1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 */ 27 28 /* 29 * IEEE 802.11n protocol support. 30 */ 31 32 #include "opt_inet.h" 33 #include "opt_wlan.h" 34 35 #include <sys/param.h> 36 #include <sys/kernel.h> 37 #include <sys/malloc.h> 38 #include <sys/systm.h> 39 #include <sys/endian.h> 40 41 #include <sys/socket.h> 42 43 #include <net/if.h> 44 #include <net/if_var.h> 45 #include <net/if_media.h> 46 #include <net/ethernet.h> 47 48 #include <net80211/ieee80211_var.h> 49 #include <net80211/ieee80211_action.h> 50 #include <net80211/ieee80211_input.h> 51 52 const struct ieee80211_mcs_rates ieee80211_htrates[IEEE80211_HTRATE_MAXSIZE] = { 53 { 13, 14, 27, 30 }, /* MCS 0 */ 54 { 26, 29, 54, 60 }, /* MCS 1 */ 55 { 39, 43, 81, 90 }, /* MCS 2 */ 56 { 52, 58, 108, 120 }, /* MCS 3 */ 57 { 78, 87, 162, 180 }, /* MCS 4 */ 58 { 104, 116, 216, 240 }, /* MCS 5 */ 59 { 117, 130, 243, 270 }, /* MCS 6 */ 60 { 130, 144, 270, 300 }, /* MCS 7 */ 61 { 26, 29, 54, 60 }, /* MCS 8 */ 62 { 52, 58, 108, 120 }, /* MCS 9 */ 63 { 78, 87, 162, 180 }, /* MCS 10 */ 64 { 104, 116, 216, 240 }, /* MCS 11 */ 65 { 156, 173, 324, 360 }, /* MCS 12 */ 66 { 208, 231, 432, 480 }, /* MCS 13 */ 67 { 234, 260, 486, 540 }, /* MCS 14 */ 68 { 260, 289, 540, 600 }, /* MCS 15 */ 69 { 39, 43, 81, 90 }, /* MCS 16 */ 70 { 78, 87, 162, 180 }, /* MCS 17 */ 71 { 117, 130, 243, 270 }, /* MCS 18 */ 72 { 156, 173, 324, 360 }, /* MCS 19 */ 73 { 234, 260, 486, 540 }, /* MCS 20 */ 74 { 312, 347, 648, 720 }, /* MCS 21 */ 75 { 351, 390, 729, 810 }, /* MCS 22 */ 76 { 390, 433, 810, 900 }, /* MCS 23 */ 77 { 52, 58, 108, 120 }, /* MCS 24 */ 78 { 104, 116, 216, 240 }, /* MCS 25 */ 79 { 156, 173, 324, 360 }, /* MCS 26 */ 80 { 208, 231, 432, 480 }, /* MCS 27 */ 81 { 312, 347, 648, 720 }, /* MCS 28 */ 82 { 416, 462, 864, 960 }, /* MCS 29 */ 83 { 468, 520, 972, 1080 }, /* MCS 30 */ 84 { 520, 578, 1080, 1200 }, /* MCS 31 */ 85 { 0, 0, 12, 13 }, /* MCS 32 */ 86 { 78, 87, 162, 180 }, /* MCS 33 */ 87 { 104, 116, 216, 240 }, /* MCS 34 */ 88 { 130, 144, 270, 300 }, /* MCS 35 */ 89 { 117, 130, 243, 270 }, /* MCS 36 */ 90 { 156, 173, 324, 360 }, /* MCS 37 */ 91 { 195, 217, 405, 450 }, /* MCS 38 */ 92 { 104, 116, 216, 240 }, /* MCS 39 */ 93 { 130, 144, 270, 300 }, /* MCS 40 */ 94 { 130, 144, 270, 300 }, /* MCS 41 */ 95 { 156, 173, 324, 360 }, /* MCS 42 */ 96 { 182, 202, 378, 420 }, /* MCS 43 */ 97 { 182, 202, 378, 420 }, /* MCS 44 */ 98 { 208, 231, 432, 480 }, /* MCS 45 */ 99 { 156, 173, 324, 360 }, /* MCS 46 */ 100 { 195, 217, 405, 450 }, /* MCS 47 */ 101 { 195, 217, 405, 450 }, /* MCS 48 */ 102 { 234, 260, 486, 540 }, /* MCS 49 */ 103 { 273, 303, 567, 630 }, /* MCS 50 */ 104 { 273, 303, 567, 630 }, /* MCS 51 */ 105 { 312, 347, 648, 720 }, /* MCS 52 */ 106 { 130, 144, 270, 300 }, /* MCS 53 */ 107 { 156, 173, 324, 360 }, /* MCS 54 */ 108 { 182, 202, 378, 420 }, /* MCS 55 */ 109 { 156, 173, 324, 360 }, /* MCS 56 */ 110 { 182, 202, 378, 420 }, /* MCS 57 */ 111 { 208, 231, 432, 480 }, /* MCS 58 */ 112 { 234, 260, 486, 540 }, /* MCS 59 */ 113 { 208, 231, 432, 480 }, /* MCS 60 */ 114 { 234, 260, 486, 540 }, /* MCS 61 */ 115 { 260, 289, 540, 600 }, /* MCS 62 */ 116 { 260, 289, 540, 600 }, /* MCS 63 */ 117 { 286, 318, 594, 660 }, /* MCS 64 */ 118 { 195, 217, 405, 450 }, /* MCS 65 */ 119 { 234, 260, 486, 540 }, /* MCS 66 */ 120 { 273, 303, 567, 630 }, /* MCS 67 */ 121 { 234, 260, 486, 540 }, /* MCS 68 */ 122 { 273, 303, 567, 630 }, /* MCS 69 */ 123 { 312, 347, 648, 720 }, /* MCS 70 */ 124 { 351, 390, 729, 810 }, /* MCS 71 */ 125 { 312, 347, 648, 720 }, /* MCS 72 */ 126 { 351, 390, 729, 810 }, /* MCS 73 */ 127 { 390, 433, 810, 900 }, /* MCS 74 */ 128 { 390, 433, 810, 900 }, /* MCS 75 */ 129 { 429, 477, 891, 990 }, /* MCS 76 */ 130 }; 131 132 static int ieee80211_ampdu_age = -1; /* threshold for ampdu reorder q (ms) */ 133 SYSCTL_PROC(_net_wlan, OID_AUTO, ampdu_age, 134 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 135 &ieee80211_ampdu_age, 0, ieee80211_sysctl_msecs_ticks, "I", 136 "AMPDU max reorder age (ms)"); 137 138 static int ieee80211_recv_bar_ena = 1; 139 SYSCTL_INT(_net_wlan, OID_AUTO, recv_bar, CTLFLAG_RW, &ieee80211_recv_bar_ena, 140 0, "BAR frame processing (ena/dis)"); 141 142 static int ieee80211_addba_timeout = -1;/* timeout for ADDBA response */ 143 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_timeout, 144 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 145 &ieee80211_addba_timeout, 0, ieee80211_sysctl_msecs_ticks, "I", 146 "ADDBA request timeout (ms)"); 147 static int ieee80211_addba_backoff = -1;/* backoff after max ADDBA requests */ 148 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_backoff, 149 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 150 &ieee80211_addba_backoff, 0, ieee80211_sysctl_msecs_ticks, "I", 151 "ADDBA request backoff (ms)"); 152 static int ieee80211_addba_maxtries = 3;/* max ADDBA requests before backoff */ 153 SYSCTL_INT(_net_wlan, OID_AUTO, addba_maxtries, CTLFLAG_RW, 154 &ieee80211_addba_maxtries, 0, "max ADDBA requests sent before backoff"); 155 156 static int ieee80211_bar_timeout = -1; /* timeout waiting for BAR response */ 157 static int ieee80211_bar_maxtries = 50;/* max BAR requests before DELBA */ 158 159 static ieee80211_recv_action_func ht_recv_action_ba_addba_request; 160 static ieee80211_recv_action_func ht_recv_action_ba_addba_response; 161 static ieee80211_recv_action_func ht_recv_action_ba_delba; 162 static ieee80211_recv_action_func ht_recv_action_ht_mimopwrsave; 163 static ieee80211_recv_action_func ht_recv_action_ht_txchwidth; 164 165 static ieee80211_send_action_func ht_send_action_ba_addba; 166 static ieee80211_send_action_func ht_send_action_ba_delba; 167 static ieee80211_send_action_func ht_send_action_ht_txchwidth; 168 169 static void 170 ieee80211_ht_init(void) 171 { 172 /* 173 * Setup HT parameters that depends on the clock frequency. 174 */ 175 ieee80211_ampdu_age = msecs_to_ticks(500); 176 ieee80211_addba_timeout = msecs_to_ticks(250); 177 ieee80211_addba_backoff = msecs_to_ticks(10*1000); 178 ieee80211_bar_timeout = msecs_to_ticks(250); 179 /* 180 * Register action frame handlers. 181 */ 182 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 183 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_recv_action_ba_addba_request); 184 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 185 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_recv_action_ba_addba_response); 186 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 187 IEEE80211_ACTION_BA_DELBA, ht_recv_action_ba_delba); 188 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 189 IEEE80211_ACTION_HT_MIMOPWRSAVE, ht_recv_action_ht_mimopwrsave); 190 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 191 IEEE80211_ACTION_HT_TXCHWIDTH, ht_recv_action_ht_txchwidth); 192 193 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 194 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_send_action_ba_addba); 195 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 196 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_send_action_ba_addba); 197 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 198 IEEE80211_ACTION_BA_DELBA, ht_send_action_ba_delba); 199 ieee80211_send_action_register(IEEE80211_ACTION_CAT_HT, 200 IEEE80211_ACTION_HT_TXCHWIDTH, ht_send_action_ht_txchwidth); 201 } 202 SYSINIT(wlan_ht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_ht_init, NULL); 203 204 static int ieee80211_ampdu_enable(struct ieee80211_node *ni, 205 struct ieee80211_tx_ampdu *tap); 206 static int ieee80211_addba_request(struct ieee80211_node *ni, 207 struct ieee80211_tx_ampdu *tap, 208 int dialogtoken, int baparamset, int batimeout); 209 static int ieee80211_addba_response(struct ieee80211_node *ni, 210 struct ieee80211_tx_ampdu *tap, 211 int code, int baparamset, int batimeout); 212 static void ieee80211_addba_stop(struct ieee80211_node *ni, 213 struct ieee80211_tx_ampdu *tap); 214 static void null_addba_response_timeout(struct ieee80211_node *ni, 215 struct ieee80211_tx_ampdu *tap); 216 217 static void ieee80211_bar_response(struct ieee80211_node *ni, 218 struct ieee80211_tx_ampdu *tap, int status); 219 static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap); 220 static void bar_stop_timer(struct ieee80211_tx_ampdu *tap); 221 static int ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *, 222 int baparamset, int batimeout, int baseqctl); 223 static void ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *); 224 225 void 226 ieee80211_ht_attach(struct ieee80211com *ic) 227 { 228 /* setup default aggregation policy */ 229 ic->ic_recv_action = ieee80211_recv_action; 230 ic->ic_send_action = ieee80211_send_action; 231 ic->ic_ampdu_enable = ieee80211_ampdu_enable; 232 ic->ic_addba_request = ieee80211_addba_request; 233 ic->ic_addba_response = ieee80211_addba_response; 234 ic->ic_addba_response_timeout = null_addba_response_timeout; 235 ic->ic_addba_stop = ieee80211_addba_stop; 236 ic->ic_bar_response = ieee80211_bar_response; 237 ic->ic_ampdu_rx_start = ampdu_rx_start; 238 ic->ic_ampdu_rx_stop = ampdu_rx_stop; 239 240 ic->ic_htprotmode = IEEE80211_PROT_RTSCTS; 241 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; 242 } 243 244 void 245 ieee80211_ht_detach(struct ieee80211com *ic) 246 { 247 } 248 249 void 250 ieee80211_ht_vattach(struct ieee80211vap *vap) 251 { 252 253 /* driver can override defaults */ 254 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_8K; 255 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_NA; 256 vap->iv_ampdu_limit = vap->iv_ampdu_rxmax; 257 vap->iv_amsdu_limit = vap->iv_htcaps & IEEE80211_HTCAP_MAXAMSDU; 258 /* tx aggregation traffic thresholds */ 259 vap->iv_ampdu_mintraffic[WME_AC_BK] = 128; 260 vap->iv_ampdu_mintraffic[WME_AC_BE] = 64; 261 vap->iv_ampdu_mintraffic[WME_AC_VO] = 32; 262 vap->iv_ampdu_mintraffic[WME_AC_VI] = 32; 263 264 vap->iv_htprotmode = IEEE80211_PROT_RTSCTS; 265 vap->iv_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; 266 267 if (vap->iv_htcaps & IEEE80211_HTC_HT) { 268 /* 269 * Device is HT capable; enable all HT-related 270 * facilities by default. 271 * XXX these choices may be too aggressive. 272 */ 273 vap->iv_flags_ht |= IEEE80211_FHT_HT 274 | IEEE80211_FHT_HTCOMPAT 275 ; 276 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI20) 277 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20; 278 /* XXX infer from channel list? */ 279 if (vap->iv_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 280 vap->iv_flags_ht |= IEEE80211_FHT_USEHT40; 281 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI40) 282 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40; 283 } 284 /* enable RIFS if capable */ 285 if (vap->iv_htcaps & IEEE80211_HTC_RIFS) 286 vap->iv_flags_ht |= IEEE80211_FHT_RIFS; 287 288 /* NB: A-MPDU and A-MSDU rx are mandated, these are tx only */ 289 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX; 290 if (vap->iv_htcaps & IEEE80211_HTC_AMPDU) 291 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX; 292 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX; 293 if (vap->iv_htcaps & IEEE80211_HTC_AMSDU) 294 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX; 295 296 if (vap->iv_htcaps & IEEE80211_HTCAP_TXSTBC) 297 vap->iv_flags_ht |= IEEE80211_FHT_STBC_TX; 298 if (vap->iv_htcaps & IEEE80211_HTCAP_RXSTBC) 299 vap->iv_flags_ht |= IEEE80211_FHT_STBC_RX; 300 301 if (vap->iv_htcaps & IEEE80211_HTCAP_LDPC) 302 vap->iv_flags_ht |= IEEE80211_FHT_LDPC_RX; 303 if (vap->iv_htcaps & IEEE80211_HTC_TXLDPC) 304 vap->iv_flags_ht |= IEEE80211_FHT_LDPC_TX; 305 } 306 /* NB: disable default legacy WDS, too many issues right now */ 307 if (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) 308 vap->iv_flags_ht &= ~IEEE80211_FHT_HT; 309 } 310 311 void 312 ieee80211_ht_vdetach(struct ieee80211vap *vap) 313 { 314 } 315 316 static int 317 ht_getrate(struct ieee80211com *ic, int index, enum ieee80211_phymode mode, 318 int ratetype) 319 { 320 int mword, rate; 321 322 mword = ieee80211_rate2media(ic, index | IEEE80211_RATE_MCS, mode); 323 if (IFM_SUBTYPE(mword) != IFM_IEEE80211_MCS) 324 return (0); 325 switch (ratetype) { 326 case 0: 327 rate = ieee80211_htrates[index].ht20_rate_800ns; 328 break; 329 case 1: 330 rate = ieee80211_htrates[index].ht20_rate_400ns; 331 break; 332 case 2: 333 rate = ieee80211_htrates[index].ht40_rate_800ns; 334 break; 335 default: 336 rate = ieee80211_htrates[index].ht40_rate_400ns; 337 break; 338 } 339 return (rate); 340 } 341 342 static struct printranges { 343 int minmcs; 344 int maxmcs; 345 int txstream; 346 int ratetype; 347 int htcapflags; 348 } ranges[] = { 349 { 0, 7, 1, 0, 0 }, 350 { 8, 15, 2, 0, 0 }, 351 { 16, 23, 3, 0, 0 }, 352 { 24, 31, 4, 0, 0 }, 353 { 32, 0, 1, 2, IEEE80211_HTC_TXMCS32 }, 354 { 33, 38, 2, 0, IEEE80211_HTC_TXUNEQUAL }, 355 { 39, 52, 3, 0, IEEE80211_HTC_TXUNEQUAL }, 356 { 53, 76, 4, 0, IEEE80211_HTC_TXUNEQUAL }, 357 { 0, 0, 0, 0, 0 }, 358 }; 359 360 static void 361 ht_rateprint(struct ieee80211com *ic, enum ieee80211_phymode mode, int ratetype) 362 { 363 int minrate, maxrate; 364 struct printranges *range; 365 366 for (range = ranges; range->txstream != 0; range++) { 367 if (ic->ic_txstream < range->txstream) 368 continue; 369 if (range->htcapflags && 370 (ic->ic_htcaps & range->htcapflags) == 0) 371 continue; 372 if (ratetype < range->ratetype) 373 continue; 374 minrate = ht_getrate(ic, range->minmcs, mode, ratetype); 375 maxrate = ht_getrate(ic, range->maxmcs, mode, ratetype); 376 if (range->maxmcs) { 377 ic_printf(ic, "MCS %d-%d: %d%sMbps - %d%sMbps\n", 378 range->minmcs, range->maxmcs, 379 minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""), 380 maxrate/2, ((maxrate & 0x1) != 0 ? ".5" : "")); 381 } else { 382 ic_printf(ic, "MCS %d: %d%sMbps\n", range->minmcs, 383 minrate/2, ((minrate & 0x1) != 0 ? ".5" : "")); 384 } 385 } 386 } 387 388 static void 389 ht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode) 390 { 391 const char *modestr = ieee80211_phymode_name[mode]; 392 393 ic_printf(ic, "%s MCS 20MHz\n", modestr); 394 ht_rateprint(ic, mode, 0); 395 if (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) { 396 ic_printf(ic, "%s MCS 20MHz SGI\n", modestr); 397 ht_rateprint(ic, mode, 1); 398 } 399 if (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 400 ic_printf(ic, "%s MCS 40MHz:\n", modestr); 401 ht_rateprint(ic, mode, 2); 402 } 403 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 404 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) { 405 ic_printf(ic, "%s MCS 40MHz SGI:\n", modestr); 406 ht_rateprint(ic, mode, 3); 407 } 408 } 409 410 void 411 ieee80211_ht_announce(struct ieee80211com *ic) 412 { 413 414 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 415 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 416 ic_printf(ic, "%dT%dR\n", ic->ic_txstream, ic->ic_rxstream); 417 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA)) 418 ht_announce(ic, IEEE80211_MODE_11NA); 419 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 420 ht_announce(ic, IEEE80211_MODE_11NG); 421 } 422 423 void 424 ieee80211_init_suphtrates(struct ieee80211com *ic) 425 { 426 #define ADDRATE(x) do { \ 427 htrateset->rs_rates[htrateset->rs_nrates] = x; \ 428 htrateset->rs_nrates++; \ 429 } while (0) 430 struct ieee80211_htrateset *htrateset = &ic->ic_sup_htrates; 431 int i; 432 433 memset(htrateset, 0, sizeof(struct ieee80211_htrateset)); 434 for (i = 0; i < ic->ic_txstream * 8; i++) 435 ADDRATE(i); 436 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 437 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32)) 438 ADDRATE(32); 439 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 440 if (ic->ic_txstream >= 2) { 441 for (i = 33; i <= 38; i++) 442 ADDRATE(i); 443 } 444 if (ic->ic_txstream >= 3) { 445 for (i = 39; i <= 52; i++) 446 ADDRATE(i); 447 } 448 if (ic->ic_txstream == 4) { 449 for (i = 53; i <= 76; i++) 450 ADDRATE(i); 451 } 452 } 453 #undef ADDRATE 454 } 455 456 /* 457 * Receive processing. 