xref: /freebsd/sys/net80211/ieee80211_ht.c (revision a5ff72cb0e51a7675d4e2b5810a2b6dad5b91960)
1 /*-
2  * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  */
25 
26 #include <sys/cdefs.h>
27 #ifdef __FreeBSD__
28 __FBSDID("$FreeBSD$");
29 #endif
30 
31 /*
32  * IEEE 802.11n protocol support.
33  */
34 
35 #include "opt_inet.h"
36 #include "opt_wlan.h"
37 
38 #include <sys/param.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/systm.h>
42 #include <sys/endian.h>
43 
44 #include <sys/socket.h>
45 
46 #include <net/if.h>
47 #include <net/if_var.h>
48 #include <net/if_media.h>
49 #include <net/ethernet.h>
50 
51 #include <net80211/ieee80211_var.h>
52 #include <net80211/ieee80211_action.h>
53 #include <net80211/ieee80211_input.h>
54 
55 /* define here, used throughout file */
56 #define	MS(_v, _f)	(((_v) & _f) >> _f##_S)
57 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
58 
59 const struct ieee80211_mcs_rates ieee80211_htrates[IEEE80211_HTRATE_MAXSIZE] = {
60 	{  13,  14,   27,   30 },	/* MCS 0 */
61 	{  26,  29,   54,   60 },	/* MCS 1 */
62 	{  39,  43,   81,   90 },	/* MCS 2 */
63 	{  52,  58,  108,  120 },	/* MCS 3 */
64 	{  78,  87,  162,  180 },	/* MCS 4 */
65 	{ 104, 116,  216,  240 },	/* MCS 5 */
66 	{ 117, 130,  243,  270 },	/* MCS 6 */
67 	{ 130, 144,  270,  300 },	/* MCS 7 */
68 	{  26,  29,   54,   60 },	/* MCS 8 */
69 	{  52,  58,  108,  120 },	/* MCS 9 */
70 	{  78,  87,  162,  180 },	/* MCS 10 */
71 	{ 104, 116,  216,  240 },	/* MCS 11 */
72 	{ 156, 173,  324,  360 },	/* MCS 12 */
73 	{ 208, 231,  432,  480 },	/* MCS 13 */
74 	{ 234, 260,  486,  540 },	/* MCS 14 */
75 	{ 260, 289,  540,  600 },	/* MCS 15 */
76 	{  39,  43,   81,   90 },	/* MCS 16 */
77 	{  78,  87,  162,  180 },	/* MCS 17 */
78 	{ 117, 130,  243,  270 },	/* MCS 18 */
79 	{ 156, 173,  324,  360 },	/* MCS 19 */
80 	{ 234, 260,  486,  540 },	/* MCS 20 */
81 	{ 312, 347,  648,  720 },	/* MCS 21 */
82 	{ 351, 390,  729,  810 },	/* MCS 22 */
83 	{ 390, 433,  810,  900 },	/* MCS 23 */
84 	{  52,  58,  108,  120 },	/* MCS 24 */
85 	{ 104, 116,  216,  240 },	/* MCS 25 */
86 	{ 156, 173,  324,  360 },	/* MCS 26 */
87 	{ 208, 231,  432,  480 },	/* MCS 27 */
88 	{ 312, 347,  648,  720 },	/* MCS 28 */
89 	{ 416, 462,  864,  960 },	/* MCS 29 */
90 	{ 468, 520,  972, 1080 },	/* MCS 30 */
91 	{ 520, 578, 1080, 1200 },	/* MCS 31 */
92 	{   0,   0,   12,   13 },	/* MCS 32 */
93 	{  78,  87,  162,  180 },	/* MCS 33 */
94 	{ 104, 116,  216,  240 },	/* MCS 34 */
95 	{ 130, 144,  270,  300 },	/* MCS 35 */
96 	{ 117, 130,  243,  270 },	/* MCS 36 */
97 	{ 156, 173,  324,  360 },	/* MCS 37 */
98 	{ 195, 217,  405,  450 },	/* MCS 38 */
99 	{ 104, 116,  216,  240 },	/* MCS 39 */
100 	{ 130, 144,  270,  300 },	/* MCS 40 */
101 	{ 130, 144,  270,  300 },	/* MCS 41 */
102 	{ 156, 173,  324,  360 },	/* MCS 42 */
103 	{ 182, 202,  378,  420 },	/* MCS 43 */
104 	{ 182, 202,  378,  420 },	/* MCS 44 */
105 	{ 208, 231,  432,  480 },	/* MCS 45 */
106 	{ 156, 173,  324,  360 },	/* MCS 46 */
107 	{ 195, 217,  405,  450 },	/* MCS 47 */
108 	{ 195, 217,  405,  450 },	/* MCS 48 */
109 	{ 234, 260,  486,  540 },	/* MCS 49 */
110 	{ 273, 303,  567,  630 },	/* MCS 50 */
111 	{ 273, 303,  567,  630 },	/* MCS 51 */
112 	{ 312, 347,  648,  720 },	/* MCS 52 */
113 	{ 130, 144,  270,  300 },	/* MCS 53 */
114 	{ 156, 173,  324,  360 },	/* MCS 54 */
115 	{ 182, 202,  378,  420 },	/* MCS 55 */
116 	{ 156, 173,  324,  360 },	/* MCS 56 */
117 	{ 182, 202,  378,  420 },	/* MCS 57 */
118 	{ 208, 231,  432,  480 },	/* MCS 58 */
119 	{ 234, 260,  486,  540 },	/* MCS 59 */
120 	{ 208, 231,  432,  480 },	/* MCS 60 */
121 	{ 234, 260,  486,  540 },	/* MCS 61 */
122 	{ 260, 289,  540,  600 },	/* MCS 62 */
123 	{ 260, 289,  540,  600 },	/* MCS 63 */
124 	{ 286, 318,  594,  660 },	/* MCS 64 */
125 	{ 195, 217,  405,  450 },	/* MCS 65 */
126 	{ 234, 260,  486,  540 },	/* MCS 66 */
127 	{ 273, 303,  567,  630 },	/* MCS 67 */
128 	{ 234, 260,  486,  540 },	/* MCS 68 */
129 	{ 273, 303,  567,  630 },	/* MCS 69 */
130 	{ 312, 347,  648,  720 },	/* MCS 70 */
131 	{ 351, 390,  729,  810 },	/* MCS 71 */
132 	{ 312, 347,  648,  720 },	/* MCS 72 */
133 	{ 351, 390,  729,  810 },	/* MCS 73 */
134 	{ 390, 433,  810,  900 },	/* MCS 74 */
135 	{ 390, 433,  810,  900 },	/* MCS 75 */
136 	{ 429, 477,  891,  990 },	/* MCS 76 */
137 };
138 
139 static	int ieee80211_ampdu_age = -1;	/* threshold for ampdu reorder q (ms) */
140 SYSCTL_PROC(_net_wlan, OID_AUTO, ampdu_age, CTLTYPE_INT | CTLFLAG_RW,
141 	&ieee80211_ampdu_age, 0, ieee80211_sysctl_msecs_ticks, "I",
142 	"AMPDU max reorder age (ms)");
143 
144 static	int ieee80211_recv_bar_ena = 1;
145 SYSCTL_INT(_net_wlan, OID_AUTO, recv_bar, CTLFLAG_RW, &ieee80211_recv_bar_ena,
146 	    0, "BAR frame processing (ena/dis)");
147 
148 static	int ieee80211_addba_timeout = -1;/* timeout for ADDBA response */
149 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_timeout, CTLTYPE_INT | CTLFLAG_RW,
150 	&ieee80211_addba_timeout, 0, ieee80211_sysctl_msecs_ticks, "I",
151 	"ADDBA request timeout (ms)");
152 static	int ieee80211_addba_backoff = -1;/* backoff after max ADDBA requests */
153 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_backoff, CTLTYPE_INT | CTLFLAG_RW,
154 	&ieee80211_addba_backoff, 0, ieee80211_sysctl_msecs_ticks, "I",
155 	"ADDBA request backoff (ms)");
156 static	int ieee80211_addba_maxtries = 3;/* max ADDBA requests before backoff */
157 SYSCTL_INT(_net_wlan, OID_AUTO, addba_maxtries, CTLFLAG_RW,
158 	&ieee80211_addba_maxtries, 0, "max ADDBA requests sent before backoff");
159 
160 static	int ieee80211_bar_timeout = -1;	/* timeout waiting for BAR response */
161 static	int ieee80211_bar_maxtries = 50;/* max BAR requests before DELBA */
162 
163 static	ieee80211_recv_action_func ht_recv_action_ba_addba_request;
164 static	ieee80211_recv_action_func ht_recv_action_ba_addba_response;
165 static	ieee80211_recv_action_func ht_recv_action_ba_delba;
166 static	ieee80211_recv_action_func ht_recv_action_ht_mimopwrsave;
167 static	ieee80211_recv_action_func ht_recv_action_ht_txchwidth;
168 
169 static	ieee80211_send_action_func ht_send_action_ba_addba;
170 static	ieee80211_send_action_func ht_send_action_ba_delba;
171 static	ieee80211_send_action_func ht_send_action_ht_txchwidth;
172 
173 static void
174 ieee80211_ht_init(void)
175 {
176 	/*
177 	 * Setup HT parameters that depends on the clock frequency.
178 	 */
179 	ieee80211_ampdu_age = msecs_to_ticks(500);
180 	ieee80211_addba_timeout = msecs_to_ticks(250);
181 	ieee80211_addba_backoff = msecs_to_ticks(10*1000);
182 	ieee80211_bar_timeout = msecs_to_ticks(250);
183 	/*
184 	 * Register action frame handlers.
185 	 */
186 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
187 	    IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_recv_action_ba_addba_request);
188 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
189 	    IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_recv_action_ba_addba_response);
190 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
191 	    IEEE80211_ACTION_BA_DELBA, ht_recv_action_ba_delba);
192 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT,
193 	    IEEE80211_ACTION_HT_MIMOPWRSAVE, ht_recv_action_ht_mimopwrsave);
194 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT,
195 	    IEEE80211_ACTION_HT_TXCHWIDTH, ht_recv_action_ht_txchwidth);
196 
197 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
198 	    IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_send_action_ba_addba);
199 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
200 	    IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_send_action_ba_addba);
201 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
202 	    IEEE80211_ACTION_BA_DELBA, ht_send_action_ba_delba);
203 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_HT,
204 	    IEEE80211_ACTION_HT_TXCHWIDTH, ht_send_action_ht_txchwidth);
205 }
206 SYSINIT(wlan_ht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_ht_init, NULL);
207 
208 static int ieee80211_ampdu_enable(struct ieee80211_node *ni,
209 	struct ieee80211_tx_ampdu *tap);
210 static int ieee80211_addba_request(struct ieee80211_node *ni,
211 	struct ieee80211_tx_ampdu *tap,
212 	int dialogtoken, int baparamset, int batimeout);
213 static int ieee80211_addba_response(struct ieee80211_node *ni,
214 	struct ieee80211_tx_ampdu *tap,
215 	int code, int baparamset, int batimeout);
216 static void ieee80211_addba_stop(struct ieee80211_node *ni,
217 	struct ieee80211_tx_ampdu *tap);
218 static void null_addba_response_timeout(struct ieee80211_node *ni,
219 	struct ieee80211_tx_ampdu *tap);
220 
221 static void ieee80211_bar_response(struct ieee80211_node *ni,
222 	struct ieee80211_tx_ampdu *tap, int status);
223 static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap);
224 static void bar_stop_timer(struct ieee80211_tx_ampdu *tap);
225 static int ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *,
226 	int baparamset, int batimeout, int baseqctl);
227 static void ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *);
228 
229 void
230 ieee80211_ht_attach(struct ieee80211com *ic)
231 {
232 	/* setup default aggregation policy */
233 	ic->ic_recv_action = ieee80211_recv_action;
234 	ic->ic_send_action = ieee80211_send_action;
235 	ic->ic_ampdu_enable = ieee80211_ampdu_enable;
236 	ic->ic_addba_request = ieee80211_addba_request;
237 	ic->ic_addba_response = ieee80211_addba_response;
238 	ic->ic_addba_response_timeout = null_addba_response_timeout;
239 	ic->ic_addba_stop = ieee80211_addba_stop;
240 	ic->ic_bar_response = ieee80211_bar_response;
241 	ic->ic_ampdu_rx_start = ampdu_rx_start;
242 	ic->ic_ampdu_rx_stop = ampdu_rx_stop;
243 
244 	ic->ic_htprotmode = IEEE80211_PROT_RTSCTS;
245 	ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE;
246 }
247 
248 void
249 ieee80211_ht_detach(struct ieee80211com *ic)
250 {
251 }
252 
253 void
254 ieee80211_ht_vattach(struct ieee80211vap *vap)
255 {
256 
257 	/* driver can override defaults */
258 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_8K;
259 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_NA;
260 	vap->iv_ampdu_limit = vap->iv_ampdu_rxmax;
261 	vap->iv_amsdu_limit = vap->iv_htcaps & IEEE80211_HTCAP_MAXAMSDU;
262 	/* tx aggregation traffic thresholds */
263 	vap->iv_ampdu_mintraffic[WME_AC_BK] = 128;
264 	vap->iv_ampdu_mintraffic[WME_AC_BE] = 64;
265 	vap->iv_ampdu_mintraffic[WME_AC_VO] = 32;
266 	vap->iv_ampdu_mintraffic[WME_AC_VI] = 32;
267 
268 	if (vap->iv_htcaps & IEEE80211_HTC_HT) {
269 		/*
270 		 * Device is HT capable; enable all HT-related
271 		 * facilities by default.
272 		 * XXX these choices may be too aggressive.
