ieee80211_bar_maxtries)
2117 		ieee80211_ampdu_stop(ni, tap, IEEE80211_REASON_TIMEOUT);
2118 	else
2119 		ieee80211_send_bar(ni, tap, tap->txa_seqpending);
2120 }
2121 
2122 static void
2123 bar_start_timer(struct ieee80211_tx_ampdu *tap)
2124 {
2125 	callout_reset(&tap->txa_timer, ieee80211_bar_timeout, bar_timeout, tap);
2126 }
2127 
2128 static void
2129 bar_stop_timer(struct ieee80211_tx_ampdu *tap)
2130 {
2131 	callout_stop(&tap->txa_timer);
2132 }
2133 
2134 static void
2135 bar_tx_complete(struct ieee80211_node *ni, void *arg, int status)
2136 {
2137 	struct ieee80211_tx_ampdu *tap = arg;
2138 
2139 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2140 	    ni, "%s: tid %u flags 0x%x pending %d status %d",
2141 	    __func__, tap->txa_ac, tap->txa_flags,
2142 	    callout_pending(&tap->txa_timer), status);
2143 
2144 	/* XXX locking */
2145 	if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) &&
2146 	    callout_pending(&tap->txa_timer)) {
2147 		struct ieee80211com *ic = ni->ni_ic;
2148 
2149 		if (status)		/* ACK'd */
2150 			bar_stop_timer(tap);
2151 		ic->ic_bar_response(ni, tap, status);
2152 		/* NB: just let timer expire so we pace requests */
2153 	}
2154 }
2155 
2156 static void
2157 ieee80211_bar_response(struct ieee80211_node *ni,
2158 	struct ieee80211_tx_ampdu *tap, int status)
2159 {
2160 
2161 	if (status != 0) {		/* got ACK */
2162 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2163 		    ni, "BAR moves BA win <%u:%u> (%u frames) txseq %u tid %u",
2164 		    tap->txa_start,
2165 		    IEEE80211_SEQ_ADD(tap->txa_start, tap->txa_wnd-1),
2166 		    tap->txa_qframes, tap->txa_seqpending,
2167 		    WME_AC_TO_TID(tap->txa_ac));
2168 
2169 		/* NB: timer already stopped in bar_tx_complete */
2170 		tap->txa_start = tap->txa_seqpending;
2171 		tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
2172 	}
2173 }
2174 
2175 /*
2176  * Transmit a BAR frame to the specified node.  The
2177  * BAR contents are drawn from the supplied aggregation
2178  * state associated with the node.
2179  *
2180  * NB: we only handle immediate ACK w/ compressed bitmap.
2181  */
2182 int
2183 ieee80211_send_bar(struct ieee80211_node *ni,
2184 	struct ieee80211_tx_ampdu *tap, ieee80211_seq seq)
2185 {
2186 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2187 	struct ieee80211vap *vap = ni->ni_vap;
2188 	struct ieee80211com *ic = ni->ni_ic;
2189 	struct ieee80211_frame_bar *bar;
2190 	struct mbuf *m;
2191 	uint16_t barctl, barseqctl;
2192 	uint8_t *frm;
2193 	int tid, ret;
2194 
2195 	if ((tap->txa_flags & IEEE80211_AGGR_RUNNING) == 0) {
2196 		/* no ADDBA response, should not happen */
2197 		/* XXX stat+msg */
2198 		return EINVAL;
2199 	}
2200 	/* XXX locking */
2201 	bar_stop_timer(tap);
2202 
2203 	ieee80211_ref_node(ni);
2204 
2205 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom, sizeof(*bar));
2206 	if (m == NULL)
2207 		senderr(ENOMEM, is_tx_nobuf);
2208 
2209 	if (!ieee80211_add_callback(m, bar_tx_complete, tap)) {
2210 		m_freem(m);
2211 		senderr(ENOMEM, is_tx_nobuf);	/* XXX */
2212 		/* NOTREACHED */
2213 	}
2214 
2215 	bar = mtod(m, struct ieee80211_frame_bar *);
2216 	bar->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2217 		IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR;
2218 	bar->i_fc[1] = 0;
2219 	IEEE80211_ADDR_COPY(bar->i_ra, ni->ni_macaddr);
2220 	IEEE80211_ADDR_COPY(bar->i_ta, vap->iv_myaddr);
2221 
2222 	tid = WME_AC_TO_TID(tap->txa_ac);
2223 	barctl 	= (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE ?