458 */ 459 460 /* 461 * Decap the encapsulated A-MSDU frames and dispatch all but 462 * the last for delivery. The last frame is returned for 463 * delivery via the normal path. 464 */ 465 struct mbuf * 466 ieee80211_decap_amsdu(struct ieee80211_node *ni, struct mbuf *m) 467 { 468 struct ieee80211vap *vap = ni->ni_vap; 469 int framelen; 470 struct mbuf *n; 471 472 /* discard 802.3 header inserted by ieee80211_decap */ 473 m_adj(m, sizeof(struct ether_header)); 474 475 vap->iv_stats.is_amsdu_decap++; 476 477 for (;;) { 478 /* 479 * Decap the first frame, bust it apart from the 480 * remainder and deliver. We leave the last frame 481 * delivery to the caller (for consistency with other 482 * code paths, could also do it here). 483 */ 484 m = ieee80211_decap1(m, &framelen); 485 if (m == NULL) { 486 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 487 ni->ni_macaddr, "a-msdu", "%s", "decap failed"); 488 vap->iv_stats.is_amsdu_tooshort++; 489 return NULL; 490 } 491 if (m->m_pkthdr.len == framelen) 492 break; 493 n = m_split(m, framelen, IEEE80211_M_NOWAIT); 494 if (n == NULL) { 495 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 496 ni->ni_macaddr, "a-msdu", 497 "%s", "unable to split encapsulated frames"); 498 vap->iv_stats.is_amsdu_split++; 499 m_freem(m); /* NB: must reclaim */ 500 return NULL; 501 } 502 vap->iv_deliver_data(vap, ni, m); 503 504 /* 505 * Remove frame contents; each intermediate frame 506 * is required to be aligned to a 4-byte boundary. 507 */ 508 m = n; 509 m_adj(m, roundup2(framelen, 4) - framelen); /* padding */ 510 } 511 return m; /* last delivered by caller */ 512 } 513 514 static void 515 ampdu_rx_purge_slot(struct ieee80211_rx_ampdu *rap, int i) 516 { 517 struct mbuf *m; 518 519 /* Walk the queue, removing frames as appropriate */ 520 for (;;) { 521 m = mbufq_dequeue(&rap->rxa_mq[i]); 522 if (m == NULL) 523 break; 524 rap->rxa_qbytes -= m->m_pkthdr.len; 525 rap->rxa_qframes--; 526 m_freem(m); 527 } 528 } 529 530 /* 531 * Add the given frame to the current RX reorder slot. 532 * 533 * For future offloaded A-MSDU handling where multiple frames with 534 * the same sequence number show up here, this routine will append 535 * those frames as long as they're appropriately tagged. 536 */ 537 static int 538 ampdu_rx_add_slot(struct ieee80211_rx_ampdu *rap, int off, int tid, 539 ieee80211_seq rxseq, 540 struct ieee80211_node *ni, 541 struct mbuf *m, 542 const struct ieee80211_rx_stats *rxs) 543 { 544 const struct ieee80211_rx_stats *rxs_final = NULL; 545 struct ieee80211vap *vap = ni->ni_vap; 546 int toss_dup; 547 #define PROCESS 0 /* caller should process frame */ 548 #define CONSUMED 1 /* frame consumed, caller does nothing */ 549 550 /* 551 * Figure out if this is a duplicate frame for the given slot. 552 * 553 * We're assuming that the driver will hand us all the frames 554 * for a given AMSDU decap pass and if we get /a/ frame 555 * for an AMSDU decap then we'll get all of them. 556 * 557 * The tricksy bit is that we don't know when the /end/ of 558 * the decap pass is, because we aren't tracking state here 559 * per-slot to know that we've finished receiving the frame list. 560 * 561 * The driver sets RX_F_AMSDU and RX_F_AMSDU_MORE to tell us 562 * what's going on; so ideally we'd just check the frame at the 563 * end of the reassembly slot to see if its F_AMSDU w/ no F_AMSDU_MORE - 564 * that means we've received the whole AMSDU decap pass. 565 */ 566 567 /* 568 * Get the rxs of the final mbuf in the slot, if one exists. 569 */ 570 if (!mbufq_empty(&rap->rxa_mq[off])) { 571 rxs_final = ieee80211_get_rx_params_ptr(mbufq_last(&rap->rxa_mq[off])); 572 } 573 574 /* Default to tossing the duplicate frame */ 575 toss_dup = 1; 576 577 /* 578 * Check to see if the final frame has F_AMSDU and F_AMSDU set, AND 579 * this frame has F_AMSDU set (MORE or otherwise.) That's a sign 580 * that more can come. 581 */ 582 583 if ((rxs != NULL) && (rxs_final != NULL) && 584 ieee80211_check_rxseq_amsdu(rxs) && 585 ieee80211_check_rxseq_amsdu(rxs_final)) { 586 if (! ieee80211_check_rxseq_amsdu_more(rxs_final)) { 587 /* 588 * amsdu_more() returning 0 means "it's not the 589 * final frame" so we can append more 590 * frames here. 591 */ 592 toss_dup = 0; 593 } 594 } 595 596 /* 597 * If the list is empty OR we have determined we can put more 598 * driver decap'ed AMSDU frames in here, then insert. 599 */ 600 if (mbufq_empty(&rap->rxa_mq[off]) || (toss_dup == 0)) { 601 if (mbufq_enqueue(&rap->rxa_mq[off], m) != 0) { 602 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 603 ni->ni_macaddr, 604 "a-mpdu queue fail", 605 "seqno %u tid %u BA win <%u:%u> off=%d, qlen=%d, maxqlen=%d", 606 rxseq, tid, rap->rxa_start, 607 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 608 off, 609 mbufq_len(&rap->rxa_mq[off]), 610 rap->rxa_mq[off].mq_maxlen); 611 /* XXX error count */ 612 m_freem(m); 613 return CONSUMED; 614 } 615 rap->rxa_qframes++; 616 rap->rxa_qbytes += m->m_pkthdr.len; 617 vap->iv_stats.is_ampdu_rx_reorder++; 618 /* 619 * Statistics for AMSDU decap. 620 */ 621 if (rxs != NULL && ieee80211_check_rxseq_amsdu(rxs)) { 622 if (ieee80211_check_rxseq_amsdu_more(rxs)) { 623 /* more=1, AMSDU, end of batch */ 624 IEEE80211_NODE_STAT(ni, rx_amsdu_more_end); 625 } else { 626 IEEE80211_NODE_STAT(ni, rx_amsdu_more); 627 } 628 } 629 } else { 630 IEEE80211_DISCARD_MAC(vap, 631 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 632 ni->ni_macaddr, "a-mpdu duplicate", 633 "seqno %u tid %u BA win <%u:%u>", 634 rxseq, tid, rap->rxa_start, 635 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1)); 636 if (rxs != NULL) { 637 IEEE80211_DISCARD_MAC(vap, 638 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 639 ni->ni_macaddr, "a-mpdu duplicate", 640 "seqno %d tid %u pktflags 0x%08x\n", 641 rxseq, tid, rxs->c_pktflags); 642 } 643 if (rxs_final != NULL) { 644 IEEE80211_DISCARD_MAC(vap, 645 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 646 ni->ni_macaddr, "a-mpdu duplicate", 647 "final: pktflags 0x%08x\n", 648 rxs_final->c_pktflags); 649 } 650 vap->iv_stats.is_rx_dup++; 651 IEEE80211_NODE_STAT(ni, rx_dup); 652 m_freem(m); 653 } 654 return CONSUMED; 655 #undef CONSUMED 656 #undef PROCESS 657 } 658 659 /* 660 * Purge all frames in the A-MPDU re-order queue. 661 */ 662 static void 663 ampdu_rx_purge(struct ieee80211_rx_ampdu *rap) 664 { 665 int i; 666 667 for (i = 0; i < rap->rxa_wnd; i++) { 668 ampdu_rx_purge_slot(rap, i); 669 if (rap->rxa_qframes == 0) 670 break; 671 } 672 KASSERT(rap->rxa_qbytes == 0 && rap->rxa_qframes == 0, 673 ("lost %u data, %u frames on ampdu rx q", 674 rap->rxa_qbytes, rap->rxa_qframes)); 675 } 676 677 static void 678 ieee80211_ampdu_rx_init_rap(struct ieee80211_node *ni, 679 struct ieee80211_rx_ampdu *rap) 680 { 681 int i; 682 683 /* XXX TODO: ensure the queues are empty */ 684 memset(rap, 0, sizeof(*rap)); 685 for (i = 0; i < IEEE80211_AGGR_BAWMAX; i++) 686 mbufq_init(&rap->rxa_mq[i], 256); 687 } 688 689 /* 690 * Start A-MPDU rx/re-order processing for the specified TID. 691 */ 692 static int 693 ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap, 694 int baparamset, int batimeout, int baseqctl) 695 { 696 struct ieee80211vap *vap = ni->ni_vap; 697 int bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ); 698 699 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 700 /* 701 * AMPDU previously setup and not terminated with a DELBA, 702 * flush the reorder q's in case anything remains. 703 */ 704 ampdu_rx_purge(rap); 705 } 706 ieee80211_ampdu_rx_init_rap(ni, rap); 707 rap->rxa_wnd = (bufsiz == 0) ? 708 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 709 rap->rxa_start = _IEEE80211_MASKSHIFT(baseqctl, IEEE80211_BASEQ_START); 710 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 711 712 /* XXX this should be a configuration flag */ 713 if ((vap->iv_htcaps & IEEE80211_HTC_RX_AMSDU_AMPDU) && 714 (_IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU))) 715 rap->rxa_flags |= IEEE80211_AGGR_AMSDU; 716 else 717 rap->rxa_flags &= ~IEEE80211_AGGR_AMSDU; 718 719 return 0; 720 } 721 722 /* 723 * Public function; manually setup the RX ampdu state. 724 */ 725 int 726 ieee80211_ampdu_rx_start_ext(struct ieee80211_node *ni, int tid, int seq, int baw) 727 { 728 struct ieee80211_rx_ampdu *rap; 729 730 /* XXX TODO: sanity check tid, seq, baw */ 731 732 rap = &ni->ni_rx_ampdu[tid]; 733 734 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 735 /* 736 * AMPDU previously setup and not terminated with a DELBA, 737 * flush the reorder q's in case anything remains. 738 */ 739 ampdu_rx_purge(rap); 740 } 741 742 ieee80211_ampdu_rx_init_rap(ni, rap); 743 744 rap->rxa_wnd = (baw== 0) ? 745 IEEE80211_AGGR_BAWMAX : min(baw, IEEE80211_AGGR_BAWMAX); 746 if (seq == -1) { 747 /* Wait for the first RX frame, use that as BAW */ 748 rap->rxa_start = 0; 749 rap->rxa_flags |= IEEE80211_AGGR_WAITRX; 750 } else { 751 rap->rxa_start = seq; 752 } 753 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 754 755 /* XXX TODO: no amsdu flag */ 756 757 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 758 "%s: tid=%d, start=%d, wnd=%d, flags=0x%08x", 759 __func__, 760 tid, 761 seq, 762 rap->rxa_wnd, 763 rap->rxa_flags); 764 765 return 0; 766 } 767 768 /* 769 * Public function; manually stop the RX AMPDU state. 770 */ 771 void 772 ieee80211_ampdu_rx_stop_ext(struct ieee80211_node *ni, int tid) 773 { 774 struct ieee80211_rx_ampdu *rap; 775 776 /* XXX TODO: sanity check tid, seq, baw */ 777 rap = &ni->ni_rx_ampdu[tid]; 778 ampdu_rx_stop(ni, rap); 779 } 780 781 /* 782 * Stop A-MPDU rx processing for the specified TID. 783 */ 784 static void 785 ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 786 { 787 788 ampdu_rx_purge(rap); 789 rap->rxa_flags &= ~(IEEE80211_AGGR_RUNNING 790 | IEEE80211_AGGR_XCHGPEND 791 | IEEE80211_AGGR_WAITRX); 792 } 793 794 /* 795 * Dispatch a frame from the A-MPDU reorder queue. The 796 * frame is fed back into ieee80211_input marked with an 797 * M_AMPDU_MPDU flag so it doesn't come back to us (it also 798 * permits ieee80211_input to optimize re-processing). 799 */ 800 static __inline void 801 ampdu_dispatch(struct ieee80211_node *ni, struct mbuf *m) 802 { 803 m->m_flags |= M_AMPDU_MPDU; /* bypass normal processing */ 804 /* NB: rssi and noise are ignored w/ M_AMPDU_MPDU set */ 805 (void) ieee80211_input(ni, m, 0, 0); 806 } 807 808 static int 809 ampdu_dispatch_slot(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni, 810 int i) 811 { 812 struct mbuf *m; 813 int n = 0; 814 815 for (;;) { 816 m = mbufq_dequeue(&rap->rxa_mq[i]); 817 if (m == NULL) 818 break; 819 n++; 820 821 rap->rxa_qbytes -= m->m_pkthdr.len; 822 rap->rxa_qframes--; 823 824 ampdu_dispatch(ni, m); 825 } 826 return (n); 827 } 828 829 static void 830 ampdu_rx_moveup(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni, 831 int i, int winstart) 832 { 833 struct ieee80211vap *vap = ni->ni_vap; 834 835 /* 836 * If frames remain, copy the mbuf pointers down so 837 * they correspond to the offsets in the new window. 838 */ 839 if (rap->rxa_qframes != 0) { 840 int n = rap->rxa_qframes, j; 841 for (j = i+1; j < rap->rxa_wnd; j++) { 842 /* 843 * Concat the list contents over, which will 844 * blank the source list for us. 845 */ 846 if (mbufq_len(&rap->rxa_mq[j]) != 0) { 847 n = n - mbufq_len(&rap->rxa_mq[j]); 848 mbufq_concat(&rap->rxa_mq[j-i], &rap->rxa_mq[j]); 849 KASSERT(n >= 0, ("%s: n < 0 (%d)", __func__, n)); 850 if (n == 0) 851 break; 852 } 853 } 854 KASSERT(n == 0, ("%s: lost %d frames, qframes %d off %d " 855 "BA win <%d:%d> winstart %d", 856 __func__, n, rap->rxa_qframes, i, rap->rxa_start, 857 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 858 winstart)); 859 vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; 860 } 861 } 862 863 /* 864 * Dispatch as many frames as possible from the re-order queue. 865 * Frames will always be "at the front"; we process all frames 866 * up to the first empty slot in the window. On completion we 867 * cleanup state if there are still pending frames in the current 868 * BA window. We assume the frame at slot 0 is already handled 869 * by the caller; we always start at slot 1. 870 */ 871 static void 872 ampdu_rx_dispatch(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni) 873 { 874 struct ieee80211vap *vap = ni->ni_vap; 875 int i, r, r2; 876 877 /* flush run of frames */ 878 r2 = 0; 879 for (i = 1; i < rap->rxa_wnd; i++) { 880 r = ampdu_dispatch_slot(rap, ni, i); 881 if (r == 0) 882 break; 883 r2 += r; 884 } 885 886 /* move up frames */ 887 ampdu_rx_moveup(rap, ni, i, -1); 888 889 /* 890 * Adjust the start of the BA window to 891 * reflect the frames just dispatched. 892 */ 893 rap->rxa_start = IEEE80211_SEQ_ADD(rap->rxa_start, i); 894 vap->iv_stats.is_ampdu_rx_oor += r2; 895 896 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 897 "%s: moved slot up %d slots to start at %d (%d frames)", 898 __func__, 899 i, 900 rap->rxa_start, 901 r2); 902 } 903 904 /* 905 * Dispatch all frames in the A-MPDU re-order queue. 906 */ 907 static void 908 ampdu_rx_flush(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 909 { 910 int i, r; 911 912 for (i = 0; i < rap->rxa_wnd; i++) { 913 r = ampdu_dispatch_slot(rap, ni, i); 914 if (r == 0) 915 continue; 916 ni->ni_vap->iv_stats.is_ampdu_rx_oor += r; 917 918 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 919 "%s: moved slot up %d slots to start at %d (%d frames)", 920 __func__, 921 1, 922 rap->rxa_start, 923 r); 924 925 if (rap->rxa_qframes == 0) 926 break; 927 } 928 } 929 930 /* 931 * Dispatch all frames in the A-MPDU re-order queue 932 * preceding the specified sequence number. This logic 933 * handles window moves due to a received MSDU or BAR. 934 */ 935 static void 936 ampdu_rx_flush_upto(struct ieee80211_node *ni, 937 struct ieee80211_rx_ampdu *rap, ieee80211_seq winstart) 938 { 939 struct ieee80211vap *vap = ni->ni_vap; 940 ieee80211_seq seqno; 941 int i, r; 942 943 /* 944 * Flush any complete MSDU's with a sequence number lower 945 * than winstart. Gaps may exist. Note that we may actually 946 * dispatch frames past winstart if a run continues; this is 947 * an optimization that avoids having to do a separate pass 948 * to dispatch frames after moving the BA window start. 