273 		 */
274 		vap->iv_flags_ht |= IEEE80211_FHT_HT
275 				 |  IEEE80211_FHT_HTCOMPAT
276 				 ;
277 		if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI20)
278 			vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20;
279 		/* XXX infer from channel list? */
280 		if (vap->iv_htcaps & IEEE80211_HTCAP_CHWIDTH40) {
281 			vap->iv_flags_ht |= IEEE80211_FHT_USEHT40;
282 			if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI40)
283 				vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40;
284 		}
285 		/* enable RIFS if capable */
286 		if (vap->iv_htcaps & IEEE80211_HTC_RIFS)
287 			vap->iv_flags_ht |= IEEE80211_FHT_RIFS;
288 
289 		/* NB: A-MPDU and A-MSDU rx are mandated, these are tx only */
290 		vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX;
291 		if (vap->iv_htcaps & IEEE80211_HTC_AMPDU)
292 			vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX;
293 		vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX;
294 		if (vap->iv_htcaps & IEEE80211_HTC_AMSDU)
295 			vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX;
296 	}
297 	/* NB: disable default legacy WDS, too many issues right now */
298 	if (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)
299 		vap->iv_flags_ht &= ~IEEE80211_FHT_HT;
300 }
301 
302 void
303 ieee80211_ht_vdetach(struct ieee80211vap *vap)
304 {
305 }
306 
307 static int
308 ht_getrate(struct ieee80211com *ic, int index, enum ieee80211_phymode mode,
309     int ratetype)
310 {
311 	int mword, rate;
312 
313 	mword = ieee80211_rate2media(ic, index | IEEE80211_RATE_MCS, mode);
314 	if (IFM_SUBTYPE(mword) != IFM_IEEE80211_MCS)
315 		return (0);
316 	switch (ratetype) {
317 	case 0:
318 		rate = ieee80211_htrates[index].ht20_rate_800ns;
319 		break;
320 	case 1:
321 		rate = ieee80211_htrates[index].ht20_rate_400ns;
322 		break;
323 	case 2:
324 		rate = ieee80211_htrates[index].ht40_rate_800ns;
325 		break;
326 	default:
327 		rate = ieee80211_htrates[index].ht40_rate_400ns;
328 		break;
329 	}
330 	return (rate);
331 }
332 
333 static struct printranges {
334 	int	minmcs;
335 	int	maxmcs;
336 	int	txstream;
337 	int	ratetype;
338 	int	htcapflags;
339 } ranges[] = {
340 	{  0,  7, 1, 0, 0 },
341 	{  8, 15, 2, 0, 0 },
342 	{ 16, 23, 3, 0, 0 },
343 	{ 24, 31, 4, 0, 0 },
344 	{ 32,  0, 1, 2, IEEE80211_HTC_TXMCS32 },
345 	{ 33, 38, 2, 0, IEEE80211_HTC_TXUNEQUAL },
346 	{ 39, 52, 3, 0, IEEE80211_HTC_TXUNEQUAL },
347 	{ 53, 76, 4, 0, IEEE80211_HTC_TXUNEQUAL },
348 	{  0,  0, 0, 0, 0 },
349 };
350 
351 static void
352 ht_rateprint(struct ieee80211com *ic, enum ieee80211_phymode mode, int ratetype)
353 {
354 	int minrate, maxrate;
355 	struct printranges *range;
356 
357 	for (range = ranges; range->txstream != 0; range++) {
358 		if (ic->ic_txstream < range->txstream)
359 			continue;
360 		if (range->htcapflags &&
361 		    (ic->ic_htcaps & range->htcapflags) == 0)
362 			continue;
363 		if (ratetype < range->ratetype)
364 			continue;
365 		minrate = ht_getrate(ic, range->minmcs, mode, ratetype);
366 		maxrate = ht_getrate(ic, range->maxmcs, mode, ratetype);
367 		if (range->maxmcs) {
368 			ic_printf(ic, "MCS %d-%d: %d%sMbps - %d%sMbps\n",
369 			    range->minmcs, range->maxmcs,
370 			    minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""),
371 			    maxrate/2, ((maxrate & 0x1) != 0 ? ".5" : ""));
372 		} else {
373 			ic_printf(ic, "MCS %d: %d%sMbps\n", range->minmcs,
374 			    minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""));
375 		}
376 	}
377 }
378 
379 static void
380 ht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode)
381 {
382 	const char *modestr = ieee80211_phymode_name[mode];
383 
384 	ic_printf(ic, "%s MCS 20MHz\n", modestr);
385 	ht_rateprint(ic, mode, 0);
386 	if (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) {
387 		ic_printf(ic, "%s MCS 20MHz SGI\n", modestr);
388 		ht_rateprint(ic, mode, 1);
389 	}
390 	if (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) {
391 		ic_printf(ic, "%s MCS 40MHz:\n", modestr);
392 		ht_rateprint(ic, mode, 2);
393 	}
394 	if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
395 	    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) {
396 		ic_printf(ic, "%s MCS 40MHz SGI:\n", modestr);
397 		ht_rateprint(ic, mode, 3);
398 	}
399 }
400 
401 void
402 ieee80211_ht_announce(struct ieee80211com *ic)
403 {
404 
405 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
406 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG))
407 		ic_printf(ic, "%dT%dR\n", ic->ic_txstream, ic->ic_rxstream);
408 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA))
409 		ht_announce(ic, IEEE80211_MODE_11NA);
410 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NG))
411 		ht_announce(ic, IEEE80211_MODE_11NG);
412 }
413 
414 static struct ieee80211_htrateset htrateset;
415 
416 const struct ieee80211_htrateset *
417 ieee80211_get_suphtrates(struct ieee80211com *ic,
418     const struct ieee80211_channel *c)
419 {
420 #define	ADDRATE(x)	do {						\
421 	htrateset.rs_rates[htrateset.rs_nrates] = x;			\
422 	htrateset.rs_nrates++;						\
423 } while (0)
424 	int i;
425 
426 	memset(&htrateset, 0, sizeof(struct ieee80211_htrateset));
427 	for (i = 0; i < ic->ic_txstream * 8; i++)
428 		ADDRATE(i);
429 	if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
430 	    (ic->ic_htcaps & IEEE80211_HTC_TXMCS32))
431 		ADDRATE(32);
432 	if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) {
433 		if (ic->ic_txstream >= 2) {
434 			 for (i = 33; i <= 38; i++)
435 				ADDRATE(i);
436 		}
437 		if (ic->ic_txstream >= 3) {
438 			for (i = 39; i <= 52; i++)
439 				ADDRATE(i);
440 		}
441 		if (ic->ic_txstream == 4) {
442 			for (i = 53; i <= 76; i++)
443 				ADDRATE(i);
444 		}
445 	}
446 	return &htrateset;
447 #undef	ADDRATE
448 }
449 
450 /*
451  * Receive processing.
452  */
453 
454 /*
455  * Decap the encapsulated A-MSDU frames and dispatch all but
456  * the last for delivery.  The last frame is returned for
457  * delivery via the normal path.
458  */
459 struct mbuf *
460 ieee80211_decap_amsdu(struct ieee80211_node *ni, struct mbuf *m)
461 {
462 	struct ieee80211vap *vap = ni->ni_vap;
463 	int framelen;
464 	struct mbuf *n;
465 
466 	/* discard 802.3 header inserted by ieee80211_decap */
467 	m_adj(m, sizeof(struct ether_header));
468 
469 	vap->iv_stats.is_amsdu_decap++;
470 
471 	for (;;) {
472 		/*
473 		 * Decap the first frame, bust it apart from the
474 		 * remainder and deliver.  We leave the last frame
475 		 * delivery to the caller (for consistency with other
476 		 * code paths, could also do it here).
477 		 */
478 		m = ieee80211_decap1(m, &framelen);
479 		if (m == NULL) {
480 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
481 			    ni->ni_macaddr, "a-msdu", "%s", "decap failed");
482 			vap->iv_stats.is_amsdu_tooshort++;
483 			return NULL;
484 		}
485 		if (m->m_pkthdr.len == framelen)
486 			break;
487 		n = m_split(m, framelen, M_NOWAIT);
488 		if (n == NULL) {
489 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
490 			    ni->ni_macaddr, "a-msdu",
491 			    "%s", "unable to split encapsulated frames");
492 			vap->iv_stats.is_amsdu_split++;
493 			m_freem(m);			/* NB: must reclaim */
494 			return NULL;
495 		}
496 		vap->iv_deliver_data(vap, ni, m);
497 
498 		/*
499 		 * Remove frame contents; each intermediate frame
500 		 * is required to be aligned to a 4-byte boundary.
501 		 */
502 		m = n;
503 		m_adj(m, roundup2(framelen, 4) - framelen);	/* padding */
504 	}
505 	return m;				/* last delivered by caller */
506 }
507 
508 /*
509  * Purge all frames in the A-MPDU re-order queue.
510  */
511 static void
512 ampdu_rx_purge(struct ieee80211_rx_ampdu *rap)
513 {
514 	struct mbuf *m;
515 	int i;
516 
517 	for (i = 0; i < rap->rxa_wnd; i++) {
518 		m = rap->rxa_m[i];
519 		if (m != NULL) {
520 			rap->rxa_m[i] = NULL;
521 			rap->rxa_qbytes -= m->m_pkthdr.len;
522 			m_freem(m);
523 			if (--rap->rxa_qframes == 0)
524 				break;
525 		}
526 	}
527 	KASSERT(rap->rxa_qbytes == 0 && rap->rxa_qframes == 0,
528 	    ("lost %u data, %u frames on ampdu rx q",
529 	    rap->rxa_qbytes, rap->rxa_qframes));
530 }
531 
532 /*
533  * Start A-MPDU rx/re-order processing for the specified TID.
534  */
535 static int
536 ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
537 	int baparamset, int batimeout, int baseqctl)
538 {
539 	int bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
540 
541 	if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) {
542 		/*
543 		 * AMPDU previously setup and not terminated with a DELBA,
544 		 * flush the reorder q's in case anything remains.
545 		 */
546 		ampdu_rx_purge(rap);
547 	}
548 	memset(rap, 0, sizeof(*rap));
549 	rap->rxa_wnd = (bufsiz == 0) ?
550 	    IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
551 	rap->rxa_start = MS(baseqctl, IEEE80211_BASEQ_START);
552 	rap->rxa_flags |=  IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND;
553 
554 	return 0;
555 }
556 
557 /*
558  * Public function; manually setup the RX ampdu state.
559  */
560 int
561 ieee80211_ampdu_rx_start_ext(struct ieee80211_node *ni, int tid, int seq, int baw)
562 {
563 	struct ieee80211_rx_ampdu *rap;
564 
565 	/* XXX TODO: sanity check tid, seq, baw */
566 
567 	rap = &ni->ni_rx_ampdu[tid];
568 
569 	if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) {
570 		/*
571 		 * AMPDU previously setup and not terminated with a DELBA,
572 		 * flush the reorder q's in case anything remains.
573 		 */
574 		ampdu_rx_purge(rap);
575 	}
576 
577 	memset(rap, 0, sizeof(*rap));
578 	rap->rxa_wnd = (baw== 0) ?
579 	    IEEE80211_AGGR_BAWMAX : min(baw, IEEE80211_AGGR_BAWMAX);
580 	rap->rxa_start = seq;
581 	rap->rxa_flags |=  IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND;
582 
583 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni,
584 	    "%s: tid=%d, start=%d, wnd=%d, flags=0x%08x\n",
585 	    __func__,
586 	    tid,
587 	    seq,
588 	    rap->rxa_wnd,
589 	    rap->rxa_flags);
590 
591 	return 0;
592 }
593 
594 /*
595  * Stop A-MPDU rx processing for the specified TID.
596  */
597 static void
598 ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
599 {
600 
601 	ampdu_rx_purge(rap);
602 	rap->rxa_flags &= ~(IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND);
603 }
604 
605 /*
606  * Dispatch a frame from the A-MPDU reorder queue.  The
607  * frame is fed back into ieee80211_input marked with an
608  * M_AMPDU_MPDU flag so it doesn't come back to us (it also
609  * permits ieee80211_input to optimize re-processing).
610  */
611 static __inline void
612 ampdu_dispatch(struct ieee80211_node *ni, struct mbuf *m)
613 {
614 	m->m_flags |= M_AMPDU_MPDU;	/* bypass normal processing */
615 	/* NB: rssi and noise are ignored w/ M_AMPDU_MPDU set */
616 	(void) ieee80211_input(ni, m, 0, 0);
617 }
618 
619 /*
620  * Dispatch as many frames as possible from the re-order queue.
621  * Frames will always be "at the front"; we process all frames
622  * up to the first empty slot in the window.  On completion we
623  * cleanup state if there are still pending frames in the current
624  * BA window.  We assume the frame at slot 0 is already handled
625  * by the caller; we always start at slot 1.
626  */
627 static void
628 ampdu_rx_dispatch(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni)
629 {
630 	struct ieee80211vap *vap = ni->ni_vap;
631 	struct mbuf *m;
632 	int i;
633 
634 	/* flush run of frames */
635 	for (i = 1; i < rap->rxa_wnd; i++) {
636 		m = rap->rxa_m[i];
637 		if (m == NULL)
638 			break;
639 		rap->rxa_m[i] = NULL;
640 		rap->rxa_qbytes -= m->m_pkthdr.len;
641 		rap->rxa_qframes--;
642 
643 		ampdu_dispatch(ni, m);
644 	}
645 	/*
646 	 * If frames remain, copy the mbuf pointers down so
647 	 * they correspond to the offsets in the new window.
648 	 */
649 	if (rap->rxa_qframes != 0) {
650 		int n = rap->rxa_qframes, j;
651 		for (j = i+1; j < rap->rxa_wnd; j++) {
652 			if (rap->rxa_m[j] != NULL) {
653 				rap->rxa_m[j-i] = rap->rxa_m[j];
654 				rap->rxa_m[j] = NULL;
655 				if (--n == 0)
656 					break;
657 			}
658 		}
659 		KASSERT(n == 0, ("lost %d frames", n));
660 		vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes;
661 	}
662 	/*
663 	 * Adjust the start of the BA window to
664 	 * reflect the frames just dispatched.
665 	 */
666 	rap->rxa_start = IEEE80211_SEQ_ADD(rap->rxa_start, i);
667 	vap->iv_stats.is_ampdu_rx_oor += i;
668 }
669 
670 /*
671  * Dispatch all frames in the A-MPDU re-order queue.
672  */
673 static void
674 ampdu_rx_flush(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
675 {
676 	struct ieee80211vap *vap = ni->ni_vap;
677 	struct mbuf *m;
678 	int i;
679 
680 	for (i = 0; i < rap->rxa_wnd; i++) {
681 		m = rap->rxa_m[i];
682 		if (m == NULL)
683 			continue;
684 		rap->rxa_m[i] = NULL;
685 		rap->rxa_qbytes -= m->m_pkthdr.len;
686 		rap->rxa_qframes--;
687 		vap->iv_stats.is_ampdu_rx_oor++;
688 
689 		ampdu_dispatch(ni, m);
690 		if (rap->rxa_qframes == 0)
691 			break;
692 	}
693 }
694 
695 /*
696  * Dispatch all frames in the A-MPDU re-order queue
697  * preceding the specified sequence number.  This logic
698  * handles window moves due to a received MSDU or BAR.
699  */
700 static void
701 ampdu_rx_flush_upto(struct ieee80211_node *ni,
702 	struct ieee80211_rx_ampdu *rap, ieee80211_seq winstart)
703 {
704 	struct ieee80211vap *vap = ni->ni_vap;
705 	struct mbuf *m;
706 	ieee80211_seq seqno;
707 	int i;
708 
709 	/*
710 	 * Flush any complete MSDU's with a sequence number lower
711 	 * than winstart.  Gaps may exist.  Note that we may actually
712 	 * dispatch frames past winstart if a run continues; this is
713 	 * an optimization that avoids having to do a separate pass
714 	 * to dispatch frames after moving the BA window start.
715 	 */
716 	seqno = rap->rxa_start;
717 	for (i = 0; i < rap->rxa_wnd; i++) {
718 		m = rap->rxa_m[i];
719 		if (m != NULL) {
720 			rap->rxa_m[i] = NULL;
721 			rap->rxa_qbytes -= m->m_pkthdr.len;
722 			rap->rxa_qframes--;
723 			vap->iv_stats.is_ampdu_rx_oor++;
724 
725 			ampdu_dispatch(ni, m);
726 		} else {
727 			if (!IEEE80211_SEQ_BA_BEFORE(seqno, winstart))
728 				break;
729 		}
730 		seqno = IEEE80211_SEQ_INC(seqno);
731 	}
732 	/*
733 	 * If frames remain, copy the mbuf pointers down so
734 	 * they correspond to the offsets in the new window.