2224 			0 : IEEE80211_BAR_NOACK)
2225 		| IEEE80211_BAR_COMP
2226 		| SM(tid, IEEE80211_BAR_TID)
2227 		;
2228 	barseqctl = SM(seq, IEEE80211_BAR_SEQ_START);
2229 	/* NB: known to have proper alignment */
2230 	bar->i_ctl = htole16(barctl);
2231 	bar->i_seq = htole16(barseqctl);
2232 	m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_bar);
2233 
2234 	M_WME_SETAC(m, WME_AC_VO);
2235 
2236 	IEEE80211_NODE_STAT(ni, tx_mgmt);	/* XXX tx_ctl? */
2237 
2238 	/* XXX locking */
2239 	/* init/bump attempts counter */
2240 	if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0)
2241 		tap->txa_attempts = 1;
2242 	else
2243 		tap->txa_attempts++;
2244 	tap->txa_seqpending = seq;
2245 	tap->txa_flags |= IEEE80211_AGGR_BARPEND;
2246 
2247 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N,
2248 	    ni, "send BAR: tid %u ctl 0x%x start %u (attempt %d)",
2249 	    tid, barctl, seq, tap->txa_attempts);
2250 
2251 	ret = ic->ic_raw_xmit(ni, m, NULL);
2252 	if (ret != 0) {
2253 		/* xmit failed, clear state flag */
2254 		tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
2255 		goto bad;
2256 	}
2257 	/* XXX hack against tx complete happening before timer is started */
2258 	if (tap->txa_flags & IEEE80211_AGGR_BARPEND)
2259 		bar_start_timer(tap);
2260 	return 0;
2261 bad:
2262 	ieee80211_free_node(ni);
2263 	return ret;
2264 #undef senderr
2265 }
2266 
2267 static int
2268 ht_action_output(struct ieee80211_node *ni, struct mbuf *m)
2269 {
2270 	struct ieee80211_bpf_params params;
2271 
2272 	memset(&params, 0, sizeof(params));
2273 	params.ibp_pri = WME_AC_VO;
2274 	params.ibp_rate0 = ni->ni_txparms->mgmtrate;
2275 	/* NB: we know all frames are unicast */
2276 	params.ibp_try0 = ni->ni_txparms->maxretry;
2277 	params.ibp_power = ni->ni_txpower;
2278 	return ieee80211_mgmt_output(ni, m, IEEE80211_FC0_SUBTYPE_ACTION,
2279 	     &params);
2280 }
2281 
2282 #define	ADDSHORT(frm, v) do {			\
2283 	frm[0] = (v) & 0xff;			\
2284 	frm[1] = (v) >> 8;			\
2285 	frm += 2;				\
2286 } while (0)
2287 
2288 /*
2289  * Send an action management frame.  The arguments are stuff
2290  * into a frame without inspection; the caller is assumed to
2291  * prepare them carefully (e.g. based on the aggregation state).
2292  */
2293 static int
2294 ht_send_action_ba_addba(struct ieee80211_node *ni,
2295 	int category, int action, void *arg0)
2296 {
2297 	struct ieee80211vap *vap = ni->ni_vap;
2298 	struct ieee80211com *ic = ni->ni_ic;
2299 	uint16_t *args = arg0;
2300 	struct mbuf *m;
2301 	uint8_t *frm;
2302 
2303 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2304 	    "send ADDBA %s: dialogtoken %d status %d "
2305 	    "baparamset 0x%x (tid %d) batimeout 0x%x baseqctl 0x%x",
2306 	    (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ?