949 */ 950 seqno = rap->rxa_start; 951 for (i = 0; i < rap->rxa_wnd; i++) { 952 if ((r = mbufq_len(&rap->rxa_mq[i])) != 0) { 953 (void) ampdu_dispatch_slot(rap, ni, i); 954 } else { 955 if (!IEEE80211_SEQ_BA_BEFORE(seqno, winstart)) 956 break; 957 } 958 vap->iv_stats.is_ampdu_rx_oor += r; 959 seqno = IEEE80211_SEQ_INC(seqno); 960 961 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 962 "%s: moved slot up %d slots to start at %d (%d frames)", 963 __func__, 964 1, 965 seqno, 966 r); 967 } 968 969 /* 970 * If frames remain, copy the mbuf pointers down so 971 * they correspond to the offsets in the new window. 972 */ 973 ampdu_rx_moveup(rap, ni, i, winstart); 974 975 /* 976 * Move the start of the BA window; we use the 977 * sequence number of the last MSDU that was 978 * passed up the stack+1 or winstart if stopped on 979 * a gap in the reorder buffer. 980 */ 981 rap->rxa_start = seqno; 982 } 983 984 /* 985 * Process a received QoS data frame for an HT station. Handle 986 * A-MPDU reordering: if this frame is received out of order 987 * and falls within the BA window hold onto it. Otherwise if 988 * this frame completes a run, flush any pending frames. We 989 * return 1 if the frame is consumed. A 0 is returned if 990 * the frame should be processed normally by the caller. 991 * 992 * A-MSDU: handle hardware decap'ed A-MSDU frames that are 993 * pretending to be MPDU's. They're dispatched directly if 994 * able; or attempted to put into the receive reordering slot. 995 */ 996 int 997 ieee80211_ampdu_reorder(struct ieee80211_node *ni, struct mbuf *m, 998 const struct ieee80211_rx_stats *rxs) 999 { 1000 #define PROCESS 0 /* caller should process frame */ 1001 #define CONSUMED 1 /* frame consumed, caller does nothing */ 1002 struct ieee80211vap *vap = ni->ni_vap; 1003 struct ieee80211_qosframe *wh; 1004 struct ieee80211_rx_ampdu *rap; 1005 ieee80211_seq rxseq; 1006 uint8_t tid; 1007 int off; 1008 int amsdu = ieee80211_check_rxseq_amsdu(rxs); 1009 int amsdu_end = ieee80211_check_rxseq_amsdu_more(rxs); 1010 1011 KASSERT((m->m_flags & (M_AMPDU | M_AMPDU_MPDU)) == M_AMPDU, 1012 ("!a-mpdu or already re-ordered, flags 0x%x", m->m_flags)); 1013 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 1014 1015 /* NB: m_len known to be sufficient */ 1016 wh = mtod(m, struct ieee80211_qosframe *); 1017 if (!IEEE80211_IS_QOSDATA(wh)) { 1018 /* 1019 * Not QoS data, shouldn't get here but just 1020 * return it to the caller for processing. 1021 */ 1022 return PROCESS; 1023 } 1024 1025 /* 1026 * 802.11-2012 9.3.2.10 - Duplicate detection and recovery. 1027 * 1028 * Multicast QoS data frames are checked against a different 1029 * counter, not the per-TID counter. 1030 */ 1031 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1032 return PROCESS; 1033 1034 tid = ieee80211_getqos(wh)[0]; 1035 tid &= IEEE80211_QOS_TID; 1036 rap = &ni->ni_rx_ampdu[tid]; 1037 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 1038 /* 1039 * No ADDBA request yet, don't touch. 1040 */ 1041 return PROCESS; 1042 } 1043 rxseq = le16toh(*(uint16_t *)wh->i_seq); 1044 if ((rxseq & IEEE80211_SEQ_FRAG_MASK) != 0) { 1045 /* 1046 * Fragments are not allowed; toss. 1047 */ 1048 IEEE80211_DISCARD_MAC(vap, 1049 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 1050 "A-MPDU", "fragment, rxseq 0x%x tid %u%s", rxseq, tid, 1051 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 1052 vap->iv_stats.is_ampdu_rx_drop++; 1053 IEEE80211_NODE_STAT(ni, rx_drop); 1054 m_freem(m); 1055 return CONSUMED; 1056 } 1057 rxseq >>= IEEE80211_SEQ_SEQ_SHIFT; 1058 rap->rxa_nframes++; 1059 1060 /* 1061 * Handle waiting for the first frame to define the BAW. 1062 * Some firmware doesn't provide the RX of the starting point 1063 * of the BAW and we have to cope. 1064 */ 1065 if (rap->rxa_flags & IEEE80211_AGGR_WAITRX) { 1066 rap->rxa_flags &= ~IEEE80211_AGGR_WAITRX; 1067 rap->rxa_start = rxseq; 1068 } 1069 again: 1070 if (rxseq == rap->rxa_start) { 1071 /* 1072 * First frame in window. 1073 */ 1074 if (rap->rxa_qframes != 0) { 1075 /* 1076 * Dispatch as many packets as we can. 1077 */ 1078 KASSERT(mbufq_empty(&rap->rxa_mq[0]), ("unexpected dup")); 1079 ampdu_dispatch(ni, m); 1080 ampdu_rx_dispatch(rap, ni); 1081 return CONSUMED; 1082 } else { 1083 /* 1084 * In order; advance window if needed and notify 1085 * caller to dispatch directly. 1086 */ 1087 if (amsdu) { 1088 if (amsdu_end) { 1089 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 1090 IEEE80211_NODE_STAT(ni, rx_amsdu_more_end); 1091 } else { 1092 IEEE80211_NODE_STAT(ni, rx_amsdu_more); 1093 } 1094 } else { 1095 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 1096 } 1097 return PROCESS; 1098 } 1099 } 1100 /* 1101 * Frame is out of order; store if in the BA window. 1102 */ 1103 /* calculate offset in BA window */ 1104 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 1105 if (off < rap->rxa_wnd) { 1106 /* 1107 * Common case (hopefully): in the BA window. 1108 * Sec 9.10.7.6.2 a) (p.137) 1109 */ 1110 1111 /* 1112 * Check for frames sitting too long in the reorder queue. 1113 * This should only ever happen if frames are not delivered 1114 * without the sender otherwise notifying us (e.g. with a 1115 * BAR to move the window). Typically this happens because 1116 * of vendor bugs that cause the sequence number to jump. 1117 * When this happens we get a gap in the reorder queue that 1118 * leaves frame sitting on the queue until they get pushed 1119 * out due to window moves. When the vendor does not send 1120 * BAR this move only happens due to explicit packet sends 1121 * 1122 * NB: we only track the time of the oldest frame in the 1123 * reorder q; this means that if we flush we might push 1124 * frames that still "new"; if this happens then subsequent 1125 * frames will result in BA window moves which cost something 1126 * but is still better than a big throughput dip. 1127 */ 1128 if (rap->rxa_qframes != 0) { 1129 /* XXX honor batimeout? */ 1130 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 1131 /* 1132 * Too long since we received the first 1133 * frame; flush the reorder buffer. 1134 */ 1135 if (rap->rxa_qframes != 0) { 1136 vap->iv_stats.is_ampdu_rx_age += 1137 rap->rxa_qframes; 1138 ampdu_rx_flush(ni, rap); 1139 } 1140 /* 1141 * Advance the window if needed and notify 1142 * the caller to dispatch directly. 1143 */ 1144 if (amsdu) { 1145 if (amsdu_end) { 1146 rap->rxa_start = 1147 IEEE80211_SEQ_INC(rxseq); 1148 IEEE80211_NODE_STAT(ni, 1149 rx_amsdu_more_end); 1150 } else { 1151 IEEE80211_NODE_STAT(ni, 1152 rx_amsdu_more); 1153 } 1154 } else { 1155 rap->rxa_start = 1156 IEEE80211_SEQ_INC(rxseq); 1157 } 1158 return PROCESS; 1159 } 1160 } else { 1161 /* 1162 * First frame, start aging timer. 1163 */ 1164 rap->rxa_age = ticks; 1165 } 1166 1167 /* save packet - this consumes, no matter what */ 1168 ampdu_rx_add_slot(rap, off, tid, rxseq, ni, m, rxs); 1169 return CONSUMED; 1170 } 1171 if (off < IEEE80211_SEQ_BA_RANGE) { 1172 /* 1173 * Outside the BA window, but within range; 1174 * flush the reorder q and move the window. 1175 * Sec 9.10.7.6.2 b) (p.138) 1176 */ 1177 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1178 "move BA win <%u:%u> (%u frames) rxseq %u tid %u", 1179 rap->rxa_start, 1180 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1181 rap->rxa_qframes, rxseq, tid); 1182 vap->iv_stats.is_ampdu_rx_move++; 1183 1184 /* 1185 * The spec says to flush frames up to but not including: 1186 * WinStart_B = rxseq - rap->rxa_wnd + 1 1187 * Then insert the frame or notify the caller to process 1188 * it immediately. We can safely do this by just starting 1189 * over again because we know the frame will now be within 1190 * the BA window. 1191 */ 1192 /* NB: rxa_wnd known to be >0 */ 1193 ampdu_rx_flush_upto(ni, rap, 1194 IEEE80211_SEQ_SUB(rxseq, rap->rxa_wnd-1)); 1195 goto again; 1196 } else { 1197 /* 1198 * Outside the BA window and out of range; toss. 1199 * Sec 9.10.7.6.2 c) (p.138) 1200 */ 1201 IEEE80211_DISCARD_MAC(vap, 1202 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 1203 "MPDU", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 1204 rap->rxa_start, 1205 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1206 rap->rxa_qframes, rxseq, tid, 1207 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 1208 vap->iv_stats.is_ampdu_rx_drop++; 1209 IEEE80211_NODE_STAT(ni, rx_drop); 1210 m_freem(m); 1211 return CONSUMED; 1212 } 1213 #undef CONSUMED 1214 #undef PROCESS 1215 } 1216 1217 /* 1218 * Process a BAR ctl frame. Dispatch all frames up to 1219 * the sequence number of the frame. If this frame is 1220 * out of range it's discarded. 1221 */ 1222 void 1223 ieee80211_recv_bar(struct ieee80211_node *ni, struct mbuf *m0) 1224 { 1225 struct ieee80211vap *vap = ni->ni_vap; 1226 struct ieee80211_frame_bar *wh; 1227 struct ieee80211_rx_ampdu *rap; 1228 ieee80211_seq rxseq; 1229 int tid, off; 1230 1231 if (!ieee80211_recv_bar_ena) { 1232 #if 0 1233 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_11N, 1234 ni->ni_macaddr, "BAR", "%s", "processing disabled"); 1235 #endif 1236 vap->iv_stats.is_ampdu_bar_bad++; 1237 return; 1238 } 1239 wh = mtod(m0, struct ieee80211_frame_bar *); 1240 /* XXX check basic BAR */ 1241 tid = _IEEE80211_MASKSHIFT(le16toh(wh->i_ctl), IEEE80211_BAR_TID); 1242 rap = &ni->ni_rx_ampdu[tid]; 1243 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 1244 /* 1245 * No ADDBA request yet, don't touch. 1246 */ 1247 IEEE80211_DISCARD_MAC(vap, 1248 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 1249 ni->ni_macaddr, "BAR", "no BA stream, tid %u", tid); 1250 vap->iv_stats.is_ampdu_bar_bad++; 1251 return; 1252 } 1253 vap->iv_stats.is_ampdu_bar_rx++; 1254 rxseq = le16toh(wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT; 1255 if (rxseq == rap->rxa_start) 1256 return; 1257 /* calculate offset in BA window */ 1258 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 1259 if (off < IEEE80211_SEQ_BA_RANGE) { 1260 /* 1261 * Flush the reorder q up to rxseq and move the window. 1262 * Sec 9.10.7.6.3 a) (p.138) 1263 */ 1264 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1265 "BAR moves BA win <%u:%u> (%u frames) rxseq %u tid %u", 1266 rap->rxa_start, 1267 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1268 rap->rxa_qframes, rxseq, tid); 1269 vap->iv_stats.is_ampdu_bar_move++; 1270 1271 ampdu_rx_flush_upto(ni, rap, rxseq); 1272 if (off >= rap->rxa_wnd) { 1273 /* 1274 * BAR specifies a window start to the right of BA 1275 * window; we must move it explicitly since 1276 * ampdu_rx_flush_upto will not. 1277 */ 1278 rap->rxa_start = rxseq; 1279 } 1280 } else { 1281 /* 1282 * Out of range; toss. 1283 * Sec 9.10.7.6.3 b) (p.138) 1284 */ 1285 IEEE80211_DISCARD_MAC(vap, 1286 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 1287 "BAR", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 1288 rap->rxa_start, 1289 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1290 rap->rxa_qframes, rxseq, tid, 1291 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 1292 vap->iv_stats.is_ampdu_bar_oow++; 1293 IEEE80211_NODE_STAT(ni, rx_drop); 1294 } 1295 } 1296 1297 /* 1298 * Setup HT-specific state in a node. Called only 1299 * when HT use is negotiated so we don't do extra 1300 * work for temporary and/or legacy sta's. 1301 */ 1302 void 1303 ieee80211_ht_node_init(struct ieee80211_node *ni) 1304 { 1305 struct ieee80211_tx_ampdu *tap; 1306 int tid; 1307 1308 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1309 ni, 1310 "%s: called (%p)", 1311 __func__, 1312 ni); 1313 1314 if (ni->ni_flags & IEEE80211_NODE_HT) { 1315 /* 1316 * Clean AMPDU state on re-associate. This handles the case 1317 * where a station leaves w/o notifying us and then returns 1318 * before node is reaped for inactivity. 1319 */ 1320 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1321 ni, 1322 "%s: calling cleanup (%p)", 1323 __func__, ni); 1324 ieee80211_ht_node_cleanup(ni); 1325 } 1326 for (tid = 0; tid < WME_NUM_TID; tid++) { 1327 tap = &ni->ni_tx_ampdu[tid]; 1328 tap->txa_tid = tid; 1329 tap->txa_ni = ni; 1330 ieee80211_txampdu_init_pps(tap); 1331 /* NB: further initialization deferred */ 1332 ieee80211_ampdu_rx_init_rap(ni, &ni->ni_rx_ampdu[tid]); 1333 } 1334 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU | 1335 IEEE80211_NODE_AMSDU; 1336 } 1337 1338 /* 1339 * Cleanup HT-specific state in a node. Called only 1340 * when HT use has been marked. 1341 */ 1342 void 1343 ieee80211_ht_node_cleanup(struct ieee80211_node *ni) 1344 { 1345 struct ieee80211com *ic = ni->ni_ic; 1346 int i; 1347 1348 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1349 ni, 1350 "%s: called (%p)", 1351 __func__, ni); 1352 1353 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT node")); 1354 1355 /* XXX optimize this */ 1356 for (i = 0; i < WME_NUM_TID; i++) { 1357 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[i]; 1358 if (tap->txa_flags & IEEE80211_AGGR_SETUP) 1359 ampdu_tx_stop(tap); 1360 } 1361 for (i = 0; i < WME_NUM_TID; i++) 1362 ic->ic_ampdu_rx_stop(ni, &ni->ni_rx_ampdu[i]); 1363 1364 ni->ni_htcap = 0; 1365 ni->ni_flags &= ~IEEE80211_NODE_HT_ALL; 1366 } 1367 1368 /* 1369 * Age out HT resources for a station. 1370 */ 1371 void 1372 ieee80211_ht_node_age(struct ieee80211_node *ni) 1373 { 1374 struct ieee80211vap *vap = ni->ni_vap; 1375 uint8_t tid; 1376 1377 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 1378 1379 for (tid = 0; tid < WME_NUM_TID; tid++) { 1380 struct ieee80211_rx_ampdu *rap; 1381 1382 rap = &ni->ni_rx_ampdu[tid]; 1383 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) 1384 continue; 1385 if (rap->rxa_qframes == 0) 1386 continue; 1387 /* 1388 * Check for frames sitting too long in the reorder queue. 1389 * See above for more details on what's happening here. 1390 */ 1391 /* XXX honor batimeout? */ 1392 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 1393 /* 1394 * Too long since we received the first 1395 * frame; flush the reorder buffer. 1396 */ 1397 vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes; 1398 ampdu_rx_flush(ni, rap); 1399 } 1400 } 1401 } 1402 1403 static struct ieee80211_channel * 1404 findhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int htflags) 1405 { 1406 return ieee80211_find_channel(ic, c->ic_freq, 1407 (c->ic_flags &~ IEEE80211_CHAN_HT) | htflags); 1408 } 1409 1410 /* 1411 * Adjust a channel to be HT/non-HT according to the vap's configuration. 1412 */ 1413 struct ieee80211_channel * 1414 ieee80211_ht_adjust_channel(struct ieee80211com *ic, 1415 struct ieee80211_channel *chan, int flags) 1416 { 1417 struct ieee80211_channel *c; 1418 1419 if (flags & IEEE80211_FHT_HT) { 1420 /* promote to HT if possible */ 1421 if (flags & IEEE80211_FHT_USEHT40) { 1422 if (!IEEE80211_IS_CHAN_HT40(chan)) { 1423 /* NB: arbitrarily pick ht40+ over ht40- */ 1424 c = findhtchan(ic, chan, IEEE80211_CHAN_HT40U); 1425 if (c == NULL) 1426 c = findhtchan(ic, chan, 1427 IEEE80211_CHAN_HT40D); 1428 if (c == NULL) 1429 c = findhtchan(ic, chan, 1430 IEEE80211_CHAN_HT20); 1431 if (c != NULL) 1432 chan = c; 1433 } 1434 } else if (!IEEE80211_IS_CHAN_HT20(chan)) { 1435 c = findhtchan(ic, chan, IEEE80211_CHAN_HT20); 1436 if (c != NULL) 1437 chan = c; 1438 } 1439 } else if (IEEE80211_IS_CHAN_HT(chan)) { 1440 /* demote to legacy, HT use is disabled */ 1441 c = ieee80211_find_channel(ic, chan->ic_freq, 1442 chan->ic_flags &~ IEEE80211_CHAN_HT); 1443 if (c != NULL) 1444 chan = c; 1445 } 1446 return chan; 1447 } 1448 1449 /* 1450 * Setup HT-specific state for a legacy WDS peer. 1451 */ 1452 void 1453 ieee80211_ht_wds_init(struct ieee80211_node *ni) 1454 { 1455 struct ieee80211vap *vap = ni->ni_vap; 1456 struct ieee80211_tx_ampdu *tap; 1457 int tid; 1458 1459 KASSERT(vap->iv_flags_ht & IEEE80211_FHT_HT, ("no HT requested")); 1460 1461 /* XXX check scan cache in case peer has an ap and we have info */ 1462 /* 1463 * If setup with a legacy channel; locate an HT channel. 