735 	 */
736 	if (rap->rxa_qframes != 0) {
737 		int n = rap->rxa_qframes, j;
738 
739 		/* NB: this loop assumes i > 0 and/or rxa_m[0] is NULL */
740 		KASSERT(rap->rxa_m[0] == NULL,
741 		    ("%s: BA window slot 0 occupied", __func__));
742 		for (j = i+1; j < rap->rxa_wnd; j++) {
743 			if (rap->rxa_m[j] != NULL) {
744 				rap->rxa_m[j-i] = rap->rxa_m[j];
745 				rap->rxa_m[j] = NULL;
746 				if (--n == 0)
747 					break;
748 			}
749 		}
750 		KASSERT(n == 0, ("%s: lost %d frames, qframes %d off %d "
751 		    "BA win <%d:%d> winstart %d",
752 		    __func__, n, rap->rxa_qframes, i, rap->rxa_start,
753 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
754 		    winstart));
755 		vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes;
756 	}
757 	/*
758 	 * Move the start of the BA window; we use the
759 	 * sequence number of the last MSDU that was
760 	 * passed up the stack+1 or winstart if stopped on
761 	 * a gap in the reorder buffer.
762 	 */
763 	rap->rxa_start = seqno;
764 }
765 
766 /*
767  * Process a received QoS data frame for an HT station.  Handle
768  * A-MPDU reordering: if this frame is received out of order
769  * and falls within the BA window hold onto it.  Otherwise if
770  * this frame completes a run, flush any pending frames.  We
771  * return 1 if the frame is consumed.  A 0 is returned if
772  * the frame should be processed normally by the caller.
773  */
774 int
775 ieee80211_ampdu_reorder(struct ieee80211_node *ni, struct mbuf *m)
776 {
777 #define	IEEE80211_FC0_QOSDATA \
778 	(IEEE80211_FC0_TYPE_DATA|IEEE80211_FC0_SUBTYPE_QOS|IEEE80211_FC0_VERSION_0)
779 #define	PROCESS		0	/* caller should process frame */
780 #define	CONSUMED	1	/* frame consumed, caller does nothing */
781 	struct ieee80211vap *vap = ni->ni_vap;
782 	struct ieee80211_qosframe *wh;
783 	struct ieee80211_rx_ampdu *rap;
784 	ieee80211_seq rxseq;
785 	uint8_t tid;
786 	int off;
787 
788 	KASSERT((m->m_flags & (M_AMPDU | M_AMPDU_MPDU)) == M_AMPDU,
789 	    ("!a-mpdu or already re-ordered, flags 0x%x", m->m_flags));
790 	KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta"));
791 
792 	/* NB: m_len known to be sufficient */
793 	wh = mtod(m, struct ieee80211_qosframe *);
794 	if (wh->i_fc[0] != IEEE80211_FC0_QOSDATA) {
795 		/*
796 		 * Not QoS data, shouldn't get here but just
797 		 * return it to the caller for processing.
798 		 */
799 		return PROCESS;
800 	}
801 	if (IEEE80211_IS_DSTODS(wh))
802 		tid = ((struct ieee80211_qosframe_addr4 *)wh)->i_qos[0];
803 	else
804 		tid = wh->i_qos[0];
805 	tid &= IEEE80211_QOS_TID;
806 	rap = &ni->ni_rx_ampdu[tid];
807 	if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
808 		/*
809 		 * No ADDBA request yet, don't touch.
810 		 */
811 		return PROCESS;
812 	}
813 	rxseq = le16toh(*(uint16_t *)wh->i_seq);
814 	if ((rxseq & IEEE80211_SEQ_FRAG_MASK) != 0) {
815 		/*
816 		 * Fragments are not allowed; toss.
817 		 */
818 		IEEE80211_DISCARD_MAC(vap,
819 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
820 		    "A-MPDU", "fragment, rxseq 0x%x tid %u%s", rxseq, tid,
821 		    wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
822 		vap->iv_stats.is_ampdu_rx_drop++;
823 		IEEE80211_NODE_STAT(ni, rx_drop);
824 		m_freem(m);
825 		return CONSUMED;
826 	}
827 	rxseq >>= IEEE80211_SEQ_SEQ_SHIFT;
828 	rap->rxa_nframes++;
829 again:
830 	if (rxseq == rap->rxa_start) {
831 		/*
832 		 * First frame in window.
833 		 */
834 		if (rap->rxa_qframes != 0) {
835 			/*
836 			 * Dispatch as many packets as we can.
837 			 */
838 			KASSERT(rap->rxa_m[0] == NULL, ("unexpected dup"));
839 			ampdu_dispatch(ni, m);
840 			ampdu_rx_dispatch(rap, ni);
841 			return CONSUMED;
842 		} else {
843 			/*
844 			 * In order; advance window and notify
845 			 * caller to dispatch directly.
846 			 */
847 			rap->rxa_start = IEEE80211_SEQ_INC(rxseq);
848 			return PROCESS;
849 		}
850 	}
851 	/*
852 	 * Frame is out of order; store if in the BA window.
853 	 */
854 	/* calculate offset in BA window */
855 	off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start);
856 	if (off < rap->rxa_wnd) {
857 		/*
858 		 * Common case (hopefully): in the BA window.
859 		 * Sec 9.10.7.6.2 a) (p.137)
860 		 */
861 
862 		/*
863 		 * Check for frames sitting too long in the reorder queue.
864 		 * This should only ever happen if frames are not delivered
865 		 * without the sender otherwise notifying us (e.g. with a
866 		 * BAR to move the window).  Typically this happens because
867 		 * of vendor bugs that cause the sequence number to jump.
868 		 * When this happens we get a gap in the reorder queue that
869 		 * leaves frame sitting on the queue until they get pushed
870 		 * out due to window moves.  When the vendor does not send
871 		 * BAR this move only happens due to explicit packet sends
872 		 *
873 		 * NB: we only track the time of the oldest frame in the
874 		 * reorder q; this means that if we flush we might push
875 		 * frames that still "new"; if this happens then subsequent
876 		 * frames will result in BA window moves which cost something
877 		 * but is still better than a big throughput dip.
878 		 */
879 		if (rap->rxa_qframes != 0) {
880 			/* XXX honor batimeout? */
881 			if (ticks - rap->rxa_age > ieee80211_ampdu_age) {
882 				/*
883 				 * Too long since we received the first
884 				 * frame; flush the reorder buffer.
885 				 */
886 				if (rap->rxa_qframes != 0) {
887 					vap->iv_stats.is_ampdu_rx_age +=
888 					    rap->rxa_qframes;
889 					ampdu_rx_flush(ni, rap);
890 				}
891 				rap->rxa_start = IEEE80211_SEQ_INC(rxseq);
892 				return PROCESS;
893 			}
894 		} else {
895 			/*
896 			 * First frame, start aging timer.
897 			 */
898 			rap->rxa_age = ticks;
899 		}
900 
901 		/* save packet */
902 		if (rap->rxa_m[off] == NULL) {
903 			rap->rxa_m[off] = m;
904 			rap->rxa_qframes++;
905 			rap->rxa_qbytes += m->m_pkthdr.len;
906 			vap->iv_stats.is_ampdu_rx_reorder++;
907 		} else {
908 			IEEE80211_DISCARD_MAC(vap,
909 			    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
910 			    ni->ni_macaddr, "a-mpdu duplicate",
911 			    "seqno %u tid %u BA win <%u:%u>",
912 			    rxseq, tid, rap->rxa_start,
913 			    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1));
914 			vap->iv_stats.is_rx_dup++;
915 			IEEE80211_NODE_STAT(ni, rx_dup);
916 			m_freem(m);
917 		}
918 		return CONSUMED;
919 	}
920 	if (off < IEEE80211_SEQ_BA_RANGE) {
921 		/*
922 		 * Outside the BA window, but within range;
923 		 * flush the reorder q and move the window.
924 		 * Sec 9.10.7.6.2 b) (p.138)
925 		 */
926 		IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
927 		    "move BA win <%u:%u> (%u frames) rxseq %u tid %u",
928 		    rap->rxa_start,
929 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
930 		    rap->rxa_qframes, rxseq, tid);
931 		vap->iv_stats.is_ampdu_rx_move++;
932 
933 		/*
934 		 * The spec says to flush frames up to but not including:
935 		 * 	WinStart_B = rxseq - rap->rxa_wnd + 1
936 		 * Then insert the frame or notify the caller to process
937 		 * it immediately.  We can safely do this by just starting
938 		 * over again because we know the frame will now be within
939 		 * the BA window.
940 		 */
941 		/* NB: rxa_wnd known to be >0 */
942 		ampdu_rx_flush_upto(ni, rap,
943 		    IEEE80211_SEQ_SUB(rxseq, rap->rxa_wnd-1));
944 		goto again;
945 	} else {
946 		/*
947 		 * Outside the BA window and out of range; toss.
948 		 * Sec 9.10.7.6.2 c) (p.138)
949 		 */
950 		IEEE80211_DISCARD_MAC(vap,
951 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
952 		    "MPDU", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s",
953 		    rap->rxa_start,
954 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
955 		    rap->rxa_qframes, rxseq, tid,
956 		    wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
957 		vap->iv_stats.is_ampdu_rx_drop++;
958 		IEEE80211_NODE_STAT(ni, rx_drop);
959 		m_freem(m);
960 		return CONSUMED;
961 	}
962 #undef CONSUMED
963 #undef PROCESS
964 #undef IEEE80211_FC0_QOSDATA
965 }
966 
967 /*
968  * Process a BAR ctl frame.  Dispatch all frames up to
969  * the sequence number of the frame.  If this frame is
970  * out of range it's discarded.
971  */
972 void
973 ieee80211_recv_bar(struct ieee80211_node *ni, struct mbuf *m0)
974 {
975 	struct ieee80211vap *vap = ni->ni_vap;
976 	struct ieee80211_frame_bar *wh;
977 	struct ieee80211_rx_ampdu *rap;
978 	ieee80211_seq rxseq;
979 	int tid, off;
980 
981 	if (!ieee80211_recv_bar_ena) {
982 #if 0
983 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_11N,
984 		    ni->ni_macaddr, "BAR", "%s", "processing disabled");
985 #endif
986 		vap->iv_stats.is_ampdu_bar_bad++;
987 		return;
988 	}
989 	wh = mtod(m0, struct ieee80211_frame_bar *);
990 	/* XXX check basic BAR */
991 	tid = MS(le16toh(wh->i_ctl), IEEE80211_BAR_TID);
992 	rap = &ni->ni_rx_ampdu[tid];
993 	if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
994 		/*
995 		 * No ADDBA request yet, don't touch.
996 		 */
997 		IEEE80211_DISCARD_MAC(vap,
998 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
999 		    ni->ni_macaddr, "BAR", "no BA stream, tid %u", tid);
1000 		vap->iv_stats.is_ampdu_bar_bad++;
1001 		return;
1002 	}
1003 	vap->iv_stats.is_ampdu_bar_rx++;
1004 	rxseq = le16toh(wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT;
1005 	if (rxseq == rap->rxa_start)
1006 		return;
1007 	/* calculate offset in BA window */
1008 	off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start);
1009 	if (off < IEEE80211_SEQ_BA_RANGE) {
1010 		/*
1011 		 * Flush the reorder q up to rxseq and move the window.
1012 		 * Sec 9.10.7.6.3 a) (p.138)
1013 		 */
1014 		IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
1015 		    "BAR moves BA win <%u:%u> (%u frames) rxseq %u tid %u",
1016 		    rap->rxa_start,
1017 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
1018 		    rap->rxa_qframes, rxseq, tid);
1019 		vap->iv_stats.is_ampdu_bar_move++;
1020 
1021 		ampdu_rx_flush_upto(ni, rap, rxseq);
1022 		if (off >= rap->rxa_wnd) {
1023 			/*
1024 			 * BAR specifies a window start to the right of BA
1025 			 * window; we must move it explicitly since
1026 			 * ampdu_rx_flush_upto will not.
1027 			 */
1028 			rap->rxa_start = rxseq;
1029 		}
1030 	} else {
1031 		/*
1032 		 * Out of range; toss.
1033 		 * Sec 9.10.7.6.3 b) (p.138)
1034 		 */
1035 		IEEE80211_DISCARD_MAC(vap,
1036 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
1037 		    "BAR", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s",
1038 		    rap->rxa_start,
1039 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
1040 		    rap->rxa_qframes, rxseq, tid,
1041 		    wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
1042 		vap->iv_stats.is_ampdu_bar_oow++;
1043 		IEEE80211_NODE_STAT(ni, rx_drop);
1044 	}
1045 }
1046 
1047 /*
1048  * Setup HT-specific state in a node.  Called only
1049  * when HT use is negotiated so we don't do extra
1050  * work for temporary and/or legacy sta's.
1051  */
1052 void
1053 ieee80211_ht_node_init(struct ieee80211_node *ni)
1054 {
1055 	struct ieee80211_tx_ampdu *tap;
1056 	int tid;
1057 
1058 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
1059 	    ni,
1060 	    "%s: called (%p)",
1061 	    __func__,
1062 	    ni);
1063 
1064 	if (ni->ni_flags & IEEE80211_NODE_HT) {
1065 		/*
1066 		 * Clean AMPDU state on re-associate.  This handles the case
1067 		 * where a station leaves w/o notifying us and then returns
1068 		 * before node is reaped for inactivity.
1069 		 */
1070 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
1071 		    ni,
1072 		    "%s: calling cleanup (%p)",
1073 		    __func__, ni);
1074 		ieee80211_ht_node_cleanup(ni);
1075 	}
1076 	for (tid = 0; tid < WME_NUM_TID; tid++) {
1077 		tap = &ni->ni_tx_ampdu[tid];
1078 		tap->txa_tid = tid;
1079 		tap->txa_ni = ni;
1080 		ieee80211_txampdu_init_pps(tap);
1081 		/* NB: further initialization deferred */
1082 	}
1083 	ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU;
1084 }
1085 
1086 /*
1087  * Cleanup HT-specific state in a node.  Called only
1088  * when HT use has been marked.
1089  */
1090 void
1091 ieee80211_ht_node_cleanup(struct ieee80211_node *ni)
1092 {
1093 	struct ieee80211com *ic = ni->ni_ic;
1094 	int i;
1095 
1096 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
1097 	    ni,
1098 	    "%s: called (%p)",
1099 	    __func__, ni);
1100 
1101 	KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT node"));
1102 
1103 	/* XXX optimize this */
1104 	for (i = 0; i < WME_NUM_TID; i++) {
1105 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[i];
1106 		if (tap->txa_flags & IEEE80211_AGGR_SETUP)
1107 			ampdu_tx_stop(tap);
1108 	}
1109 	for (i = 0; i < WME_NUM_TID; i++)
1110 		ic->ic_ampdu_rx_stop(ni, &ni->ni_rx_ampdu[i]);
1111 
1112 	ni->ni_htcap = 0;
1113 	ni->ni_flags &= ~IEEE80211_NODE_HT_ALL;
1114 }
1115 
1116 /*
1117  * Age out HT resources for a station.
