1 /*- 2 * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 */ 25 26 #include <sys/cdefs.h> 27 #ifdef __FreeBSD__ 28 __FBSDID("$FreeBSD$"); 29 #endif 30 31 /* 32 * IEEE 802.11n protocol support. 33 */ 34 35 #include "opt_inet.h" 36 #include "opt_wlan.h" 37 38 #include <sys/param.h> 39 #include <sys/kernel.h> 40 #include <sys/malloc.h> 41 #include <sys/systm.h> 42 #include <sys/endian.h> 43 44 #include <sys/socket.h> 45 46 #include <net/if.h> 47 #include <net/if_var.h> 48 #include <net/if_media.h> 49 #include <net/ethernet.h> 50 51 #include <net80211/ieee80211_var.h> 52 #include <net80211/ieee80211_action.h> 53 #include <net80211/ieee80211_input.h> 54 55 /* define here, used throughout file */ 56 #define MS(_v, _f) (((_v) & _f) >> _f##_S) 57 #define SM(_v, _f) (((_v) << _f##_S) & _f) 58 59 const struct ieee80211_mcs_rates ieee80211_htrates[IEEE80211_HTRATE_MAXSIZE] = { 60 { 13, 14, 27, 30 }, /* MCS 0 */ 61 { 26, 29, 54, 60 }, /* MCS 1 */ 62 { 39, 43, 81, 90 }, /* MCS 2 */ 63 { 52, 58, 108, 120 }, /* MCS 3 */ 64 { 78, 87, 162, 180 }, /* MCS 4 */ 65 { 104, 116, 216, 240 }, /* MCS 5 */ 66 { 117, 130, 243, 270 }, /* MCS 6 */ 67 { 130, 144, 270, 300 }, /* MCS 7 */ 68 { 26, 29, 54, 60 }, /* MCS 8 */ 69 { 52, 58, 108, 120 }, /* MCS 9 */ 70 { 78, 87, 162, 180 }, /* MCS 10 */ 71 { 104, 116, 216, 240 }, /* MCS 11 */ 72 { 156, 173, 324, 360 }, /* MCS 12 */ 73 { 208, 231, 432, 480 }, /* MCS 13 */ 74 { 234, 260, 486, 540 }, /* MCS 14 */ 75 { 260, 289, 540, 600 }, /* MCS 15 */ 76 { 39, 43, 81, 90 }, /* MCS 16 */ 77 { 78, 87, 162, 180 }, /* MCS 17 */ 78 { 117, 130, 243, 270 }, /* MCS 18 */ 79 { 156, 173, 324, 360 }, /* MCS 19 */ 80 { 234, 260, 486, 540 }, /* MCS 20 */ 81 { 312, 347, 648, 720 }, /* MCS 21 */ 82 { 351, 390, 729, 810 }, /* MCS 22 */ 83 { 390, 433, 810, 900 }, /* MCS 23 */ 84 { 52, 58, 108, 120 }, /* MCS 24 */ 85 { 104, 116, 216, 240 }, /* MCS 25 */ 86 { 156, 173, 324, 360 }, /* MCS 26 */ 87 { 208, 231, 432, 480 }, /* MCS 27 */ 88 { 312, 347, 648, 720 }, /* MCS 28 */ 89 { 416, 462, 864, 960 }, /* MCS 29 */ 90 { 468, 520, 972, 1080 }, /* MCS 30 */ 91 { 520, 578, 1080, 1200 }, /* MCS 31 */ 92 { 0, 0, 12, 13 }, /* MCS 32 */ 93 { 78, 87, 162, 180 }, /* MCS 33 */ 94 { 104, 116, 216, 240 }, /* MCS 34 */ 95 { 130, 144, 270, 300 }, /* MCS 35 */ 96 { 117, 130, 243, 270 }, /* MCS 36 */ 97 { 156, 173, 324, 360 }, /* MCS 37 */ 98 { 195, 217, 405, 450 }, /* MCS 38 */ 99 { 104, 116, 216, 240 }, /* MCS 39 */ 100 { 130, 144, 270, 300 }, /* MCS 40 */ 101 { 130, 144, 270, 300 }, /* MCS 41 */ 102 { 156, 173, 324, 360 }, /* MCS 42 */ 103 { 182, 202, 378, 420 }, /* MCS 43 */ 104 { 182, 202, 378, 420 }, /* MCS 44 */ 105 { 208, 231, 432, 480 }, /* MCS 45 */ 106 { 156, 173, 324, 360 }, /* MCS 46 */ 107 { 195, 217, 405, 450 }, /* MCS 47 */ 108 { 195, 217, 405, 450 }, /* MCS 48 */ 109 { 234, 260, 486, 540 }, /* MCS 49 */ 110 { 273, 303, 567, 630 }, /* MCS 50 */ 111 { 273, 303, 567, 630 }, /* MCS 51 */ 112 { 312, 347, 648, 720 }, /* MCS 52 */ 113 { 130, 144, 270, 300 }, /* MCS 53 */ 114 { 156, 173, 324, 360 }, /* MCS 54 */ 115 { 182, 202, 378, 420 }, /* MCS 55 */ 116 { 156, 173, 324, 360 }, /* MCS 56 */ 117 { 182, 202, 378, 420 }, /* MCS 57 */ 118 { 208, 231, 432, 480 }, /* MCS 58 */ 119 { 234, 260, 486, 540 }, /* MCS 59 */ 120 { 208, 231, 432, 480 }, /* MCS 60 */ 121 { 234, 260, 486, 540 }, /* MCS 61 */ 122 { 260, 289, 540, 600 }, /* MCS 62 */ 123 { 260, 289, 540, 600 }, /* MCS 63 */ 124 { 286, 318, 594, 660 }, /* MCS 64 */ 125 { 195, 217, 405, 450 }, /* MCS 65 */ 126 { 234, 260, 486, 540 }, /* MCS 66 */ 127 { 273, 303, 567, 630 }, /* MCS 67 */ 128 { 234, 260, 486, 540 }, /* MCS 68 */ 129 { 273, 303, 567, 630 }, /* MCS 69 */ 130 { 312, 347, 648, 720 }, /* MCS 70 */ 131 { 351, 390, 729, 810 }, /* MCS 71 */ 132 { 312, 347, 648, 720 }, /* MCS 72 */ 133 { 351, 390, 729, 810 }, /* MCS 73 */ 134 { 390, 433, 810, 900 }, /* MCS 74 */ 135 { 390, 433, 810, 900 }, /* MCS 75 */ 136 { 429, 477, 891, 990 }, /* MCS 76 */ 137 }; 138 139 static int ieee80211_ampdu_age = -1; /* threshold for ampdu reorder q (ms) */ 140 SYSCTL_PROC(_net_wlan, OID_AUTO, ampdu_age, CTLTYPE_INT | CTLFLAG_RW, 141 &ieee80211_ampdu_age, 0, ieee80211_sysctl_msecs_ticks, "I", 142 "AMPDU max reorder age (ms)"); 143 144 static int ieee80211_recv_bar_ena = 1; 145 SYSCTL_INT(_net_wlan, OID_AUTO, recv_bar, CTLFLAG_RW, &ieee80211_recv_bar_ena, 146 0, "BAR frame processing (ena/dis)"); 147 148 static int ieee80211_addba_timeout = -1;/* timeout for ADDBA response */ 149 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_timeout, CTLTYPE_INT | CTLFLAG_RW, 150 &ieee80211_addba_timeout, 0, ieee80211_sysctl_msecs_ticks, "I", 151 "ADDBA request timeout (ms)"); 152 static int ieee80211_addba_backoff = -1;/* backoff after max ADDBA requests */ 153 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_backoff, CTLTYPE_INT | CTLFLAG_RW, 154 &ieee80211_addba_backoff, 0, ieee80211_sysctl_msecs_ticks, "I", 155 "ADDBA request backoff (ms)"); 156 static int ieee80211_addba_maxtries = 3;/* max ADDBA requests before backoff */ 157 SYSCTL_INT(_net_wlan, OID_AUTO, addba_maxtries, CTLFLAG_RW, 158 &ieee80211_addba_maxtries, 0, "max ADDBA requests sent before backoff"); 159 160 static int ieee80211_bar_timeout = -1; /* timeout waiting for BAR response */ 161 static int ieee80211_bar_maxtries = 50;/* max BAR requests before DELBA */ 162 163 static ieee80211_recv_action_func ht_recv_action_ba_addba_request; 164 static ieee80211_recv_action_func ht_recv_action_ba_addba_response; 165 static ieee80211_recv_action_func ht_recv_action_ba_delba; 166 static ieee80211_recv_action_func ht_recv_action_ht_mimopwrsave; 167 static ieee80211_recv_action_func ht_recv_action_ht_txchwidth; 168 169 static ieee80211_send_action_func ht_send_action_ba_addba; 170 static ieee80211_send_action_func ht_send_action_ba_delba; 171 static ieee80211_send_action_func ht_send_action_ht_txchwidth; 172 173 static void 174 ieee80211_ht_init(void) 175 { 176 /* 177 * Setup HT parameters that depends on the clock frequency. 178 */ 179 ieee80211_ampdu_age = msecs_to_ticks(500); 180 ieee80211_addba_timeout = msecs_to_ticks(250); 181 ieee80211_addba_backoff = msecs_to_ticks(10*1000); 182 ieee80211_bar_timeout = msecs_to_ticks(250); 183 /* 184 * Register action frame handlers. 185 */ 186 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 187 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_recv_action_ba_addba_request); 188 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 189 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_recv_action_ba_addba_response); 190 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 191 IEEE80211_ACTION_BA_DELBA, ht_recv_action_ba_delba); 192 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 193 IEEE80211_ACTION_HT_MIMOPWRSAVE, ht_recv_action_ht_mimopwrsave); 194 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 195 IEEE80211_ACTION_HT_TXCHWIDTH, ht_recv_action_ht_txchwidth); 196 197 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 198 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_send_action_ba_addba); 199 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 200 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_send_action_ba_addba); 201 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 202 IEEE80211_ACTION_BA_DELBA, ht_send_action_ba_delba); 203 ieee80211_send_action_register(IEEE80211_ACTION_CAT_HT, 204 IEEE80211_ACTION_HT_TXCHWIDTH, ht_send_action_ht_txchwidth); 205 } 206 SYSINIT(wlan_ht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_ht_init, NULL); 207 208 static int ieee80211_ampdu_enable(struct ieee80211_node *ni, 209 struct ieee80211_tx_ampdu *tap); 210 static int ieee80211_addba_request(struct ieee80211_node *ni, 211 struct ieee80211_tx_ampdu *tap, 212 int dialogtoken, int baparamset, int batimeout); 213 static int ieee80211_addba_response(struct ieee80211_node *ni, 214 struct ieee80211_tx_ampdu *tap, 215 int code, int baparamset, int batimeout); 216 static void ieee80211_addba_stop(struct ieee80211_node *ni, 217 struct ieee80211_tx_ampdu *tap); 218 static void null_addba_response_timeout(struct ieee80211_node *ni, 219 struct ieee80211_tx_ampdu *tap); 220 221 static void ieee80211_bar_response(struct ieee80211_node *ni, 222 struct ieee80211_tx_ampdu *tap, int status); 223 static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap); 224 static void bar_stop_timer(struct ieee80211_tx_ampdu *tap); 225 static int ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *, 226 int baparamset, int batimeout, int baseqctl); 227 static void ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *); 228 229 void 230 ieee80211_ht_attach(struct ieee80211com *ic) 231 { 232 /* setup default aggregation policy */ 233 ic->ic_recv_action = ieee80211_recv_action; 234 ic->ic_send_action = ieee80211_send_action; 235 ic->ic_ampdu_enable = ieee80211_ampdu_enable; 236 ic->ic_addba_request = ieee80211_addba_request; 237 ic->ic_addba_response = ieee80211_addba_response; 238 ic->ic_addba_response_timeout = null_addba_response_timeout; 239 ic->ic_addba_stop = ieee80211_addba_stop; 240 ic->ic_bar_response = ieee80211_bar_response; 241 ic->ic_ampdu_rx_start = ampdu_rx_start; 242 ic->ic_ampdu_rx_stop = ampdu_rx_stop; 243 244 ic->ic_htprotmode = IEEE80211_PROT_RTSCTS; 245 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; 246 } 247 248 void 249 ieee80211_ht_detach(struct ieee80211com *ic) 250 { 251 } 252 253 void 254 ieee80211_ht_vattach(struct ieee80211vap *vap) 255 { 256 257 /* driver can override defaults */ 258 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_8K; 259 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_NA; 260 vap->iv_ampdu_limit = vap->iv_ampdu_rxmax; 261 vap->iv_amsdu_limit = vap->iv_htcaps & IEEE80211_HTCAP_MAXAMSDU; 262 /* tx aggregation traffic thresholds */ 263 vap->iv_ampdu_mintraffic[WME_AC_BK] = 128; 264 vap->iv_ampdu_mintraffic[WME_AC_BE] = 64; 265 vap->iv_ampdu_mintraffic[WME_AC_VO] = 32; 266 vap->iv_ampdu_mintraffic[WME_AC_VI] = 32; 267 268 if (vap->iv_htcaps & IEEE80211_HTC_HT) { 269 /* 270 * Device is HT capable; enable all HT-related 271 * facilities by default. 272 * XXX these choices may be too aggressive. 273 */ 274 vap->iv_flags_ht |= IEEE80211_FHT_HT 275 | IEEE80211_FHT_HTCOMPAT 276 ; 277 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI20) 278 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20; 279 /* XXX infer from channel list? */ 280 if (vap->iv_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 281 vap->iv_flags_ht |= IEEE80211_FHT_USEHT40; 282 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI40) 283 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40; 284 } 285 /* enable RIFS if capable */ 286 if (vap->iv_htcaps & IEEE80211_HTC_RIFS) 287 vap->iv_flags_ht |= IEEE80211_FHT_RIFS; 288 289 /* NB: A-MPDU and A-MSDU rx are mandated, these are tx only */ 290 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX; 291 if (vap->iv_htcaps & IEEE80211_HTC_AMPDU) 292 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX; 293 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX; 294 if (vap->iv_htcaps & IEEE80211_HTC_AMSDU) 295 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX; 296 297 if (vap->iv_htcaps & IEEE80211_HTCAP_TXSTBC) 298 vap->iv_flags_ht |= IEEE80211_FHT_STBC_TX; 299 if (vap->iv_htcaps & IEEE80211_HTCAP_RXSTBC) 300 vap->iv_flags_ht |= IEEE80211_FHT_STBC_RX; 301 } 302 /* NB: disable default legacy WDS, too many issues right now */ 303 if (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) 304 vap->iv_flags_ht &= ~IEEE80211_FHT_HT; 305 } 306 307 void 308 ieee80211_ht_vdetach(struct ieee80211vap *vap) 309 { 310 } 311 312 static int 313 ht_getrate(struct ieee80211com *ic, int index, enum ieee80211_phymode mode, 314 int ratetype) 315 { 316 int mword, rate; 317 318 mword = ieee80211_rate2media(ic, index | IEEE80211_RATE_MCS, mode); 319 if (IFM_SUBTYPE(mword) != IFM_IEEE80211_MCS) 320 return (0); 321 switch (ratetype) { 322 case 0: 323 rate = ieee80211_htrates[index].ht20_rate_800ns; 324 break; 325 case 1: 326 rate = ieee80211_htrates[index].ht20_rate_400ns; 327 break; 328 case 2: 329 rate = ieee80211_htrates[index].ht40_rate_800ns; 330 break; 331 default: 332 rate = ieee80211_htrates[index].ht40_rate_400ns; 333 break; 334 } 335 return (rate); 336 } 337 338 static struct printranges { 339 int minmcs; 340 int maxmcs; 341 int txstream; 342 int ratetype; 343 int htcapflags; 344 } ranges[] = { 345 { 0, 7, 1, 0, 0 }, 346 { 8, 