1464 * Otherwise if the inherited channel (from a companion 1465 * AP) is suitable use it so we use the same location 1466 * for the extension channel). 1467 */ 1468 ni->ni_chan = ieee80211_ht_adjust_channel(ni->ni_ic, 1469 ni->ni_chan, ieee80211_htchanflags(ni->ni_chan)); 1470 1471 ni->ni_htcap = 0; 1472 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) 1473 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI20; 1474 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { 1475 ni->ni_htcap |= IEEE80211_HTCAP_CHWIDTH40; 1476 ni->ni_chw = IEEE80211_STA_RX_BW_40; 1477 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 1478 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_ABOVE; 1479 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 1480 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_BELOW; 1481 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) 1482 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI40; 1483 } else { 1484 ni->ni_chw = IEEE80211_STA_RX_BW_20; 1485 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_NONE; 1486 } 1487 ni->ni_htctlchan = ni->ni_chan->ic_ieee; 1488 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 1489 ni->ni_flags |= IEEE80211_NODE_RIFS; 1490 /* XXX does it make sense to enable SMPS? */ 1491 1492 ni->ni_htopmode = 0; /* XXX need protection state */ 1493 ni->ni_htstbc = 0; /* XXX need info */ 1494 1495 for (tid = 0; tid < WME_NUM_TID; tid++) { 1496 tap = &ni->ni_tx_ampdu[tid]; 1497 tap->txa_tid = tid; 1498 ieee80211_txampdu_init_pps(tap); 1499 } 1500 /* NB: AMPDU tx/rx governed by IEEE80211_FHT_AMPDU_{TX,RX} */ 1501 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU | 1502 IEEE80211_NODE_AMSDU; 1503 } 1504 1505 /* 1506 * Notify a VAP of a change in the HTINFO ie if it's a hostap VAP. 1507 * 1508 * This is to be called from the deferred HT protection update 1509 * task once the flags are updated. 1510 */ 1511 void 1512 ieee80211_htinfo_notify(struct ieee80211vap *vap) 1513 { 1514 1515 IEEE80211_LOCK_ASSERT(vap->iv_ic); 1516 1517 if (vap->iv_opmode != IEEE80211_M_HOSTAP) 1518 return; 1519 if (vap->iv_state != IEEE80211_S_RUN || 1520 !IEEE80211_IS_CHAN_HT(vap->iv_bss->ni_chan)) 1521 return; 1522 1523 IEEE80211_NOTE(vap, 1524 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1525 vap->iv_bss, 1526 "HT bss occupancy change: %d sta, %d ht, " 1527 "%d ht40%s, HT protmode now 0x%x" 1528 , vap->iv_sta_assoc 1529 , vap->iv_ht_sta_assoc 1530 , vap->iv_ht40_sta_assoc 1531 , (vap->iv_flags_ht & IEEE80211_FHT_NONHT_PR) ? 1532 ", non-HT sta present" : "" 1533 , vap->iv_curhtprotmode); 1534 1535 ieee80211_beacon_notify(vap, IEEE80211_BEACON_HTINFO); 1536 } 1537 1538 /* 1539 * Calculate HT protection mode from current 1540 * state and handle updates. 1541 */ 1542 static void 1543 htinfo_update(struct ieee80211vap *vap) 1544 { 1545 struct ieee80211com *ic = vap->iv_ic; 1546 uint8_t protmode; 1547 1548 if (vap->iv_sta_assoc != vap->iv_ht_sta_assoc) { 1549 protmode = IEEE80211_HTINFO_OPMODE_MIXED 1550 | IEEE80211_HTINFO_NONHT_PRESENT; 1551 } else if (vap->iv_flags_ht & IEEE80211_FHT_NONHT_PR) { 1552 protmode = IEEE80211_HTINFO_OPMODE_PROTOPT 1553 | IEEE80211_HTINFO_NONHT_PRESENT; 1554 } else if (ic->ic_bsschan != IEEE80211_CHAN_ANYC && 1555 IEEE80211_IS_CHAN_HT40(ic->ic_bsschan) && 1556 vap->iv_sta_assoc != vap->iv_ht40_sta_assoc) { 1557 protmode = IEEE80211_HTINFO_OPMODE_HT20PR; 1558 } else { 1559 protmode = IEEE80211_HTINFO_OPMODE_PURE; 1560 } 1561 if (protmode != vap->iv_curhtprotmode) { 1562 vap->iv_curhtprotmode = protmode; 1563 /* Update VAP with new protection mode */ 1564 ieee80211_vap_update_ht_protmode(vap); 1565 } 1566 } 1567 1568 /* 1569 * Handle an HT station joining a BSS. 1570 */ 1571 void 1572 ieee80211_ht_node_join(struct ieee80211_node *ni) 1573 { 1574 struct ieee80211vap *vap = ni->ni_vap; 1575 1576 IEEE80211_LOCK_ASSERT(vap->iv_ic); 1577 1578 if (ni->ni_flags & IEEE80211_NODE_HT) { 1579 vap->iv_ht_sta_assoc++; 1580 if (ni->ni_chw == IEEE80211_STA_RX_BW_40) 1581 vap->iv_ht40_sta_assoc++; 1582 } 1583 htinfo_update(vap); 1584 } 1585 1586 /* 1587 * Handle an HT station leaving a BSS. 1588 */ 1589 void 1590 ieee80211_ht_node_leave(struct ieee80211_node *ni) 1591 { 1592 struct ieee80211vap *vap = ni->ni_vap; 1593 1594 IEEE80211_LOCK_ASSERT(vap->iv_ic); 1595 1596 if (ni->ni_flags & IEEE80211_NODE_HT) { 1597 vap->iv_ht_sta_assoc--; 1598 if (ni->ni_chw == IEEE80211_STA_RX_BW_40) 1599 vap->iv_ht40_sta_assoc--; 1600 } 1601 htinfo_update(vap); 1602 } 1603 1604 /* 1605 * Public version of htinfo_update; used for processing 1606 * beacon frames from overlapping bss. 1607 * 1608 * Caller can specify either IEEE80211_HTINFO_OPMODE_MIXED 1609 * (on receipt of a beacon that advertises MIXED) or 1610 * IEEE80211_HTINFO_OPMODE_PROTOPT (on receipt of a beacon 1611 * from an overlapping legacy bss). We treat MIXED with 1612 * a higher precedence than PROTOPT (i.e. we will not change 1613 * change PROTOPT -> MIXED; only MIXED -> PROTOPT). This 1614 * corresponds to how we handle things in htinfo_update. 1615 * 1616 */ 1617 void 1618 ieee80211_htprot_update(struct ieee80211vap *vap, int protmode) 1619 { 1620 struct ieee80211com *ic = vap->iv_ic; 1621 #define OPMODE(x) _IEEE80211_SHIFTMASK(x, IEEE80211_HTINFO_OPMODE) 1622 IEEE80211_LOCK(ic); 1623 1624 /* track non-HT station presence */ 1625 KASSERT(protmode & IEEE80211_HTINFO_NONHT_PRESENT, 1626 ("protmode 0x%x", protmode)); 1627 vap->iv_flags_ht |= IEEE80211_FHT_NONHT_PR; 1628 vap->iv_lastnonht = ticks; 1629 1630 if (protmode != vap->iv_curhtprotmode && 1631 (OPMODE(vap->iv_curhtprotmode) != IEEE80211_HTINFO_OPMODE_MIXED || 1632 OPMODE(protmode) == IEEE80211_HTINFO_OPMODE_PROTOPT)) { 1633 vap->iv_curhtprotmode = protmode; 1634 /* Update VAP with new protection mode */ 1635 ieee80211_vap_update_ht_protmode(vap); 1636 } 1637 IEEE80211_UNLOCK(ic); 1638 #undef OPMODE 1639 } 1640 1641 /* 1642 * Time out presence of an overlapping bss with non-HT 1643 * stations. When operating in hostap mode we listen for 1644 * beacons from other stations and if we identify a non-HT 1645 * station is present we update the opmode field of the 1646 * HTINFO ie. To identify when all non-HT stations are 1647 * gone we time out this condition. 1648 */ 1649 void 1650 ieee80211_ht_timeout(struct ieee80211vap *vap) 1651 { 1652 1653 IEEE80211_LOCK_ASSERT(vap->iv_ic); 1654 1655 if ((vap->iv_flags_ht & IEEE80211_FHT_NONHT_PR) && 1656 ieee80211_time_after(ticks, vap->iv_lastnonht + IEEE80211_NONHT_PRESENT_AGE)) { 1657 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, 1658 "%s", "time out non-HT STA present on channel"); 1659 vap->iv_flags_ht &= ~IEEE80211_FHT_NONHT_PR; 1660 htinfo_update(vap); 1661 } 1662 } 1663 1664 /* 1665 * Process an 802.11n HT capabilities ie. 1666 */ 1667 void 1668 ieee80211_parse_htcap(struct ieee80211_node *ni, const uint8_t *ie) 1669 { 1670 if (ie[0] == IEEE80211_ELEMID_VENDOR) { 1671 /* 1672 * Station used Vendor OUI ie to associate; 1673 * mark the node so when we respond we'll use 1674 * the Vendor OUI's and not the standard ie's. 1675 */ 1676 ni->ni_flags |= IEEE80211_NODE_HTCOMPAT; 1677 ie += 4; 1678 } else 1679 ni->ni_flags &= ~IEEE80211_NODE_HTCOMPAT; 1680 1681 ni->ni_htcap = le16dec(ie + 1682 __offsetof(struct ieee80211_ie_htcap, hc_cap)); 1683 ni->ni_htparam = ie[__offsetof(struct ieee80211_ie_htcap, hc_param)]; 1684 } 1685 1686 static void 1687 htinfo_parse(struct ieee80211_node *ni, 1688 const struct ieee80211_ie_htinfo *htinfo) 1689 { 1690 uint16_t w; 1691 1692 ni->ni_htctlchan = htinfo->hi_ctrlchannel; 1693 ni->ni_ht2ndchan = _IEEE80211_SHIFTMASK(htinfo->hi_byte1, 1694 IEEE80211_HTINFO_2NDCHAN); 1695 w = le16dec(&htinfo->hi_byte2); 1696 ni->ni_htopmode = _IEEE80211_SHIFTMASK(w, IEEE80211_HTINFO_OPMODE); 1697 w = le16dec(&htinfo->hi_byte45); 1698 ni->ni_htstbc = _IEEE80211_SHIFTMASK(w, IEEE80211_HTINFO_BASIC_STBCMCS); 1699 } 1700 1701 /* 1702 * Parse an 802.11n HT info ie and save useful information 1703 * to the node state. Note this does not effect any state 1704 * changes such as for channel width change. 1705 */ 1706 void 1707 ieee80211_parse_htinfo(struct ieee80211_node *ni, const uint8_t *ie) 1708 { 1709 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1710 ie += 4; 1711 htinfo_parse(ni, (const struct ieee80211_ie_htinfo *) ie); 1712 } 1713 1714 /* 1715 * Handle 11n/11ac channel switch. 1716 * 1717 * Use the received HT/VHT ie's to identify the right channel to use. 1718 * If we cannot locate it in the channel table then fallback to 1719 * legacy operation. 1720 * 1721 * Note that we use this information to identify the node's 1722 * channel only; the caller is responsible for insuring any 1723 * required channel change is done (e.g. in sta mode when 1724 * parsing the contents of a beacon frame). 1725 */ 1726 static int 1727 htinfo_update_chw(struct ieee80211_node *ni, int htflags, int vhtflags) 1728 { 1729 struct ieee80211com *ic = ni->ni_ic; 1730 struct ieee80211_channel *c; 1731 int chanflags; 1732 int ret = 0; 1733 1734 /* 1735 * First step - do HT/VHT only channel lookup based on operating mode 1736 * flags. This involves masking out the VHT flags as well. 1737 * Otherwise we end up doing the full channel walk each time 1738 * we trigger this, which is expensive. 1739 */ 1740 chanflags = (ni->ni_chan->ic_flags &~ 1741 (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags | vhtflags; 1742 1743 if (chanflags == ni->ni_chan->ic_flags) 1744 goto done; 1745 1746 /* 1747 * If HT /or/ VHT flags have changed then check both. 1748 * We need to start by picking a HT channel anyway. 1749 */ 1750 1751 c = NULL; 1752 chanflags = (ni->ni_chan->ic_flags &~ 1753 (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags; 1754 /* XXX not right for ht40- */ 1755 c = ieee80211_find_channel(ic, ni->ni_chan->ic_freq, chanflags); 1756 if (c == NULL && (htflags & IEEE80211_CHAN_HT40)) { 1757 /* 1758 * No HT40 channel entry in our table; fall back 1759 * to HT20 operation. This should not happen. 1760 */ 1761 c = findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT20); 1762 #if 0 1763 IEEE80211_NOTE(ni->ni_vap, 1764 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1765 "no HT40 channel (freq %u), falling back to HT20", 1766 ni->ni_chan->ic_freq); 1767 #endif 1768 /* XXX stat */ 1769 } 1770 1771 /* Nothing found - leave it alone; move onto VHT */ 1772 if (c == NULL) 1773 c = ni->ni_chan; 1774 1775 /* 1776 * If it's non-HT, then bail out now. 1777 */ 1778 if (! IEEE80211_IS_CHAN_HT(c)) { 1779 IEEE80211_NOTE(ni->ni_vap, 1780 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1781 "not HT; skipping VHT check (%u/0x%x)", 1782 c->ic_freq, c->ic_flags); 1783 goto done; 1784 } 1785 1786 /* 1787 * Next step - look at the current VHT flags and determine 1788 * if we need to upgrade. Mask out the VHT and HT flags since 1789 * the vhtflags field will already have the correct HT 1790 * flags to use. 1791 */ 1792 if (IEEE80211_CONF_VHT(ic) && ni->ni_vhtcap != 0 && vhtflags != 0) { 1793 chanflags = (c->ic_flags 1794 &~ (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) 1795 | vhtflags; 1796 IEEE80211_NOTE(ni->ni_vap, 1797 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1798 ni, 1799 "%s: VHT; chanwidth=0x%02x; vhtflags=0x%08x", 1800 __func__, ni->ni_vht_chanwidth, vhtflags); 1801 1802 IEEE80211_NOTE(ni->ni_vap, 1803 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1804 ni, 1805 "%s: VHT; trying lookup for %d/0x%08x", 1806 __func__, c->ic_freq, chanflags); 1807 c = ieee80211_find_channel(ic, c->ic_freq, chanflags); 1808 } 1809 1810 /* Finally, if it's changed */ 1811 if (c != NULL && c != ni->ni_chan) { 1812 IEEE80211_NOTE(ni->ni_vap, 1813 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1814 "switch station to %s%d channel %u/0x%x", 1815 IEEE80211_IS_CHAN_VHT(c) ? "VHT" : "HT", 1816 IEEE80211_IS_CHAN_VHT80(c) ? 80 : 1817 (IEEE80211_IS_CHAN_HT40(c) ? 40 : 20), 1818 c->ic_freq, c->ic_flags); 1819 ni->ni_chan = c; 1820 ret = 1; 1821 } 1822 /* NB: caller responsible for forcing any channel change */ 1823 1824 done: 1825 /* update node's (11n) tx channel width */ 1826 ni->ni_chw = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 1827 IEEE80211_STA_RX_BW_40 : IEEE80211_STA_RX_BW_20; 1828 return (ret); 1829 } 1830 1831 /* 1832 * Update 11n MIMO PS state according to received htcap. 1833 */ 1834 static __inline int 1835 htcap_update_mimo_ps(struct ieee80211_node *ni) 1836 { 1837 uint16_t oflags = ni->ni_flags; 1838 1839 switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) { 1840 case IEEE80211_HTCAP_SMPS_DYNAMIC: 1841 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1842 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 1843 break; 1844 case IEEE80211_HTCAP_SMPS_ENA: 1845 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1846 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1847 break; 1848 case IEEE80211_HTCAP_SMPS_OFF: 1849 default: /* disable on rx of reserved value */ 1850 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 1851 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1852 break; 1853 } 1854 return (oflags ^ ni->ni_flags); 1855 } 1856 1857 /* 1858 * Update short GI state according to received htcap 1859 * and local settings. 1860 */ 1861 static __inline void 1862 htcap_update_shortgi(struct ieee80211_node *ni) 1863 { 1864 struct ieee80211vap *vap = ni->ni_vap; 1865 1866 ni->ni_flags &= ~(IEEE80211_NODE_SGI20|IEEE80211_NODE_SGI40); 1867 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) && 1868 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)) 1869 ni->ni_flags |= IEEE80211_NODE_SGI20; 1870 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) && 1871 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)) 1872 ni->ni_flags |= IEEE80211_NODE_SGI40; 1873 } 1874 1875 /* 1876 * Update LDPC state according to received htcap 1877 * and local settings. 1878 */ 1879 static __inline void 1880 htcap_update_ldpc(struct ieee80211_node *ni) 1881 { 1882 struct ieee80211vap *vap = ni->ni_vap; 1883 1884 if ((ni->ni_htcap & IEEE80211_HTCAP_LDPC) && 1885 (vap->iv_flags_ht & IEEE80211_FHT_LDPC_TX)) 1886 ni->ni_flags |= IEEE80211_NODE_LDPC; 1887 } 1888 1889 /* 1890 * Parse and update HT-related state extracted from 1891 * the HT cap and info ie's. 1892 * 1893 * This is called from the STA management path and 1894 * the ieee80211_node_join() path. It will take into 1895 * account the IEs discovered during scanning and 1896 * adjust things accordingly. 