1118  */
1119 void
1120 ieee80211_ht_node_age(struct ieee80211_node *ni)
1121 {
1122 	struct ieee80211vap *vap = ni->ni_vap;
1123 	uint8_t tid;
1124 
1125 	KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta"));
1126 
1127 	for (tid = 0; tid < WME_NUM_TID; tid++) {
1128 		struct ieee80211_rx_ampdu *rap;
1129 
1130 		rap = &ni->ni_rx_ampdu[tid];
1131 		if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0)
1132 			continue;
1133 		if (rap->rxa_qframes == 0)
1134 			continue;
1135 		/*
1136 		 * Check for frames sitting too long in the reorder queue.
1137 		 * See above for more details on what's happening here.
1138 		 */
1139 		/* XXX honor batimeout? */
1140 		if (ticks - rap->rxa_age > ieee80211_ampdu_age) {
1141 			/*
1142 			 * Too long since we received the first
1143 			 * frame; flush the reorder buffer.
1144 			 */
1145 			vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes;
1146 			ampdu_rx_flush(ni, rap);
1147 		}
1148 	}
1149 }
1150 
1151 static struct ieee80211_channel *
1152 findhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int htflags)
1153 {
1154 	return ieee80211_find_channel(ic, c->ic_freq,
1155 	    (c->ic_flags &~ IEEE80211_CHAN_HT) | htflags);
1156 }
1157 
1158 /*
1159  * Adjust a channel to be HT/non-HT according to the vap's configuration.
1160  */
1161 struct ieee80211_channel *
1162 ieee80211_ht_adjust_channel(struct ieee80211com *ic,
1163 	struct ieee80211_channel *chan, int flags)
1164 {
1165 	struct ieee80211_channel *c;
1166 
1167 	if (flags & IEEE80211_FHT_HT) {
1168 		/* promote to HT if possible */
1169 		if (flags & IEEE80211_FHT_USEHT40) {
1170 			if (!IEEE80211_IS_CHAN_HT40(chan)) {
1171 				/* NB: arbitrarily pick ht40+ over ht40- */
1172 				c = findhtchan(ic, chan, IEEE80211_CHAN_HT40U);
1173 				if (c == NULL)
1174 					c = findhtchan(ic, chan,
1175 						IEEE80211_CHAN_HT40D);
1176 				if (c == NULL)
1177 					c = findhtchan(ic, chan,
1178 						IEEE80211_CHAN_HT20);
1179 				if (c != NULL)
1180 					chan = c;
1181 			}
1182 		} else if (!IEEE80211_IS_CHAN_HT20(chan)) {
1183 			c = findhtchan(ic, chan, IEEE80211_CHAN_HT20);
1184 			if (c != NULL)
1185 				chan = c;
1186 		}
1187 	} else if (IEEE80211_IS_CHAN_HT(chan)) {
1188 		/* demote to legacy, HT use is disabled */
1189 		c = ieee80211_find_channel(ic, chan->ic_freq,
1190 		    chan->ic_flags &~ IEEE80211_CHAN_HT);
1191 		if (c != NULL)
1192 			chan = c;
1193 	}
1194 	return chan;
1195 }
1196 
1197 /*
1198  * Setup HT-specific state for a legacy WDS peer.
1199  */
1200 void
1201 ieee80211_ht_wds_init(struct ieee80211_node *ni)
1202 {
1203 	struct ieee80211vap *vap = ni->ni_vap;
1204 	struct ieee80211_tx_ampdu *tap;
1205 	int tid;
1206 
1207 	KASSERT(vap->iv_flags_ht & IEEE80211_FHT_HT, ("no HT requested"));
1208 
1209 	/* XXX check scan cache in case peer has an ap and we have info */
1210 	/*
1211 	 * If setup with a legacy channel; locate an HT channel.
1212 	 * Otherwise if the inherited channel (from a companion
1213 	 * AP) is suitable use it so we use the same location
1214 	 * for the extension channel).
1215 	 */
1216 	ni->ni_chan = ieee80211_ht_adjust_channel(ni->ni_ic,
1217 	    ni->ni_chan, ieee80211_htchanflags(ni->ni_chan));
1218 
1219 	ni->ni_htcap = 0;
1220 	if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)
1221 		ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI20;
1222 	if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
1223 		ni->ni_htcap |= IEEE80211_HTCAP_CHWIDTH40;
1224 		ni->ni_chw = 40;
1225 		if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
1226 			ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_ABOVE;
1227 		else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
1228 			ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_BELOW;
1229 		if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)
1230 			ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI40;
1231 	} else {
1232 		ni->ni_chw = 20;
1233 		ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_NONE;
1234 	}
1235 	ni->ni_htctlchan = ni->ni_chan->ic_ieee;
1236 	if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
1237 		ni->ni_flags |= IEEE80211_NODE_RIFS;
1238 	/* XXX does it make sense to enable SMPS? */
1239 
1240 	ni->ni_htopmode = 0;		/* XXX need protection state */
1241 	ni->ni_htstbc = 0;		/* XXX need info */
1242 
1243 	for (tid = 0; tid < WME_NUM_TID; tid++) {
1244 		tap = &ni->ni_tx_ampdu[tid];
1245 		tap->txa_tid = tid;
1246 		ieee80211_txampdu_init_pps(tap);
1247 	}
1248 	/* NB: AMPDU tx/rx governed by IEEE80211_FHT_AMPDU_{TX,RX} */
1249 	ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU;
1250 }
1251 
1252 /*
1253  * Notify hostap vaps of a change in the HTINFO ie.
1254  */
1255 static void
1256 htinfo_notify(struct ieee80211com *ic)
1257 {
1258 	struct ieee80211vap *vap;
1259 	int first = 1;
1260 
1261 	IEEE80211_LOCK_ASSERT(ic);
1262 
1263 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1264 		if (vap->iv_opmode != IEEE80211_M_HOSTAP)
1265 			continue;
1266 		if (vap->iv_state != IEEE80211_S_RUN ||
1267 		    !IEEE80211_IS_CHAN_HT(vap->iv_bss->ni_chan))
1268 			continue;
1269 		if (first) {
1270 			IEEE80211_NOTE(vap,
1271 			    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N,
1272 			    vap->iv_bss,
1273 			    "HT bss occupancy change: %d sta, %d ht, "
1274 			    "%d ht40%s, HT protmode now 0x%x"
1275 			    , ic->ic_sta_assoc
1276 			    , ic->ic_ht_sta_assoc
1277 			    , ic->ic_ht40_sta_assoc
1278 			    , (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) ?
1279 				 ", non-HT sta present" : ""
1280 			    , ic->ic_curhtprotmode);
1281 			first = 0;
1282 		}
1283 		ieee80211_beacon_notify(vap, IEEE80211_BEACON_HTINFO);
1284 	}
1285 }
1286 
1287 /*
1288  * Calculate HT protection mode from current
1289  * state and handle updates.
1290  */
1291 static void
1292 htinfo_update(struct ieee80211com *ic)
1293 {
1294 	uint8_t protmode;
1295 
1296 	if (ic->ic_sta_assoc != ic->ic_ht_sta_assoc) {
1297 		protmode = IEEE80211_HTINFO_OPMODE_MIXED
1298 			 | IEEE80211_HTINFO_NONHT_PRESENT;
1299 	} else if (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) {
1300 		protmode = IEEE80211_HTINFO_OPMODE_PROTOPT
1301 			 | IEEE80211_HTINFO_NONHT_PRESENT;
1302 	} else if (ic->ic_bsschan != IEEE80211_CHAN_ANYC &&
1303 	    IEEE80211_IS_CHAN_HT40(ic->ic_bsschan) &&
1304 	    ic->ic_sta_assoc != ic->ic_ht40_sta_assoc) {
1305 		protmode = IEEE80211_HTINFO_OPMODE_HT20PR;
1306 	} else {
1307 		protmode = IEEE80211_HTINFO_OPMODE_PURE;
1308 	}
1309 	if (protmode != ic->ic_curhtprotmode) {
1310 		ic->ic_curhtprotmode = protmode;
1311 		htinfo_notify(ic);
1312 	}
1313 }
1314 
1315 /*
1316  * Handle an HT station joining a BSS.
1317  */
1318 void
1319 ieee80211_ht_node_join(struct ieee80211_node *ni)
1320 {
1321 	struct ieee80211com *ic = ni->ni_ic;
1322 
1323 	IEEE80211_LOCK_ASSERT(ic);
1324 
1325 	if (ni->ni_flags & IEEE80211_NODE_HT) {
1326 		ic->ic_ht_sta_assoc++;
1327 		if (ni->ni_chw == 40)
1328 			ic->ic_ht40_sta_assoc++;
1329 	}
1330 	htinfo_update(ic);
1331 }
1332 
1333 /*
1334  * Handle an HT station leaving a BSS.
1335  */
1336 void
1337 ieee80211_ht_node_leave(struct ieee80211_node *ni)
1338 {
1339 	struct ieee80211com *ic = ni->ni_ic;
1340 
1341 	IEEE80211_LOCK_ASSERT(ic);
1342 
1343 	if (ni->ni_flags & IEEE80211_NODE_HT) {
1344 		ic->ic_ht_sta_assoc--;
1345 		if (ni->ni_chw == 40)
1346 			ic->ic_ht40_sta_assoc--;
1347 	}
1348 	htinfo_update(ic);
1349 }
1350 
1351 /*
1352  * Public version of htinfo_update; used for processing
1353  * beacon frames from overlapping bss.
1354  *
1355  * Caller can specify either IEEE80211_HTINFO_OPMODE_MIXED
1356  * (on receipt of a beacon that advertises MIXED) or
1357  * IEEE80211_HTINFO_OPMODE_PROTOPT (on receipt of a beacon
1358  * from an overlapping legacy bss).  We treat MIXED with
1359  * a higher precedence than PROTOPT (i.e. we will not change
1360  * change PROTOPT -> MIXED; only MIXED -> PROTOPT).  This
1361  * corresponds to how we handle things in htinfo_update.
1362  */
1363 void
1364 ieee80211_htprot_update(struct ieee80211com *ic, int protmode)
1365 {
1366 #define	OPMODE(x)	SM(x, IEEE80211_HTINFO_OPMODE)
1367 	IEEE80211_LOCK(ic);
1368 
1369 	/* track non-HT station presence */
1370 	KASSERT(protmode & IEEE80211_HTINFO_NONHT_PRESENT,
1371 	    ("protmode 0x%x", protmode));
1372 	ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR;
1373 	ic->ic_lastnonht = ticks;
1374 
1375 	if (protmode != ic->ic_curhtprotmode &&
1376 	    (OPMODE(ic->ic_curhtprotmode) != IEEE80211_HTINFO_OPMODE_MIXED ||
1377 	     OPMODE(protmode) == IEEE80211_HTINFO_OPMODE_PROTOPT)) {
1378 		/* push beacon update */
1379 		ic->ic_curhtprotmode = protmode;
1380 		htinfo_notify(ic);
1381 	}
1382 	IEEE80211_UNLOCK(ic);
1383 #undef OPMODE
1384 }
1385 
1386 /*
1387  * Time out presence of an overlapping bss with non-HT
1388  * stations.  When operating in hostap mode we listen for
1389  * beacons from other stations and if we identify a non-HT
1390  * station is present we update the opmode field of the
1391  * HTINFO ie.  To identify when all non-HT stations are
1392  * gone we time out this condition.
1393  */
1394 void
1395 ieee80211_ht_timeout(struct ieee80211com *ic)
1396 {
1397 	IEEE80211_LOCK_ASSERT(ic);
1398 
1399 	if ((ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) &&
1400 	    ieee80211_time_after(ticks, ic->ic_lastnonht + IEEE80211_NONHT_PRESENT_AGE)) {
1401 #if 0
1402 		IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
1403 		    "%s", "time out non-HT STA present on channel");
1404 #endif
1405 		ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR;
1406 		htinfo_update(ic);
1407 	}
1408 }
1409 
1410 /*
1411  * Process an 802.11n HT capabilities ie.
1412  */
1413 void
1414 ieee80211_parse_htcap(struct ieee80211_node *ni, const uint8_t *ie)
1415 {
1416 	if (ie[0] == IEEE80211_ELEMID_VENDOR) {
1417 		/*
1418 		 * Station used Vendor OUI ie to associate;
1419 		 * mark the node so when we respond we'll use
1420 		 * the Vendor OUI's and not the standard ie's.
1421 		 */
1422 		ni->ni_flags |= IEEE80211_NODE_HTCOMPAT;
1423 		ie += 4;
1424 	} else
1425 		ni->ni_flags &= ~IEEE80211_NODE_HTCOMPAT;
1426 
1427 	ni->ni_htcap = le16dec(ie +
1428 		__offsetof(struct ieee80211_ie_htcap, hc_cap));
1429 	ni->ni_htparam = ie[__offsetof(struct ieee80211_ie_htcap, hc_param)];
1430 }
1431 
1432 static void
1433 htinfo_parse(struct ieee80211_node *ni,
1434 	const struct ieee80211_ie_htinfo *htinfo)
1435 {
1436 	uint16_t w;
1437 
1438 	ni->ni_htctlchan = htinfo->hi_ctrlchannel;
1439 	ni->ni_ht2ndchan = SM(htinfo->hi_byte1, IEEE80211_HTINFO_2NDCHAN);
1440 	w = le16dec(&htinfo->hi_byte2);
1441 	ni->ni_htopmode = SM(w, IEEE80211_HTINFO_OPMODE);
1442 	w = le16dec(&htinfo->hi_byte45);
1443 	ni->ni_htstbc = SM(w, IEEE80211_HTINFO_BASIC_STBCMCS);
1444 }
1445 
1446 /*
1447  * Parse an 802.11n HT info ie and save useful information
1448  * to the node state.  Note this does not effect any state
1449  * changes such as for channel width change.
1450  */
1451 void
1452 ieee80211_parse_htinfo(struct ieee80211_node *ni, const uint8_t *ie)
1453 {
1454 	if (ie[0] == IEEE80211_ELEMID_VENDOR)
1455 		ie += 4;
1456 	htinfo_parse(ni, (const struct ieee80211_ie_htinfo *) ie);
1457 }
1458 
1459 /*
1460  * Handle 11n channel switch.  Use the received HT ie's to
1461  * identify the right channel to use.  If we cannot locate it
1462  * in the channel table then fallback to legacy operation.
1463  * Note that we use this information to identify the node's
1464  * channel only; the caller is responsible for insuring any
1465  * required channel change is done (e.g. in sta mode when
1466  * parsing the contents of a beacon frame).
1467  */
1468 static int
1469 htinfo_update_chw(struct ieee80211_node *ni, int htflags)
1470 {
1471 	struct ieee80211com *ic = ni->ni_ic;
1472 	struct ieee80211_channel *c;
1473 	int chanflags;
1474 	int ret = 0;
1475 
1476 	chanflags = (ni->ni_chan->ic_flags &~ IEEE80211_CHAN_HT) | htflags;
1477 	if (chanflags != ni->ni_chan->ic_flags) {
1478 		/* XXX not right for ht40- */
1479 		c = ieee80211_find_channel(ic, ni->ni_chan->ic_freq, chanflags);
1480 		if (c == NULL && (htflags & IEEE80211_CHAN_HT40)) {
1481 			/*
1482 			 * No HT40 channel entry in our table; fall back
1483 			 * to HT20 operation.  This should not happen.