15, 2, 0, 0 }, 347 { 16, 23, 3, 0, 0 }, 348 { 24, 31, 4, 0, 0 }, 349 { 32, 0, 1, 2, IEEE80211_HTC_TXMCS32 }, 350 { 33, 38, 2, 0, IEEE80211_HTC_TXUNEQUAL }, 351 { 39, 52, 3, 0, IEEE80211_HTC_TXUNEQUAL }, 352 { 53, 76, 4, 0, IEEE80211_HTC_TXUNEQUAL }, 353 { 0, 0, 0, 0, 0 }, 354 }; 355 356 static void 357 ht_rateprint(struct ieee80211com *ic, enum ieee80211_phymode mode, int ratetype) 358 { 359 int minrate, maxrate; 360 struct printranges *range; 361 362 for (range = ranges; range->txstream != 0; range++) { 363 if (ic->ic_txstream < range->txstream) 364 continue; 365 if (range->htcapflags && 366 (ic->ic_htcaps & range->htcapflags) == 0) 367 continue; 368 if (ratetype < range->ratetype) 369 continue; 370 minrate = ht_getrate(ic, range->minmcs, mode, ratetype); 371 maxrate = ht_getrate(ic, range->maxmcs, mode, ratetype); 372 if (range->maxmcs) { 373 ic_printf(ic, "MCS %d-%d: %d%sMbps - %d%sMbps\n", 374 range->minmcs, range->maxmcs, 375 minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""), 376 maxrate/2, ((maxrate & 0x1) != 0 ? ".5" : "")); 377 } else { 378 ic_printf(ic, "MCS %d: %d%sMbps\n", range->minmcs, 379 minrate/2, ((minrate & 0x1) != 0 ? ".5" : "")); 380 } 381 } 382 } 383 384 static void 385 ht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode) 386 { 387 const char *modestr = ieee80211_phymode_name[mode]; 388 389 ic_printf(ic, "%s MCS 20MHz\n", modestr); 390 ht_rateprint(ic, mode, 0); 391 if (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) { 392 ic_printf(ic, "%s MCS 20MHz SGI\n", modestr); 393 ht_rateprint(ic, mode, 1); 394 } 395 if (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 396 ic_printf(ic, "%s MCS 40MHz:\n", modestr); 397 ht_rateprint(ic, mode, 2); 398 } 399 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 400 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) { 401 ic_printf(ic, "%s MCS 40MHz SGI:\n", modestr); 402 ht_rateprint(ic, mode, 3); 403 } 404 } 405 406 void 407 ieee80211_ht_announce(struct ieee80211com *ic) 408 { 409 410 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 411 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 412 ic_printf(ic, "%dT%dR\n", ic->ic_txstream, ic->ic_rxstream); 413 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA)) 414 ht_announce(ic, IEEE80211_MODE_11NA); 415 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 416 ht_announce(ic, IEEE80211_MODE_11NG); 417 } 418 419 static struct ieee80211_htrateset htrateset; 420 421 const struct ieee80211_htrateset * 422 ieee80211_get_suphtrates(struct ieee80211com *ic, 423 const struct ieee80211_channel *c) 424 { 425 #define ADDRATE(x) do { \ 426 htrateset.rs_rates[htrateset.rs_nrates] = x; \ 427 htrateset.rs_nrates++; \ 428 } while (0) 429 int i; 430 431 memset(&htrateset, 0, sizeof(struct ieee80211_htrateset)); 432 for (i = 0; i < ic->ic_txstream * 8; i++) 433 ADDRATE(i); 434 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 435 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32)) 436 ADDRATE(32); 437 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 438 if (ic->ic_txstream >= 2) { 439 for (i = 33; i <= 38; i++) 440 ADDRATE(i); 441 } 442 if (ic->ic_txstream >= 3) { 443 for (i = 39; i <= 52; i++) 444 ADDRATE(i); 445 } 446 if (ic->ic_txstream == 4) { 447 for (i = 53; i <= 76; i++) 448 ADDRATE(i); 449 } 450 } 451 return &htrateset; 452 #undef ADDRATE 453 } 454 455 /* 456 * Receive processing. 457 */ 458 459 /* 460 * Decap the encapsulated A-MSDU frames and dispatch all but 461 * the last for delivery. The last frame is returned for 462 * delivery via the normal path. 463 */ 464 struct mbuf * 465 ieee80211_decap_amsdu(struct ieee80211_node *ni, struct mbuf *m) 466 { 467 struct ieee80211vap *vap = ni->ni_vap; 468 int framelen; 469 struct mbuf *n; 470 471 /* discard 802.3 header inserted by ieee80211_decap */ 472 m_adj(m, sizeof(struct ether_header)); 473 474 vap->iv_stats.is_amsdu_decap++; 475 476 for (;;) { 477 /* 478 * Decap the first frame, bust it apart from the 479 * remainder and deliver. We leave the last frame 480 * delivery to the caller (for consistency with other 481 * code paths, could also do it here). 482 */ 483 m = ieee80211_decap1(m, &framelen); 484 if (m == NULL) { 485 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 486 ni->ni_macaddr, "a-msdu", "%s", "decap failed"); 487 vap->iv_stats.is_amsdu_tooshort++; 488 return NULL; 489 } 490 if (m->m_pkthdr.len == framelen) 491 break; 492 n = m_split(m, framelen, M_NOWAIT); 493 if (n == NULL) { 494 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 495 ni->ni_macaddr, "a-msdu", 496 "%s", "unable to split encapsulated frames"); 497 vap->iv_stats.is_amsdu_split++; 498 m_freem(m); /* NB: must reclaim */ 499 return NULL; 500 } 501 vap->iv_deliver_data(vap, ni, m); 502 503 /* 504 * Remove frame contents; each intermediate frame 505 * is required to be aligned to a 4-byte boundary. 506 */ 507 m = n; 508 m_adj(m, roundup2(framelen, 4) - framelen); /* padding */ 509 } 510 return m; /* last delivered by caller */ 511 } 512 513 /* 514 * Purge all frames in the A-MPDU re-order queue. 515 */ 516 static void 517 ampdu_rx_purge(struct ieee80211_rx_ampdu *rap) 518 { 519 struct mbuf *m; 520 int i; 521 522 for (i = 0; i < rap->rxa_wnd; i++) { 523 m = rap->rxa_m[i]; 524 if (m != NULL) { 525 rap->rxa_m[i] = NULL; 526 rap->rxa_qbytes -= m->m_pkthdr.len; 527 m_freem(m); 528 if (--rap->rxa_qframes == 0) 529 break; 530 } 531 } 532 KASSERT(rap->rxa_qbytes == 0 && rap->rxa_qframes == 0, 533 ("lost %u data, %u frames on ampdu rx q", 534 rap->rxa_qbytes, rap->rxa_qframes)); 535 } 536 537 /* 538 * Start A-MPDU rx/re-order processing for the specified TID. 539 */ 540 static int 541 ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap, 542 int baparamset, int batimeout, int baseqctl) 543 { 544 int bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 545 546 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 547 /* 548 * AMPDU previously setup and not terminated with a DELBA, 549 * flush the reorder q's in case anything remains. 550 */ 551 ampdu_rx_purge(rap); 552 } 553 memset(rap, 0, sizeof(*rap)); 554 rap->rxa_wnd = (bufsiz == 0) ? 555 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 556 rap->rxa_start = MS(baseqctl, IEEE80211_BASEQ_START); 557 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 558 559 return 0; 560 } 561 562 /* 563 * Public function; manually setup the RX ampdu state. 564 */ 565 int 566 ieee80211_ampdu_rx_start_ext(struct ieee80211_node *ni, int tid, int seq, int baw) 567 { 568 struct ieee80211_rx_ampdu *rap; 569 570 /* XXX TODO: sanity check tid, seq, baw */ 571 572 rap = &ni->ni_rx_ampdu[tid]; 573 574 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 575 /* 576 * AMPDU previously setup and not terminated with a DELBA, 577 * flush the reorder q's in case anything remains. 578 */ 579 ampdu_rx_purge(rap); 580 } 581 582 memset(rap, 0, sizeof(*rap)); 583 rap->rxa_wnd = (baw== 0) ? 584 IEEE80211_AGGR_BAWMAX : min(baw, IEEE80211_AGGR_BAWMAX); 585 rap->rxa_start = seq; 586 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 587 588 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 589 "%s: tid=%d, start=%d, wnd=%d, flags=0x%08x\n", 590 __func__, 591 tid, 592 seq, 593 rap->rxa_wnd, 594 rap->rxa_flags); 595 596 return 0; 597 } 598 599 /* 600 * Public function; manually stop the RX AMPDU state. 601 */ 602 void 603 ieee80211_ampdu_rx_stop_ext(struct ieee80211_node *ni, int tid) 604 { 605 struct ieee80211_rx_ampdu *rap; 606 607 /* XXX TODO: sanity check tid, seq, baw */ 608 rap = &ni->ni_rx_ampdu[tid]; 609 ampdu_rx_stop(ni, rap); 610 } 611 612 /* 613 * Stop A-MPDU rx processing for the specified TID. 614 */ 615 static void 616 ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 617 { 618 619 ampdu_rx_purge(rap); 620 rap->rxa_flags &= ~(IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND); 621 } 622 623 /* 624 * Dispatch a frame from the A-MPDU reorder queue. The 625 * frame is fed back into ieee80211_input marked with an 626 * M_AMPDU_MPDU flag so it doesn't come back to us (it also 627 * permits ieee80211_input to optimize re-processing). 628 */ 629 static __inline void 630 ampdu_dispatch(struct ieee80211_node *ni, struct mbuf *m) 631 { 632 m->m_flags |= M_AMPDU_MPDU; /* bypass normal processing */ 633 /* NB: rssi and noise are ignored w/ M_AMPDU_MPDU set */ 634 (void) ieee80211_input(ni, m, 0, 0); 635 } 636 637 /* 638 * Dispatch as many frames as possible from the re-order queue. 639 * Frames will always be "at the front"; we process all frames 640 * up to the first empty slot in the window. On completion we 641 * cleanup state if there are still pending frames in the current 642 * BA window. We assume the frame at slot 0 is already handled 643 * by the caller; we always start at slot 1. 644 */ 645 static void 646 ampdu_rx_dispatch(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni) 647 { 648 struct ieee80211vap *vap = ni->ni_vap; 649 struct mbuf *m; 650 int i; 651 652 /* flush run of frames */ 653 for (i = 1; i < rap->rxa_wnd; i++) { 654 m = rap->rxa_m[i]; 655 if (m == NULL) 656 break; 657 rap->rxa_m[i] = NULL; 658 rap->rxa_qbytes -= m->m_pkthdr.len; 659 rap->rxa_qframes--; 660 661 ampdu_dispatch(ni, m); 662 } 663 /* 664 * If frames remain, copy the mbuf pointers down so 665 * they correspond to the offsets in the new window. 666 */ 667 if (rap->rxa_qframes != 0) { 668 int n = rap->rxa_qframes, j; 669 for (j = i+1; j < rap->rxa_wnd; j++) { 670 if (rap->rxa_m[j] != NULL) { 671 rap->rxa_m[j-i] = rap->rxa_m[j]; 672 rap->rxa_m[j] = NULL; 673 if (--n == 0) 674 break; 675 } 676 } 677 KASSERT(n == 0, ("lost %d frames", n)); 678 vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; 679 } 680 /* 681 * Adjust the start of the BA window to 682 * reflect the frames just dispatched. 683 */ 684 rap->rxa_start = IEEE80211_SEQ_ADD(rap->rxa_start, i); 685 vap->iv_stats.is_ampdu_rx_oor += i; 686 } 687 688 /* 689 * Dispatch all frames in the A-MPDU re-order queue. 690 */ 691 static void 692 ampdu_rx_flush(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 693 { 694 struct ieee80211vap *vap = ni->ni_vap; 695 struct mbuf *m; 696 int i; 697 698 for (i = 0; i < rap->rxa_wnd; i++) { 699 m = rap->rxa_m[i]; 700 if (m == NULL) 701 continue; 702 rap->rxa_m[i] = NULL; 703 rap->rxa_qbytes -= m->m_pkthdr.len; 704 rap->rxa_qframes--; 705 vap->iv_stats.is_ampdu_rx_oor++; 706 707 ampdu_dispatch(ni, m); 708 if (rap->rxa_qframes == 0) 709 break; 710 } 711 } 712 713 /* 714 * Dispatch all frames in the A-MPDU re-order queue 715 * preceding the specified sequence number. This logic 716 * handles window moves due to a received MSDU or BAR. 717 */ 718 static void 719 ampdu_rx_flush_upto(struct ieee80211_node *ni, 720 struct ieee80211_rx_ampdu *rap, ieee80211_seq winstart) 721 { 722 struct ieee80211vap *vap = ni->ni_vap; 723 struct mbuf *m; 724 ieee80211_seq seqno; 725 int i; 726 727 /* 728 * Flush any complete MSDU's with a sequence number lower 729 * than winstart. Gaps may exist. Note that we may actually 730 * dispatch frames past winstart if a run continues; this is 731 * an optimization that avoids having to do a separate pass 732 * to dispatch frames after moving the BA window start. 733 */ 734 seqno = rap->rxa_start; 735 for (i = 0; i < rap->rxa_wnd; i++) { 736 m = rap->rxa_m[i]; 737 if (m != NULL) { 738 rap->rxa_m[i] = NULL; 739 rap->rxa_qbytes -= m->m_pkthdr.len; 740 rap->rxa_qframes--; 741 vap->iv_stats.is_ampdu_rx_oor++; 742 743 ampdu_dispatch(ni, m); 744 } else { 745 if (!IEEE80211_SEQ_BA_BEFORE(seqno, winstart)) 746 break; 747 } 748 seqno = IEEE80211_SEQ_INC(seqno); 749 } 750 /* 751 * If frames remain, copy the mbuf pointers down so 752 * they correspond to the offsets in the new window. 753 */ 754 if (rap->rxa_qframes != 0) { 755 int n = rap->rxa_qframes, j; 756 757 /* NB: this loop assumes i > 0 and/or rxa_m[0] is NULL */ 758 KASSERT(rap->rxa_m[0] == NULL, 759 ("%s: BA window slot 0 occupied", __func__)); 760 for (j = i+1; j < rap->rxa_wnd; j++) { 761 if (rap->rxa_m[j] != NULL) { 762 rap->rxa_m[j-i] = rap->rxa_m[j]; 763 rap->rxa_m[j] = NULL; 764 if (--n == 0) 765 break; 766 } 767 } 768 KASSERT(n == 0, ("%s: lost %d frames, qframes %d off %d " 769 "BA win <%d:%d> winstart %d", 770 __func__, n, rap->rxa_qframes, i, rap->rxa_start, 771 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 772 winstart)); 773 vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; 774 } 775 /* 776 * Move the start of the BA window; we use the 777 * sequence number of the last MSDU that was 778 * passed up the stack+1 or winstart if stopped on 779 * a gap in the reorder buffer. 