2307 		"request" : "response",
2308 	    args[0], args[1], args[2], MS(args[2], IEEE80211_BAPS_TID),
2309 	    args[3], args[4]);
2310 
2311 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2312 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
2313 	    ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
2314 	ieee80211_ref_node(ni);
2315 
2316 	m = ieee80211_getmgtframe(&frm,
2317 	    ic->ic_headroom + sizeof(struct ieee80211_frame),
2318 	    sizeof(uint16_t)	/* action+category */
2319 	    /* XXX may action payload */
2320 	    + sizeof(struct ieee80211_action_ba_addbaresponse)
2321 	);
2322 	if (m != NULL) {
2323 		*frm++ = category;
2324 		*frm++ = action;
2325 		*frm++ = args[0];		/* dialog token */
2326 		if (action == IEEE80211_ACTION_BA_ADDBA_RESPONSE)
2327 			ADDSHORT(frm, args[1]);	/* status code */
2328 		ADDSHORT(frm, args[2]);		/* baparamset */
2329 		ADDSHORT(frm, args[3]);		/* batimeout */
2330 		if (action == IEEE80211_ACTION_BA_ADDBA_REQUEST)
2331 			ADDSHORT(frm, args[4]);	/* baseqctl */
2332 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2333 		return ht_action_output(ni, m);
2334 	} else {
2335 		vap->iv_stats.is_tx_nobuf++;
2336 		ieee80211_free_node(ni);
2337 		return ENOMEM;
2338 	}
2339 }
2340 
2341 static int
2342 ht_send_action_ba_delba(struct ieee80211_node *ni,
2343 	int category, int action, void *arg0)
2344 {
2345 	struct ieee80211vap *vap = ni->ni_vap;
2346 	struct ieee80211com *ic = ni->ni_ic;
2347 	uint16_t *args = arg0;
2348 	struct mbuf *m;
2349 	uint16_t baparamset;
2350 	uint8_t *frm;
2351 
2352 	baparamset = SM(args[0], IEEE80211_DELBAPS_TID)
2353 		   | args[1]
2354 		   ;
2355 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2356 	    "send DELBA action: tid %d, initiator %d reason %d",
2357 	    args[0], args[1], args[2]);
2358 
2359 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2360 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
2361 	    ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
2362 	ieee80211_ref_node(ni);
2363 
2364 	m = ieee80211_getmgtframe(&frm,
2365 	    ic->ic_headroom + sizeof(struct ieee80211_frame),
2366 	    sizeof(uint16_t)	/* action+category */
2367 	    /* XXX may action payload */
2368 	    + sizeof(struct ieee80211_action_ba_addbaresponse)
2369 	);
2370 	if (m != NULL) {
2371 		*frm++ = category;
2372 		*frm++ = action;
2373 		ADDSHORT(frm, baparamset);
2374 		ADDSHORT(frm, args[2]);		/* reason code */
2375 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2376 		return ht_action_output(ni, m);
2377 	} else {
2378 		vap->iv_stats.is_tx_nobuf++;
2379 		ieee80211_free_node(ni);
2380 		return ENOMEM;
2381 	}
2382 }
2383 
2384 static int
2385 ht_send_action_ht_txchwidth(struct ieee80211_node *ni,
2386 	int category, int action, void *arg0)
2387 {
2388 	struct ieee80211vap *vap = ni->ni_vap;
2389 	struct ieee80211com *ic = ni->ni_ic;
2390 	struct mbuf *m;
2391 	uint8_t *frm;
2392 
2393 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2394 	    "send HT txchwidth: width %d",
2395 	    IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 40 : 20);
2396 
2397 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2398 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
2399 	    ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
2400 	ieee80211_ref_node(ni);
2401 
2402 	m = ieee80211_getmgtframe(&frm,
2403 	    ic->ic_headroom + sizeof(struct ieee80211_frame),
2404 	    sizeof(uint16_t)	/* action+category */
2405 	    /* XXX may action payload */
2406 	    + sizeof(struct ieee80211_action_ba_addbaresponse)
2407 	);
2408 	if (m != NULL) {
2409 		*frm++ = category;
2410 		*frm++ = action;
2411 		*frm++ = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ?