1484 			 */
1485 			c = findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT20);
1486 #if 0
1487 			IEEE80211_NOTE(ni->ni_vap,
1488 			    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni,
1489 			    "no HT40 channel (freq %u), falling back to HT20",
1490 			    ni->ni_chan->ic_freq);
1491 #endif
1492 			/* XXX stat */
1493 		}
1494 		if (c != NULL && c != ni->ni_chan) {
1495 			IEEE80211_NOTE(ni->ni_vap,
1496 			    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni,
1497 			    "switch station to HT%d channel %u/0x%x",
1498 			    IEEE80211_IS_CHAN_HT40(c) ? 40 : 20,
1499 			    c->ic_freq, c->ic_flags);
1500 			ni->ni_chan = c;
1501 			ret = 1;
1502 		}
1503 		/* NB: caller responsible for forcing any channel change */
1504 	}
1505 	/* update node's tx channel width */
1506 	ni->ni_chw = IEEE80211_IS_CHAN_HT40(ni->ni_chan)? 40 : 20;
1507 	return (ret);
1508 }
1509 
1510 /*
1511  * Update 11n MIMO PS state according to received htcap.
1512  */
1513 static __inline int
1514 htcap_update_mimo_ps(struct ieee80211_node *ni)
1515 {
1516 	uint16_t oflags = ni->ni_flags;
1517 
1518 	switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
1519 	case IEEE80211_HTCAP_SMPS_DYNAMIC:
1520 		ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
1521 		ni->ni_flags |= IEEE80211_NODE_MIMO_RTS;
1522 		break;
1523 	case IEEE80211_HTCAP_SMPS_ENA:
1524 		ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
1525 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
1526 		break;
1527 	case IEEE80211_HTCAP_SMPS_OFF:
1528 	default:		/* disable on rx of reserved value */
1529 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS;
1530 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
1531 		break;
1532 	}
1533 	return (oflags ^ ni->ni_flags);
1534 }
1535 
1536 /*
1537  * Update short GI state according to received htcap
1538  * and local settings.
1539  */
1540 static __inline void
1541 htcap_update_shortgi(struct ieee80211_node *ni)
1542 {
1543 	struct ieee80211vap *vap = ni->ni_vap;
1544 
1545 	ni->ni_flags &= ~(IEEE80211_NODE_SGI20|IEEE80211_NODE_SGI40);
1546 	if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) &&
1547 	    (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20))
1548 		ni->ni_flags |= IEEE80211_NODE_SGI20;
1549 	if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) &&
1550 	    (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40))
1551 		ni->ni_flags |= IEEE80211_NODE_SGI40;
1552 }
1553 
1554 /*
1555  * Parse and update HT-related state extracted from
1556  * the HT cap and info ie's.
1557  */
1558 int
1559 ieee80211_ht_updateparams(struct ieee80211_node *ni,
1560 	const uint8_t *htcapie, const uint8_t *htinfoie)
1561 {
1562 	struct ieee80211vap *vap = ni->ni_vap;
1563 	const struct ieee80211_ie_htinfo *htinfo;
1564 	int htflags;
1565 	int ret = 0;
1566 
1567 	ieee80211_parse_htcap(ni, htcapie);
1568 	if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS)
1569 		htcap_update_mimo_ps(ni);
1570 	htcap_update_shortgi(ni);
1571 
1572 	if (htinfoie[0] == IEEE80211_ELEMID_VENDOR)
1573 		htinfoie += 4;
1574 	htinfo = (const struct ieee80211_ie_htinfo *) htinfoie;
1575 	htinfo_parse(ni, htinfo);
1576 
1577 	htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ?
1578 	    IEEE80211_CHAN_HT20 : 0;
1579 	/* NB: honor operating mode constraint */
1580 	if ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH_2040) &&
1581 	    (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) {
1582 		if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_ABOVE)
1583 			htflags = IEEE80211_CHAN_HT40U;
1584 		else if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_BELOW)
1585 			htflags = IEEE80211_CHAN_HT40D;
1586 	}
1587 	if (htinfo_update_chw(ni, htflags))
1588 		ret = 1;
1589 
1590 	if ((htinfo->hi_byte1 & IEEE80211_HTINFO_RIFSMODE_PERM) &&
1591 	    (vap->iv_flags_ht & IEEE80211_FHT_RIFS))
1592 		ni->ni_flags |= IEEE80211_NODE_RIFS;
1593 	else
1594 		ni->ni_flags &= ~IEEE80211_NODE_RIFS;
1595 
1596 	return (ret);
1597 }
1598 
1599 /*
1600  * Parse and update HT-related state extracted from the HT cap ie
1601  * for a station joining an HT BSS.
1602  */
1603 void
1604 ieee80211_ht_updatehtcap(struct ieee80211_node *ni, const uint8_t *htcapie)
1605 {
1606 	struct ieee80211vap *vap = ni->ni_vap;
1607 	int htflags;
1608 
1609 	ieee80211_parse_htcap(ni, htcapie);
1610 	if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS)
1611 		htcap_update_mimo_ps(ni);
1612 	htcap_update_shortgi(ni);
1613 
1614 	/* NB: honor operating mode constraint */
1615 	/* XXX 40 MHz intolerant */
1616 	htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ?
1617 	    IEEE80211_CHAN_HT20 : 0;
1618 	if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) &&
1619 	    (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) {
1620 		if (IEEE80211_IS_CHAN_HT40U(vap->iv_bss->ni_chan))
1621 			htflags = IEEE80211_CHAN_HT40U;
1622 		else if (IEEE80211_IS_CHAN_HT40D(vap->iv_bss->ni_chan))
1623 			htflags = IEEE80211_CHAN_HT40D;
1624 	}
1625 	(void) htinfo_update_chw(ni, htflags);
1626 }
1627 
1628 /*
1629  * Install received HT rate set by parsing the HT cap ie.
1630  */
1631 int
1632 ieee80211_setup_htrates(struct ieee80211_node *ni, const uint8_t *ie, int flags)
1633 {
1634 	struct ieee80211com *ic = ni->ni_ic;
1635 	struct ieee80211vap *vap = ni->ni_vap;
1636 	const struct ieee80211_ie_htcap *htcap;
1637 	struct ieee80211_htrateset *rs;
1638 	int i, maxequalmcs, maxunequalmcs;
1639 
1640 	maxequalmcs = ic->ic_txstream * 8 - 1;
1641 	if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) {
1642 		if (ic->ic_txstream >= 2)
1643 			maxunequalmcs = 38;
1644 		if (ic->ic_txstream >= 3)
1645 			maxunequalmcs = 52;
1646 		if (ic->ic_txstream >= 4)
1647 			maxunequalmcs = 76;
1648 	} else
1649 		maxunequalmcs = 0;
1650 
1651 	rs = &ni->ni_htrates;
1652 	memset(rs, 0, sizeof(*rs));
1653 	if (ie != NULL) {
1654 		if (ie[0] == IEEE80211_ELEMID_VENDOR)
1655 			ie += 4;
1656 		htcap = (const struct ieee80211_ie_htcap *) ie;
1657 		for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) {
1658 			if (isclr(htcap->hc_mcsset, i))
1659 				continue;
1660 			if (rs->rs_nrates == IEEE80211_HTRATE_MAXSIZE) {
1661 				IEEE80211_NOTE(vap,
1662 				    IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
1663 				    "WARNING, HT rate set too large; only "
1664 				    "using %u rates", IEEE80211_HTRATE_MAXSIZE);
1665 				vap->iv_stats.is_rx_rstoobig++;
1666 				break;
1667 			}
1668 			if (i <= 31 && i > maxequalmcs)
1669 				continue;
1670 			if (i == 32 &&
1671 			    (ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0)
1672 				continue;
1673 			if (i > 32 && i > maxunequalmcs)
1674 				continue;
1675 			rs->rs_rates[rs->rs_nrates++] = i;
1676 		}
1677 	}
1678 	return ieee80211_fix_rate(ni, (struct ieee80211_rateset *) rs, flags);
1679 }
1680 
1681 /*
1682  * Mark rates in a node's HT rate set as basic according
1683  * to the information in the supplied HT info ie.
1684  */
1685 void
1686 ieee80211_setup_basic_htrates(struct ieee80211_node *ni, const uint8_t *ie)
1687 {
1688 	const struct ieee80211_ie_htinfo *htinfo;
1689 	struct ieee80211_htrateset *rs;
1690 	int i, j;
1691 
1692 	if (ie[0] == IEEE80211_ELEMID_VENDOR)
1693 		ie += 4;
1694 	htinfo = (const struct ieee80211_ie_htinfo *) ie;
1695 	rs = &ni->ni_htrates;
1696 	if (rs->rs_nrates == 0) {
1697 		IEEE80211_NOTE(ni->ni_vap,
1698 		    IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
1699 		    "%s", "WARNING, empty HT rate set");
1700 		return;
1701 	}
1702 	for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) {
1703 		if (isclr(htinfo->hi_basicmcsset, i))
1704 			continue;
1705 		for (j = 0; j < rs->rs_nrates; j++)
1706 			if ((rs->rs_rates[j] & IEEE80211_RATE_VAL) == i)
1707 				rs->rs_rates[j] |= IEEE80211_RATE_BASIC;
1708 	}
1709 }
1710 
1711 static void
1712 ampdu_tx_setup(struct ieee80211_tx_ampdu *tap)
1713 {
1714 	callout_init(&tap->txa_timer, 1);
1715 	tap->txa_flags |= IEEE80211_AGGR_SETUP;
1716 	tap->txa_lastsample = ticks;
1717 }
1718 
1719 static void
1720 ampdu_tx_stop(struct ieee80211_tx_ampdu *tap)
1721 {
1722 	struct ieee80211_node *ni = tap->txa_ni;
1723 	struct ieee80211com *ic = ni->ni_ic;
1724 
1725 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
1726 	    tap->txa_ni,
1727 	    "%s: called",
1728 	    __func__);
1729 
1730 	KASSERT(tap->txa_flags & IEEE80211_AGGR_SETUP,
1731 	    ("txa_flags 0x%x tid %d ac %d", tap->txa_flags, tap->txa_tid,
1732 	    TID_TO_WME_AC(tap->txa_tid)));
1733 
1734 	/*
1735 	 * Stop BA stream if setup so driver has a chance
1736 	 * to reclaim any resources it might have allocated.
1737 	 */
1738 	ic->ic_addba_stop(ni, tap);
1739 	/*
1740 	 * Stop any pending BAR transmit.
1741 	 */
1742 	bar_stop_timer(tap);
1743 
1744 	/*
1745 	 * Reset packet estimate.
1746 	 */
1747 	ieee80211_txampdu_init_pps(tap);
1748 
1749 	/* NB: clearing NAK means we may re-send ADDBA */
1750 	tap->txa_flags &= ~(IEEE80211_AGGR_SETUP | IEEE80211_AGGR_NAK);
1751 }
1752 
1753 /*
1754  * ADDBA response timeout.
1755  *
1756  * If software aggregation and per-TID queue management was done here,
1757  * that queue would be unpaused after the ADDBA timeout occurs.
1758  */
1759 static void
1760 addba_timeout(void *arg)
1761 {
1762 	struct ieee80211_tx_ampdu *tap = arg;
1763 	struct ieee80211_node *ni = tap->txa_ni;
1764 	struct ieee80211com *ic = ni->ni_ic;
1765 
1766 	/* XXX ? */
1767 	tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND;
1768 	tap->txa_attempts++;
1769 	ic->ic_addba_response_timeout(ni, tap);
1770 }
1771 
1772 static void
1773 addba_start_timeout(struct ieee80211_tx_ampdu *tap)
1774 {
1775 	/* XXX use CALLOUT_PENDING instead? */
1776 	callout_reset(&tap->txa_timer, ieee80211_addba_timeout,
1777 	    addba_timeout, tap);
1778 	tap->txa_flags |= IEEE80211_AGGR_XCHGPEND;
1779 	tap->txa_nextrequest = ticks + ieee80211_addba_timeout;
1780 }
1781 
1782 static void
1783 addba_stop_timeout(struct ieee80211_tx_ampdu *tap)
1784 {
1785 	/* XXX use CALLOUT_PENDING instead? */
1786 	if (tap->txa_flags & IEEE80211_AGGR_XCHGPEND) {
1787 		callout_stop(&tap->txa_timer);
1788 		tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND;
1789 	}
1790 }
1791 
1792 static void
1793 null_addba_response_timeout(struct ieee80211_node *ni,
1794     struct ieee80211_tx_ampdu *tap)
1795 {
1796 }
1797 
1798 /*
1799  * Default method for requesting A-MPDU tx aggregation.
1800  * We setup the specified state block and start a timer
1801  * to wait for an ADDBA response frame.
1802  */
1803 static int
1804 ieee80211_addba_request(struct ieee80211_node *ni,
1805 	struct ieee80211_tx_ampdu *tap,
1806 	int dialogtoken, int baparamset, int batimeout)
1807 {
1808 	int bufsiz;
1809 
1810 	/* XXX locking */
1811 	tap->txa_token = dialogtoken;
1812 	tap->txa_flags |= IEEE80211_AGGR_IMMEDIATE;
1813 	bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
1814 	tap->txa_wnd = (bufsiz == 0) ?
1815 	    IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
1816 	addba_start_timeout(tap);
1817 	return 1;
1818 }
1819 
1820 /*
1821  * Called by drivers that wish to request an ADDBA session be
1822  * setup.  This brings it up and starts the request timer.
1823  */
1824 int
1825 ieee80211_ampdu_tx_request_ext(struct ieee80211_node *ni, int tid)
1826 {
1827 	struct ieee80211_tx_ampdu *tap;
1828 
1829 	if (tid < 0 || tid > 15)
1830 		return (0);
1831 	tap = &ni->ni_tx_ampdu[tid];
1832 
1833 	/* XXX locking */
1834 	if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) {
1835 		/* do deferred setup of state */
1836 		ampdu_tx_setup(tap);
1837 	}
1838 	/* XXX hack for not doing proper locking */
1839 	tap->txa_flags &= ~IEEE80211_AGGR_NAK;
1840 	addba_start_timeout(tap);
1841 	return (1);
1842 }
1843 
1844 /*
1845  * Called by drivers that have marked a session as active.
1846  */
1847 int
1848 ieee80211_ampdu_tx_request_active_ext(struct ieee80211_node *ni, int tid,
1849     int status)
1850 {
1851 	struct ieee80211_tx_ampdu *tap;
1852 
1853 	if (tid < 0 || tid > 15)
1854 		return (0);
1855 	tap = &ni->ni_tx_ampdu[tid];
1856 
1857 	/* XXX locking */
1858 	addba_stop_timeout(tap);
1859 	if (status == 1) {
1860 		tap->txa_flags |= IEEE80211_AGGR_RUNNING;
1861 		tap->txa_attempts = 0;
1862 	} else {
1863 		/* mark tid so we don't try again */
1864 		tap->txa_flags |= IEEE80211_AGGR_NAK;
1865 	}
1866 	return (1);
1867 }
1868 
1869 /*
1870  * Default method for processing an A-MPDU tx aggregation
1871  * response.  We shutdown any pending timer and update the
1872  * state block according to the reply.