780 */ 781 rap->rxa_start = seqno; 782 } 783 784 /* 785 * Process a received QoS data frame for an HT station. Handle 786 * A-MPDU reordering: if this frame is received out of order 787 * and falls within the BA window hold onto it. Otherwise if 788 * this frame completes a run, flush any pending frames. We 789 * return 1 if the frame is consumed. A 0 is returned if 790 * the frame should be processed normally by the caller. 791 */ 792 int 793 ieee80211_ampdu_reorder(struct ieee80211_node *ni, struct mbuf *m) 794 { 795 #define PROCESS 0 /* caller should process frame */ 796 #define CONSUMED 1 /* frame consumed, caller does nothing */ 797 struct ieee80211vap *vap = ni->ni_vap; 798 struct ieee80211_qosframe *wh; 799 struct ieee80211_rx_ampdu *rap; 800 ieee80211_seq rxseq; 801 uint8_t tid; 802 int off; 803 804 KASSERT((m->m_flags & (M_AMPDU | M_AMPDU_MPDU)) == M_AMPDU, 805 ("!a-mpdu or already re-ordered, flags 0x%x", m->m_flags)); 806 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 807 808 /* NB: m_len known to be sufficient */ 809 wh = mtod(m, struct ieee80211_qosframe *); 810 if (wh->i_fc[0] != IEEE80211_FC0_QOSDATA) { 811 /* 812 * Not QoS data, shouldn't get here but just 813 * return it to the caller for processing. 814 */ 815 return PROCESS; 816 } 817 if (IEEE80211_IS_DSTODS(wh)) 818 tid = ((struct ieee80211_qosframe_addr4 *)wh)->i_qos[0]; 819 else 820 tid = wh->i_qos[0]; 821 tid &= IEEE80211_QOS_TID; 822 rap = &ni->ni_rx_ampdu[tid]; 823 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 824 /* 825 * No ADDBA request yet, don't touch. 826 */ 827 return PROCESS; 828 } 829 rxseq = le16toh(*(uint16_t *)wh->i_seq); 830 if ((rxseq & IEEE80211_SEQ_FRAG_MASK) != 0) { 831 /* 832 * Fragments are not allowed; toss. 833 */ 834 IEEE80211_DISCARD_MAC(vap, 835 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 836 "A-MPDU", "fragment, rxseq 0x%x tid %u%s", rxseq, tid, 837 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 838 vap->iv_stats.is_ampdu_rx_drop++; 839 IEEE80211_NODE_STAT(ni, rx_drop); 840 m_freem(m); 841 return CONSUMED; 842 } 843 rxseq >>= IEEE80211_SEQ_SEQ_SHIFT; 844 rap->rxa_nframes++; 845 again: 846 if (rxseq == rap->rxa_start) { 847 /* 848 * First frame in window. 849 */ 850 if (rap->rxa_qframes != 0) { 851 /* 852 * Dispatch as many packets as we can. 853 */ 854 KASSERT(rap->rxa_m[0] == NULL, ("unexpected dup")); 855 ampdu_dispatch(ni, m); 856 ampdu_rx_dispatch(rap, ni); 857 return CONSUMED; 858 } else { 859 /* 860 * In order; advance window and notify 861 * caller to dispatch directly. 862 */ 863 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 864 return PROCESS; 865 } 866 } 867 /* 868 * Frame is out of order; store if in the BA window. 869 */ 870 /* calculate offset in BA window */ 871 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 872 if (off < rap->rxa_wnd) { 873 /* 874 * Common case (hopefully): in the BA window. 875 * Sec 9.10.7.6.2 a) (p.137) 876 */ 877 878 /* 879 * Check for frames sitting too long in the reorder queue. 880 * This should only ever happen if frames are not delivered 881 * without the sender otherwise notifying us (e.g. with a 882 * BAR to move the window). Typically this happens because 883 * of vendor bugs that cause the sequence number to jump. 884 * When this happens we get a gap in the reorder queue that 885 * leaves frame sitting on the queue until they get pushed 886 * out due to window moves. When the vendor does not send 887 * BAR this move only happens due to explicit packet sends 888 * 889 * NB: we only track the time of the oldest frame in the 890 * reorder q; this means that if we flush we might push 891 * frames that still "new"; if this happens then subsequent 892 * frames will result in BA window moves which cost something 893 * but is still better than a big throughput dip. 894 */ 895 if (rap->rxa_qframes != 0) { 896 /* XXX honor batimeout? */ 897 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 898 /* 899 * Too long since we received the first 900 * frame; flush the reorder buffer. 901 */ 902 if (rap->rxa_qframes != 0) { 903 vap->iv_stats.is_ampdu_rx_age += 904 rap->rxa_qframes; 905 ampdu_rx_flush(ni, rap); 906 } 907 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 908 return PROCESS; 909 } 910 } else { 911 /* 912 * First frame, start aging timer. 913 */ 914 rap->rxa_age = ticks; 915 } 916 917 /* save packet */ 918 if (rap->rxa_m[off] == NULL) { 919 rap->rxa_m[off] = m; 920 rap->rxa_qframes++; 921 rap->rxa_qbytes += m->m_pkthdr.len; 922 vap->iv_stats.is_ampdu_rx_reorder++; 923 } else { 924 IEEE80211_DISCARD_MAC(vap, 925 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 926 ni->ni_macaddr, "a-mpdu duplicate", 927 "seqno %u tid %u BA win <%u:%u>", 928 rxseq, tid, rap->rxa_start, 929 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1)); 930 vap->iv_stats.is_rx_dup++; 931 IEEE80211_NODE_STAT(ni, rx_dup); 932 m_freem(m); 933 } 934 return CONSUMED; 935 } 936 if (off < IEEE80211_SEQ_BA_RANGE) { 937 /* 938 * Outside the BA window, but within range; 939 * flush the reorder q and move the window. 940 * Sec 9.10.7.6.2 b) (p.138) 941 */ 942 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 943 "move BA win <%u:%u> (%u frames) rxseq %u tid %u", 944 rap->rxa_start, 945 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 946 rap->rxa_qframes, rxseq, tid); 947 vap->iv_stats.is_ampdu_rx_move++; 948 949 /* 950 * The spec says to flush frames up to but not including: 951 * WinStart_B = rxseq - rap->rxa_wnd + 1 952 * Then insert the frame or notify the caller to process 953 * it immediately. We can safely do this by just starting 954 * over again because we know the frame will now be within 955 * the BA window. 956 */ 957 /* NB: rxa_wnd known to be >0 */ 958 ampdu_rx_flush_upto(ni, rap, 959 IEEE80211_SEQ_SUB(rxseq, rap->rxa_wnd-1)); 960 goto again; 961 } else { 962 /* 963 * Outside the BA window and out of range; toss. 964 * Sec 9.10.7.6.2 c) (p.138) 965 */ 966 IEEE80211_DISCARD_MAC(vap, 967 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 968 "MPDU", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 969 rap->rxa_start, 970 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 971 rap->rxa_qframes, rxseq, tid, 972 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 973 vap->iv_stats.is_ampdu_rx_drop++; 974 IEEE80211_NODE_STAT(ni, rx_drop); 975 m_freem(m); 976 return CONSUMED; 977 } 978 #undef CONSUMED 979 #undef PROCESS 980 } 981 982 /* 983 * Process a BAR ctl frame. Dispatch all frames up to 984 * the sequence number of the frame. If this frame is 985 * out of range it's discarded. 986 */ 987 void 988 ieee80211_recv_bar(struct ieee80211_node *ni, struct mbuf *m0) 989 { 990 struct ieee80211vap *vap = ni->ni_vap; 991 struct ieee80211_frame_bar *wh; 992 struct ieee80211_rx_ampdu *rap; 993 ieee80211_seq rxseq; 994 int tid, off; 995 996 if (!ieee80211_recv_bar_ena) { 997 #if 0 998 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_11N, 999 ni->ni_macaddr, "BAR", "%s", "processing disabled"); 1000 #endif 1001 vap->iv_stats.is_ampdu_bar_bad++; 1002 return; 1003 } 1004 wh = mtod(m0, struct ieee80211_frame_bar *); 1005 /* XXX check basic BAR */ 1006 tid = MS(le16toh(wh->i_ctl), IEEE80211_BAR_TID); 1007 rap = &ni->ni_rx_ampdu[tid]; 1008 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 1009 /* 1010 * No ADDBA request yet, don't touch. 1011 */ 1012 IEEE80211_DISCARD_MAC(vap, 1013 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 1014 ni->ni_macaddr, "BAR", "no BA stream, tid %u", tid); 1015 vap->iv_stats.is_ampdu_bar_bad++; 1016 return; 1017 } 1018 vap->iv_stats.is_ampdu_bar_rx++; 1019 rxseq = le16toh(wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT; 1020 if (rxseq == rap->rxa_start) 1021 return; 1022 /* calculate offset in BA window */ 1023 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 1024 if (off < IEEE80211_SEQ_BA_RANGE) { 1025 /* 1026 * Flush the reorder q up to rxseq and move the window. 1027 * Sec 9.10.7.6.3 a) (p.138) 1028 */ 1029 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1030 "BAR moves BA win <%u:%u> (%u frames) rxseq %u tid %u", 1031 rap->rxa_start, 1032 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1033 rap->rxa_qframes, rxseq, tid); 1034 vap->iv_stats.is_ampdu_bar_move++; 1035 1036 ampdu_rx_flush_upto(ni, rap, rxseq); 1037 if (off >= rap->rxa_wnd) { 1038 /* 1039 * BAR specifies a window start to the right of BA 1040 * window; we must move it explicitly since 1041 * ampdu_rx_flush_upto will not. 1042 */ 1043 rap->rxa_start = rxseq; 1044 } 1045 } else { 1046 /* 1047 * Out of range; toss. 1048 * Sec 9.10.7.6.3 b) (p.138) 1049 */ 1050 IEEE80211_DISCARD_MAC(vap, 1051 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 1052 "BAR", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 1053 rap->rxa_start, 1054 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1055 rap->rxa_qframes, rxseq, tid, 1056 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 1057 vap->iv_stats.is_ampdu_bar_oow++; 1058 IEEE80211_NODE_STAT(ni, rx_drop); 1059 } 1060 } 1061 1062 /* 1063 * Setup HT-specific state in a node. Called only 1064 * when HT use is negotiated so we don't do extra 1065 * work for temporary and/or legacy sta's. 1066 */ 1067 void 1068 ieee80211_ht_node_init(struct ieee80211_node *ni) 1069 { 1070 struct ieee80211_tx_ampdu *tap; 1071 int tid; 1072 1073 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1074 ni, 1075 "%s: called (%p)", 1076 __func__, 1077 ni); 1078 1079 if (ni->ni_flags & IEEE80211_NODE_HT) { 1080 /* 1081 * Clean AMPDU state on re-associate. This handles the case 1082 * where a station leaves w/o notifying us and then returns 1083 * before node is reaped for inactivity. 1084 */ 1085 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1086 ni, 1087 "%s: calling cleanup (%p)", 1088 __func__, ni); 1089 ieee80211_ht_node_cleanup(ni); 1090 } 1091 for (tid = 0; tid < WME_NUM_TID; tid++) { 1092 tap = &ni->ni_tx_ampdu[tid]; 1093 tap->txa_tid = tid; 1094 tap->txa_ni = ni; 1095 ieee80211_txampdu_init_pps(tap); 1096 /* NB: further initialization deferred */ 1097 } 1098 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU; 1099 } 1100 1101 /* 1102 * Cleanup HT-specific state in a node. Called only 1103 * when HT use has been marked. 1104 */ 1105 void 1106 ieee80211_ht_node_cleanup(struct ieee80211_node *ni) 1107 { 1108 struct ieee80211com *ic = ni->ni_ic; 1109 int i; 1110 1111 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1112 ni, 1113 "%s: called (%p)", 1114 __func__, ni); 1115 1116 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT node")); 1117 1118 /* XXX optimize this */ 1119 for (i = 0; i < WME_NUM_TID; i++) { 1120 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[i]; 1121 if (tap->txa_flags & IEEE80211_AGGR_SETUP) 1122 ampdu_tx_stop(tap); 1123 } 1124 for (i = 0; i < WME_NUM_TID; i++) 1125 ic->ic_ampdu_rx_stop(ni, &ni->ni_rx_ampdu[i]); 1126 1127 ni->ni_htcap = 0; 1128 ni->ni_flags &= ~IEEE80211_NODE_HT_ALL; 1129 } 1130 1131 /* 1132 * Age out HT resources for a station. 1133 */ 1134 void 1135 ieee80211_ht_node_age(struct ieee80211_node *ni) 1136 { 1137 struct ieee80211vap *vap = ni->ni_vap; 1138 uint8_t tid; 1139 1140 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 1141 1142 for (tid = 0; tid < WME_NUM_TID; tid++) { 1143 struct ieee80211_rx_ampdu *rap; 1144 1145 rap = &ni->ni_rx_ampdu[tid]; 1146 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) 1147 continue; 1148 if (rap->rxa_qframes == 0) 1149 continue; 1150 /* 1151 * Check for frames sitting too long in the reorder queue. 1152 * See above for more details on what's happening here. 1153 */ 1154 /* XXX honor batimeout? */ 1155 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 1156 /* 1157 * Too long since we received the first 1158 * frame; flush the reorder buffer. 1159 */ 1160 vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes; 1161 ampdu_rx_flush(ni, rap); 1162 } 1163 } 1164 } 1165 1166 static struct ieee80211_channel * 1167 findhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int htflags) 1168 { 1169 return ieee80211_find_channel(ic, c->ic_freq, 1170 (c->ic_flags &~ IEEE80211_CHAN_HT) | htflags); 1171 } 1172 1173 /* 1174 * Adjust a channel to be HT/non-HT according to the vap's configuration. 