1897 */ 1898 void 1899 ieee80211_ht_updateparams(struct ieee80211_node *ni, 1900 const uint8_t *htcapie, const uint8_t *htinfoie) 1901 { 1902 struct ieee80211vap *vap = ni->ni_vap; 1903 const struct ieee80211_ie_htinfo *htinfo; 1904 1905 ieee80211_parse_htcap(ni, htcapie); 1906 if (vap->iv_htcaps & IEEE80211_HTC_SMPS) 1907 htcap_update_mimo_ps(ni); 1908 htcap_update_shortgi(ni); 1909 htcap_update_ldpc(ni); 1910 1911 if (htinfoie[0] == IEEE80211_ELEMID_VENDOR) 1912 htinfoie += 4; 1913 htinfo = (const struct ieee80211_ie_htinfo *) htinfoie; 1914 htinfo_parse(ni, htinfo); 1915 1916 /* 1917 * Defer the node channel change; we need to now 1918 * update VHT parameters before we do it. 1919 */ 1920 1921 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_RIFSMODE_PERM) && 1922 (vap->iv_flags_ht & IEEE80211_FHT_RIFS)) 1923 ni->ni_flags |= IEEE80211_NODE_RIFS; 1924 else 1925 ni->ni_flags &= ~IEEE80211_NODE_RIFS; 1926 } 1927 1928 static uint32_t 1929 ieee80211_vht_get_vhtflags(struct ieee80211_node *ni, uint32_t htflags) 1930 { 1931 struct ieee80211vap *vap = ni->ni_vap; 1932 uint32_t vhtflags = 0; 1933 1934 vhtflags = 0; 1935 if (ni->ni_flags & IEEE80211_NODE_VHT && vap->iv_vht_flags & IEEE80211_FVHT_VHT) { 1936 if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_160MHZ) && 1937 /* XXX 2 means "160MHz and 80+80MHz", 1 means "160MHz" */ 1938 (_IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info, 1939 IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) >= 1) && 1940 (vap->iv_vht_flags & IEEE80211_FVHT_USEVHT160)) { 1941 vhtflags = IEEE80211_CHAN_VHT160; 1942 /* Mirror the HT40 flags */ 1943 if (htflags == IEEE80211_CHAN_HT40U) { 1944 vhtflags |= IEEE80211_CHAN_HT40U; 1945 } else if (htflags == IEEE80211_CHAN_HT40D) { 1946 vhtflags |= IEEE80211_CHAN_HT40D; 1947 } 1948 } else if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_80P80MHZ) && 1949 /* XXX 2 means "160MHz and 80+80MHz" */ 1950 (_IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info, 1951 IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) == 2) && 1952 (vap->iv_vht_flags & IEEE80211_FVHT_USEVHT80P80)) { 1953 vhtflags = IEEE80211_CHAN_VHT80P80; 1954 /* Mirror the HT40 flags */ 1955 if (htflags == IEEE80211_CHAN_HT40U) { 1956 vhtflags |= IEEE80211_CHAN_HT40U; 1957 } else if (htflags == IEEE80211_CHAN_HT40D) { 1958 vhtflags |= IEEE80211_CHAN_HT40D; 1959 } 1960 } else if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_80MHZ) && 1961 (vap->iv_vht_flags & IEEE80211_FVHT_USEVHT80)) { 1962 vhtflags = IEEE80211_CHAN_VHT80; 1963 /* Mirror the HT40 flags */ 1964 if (htflags == IEEE80211_CHAN_HT40U) { 1965 vhtflags |= IEEE80211_CHAN_HT40U; 1966 } else if (htflags == IEEE80211_CHAN_HT40D) { 1967 vhtflags |= IEEE80211_CHAN_HT40D; 1968 } 1969 } else if (ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_USE_HT) { 1970 /* Mirror the HT40 flags */ 1971 /* 1972 * XXX TODO: if ht40 is disabled, but vht40 isn't 1973 * disabled then this logic will get very, very sad. 1974 * It's quite possible the only sane thing to do is 1975 * to not have vht40 as an option, and just obey 1976 * 'ht40' as that flag. 1977 */ 1978 if ((htflags == IEEE80211_CHAN_HT40U) && 1979 (vap->iv_vht_flags & IEEE80211_FVHT_USEVHT40)) { 1980 vhtflags = IEEE80211_CHAN_VHT40U 1981 | IEEE80211_CHAN_HT40U; 1982 } else if (htflags == IEEE80211_CHAN_HT40D && 1983 (vap->iv_vht_flags & IEEE80211_FVHT_USEVHT40)) { 1984 vhtflags = IEEE80211_CHAN_VHT40D 1985 | IEEE80211_CHAN_HT40D; 1986 } else if (htflags == IEEE80211_CHAN_HT20) { 1987 vhtflags = IEEE80211_CHAN_VHT20 1988 | IEEE80211_CHAN_HT20; 1989 } 1990 } else { 1991 vhtflags = IEEE80211_CHAN_VHT20; 1992 } 1993 } 1994 return (vhtflags); 1995 } 1996 1997 /* 1998 * Final part of updating the HT parameters. 1999 * 2000 * This is called from the STA management path and 2001 * the ieee80211_node_join() path. It will take into 2002 * account the IEs discovered during scanning and 2003 * adjust things accordingly. 2004 * 2005 * This is done after a call to ieee80211_ht_updateparams() 2006 * because it (and the upcoming VHT version of updateparams) 2007 * needs to ensure everything is parsed before htinfo_update_chw() 2008 * is called - which will change the channel config for the 2009 * node for us. 2010 */ 2011 int 2012 ieee80211_ht_updateparams_final(struct ieee80211_node *ni, 2013 const uint8_t *htcapie, const uint8_t *htinfoie) 2014 { 2015 struct ieee80211vap *vap = ni->ni_vap; 2016 const struct ieee80211_ie_htinfo *htinfo; 2017 int htflags, vhtflags; 2018 int ret = 0; 2019 2020 htinfo = (const struct ieee80211_ie_htinfo *) htinfoie; 2021 2022 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 2023 IEEE80211_CHAN_HT20 : 0; 2024 2025 /* NB: honor operating mode constraint */ 2026 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH_2040) && 2027 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 2028 if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_ABOVE) 2029 htflags = IEEE80211_CHAN_HT40U; 2030 else if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_BELOW) 2031 htflags = IEEE80211_CHAN_HT40D; 2032 } 2033 2034 /* 2035 * VHT flags - do much the same; check whether VHT is available 2036 * and if so, what our ideal channel use would be based on our 2037 * capabilities and the (pre-parsed) VHT info IE. 2038 */ 2039 vhtflags = ieee80211_vht_get_vhtflags(ni, htflags); 2040 2041 if (htinfo_update_chw(ni, htflags, vhtflags)) 2042 ret = 1; 2043 2044 return (ret); 2045 } 2046 2047 /* 2048 * Parse and update HT-related state extracted from the HT cap ie 2049 * for a station joining an HT BSS. 2050 * 2051 * This is called from the hostap path for each station. 2052 */ 2053 void 2054 ieee80211_ht_updatehtcap(struct ieee80211_node *ni, const uint8_t *htcapie) 2055 { 2056 struct ieee80211vap *vap = ni->ni_vap; 2057 2058 ieee80211_parse_htcap(ni, htcapie); 2059 if (vap->iv_htcaps & IEEE80211_HTC_SMPS) 2060 htcap_update_mimo_ps(ni); 2061 htcap_update_shortgi(ni); 2062 htcap_update_ldpc(ni); 2063 } 2064 2065 /* 2066 * Called once HT and VHT capabilities are parsed in hostap mode - 2067 * this will adjust the channel configuration of the given node 2068 * based on the configuration and capabilities. 2069 */ 2070 void 2071 ieee80211_ht_updatehtcap_final(struct ieee80211_node *ni) 2072 { 2073 struct ieee80211vap *vap = ni->ni_vap; 2074 int htflags; 2075 int vhtflags; 2076 2077 /* NB: honor operating mode constraint */ 2078 /* XXX 40 MHz intolerant */ 2079 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 2080 IEEE80211_CHAN_HT20 : 0; 2081 if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) && 2082 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 2083 if (IEEE80211_IS_CHAN_HT40U(vap->iv_bss->ni_chan)) 2084 htflags = IEEE80211_CHAN_HT40U; 2085 else if (IEEE80211_IS_CHAN_HT40D(vap->iv_bss->ni_chan)) 2086 htflags = IEEE80211_CHAN_HT40D; 2087 } 2088 /* 2089 * VHT flags - do much the same; check whether VHT is available 2090 * and if so, what our ideal channel use would be based on our 2091 * capabilities and the (pre-parsed) VHT info IE. 2092 */ 2093 vhtflags = ieee80211_vht_get_vhtflags(ni, htflags); 2094 2095 (void) htinfo_update_chw(ni, htflags, vhtflags); 2096 } 2097 2098 /* 2099 * Install received HT rate set by parsing the HT cap ie. 2100 */ 2101 int 2102 ieee80211_setup_htrates(struct ieee80211_node *ni, const uint8_t *ie, int flags) 2103 { 2104 struct ieee80211com *ic = ni->ni_ic; 2105 struct ieee80211vap *vap = ni->ni_vap; 2106 const struct ieee80211_ie_htcap *htcap; 2107 struct ieee80211_htrateset *rs; 2108 int i, maxequalmcs, maxunequalmcs; 2109 2110 maxequalmcs = ic->ic_txstream * 8 - 1; 2111 maxunequalmcs = 0; 2112 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 2113 if (ic->ic_txstream >= 2) 2114 maxunequalmcs = 38; 2115 if (ic->ic_txstream >= 3) 2116 maxunequalmcs = 52; 2117 if (ic->ic_txstream >= 4) 2118 maxunequalmcs = 76; 2119 } 2120 2121 rs = &ni->ni_htrates; 2122 memset(rs, 0, sizeof(*rs)); 2123 if (ie != NULL) { 2124 if (ie[0] == IEEE80211_ELEMID_VENDOR) 2125 ie += 4; 2126 htcap = (const struct ieee80211_ie_htcap *) ie; 2127 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 2128 if (isclr(htcap->hc_mcsset, i)) 2129 continue; 2130 if (rs->rs_nrates == IEEE80211_HTRATE_MAXSIZE) { 2131 IEEE80211_NOTE(vap, 2132 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 2133 "WARNING, HT rate set too large; only " 2134 "using %u rates", IEEE80211_HTRATE_MAXSIZE); 2135 vap->iv_stats.is_rx_rstoobig++; 2136 break; 2137 } 2138 if (i <= 31 && i > maxequalmcs) 2139 continue; 2140 if (i == 32 && 2141 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0) 2142 continue; 2143 if (i > 32 && i > maxunequalmcs) 2144 continue; 2145 rs->rs_rates[rs->rs_nrates++] = i; 2146 } 2147 } 2148 return ieee80211_fix_rate(ni, (struct ieee80211_rateset *) rs, flags); 2149 } 2150 2151 /* 2152 * Mark rates in a node's HT rate set as basic according 2153 * to the information in the supplied HT info ie. 2154 */ 2155 void 2156 ieee80211_setup_basic_htrates(struct ieee80211_node *ni, const uint8_t *ie) 2157 { 2158 const struct ieee80211_ie_htinfo *htinfo; 2159 struct ieee80211_htrateset *rs; 2160 int i, j; 2161 2162 if (ie[0] == IEEE80211_ELEMID_VENDOR) 2163 ie += 4; 2164 htinfo = (const struct ieee80211_ie_htinfo *) ie; 2165 rs = &ni->ni_htrates; 2166 if (rs->rs_nrates == 0) { 2167 IEEE80211_NOTE(ni->ni_vap, 2168 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 2169 "%s", "WARNING, empty HT rate set"); 2170 return; 2171 } 2172 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 2173 if (isclr(htinfo->hi_basicmcsset, i)) 2174 continue; 2175 for (j = 0; j < rs->rs_nrates; j++) 2176 if ((rs->rs_rates[j] & IEEE80211_RATE_VAL) == i) 2177 rs->rs_rates[j] |= IEEE80211_RATE_BASIC; 2178 } 2179 } 2180 2181 static void 2182 ampdu_tx_setup(struct ieee80211_tx_ampdu *tap) 2183 { 2184 callout_init(&tap->txa_timer, 1); 2185 tap->txa_flags |= IEEE80211_AGGR_SETUP; 2186 tap->txa_lastsample = ticks; 2187 } 2188 2189 static void 2190 ampdu_tx_stop(struct ieee80211_tx_ampdu *tap) 2191 { 2192 struct ieee80211_node *ni = tap->txa_ni; 2193 struct ieee80211com *ic = ni->ni_ic; 2194 2195 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2196 tap->txa_ni, 2197 "%s: called", 2198 __func__); 2199 2200 KASSERT(tap->txa_flags & IEEE80211_AGGR_SETUP, 2201 ("txa_flags 0x%x tid %d ac %d", tap->txa_flags, tap->txa_tid, 2202 TID_TO_WME_AC(tap->txa_tid))); 2203 2204 /* 2205 * Stop BA stream if setup so driver has a chance 2206 * to reclaim any resources it might have allocated. 2207 */ 2208 ic->ic_addba_stop(ni, tap); 2209 /* 2210 * Stop any pending BAR transmit. 2211 */ 2212 bar_stop_timer(tap); 2213 2214 /* 2215 * Reset packet estimate. 2216 */ 2217 ieee80211_txampdu_init_pps(tap); 2218 2219 /* NB: clearing NAK means we may re-send ADDBA */ 2220 tap->txa_flags &= ~(IEEE80211_AGGR_SETUP | IEEE80211_AGGR_NAK); 2221 } 2222 2223 /* 2224 * ADDBA response timeout. 2225 * 2226 * If software aggregation and per-TID queue management was done here, 2227 * that queue would be unpaused after the ADDBA timeout occurs. 2228 */ 2229 static void 2230 addba_timeout(void *arg) 2231 { 2232 struct ieee80211_tx_ampdu *tap = arg; 2233 struct ieee80211_node *ni = tap->txa_ni; 2234 struct ieee80211com *ic = ni->ni_ic; 2235 2236 /* XXX ? */ 2237 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 2238 tap->txa_attempts++; 2239 ic->ic_addba_response_timeout(ni, tap); 2240 } 2241 2242 static void 2243 addba_start_timeout(struct ieee80211_tx_ampdu *tap) 2244 { 2245 /* XXX use CALLOUT_PENDING instead? */ 2246 callout_reset(&tap->txa_timer, ieee80211_addba_timeout, 2247 addba_timeout, tap); 2248 tap->txa_flags |= IEEE80211_AGGR_XCHGPEND; 2249 tap->txa_nextrequest = ticks + ieee80211_addba_timeout; 2250 } 2251 2252 static void 2253 addba_stop_timeout(struct ieee80211_tx_ampdu *tap) 2254 { 2255 /* XXX use CALLOUT_PENDING instead? */ 2256 if (tap->txa_flags & IEEE80211_AGGR_XCHGPEND) { 2257 callout_stop(&tap->txa_timer); 2258 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 2259 } 2260 } 2261 2262 static void 2263 null_addba_response_timeout(struct ieee80211_node *ni, 2264 struct ieee80211_tx_ampdu *tap) 2265 { 2266 } 2267 2268 /* 2269 * Default method for requesting A-MPDU tx aggregation. 2270 * We setup the specified state block and start a timer 2271 * to wait for an ADDBA response frame. 2272 */ 2273 static int 2274 ieee80211_addba_request(struct ieee80211_node *ni, 2275 struct ieee80211_tx_ampdu *tap, 2276 int dialogtoken, int baparamset, int batimeout) 2277 { 2278 int bufsiz; 2279 2280 /* XXX locking */ 2281 tap->txa_token = dialogtoken; 2282 tap->txa_flags |= IEEE80211_AGGR_IMMEDIATE; 2283 bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ); 2284 tap->txa_wnd = (bufsiz == 0) ? 2285 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 2286 addba_start_timeout(tap); 2287 return 1; 2288 } 2289 2290 /* 2291 * Called by drivers that wish to request an ADDBA session be 2292 * setup. This brings it up and starts the request timer. 2293 */ 2294 int 2295 ieee80211_ampdu_tx_request_ext(struct ieee80211_node *ni, int tid) 2296 { 2297 struct ieee80211_tx_ampdu *tap; 2298 2299 if (tid < 0 || tid > 15) 2300 return (0); 2301 tap = &ni->ni_tx_ampdu[tid]; 2302 2303 /* XXX locking */ 2304 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 2305 /* do deferred setup of state */ 2306 ampdu_tx_setup(tap); 2307 } 2308 /* XXX hack for not doing proper locking */ 2309 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 2310 addba_start_timeout(tap); 2311 return (1); 2312 } 2313 2314 /* 2315 * Called by drivers that have marked a session as active. 2316 */ 2317 int 2318 ieee80211_ampdu_tx_request_active_ext(struct ieee80211_node *ni, int tid, 2319 int status) 2320 { 2321 struct ieee80211_tx_ampdu *tap; 2322 2323 if (tid < 0 || tid > 15) 2324 return (0); 2325 tap = &ni->ni_tx_ampdu[tid]; 2326 2327 /* XXX locking */ 2328 addba_stop_timeout(tap); 2329 if (status == 1) { 2330 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 2331 tap->txa_attempts = 0; 2332 } else { 2333 /* mark tid so we don't try again */ 2334 tap->txa_flags |= IEEE80211_AGGR_NAK; 2335 } 2336 return (1); 2337 } 2338 2339 /* 2340 * Default method for processing an A-MPDU tx aggregation 2341 * response. We shutdown any pending timer and update the 2342 * state block according to the reply. 2343 */ 2344 static int 2345 ieee80211_addba_response(struct ieee80211_node *ni, 2346 struct ieee80211_tx_ampdu *tap, 2347 int status, int baparamset, int batimeout) 2348 { 2349 struct ieee80211vap *vap = ni->ni_vap; 2350 int bufsiz; 2351 2352 /* XXX locking */ 2353 addba_stop_timeout(tap); 2354 if (status == IEEE80211_STATUS_SUCCESS) { 2355 bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ); 2356 /* XXX override our request? */ 2357 tap->txa_wnd = (bufsiz == 0) ? 2358 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 2359 #ifdef __notyet__ 2360 tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_TID); 2361 #endif 2362 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 2363 tap->txa_attempts = 0; 2364 /* TODO: this should be a vap flag */ 2365 if ((vap->iv_htcaps & IEEE80211_HTC_TX_AMSDU_AMPDU) && 2366 (ni->ni_flags & IEEE80211_NODE_AMSDU_TX) && 2367 (_IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU))) 2368 tap->txa_flags |= IEEE80211_AGGR_AMSDU; 2369 else 2370 tap->txa_flags &= ~IEEE80211_AGGR_AMSDU; 2371 } else { 2372 /* mark tid so we don't try again */ 2373 tap->txa_flags |= IEEE80211_AGGR_NAK; 2374 } 2375 return 1; 2376 } 2377 2378 /* 2379 * Default method for stopping A-MPDU tx aggregation. 