1873  */
1874 static int
1875 ieee80211_addba_response(struct ieee80211_node *ni,
1876 	struct ieee80211_tx_ampdu *tap,
1877 	int status, int baparamset, int batimeout)
1878 {
1879 	int bufsiz, tid;
1880 
1881 	/* XXX locking */
1882 	addba_stop_timeout(tap);
1883 	if (status == IEEE80211_STATUS_SUCCESS) {
1884 		bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
1885 		/* XXX override our request? */
1886 		tap->txa_wnd = (bufsiz == 0) ?
1887 		    IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
1888 		/* XXX AC/TID */
1889 		tid = MS(baparamset, IEEE80211_BAPS_TID);
1890 		tap->txa_flags |= IEEE80211_AGGR_RUNNING;
1891 		tap->txa_attempts = 0;
1892 	} else {
1893 		/* mark tid so we don't try again */
1894 		tap->txa_flags |= IEEE80211_AGGR_NAK;
1895 	}
1896 	return 1;
1897 }
1898 
1899 /*
1900  * Default method for stopping A-MPDU tx aggregation.
1901  * Any timer is cleared and we drain any pending frames.
1902  */
1903 static void
1904 ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
1905 {
1906 	/* XXX locking */
1907 	addba_stop_timeout(tap);
1908 	if (tap->txa_flags & IEEE80211_AGGR_RUNNING) {
1909 		/* XXX clear aggregation queue */
1910 		tap->txa_flags &= ~IEEE80211_AGGR_RUNNING;
1911 	}
1912 	tap->txa_attempts = 0;
1913 }
1914 
1915 /*
1916  * Process a received action frame using the default aggregation
1917  * policy.  We intercept ADDBA-related frames and use them to
1918  * update our aggregation state.  All other frames are passed up
1919  * for processing by ieee80211_recv_action.
1920  */
1921 static int
1922 ht_recv_action_ba_addba_request(struct ieee80211_node *ni,
1923 	const struct ieee80211_frame *wh,
1924 	const uint8_t *frm, const uint8_t *efrm)
1925 {
1926 	struct ieee80211com *ic = ni->ni_ic;
1927 	struct ieee80211vap *vap = ni->ni_vap;
1928 	struct ieee80211_rx_ampdu *rap;
1929 	uint8_t dialogtoken;
1930 	uint16_t baparamset, batimeout, baseqctl;
1931 	uint16_t args[5];
1932 	int tid;
1933 
1934 	dialogtoken = frm[2];
1935 	baparamset = le16dec(frm+3);
1936 	batimeout = le16dec(frm+5);
1937 	baseqctl = le16dec(frm+7);
1938 
1939 	tid = MS(baparamset, IEEE80211_BAPS_TID);
1940 
1941 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
1942 	    "recv ADDBA request: dialogtoken %u baparamset 0x%x "
1943 	    "(tid %d bufsiz %d) batimeout %d baseqctl %d:%d",
1944 	    dialogtoken, baparamset,
1945 	    tid, MS(baparamset, IEEE80211_BAPS_BUFSIZ),
1946 	    batimeout,
1947 	    MS(baseqctl, IEEE80211_BASEQ_START),
1948 	    MS(baseqctl, IEEE80211_BASEQ_FRAG));
1949 
1950 	rap = &ni->ni_rx_ampdu[tid];
1951 
1952 	/* Send ADDBA response */
1953 	args[0] = dialogtoken;
1954 	/*
1955 	 * NB: We ack only if the sta associated with HT and
1956 	 * the ap is configured to do AMPDU rx (the latter
1957 	 * violates the 11n spec and is mostly for testing).
1958 	 */
1959 	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_RX) &&
1960 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX)) {
1961 		/* XXX handle ampdu_rx_start failure */
1962 		ic->ic_ampdu_rx_start(ni, rap,
1963 		    baparamset, batimeout, baseqctl);
1964 
1965 		args[1] = IEEE80211_STATUS_SUCCESS;
1966 	} else {
1967 		IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
1968 		    ni, "reject ADDBA request: %s",
1969 		    ni->ni_flags & IEEE80211_NODE_AMPDU_RX ?
1970 		       "administratively disabled" :
1971 		       "not negotiated for station");
1972 		vap->iv_stats.is_addba_reject++;
1973 		args[1] = IEEE80211_STATUS_UNSPECIFIED;
1974 	}
1975 	/* XXX honor rap flags? */
1976 	args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE
1977 		| SM(tid, IEEE80211_BAPS_TID)
1978 		| SM(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ)
1979 		;
1980 	args[3] = 0;
1981 	args[4] = 0;
1982 	ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
1983 		IEEE80211_ACTION_BA_ADDBA_RESPONSE, args);
1984 	return 0;
1985 }
1986 
1987 static int
1988 ht_recv_action_ba_addba_response(struct ieee80211_node *ni,
1989 	const struct ieee80211_frame *wh,
1990 	const uint8_t *frm, const uint8_t *efrm)
1991 {
1992 	struct ieee80211com *ic = ni->ni_ic;
1993 	struct ieee80211vap *vap = ni->ni_vap;
1994 	struct ieee80211_tx_ampdu *tap;
1995 	uint8_t dialogtoken, policy;
1996 	uint16_t baparamset, batimeout, code;
1997 	int tid, bufsiz;
1998 
1999 	dialogtoken = frm[2];
2000 	code = le16dec(frm+3);
2001 	baparamset = le16dec(frm+5);
2002 	tid = MS(baparamset, IEEE80211_BAPS_TID);
2003 	bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
2004 	policy = MS(baparamset, IEEE80211_BAPS_POLICY);
2005 	batimeout = le16dec(frm+7);
2006 
2007 	tap = &ni->ni_tx_ampdu[tid];
2008 	if ((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
2009 		IEEE80211_DISCARD_MAC(vap,
2010 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2011 		    ni->ni_macaddr, "ADDBA response",
2012 		    "no pending ADDBA, tid %d dialogtoken %u "
2013 		    "code %d", tid, dialogtoken, code);
2014 		vap->iv_stats.is_addba_norequest++;
2015 		return 0;
2016 	}
2017 	if (dialogtoken != tap->txa_token) {
2018 		IEEE80211_DISCARD_MAC(vap,
2019 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2020 		    ni->ni_macaddr, "ADDBA response",
2021 		    "dialogtoken mismatch: waiting for %d, "
2022 		    "received %d, tid %d code %d",
2023 		    tap->txa_token, dialogtoken, tid, code);
2024 		vap->iv_stats.is_addba_badtoken++;
2025 		return 0;
2026 	}
2027 	/* NB: assumes IEEE80211_AGGR_IMMEDIATE is 1 */
2028 	if (policy != (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE)) {
2029 		IEEE80211_DISCARD_MAC(vap,
2030 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2031 		    ni->ni_macaddr, "ADDBA response",
2032 		    "policy mismatch: expecting %s, "
2033 		    "received %s, tid %d code %d",
2034 		    tap->txa_flags & IEEE80211_AGGR_IMMEDIATE,
2035 		    policy, tid, code);
2036 		vap->iv_stats.is_addba_badpolicy++;
2037 		return 0;
2038 	}
2039 #if 0
2040 	/* XXX we take MIN in ieee80211_addba_response */
2041 	if (bufsiz > IEEE80211_AGGR_BAWMAX) {
2042 		IEEE80211_DISCARD_MAC(vap,
2043 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2044 		    ni->ni_macaddr, "ADDBA response",
2045 		    "BA window too large: max %d, "
2046 		    "received %d, tid %d code %d",
2047 		    bufsiz, IEEE80211_AGGR_BAWMAX, tid, code);
2048 		vap->iv_stats.is_addba_badbawinsize++;
2049 		return 0;
2050 	}
2051 #endif
2052 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2053 	    "recv ADDBA response: dialogtoken %u code %d "
2054 	    "baparamset 0x%x (tid %d bufsiz %d) batimeout %d",
2055 	    dialogtoken, code, baparamset, tid, bufsiz,
2056 	    batimeout);
2057 	ic->ic_addba_response(ni, tap, code, baparamset, batimeout);
2058 	return 0;
2059 }
2060 
2061 static int
2062 ht_recv_action_ba_delba(struct ieee80211_node *ni,
2063 	const struct ieee80211_frame *wh,
2064 	const uint8_t *frm, const uint8_t *efrm)
2065 {
2066 	struct ieee80211com *ic = ni->ni_ic;
2067 	struct ieee80211_rx_ampdu *rap;
2068 	struct ieee80211_tx_ampdu *tap;
2069 	uint16_t baparamset, code;
2070 	int tid;
2071 
2072 	baparamset = le16dec(frm+2);
2073 	code = le16dec(frm+4);
2074 
2075 	tid = MS(baparamset, IEEE80211_DELBAPS_TID);
2076 
2077 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2078 	    "recv DELBA: baparamset 0x%x (tid %d initiator %d) "
2079 	    "code %d", baparamset, tid,
2080 	    MS(baparamset, IEEE80211_DELBAPS_INIT), code);
2081 
2082 	if ((baparamset & IEEE80211_DELBAPS_INIT) == 0) {
2083 		tap = &ni->ni_tx_ampdu[tid];
2084 		ic->ic_addba_stop(ni, tap);
2085 	} else {
2086 		rap = &ni->ni_rx_ampdu[tid];
2087 		ic->ic_ampdu_rx_stop(ni, rap);
2088 	}
2089 	return 0;
2090 }
2091 
2092 static int
2093 ht_recv_action_ht_txchwidth(struct ieee80211_node *ni,
2094 	const struct ieee80211_frame *wh,
2095 	const uint8_t *frm, const uint8_t *efrm)
2096 {
2097 	int chw;
2098 
2099 	chw = (frm[2] == IEEE80211_A_HT_TXCHWIDTH_2040) ? 40 : 20;
2100 
2101 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2102 	    "%s: HT txchwidth, width %d%s",
2103 	    __func__, chw, ni->ni_chw != chw ? "*" : "");
2104 	if (chw != ni->ni_chw) {
2105 		ni->ni_chw = chw;
2106 		/* XXX notify on change */
2107 	}
2108 	return 0;
2109 }
2110 
2111 static int
2112 ht_recv_action_ht_mimopwrsave(struct ieee80211_node *ni,
2113 	const struct ieee80211_frame *wh,
2114 	const uint8_t *frm, const uint8_t *efrm)
2115 {
2116 	const struct ieee80211_action_ht_mimopowersave *mps =
2117 	    (const struct ieee80211_action_ht_mimopowersave *) frm;
2118 
2119 	/* XXX check iv_htcaps */
2120 	if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA)
2121 		ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
2122 	else
2123 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS;
2124 	if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_MODE)
2125 		ni->ni_flags |= IEEE80211_NODE_MIMO_RTS;
2126 	else
2127 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
2128 	/* XXX notify on change */
2129 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2130 	    "%s: HT MIMO PS (%s%s)", __func__,
2131 	    (ni->ni_flags & IEEE80211_NODE_MIMO_PS) ?  "on" : "off",
2132 	    (ni->ni_flags & IEEE80211_NODE_MIMO_RTS) ?  "+rts" : ""
2133 	);
2134 	return 0;
2135 }
2136 
2137 /*
2138  * Transmit processing.
2139  */
2140 
2141 /*
2142  * Check if A-MPDU should be requested/enabled for a stream.
2143  * We require a traffic rate above a per-AC threshold and we
2144  * also handle backoff from previous failed attempts.
2145  *
2146  * Drivers may override this method to bring in information
2147  * such as link state conditions in making the decision.
2148  */
2149 static int
2150 ieee80211_ampdu_enable(struct ieee80211_node *ni,
2151 	struct ieee80211_tx_ampdu *tap)
2152 {
2153 	struct ieee80211vap *vap = ni->ni_vap;
2154 
2155 	if (tap->txa_avgpps <
2156 	    vap->iv_ampdu_mintraffic[TID_TO_WME_AC(tap->txa_tid)])
2157 		return 0;
2158 	/* XXX check rssi? */
2159 	if (tap->txa_attempts >= ieee80211_addba_maxtries &&
2160 	    ieee80211_time_after(ticks, tap->txa_nextrequest)) {
2161 		/*
2162 		 * Don't retry too often; txa_nextrequest is set
2163 		 * to the minimum interval we'll retry after
2164 		 * ieee80211_addba_maxtries failed attempts are made.
2165 		 */
2166 		return 0;
2167 	}
2168 	IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
2169 	    "enable AMPDU on tid %d (%s), avgpps %d pkts %d attempt %d",
2170 	    tap->txa_tid, ieee80211_wme_acnames[TID_TO_WME_AC(tap->txa_tid)],
2171 	    tap->txa_avgpps, tap->txa_pkts, tap->txa_attempts);
2172 	return 1;
2173 }
2174 
2175 /*
2176  * Request A-MPDU tx aggregation.  Setup local state and
2177  * issue an ADDBA request.  BA use will only happen after
2178  * the other end replies with ADDBA response.
2179  */
2180 int
2181 ieee80211_ampdu_request(struct ieee80211_node *ni,
2182 	struct ieee80211_tx_ampdu *tap)
2183 {
2184 	struct ieee80211com *ic = ni->ni_ic;
2185 	uint16_t args[5];
2186 	int tid, dialogtoken;
2187 	static int tokens = 0;	/* XXX */
2188 
2189 	/* XXX locking */
2190 	if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) {
2191 		/* do deferred setup of state */
2192 		ampdu_tx_setup(tap);
2193 	}
2194 	/* XXX hack for not doing proper locking */
2195 	tap->txa_flags &= ~IEEE80211_AGGR_NAK;
2196 
2197 	dialogtoken = (tokens+1) % 63;		/* XXX */
2198 	tid = tap->txa_tid;
2199 	tap->txa_start = ni->ni_txseqs[tid];
2200 
2201 	args[0] = dialogtoken;
2202 	args[1] = 0;	/* NB: status code not used */
2203 	args[2]	= IEEE80211_BAPS_POLICY_IMMEDIATE
2204 		| SM(tid, IEEE80211_BAPS_TID)
2205 		| SM(IEEE80211_AGGR_BAWMAX, IEEE80211_BAPS_BUFSIZ)
2206 		;
2207 	args[3] = 0;	/* batimeout */
2208 	/* NB: do first so there's no race against reply */
2209 	if (!ic->ic_addba_request(ni, tap, dialogtoken, args[2], args[3])) {
2210 		/* unable to setup state, don't make request */
2211 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2212 		    ni, "%s: could not setup BA stream for TID %d AC %d",
2213 		    __func__, tap->txa_tid, TID_TO_WME_AC(tap->txa_tid));
2214 		/* defer next try so we don't slam the driver with requests */
2215 		tap->txa_attempts = ieee80211_addba_maxtries;
2216 		/* NB: check in case driver wants to override */
2217 		if (tap->txa_nextrequest <= ticks)
2218 			tap->txa_nextrequest = ticks + ieee80211_addba_backoff;
2219 		return 0;
2220 	}
2221 	tokens = dialogtoken;			/* allocate token */
2222 	/* NB: after calling ic_addba_request so driver can set txa_start */
2223 	args[4] = SM(tap->txa_start, IEEE80211_BASEQ_START)
2224 		| SM(0, IEEE80211_BASEQ_FRAG)
2225 		;
2226 	return ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
2227 		IEEE80211_ACTION_BA_ADDBA_REQUEST, args);
2228 }
2229 
2230 /*
2231  * Terminate an AMPDU tx stream.  State is reclaimed
2232  * and the peer notified with a DelBA Action frame.