1175 */ 1176 struct ieee80211_channel * 1177 ieee80211_ht_adjust_channel(struct ieee80211com *ic, 1178 struct ieee80211_channel *chan, int flags) 1179 { 1180 struct ieee80211_channel *c; 1181 1182 if (flags & IEEE80211_FHT_HT) { 1183 /* promote to HT if possible */ 1184 if (flags & IEEE80211_FHT_USEHT40) { 1185 if (!IEEE80211_IS_CHAN_HT40(chan)) { 1186 /* NB: arbitrarily pick ht40+ over ht40- */ 1187 c = findhtchan(ic, chan, IEEE80211_CHAN_HT40U); 1188 if (c == NULL) 1189 c = findhtchan(ic, chan, 1190 IEEE80211_CHAN_HT40D); 1191 if (c == NULL) 1192 c = findhtchan(ic, chan, 1193 IEEE80211_CHAN_HT20); 1194 if (c != NULL) 1195 chan = c; 1196 } 1197 } else if (!IEEE80211_IS_CHAN_HT20(chan)) { 1198 c = findhtchan(ic, chan, IEEE80211_CHAN_HT20); 1199 if (c != NULL) 1200 chan = c; 1201 } 1202 } else if (IEEE80211_IS_CHAN_HT(chan)) { 1203 /* demote to legacy, HT use is disabled */ 1204 c = ieee80211_find_channel(ic, chan->ic_freq, 1205 chan->ic_flags &~ IEEE80211_CHAN_HT); 1206 if (c != NULL) 1207 chan = c; 1208 } 1209 return chan; 1210 } 1211 1212 /* 1213 * Setup HT-specific state for a legacy WDS peer. 1214 */ 1215 void 1216 ieee80211_ht_wds_init(struct ieee80211_node *ni) 1217 { 1218 struct ieee80211vap *vap = ni->ni_vap; 1219 struct ieee80211_tx_ampdu *tap; 1220 int tid; 1221 1222 KASSERT(vap->iv_flags_ht & IEEE80211_FHT_HT, ("no HT requested")); 1223 1224 /* XXX check scan cache in case peer has an ap and we have info */ 1225 /* 1226 * If setup with a legacy channel; locate an HT channel. 1227 * Otherwise if the inherited channel (from a companion 1228 * AP) is suitable use it so we use the same location 1229 * for the extension channel). 1230 */ 1231 ni->ni_chan = ieee80211_ht_adjust_channel(ni->ni_ic, 1232 ni->ni_chan, ieee80211_htchanflags(ni->ni_chan)); 1233 1234 ni->ni_htcap = 0; 1235 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) 1236 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI20; 1237 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { 1238 ni->ni_htcap |= IEEE80211_HTCAP_CHWIDTH40; 1239 ni->ni_chw = 40; 1240 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 1241 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_ABOVE; 1242 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 1243 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_BELOW; 1244 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) 1245 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI40; 1246 } else { 1247 ni->ni_chw = 20; 1248 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_NONE; 1249 } 1250 ni->ni_htctlchan = ni->ni_chan->ic_ieee; 1251 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 1252 ni->ni_flags |= IEEE80211_NODE_RIFS; 1253 /* XXX does it make sense to enable SMPS? */ 1254 1255 ni->ni_htopmode = 0; /* XXX need protection state */ 1256 ni->ni_htstbc = 0; /* XXX need info */ 1257 1258 for (tid = 0; tid < WME_NUM_TID; tid++) { 1259 tap = &ni->ni_tx_ampdu[tid]; 1260 tap->txa_tid = tid; 1261 ieee80211_txampdu_init_pps(tap); 1262 } 1263 /* NB: AMPDU tx/rx governed by IEEE80211_FHT_AMPDU_{TX,RX} */ 1264 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU; 1265 } 1266 1267 /* 1268 * Notify hostap vaps of a change in the HTINFO ie. 1269 */ 1270 static void 1271 htinfo_notify(struct ieee80211com *ic) 1272 { 1273 struct ieee80211vap *vap; 1274 int first = 1; 1275 1276 IEEE80211_LOCK_ASSERT(ic); 1277 1278 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1279 if (vap->iv_opmode != IEEE80211_M_HOSTAP) 1280 continue; 1281 if (vap->iv_state != IEEE80211_S_RUN || 1282 !IEEE80211_IS_CHAN_HT(vap->iv_bss->ni_chan)) 1283 continue; 1284 if (first) { 1285 IEEE80211_NOTE(vap, 1286 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1287 vap->iv_bss, 1288 "HT bss occupancy change: %d sta, %d ht, " 1289 "%d ht40%s, HT protmode now 0x%x" 1290 , ic->ic_sta_assoc 1291 , ic->ic_ht_sta_assoc 1292 , ic->ic_ht40_sta_assoc 1293 , (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) ? 1294 ", non-HT sta present" : "" 1295 , ic->ic_curhtprotmode); 1296 first = 0; 1297 } 1298 ieee80211_beacon_notify(vap, IEEE80211_BEACON_HTINFO); 1299 } 1300 } 1301 1302 /* 1303 * Calculate HT protection mode from current 1304 * state and handle updates. 1305 */ 1306 static void 1307 htinfo_update(struct ieee80211com *ic) 1308 { 1309 uint8_t protmode; 1310 1311 if (ic->ic_sta_assoc != ic->ic_ht_sta_assoc) { 1312 protmode = IEEE80211_HTINFO_OPMODE_MIXED 1313 | IEEE80211_HTINFO_NONHT_PRESENT; 1314 } else if (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) { 1315 protmode = IEEE80211_HTINFO_OPMODE_PROTOPT 1316 | IEEE80211_HTINFO_NONHT_PRESENT; 1317 } else if (ic->ic_bsschan != IEEE80211_CHAN_ANYC && 1318 IEEE80211_IS_CHAN_HT40(ic->ic_bsschan) && 1319 ic->ic_sta_assoc != ic->ic_ht40_sta_assoc) { 1320 protmode = IEEE80211_HTINFO_OPMODE_HT20PR; 1321 } else { 1322 protmode = IEEE80211_HTINFO_OPMODE_PURE; 1323 } 1324 if (protmode != ic->ic_curhtprotmode) { 1325 ic->ic_curhtprotmode = protmode; 1326 htinfo_notify(ic); 1327 } 1328 } 1329 1330 /* 1331 * Handle an HT station joining a BSS. 1332 */ 1333 void 1334 ieee80211_ht_node_join(struct ieee80211_node *ni) 1335 { 1336 struct ieee80211com *ic = ni->ni_ic; 1337 1338 IEEE80211_LOCK_ASSERT(ic); 1339 1340 if (ni->ni_flags & IEEE80211_NODE_HT) { 1341 ic->ic_ht_sta_assoc++; 1342 if (ni->ni_chw == 40) 1343 ic->ic_ht40_sta_assoc++; 1344 } 1345 htinfo_update(ic); 1346 } 1347 1348 /* 1349 * Handle an HT station leaving a BSS. 1350 */ 1351 void 1352 ieee80211_ht_node_leave(struct ieee80211_node *ni) 1353 { 1354 struct ieee80211com *ic = ni->ni_ic; 1355 1356 IEEE80211_LOCK_ASSERT(ic); 1357 1358 if (ni->ni_flags & IEEE80211_NODE_HT) { 1359 ic->ic_ht_sta_assoc--; 1360 if (ni->ni_chw == 40) 1361 ic->ic_ht40_sta_assoc--; 1362 } 1363 htinfo_update(ic); 1364 } 1365 1366 /* 1367 * Public version of htinfo_update; used for processing 1368 * beacon frames from overlapping bss. 1369 * 1370 * Caller can specify either IEEE80211_HTINFO_OPMODE_MIXED 1371 * (on receipt of a beacon that advertises MIXED) or 1372 * IEEE80211_HTINFO_OPMODE_PROTOPT (on receipt of a beacon 1373 * from an overlapping legacy bss). We treat MIXED with 1374 * a higher precedence than PROTOPT (i.e. we will not change 1375 * change PROTOPT -> MIXED; only MIXED -> PROTOPT). This 1376 * corresponds to how we handle things in htinfo_update. 1377 */ 1378 void 1379 ieee80211_htprot_update(struct ieee80211com *ic, int protmode) 1380 { 1381 #define OPMODE(x) SM(x, IEEE80211_HTINFO_OPMODE) 1382 IEEE80211_LOCK(ic); 1383 1384 /* track non-HT station presence */ 1385 KASSERT(protmode & IEEE80211_HTINFO_NONHT_PRESENT, 1386 ("protmode 0x%x", protmode)); 1387 ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR; 1388 ic->ic_lastnonht = ticks; 1389 1390 if (protmode != ic->ic_curhtprotmode && 1391 (OPMODE(ic->ic_curhtprotmode) != IEEE80211_HTINFO_OPMODE_MIXED || 1392 OPMODE(protmode) == IEEE80211_HTINFO_OPMODE_PROTOPT)) { 1393 /* push beacon update */ 1394 ic->ic_curhtprotmode = protmode; 1395 htinfo_notify(ic); 1396 } 1397 IEEE80211_UNLOCK(ic); 1398 #undef OPMODE 1399 } 1400 1401 /* 1402 * Time out presence of an overlapping bss with non-HT 1403 * stations. When operating in hostap mode we listen for 1404 * beacons from other stations and if we identify a non-HT 1405 * station is present we update the opmode field of the 1406 * HTINFO ie. To identify when all non-HT stations are 1407 * gone we time out this condition. 1408 */ 1409 void 1410 ieee80211_ht_timeout(struct ieee80211com *ic) 1411 { 1412 IEEE80211_LOCK_ASSERT(ic); 1413 1414 if ((ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) && 1415 ieee80211_time_after(ticks, ic->ic_lastnonht + IEEE80211_NONHT_PRESENT_AGE)) { 1416 #if 0 1417 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1418 "%s", "time out non-HT STA present on channel"); 1419 #endif 1420 ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR; 1421 htinfo_update(ic); 1422 } 1423 } 1424 1425 /* 1426 * Process an 802.11n HT capabilities ie. 1427 */ 1428 void 1429 ieee80211_parse_htcap(struct ieee80211_node *ni, const uint8_t *ie) 1430 { 1431 if (ie[0] == IEEE80211_ELEMID_VENDOR) { 1432 /* 1433 * Station used Vendor OUI ie to associate; 1434 * mark the node so when we respond we'll use 1435 * the Vendor OUI's and not the standard ie's. 1436 */ 1437 ni->ni_flags |= IEEE80211_NODE_HTCOMPAT; 1438 ie += 4; 1439 } else 1440 ni->ni_flags &= ~IEEE80211_NODE_HTCOMPAT; 1441 1442 ni->ni_htcap = le16dec(ie + 1443 __offsetof(struct ieee80211_ie_htcap, hc_cap)); 1444 ni->ni_htparam = ie[__offsetof(struct ieee80211_ie_htcap, hc_param)]; 1445 } 1446 1447 static void 1448 htinfo_parse(struct ieee80211_node *ni, 1449 const struct ieee80211_ie_htinfo *htinfo) 1450 { 1451 uint16_t w; 1452 1453 ni->ni_htctlchan = htinfo->hi_ctrlchannel; 1454 ni->ni_ht2ndchan = SM(htinfo->hi_byte1, IEEE80211_HTINFO_2NDCHAN); 1455 w = le16dec(&htinfo->hi_byte2); 1456 ni->ni_htopmode = SM(w, IEEE80211_HTINFO_OPMODE); 1457 w = le16dec(&htinfo->hi_byte45); 1458 ni->ni_htstbc = SM(w, IEEE80211_HTINFO_BASIC_STBCMCS); 1459 } 1460 1461 /* 1462 * Parse an 802.11n HT info ie and save useful information 1463 * to the node state. Note this does not effect any state 1464 * changes such as for channel width change. 1465 */ 1466 void 1467 ieee80211_parse_htinfo(struct ieee80211_node *ni, const uint8_t *ie) 1468 { 1469 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1470 ie += 4; 1471 htinfo_parse(ni, (const struct ieee80211_ie_htinfo *) ie); 1472 } 1473 1474 /* 1475 * Handle 11n channel switch. Use the received HT ie's to 1476 * identify the right channel to use. If we cannot locate it 1477 * in the channel table then fallback to legacy operation. 1478 * Note that we use this information to identify the node's 1479 * channel only; the caller is responsible for insuring any 1480 * required channel change is done (e.g. in sta mode when 1481 * parsing the contents of a beacon frame). 1482 */ 1483 static int 1484 htinfo_update_chw(struct ieee80211_node *ni, int htflags) 1485 { 1486 struct ieee80211com *ic = ni->ni_ic; 1487 struct ieee80211_channel *c; 1488 int chanflags; 1489 int ret = 0; 1490 1491 chanflags = (ni->ni_chan->ic_flags &~ IEEE80211_CHAN_HT) | htflags; 1492 if (chanflags != ni->ni_chan->ic_flags) { 1493 /* XXX not right for ht40- */ 1494 c = ieee80211_find_channel(ic, ni->ni_chan->ic_freq, chanflags); 1495 if (c == NULL && (htflags & IEEE80211_CHAN_HT40)) { 1496 /* 1497 * No HT40 channel entry in our table; fall back 1498 * to HT20 operation. This should not happen. 1499 */ 1500 c = findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT20); 1501 #if 0 1502 IEEE80211_NOTE(ni->ni_vap, 1503 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1504 "no HT40 channel (freq %u), falling back to HT20", 1505 ni->ni_chan->ic_freq); 1506 #endif 1507 /* XXX stat */ 1508 } 1509 if (c != NULL && c != ni->ni_chan) { 1510 IEEE80211_NOTE(ni->ni_vap, 1511 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1512 "switch station to HT%d channel %u/0x%x", 1513 IEEE80211_IS_CHAN_HT40(c) ? 40 : 20, 1514 c->ic_freq, c->ic_flags); 1515 ni->ni_chan = c; 1516 ret = 1; 1517 } 1518 /* NB: caller responsible for forcing any channel change */ 1519 } 1520 /* update node's tx channel width */ 1521 ni->ni_chw = IEEE80211_IS_CHAN_HT40(ni->ni_chan)? 40 : 20; 1522 return (ret); 1523 } 1524 1525 /* 1526 * Update 11n MIMO PS state according to received htcap. 1527 */ 1528 static __inline int 1529 htcap_update_mimo_ps(struct ieee80211_node *ni) 1530 { 1531 uint16_t oflags = ni->ni_flags; 1532 1533 switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) { 1534 case IEEE80211_HTCAP_SMPS_DYNAMIC: 1535 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1536 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 1537 break; 1538 case IEEE80211_HTCAP_SMPS_ENA: 1539 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1540 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1541 break; 1542 case IEEE80211_HTCAP_SMPS_OFF: 1543 default: /* disable on rx of reserved value */ 1544 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 1545 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1546 break; 1547 } 1548 return (oflags ^ ni->ni_flags); 1549 } 1550 1551 /* 1552 * Update short GI state according to received htcap 1553 * and local settings. 