2380 * Any timer is cleared and we drain any pending frames. 2381 */ 2382 static void 2383 ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 2384 { 2385 /* XXX locking */ 2386 addba_stop_timeout(tap); 2387 if (tap->txa_flags & IEEE80211_AGGR_RUNNING) { 2388 /* XXX clear aggregation queue */ 2389 tap->txa_flags &= ~(IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_AMSDU); 2390 } 2391 tap->txa_attempts = 0; 2392 } 2393 2394 /* 2395 * Process a received action frame using the default aggregation 2396 * policy. We intercept ADDBA-related frames and use them to 2397 * update our aggregation state. All other frames are passed up 2398 * for processing by ieee80211_recv_action. 2399 */ 2400 static int 2401 ht_recv_action_ba_addba_request(struct ieee80211_node *ni, 2402 const struct ieee80211_frame *wh, 2403 const uint8_t *frm, const uint8_t *efrm) 2404 { 2405 struct ieee80211com *ic = ni->ni_ic; 2406 struct ieee80211vap *vap = ni->ni_vap; 2407 struct ieee80211_rx_ampdu *rap; 2408 uint8_t dialogtoken; 2409 uint16_t baparamset, batimeout, baseqctl; 2410 uint16_t args[5]; 2411 int tid; 2412 2413 dialogtoken = frm[2]; 2414 baparamset = le16dec(frm+3); 2415 batimeout = le16dec(frm+5); 2416 baseqctl = le16dec(frm+7); 2417 2418 tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_TID); 2419 2420 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2421 "recv ADDBA request: dialogtoken %u baparamset 0x%x " 2422 "(tid %d bufsiz %d) batimeout %d baseqctl %d:%d amsdu %d", 2423 dialogtoken, baparamset, 2424 tid, _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ), 2425 batimeout, 2426 _IEEE80211_MASKSHIFT(baseqctl, IEEE80211_BASEQ_START), 2427 _IEEE80211_MASKSHIFT(baseqctl, IEEE80211_BASEQ_FRAG), 2428 _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU)); 2429 2430 rap = &ni->ni_rx_ampdu[tid]; 2431 2432 /* Send ADDBA response */ 2433 args[0] = dialogtoken; 2434 /* 2435 * NB: We ack only if the sta associated with HT and 2436 * the ap is configured to do AMPDU rx (the latter 2437 * violates the 11n spec and is mostly for testing). 2438 */ 2439 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_RX) && 2440 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX)) { 2441 /* XXX TODO: handle ampdu_rx_start failure */ 2442 ic->ic_ampdu_rx_start(ni, rap, 2443 baparamset, batimeout, baseqctl); 2444 2445 args[1] = IEEE80211_STATUS_SUCCESS; 2446 } else { 2447 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2448 ni, "reject ADDBA request: %s", 2449 ni->ni_flags & IEEE80211_NODE_AMPDU_RX ? 2450 "administratively disabled" : 2451 "not negotiated for station"); 2452 vap->iv_stats.is_addba_reject++; 2453 args[1] = IEEE80211_STATUS_UNSPECIFIED; 2454 } 2455 /* XXX honor rap flags? */ 2456 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 2457 | _IEEE80211_SHIFTMASK(tid, IEEE80211_BAPS_TID) 2458 | _IEEE80211_SHIFTMASK(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ) 2459 ; 2460 2461 /* 2462 * TODO: we're out of iv_flags_ht fields; once 2463 * this is extended we should make this configurable. 2464 */ 2465 if ((baparamset & IEEE80211_BAPS_AMSDU) && 2466 (ni->ni_flags & IEEE80211_NODE_AMSDU_RX) && 2467 (vap->iv_htcaps & IEEE80211_HTC_RX_AMSDU_AMPDU)) 2468 args[2] |= IEEE80211_BAPS_AMSDU; 2469 2470 args[3] = 0; 2471 args[4] = 0; 2472 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2473 IEEE80211_ACTION_BA_ADDBA_RESPONSE, args); 2474 return 0; 2475 } 2476 2477 static int 2478 ht_recv_action_ba_addba_response(struct ieee80211_node *ni, 2479 const struct ieee80211_frame *wh, 2480 const uint8_t *frm, const uint8_t *efrm) 2481 { 2482 struct ieee80211com *ic = ni->ni_ic; 2483 struct ieee80211vap *vap = ni->ni_vap; 2484 struct ieee80211_tx_ampdu *tap; 2485 uint8_t dialogtoken, policy; 2486 uint16_t baparamset, batimeout, code; 2487 int tid; 2488 #ifdef IEEE80211_DEBUG 2489 int amsdu, bufsiz; 2490 #endif 2491 2492 dialogtoken = frm[2]; 2493 code = le16dec(frm+3); 2494 baparamset = le16dec(frm+5); 2495 tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_TID); 2496 #ifdef IEEE80211_DEBUG 2497 bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ); 2498 amsdu = !! _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU); 2499 #endif 2500 policy = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_POLICY); 2501 batimeout = le16dec(frm+7); 2502 2503 tap = &ni->ni_tx_ampdu[tid]; 2504 if ((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 2505 IEEE80211_DISCARD_MAC(vap, 2506 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2507 ni->ni_macaddr, "ADDBA response", 2508 "no pending ADDBA, tid %d dialogtoken %u " 2509 "code %d", tid, dialogtoken, code); 2510 vap->iv_stats.is_addba_norequest++; 2511 return 0; 2512 } 2513 if (dialogtoken != tap->txa_token) { 2514 IEEE80211_DISCARD_MAC(vap, 2515 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2516 ni->ni_macaddr, "ADDBA response", 2517 "dialogtoken mismatch: waiting for %d, " 2518 "received %d, tid %d code %d", 2519 tap->txa_token, dialogtoken, tid, code); 2520 vap->iv_stats.is_addba_badtoken++; 2521 return 0; 2522 } 2523 /* NB: assumes IEEE80211_AGGR_IMMEDIATE is 1 */ 2524 if (policy != (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE)) { 2525 IEEE80211_DISCARD_MAC(vap, 2526 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2527 ni->ni_macaddr, "ADDBA response", 2528 "policy mismatch: expecting %s, " 2529 "received %s, tid %d code %d", 2530 tap->txa_flags & IEEE80211_AGGR_IMMEDIATE, 2531 policy, tid, code); 2532 vap->iv_stats.is_addba_badpolicy++; 2533 return 0; 2534 } 2535 #if 0 2536 /* XXX we take MIN in ieee80211_addba_response */ 2537 if (bufsiz > IEEE80211_AGGR_BAWMAX) { 2538 IEEE80211_DISCARD_MAC(vap, 2539 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2540 ni->ni_macaddr, "ADDBA response", 2541 "BA window too large: max %d, " 2542 "received %d, tid %d code %d", 2543 bufsiz, IEEE80211_AGGR_BAWMAX, tid, code); 2544 vap->iv_stats.is_addba_badbawinsize++; 2545 return 0; 2546 } 2547 #endif 2548 2549 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2550 "recv ADDBA response: dialogtoken %u code %d " 2551 "baparamset 0x%x (tid %d bufsiz %d amsdu %d) batimeout %d", 2552 dialogtoken, code, baparamset, tid, 2553 bufsiz, 2554 amsdu, 2555 batimeout); 2556 ic->ic_addba_response(ni, tap, code, baparamset, batimeout); 2557 return 0; 2558 } 2559 2560 static int 2561 ht_recv_action_ba_delba(struct ieee80211_node *ni, 2562 const struct ieee80211_frame *wh, 2563 const uint8_t *frm, const uint8_t *efrm) 2564 { 2565 struct ieee80211com *ic = ni->ni_ic; 2566 struct ieee80211_rx_ampdu *rap; 2567 struct ieee80211_tx_ampdu *tap; 2568 uint16_t baparamset; 2569 #ifdef IEEE80211_DEBUG 2570 uint16_t code; 2571 #endif 2572 int tid; 2573 2574 baparamset = le16dec(frm+2); 2575 #ifdef IEEE80211_DEBUG 2576 code = le16dec(frm+4); 2577 #endif 2578 2579 tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_DELBAPS_TID); 2580 2581 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2582 "recv DELBA: baparamset 0x%x (tid %d initiator %d) " 2583 "code %d", baparamset, tid, 2584 _IEEE80211_MASKSHIFT(baparamset, IEEE80211_DELBAPS_INIT), code); 2585 2586 if ((baparamset & IEEE80211_DELBAPS_INIT) == 0) { 2587 tap = &ni->ni_tx_ampdu[tid]; 2588 ic->ic_addba_stop(ni, tap); 2589 } else { 2590 rap = &ni->ni_rx_ampdu[tid]; 2591 ic->ic_ampdu_rx_stop(ni, rap); 2592 } 2593 return 0; 2594 } 2595 2596 static int 2597 ht_recv_action_ht_txchwidth(struct ieee80211_node *ni, 2598 const struct ieee80211_frame *wh __unused, 2599 const uint8_t *frm, const uint8_t *efrm __unused) 2600 { 2601 int chw; 2602 2603 /* If 20/40 is not supported the chw cannot change. */ 2604 if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) == 0) 2605 return (0); 2606 2607 chw = (frm[2] == IEEE80211_A_HT_TXCHWIDTH_2040) ? 2608 IEEE80211_STA_RX_BW_40 : IEEE80211_STA_RX_BW_20; 2609 2610 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2611 "%s: HT txchwidth, width %b%s", 2612 __func__, chw, IEEE80211_NI_CHW_BITS, ni->ni_chw != chw ? "*" : ""); 2613 if (chw != ni->ni_chw) { 2614 /* XXX does this need to change the ht40 station count? */ 2615 ni->ni_chw = chw; 2616 /* XXX notify on change */ 2617 } 2618 return 0; 2619 } 2620 2621 static int 2622 ht_recv_action_ht_mimopwrsave(struct ieee80211_node *ni, 2623 const struct ieee80211_frame *wh, 2624 const uint8_t *frm, const uint8_t *efrm) 2625 { 2626 const struct ieee80211_action_ht_mimopowersave *mps = 2627 (const struct ieee80211_action_ht_mimopowersave *) frm; 2628 2629 /* XXX check iv_htcaps */ 2630 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA) 2631 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 2632 else 2633 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 2634 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_MODE) 2635 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 2636 else 2637 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 2638 /* XXX notify on change */ 2639 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2640 "%s: HT MIMO PS (%s%s)", __func__, 2641 (ni->ni_flags & IEEE80211_NODE_MIMO_PS) ? "on" : "off", 2642 (ni->ni_flags & IEEE80211_NODE_MIMO_RTS) ? "+rts" : "" 2643 ); 2644 return 0; 2645 } 2646 2647 /* 2648 * Transmit processing. 2649 */ 2650 2651 /* 2652 * Check if A-MPDU should be requested/enabled for a stream. 2653 * We require a traffic rate above a per-AC threshold and we 2654 * also handle backoff from previous failed attempts. 2655 * 2656 * Drivers may override this method to bring in information 2657 * such as link state conditions in making the decision. 2658 */ 2659 static int 2660 ieee80211_ampdu_enable(struct ieee80211_node *ni, 2661 struct ieee80211_tx_ampdu *tap) 2662 { 2663 struct ieee80211vap *vap = ni->ni_vap; 2664 2665 if (tap->txa_avgpps < 2666 vap->iv_ampdu_mintraffic[TID_TO_WME_AC(tap->txa_tid)]) 2667 return 0; 2668 /* XXX check rssi? */ 2669 if (tap->txa_attempts >= ieee80211_addba_maxtries && 2670 ieee80211_time_after(ticks, tap->txa_nextrequest)) { 2671 /* 2672 * Don't retry too often; txa_nextrequest is set 2673 * to the minimum interval we'll retry after 2674 * ieee80211_addba_maxtries failed attempts are made. 2675 */ 2676 return 0; 2677 } 2678 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 2679 "enable AMPDU on tid %d (%s), avgpps %d pkts %d attempt %d", 2680 tap->txa_tid, ieee80211_wme_acnames[TID_TO_WME_AC(tap->txa_tid)], 2681 tap->txa_avgpps, tap->txa_pkts, tap->txa_attempts); 2682 return 1; 2683 } 2684 2685 /* 2686 * Request A-MPDU tx aggregation. Setup local state and 2687 * issue an ADDBA request. BA use will only happen after 2688 * the other end replies with ADDBA response. 2689 */ 2690 int 2691 ieee80211_ampdu_request(struct ieee80211_node *ni, 2692 struct ieee80211_tx_ampdu *tap) 2693 { 2694 struct ieee80211com *ic = ni->ni_ic; 2695 uint16_t args[5]; 2696 int tid, dialogtoken; 2697 static int tokens = 0; /* XXX */ 2698 2699 /* XXX locking */ 2700 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 2701 /* do deferred setup of state */ 2702 ampdu_tx_setup(tap); 2703 } 2704 /* XXX hack for not doing proper locking */ 2705 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 2706 2707 dialogtoken = (tokens+1) % 63; /* XXX */ 2708 tid = tap->txa_tid; 2709 2710 /* 2711 * XXX TODO: This is racy with any other parallel TX going on. :( 2712 */ 2713 tap->txa_start = ni->ni_txseqs[tid]; 2714 2715 args[0] = dialogtoken; 2716 args[1] = 0; /* NB: status code not used */ 2717 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 2718 | _IEEE80211_SHIFTMASK(tid, IEEE80211_BAPS_TID) 2719 | _IEEE80211_SHIFTMASK(IEEE80211_AGGR_BAWMAX, 2720 IEEE80211_BAPS_BUFSIZ) 2721 ; 2722 2723 /* XXX TODO: this should be a flag, not iv_htcaps */ 2724 if ((ni->ni_flags & IEEE80211_NODE_AMSDU_TX) && 2725 (ni->ni_vap->iv_htcaps & IEEE80211_HTC_TX_AMSDU_AMPDU)) 2726 args[2] |= IEEE80211_BAPS_AMSDU; 2727 2728 args[3] = 0; /* batimeout */ 2729 /* NB: do first so there's no race against reply */ 2730 if (!ic->ic_addba_request(ni, tap, dialogtoken, args[2], args[3])) { 2731 /* unable to setup state, don't make request */ 2732 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2733 ni, "%s: could not setup BA stream for TID %d AC %d", 2734 __func__, tap->txa_tid, TID_TO_WME_AC(tap->txa_tid)); 2735 /* defer next try so we don't slam the driver with requests */ 2736 tap->txa_attempts = ieee80211_addba_maxtries; 2737 /* NB: check in case driver wants to override */ 2738 if (tap->txa_nextrequest <= ticks) 2739 tap->txa_nextrequest = ticks + ieee80211_addba_backoff; 2740 return 0; 2741 } 2742 tokens = dialogtoken; /* allocate token */ 2743 /* NB: after calling ic_addba_request so driver can set txa_start */ 2744 args[4] = _IEEE80211_SHIFTMASK(tap->txa_start, IEEE80211_BASEQ_START) 2745 | _IEEE80211_SHIFTMASK(0, IEEE80211_BASEQ_FRAG) 2746 ; 2747 return ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2748 IEEE80211_ACTION_BA_ADDBA_REQUEST, args); 2749 } 2750 2751 /* 2752 * Terminate an AMPDU tx stream. State is reclaimed 2753 * and the peer notified with a DelBA Action frame. 2754 */ 2755 void 2756 ieee80211_ampdu_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 2757 int reason) 2758 { 2759 struct ieee80211com *ic = ni->ni_ic; 2760 struct ieee80211vap *vap = ni->ni_vap; 2761 uint16_t args[4]; 2762 2763 /* XXX locking */ 2764 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2765 if (IEEE80211_AMPDU_RUNNING(tap)) { 2766 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2767 ni, "%s: stop BA stream for TID %d (reason: %d (%s))", 2768 __func__, tap->txa_tid, reason, 2769 ieee80211_reason_to_string(reason)); 2770 vap->iv_stats.is_ampdu_stop++; 2771 2772 ic->ic_addba_stop(ni, tap); 2773 args[0] = tap->txa_tid; 2774 args[1] = IEEE80211_DELBAPS_INIT; 2775 args[2] = reason; /* XXX reason code */ 2776 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2777 IEEE80211_ACTION_BA_DELBA, args); 2778 } else { 2779 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2780 ni, "%s: BA stream for TID %d not running " 2781 "(reason: %d (%s))", __func__, tap->txa_tid, reason, 2782 ieee80211_reason_to_string(reason)); 2783 vap->iv_stats.is_ampdu_stop_failed++; 2784 } 2785 } 2786 2787 /* XXX */ 2788 static void bar_start_timer(struct ieee80211_tx_ampdu *tap); 2789 2790 static void 2791 bar_timeout(void *arg) 2792 { 2793 struct ieee80211_tx_ampdu *tap = arg; 2794 struct ieee80211_node *ni = tap->txa_ni; 2795 2796 KASSERT((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0, 2797 ("bar/addba collision, flags 0x%x", tap->txa_flags)); 2798 2799 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2800 ni, "%s: tid %u flags 0x%x attempts %d", __func__, 2801 tap->txa_tid, tap->txa_flags, tap->txa_attempts); 2802 2803 /* guard against race with bar_tx_complete */ 2804 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2805 return; 2806 /* XXX ? */ 2807 if (tap->txa_attempts >= ieee80211_bar_maxtries) { 2808 struct ieee80211com *ic = ni->ni_ic; 2809 2810 ni->ni_vap->iv_stats.is_ampdu_bar_tx_fail++; 2811 /* 2812 * If (at least) the last BAR TX timeout was due to 2813 * an ieee80211_send_bar() failures, then we need 2814 * to make sure we notify the driver that a BAR 2815 * TX did occur and fail. This gives the driver 2816 * a chance to undo any queue pause that may 2817 * have occurred. 