2412 			IEEE80211_A_HT_TXCHWIDTH_2040 :
2413 			IEEE80211_A_HT_TXCHWIDTH_20;
2414 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2415 		return ht_action_output(ni, m);
2416 	} else {
2417 		vap->iv_stats.is_tx_nobuf++;
2418 		ieee80211_free_node(ni);
2419 		return ENOMEM;
2420 	}
2421 }
2422 #undef ADDSHORT
2423 
2424 /*
2425  * Construct the MCS bit mask for inclusion
2426  * in an HT information element.
2427  */
2428 static void
2429 ieee80211_set_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs)
2430 {
2431 	int i;
2432 
2433 	for (i = 0; i < rs->rs_nrates; i++) {
2434 		int r = rs->rs_rates[i] & IEEE80211_RATE_VAL;
2435 		if (r < IEEE80211_HTRATE_MAXSIZE) {	/* XXX? */
2436 			/* NB: this assumes a particular implementation */
2437 			setbit(frm, r);
2438 		}
2439 	}
2440 }
2441 
2442 /*
2443  * Add body of an HTCAP information element.
2444  */
2445 static uint8_t *
2446 ieee80211_add_htcap_body(uint8_t *frm, struct ieee80211_node *ni)
2447 {
2448 #define	ADDSHORT(frm, v) do {			\
2449 	frm[0] = (v) & 0xff;			\
2450 	frm[1] = (v) >> 8;			\
2451 	frm += 2;				\
2452 } while (0)
2453 	struct ieee80211vap *vap = ni->ni_vap;
2454 	uint16_t caps, extcaps;
2455 	int rxmax, density;
2456 
2457 	/* HT capabilities */
2458 	caps = vap->iv_htcaps & 0xffff;
2459 	/*
2460 	 * Note channel width depends on whether we are operating as
2461 	 * a sta or not.  When operating as a sta we are generating
2462 	 * a request based on our desired configuration.  Otherwise
2463 	 * we are operational and the channel attributes identify
2464 	 * how we've been setup (which might be different if a fixed
2465 	 * channel is specified).
2466 	 */
2467 	if (vap->iv_opmode == IEEE80211_M_STA) {
2468 		/* override 20/40 use based on config */
2469 		if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)
2470 			caps |= IEEE80211_HTCAP_CHWIDTH40;
2471 		else
2472 			caps &= ~IEEE80211_HTCAP_CHWIDTH40;
2473 		/* use advertised setting (XXX locally constraint) */
2474 		rxmax = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU);
2475 		density = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY);
2476 	} else {
2477 		/* override 20/40 use based on current channel */
2478 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
2479 			caps |= IEEE80211_HTCAP_CHWIDTH40;
2480 		else
2481 			caps &= ~IEEE80211_HTCAP_CHWIDTH40;
2482 		rxmax = vap->iv_ampdu_rxmax;
2483 		density = vap->iv_ampdu_density;
2484 	}
2485 	/* adjust short GI based on channel and config */
2486 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0)
2487 		caps &= ~IEEE80211_HTCAP_SHORTGI20;
2488 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 ||
2489 	    (caps & IEEE80211_HTCAP_CHWIDTH40) == 0)
2490 		caps &= ~IEEE80211_HTCAP_SHORTGI40;
2491 	ADDSHORT(frm, caps);
2492 
2493 	/* HT parameters */
2494 	*frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU)
2495 	     | SM(density, IEEE80211_HTCAP_MPDUDENSITY)
2496 	     ;
2497 	frm++;
2498 
2499 	/* pre-zero remainder of ie */
2500 	memset(frm, 0, sizeof(struct ieee80211_ie_htcap) -
2501 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset));
2502 
2503 	/* supported MCS set */
2504 	/*
2505 	 * XXX it would better to get the rate set from ni_htrates
2506 	 * so we can restrict it but for sta mode ni_htrates isn't
2507 	 * setup when we're called to form an AssocReq frame so for
2508 	 * now we're restricted to the default HT rate set.