1554 */ 1555 static __inline void 1556 htcap_update_shortgi(struct ieee80211_node *ni) 1557 { 1558 struct ieee80211vap *vap = ni->ni_vap; 1559 1560 ni->ni_flags &= ~(IEEE80211_NODE_SGI20|IEEE80211_NODE_SGI40); 1561 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) && 1562 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)) 1563 ni->ni_flags |= IEEE80211_NODE_SGI20; 1564 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) && 1565 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)) 1566 ni->ni_flags |= IEEE80211_NODE_SGI40; 1567 } 1568 1569 /* 1570 * Parse and update HT-related state extracted from 1571 * the HT cap and info ie's. 1572 */ 1573 int 1574 ieee80211_ht_updateparams(struct ieee80211_node *ni, 1575 const uint8_t *htcapie, const uint8_t *htinfoie) 1576 { 1577 struct ieee80211vap *vap = ni->ni_vap; 1578 const struct ieee80211_ie_htinfo *htinfo; 1579 int htflags; 1580 int ret = 0; 1581 1582 ieee80211_parse_htcap(ni, htcapie); 1583 if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS) 1584 htcap_update_mimo_ps(ni); 1585 htcap_update_shortgi(ni); 1586 1587 if (htinfoie[0] == IEEE80211_ELEMID_VENDOR) 1588 htinfoie += 4; 1589 htinfo = (const struct ieee80211_ie_htinfo *) htinfoie; 1590 htinfo_parse(ni, htinfo); 1591 1592 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 1593 IEEE80211_CHAN_HT20 : 0; 1594 /* NB: honor operating mode constraint */ 1595 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH_2040) && 1596 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 1597 if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_ABOVE) 1598 htflags = IEEE80211_CHAN_HT40U; 1599 else if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_BELOW) 1600 htflags = IEEE80211_CHAN_HT40D; 1601 } 1602 if (htinfo_update_chw(ni, htflags)) 1603 ret = 1; 1604 1605 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_RIFSMODE_PERM) && 1606 (vap->iv_flags_ht & IEEE80211_FHT_RIFS)) 1607 ni->ni_flags |= IEEE80211_NODE_RIFS; 1608 else 1609 ni->ni_flags &= ~IEEE80211_NODE_RIFS; 1610 1611 return (ret); 1612 } 1613 1614 /* 1615 * Parse and update HT-related state extracted from the HT cap ie 1616 * for a station joining an HT BSS. 1617 */ 1618 void 1619 ieee80211_ht_updatehtcap(struct ieee80211_node *ni, const uint8_t *htcapie) 1620 { 1621 struct ieee80211vap *vap = ni->ni_vap; 1622 int htflags; 1623 1624 ieee80211_parse_htcap(ni, htcapie); 1625 if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS) 1626 htcap_update_mimo_ps(ni); 1627 htcap_update_shortgi(ni); 1628 1629 /* NB: honor operating mode constraint */ 1630 /* XXX 40 MHz intolerant */ 1631 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 1632 IEEE80211_CHAN_HT20 : 0; 1633 if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) && 1634 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 1635 if (IEEE80211_IS_CHAN_HT40U(vap->iv_bss->ni_chan)) 1636 htflags = IEEE80211_CHAN_HT40U; 1637 else if (IEEE80211_IS_CHAN_HT40D(vap->iv_bss->ni_chan)) 1638 htflags = IEEE80211_CHAN_HT40D; 1639 } 1640 (void) htinfo_update_chw(ni, htflags); 1641 } 1642 1643 /* 1644 * Install received HT rate set by parsing the HT cap ie. 1645 */ 1646 int 1647 ieee80211_setup_htrates(struct ieee80211_node *ni, const uint8_t *ie, int flags) 1648 { 1649 struct ieee80211com *ic = ni->ni_ic; 1650 struct ieee80211vap *vap = ni->ni_vap; 1651 const struct ieee80211_ie_htcap *htcap; 1652 struct ieee80211_htrateset *rs; 1653 int i, maxequalmcs, maxunequalmcs; 1654 1655 maxequalmcs = ic->ic_txstream * 8 - 1; 1656 maxunequalmcs = 0; 1657 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 1658 if (ic->ic_txstream >= 2) 1659 maxunequalmcs = 38; 1660 if (ic->ic_txstream >= 3) 1661 maxunequalmcs = 52; 1662 if (ic->ic_txstream >= 4) 1663 maxunequalmcs = 76; 1664 } 1665 1666 rs = &ni->ni_htrates; 1667 memset(rs, 0, sizeof(*rs)); 1668 if (ie != NULL) { 1669 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1670 ie += 4; 1671 htcap = (const struct ieee80211_ie_htcap *) ie; 1672 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 1673 if (isclr(htcap->hc_mcsset, i)) 1674 continue; 1675 if (rs->rs_nrates == IEEE80211_HTRATE_MAXSIZE) { 1676 IEEE80211_NOTE(vap, 1677 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 1678 "WARNING, HT rate set too large; only " 1679 "using %u rates", IEEE80211_HTRATE_MAXSIZE); 1680 vap->iv_stats.is_rx_rstoobig++; 1681 break; 1682 } 1683 if (i <= 31 && i > maxequalmcs) 1684 continue; 1685 if (i == 32 && 1686 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0) 1687 continue; 1688 if (i > 32 && i > maxunequalmcs) 1689 continue; 1690 rs->rs_rates[rs->rs_nrates++] = i; 1691 } 1692 } 1693 return ieee80211_fix_rate(ni, (struct ieee80211_rateset *) rs, flags); 1694 } 1695 1696 /* 1697 * Mark rates in a node's HT rate set as basic according 1698 * to the information in the supplied HT info ie. 1699 */ 1700 void 1701 ieee80211_setup_basic_htrates(struct ieee80211_node *ni, const uint8_t *ie) 1702 { 1703 const struct ieee80211_ie_htinfo *htinfo; 1704 struct ieee80211_htrateset *rs; 1705 int i, j; 1706 1707 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1708 ie += 4; 1709 htinfo = (const struct ieee80211_ie_htinfo *) ie; 1710 rs = &ni->ni_htrates; 1711 if (rs->rs_nrates == 0) { 1712 IEEE80211_NOTE(ni->ni_vap, 1713 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 1714 "%s", "WARNING, empty HT rate set"); 1715 return; 1716 } 1717 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 1718 if (isclr(htinfo->hi_basicmcsset, i)) 1719 continue; 1720 for (j = 0; j < rs->rs_nrates; j++) 1721 if ((rs->rs_rates[j] & IEEE80211_RATE_VAL) == i) 1722 rs->rs_rates[j] |= IEEE80211_RATE_BASIC; 1723 } 1724 } 1725 1726 static void 1727 ampdu_tx_setup(struct ieee80211_tx_ampdu *tap) 1728 { 1729 callout_init(&tap->txa_timer, 1); 1730 tap->txa_flags |= IEEE80211_AGGR_SETUP; 1731 tap->txa_lastsample = ticks; 1732 } 1733 1734 static void 1735 ampdu_tx_stop(struct ieee80211_tx_ampdu *tap) 1736 { 1737 struct ieee80211_node *ni = tap->txa_ni; 1738 struct ieee80211com *ic = ni->ni_ic; 1739 1740 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 1741 tap->txa_ni, 1742 "%s: called", 1743 __func__); 1744 1745 KASSERT(tap->txa_flags & IEEE80211_AGGR_SETUP, 1746 ("txa_flags 0x%x tid %d ac %d", tap->txa_flags, tap->txa_tid, 1747 TID_TO_WME_AC(tap->txa_tid))); 1748 1749 /* 1750 * Stop BA stream if setup so driver has a chance 1751 * to reclaim any resources it might have allocated. 1752 */ 1753 ic->ic_addba_stop(ni, tap); 1754 /* 1755 * Stop any pending BAR transmit. 1756 */ 1757 bar_stop_timer(tap); 1758 1759 /* 1760 * Reset packet estimate. 1761 */ 1762 ieee80211_txampdu_init_pps(tap); 1763 1764 /* NB: clearing NAK means we may re-send ADDBA */ 1765 tap->txa_flags &= ~(IEEE80211_AGGR_SETUP | IEEE80211_AGGR_NAK); 1766 } 1767 1768 /* 1769 * ADDBA response timeout. 1770 * 1771 * If software aggregation and per-TID queue management was done here, 1772 * that queue would be unpaused after the ADDBA timeout occurs. 1773 */ 1774 static void 1775 addba_timeout(void *arg) 1776 { 1777 struct ieee80211_tx_ampdu *tap = arg; 1778 struct ieee80211_node *ni = tap->txa_ni; 1779 struct ieee80211com *ic = ni->ni_ic; 1780 1781 /* XXX ? */ 1782 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 1783 tap->txa_attempts++; 1784 ic->ic_addba_response_timeout(ni, tap); 1785 } 1786 1787 static void 1788 addba_start_timeout(struct ieee80211_tx_ampdu *tap) 1789 { 1790 /* XXX use CALLOUT_PENDING instead? */ 1791 callout_reset(&tap->txa_timer, ieee80211_addba_timeout, 1792 addba_timeout, tap); 1793 tap->txa_flags |= IEEE80211_AGGR_XCHGPEND; 1794 tap->txa_nextrequest = ticks + ieee80211_addba_timeout; 1795 } 1796 1797 static void 1798 addba_stop_timeout(struct ieee80211_tx_ampdu *tap) 1799 { 1800 /* XXX use CALLOUT_PENDING instead? */ 1801 if (tap->txa_flags & IEEE80211_AGGR_XCHGPEND) { 1802 callout_stop(&tap->txa_timer); 1803 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 1804 } 1805 } 1806 1807 static void 1808 null_addba_response_timeout(struct ieee80211_node *ni, 1809 struct ieee80211_tx_ampdu *tap) 1810 { 1811 } 1812 1813 /* 1814 * Default method for requesting A-MPDU tx aggregation. 1815 * We setup the specified state block and start a timer 1816 * to wait for an ADDBA response frame. 1817 */ 1818 static int 1819 ieee80211_addba_request(struct ieee80211_node *ni, 1820 struct ieee80211_tx_ampdu *tap, 1821 int dialogtoken, int baparamset, int batimeout) 1822 { 1823 int bufsiz; 1824 1825 /* XXX locking */ 1826 tap->txa_token = dialogtoken; 1827 tap->txa_flags |= IEEE80211_AGGR_IMMEDIATE; 1828 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 1829 tap->txa_wnd = (bufsiz == 0) ? 1830 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 1831 addba_start_timeout(tap); 1832 return 1; 1833 } 1834 1835 /* 1836 * Called by drivers that wish to request an ADDBA session be 1837 * setup. This brings it up and starts the request timer. 1838 */ 1839 int 1840 ieee80211_ampdu_tx_request_ext(struct ieee80211_node *ni, int tid) 1841 { 1842 struct ieee80211_tx_ampdu *tap; 1843 1844 if (tid < 0 || tid > 15) 1845 return (0); 1846 tap = &ni->ni_tx_ampdu[tid]; 1847 1848 /* XXX locking */ 1849 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 1850 /* do deferred setup of state */ 1851 ampdu_tx_setup(tap); 1852 } 1853 /* XXX hack for not doing proper locking */ 1854 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 1855 addba_start_timeout(tap); 1856 return (1); 1857 } 1858 1859 /* 1860 * Called by drivers that have marked a session as active. 1861 */ 1862 int 1863 ieee80211_ampdu_tx_request_active_ext(struct ieee80211_node *ni, int tid, 1864 int status) 1865 { 1866 struct ieee80211_tx_ampdu *tap; 1867 1868 if (tid < 0 || tid > 15) 1869 return (0); 1870 tap = &ni->ni_tx_ampdu[tid]; 1871 1872 /* XXX locking */ 1873 addba_stop_timeout(tap); 1874 if (status == 1) { 1875 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 1876 tap->txa_attempts = 0; 1877 } else { 1878 /* mark tid so we don't try again */ 1879 tap->txa_flags |= IEEE80211_AGGR_NAK; 1880 } 1881 return (1); 1882 } 1883 1884 /* 1885 * Default method for processing an A-MPDU tx aggregation 1886 * response. We shutdown any pending timer and update the 1887 * state block according to the reply. 1888 */ 1889 static int 1890 ieee80211_addba_response(struct ieee80211_node *ni, 1891 struct ieee80211_tx_ampdu *tap, 1892 int status, int baparamset, int batimeout) 1893 { 1894 int bufsiz, tid; 1895 1896 /* XXX locking */ 1897 addba_stop_timeout(tap); 1898 if (status == IEEE80211_STATUS_SUCCESS) { 1899 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 1900 /* XXX override our request? */ 1901 tap->txa_wnd = (bufsiz == 0) ? 1902 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 1903 /* XXX AC/TID */ 1904 tid = MS(baparamset, IEEE80211_BAPS_TID); 1905 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 1906 tap->txa_attempts = 0; 1907 } else { 1908 /* mark tid so we don't try again */ 1909 tap->txa_flags |= IEEE80211_AGGR_NAK; 1910 } 1911 return 1; 1912 } 1913 1914 /* 1915 * Default method for stopping A-MPDU tx aggregation. 1916 * Any timer is cleared and we drain any pending frames. 1917 */ 1918 static void 1919 ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 1920 { 1921 /* XXX locking */ 1922 addba_stop_timeout(tap); 1923 if (tap->txa_flags & IEEE80211_AGGR_RUNNING) { 1924 /* XXX clear aggregation queue */ 1925 tap->txa_flags &= ~IEEE80211_AGGR_RUNNING; 1926 } 1927 tap->txa_attempts = 0; 1928 } 1929 1930 /* 1931 * Process a received action frame using the default aggregation 1932 * policy. We intercept ADDBA-related frames and use them to 1933 * update our aggregation state. All other frames are passed up 1934 * for processing by ieee80211_recv_action. 1935 */ 1936 static int 1937 ht_recv_action_ba_addba_request(struct ieee80211_node *ni, 1938 const struct ieee80211_frame *wh, 1939 const uint8_t *frm, const uint8_t *efrm) 1940 { 1941 struct ieee80211com *ic = ni->ni_ic; 1942 struct ieee80211vap *vap = ni->ni_vap; 1943 struct ieee80211_rx_ampdu *rap; 1944 uint8_t dialogtoken; 1945 uint16_t baparamset, batimeout, baseqctl; 1946 uint16_t args[5]; 1947 int tid; 1948 1949 dialogtoken = frm[2]; 1950 baparamset = le16dec(frm+3); 1951 batimeout = le16dec(frm+5); 1952 baseqctl = le16dec(frm+7); 1953 1954 tid = MS(baparamset, IEEE80211_BAPS_TID); 1955 1956 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 1957 "recv ADDBA request: dialogtoken %u baparamset 0x%x " 1958 "(tid %d bufsiz %d) batimeout %d baseqctl %d:%d", 1959 dialogtoken, baparamset, 1960 tid, MS(baparamset, IEEE80211_BAPS_BUFSIZ), 1961 batimeout, 1962 MS(baseqctl, IEEE80211_BASEQ_START), 1963 MS(baseqctl, IEEE80211_BASEQ_FRAG)); 1964 1965 rap = &ni->ni_rx_ampdu[tid]; 1966 1967 /* Send ADDBA response */ 1968 args[0] = dialogtoken; 1969 /* 1970 * NB: We ack only if the sta associated with HT and 1971 * the ap is configured to do AMPDU rx (the latter 1972 * violates the 11n spec and is mostly for testing). 