2233  */
2234 void
2235 ieee80211_ampdu_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
2236 	int reason)
2237 {
2238 	struct ieee80211com *ic = ni->ni_ic;
2239 	struct ieee80211vap *vap = ni->ni_vap;
2240 	uint16_t args[4];
2241 
2242 	/* XXX locking */
2243 	tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
2244 	if (IEEE80211_AMPDU_RUNNING(tap)) {
2245 		IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2246 		    ni, "%s: stop BA stream for TID %d (reason: %d (%s))",
2247 		    __func__, tap->txa_tid, reason,
2248 		    ieee80211_reason_to_string(reason));
2249 		vap->iv_stats.is_ampdu_stop++;
2250 
2251 		ic->ic_addba_stop(ni, tap);
2252 		args[0] = tap->txa_tid;
2253 		args[1] = IEEE80211_DELBAPS_INIT;
2254 		args[2] = reason;			/* XXX reason code */
2255 		ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
2256 			IEEE80211_ACTION_BA_DELBA, args);
2257 	} else {
2258 		IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2259 		    ni, "%s: BA stream for TID %d not running "
2260 		    "(reason: %d (%s))", __func__, tap->txa_tid, reason,
2261 		    ieee80211_reason_to_string(reason));
2262 		vap->iv_stats.is_ampdu_stop_failed++;
2263 	}
2264 }
2265 
2266 /* XXX */
2267 static void bar_start_timer(struct ieee80211_tx_ampdu *tap);
2268 
2269 static void
2270 bar_timeout(void *arg)
2271 {
2272 	struct ieee80211_tx_ampdu *tap = arg;
2273 	struct ieee80211_node *ni = tap->txa_ni;
2274 
2275 	KASSERT((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0,
2276 	    ("bar/addba collision, flags 0x%x", tap->txa_flags));
2277 
2278 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2279 	    ni, "%s: tid %u flags 0x%x attempts %d", __func__,
2280 	    tap->txa_tid, tap->txa_flags, tap->txa_attempts);
2281 
2282 	/* guard against race with bar_tx_complete */
2283 	if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0)
2284 		return;
2285 	/* XXX ? */
2286 	if (tap->txa_attempts >= ieee80211_bar_maxtries) {
2287 		struct ieee80211com *ic = ni->ni_ic;
2288 
2289 		ni->ni_vap->iv_stats.is_ampdu_bar_tx_fail++;
2290 		/*
2291 		 * If (at least) the last BAR TX timeout was due to
2292 		 * an ieee80211_send_bar() failures, then we need
2293 		 * to make sure we notify the driver that a BAR
2294 		 * TX did occur and fail.  This gives the driver
2295 		 * a chance to undo any queue pause that may
2296 		 * have occured.
2297 		 */
2298 		ic->ic_bar_response(ni, tap, 1);
2299 		ieee80211_ampdu_stop(ni, tap, IEEE80211_REASON_TIMEOUT);
2300 	} else {
2301 		ni->ni_vap->iv_stats.is_ampdu_bar_tx_retry++;
2302 		if (ieee80211_send_bar(ni, tap, tap->txa_seqpending) != 0) {
2303 			IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2304 			    ni, "%s: failed to TX, starting timer\n",
2305 			    __func__);
2306 			/*
2307 			 * If ieee80211_send_bar() fails here, the
2308 			 * timer may have stopped and/or the pending
2309 			 * flag may be clear.  Because of this,
2310 			 * fake the BARPEND and reset the timer.
2311 			 * A retransmission attempt will then occur
2312 			 * during the next timeout.
2313 			 */
2314 			/* XXX locking */
2315 			tap->txa_flags |= IEEE80211_AGGR_BARPEND;
2316 			bar_start_timer(tap);
2317 		}
2318 	}
2319 }
2320 
2321 static void
2322 bar_start_timer(struct ieee80211_tx_ampdu *tap)
2323 {
2324 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2325 	    tap->txa_ni,
2326 	    "%s: called",
2327 	    __func__);
2328 	callout_reset(&tap->txa_timer, ieee80211_bar_timeout, bar_timeout, tap);
2329 }
2330 
2331 static void
2332 bar_stop_timer(struct ieee80211_tx_ampdu *tap)
2333 {
2334 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2335 	    tap->txa_ni,
2336 	    "%s: called",
2337 	    __func__);
2338 	callout_stop(&tap->txa_timer);
2339 }
2340 
2341 static void
2342 bar_tx_complete(struct ieee80211_node *ni, void *arg, int status)
2343 {
2344 	struct ieee80211_tx_ampdu *tap = arg;
2345 
2346 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2347 	    ni, "%s: tid %u flags 0x%x pending %d status %d",
2348 	    __func__, tap->txa_tid, tap->txa_flags,
2349 	    callout_pending(&tap->txa_timer), status);
2350 
2351 	ni->ni_vap->iv_stats.is_ampdu_bar_tx++;
2352 	/* XXX locking */
2353 	if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) &&
2354 	    callout_pending(&tap->txa_timer)) {
2355 		struct ieee80211com *ic = ni->ni_ic;
2356 
2357 		if (status == 0)		/* ACK'd */
2358 			bar_stop_timer(tap);
2359 		ic->ic_bar_response(ni, tap, status);
2360 		/* NB: just let timer expire so we pace requests */
2361 	}
2362 }
2363 
2364 static void
2365 ieee80211_bar_response(struct ieee80211_node *ni,
2366 	struct ieee80211_tx_ampdu *tap, int status)
2367 {
2368 
2369 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2370 	    tap->txa_ni,
2371 	    "%s: called",
2372 	    __func__);
2373 	if (status == 0) {		/* got ACK */
2374 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2375 		    ni, "BAR moves BA win <%u:%u> (%u frames) txseq %u tid %u",
2376 		    tap->txa_start,
2377 		    IEEE80211_SEQ_ADD(tap->txa_start, tap->txa_wnd-1),
2378 		    tap->txa_qframes, tap->txa_seqpending,
2379 		    tap->txa_tid);
2380 
2381 		/* NB: timer already stopped in bar_tx_complete */
2382 		tap->txa_start = tap->txa_seqpending;
2383 		tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
2384 	}
2385 }
2386 
2387 /*
2388  * Transmit a BAR frame to the specified node.  The
2389  * BAR contents are drawn from the supplied aggregation
2390  * state associated with the node.
2391  *
2392  * NB: we only handle immediate ACK w/ compressed bitmap.
2393  */
2394 int
2395 ieee80211_send_bar(struct ieee80211_node *ni,
2396 	struct ieee80211_tx_ampdu *tap, ieee80211_seq seq)
2397 {
2398 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2399 	struct ieee80211vap *vap = ni->ni_vap;
2400 	struct ieee80211com *ic = ni->ni_ic;
2401 	struct ieee80211_frame_bar *bar;
2402 	struct mbuf *m;
2403 	uint16_t barctl, barseqctl;
2404 	uint8_t *frm;
2405 	int tid, ret;
2406 
2407 
2408 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2409 	    tap->txa_ni,
2410 	    "%s: called",
2411 	    __func__);
2412 
2413 	if ((tap->txa_flags & IEEE80211_AGGR_RUNNING) == 0) {
2414 		/* no ADDBA response, should not happen */
2415 		/* XXX stat+msg */
2416 		return EINVAL;
2417 	}
2418 	/* XXX locking */
2419 	bar_stop_timer(tap);
2420 
2421 	ieee80211_ref_node(ni);
2422 
2423 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom, sizeof(*bar));
2424 	if (m == NULL)
2425 		senderr(ENOMEM, is_tx_nobuf);
2426 
2427 	if (!ieee80211_add_callback(m, bar_tx_complete, tap)) {
2428 		m_freem(m);
2429 		senderr(ENOMEM, is_tx_nobuf);	/* XXX */
2430 		/* NOTREACHED */
2431 	}
2432 
2433 	bar = mtod(m, struct ieee80211_frame_bar *);
2434 	bar->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2435 		IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR;
2436 	bar->i_fc[1] = 0;
2437 	IEEE80211_ADDR_COPY(bar->i_ra, ni->ni_macaddr);
2438 	IEEE80211_ADDR_COPY(bar->i_ta, vap->iv_myaddr);
2439 
2440 	tid = tap->txa_tid;
2441 	barctl 	= (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE ?
2442 			0 : IEEE80211_BAR_NOACK)
2443 		| IEEE80211_BAR_COMP
2444 		| SM(tid, IEEE80211_BAR_TID)
2445 		;
2446 	barseqctl = SM(seq, IEEE80211_BAR_SEQ_START);
2447 	/* NB: known to have proper alignment */
2448 	bar->i_ctl = htole16(barctl);
2449 	bar->i_seq = htole16(barseqctl);
2450 	m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_bar);
2451 
2452 	M_WME_SETAC(m, WME_AC_VO);
2453 
2454 	IEEE80211_NODE_STAT(ni, tx_mgmt);	/* XXX tx_ctl? */
2455 
2456 	/* XXX locking */
2457 	/* init/bump attempts counter */
2458 	if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0)
2459 		tap->txa_attempts = 1;
2460 	else
2461 		tap->txa_attempts++;
2462 	tap->txa_seqpending = seq;
2463 	tap->txa_flags |= IEEE80211_AGGR_BARPEND;
2464 
2465 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N,
2466 	    ni, "send BAR: tid %u ctl 0x%x start %u (attempt %d)",
2467 	    tid, barctl, seq, tap->txa_attempts);
2468 
2469 	/*
2470 	 * ic_raw_xmit will free the node reference
2471 	 * regardless of queue/TX success or failure.
2472 	 */
2473 	IEEE80211_TX_LOCK(ic);
2474 	ret = ieee80211_raw_output(vap, ni, m, NULL);
2475 	IEEE80211_TX_UNLOCK(ic);
2476 	if (ret != 0) {
2477 		IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N,
2478 		    ni, "send BAR: failed: (ret = %d)\n",
2479 		    ret);
2480 		/* xmit failed, clear state flag */
2481 		tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
2482 		vap->iv_stats.is_ampdu_bar_tx_fail++;
2483 		return ret;
2484 	}
2485 	/* XXX hack against tx complete happening before timer is started */
2486 	if (tap->txa_flags & IEEE80211_AGGR_BARPEND)
2487 		bar_start_timer(tap);
2488 	return 0;
2489 bad:
2490 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2491 	    tap->txa_ni,
2492 	    "%s: bad! ret=%d",
2493 	    __func__, ret);
2494 	vap->iv_stats.is_ampdu_bar_tx_fail++;
2495 	ieee80211_free_node(ni);
2496 	return ret;
2497 #undef senderr
2498 }
2499 
2500 static int
2501 ht_action_output(struct ieee80211_node *ni, struct mbuf *m)
2502 {
2503 	struct ieee80211_bpf_params params;
2504 
2505 	memset(&params, 0, sizeof(params));
2506 	params.ibp_pri = WME_AC_VO;
2507 	params.ibp_rate0 = ni->ni_txparms->mgmtrate;
2508 	/* NB: we know all frames are unicast */
2509 	params.ibp_try0 = ni->ni_txparms->maxretry;
2510 	params.ibp_power = ni->ni_txpower;
2511 	return ieee80211_mgmt_output(ni, m, IEEE80211_FC0_SUBTYPE_ACTION,
2512 	     &params);
2513 }
2514 
2515 #define	ADDSHORT(frm, v) do {			\
2516 	frm[0] = (v) & 0xff;			\
2517 	frm[1] = (v) >> 8;			\
2518 	frm += 2;				\
2519 } while (0)
2520 
2521 /*
2522  * Send an action management frame.  The arguments are stuff
2523  * into a frame without inspection; the caller is assumed to
2524  * prepare them carefully (e.g. based on the aggregation state).
2525  */
2526 static int
2527 ht_send_action_ba_addba(struct ieee80211_node *ni,
2528 	int category, int action, void *arg0)
2529 {
2530 	struct ieee80211vap *vap = ni->ni_vap;
2531 	struct ieee80211com *ic = ni->ni_ic;
2532 	uint16_t *args = arg0;
2533 	struct mbuf *m;
2534 	uint8_t *frm;
2535 
2536 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2537 	    "send ADDBA %s: dialogtoken %d status %d "
2538 	    "baparamset 0x%x (tid %d) batimeout 0x%x baseqctl 0x%x",
2539 	    (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ?
2540 		"request" : "response",
2541 	    args[0], args[1], args[2], MS(args[2], IEEE80211_BAPS_TID),
2542 	    args[3], args[4]);
2543 
2544 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2545 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
2546 	    ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
2547 	ieee80211_ref_node(ni);
2548 
2549 	m = ieee80211_getmgtframe(&frm,
2550 	    ic->ic_headroom + sizeof(struct ieee80211_frame),
2551 	    sizeof(uint16_t)	/* action+category */
2552 	    /* XXX may action payload */
2553 	    + sizeof(struct ieee80211_action_ba_addbaresponse)
2554 	);
2555 	if (m != NULL) {
2556 		*frm++ = category;
2557 		*frm++ = action;
2558 		*frm++ = args[0];		/* dialog token */
2559 		if (action == IEEE80211_ACTION_BA_ADDBA_RESPONSE)
2560 			ADDSHORT(frm, args[1]);	/* status code */
2561 		ADDSHORT(frm, args[2]);		/* baparamset */
2562 		ADDSHORT(frm, args[3]);		/* batimeout */
2563 		if (action == IEEE80211_ACTION_BA_ADDBA_REQUEST)
2564 			ADDSHORT(frm, args[4]);	/* baseqctl */
2565 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2566 		return ht_action_output(ni, m);
2567 	} else {
2568 		vap->iv_stats.is_tx_nobuf++;
2569 		ieee80211_free_node(ni);
2570 		return ENOMEM;
2571 	}
2572 }
2573 
2574 static int
2575 ht_send_action_ba_delba(struct ieee80211_node *ni,
2576 	int category, int action, void *arg0)
2577 {
2578 	struct ieee80211vap *vap = ni->ni_vap;
2579 	struct ieee80211com *ic = ni->ni_ic;
2580 	uint16_t *args = arg0;
2581 	struct mbuf *m;
2582 	uint16_t baparamset;
2583 	uint8_t *frm;
2584 
2585 	baparamset = SM(args[0], IEEE80211_DELBAPS_TID)
2586 		   | args[1]
2587 		   ;
2588 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2589 	    "send DELBA action: tid %d, initiator %d reason %d (%s)",
2590 	    args[0], args[1], args[2], ieee80211_reason_to_string(args[2]));
2591 
2592 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2593 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
2594 	    ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
2595 	ieee80211_ref_node(ni);
2596 
2597 	m = ieee80211_getmgtframe(&frm,
2598 	    ic->ic_headroom + sizeof(struct ieee80211_frame),
2599 	    sizeof(uint16_t)	/* action+category */
2600 	    /* XXX may action payload */
2601 	    + sizeof(struct ieee80211_action_ba_addbaresponse)
2602 	);
2603 	if (m != NULL) {
2604 		*frm++ = category;
2605 		*frm++ = action;
2606 		ADDSHORT(frm, baparamset);
2607 		ADDSHORT(frm, args[2]);		/* reason code */
2608 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2609 		return ht_action_output(ni, m);
2610 	} else {
2611 		vap->iv_stats.is_tx_nobuf++;
2612 		ieee80211_free_node(ni);
2613 		return ENOMEM;
2614 	}
2615 }
2616 
2617 static int
2618 ht_send_action_ht_txchwidth(struct ieee80211_node *ni,
2619 	int category, int action, void *arg0)
2620 {
2621 	struct ieee80211vap *vap = ni->ni_vap;
2622 	struct ieee80211com *ic = ni->ni_ic;
2623 	struct mbuf *m;
2624 	uint8_t *frm;
2625 
2626 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2627 	    "send HT txchwidth: width %d",
2628 	    IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 40 : 20);
2629 
2630 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2631 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
2632 	    ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
2633 	ieee80211_ref_node(ni);
2634 
2635 	m = ieee80211_getmgtframe(&frm,
2636 	    ic->ic_headroom + sizeof(struct ieee80211_frame),
2637 	    sizeof(uint16_t)	/* action+category */
2638 	    /* XXX may action payload */
2639 	    + sizeof(struct ieee80211_action_ba_addbaresponse)
2640 	);
2641 	if (m != NULL) {
2642 		*frm++ = category;
2643 		*frm++ = action;
2644 		*frm++ = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ?