2509 	 */
2510 	ieee80211_set_htrates(frm, &ieee80211_rateset_11n);
2511 
2512 	frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) -
2513 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset);
2514 
2515 	/* HT extended capabilities */
2516 	extcaps = vap->iv_htextcaps & 0xffff;
2517 
2518 	ADDSHORT(frm, extcaps);
2519 
2520 	frm += sizeof(struct ieee80211_ie_htcap) -
2521 		__offsetof(struct ieee80211_ie_htcap, hc_txbf);
2522 
2523 	return frm;
2524 #undef ADDSHORT
2525 }
2526 
2527 /*
2528  * Add 802.11n HT capabilities information element
2529  */
2530 uint8_t *
2531 ieee80211_add_htcap(uint8_t *frm, struct ieee80211_node *ni)
2532 {
2533 	frm[0] = IEEE80211_ELEMID_HTCAP;
2534 	frm[1] = sizeof(struct ieee80211_ie_htcap) - 2;
2535 	return ieee80211_add_htcap_body(frm + 2, ni);
2536 }
2537 
2538 /*
2539  * Add Broadcom OUI wrapped standard HTCAP ie; this is
2540  * used for compatibility w/ pre-draft implementations.
2541  */
2542 uint8_t *
2543 ieee80211_add_htcap_vendor(uint8_t *frm, struct ieee80211_node *ni)
2544 {
2545 	frm[0] = IEEE80211_ELEMID_VENDOR;
2546 	frm[1] = 4 + sizeof(struct ieee80211_ie_htcap) - 2;
2547 	frm[2] = (BCM_OUI >> 0) & 0xff;
2548 	frm[3] = (BCM_OUI >> 8) & 0xff;
2549 	frm[4] = (BCM_OUI >> 16) & 0xff;
2550 	frm[5] = BCM_OUI_HTCAP;
2551 	return ieee80211_add_htcap_body(frm + 6, ni);
2552 }
2553 
2554 /*
2555  * Construct the MCS bit mask of basic rates
2556  * for inclusion in an HT information element.
2557  */
2558 static void
2559 ieee80211_set_basic_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs)
2560 {
2561 	int i;
2562 
2563 	for (i = 0; i < rs->rs_nrates; i++) {
2564 		int r = rs->rs_rates[i] & IEEE80211_RATE_VAL;
2565 		if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) &&
2566 		    r < IEEE80211_HTRATE_MAXSIZE) {
2567 			/* NB: this assumes a particular implementation */
2568 			setbit(frm, r);
2569 		}
2570 	}
2571 }
2572 
2573 /*
2574  * Update the HTINFO ie for a beacon frame.
2575  */
2576 void
2577 ieee80211_ht_update_beacon(struct ieee80211vap *vap,
2578 	struct ieee80211_beacon_offsets *bo)
2579 {
2580 #define	PROTMODE	(IEEE80211_HTINFO_OPMODE|IEEE80211_HTINFO_NONHT_PRESENT)
2581 	const struct ieee80211_channel *bsschan = vap->iv_bss->ni_chan;
2582 	struct ieee80211com *ic = vap->iv_ic;
2583 	struct ieee80211_ie_htinfo *ht =
2584 	   (struct ieee80211_ie_htinfo *) bo->bo_htinfo;
2585 
2586 	/* XXX only update on channel change */
2587 	ht->hi_ctrlchannel = ieee80211_chan2ieee(ic, bsschan);
2588 	if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
2589 		ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PERM;
2590 	else
2591 		ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PROH;
2592 	if (IEEE80211_IS_CHAN_HT40U(bsschan))
2593 		ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_ABOVE;
2594 	else if (IEEE80211_IS_CHAN_HT40D(bsschan))
2595 		ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_BELOW;
2596 	else
2597 		ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_NONE;
2598 	if (IEEE80211_IS_CHAN_HT40(bsschan))
2599 		ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040;
2600 
2601 	/* protection mode */
2602 	ht->hi_byte2 = (ht->hi_byte2 &~ PROTMODE) | ic->ic_curhtprotmode;
2603 
2604 	/* XXX propagate to vendor ie's */
2605 #undef PROTMODE
2606 }
2607 
2608 /*
2609  * Add body of an HTINFO information element.