1973 */ 1974 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_RX) && 1975 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX)) { 1976 /* XXX handle ampdu_rx_start failure */ 1977 ic->ic_ampdu_rx_start(ni, rap, 1978 baparamset, batimeout, baseqctl); 1979 1980 args[1] = IEEE80211_STATUS_SUCCESS; 1981 } else { 1982 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 1983 ni, "reject ADDBA request: %s", 1984 ni->ni_flags & IEEE80211_NODE_AMPDU_RX ? 1985 "administratively disabled" : 1986 "not negotiated for station"); 1987 vap->iv_stats.is_addba_reject++; 1988 args[1] = IEEE80211_STATUS_UNSPECIFIED; 1989 } 1990 /* XXX honor rap flags? */ 1991 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 1992 | SM(tid, IEEE80211_BAPS_TID) 1993 | SM(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ) 1994 ; 1995 args[3] = 0; 1996 args[4] = 0; 1997 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 1998 IEEE80211_ACTION_BA_ADDBA_RESPONSE, args); 1999 return 0; 2000 } 2001 2002 static int 2003 ht_recv_action_ba_addba_response(struct ieee80211_node *ni, 2004 const struct ieee80211_frame *wh, 2005 const uint8_t *frm, const uint8_t *efrm) 2006 { 2007 struct ieee80211com *ic = ni->ni_ic; 2008 struct ieee80211vap *vap = ni->ni_vap; 2009 struct ieee80211_tx_ampdu *tap; 2010 uint8_t dialogtoken, policy; 2011 uint16_t baparamset, batimeout, code; 2012 int tid, bufsiz; 2013 2014 dialogtoken = frm[2]; 2015 code = le16dec(frm+3); 2016 baparamset = le16dec(frm+5); 2017 tid = MS(baparamset, IEEE80211_BAPS_TID); 2018 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 2019 policy = MS(baparamset, IEEE80211_BAPS_POLICY); 2020 batimeout = le16dec(frm+7); 2021 2022 tap = &ni->ni_tx_ampdu[tid]; 2023 if ((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 2024 IEEE80211_DISCARD_MAC(vap, 2025 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2026 ni->ni_macaddr, "ADDBA response", 2027 "no pending ADDBA, tid %d dialogtoken %u " 2028 "code %d", tid, dialogtoken, code); 2029 vap->iv_stats.is_addba_norequest++; 2030 return 0; 2031 } 2032 if (dialogtoken != tap->txa_token) { 2033 IEEE80211_DISCARD_MAC(vap, 2034 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2035 ni->ni_macaddr, "ADDBA response", 2036 "dialogtoken mismatch: waiting for %d, " 2037 "received %d, tid %d code %d", 2038 tap->txa_token, dialogtoken, tid, code); 2039 vap->iv_stats.is_addba_badtoken++; 2040 return 0; 2041 } 2042 /* NB: assumes IEEE80211_AGGR_IMMEDIATE is 1 */ 2043 if (policy != (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE)) { 2044 IEEE80211_DISCARD_MAC(vap, 2045 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2046 ni->ni_macaddr, "ADDBA response", 2047 "policy mismatch: expecting %s, " 2048 "received %s, tid %d code %d", 2049 tap->txa_flags & IEEE80211_AGGR_IMMEDIATE, 2050 policy, tid, code); 2051 vap->iv_stats.is_addba_badpolicy++; 2052 return 0; 2053 } 2054 #if 0 2055 /* XXX we take MIN in ieee80211_addba_response */ 2056 if (bufsiz > IEEE80211_AGGR_BAWMAX) { 2057 IEEE80211_DISCARD_MAC(vap, 2058 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2059 ni->ni_macaddr, "ADDBA response", 2060 "BA window too large: max %d, " 2061 "received %d, tid %d code %d", 2062 bufsiz, IEEE80211_AGGR_BAWMAX, tid, code); 2063 vap->iv_stats.is_addba_badbawinsize++; 2064 return 0; 2065 } 2066 #endif 2067 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2068 "recv ADDBA response: dialogtoken %u code %d " 2069 "baparamset 0x%x (tid %d bufsiz %d) batimeout %d", 2070 dialogtoken, code, baparamset, tid, bufsiz, 2071 batimeout); 2072 ic->ic_addba_response(ni, tap, code, baparamset, batimeout); 2073 return 0; 2074 } 2075 2076 static int 2077 ht_recv_action_ba_delba(struct ieee80211_node *ni, 2078 const struct ieee80211_frame *wh, 2079 const uint8_t *frm, const uint8_t *efrm) 2080 { 2081 struct ieee80211com *ic = ni->ni_ic; 2082 struct ieee80211_rx_ampdu *rap; 2083 struct ieee80211_tx_ampdu *tap; 2084 uint16_t baparamset, code; 2085 int tid; 2086 2087 baparamset = le16dec(frm+2); 2088 code = le16dec(frm+4); 2089 2090 tid = MS(baparamset, IEEE80211_DELBAPS_TID); 2091 2092 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2093 "recv DELBA: baparamset 0x%x (tid %d initiator %d) " 2094 "code %d", baparamset, tid, 2095 MS(baparamset, IEEE80211_DELBAPS_INIT), code); 2096 2097 if ((baparamset & IEEE80211_DELBAPS_INIT) == 0) { 2098 tap = &ni->ni_tx_ampdu[tid]; 2099 ic->ic_addba_stop(ni, tap); 2100 } else { 2101 rap = &ni->ni_rx_ampdu[tid]; 2102 ic->ic_ampdu_rx_stop(ni, rap); 2103 } 2104 return 0; 2105 } 2106 2107 static int 2108 ht_recv_action_ht_txchwidth(struct ieee80211_node *ni, 2109 const struct ieee80211_frame *wh, 2110 const uint8_t *frm, const uint8_t *efrm) 2111 { 2112 int chw; 2113 2114 chw = (frm[2] == IEEE80211_A_HT_TXCHWIDTH_2040) ? 40 : 20; 2115 2116 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2117 "%s: HT txchwidth, width %d%s", 2118 __func__, chw, ni->ni_chw != chw ? "*" : ""); 2119 if (chw != ni->ni_chw) { 2120 ni->ni_chw = chw; 2121 /* XXX notify on change */ 2122 } 2123 return 0; 2124 } 2125 2126 static int 2127 ht_recv_action_ht_mimopwrsave(struct ieee80211_node *ni, 2128 const struct ieee80211_frame *wh, 2129 const uint8_t *frm, const uint8_t *efrm) 2130 { 2131 const struct ieee80211_action_ht_mimopowersave *mps = 2132 (const struct ieee80211_action_ht_mimopowersave *) frm; 2133 2134 /* XXX check iv_htcaps */ 2135 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA) 2136 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 2137 else 2138 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 2139 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_MODE) 2140 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 2141 else 2142 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 2143 /* XXX notify on change */ 2144 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2145 "%s: HT MIMO PS (%s%s)", __func__, 2146 (ni->ni_flags & IEEE80211_NODE_MIMO_PS) ? "on" : "off", 2147 (ni->ni_flags & IEEE80211_NODE_MIMO_RTS) ? "+rts" : "" 2148 ); 2149 return 0; 2150 } 2151 2152 /* 2153 * Transmit processing. 2154 */ 2155 2156 /* 2157 * Check if A-MPDU should be requested/enabled for a stream. 2158 * We require a traffic rate above a per-AC threshold and we 2159 * also handle backoff from previous failed attempts. 2160 * 2161 * Drivers may override this method to bring in information 2162 * such as link state conditions in making the decision. 2163 */ 2164 static int 2165 ieee80211_ampdu_enable(struct ieee80211_node *ni, 2166 struct ieee80211_tx_ampdu *tap) 2167 { 2168 struct ieee80211vap *vap = ni->ni_vap; 2169 2170 if (tap->txa_avgpps < 2171 vap->iv_ampdu_mintraffic[TID_TO_WME_AC(tap->txa_tid)]) 2172 return 0; 2173 /* XXX check rssi? */ 2174 if (tap->txa_attempts >= ieee80211_addba_maxtries && 2175 ieee80211_time_after(ticks, tap->txa_nextrequest)) { 2176 /* 2177 * Don't retry too often; txa_nextrequest is set 2178 * to the minimum interval we'll retry after 2179 * ieee80211_addba_maxtries failed attempts are made. 2180 */ 2181 return 0; 2182 } 2183 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 2184 "enable AMPDU on tid %d (%s), avgpps %d pkts %d attempt %d", 2185 tap->txa_tid, ieee80211_wme_acnames[TID_TO_WME_AC(tap->txa_tid)], 2186 tap->txa_avgpps, tap->txa_pkts, tap->txa_attempts); 2187 return 1; 2188 } 2189 2190 /* 2191 * Request A-MPDU tx aggregation. Setup local state and 2192 * issue an ADDBA request. BA use will only happen after 2193 * the other end replies with ADDBA response. 2194 */ 2195 int 2196 ieee80211_ampdu_request(struct ieee80211_node *ni, 2197 struct ieee80211_tx_ampdu *tap) 2198 { 2199 struct ieee80211com *ic = ni->ni_ic; 2200 uint16_t args[5]; 2201 int tid, dialogtoken; 2202 static int tokens = 0; /* XXX */ 2203 2204 /* XXX locking */ 2205 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 2206 /* do deferred setup of state */ 2207 ampdu_tx_setup(tap); 2208 } 2209 /* XXX hack for not doing proper locking */ 2210 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 2211 2212 dialogtoken = (tokens+1) % 63; /* XXX */ 2213 tid = tap->txa_tid; 2214 tap->txa_start = ni->ni_txseqs[tid]; 2215 2216 args[0] = dialogtoken; 2217 args[1] = 0; /* NB: status code not used */ 2218 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 2219 | SM(tid, IEEE80211_BAPS_TID) 2220 | SM(IEEE80211_AGGR_BAWMAX, IEEE80211_BAPS_BUFSIZ) 2221 ; 2222 args[3] = 0; /* batimeout */ 2223 /* NB: do first so there's no race against reply */ 2224 if (!ic->ic_addba_request(ni, tap, dialogtoken, args[2], args[3])) { 2225 /* unable to setup state, don't make request */ 2226 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2227 ni, "%s: could not setup BA stream for TID %d AC %d", 2228 __func__, tap->txa_tid, TID_TO_WME_AC(tap->txa_tid)); 2229 /* defer next try so we don't slam the driver with requests */ 2230 tap->txa_attempts = ieee80211_addba_maxtries; 2231 /* NB: check in case driver wants to override */ 2232 if (tap->txa_nextrequest <= ticks) 2233 tap->txa_nextrequest = ticks + ieee80211_addba_backoff; 2234 return 0; 2235 } 2236 tokens = dialogtoken; /* allocate token */ 2237 /* NB: after calling ic_addba_request so driver can set txa_start */ 2238 args[4] = SM(tap->txa_start, IEEE80211_BASEQ_START) 2239 | SM(0, IEEE80211_BASEQ_FRAG) 2240 ; 2241 return ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2242 IEEE80211_ACTION_BA_ADDBA_REQUEST, args); 2243 } 2244 2245 /* 2246 * Terminate an AMPDU tx stream. State is reclaimed 2247 * and the peer notified with a DelBA Action frame. 2248 */ 2249 void 2250 ieee80211_ampdu_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 2251 int reason) 2252 { 2253 struct ieee80211com *ic = ni->ni_ic; 2254 struct ieee80211vap *vap = ni->ni_vap; 2255 uint16_t args[4]; 2256 2257 /* XXX locking */ 2258 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2259 if (IEEE80211_AMPDU_RUNNING(tap)) { 2260 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2261 ni, "%s: stop BA stream for TID %d (reason: %d (%s))", 2262 __func__, tap->txa_tid, reason, 2263 ieee80211_reason_to_string(reason)); 2264 vap->iv_stats.is_ampdu_stop++; 2265 2266 ic->ic_addba_stop(ni, tap); 2267 args[0] = tap->txa_tid; 2268 args[1] = IEEE80211_DELBAPS_INIT; 2269 args[2] = reason; /* XXX reason code */ 2270 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2271 IEEE80211_ACTION_BA_DELBA, args); 2272 } else { 2273 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2274 ni, "%s: BA stream for TID %d not running " 2275 "(reason: %d (%s))", __func__, tap->txa_tid, reason, 2276 ieee80211_reason_to_string(reason)); 2277 vap->iv_stats.is_ampdu_stop_failed++; 2278 } 2279 } 2280 2281 /* XXX */ 2282 static void bar_start_timer(struct ieee80211_tx_ampdu *tap); 2283 2284 static void 2285 bar_timeout(void *arg) 2286 { 2287 struct ieee80211_tx_ampdu *tap = arg; 2288 struct ieee80211_node *ni = tap->txa_ni; 2289 2290 KASSERT((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0, 2291 ("bar/addba collision, flags 0x%x", tap->txa_flags)); 2292 2293 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2294 ni, "%s: tid %u flags 0x%x attempts %d", __func__, 2295 tap->txa_tid, tap->txa_flags, tap->txa_attempts); 2296 2297 /* guard against race with bar_tx_complete */ 2298 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2299 return; 2300 /* XXX ? */ 2301 if (tap->txa_attempts >= ieee80211_bar_maxtries) { 2302 struct ieee80211com *ic = ni->ni_ic; 2303 2304 ni->ni_vap->iv_stats.is_ampdu_bar_tx_fail++; 2305 /* 2306 * If (at least) the last BAR TX timeout was due to 2307 * an ieee80211_send_bar() failures, then we need 2308 * to make sure we notify the driver that a BAR 2309 * TX did occur and fail. This gives the driver 2310 * a chance to undo any queue pause that may 2311 * have occurred. 2312 */ 2313 ic->ic_bar_response(ni, tap, 1); 2314 ieee80211_ampdu_stop(ni, tap, IEEE80211_REASON_TIMEOUT); 2315 } else { 2316 ni->ni_vap->iv_stats.is_ampdu_bar_tx_retry++; 2317 if (ieee80211_send_bar(ni, tap, tap->txa_seqpending) != 0) { 2318 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2319 ni, "%s: failed to TX, starting timer\n", 2320 __func__); 2321 /* 2322 * If ieee80211_send_bar() fails here, the 2323 * timer may have stopped and/or the pending 2324 * flag may be clear. Because of this, 2325 * fake the BARPEND and reset the timer. 