2818 */ 2819 ic->ic_bar_response(ni, tap, 1); 2820 ieee80211_ampdu_stop(ni, tap, IEEE80211_REASON_TIMEOUT); 2821 } else { 2822 ni->ni_vap->iv_stats.is_ampdu_bar_tx_retry++; 2823 if (ieee80211_send_bar(ni, tap, tap->txa_seqpending) != 0) { 2824 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2825 ni, "%s: failed to TX, starting timer\n", 2826 __func__); 2827 /* 2828 * If ieee80211_send_bar() fails here, the 2829 * timer may have stopped and/or the pending 2830 * flag may be clear. Because of this, 2831 * fake the BARPEND and reset the timer. 2832 * A retransmission attempt will then occur 2833 * during the next timeout. 2834 */ 2835 /* XXX locking */ 2836 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2837 bar_start_timer(tap); 2838 } 2839 } 2840 } 2841 2842 static void 2843 bar_start_timer(struct ieee80211_tx_ampdu *tap) 2844 { 2845 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2846 tap->txa_ni, 2847 "%s: called", 2848 __func__); 2849 callout_reset(&tap->txa_timer, ieee80211_bar_timeout, bar_timeout, tap); 2850 } 2851 2852 static void 2853 bar_stop_timer(struct ieee80211_tx_ampdu *tap) 2854 { 2855 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2856 tap->txa_ni, 2857 "%s: called", 2858 __func__); 2859 callout_stop(&tap->txa_timer); 2860 } 2861 2862 static void 2863 bar_tx_complete(struct ieee80211_node *ni, void *arg, int status) 2864 { 2865 struct ieee80211_tx_ampdu *tap = arg; 2866 2867 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2868 ni, "%s: tid %u flags 0x%x pending %d status %d", 2869 __func__, tap->txa_tid, tap->txa_flags, 2870 callout_pending(&tap->txa_timer), status); 2871 2872 ni->ni_vap->iv_stats.is_ampdu_bar_tx++; 2873 /* XXX locking */ 2874 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) && 2875 callout_pending(&tap->txa_timer)) { 2876 struct ieee80211com *ic = ni->ni_ic; 2877 2878 if (status == 0) /* ACK'd */ 2879 bar_stop_timer(tap); 2880 ic->ic_bar_response(ni, tap, status); 2881 /* NB: just let timer expire so we pace requests */ 2882 } 2883 } 2884 2885 static void 2886 ieee80211_bar_response(struct ieee80211_node *ni, 2887 struct ieee80211_tx_ampdu *tap, int status) 2888 { 2889 2890 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2891 tap->txa_ni, 2892 "%s: called", 2893 __func__); 2894 if (status == 0) { /* got ACK */ 2895 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2896 ni, "BAR moves BA win <%u:%u> (%u frames) txseq %u tid %u", 2897 tap->txa_start, 2898 IEEE80211_SEQ_ADD(tap->txa_start, tap->txa_wnd-1), 2899 tap->txa_qframes, tap->txa_seqpending, 2900 tap->txa_tid); 2901 2902 /* NB: timer already stopped in bar_tx_complete */ 2903 tap->txa_start = tap->txa_seqpending; 2904 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2905 } 2906 } 2907 2908 /* 2909 * Transmit a BAR frame to the specified node. The 2910 * BAR contents are drawn from the supplied aggregation 2911 * state associated with the node. 2912 * 2913 * NB: we only handle immediate ACK w/ compressed bitmap. 2914 */ 2915 int 2916 ieee80211_send_bar(struct ieee80211_node *ni, 2917 struct ieee80211_tx_ampdu *tap, ieee80211_seq seq) 2918 { 2919 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2920 struct ieee80211vap *vap = ni->ni_vap; 2921 struct ieee80211com *ic = ni->ni_ic; 2922 struct ieee80211_frame_bar *bar; 2923 struct mbuf *m; 2924 uint16_t barctl, barseqctl; 2925 uint8_t *frm; 2926 int tid, ret; 2927 2928 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2929 tap->txa_ni, 2930 "%s: called", 2931 __func__); 2932 2933 if ((tap->txa_flags & IEEE80211_AGGR_RUNNING) == 0) { 2934 /* no ADDBA response, should not happen */ 2935 /* XXX stat+msg */ 2936 return EINVAL; 2937 } 2938 /* XXX locking */ 2939 bar_stop_timer(tap); 2940 2941 ieee80211_ref_node(ni); 2942 2943 m = ieee80211_getmgtframe(&frm, ic->ic_headroom, sizeof(*bar)); 2944 if (m == NULL) 2945 senderr(ENOMEM, is_tx_nobuf); 2946 2947 if (!ieee80211_add_callback(m, bar_tx_complete, tap)) { 2948 m_freem(m); 2949 senderr(ENOMEM, is_tx_nobuf); /* XXX */ 2950 /* NOTREACHED */ 2951 } 2952 2953 bar = mtod(m, struct ieee80211_frame_bar *); 2954 bar->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2955 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR; 2956 bar->i_fc[1] = 0; 2957 IEEE80211_ADDR_COPY(bar->i_ra, ni->ni_macaddr); 2958 IEEE80211_ADDR_COPY(bar->i_ta, vap->iv_myaddr); 2959 2960 tid = tap->txa_tid; 2961 barctl = (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE ? 2962 0 : IEEE80211_BAR_NOACK) 2963 | IEEE80211_BAR_COMP 2964 | _IEEE80211_SHIFTMASK(tid, IEEE80211_BAR_TID) 2965 ; 2966 barseqctl = _IEEE80211_SHIFTMASK(seq, IEEE80211_BAR_SEQ_START); 2967 /* NB: known to have proper alignment */ 2968 bar->i_ctl = htole16(barctl); 2969 bar->i_seq = htole16(barseqctl); 2970 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_bar); 2971 2972 M_WME_SETAC(m, WME_AC_VO); 2973 2974 IEEE80211_NODE_STAT(ni, tx_mgmt); /* XXX tx_ctl? */ 2975 2976 /* XXX locking */ 2977 /* init/bump attempts counter */ 2978 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2979 tap->txa_attempts = 1; 2980 else 2981 tap->txa_attempts++; 2982 tap->txa_seqpending = seq; 2983 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2984 2985 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2986 ni, "send BAR: tid %u ctl 0x%x start %u (attempt %d)", 2987 tid, barctl, seq, tap->txa_attempts); 2988 2989 /* 2990 * ic_raw_xmit will free the node reference 2991 * regardless of queue/TX success or failure. 2992 */ 2993 IEEE80211_TX_LOCK(ic); 2994 ret = ieee80211_raw_output(vap, ni, m, NULL); 2995 IEEE80211_TX_UNLOCK(ic); 2996 if (ret != 0) { 2997 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2998 ni, "send BAR: failed: (ret = %d)\n", 2999 ret); 3000 /* xmit failed, clear state flag */ 3001 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 3002 vap->iv_stats.is_ampdu_bar_tx_fail++; 3003 return ret; 3004 } 3005 /* XXX hack against tx complete happening before timer is started */ 3006 if (tap->txa_flags & IEEE80211_AGGR_BARPEND) 3007 bar_start_timer(tap); 3008 return 0; 3009 bad: 3010 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 3011 tap->txa_ni, 3012 "%s: bad! ret=%d", 3013 __func__, ret); 3014 vap->iv_stats.is_ampdu_bar_tx_fail++; 3015 ieee80211_free_node(ni); 3016 return ret; 3017 #undef senderr 3018 } 3019 3020 static int 3021 ht_action_output(struct ieee80211_node *ni, struct mbuf *m) 3022 { 3023 struct ieee80211_bpf_params params; 3024 3025 memset(¶ms, 0, sizeof(params)); 3026 params.ibp_pri = WME_AC_VO; 3027 params.ibp_rate0 = ni->ni_txparms->mgmtrate; 3028 /* NB: we know all frames are unicast */ 3029 params.ibp_try0 = ni->ni_txparms->maxretry; 3030 params.ibp_power = ni->ni_txpower; 3031 return ieee80211_mgmt_output(ni, m, IEEE80211_FC0_SUBTYPE_ACTION, 3032 ¶ms); 3033 } 3034 3035 #define ADDSHORT(frm, v) do { \ 3036 frm[0] = (v) & 0xff; \ 3037 frm[1] = (v) >> 8; \ 3038 frm += 2; \ 3039 } while (0) 3040 3041 /* 3042 * Send an action management frame. The arguments are stuff 3043 * into a frame without inspection; the caller is assumed to 3044 * prepare them carefully (e.g. based on the aggregation state). 3045 */ 3046 static int 3047 ht_send_action_ba_addba(struct ieee80211_node *ni, 3048 int category, int action, void *arg0) 3049 { 3050 struct ieee80211vap *vap = ni->ni_vap; 3051 struct ieee80211com *ic = ni->ni_ic; 3052 uint16_t *args = arg0; 3053 struct mbuf *m; 3054 uint8_t *frm; 3055 3056 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 3057 "send ADDBA %s: dialogtoken %d status %d " 3058 "baparamset 0x%x (tid %d amsdu %d) batimeout 0x%x baseqctl 0x%x", 3059 (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ? 3060 "request" : "response", args[0], args[1], args[2], 3061 _IEEE80211_MASKSHIFT(args[2], IEEE80211_BAPS_TID), 3062 _IEEE80211_MASKSHIFT(args[2], IEEE80211_BAPS_AMSDU), 3063 args[3], args[4]); 3064 3065 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 3066 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 3067 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 3068 ieee80211_ref_node(ni); 3069 3070 m = ieee80211_getmgtframe(&frm, 3071 ic->ic_headroom + sizeof(struct ieee80211_frame), 3072 sizeof(uint16_t) /* action+category */ 3073 /* XXX may action payload */ 3074 + sizeof(struct ieee80211_action_ba_addbaresponse) 3075 ); 3076 if (m != NULL) { 3077 *frm++ = category; 3078 *frm++ = action; 3079 *frm++ = args[0]; /* dialog token */ 3080 if (action == IEEE80211_ACTION_BA_ADDBA_RESPONSE) 3081 ADDSHORT(frm, args[1]); /* status code */ 3082 ADDSHORT(frm, args[2]); /* baparamset */ 3083 ADDSHORT(frm, args[3]); /* batimeout */ 3084 if (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) 3085 ADDSHORT(frm, args[4]); /* baseqctl */ 3086 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3087 return ht_action_output(ni, m); 3088 } else { 3089 vap->iv_stats.is_tx_nobuf++; 3090 ieee80211_free_node(ni); 3091 return ENOMEM; 3092 } 3093 } 3094 3095 static int 3096 ht_send_action_ba_delba(struct ieee80211_node *ni, 3097 int category, int action, void *arg0) 3098 { 3099 struct ieee80211vap *vap = ni->ni_vap; 3100 struct ieee80211com *ic = ni->ni_ic; 3101 uint16_t *args = arg0; 3102 struct mbuf *m; 3103 uint16_t baparamset; 3104 uint8_t *frm; 3105 3106 baparamset = _IEEE80211_SHIFTMASK(args[0], IEEE80211_DELBAPS_TID) 3107 | args[1] 3108 ; 3109 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 3110 "send DELBA action: tid %d, initiator %d reason %d (%s)", 3111 args[0], args[1], args[2], ieee80211_reason_to_string(args[2])); 3112 3113 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 3114 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 3115 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 3116 ieee80211_ref_node(ni); 3117 3118 m = ieee80211_getmgtframe(&frm, 3119 ic->ic_headroom + sizeof(struct ieee80211_frame), 3120 sizeof(uint16_t) /* action+category */ 3121 /* XXX may action payload */ 3122 + sizeof(struct ieee80211_action_ba_addbaresponse) 3123 ); 3124 if (m != NULL) { 3125 *frm++ = category; 3126 *frm++ = action; 3127 ADDSHORT(frm, baparamset); 3128 ADDSHORT(frm, args[2]); /* reason code */ 3129 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3130 return ht_action_output(ni, m); 3131 } else { 3132 vap->iv_stats.is_tx_nobuf++; 3133 ieee80211_free_node(ni); 3134 return ENOMEM; 3135 } 3136 } 3137 3138 static int 3139 ht_send_action_ht_txchwidth(struct ieee80211_node *ni, 3140 int category, int action, void *arg0) 3141 { 3142 struct ieee80211vap *vap = ni->ni_vap; 3143 struct ieee80211com *ic = ni->ni_ic; 3144 struct mbuf *m; 3145 uint8_t *frm; 3146 3147 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 3148 "send HT txchwidth: width %d", 3149 IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 40 : 20); 3150 3151 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 3152 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 3153 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 3154 ieee80211_ref_node(ni); 3155 3156 m = ieee80211_getmgtframe(&frm, 3157 ic->ic_headroom + sizeof(struct ieee80211_frame), 3158 sizeof(uint16_t) /* action+category */ 3159 /* XXX may action payload */ 3160 + sizeof(struct ieee80211_action_ba_addbaresponse) 3161 ); 3162 if (m != NULL) { 3163 *frm++ = category; 3164 *frm++ = action; 3165 *frm++ = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 3166 IEEE80211_A_HT_TXCHWIDTH_2040 : 3167 IEEE80211_A_HT_TXCHWIDTH_20; 3168 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3169 return ht_action_output(ni, m); 3170 } else { 3171 vap->iv_stats.is_tx_nobuf++; 3172 ieee80211_free_node(ni); 3173 return ENOMEM; 3174 } 3175 } 3176 #undef ADDSHORT 3177 3178 /* 3179 * Construct the MCS bit mask for inclusion in an HT capabilities 3180 * information element. 3181 */ 3182 static void 3183 ieee80211_set_mcsset(struct ieee80211com *ic, uint8_t *frm) 3184 { 3185 int i; 3186 uint8_t txparams; 3187 3188 KASSERT((ic->ic_rxstream > 0 && ic->ic_rxstream <= 4), 3189 ("ic_rxstream %d out of range", ic->ic_rxstream)); 3190 KASSERT((ic->ic_txstream > 0 && ic->ic_txstream <= 4), 3191 ("ic_txstream %d out of range", ic->ic_txstream)); 3192 3193 for (i = 0; i < ic->ic_rxstream * 8; i++) 3194 setbit(frm, i); 3195 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 3196 (ic->ic_htcaps & IEEE80211_HTC_RXMCS32)) 3197 setbit(frm, 32); 3198 if (ic->ic_htcaps & IEEE80211_HTC_RXUNEQUAL) { 3199 if (ic->ic_rxstream >= 2) { 3200 for (i = 33; i <= 38; i++) 3201 setbit(frm, i); 3202 } 3203 if (ic->ic_rxstream >= 3) { 3204 for (i = 39; i <= 52; i++) 3205 setbit(frm, i); 3206 } 3207 if (ic->ic_rxstream >= 4) { 3208 for (i = 53; i <= 76; i++) 3209 setbit(frm, i); 3210 } 3211 } 3212 3213 txparams = 0x1; /* TX MCS set defined */ 3214 if (ic->ic_rxstream != ic->ic_txstream) { 3215 txparams |= 0x2; /* TX RX MCS not equal */ 3216 txparams |= (ic->ic_txstream - 1) << 2; /* num TX streams */ 3217 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) 3218 txparams |= 0x16; /* TX unequal modulation sup */ 3219 } 3220 3221 frm[12] = txparams; 3222 } 3223 3224 /* 3225 * Add body of an HTCAP information element. 3226 */ 3227 static uint8_t * 3228 ieee80211_add_htcap_body(uint8_t *frm, struct ieee80211_node *ni) 3229 { 3230 #define ADDSHORT(frm, v) do { \ 3231 frm[0] = (v) & 0xff; \ 3232 frm[1] = (v) >> 8; \ 3233 frm += 2; \ 3234 } while (0) 3235 struct ieee80211com *ic = ni->ni_ic; 3236 struct ieee80211vap *vap = ni->ni_vap; 3237 uint16_t caps, extcaps; 3238 int rxmax, density; 3239 3240 /* HT capabilities */ 3241 caps = vap->iv_htcaps & 0xffff; 3242 /* 3243 * Note channel width depends on whether we are operating as 3244 * a sta or not. When operating as a sta we are generating 3245 * a request based on our desired configuration. Otherwise 3246 * we are operational and the channel attributes identify 3247 * how we've been setup (which might be different if a fixed 3248 * channel is specified). 3249 */ 3250 if (vap->iv_opmode == IEEE80211_M_STA) { 3251 /* override 20/40 use based on config */ 3252 if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40) 3253 caps |= IEEE80211_HTCAP_CHWIDTH40; 3254 else 3255 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3256 3257 /* Start by using the advertised settings */ 3258 rxmax = _IEEE80211_MASKSHIFT(ni->ni_htparam, 3259 IEEE80211_HTCAP_MAXRXAMPDU); 3260 density = _IEEE80211_MASKSHIFT(ni->ni_htparam, 3261 IEEE80211_HTCAP_MPDUDENSITY); 3262 3263 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, 3264 "%s: advertised rxmax=%d, density=%d, vap rxmax=%d, density=%d\n", 3265 __func__, 3266 rxmax, 3267 density, 3268 vap->iv_ampdu_rxmax, 3269 vap->iv_ampdu_density); 3270 3271 /* Cap at VAP rxmax */ 3272 if (rxmax > vap->iv_ampdu_rxmax) 3273 rxmax = vap->iv_ampdu_rxmax; 3274 3275 /* 3276 * If the VAP ampdu density value greater, use that. 3277 * 3278 * (Larger density value == larger minimum gap between A-MPDU 3279 * subframes.) 