2610  *
2611  * NB: We don't use struct ieee80211_ie_htinfo because we can
2612  * be called to fillin both a standard ie and a compat ie that
2613  * has a vendor OUI at the front.
2614  */
2615 static uint8_t *
2616 ieee80211_add_htinfo_body(uint8_t *frm, struct ieee80211_node *ni)
2617 {
2618 	struct ieee80211vap *vap = ni->ni_vap;
2619 	struct ieee80211com *ic = ni->ni_ic;
2620 
2621 	/* pre-zero remainder of ie */
2622 	memset(frm, 0, sizeof(struct ieee80211_ie_htinfo) - 2);
2623 
2624 	/* primary/control channel center */
2625 	*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2626 
2627 	if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
2628 		frm[0] = IEEE80211_HTINFO_RIFSMODE_PERM;
2629 	else
2630 		frm[0] = IEEE80211_HTINFO_RIFSMODE_PROH;
2631 	if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
2632 		frm[0] |= IEEE80211_HTINFO_2NDCHAN_ABOVE;
2633 	else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
2634 		frm[0] |= IEEE80211_HTINFO_2NDCHAN_BELOW;
2635 	else
2636 		frm[0] |= IEEE80211_HTINFO_2NDCHAN_NONE;
2637 	if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
2638 		frm[0] |= IEEE80211_HTINFO_TXWIDTH_2040;
2639 
2640 	frm[1] = ic->ic_curhtprotmode;
2641 
2642 	frm += 5;
2643 
2644 	/* basic MCS set */
2645 	ieee80211_set_basic_htrates(frm, &ni->ni_htrates);
2646 	frm += sizeof(struct ieee80211_ie_htinfo) -
2647 		__offsetof(struct ieee80211_ie_htinfo, hi_basicmcsset);
2648 	return frm;
2649 }
2650 
2651 /*
2652  * Add 802.11n HT information information element.
2653  */
2654 uint8_t *
2655 ieee80211_add_htinfo(uint8_t *frm, struct ieee80211_node *ni)
2656 {
2657 	frm[0] = IEEE80211_ELEMID_HTINFO;
2658 	frm[1] = sizeof(struct ieee80211_ie_htinfo) - 2;
2659 	return ieee80211_add_htinfo_body(frm + 2, ni);
2660 }
2661 
2662 /*
2663  * Add Broadcom OUI wrapped standard HTINFO ie; this is
2664  * used for compatibility w/ pre-draft implementations.
2665  */
2666 uint8_t *
2667 ieee80211_add_htinfo_vendor(uint8_t *frm, struct ieee80211_node *ni)
2668 {
2669 	frm[0] = IEEE80211_ELEMID_VENDOR;
2670 	frm[1] = 4 + sizeof(struct ieee80211_ie_htinfo) - 2;
2671 	frm[2] = (BCM_OUI >> 0) & 0xff;
2672 	frm[3] = (BCM_OUI >> 8) & 0xff;
2673 	frm[4] = (BCM_OUI >> 16) & 0xff;
2674 	frm[5] = BCM_OUI_HTINFO;
2675 	return ieee80211_add_htinfo_body(frm + 6, ni);
2676 }
2677