2326 * A retransmission attempt will then occur 2327 * during the next timeout. 2328 */ 2329 /* XXX locking */ 2330 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2331 bar_start_timer(tap); 2332 } 2333 } 2334 } 2335 2336 static void 2337 bar_start_timer(struct ieee80211_tx_ampdu *tap) 2338 { 2339 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2340 tap->txa_ni, 2341 "%s: called", 2342 __func__); 2343 callout_reset(&tap->txa_timer, ieee80211_bar_timeout, bar_timeout, tap); 2344 } 2345 2346 static void 2347 bar_stop_timer(struct ieee80211_tx_ampdu *tap) 2348 { 2349 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2350 tap->txa_ni, 2351 "%s: called", 2352 __func__); 2353 callout_stop(&tap->txa_timer); 2354 } 2355 2356 static void 2357 bar_tx_complete(struct ieee80211_node *ni, void *arg, int status) 2358 { 2359 struct ieee80211_tx_ampdu *tap = arg; 2360 2361 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2362 ni, "%s: tid %u flags 0x%x pending %d status %d", 2363 __func__, tap->txa_tid, tap->txa_flags, 2364 callout_pending(&tap->txa_timer), status); 2365 2366 ni->ni_vap->iv_stats.is_ampdu_bar_tx++; 2367 /* XXX locking */ 2368 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) && 2369 callout_pending(&tap->txa_timer)) { 2370 struct ieee80211com *ic = ni->ni_ic; 2371 2372 if (status == 0) /* ACK'd */ 2373 bar_stop_timer(tap); 2374 ic->ic_bar_response(ni, tap, status); 2375 /* NB: just let timer expire so we pace requests */ 2376 } 2377 } 2378 2379 static void 2380 ieee80211_bar_response(struct ieee80211_node *ni, 2381 struct ieee80211_tx_ampdu *tap, int status) 2382 { 2383 2384 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2385 tap->txa_ni, 2386 "%s: called", 2387 __func__); 2388 if (status == 0) { /* got ACK */ 2389 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2390 ni, "BAR moves BA win <%u:%u> (%u frames) txseq %u tid %u", 2391 tap->txa_start, 2392 IEEE80211_SEQ_ADD(tap->txa_start, tap->txa_wnd-1), 2393 tap->txa_qframes, tap->txa_seqpending, 2394 tap->txa_tid); 2395 2396 /* NB: timer already stopped in bar_tx_complete */ 2397 tap->txa_start = tap->txa_seqpending; 2398 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2399 } 2400 } 2401 2402 /* 2403 * Transmit a BAR frame to the specified node. The 2404 * BAR contents are drawn from the supplied aggregation 2405 * state associated with the node. 2406 * 2407 * NB: we only handle immediate ACK w/ compressed bitmap. 2408 */ 2409 int 2410 ieee80211_send_bar(struct ieee80211_node *ni, 2411 struct ieee80211_tx_ampdu *tap, ieee80211_seq seq) 2412 { 2413 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2414 struct ieee80211vap *vap = ni->ni_vap; 2415 struct ieee80211com *ic = ni->ni_ic; 2416 struct ieee80211_frame_bar *bar; 2417 struct mbuf *m; 2418 uint16_t barctl, barseqctl; 2419 uint8_t *frm; 2420 int tid, ret; 2421 2422 2423 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2424 tap->txa_ni, 2425 "%s: called", 2426 __func__); 2427 2428 if ((tap->txa_flags & IEEE80211_AGGR_RUNNING) == 0) { 2429 /* no ADDBA response, should not happen */ 2430 /* XXX stat+msg */ 2431 return EINVAL; 2432 } 2433 /* XXX locking */ 2434 bar_stop_timer(tap); 2435 2436 ieee80211_ref_node(ni); 2437 2438 m = ieee80211_getmgtframe(&frm, ic->ic_headroom, sizeof(*bar)); 2439 if (m == NULL) 2440 senderr(ENOMEM, is_tx_nobuf); 2441 2442 if (!ieee80211_add_callback(m, bar_tx_complete, tap)) { 2443 m_freem(m); 2444 senderr(ENOMEM, is_tx_nobuf); /* XXX */ 2445 /* NOTREACHED */ 2446 } 2447 2448 bar = mtod(m, struct ieee80211_frame_bar *); 2449 bar->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2450 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR; 2451 bar->i_fc[1] = 0; 2452 IEEE80211_ADDR_COPY(bar->i_ra, ni->ni_macaddr); 2453 IEEE80211_ADDR_COPY(bar->i_ta, vap->iv_myaddr); 2454 2455 tid = tap->txa_tid; 2456 barctl = (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE ? 2457 0 : IEEE80211_BAR_NOACK) 2458 | IEEE80211_BAR_COMP 2459 | SM(tid, IEEE80211_BAR_TID) 2460 ; 2461 barseqctl = SM(seq, IEEE80211_BAR_SEQ_START); 2462 /* NB: known to have proper alignment */ 2463 bar->i_ctl = htole16(barctl); 2464 bar->i_seq = htole16(barseqctl); 2465 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_bar); 2466 2467 M_WME_SETAC(m, WME_AC_VO); 2468 2469 IEEE80211_NODE_STAT(ni, tx_mgmt); /* XXX tx_ctl? */ 2470 2471 /* XXX locking */ 2472 /* init/bump attempts counter */ 2473 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2474 tap->txa_attempts = 1; 2475 else 2476 tap->txa_attempts++; 2477 tap->txa_seqpending = seq; 2478 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2479 2480 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2481 ni, "send BAR: tid %u ctl 0x%x start %u (attempt %d)", 2482 tid, barctl, seq, tap->txa_attempts); 2483 2484 /* 2485 * ic_raw_xmit will free the node reference 2486 * regardless of queue/TX success or failure. 2487 */ 2488 IEEE80211_TX_LOCK(ic); 2489 ret = ieee80211_raw_output(vap, ni, m, NULL); 2490 IEEE80211_TX_UNLOCK(ic); 2491 if (ret != 0) { 2492 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2493 ni, "send BAR: failed: (ret = %d)\n", 2494 ret); 2495 /* xmit failed, clear state flag */ 2496 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2497 vap->iv_stats.is_ampdu_bar_tx_fail++; 2498 return ret; 2499 } 2500 /* XXX hack against tx complete happening before timer is started */ 2501 if (tap->txa_flags & IEEE80211_AGGR_BARPEND) 2502 bar_start_timer(tap); 2503 return 0; 2504 bad: 2505 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2506 tap->txa_ni, 2507 "%s: bad! ret=%d", 2508 __func__, ret); 2509 vap->iv_stats.is_ampdu_bar_tx_fail++; 2510 ieee80211_free_node(ni); 2511 return ret; 2512 #undef senderr 2513 } 2514 2515 static int 2516 ht_action_output(struct ieee80211_node *ni, struct mbuf *m) 2517 { 2518 struct ieee80211_bpf_params params; 2519 2520 memset(¶ms, 0, sizeof(params)); 2521 params.ibp_pri = WME_AC_VO; 2522 params.ibp_rate0 = ni->ni_txparms->mgmtrate; 2523 /* NB: we know all frames are unicast */ 2524 params.ibp_try0 = ni->ni_txparms->maxretry; 2525 params.ibp_power = ni->ni_txpower; 2526 return ieee80211_mgmt_output(ni, m, IEEE80211_FC0_SUBTYPE_ACTION, 2527 ¶ms); 2528 } 2529 2530 #define ADDSHORT(frm, v) do { \ 2531 frm[0] = (v) & 0xff; \ 2532 frm[1] = (v) >> 8; \ 2533 frm += 2; \ 2534 } while (0) 2535 2536 /* 2537 * Send an action management frame. The arguments are stuff 2538 * into a frame without inspection; the caller is assumed to 2539 * prepare them carefully (e.g. based on the aggregation state). 2540 */ 2541 static int 2542 ht_send_action_ba_addba(struct ieee80211_node *ni, 2543 int category, int action, void *arg0) 2544 { 2545 struct ieee80211vap *vap = ni->ni_vap; 2546 struct ieee80211com *ic = ni->ni_ic; 2547 uint16_t *args = arg0; 2548 struct mbuf *m; 2549 uint8_t *frm; 2550 2551 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2552 "send ADDBA %s: dialogtoken %d status %d " 2553 "baparamset 0x%x (tid %d) batimeout 0x%x baseqctl 0x%x", 2554 (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ? 2555 "request" : "response", 2556 args[0], args[1], args[2], MS(args[2], IEEE80211_BAPS_TID), 2557 args[3], args[4]); 2558 2559 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2560 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2561 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2562 ieee80211_ref_node(ni); 2563 2564 m = ieee80211_getmgtframe(&frm, 2565 ic->ic_headroom + sizeof(struct ieee80211_frame), 2566 sizeof(uint16_t) /* action+category */ 2567 /* XXX may action payload */ 2568 + sizeof(struct ieee80211_action_ba_addbaresponse) 2569 ); 2570 if (m != NULL) { 2571 *frm++ = category; 2572 *frm++ = action; 2573 *frm++ = args[0]; /* dialog token */ 2574 if (action == IEEE80211_ACTION_BA_ADDBA_RESPONSE) 2575 ADDSHORT(frm, args[1]); /* status code */ 2576 ADDSHORT(frm, args[2]); /* baparamset */ 2577 ADDSHORT(frm, args[3]); /* batimeout */ 2578 if (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) 2579 ADDSHORT(frm, args[4]); /* baseqctl */ 2580 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2581 return ht_action_output(ni, m); 2582 } else { 2583 vap->iv_stats.is_tx_nobuf++; 2584 ieee80211_free_node(ni); 2585 return ENOMEM; 2586 } 2587 } 2588 2589 static int 2590 ht_send_action_ba_delba(struct ieee80211_node *ni, 2591 int category, int action, void *arg0) 2592 { 2593 struct ieee80211vap *vap = ni->ni_vap; 2594 struct ieee80211com *ic = ni->ni_ic; 2595 uint16_t *args = arg0; 2596 struct mbuf *m; 2597 uint16_t baparamset; 2598 uint8_t *frm; 2599 2600 baparamset = SM(args[0], IEEE80211_DELBAPS_TID) 2601 | args[1] 2602 ; 2603 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2604 "send DELBA action: tid %d, initiator %d reason %d (%s)", 2605 args[0], args[1], args[2], ieee80211_reason_to_string(args[2])); 2606 2607 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2608 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2609 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2610 ieee80211_ref_node(ni); 2611 2612 m = ieee80211_getmgtframe(&frm, 2613 ic->ic_headroom + sizeof(struct ieee80211_frame), 2614 sizeof(uint16_t) /* action+category */ 2615 /* XXX may action payload */ 2616 + sizeof(struct ieee80211_action_ba_addbaresponse) 2617 ); 2618 if (m != NULL) { 2619 *frm++ = category; 2620 *frm++ = action; 2621 ADDSHORT(frm, baparamset); 2622 ADDSHORT(frm, args[2]); /* reason code */ 2623 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2624 return ht_action_output(ni, m); 2625 } else { 2626 vap->iv_stats.is_tx_nobuf++; 2627 ieee80211_free_node(ni); 2628 return ENOMEM; 2629 } 2630 } 2631 2632 static int 2633 ht_send_action_ht_txchwidth(struct ieee80211_node *ni, 2634 int category, int action, void *arg0) 2635 { 2636 struct ieee80211vap *vap = ni->ni_vap; 2637 struct ieee80211com *ic = ni->ni_ic; 2638 struct mbuf *m; 2639 uint8_t *frm; 2640 2641 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2642 "send HT txchwidth: width %d", 2643 IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 40 : 20); 2644 2645 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2646 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2647 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2648 ieee80211_ref_node(ni); 2649 2650 m = ieee80211_getmgtframe(&frm, 2651 ic->ic_headroom + sizeof(struct ieee80211_frame), 2652 sizeof(uint16_t) /* action+category */ 2653 /* XXX may action payload */ 2654 + sizeof(struct ieee80211_action_ba_addbaresponse) 2655 ); 2656 if (m != NULL) { 2657 *frm++ = category; 2658 *frm++ = action; 2659 *frm++ = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 2660 IEEE80211_A_HT_TXCHWIDTH_2040 : 2661 IEEE80211_A_HT_TXCHWIDTH_20; 2662 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2663 return ht_action_output(ni, m); 2664 } else { 2665 vap->iv_stats.is_tx_nobuf++; 2666 ieee80211_free_node(ni); 2667 return ENOMEM; 2668 } 2669 } 2670 #undef ADDSHORT 2671 2672 /* 2673 * Construct the MCS bit mask for inclusion in an HT capabilities 2674 * information element. 2675 */ 2676 static void 2677 ieee80211_set_mcsset(struct ieee80211com *ic, uint8_t *frm) 2678 { 2679 int i; 2680 uint8_t txparams; 2681 2682 KASSERT((ic->ic_rxstream > 0 && ic->ic_rxstream <= 4), 2683 ("ic_rxstream %d out of range", ic->ic_rxstream)); 2684 KASSERT((ic->ic_txstream > 0 && ic->ic_txstream <= 4), 2685 ("ic_txstream %d out of range", ic->ic_txstream)); 2686 2687 for (i = 0; i < ic->ic_rxstream * 8; i++) 2688 setbit(frm, i); 2689 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 2690 (ic->ic_htcaps & IEEE80211_HTC_RXMCS32)) 2691 setbit(frm, 32); 2692 if (ic->ic_htcaps & IEEE80211_HTC_RXUNEQUAL) { 2693 if (ic->ic_rxstream >= 2) { 2694 for (i = 33; i <= 38; i++) 2695 setbit(frm, i); 2696 } 2697 if (ic->ic_rxstream >= 3) { 2698 for (i = 39; i <= 52; i++) 2699 setbit(frm, i); 2700 } 2701 if (ic->ic_txstream >= 4) { 2702 for (i = 53; i <= 76; i++) 2703 setbit(frm, i); 2704 } 2705 } 2706 2707 if (ic->ic_rxstream != ic->ic_txstream) { 2708 txparams = 0x1; /* TX MCS set defined */ 2709 txparams |= 0x2; /* TX RX MCS not equal */ 2710 txparams |= (ic->ic_txstream - 1) << 2; /* num TX streams */ 2711 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) 2712 txparams |= 0x16; /* TX unequal modulation sup */ 2713 } else 2714 txparams = 0; 2715 frm[12] = txparams; 2716 } 2717 2718 /* 2719 * Add body of an HTCAP information element. 