2645 			IEEE80211_A_HT_TXCHWIDTH_2040 :
2646 			IEEE80211_A_HT_TXCHWIDTH_20;
2647 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2648 		return ht_action_output(ni, m);
2649 	} else {
2650 		vap->iv_stats.is_tx_nobuf++;
2651 		ieee80211_free_node(ni);
2652 		return ENOMEM;
2653 	}
2654 }
2655 #undef ADDSHORT
2656 
2657 /*
2658  * Construct the MCS bit mask for inclusion in an HT capabilities
2659  * information element.
2660  */
2661 static void
2662 ieee80211_set_mcsset(struct ieee80211com *ic, uint8_t *frm)
2663 {
2664 	int i;
2665 	uint8_t txparams;
2666 
2667 	KASSERT((ic->ic_rxstream > 0 && ic->ic_rxstream <= 4),
2668 	    ("ic_rxstream %d out of range", ic->ic_rxstream));
2669 	KASSERT((ic->ic_txstream > 0 && ic->ic_txstream <= 4),
2670 	    ("ic_txstream %d out of range", ic->ic_txstream));
2671 
2672 	for (i = 0; i < ic->ic_rxstream * 8; i++)
2673 		setbit(frm, i);
2674 	if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
2675 	    (ic->ic_htcaps & IEEE80211_HTC_RXMCS32))
2676 		setbit(frm, 32);
2677 	if (ic->ic_htcaps & IEEE80211_HTC_RXUNEQUAL) {
2678 		if (ic->ic_rxstream >= 2) {
2679 			for (i = 33; i <= 38; i++)
2680 				setbit(frm, i);
2681 		}
2682 		if (ic->ic_rxstream >= 3) {
2683 			for (i = 39; i <= 52; i++)
2684 				setbit(frm, i);
2685 		}
2686 		if (ic->ic_txstream >= 4) {
2687 			for (i = 53; i <= 76; i++)
2688 				setbit(frm, i);
2689 		}
2690 	}
2691 
2692 	if (ic->ic_rxstream != ic->ic_txstream) {
2693 		txparams = 0x1;			/* TX MCS set defined */
2694 		txparams |= 0x2;		/* TX RX MCS not equal */
2695 		txparams |= (ic->ic_txstream - 1) << 2;	/* num TX streams */
2696 		if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL)
2697 			txparams |= 0x16;	/* TX unequal modulation sup */
2698 	} else
2699 		txparams = 0;
2700 	frm[12] = txparams;
2701 }
2702 
2703 /*
2704  * Add body of an HTCAP information element.
2705  */
2706 static uint8_t *
2707 ieee80211_add_htcap_body(uint8_t *frm, struct ieee80211_node *ni)
2708 {
2709 #define	ADDSHORT(frm, v) do {			\
2710 	frm[0] = (v) & 0xff;			\
2711 	frm[1] = (v) >> 8;			\
2712 	frm += 2;				\
2713 } while (0)
2714 	struct ieee80211com *ic = ni->ni_ic;
2715 	struct ieee80211vap *vap = ni->ni_vap;
2716 	uint16_t caps, extcaps;
2717 	int rxmax, density;
2718 
2719 	/* HT capabilities */
2720 	caps = vap->iv_htcaps & 0xffff;
2721 	/*
2722 	 * Note channel width depends on whether we are operating as
2723 	 * a sta or not.  When operating as a sta we are generating
2724 	 * a request based on our desired configuration.  Otherwise
2725 	 * we are operational and the channel attributes identify
2726 	 * how we've been setup (which might be different if a fixed
2727 	 * channel is specified).
2728 	 */
2729 	if (vap->iv_opmode == IEEE80211_M_STA) {
2730 		/* override 20/40 use based on config */
2731 		if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)
2732 			caps |= IEEE80211_HTCAP_CHWIDTH40;
2733 		else
2734 			caps &= ~IEEE80211_HTCAP_CHWIDTH40;
2735 
2736 		/* Start by using the advertised settings */
2737 		rxmax = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU);
2738 		density = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY);
2739 
2740 		/* Cap at VAP rxmax */
2741 		if (rxmax > vap->iv_ampdu_rxmax)
2742 			rxmax = vap->iv_ampdu_rxmax;
2743 
2744 		/*
2745 		 * If the VAP ampdu density value greater, use that.
2746 		 *
2747 		 * (Larger density value == larger minimum gap between A-MPDU
2748 		 * subframes.)
2749 		 */
2750 		if (vap->iv_ampdu_density > density)
2751 			density = vap->iv_ampdu_density;
2752 
2753 		/*
2754 		 * NB: Hardware might support HT40 on some but not all
2755 		 * channels. We can't determine this earlier because only
2756 		 * after association the channel is upgraded to HT based
2757 		 * on the negotiated capabilities.
2758 		 */
2759 		if (ni->ni_chan != IEEE80211_CHAN_ANYC &&
2760 		    findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40U) == NULL &&
2761 		    findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40D) == NULL)
2762 			caps &= ~IEEE80211_HTCAP_CHWIDTH40;
2763 	} else {
2764 		/* override 20/40 use based on current channel */
2765 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
2766 			caps |= IEEE80211_HTCAP_CHWIDTH40;
2767 		else
2768 			caps &= ~IEEE80211_HTCAP_CHWIDTH40;
2769 
2770 		/* XXX TODO should it start by using advertised settings? */
2771 		rxmax = vap->iv_ampdu_rxmax;
2772 		density = vap->iv_ampdu_density;
2773 	}
2774 
2775 	/* adjust short GI based on channel and config */
2776 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0)
2777 		caps &= ~IEEE80211_HTCAP_SHORTGI20;
2778 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 ||
2779 	    (caps & IEEE80211_HTCAP_CHWIDTH40) == 0)
2780 		caps &= ~IEEE80211_HTCAP_SHORTGI40;
2781 	ADDSHORT(frm, caps);
2782 
2783 	/* HT parameters */
2784 	*frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU)
2785 	     | SM(density, IEEE80211_HTCAP_MPDUDENSITY)
2786 	     ;
2787 	frm++;
2788 
2789 	/* pre-zero remainder of ie */
2790 	memset(frm, 0, sizeof(struct ieee80211_ie_htcap) -
2791 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset));
2792 
2793 	/* supported MCS set */
2794 	/*
2795 	 * XXX: For sta mode the rate set should be restricted based
2796 	 * on the AP's capabilities, but ni_htrates isn't setup when
2797 	 * we're called to form an AssocReq frame so for now we're
2798 	 * restricted to the device capabilities.
2799 	 */
2800 	ieee80211_set_mcsset(ni->ni_ic, frm);
2801 
2802 	frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) -
2803 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset);
2804 
2805 	/* HT extended capabilities */
2806 	extcaps = vap->iv_htextcaps & 0xffff;
2807 
2808 	ADDSHORT(frm, extcaps);
2809 
2810 	frm += sizeof(struct ieee80211_ie_htcap) -
2811 		__offsetof(struct ieee80211_ie_htcap, hc_txbf);
2812 
2813 	return frm;
2814 #undef ADDSHORT
2815 }
2816 
2817 /*
2818  * Add 802.11n HT capabilities information element
2819  */
2820 uint8_t *
2821 ieee80211_add_htcap(uint8_t *frm, struct ieee80211_node *ni)
2822 {
2823 	frm[0] = IEEE80211_ELEMID_HTCAP;
2824 	frm[1] = sizeof(struct ieee80211_ie_htcap) - 2;
2825 	return ieee80211_add_htcap_body(frm + 2, ni);
2826 }
2827 
2828 /*
2829  * Add Broadcom OUI wrapped standard HTCAP ie; this is
2830  * used for compatibility w/ pre-draft implementations.
2831  */
2832 uint8_t *
2833 ieee80211_add_htcap_vendor(uint8_t *frm, struct ieee80211_node *ni)
2834 {
2835 	frm[0] = IEEE80211_ELEMID_VENDOR;
2836 	frm[1] = 4 + sizeof(struct ieee80211_ie_htcap) - 2;
2837 	frm[2] = (BCM_OUI >> 0) & 0xff;
2838 	frm[3] = (BCM_OUI >> 8) & 0xff;
2839 	frm[4] = (BCM_OUI >> 16) & 0xff;
2840 	frm[5] = BCM_OUI_HTCAP;
2841 	return ieee80211_add_htcap_body(frm + 6, ni);
2842 }
2843 
2844 /*
2845  * Construct the MCS bit mask of basic rates
2846  * for inclusion in an HT information element.
2847  */
2848 static void
2849 ieee80211_set_basic_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs)
2850 {
2851 	int i;
2852 
2853 	for (i = 0; i < rs->rs_nrates; i++) {
2854 		int r = rs->rs_rates[i] & IEEE80211_RATE_VAL;
2855 		if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) &&
2856 		    r < IEEE80211_HTRATE_MAXSIZE) {
2857 			/* NB: this assumes a particular implementation */
2858 			setbit(frm, r);
2859 		}
2860 	}
2861 }
2862 
2863 /*
2864  * Update the HTINFO ie for a beacon frame.
2865  */
2866 void
2867 ieee80211_ht_update_beacon(struct ieee80211vap *vap,
2868 	struct ieee80211_beacon_offsets *bo)
2869 {
2870 #define	PROTMODE	(IEEE80211_HTINFO_OPMODE|IEEE80211_HTINFO_NONHT_PRESENT)
2871 	struct ieee80211_node *ni;
2872 	const struct ieee80211_channel *bsschan;
2873 	struct ieee80211com *ic = vap->iv_ic;
2874 	struct ieee80211_ie_htinfo *ht =
2875 	   (struct ieee80211_ie_htinfo *) bo->bo_htinfo;
2876 
2877 	ni = ieee80211_ref_node(vap->iv_bss);
2878 	bsschan = ni->ni_chan;
2879 
2880 	/* XXX only update on channel change */
2881 	ht->hi_ctrlchannel = ieee80211_chan2ieee(ic, bsschan);
2882 	if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
2883 		ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PERM;
2884 	else
2885 		ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PROH;
2886 	if (IEEE80211_IS_CHAN_HT40U(bsschan))
2887 		ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_ABOVE;
2888 	else if (IEEE80211_IS_CHAN_HT40D(bsschan))
2889 		ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_BELOW;
2890 	else
2891 		ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_NONE;
2892 	if (IEEE80211_IS_CHAN_HT40(bsschan))
2893 		ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040;
2894 
2895 	/* protection mode */
2896 	ht->hi_byte2 = (ht->hi_byte2 &~ PROTMODE) | ic->ic_curhtprotmode;
2897 
2898 	ieee80211_free_node(ni);
2899 
2900 	/* XXX propagate to vendor ie's */
2901 #undef PROTMODE
2902 }
2903 
2904 /*
2905  * Add body of an HTINFO information element.
2906  *
2907  * NB: We don't use struct ieee80211_ie_htinfo because we can
2908  * be called to fillin both a standard ie and a compat ie that
2909  * has a vendor OUI at the front.
2910  */
2911 static uint8_t *
2912 ieee80211_add_htinfo_body(uint8_t *frm, struct ieee80211_node *ni)
2913 {
2914 	struct ieee80211vap *vap = ni->ni_vap;
2915 	struct ieee80211com *ic = ni->ni_ic;
2916 
2917 	/* pre-zero remainder of ie */
2918 	memset(frm, 0, sizeof(struct ieee80211_ie_htinfo) - 2);
2919 
2920 	/* primary/control channel center */
2921 	*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2922 
2923 	if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
2924 		frm[0] = IEEE80211_HTINFO_RIFSMODE_PERM;
2925 	else
2926 		frm[0] = IEEE80211_HTINFO_RIFSMODE_PROH;
2927 	if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
2928 		frm[0] |= IEEE80211_HTINFO_2NDCHAN_ABOVE;
2929 	else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
2930 		frm[0] |= IEEE80211_HTINFO_2NDCHAN_BELOW;
2931 	else
2932 		frm[0] |= IEEE80211_HTINFO_2NDCHAN_NONE;
2933 	if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
2934 		frm[0] |= IEEE80211_HTINFO_TXWIDTH_2040;
2935 
2936 	frm[1] = ic->ic_curhtprotmode;
2937 
2938 	frm += 5;
2939 
2940 	/* basic MCS set */
2941 	ieee80211_set_basic_htrates(frm, &ni->ni_htrates);
2942 	frm += sizeof(struct ieee80211_ie_htinfo) -
2943 		__offsetof(struct ieee80211_ie_htinfo, hi_basicmcsset);
2944 	return frm;
2945 }
2946 
2947 /*
2948  * Add 802.11n HT information information element.
2949  */
2950 uint8_t *
2951 ieee80211_add_htinfo(uint8_t *frm, struct ieee80211_node *ni)
2952 {
2953 	frm[0] = IEEE80211_ELEMID_HTINFO;
2954 	frm[1] = sizeof(struct ieee80211_ie_htinfo) - 2;
2955 	return ieee80211_add_htinfo_body(frm + 2, ni);
2956 }
2957 
2958 /*
2959  * Add Broadcom OUI wrapped standard HTINFO ie; this is
2960  * used for compatibility w/ pre-draft implementations.
2961  */
2962 uint8_t *
2963 ieee80211_add_htinfo_vendor(uint8_t *frm, struct ieee80211_node *ni)
2964 {
2965 	frm[0] = IEEE80211_ELEMID_VENDOR;
2966 	frm[1] = 4 + sizeof(struct ieee80211_ie_htinfo) - 2;
2967 	frm[2] = (BCM_OUI >> 0) & 0xff;
2968 	frm[3] = (BCM_OUI >> 8) & 0xff;
2969 	frm[4] = (BCM_OUI >> 16) & 0xff;
2970 	frm[5] = BCM_OUI_HTINFO;
2971 	return ieee80211_add_htinfo_body(frm + 6, ni);
2972 }
2973