3280 */ 3281 if (vap->iv_ampdu_density > density) 3282 density = vap->iv_ampdu_density; 3283 3284 /* 3285 * NB: Hardware might support HT40 on some but not all 3286 * channels. We can't determine this earlier because only 3287 * after association the channel is upgraded to HT based 3288 * on the negotiated capabilities. 3289 */ 3290 if (ni->ni_chan != IEEE80211_CHAN_ANYC && 3291 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40U) == NULL && 3292 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40D) == NULL) 3293 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3294 } else { 3295 /* override 20/40 use based on current channel */ 3296 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 3297 caps |= IEEE80211_HTCAP_CHWIDTH40; 3298 else 3299 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3300 3301 /* XXX TODO should it start by using advertised settings? */ 3302 rxmax = vap->iv_ampdu_rxmax; 3303 density = vap->iv_ampdu_density; 3304 } 3305 3306 /* adjust short GI based on channel and config */ 3307 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) 3308 caps &= ~IEEE80211_HTCAP_SHORTGI20; 3309 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || 3310 (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) 3311 caps &= ~IEEE80211_HTCAP_SHORTGI40; 3312 3313 /* adjust STBC based on receive capabilities */ 3314 if ((vap->iv_flags_ht & IEEE80211_FHT_STBC_RX) == 0) 3315 caps &= ~IEEE80211_HTCAP_RXSTBC; 3316 3317 /* adjust LDPC based on receive capabilites */ 3318 if ((vap->iv_flags_ht & IEEE80211_FHT_LDPC_RX) == 0) 3319 caps &= ~IEEE80211_HTCAP_LDPC; 3320 3321 ADDSHORT(frm, caps); 3322 3323 /* HT parameters */ 3324 *frm = _IEEE80211_SHIFTMASK(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) 3325 | _IEEE80211_SHIFTMASK(density, IEEE80211_HTCAP_MPDUDENSITY) 3326 ; 3327 frm++; 3328 3329 /* pre-zero remainder of ie */ 3330 memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - 3331 __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); 3332 3333 /* supported MCS set */ 3334 /* 3335 * XXX: For sta mode the rate set should be restricted based 3336 * on the AP's capabilities, but ni_htrates isn't setup when 3337 * we're called to form an AssocReq frame so for now we're 3338 * restricted to the device capabilities. 3339 */ 3340 ieee80211_set_mcsset(ni->ni_ic, frm); 3341 3342 frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - 3343 __offsetof(struct ieee80211_ie_htcap, hc_mcsset); 3344 3345 /* HT extended capabilities */ 3346 extcaps = vap->iv_htextcaps & 0xffff; 3347 3348 ADDSHORT(frm, extcaps); 3349 3350 frm += sizeof(struct ieee80211_ie_htcap) - 3351 __offsetof(struct ieee80211_ie_htcap, hc_txbf); 3352 3353 return frm; 3354 #undef ADDSHORT 3355 } 3356 3357 /* 3358 * Add 802.11n HT capabilities information element 3359 */ 3360 uint8_t * 3361 ieee80211_add_htcap(uint8_t *frm, struct ieee80211_node *ni) 3362 { 3363 frm[0] = IEEE80211_ELEMID_HTCAP; 3364 frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; 3365 return ieee80211_add_htcap_body(frm + 2, ni); 3366 } 3367 3368 /* 3369 * Non-associated probe request - add HT capabilities based on 3370 * the current channel configuration. 3371 */ 3372 static uint8_t * 3373 ieee80211_add_htcap_body_ch(uint8_t *frm, struct ieee80211vap *vap, 3374 struct ieee80211_channel *c) 3375 { 3376 #define ADDSHORT(frm, v) do { \ 3377 frm[0] = (v) & 0xff; \ 3378 frm[1] = (v) >> 8; \ 3379 frm += 2; \ 3380 } while (0) 3381 struct ieee80211com *ic = vap->iv_ic; 3382 uint16_t caps, extcaps; 3383 int rxmax, density; 3384 3385 /* HT capabilities */ 3386 caps = vap->iv_htcaps & 0xffff; 3387 3388 /* 3389 * We don't use this in STA mode; only in IBSS mode. 3390 * So in IBSS mode we base our HTCAP flags on the 3391 * given channel. 3392 */ 3393 3394 /* override 20/40 use based on current channel */ 3395 if (IEEE80211_IS_CHAN_HT40(c)) 3396 caps |= IEEE80211_HTCAP_CHWIDTH40; 3397 else 3398 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3399 3400 /* Use the currently configured values */ 3401 rxmax = vap->iv_ampdu_rxmax; 3402 density = vap->iv_ampdu_density; 3403 3404 /* adjust short GI based on channel and config */ 3405 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) 3406 caps &= ~IEEE80211_HTCAP_SHORTGI20; 3407 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || 3408 (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) 3409 caps &= ~IEEE80211_HTCAP_SHORTGI40; 3410 ADDSHORT(frm, caps); 3411 3412 /* HT parameters */ 3413 *frm = _IEEE80211_SHIFTMASK(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) 3414 | _IEEE80211_SHIFTMASK(density, IEEE80211_HTCAP_MPDUDENSITY) 3415 ; 3416 frm++; 3417 3418 /* pre-zero remainder of ie */ 3419 memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - 3420 __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); 3421 3422 /* supported MCS set */ 3423 /* 3424 * XXX: For sta mode the rate set should be restricted based 3425 * on the AP's capabilities, but ni_htrates isn't setup when 3426 * we're called to form an AssocReq frame so for now we're 3427 * restricted to the device capabilities. 3428 */ 3429 ieee80211_set_mcsset(ic, frm); 3430 3431 frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - 3432 __offsetof(struct ieee80211_ie_htcap, hc_mcsset); 3433 3434 /* HT extended capabilities */ 3435 extcaps = vap->iv_htextcaps & 0xffff; 3436 3437 ADDSHORT(frm, extcaps); 3438 3439 frm += sizeof(struct ieee80211_ie_htcap) - 3440 __offsetof(struct ieee80211_ie_htcap, hc_txbf); 3441 3442 return frm; 3443 #undef ADDSHORT 3444 } 3445 3446 /* 3447 * Add 802.11n HT capabilities information element 3448 */ 3449 uint8_t * 3450 ieee80211_add_htcap_ch(uint8_t *frm, struct ieee80211vap *vap, 3451 struct ieee80211_channel *c) 3452 { 3453 frm[0] = IEEE80211_ELEMID_HTCAP; 3454 frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; 3455 return ieee80211_add_htcap_body_ch(frm + 2, vap, c); 3456 } 3457 3458 /* 3459 * Add Broadcom OUI wrapped standard HTCAP ie; this is 3460 * used for compatibility w/ pre-draft implementations. 3461 */ 3462 uint8_t * 3463 ieee80211_add_htcap_vendor(uint8_t *frm, struct ieee80211_node *ni) 3464 { 3465 frm[0] = IEEE80211_ELEMID_VENDOR; 3466 frm[1] = 4 + sizeof(struct ieee80211_ie_htcap) - 2; 3467 frm[2] = (BCM_OUI >> 0) & 0xff; 3468 frm[3] = (BCM_OUI >> 8) & 0xff; 3469 frm[4] = (BCM_OUI >> 16) & 0xff; 3470 frm[5] = BCM_OUI_HTCAP; 3471 return ieee80211_add_htcap_body(frm + 6, ni); 3472 } 3473 3474 /* 3475 * Construct the MCS bit mask of basic rates 3476 * for inclusion in an HT information element. 3477 */ 3478 static void 3479 ieee80211_set_basic_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs) 3480 { 3481 int i; 3482 3483 for (i = 0; i < rs->rs_nrates; i++) { 3484 int r = rs->rs_rates[i] & IEEE80211_RATE_VAL; 3485 if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) && 3486 r < IEEE80211_HTRATE_MAXSIZE) { 3487 /* NB: this assumes a particular implementation */ 3488 setbit(frm, r); 3489 } 3490 } 3491 } 3492 3493 /* 3494 * Update the HTINFO ie for a beacon frame. 3495 */ 3496 void 3497 ieee80211_ht_update_beacon(struct ieee80211vap *vap, 3498 struct ieee80211_beacon_offsets *bo) 3499 { 3500 #define PROTMODE (IEEE80211_HTINFO_OPMODE|IEEE80211_HTINFO_NONHT_PRESENT) 3501 struct ieee80211_node *ni; 3502 const struct ieee80211_channel *bsschan; 3503 struct ieee80211com *ic = vap->iv_ic; 3504 struct ieee80211_ie_htinfo *ht = 3505 (struct ieee80211_ie_htinfo *) bo->bo_htinfo; 3506 3507 ni = ieee80211_ref_node(vap->iv_bss); 3508 bsschan = ni->ni_chan; 3509 3510 /* XXX only update on channel change */ 3511 ht->hi_ctrlchannel = ieee80211_chan2ieee(ic, bsschan); 3512 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 3513 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PERM; 3514 else 3515 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PROH; 3516 if (IEEE80211_IS_CHAN_HT40U(bsschan)) 3517 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 3518 else if (IEEE80211_IS_CHAN_HT40D(bsschan)) 3519 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_BELOW; 3520 else 3521 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_NONE; 3522 if (IEEE80211_IS_CHAN_HT40(bsschan)) 3523 ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040; 3524 3525 /* protection mode */ 3526 /* 3527 * XXX TODO: this uses the global flag, not the per-VAP flag. 3528 * Eventually (once the protection modes are done per-channel 3529 * rather than per-VAP) we can flip this over to be per-VAP but 3530 * using the channel protection mode. 3531 */ 3532 ht->hi_byte2 = (ht->hi_byte2 &~ PROTMODE) | ic->ic_curhtprotmode; 3533 3534 ieee80211_free_node(ni); 3535 3536 /* XXX propagate to vendor ie's */ 3537 #undef PROTMODE 3538 } 3539 3540 /* 3541 * Add body of an HTINFO information element. 3542 * 3543 * NB: We don't use struct ieee80211_ie_htinfo because we can 3544 * be called to fillin both a standard ie and a compat ie that 3545 * has a vendor OUI at the front. 3546 */ 3547 static uint8_t * 3548 ieee80211_add_htinfo_body(uint8_t *frm, struct ieee80211_node *ni) 3549 { 3550 struct ieee80211vap *vap = ni->ni_vap; 3551 struct ieee80211com *ic = ni->ni_ic; 3552 3553 /* pre-zero remainder of ie */ 3554 memset(frm, 0, sizeof(struct ieee80211_ie_htinfo) - 2); 3555 3556 /* primary/control channel center */ 3557 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 3558 3559 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 3560 frm[0] = IEEE80211_HTINFO_RIFSMODE_PERM; 3561 else 3562 frm[0] = IEEE80211_HTINFO_RIFSMODE_PROH; 3563 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 3564 frm[0] |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 3565 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 3566 frm[0] |= IEEE80211_HTINFO_2NDCHAN_BELOW; 3567 else 3568 frm[0] |= IEEE80211_HTINFO_2NDCHAN_NONE; 3569 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 3570 frm[0] |= IEEE80211_HTINFO_TXWIDTH_2040; 3571 3572 /* 3573 * Add current protection mode. Unlike for beacons, 3574 * this will respect the per-VAP flags. 3575 */ 3576 frm[1] = vap->iv_curhtprotmode; 3577 3578 frm += 5; 3579 3580 /* basic MCS set */ 3581 ieee80211_set_basic_htrates(frm, &ni->ni_htrates); 3582 frm += sizeof(struct ieee80211_ie_htinfo) - 3583 __offsetof(struct ieee80211_ie_htinfo, hi_basicmcsset); 3584 return frm; 3585 } 3586 3587 /* 3588 * Add 802.11n HT information element. 3589 */ 3590 uint8_t * 3591 ieee80211_add_htinfo(uint8_t *frm, struct ieee80211_node *ni) 3592 { 3593 frm[0] = IEEE80211_ELEMID_HTINFO; 3594 frm[1] = sizeof(struct ieee80211_ie_htinfo) - 2; 3595 return ieee80211_add_htinfo_body(frm + 2, ni); 3596 } 3597 3598 /* 3599 * Add Broadcom OUI wrapped standard HTINFO ie; this is 3600 * used for compatibility w/ pre-draft implementations. 3601 */ 3602 uint8_t * 3603 ieee80211_add_htinfo_vendor(uint8_t *frm, struct ieee80211_node *ni) 3604 { 3605 frm[0] = IEEE80211_ELEMID_VENDOR; 3606 frm[1] = 4 + sizeof(struct ieee80211_ie_htinfo) - 2; 3607 frm[2] = (BCM_OUI >> 0) & 0xff; 3608 frm[3] = (BCM_OUI >> 8) & 0xff; 3609 frm[4] = (BCM_OUI >> 16) & 0xff; 3610 frm[5] = BCM_OUI_HTINFO; 3611 return ieee80211_add_htinfo_body(frm + 6, ni); 3612 } 3613 3614 /* 3615 * Get the HT density for the given 802.11n node. 3616 * 3617 * Take into account the density advertised from the peer. 3618 * Larger values are longer A-MPDU density spacing values, and 3619 * we want to obey them per station if we get them. 3620 */ 3621 int 3622 ieee80211_ht_get_node_ampdu_density(const struct ieee80211_node *ni) 3623 { 3624 struct ieee80211vap *vap; 3625 int peer_mpdudensity; 3626 3627 vap = ni->ni_vap; 3628 peer_mpdudensity = 3629 _IEEE80211_MASKSHIFT(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY); 3630 if (vap->iv_ampdu_density > peer_mpdudensity) 3631 peer_mpdudensity = vap->iv_ampdu_density; 3632 return (peer_mpdudensity); 3633 } 3634 3635 /* 3636 * Get the transmit A-MPDU limit for the given 802.11n node. 3637 * 3638 * Take into account the limit advertised from the peer. 3639 * Smaller values indicate smaller maximum A-MPDU sizes, and 3640 * should be used when forming an A-MPDU to the given peer. 3641 */ 3642 int 3643 ieee80211_ht_get_node_ampdu_limit(const struct ieee80211_node *ni) 3644 { 3645 struct ieee80211vap *vap; 3646 int peer_mpdulimit; 3647 3648 vap = ni->ni_vap; 3649 peer_mpdulimit = 3650 _IEEE80211_MASKSHIFT(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU); 3651 3652 return (MIN(vap->iv_ampdu_limit, peer_mpdulimit)); 3653 } 3654 3655 /* 3656 * Return true if short-GI is available when transmitting to 3657 * the given node at 20MHz. 3658 * 3659 * Ensure it's configured and available in the VAP / driver as 3660 * well as the node. 3661 */ 3662 bool 3663 ieee80211_ht_check_tx_shortgi_20(const struct ieee80211_node *ni) 3664 { 3665 const struct ieee80211vap *vap; 3666 const struct ieee80211com *ic; 3667 3668 if (! ieee80211_ht_check_tx_ht(ni)) 3669 return (false); 3670 3671 vap = ni->ni_vap; 3672 ic = ni->ni_ic; 3673 3674 return ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) && 3675 (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) && 3676 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)); 3677 } 3678 3679 /* 3680 * Return true if short-GI is available when transmitting to 3681 * the given node at 40MHz. 3682 * 3683 * Ensure it's configured and available in the VAP / driver as 3684 * well as the node and BSS. 3685 */ 3686 bool 3687 ieee80211_ht_check_tx_shortgi_40(const struct ieee80211_node *ni) 3688 { 3689 const struct ieee80211vap *vap; 3690 const struct ieee80211com *ic; 3691 3692 if (! ieee80211_ht_check_tx_ht40(ni)) 3693 return (false); 3694 3695 vap = ni->ni_vap; 3696 ic = ni->ni_ic; 3697 3698 return ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40) && 3699 (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) && 3700 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)); 3701 } 3702 3703 /* 3704 * Return true if HT rates can be used for the given node. 3705 * 3706 * There are some situations seen in the wild, wild past where 3707 * HT APs would announce HT but no HT rates. 3708 */ 3709 bool 3710 ieee80211_ht_check_tx_ht(const struct ieee80211_node *ni) 3711 { 3712 const struct ieee80211vap *vap; 3713 const struct ieee80211_channel *bss_chan; 3714 3715 if (ni == NULL || ni->ni_chan == IEEE80211_CHAN_ANYC || 3716 ni->ni_vap == NULL || ni->ni_vap->iv_bss == NULL) 3717 return (false); 3718 3719 vap = ni->ni_vap; 3720 bss_chan = vap->iv_bss->ni_chan; 3721 3722 if (bss_chan == IEEE80211_CHAN_ANYC) 3723 return (false); 3724 3725 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && 3726 ni->ni_htrates.rs_nrates == 0) 3727 return (false); 3728 return (IEEE80211_IS_CHAN_HT(ni->ni_chan)); 3729 } 3730 3731 /* 3732 * Return true if HT40 rates can be transmitted to the given node. 3733 * 3734 * This verifies that the BSS is HT40 capable and the current 3735 * node channel width is 40MHz. 3736 */ 3737 bool 3738 ieee80211_ht_check_tx_ht40(const struct ieee80211_node *ni) 3739 { 3740 struct ieee80211vap *vap; 3741 struct ieee80211_channel *bss_chan; 3742 3743 if (! ieee80211_ht_check_tx_ht(ni)) 3744 return (false); 3745 3746 vap = ni->ni_vap; 3747 bss_chan = vap->iv_bss->ni_chan; 3748 3749 return (IEEE80211_IS_CHAN_HT40(bss_chan) && 3750 IEEE80211_IS_CHAN_HT40(ni->ni_chan) && 3751 (ni->ni_chw == IEEE80211_STA_RX_BW_40)); 3752 } 3753