2720 */ 2721 static uint8_t * 2722 ieee80211_add_htcap_body(uint8_t *frm, struct ieee80211_node *ni) 2723 { 2724 #define ADDSHORT(frm, v) do { \ 2725 frm[0] = (v) & 0xff; \ 2726 frm[1] = (v) >> 8; \ 2727 frm += 2; \ 2728 } while (0) 2729 struct ieee80211com *ic = ni->ni_ic; 2730 struct ieee80211vap *vap = ni->ni_vap; 2731 uint16_t caps, extcaps; 2732 int rxmax, density; 2733 2734 /* HT capabilities */ 2735 caps = vap->iv_htcaps & 0xffff; 2736 /* 2737 * Note channel width depends on whether we are operating as 2738 * a sta or not. When operating as a sta we are generating 2739 * a request based on our desired configuration. Otherwise 2740 * we are operational and the channel attributes identify 2741 * how we've been setup (which might be different if a fixed 2742 * channel is specified). 2743 */ 2744 if (vap->iv_opmode == IEEE80211_M_STA) { 2745 /* override 20/40 use based on config */ 2746 if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40) 2747 caps |= IEEE80211_HTCAP_CHWIDTH40; 2748 else 2749 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2750 2751 /* Start by using the advertised settings */ 2752 rxmax = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU); 2753 density = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY); 2754 2755 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, 2756 "%s: advertised rxmax=%d, density=%d, vap rxmax=%d, density=%d\n", 2757 __func__, 2758 rxmax, 2759 density, 2760 vap->iv_ampdu_rxmax, 2761 vap->iv_ampdu_density); 2762 2763 /* Cap at VAP rxmax */ 2764 if (rxmax > vap->iv_ampdu_rxmax) 2765 rxmax = vap->iv_ampdu_rxmax; 2766 2767 /* 2768 * If the VAP ampdu density value greater, use that. 2769 * 2770 * (Larger density value == larger minimum gap between A-MPDU 2771 * subframes.) 2772 */ 2773 if (vap->iv_ampdu_density > density) 2774 density = vap->iv_ampdu_density; 2775 2776 /* 2777 * NB: Hardware might support HT40 on some but not all 2778 * channels. We can't determine this earlier because only 2779 * after association the channel is upgraded to HT based 2780 * on the negotiated capabilities. 2781 */ 2782 if (ni->ni_chan != IEEE80211_CHAN_ANYC && 2783 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40U) == NULL && 2784 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40D) == NULL) 2785 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2786 } else { 2787 /* override 20/40 use based on current channel */ 2788 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 2789 caps |= IEEE80211_HTCAP_CHWIDTH40; 2790 else 2791 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2792 2793 /* XXX TODO should it start by using advertised settings? */ 2794 rxmax = vap->iv_ampdu_rxmax; 2795 density = vap->iv_ampdu_density; 2796 } 2797 2798 /* adjust short GI based on channel and config */ 2799 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) 2800 caps &= ~IEEE80211_HTCAP_SHORTGI20; 2801 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || 2802 (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) 2803 caps &= ~IEEE80211_HTCAP_SHORTGI40; 2804 2805 /* adjust STBC based on receive capabilities */ 2806 if ((vap->iv_flags_ht & IEEE80211_FHT_STBC_RX) == 0) 2807 caps &= ~IEEE80211_HTCAP_RXSTBC; 2808 2809 /* XXX TODO: adjust LDPC based on receive capabilities */ 2810 2811 ADDSHORT(frm, caps); 2812 2813 /* HT parameters */ 2814 *frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) 2815 | SM(density, IEEE80211_HTCAP_MPDUDENSITY) 2816 ; 2817 frm++; 2818 2819 /* pre-zero remainder of ie */ 2820 memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - 2821 __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); 2822 2823 /* supported MCS set */ 2824 /* 2825 * XXX: For sta mode the rate set should be restricted based 2826 * on the AP's capabilities, but ni_htrates isn't setup when 2827 * we're called to form an AssocReq frame so for now we're 2828 * restricted to the device capabilities. 2829 */ 2830 ieee80211_set_mcsset(ni->ni_ic, frm); 2831 2832 frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - 2833 __offsetof(struct ieee80211_ie_htcap, hc_mcsset); 2834 2835 /* HT extended capabilities */ 2836 extcaps = vap->iv_htextcaps & 0xffff; 2837 2838 ADDSHORT(frm, extcaps); 2839 2840 frm += sizeof(struct ieee80211_ie_htcap) - 2841 __offsetof(struct ieee80211_ie_htcap, hc_txbf); 2842 2843 return frm; 2844 #undef ADDSHORT 2845 } 2846 2847 /* 2848 * Add 802.11n HT capabilities information element 2849 */ 2850 uint8_t * 2851 ieee80211_add_htcap(uint8_t *frm, struct ieee80211_node *ni) 2852 { 2853 frm[0] = IEEE80211_ELEMID_HTCAP; 2854 frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; 2855 return ieee80211_add_htcap_body(frm + 2, ni); 2856 } 2857 2858 /* 2859 * Non-associated probe request - add HT capabilities based on 2860 * the current channel configuration. 2861 */ 2862 static uint8_t * 2863 ieee80211_add_htcap_body_ch(uint8_t *frm, struct ieee80211vap *vap, 2864 struct ieee80211_channel *c) 2865 { 2866 #define ADDSHORT(frm, v) do { \ 2867 frm[0] = (v) & 0xff; \ 2868 frm[1] = (v) >> 8; \ 2869 frm += 2; \ 2870 } while (0) 2871 struct ieee80211com *ic = vap->iv_ic; 2872 uint16_t caps, extcaps; 2873 int rxmax, density; 2874 2875 /* HT capabilities */ 2876 caps = vap->iv_htcaps & 0xffff; 2877 2878 /* 2879 * We don't use this in STA mode; only in IBSS mode. 2880 * So in IBSS mode we base our HTCAP flags on the 2881 * given channel. 2882 */ 2883 2884 /* override 20/40 use based on current channel */ 2885 if (IEEE80211_IS_CHAN_HT40(c)) 2886 caps |= IEEE80211_HTCAP_CHWIDTH40; 2887 else 2888 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2889 2890 /* Use the currently configured values */ 2891 rxmax = vap->iv_ampdu_rxmax; 2892 density = vap->iv_ampdu_density; 2893 2894 /* adjust short GI based on channel and config */ 2895 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) 2896 caps &= ~IEEE80211_HTCAP_SHORTGI20; 2897 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || 2898 (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) 2899 caps &= ~IEEE80211_HTCAP_SHORTGI40; 2900 ADDSHORT(frm, caps); 2901 2902 /* HT parameters */ 2903 *frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) 2904 | SM(density, IEEE80211_HTCAP_MPDUDENSITY) 2905 ; 2906 frm++; 2907 2908 /* pre-zero remainder of ie */ 2909 memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - 2910 __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); 2911 2912 /* supported MCS set */ 2913 /* 2914 * XXX: For sta mode the rate set should be restricted based 2915 * on the AP's capabilities, but ni_htrates isn't setup when 2916 * we're called to form an AssocReq frame so for now we're 2917 * restricted to the device capabilities. 2918 */ 2919 ieee80211_set_mcsset(ic, frm); 2920 2921 frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - 2922 __offsetof(struct ieee80211_ie_htcap, hc_mcsset); 2923 2924 /* HT extended capabilities */ 2925 extcaps = vap->iv_htextcaps & 0xffff; 2926 2927 ADDSHORT(frm, extcaps); 2928 2929 frm += sizeof(struct ieee80211_ie_htcap) - 2930 __offsetof(struct ieee80211_ie_htcap, hc_txbf); 2931 2932 return frm; 2933 #undef ADDSHORT 2934 } 2935 2936 /* 2937 * Add 802.11n HT capabilities information element 2938 */ 2939 uint8_t * 2940 ieee80211_add_htcap_ch(uint8_t *frm, struct ieee80211vap *vap, 2941 struct ieee80211_channel *c) 2942 { 2943 frm[0] = IEEE80211_ELEMID_HTCAP; 2944 frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; 2945 return ieee80211_add_htcap_body_ch(frm + 2, vap, c); 2946 } 2947 2948 /* 2949 * Add Broadcom OUI wrapped standard HTCAP ie; this is 2950 * used for compatibility w/ pre-draft implementations. 2951 */ 2952 uint8_t * 2953 ieee80211_add_htcap_vendor(uint8_t *frm, struct ieee80211_node *ni) 2954 { 2955 frm[0] = IEEE80211_ELEMID_VENDOR; 2956 frm[1] = 4 + sizeof(struct ieee80211_ie_htcap) - 2; 2957 frm[2] = (BCM_OUI >> 0) & 0xff; 2958 frm[3] = (BCM_OUI >> 8) & 0xff; 2959 frm[4] = (BCM_OUI >> 16) & 0xff; 2960 frm[5] = BCM_OUI_HTCAP; 2961 return ieee80211_add_htcap_body(frm + 6, ni); 2962 } 2963 2964 /* 2965 * Construct the MCS bit mask of basic rates 2966 * for inclusion in an HT information element. 2967 */ 2968 static void 2969 ieee80211_set_basic_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs) 2970 { 2971 int i; 2972 2973 for (i = 0; i < rs->rs_nrates; i++) { 2974 int r = rs->rs_rates[i] & IEEE80211_RATE_VAL; 2975 if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) && 2976 r < IEEE80211_HTRATE_MAXSIZE) { 2977 /* NB: this assumes a particular implementation */ 2978 setbit(frm, r); 2979 } 2980 } 2981 } 2982 2983 /* 2984 * Update the HTINFO ie for a beacon frame. 2985 */ 2986 void 2987 ieee80211_ht_update_beacon(struct ieee80211vap *vap, 2988 struct ieee80211_beacon_offsets *bo) 2989 { 2990 #define PROTMODE (IEEE80211_HTINFO_OPMODE|IEEE80211_HTINFO_NONHT_PRESENT) 2991 struct ieee80211_node *ni; 2992 const struct ieee80211_channel *bsschan; 2993 struct ieee80211com *ic = vap->iv_ic; 2994 struct ieee80211_ie_htinfo *ht = 2995 (struct ieee80211_ie_htinfo *) bo->bo_htinfo; 2996 2997 ni = ieee80211_ref_node(vap->iv_bss); 2998 bsschan = ni->ni_chan; 2999 3000 /* XXX only update on channel change */ 3001 ht->hi_ctrlchannel = ieee80211_chan2ieee(ic, bsschan); 3002 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 3003 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PERM; 3004 else 3005 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PROH; 3006 if (IEEE80211_IS_CHAN_HT40U(bsschan)) 3007 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 3008 else if (IEEE80211_IS_CHAN_HT40D(bsschan)) 3009 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_BELOW; 3010 else 3011 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_NONE; 3012 if (IEEE80211_IS_CHAN_HT40(bsschan)) 3013 ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040; 3014 3015 /* protection mode */ 3016 ht->hi_byte2 = (ht->hi_byte2 &~ PROTMODE) | ic->ic_curhtprotmode; 3017 3018 ieee80211_free_node(ni); 3019 3020 /* XXX propagate to vendor ie's */ 3021 #undef PROTMODE 3022 } 3023 3024 /* 3025 * Add body of an HTINFO information element. 3026 * 3027 * NB: We don't use struct ieee80211_ie_htinfo because we can 3028 * be called to fillin both a standard ie and a compat ie that 3029 * has a vendor OUI at the front. 3030 */ 3031 static uint8_t * 3032 ieee80211_add_htinfo_body(uint8_t *frm, struct ieee80211_node *ni) 3033 { 3034 struct ieee80211vap *vap = ni->ni_vap; 3035 struct ieee80211com *ic = ni->ni_ic; 3036 3037 /* pre-zero remainder of ie */ 3038 memset(frm, 0, sizeof(struct ieee80211_ie_htinfo) - 2); 3039 3040 /* primary/control channel center */ 3041 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 3042 3043 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 3044 frm[0] = IEEE80211_HTINFO_RIFSMODE_PERM; 3045 else 3046 frm[0] = IEEE80211_HTINFO_RIFSMODE_PROH; 3047 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 3048 frm[0] |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 3049 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 3050 frm[0] |= IEEE80211_HTINFO_2NDCHAN_BELOW; 3051 else 3052 frm[0] |= IEEE80211_HTINFO_2NDCHAN_NONE; 3053 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 3054 frm[0] |= IEEE80211_HTINFO_TXWIDTH_2040; 3055 3056 frm[1] = ic->ic_curhtprotmode; 3057 3058 frm += 5; 3059 3060 /* basic MCS set */ 3061 ieee80211_set_basic_htrates(frm, &ni->ni_htrates); 3062 frm += sizeof(struct ieee80211_ie_htinfo) - 3063 __offsetof(struct ieee80211_ie_htinfo, hi_basicmcsset); 3064 return frm; 3065 } 3066 3067 /* 3068 * Add 802.11n HT information information element. 3069 */ 3070 uint8_t * 3071 ieee80211_add_htinfo(uint8_t *frm, struct ieee80211_node *ni) 3072 { 3073 frm[0] = IEEE80211_ELEMID_HTINFO; 3074 frm[1] = sizeof(struct ieee80211_ie_htinfo) - 2; 3075 return ieee80211_add_htinfo_body(frm + 2, ni); 3076 } 3077 3078 /* 3079 * Add Broadcom OUI wrapped standard HTINFO ie; this is 3080 * used for compatibility w/ pre-draft implementations. 3081 */ 3082 uint8_t * 3083 ieee80211_add_htinfo_vendor(uint8_t *frm, struct ieee80211_node *ni) 3084 { 3085 frm[0] = IEEE80211_ELEMID_VENDOR; 3086 frm[1] = 4 + sizeof(struct ieee80211_ie_htinfo) - 2; 3087 frm[2] = (BCM_OUI >> 0) & 0xff; 3088 frm[3] = (BCM_OUI >> 8) & 0xff; 3089 frm[4] = (BCM_OUI >> 16) & 0xff; 3090 frm[5] = BCM_OUI_HTINFO; 3091 return ieee80211_add_htinfo_body(frm + 6, ni); 3092 } 3093