1 /*- 2 * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 */ 25 26 #include <sys/cdefs.h> 27 #ifdef __FreeBSD__ 28 __FBSDID("$FreeBSD$"); 29 #endif 30 31 /* 32 * IEEE 802.11n protocol support. 33 */ 34 35 #include "opt_inet.h" 36 #include "opt_wlan.h" 37 38 #include <sys/param.h> 39 #include <sys/kernel.h> 40 #include <sys/systm.h> 41 #include <sys/endian.h> 42 43 #include <sys/socket.h> 44 45 #include <net/if.h> 46 #include <net/if_media.h> 47 #include <net/ethernet.h> 48 49 #include <net80211/ieee80211_var.h> 50 #include <net80211/ieee80211_action.h> 51 #include <net80211/ieee80211_input.h> 52 53 /* define here, used throughout file */ 54 #define MS(_v, _f) (((_v) & _f) >> _f##_S) 55 #define SM(_v, _f) (((_v) << _f##_S) & _f) 56 57 const struct ieee80211_mcs_rates ieee80211_htrates[IEEE80211_HTRATE_MAXSIZE] = { 58 { 13, 14, 27, 30 }, /* MCS 0 */ 59 { 26, 29, 54, 60 }, /* MCS 1 */ 60 { 39, 43, 81, 90 }, /* MCS 2 */ 61 { 52, 58, 108, 120 }, /* MCS 3 */ 62 { 78, 87, 162, 180 }, /* MCS 4 */ 63 { 104, 116, 216, 240 }, /* MCS 5 */ 64 { 117, 130, 243, 270 }, /* MCS 6 */ 65 { 130, 144, 270, 300 }, /* MCS 7 */ 66 { 26, 29, 54, 60 }, /* MCS 8 */ 67 { 52, 58, 108, 120 }, /* MCS 9 */ 68 { 78, 87, 162, 180 }, /* MCS 10 */ 69 { 104, 116, 216, 240 }, /* MCS 11 */ 70 { 156, 173, 324, 360 }, /* MCS 12 */ 71 { 208, 231, 432, 480 }, /* MCS 13 */ 72 { 234, 260, 486, 540 }, /* MCS 14 */ 73 { 260, 289, 540, 600 }, /* MCS 15 */ 74 { 39, 43, 81, 90 }, /* MCS 16 */ 75 { 78, 87, 162, 180 }, /* MCS 17 */ 76 { 117, 130, 243, 270 }, /* MCS 18 */ 77 { 156, 173, 324, 360 }, /* MCS 19 */ 78 { 234, 260, 486, 540 }, /* MCS 20 */ 79 { 312, 347, 648, 720 }, /* MCS 21 */ 80 { 351, 390, 729, 810 }, /* MCS 22 */ 81 { 390, 433, 810, 900 }, /* MCS 23 */ 82 { 52, 58, 108, 120 }, /* MCS 24 */ 83 { 104, 116, 216, 240 }, /* MCS 25 */ 84 { 156, 173, 324, 360 }, /* MCS 26 */ 85 { 208, 231, 432, 480 }, /* MCS 27 */ 86 { 312, 347, 648, 720 }, /* MCS 28 */ 87 { 416, 462, 864, 960 }, /* MCS 29 */ 88 { 468, 520, 972, 1080 }, /* MCS 30 */ 89 { 520, 578, 1080, 1200 }, /* MCS 31 */ 90 { 0, 0, 12, 13 }, /* MCS 32 */ 91 { 78, 87, 162, 180 }, /* MCS 33 */ 92 { 104, 116, 216, 240 }, /* MCS 34 */ 93 { 130, 144, 270, 300 }, /* MCS 35 */ 94 { 117, 130, 243, 270 }, /* MCS 36 */ 95 { 156, 173, 324, 360 }, /* MCS 37 */ 96 { 195, 217, 405, 450 }, /* MCS 38 */ 97 { 104, 116, 216, 240 }, /* MCS 39 */ 98 { 130, 144, 270, 300 }, /* MCS 40 */ 99 { 130, 144, 270, 300 }, /* MCS 41 */ 100 { 156, 173, 324, 360 }, /* MCS 42 */ 101 { 182, 202, 378, 420 }, /* MCS 43 */ 102 { 182, 202, 378, 420 }, /* MCS 44 */ 103 { 208, 231, 432, 480 }, /* MCS 45 */ 104 { 156, 173, 324, 360 }, /* MCS 46 */ 105 { 195, 217, 405, 450 }, /* MCS 47 */ 106 { 195, 217, 405, 450 }, /* MCS 48 */ 107 { 234, 260, 486, 540 }, /* MCS 49 */ 108 { 273, 303, 567, 630 }, /* MCS 50 */ 109 { 273, 303, 567, 630 }, /* MCS 51 */ 110 { 312, 347, 648, 720 }, /* MCS 52 */ 111 { 130, 144, 270, 300 }, /* MCS 53 */ 112 { 156, 173, 324, 360 }, /* MCS 54 */ 113 { 182, 202, 378, 420 }, /* MCS 55 */ 114 { 156, 173, 324, 360 }, /* MCS 56 */ 115 { 182, 202, 378, 420 }, /* MCS 57 */ 116 { 208, 231, 432, 480 }, /* MCS 58 */ 117 { 234, 260, 486, 540 }, /* MCS 59 */ 118 { 208, 231, 432, 480 }, /* MCS 60 */ 119 { 234, 260, 486, 540 }, /* MCS 61 */ 120 { 260, 289, 540, 600 }, /* MCS 62 */ 121 { 260, 289, 540, 600 }, /* MCS 63 */ 122 { 286, 318, 594, 660 }, /* MCS 64 */ 123 { 195, 217, 405, 450 }, /* MCS 65 */ 124 { 234, 260, 486, 540 }, /* MCS 66 */ 125 { 273, 303, 567, 630 }, /* MCS 67 */ 126 { 234, 260, 486, 540 }, /* MCS 68 */ 127 { 273, 303, 567, 630 }, /* MCS 69 */ 128 { 312, 347, 648, 720 }, /* MCS 70 */ 129 { 351, 390, 729, 810 }, /* MCS 71 */ 130 { 312, 347, 648, 720 }, /* MCS 72 */ 131 { 351, 390, 729, 810 }, /* MCS 73 */ 132 { 390, 433, 810, 900 }, /* MCS 74 */ 133 { 390, 433, 810, 900 }, /* MCS 75 */ 134 { 429, 477, 891, 990 }, /* MCS 76 */ 135 }; 136 137 #ifdef IEEE80211_AMPDU_AGE 138 static int ieee80211_ampdu_age = -1; /* threshold for ampdu reorder q (ms) */ 139 SYSCTL_PROC(_net_wlan, OID_AUTO, ampdu_age, CTLTYPE_INT | CTLFLAG_RW, 140 &ieee80211_ampdu_age, 0, ieee80211_sysctl_msecs_ticks, "I", 141 "AMPDU max reorder age (ms)"); 142 #endif 143 144 static int ieee80211_recv_bar_ena = 1; 145 SYSCTL_INT(_net_wlan, OID_AUTO, recv_bar, CTLFLAG_RW, &ieee80211_recv_bar_ena, 146 0, "BAR frame processing (ena/dis)"); 147 148 static int ieee80211_addba_timeout = -1;/* timeout for ADDBA response */ 149 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_timeout, CTLTYPE_INT | CTLFLAG_RW, 150 &ieee80211_addba_timeout, 0, ieee80211_sysctl_msecs_ticks, "I", 151 "ADDBA request timeout (ms)"); 152 static int ieee80211_addba_backoff = -1;/* backoff after max ADDBA requests */ 153 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_backoff, CTLTYPE_INT | CTLFLAG_RW, 154 &ieee80211_addba_backoff, 0, ieee80211_sysctl_msecs_ticks, "I", 155 "ADDBA request backoff (ms)"); 156 static int ieee80211_addba_maxtries = 3;/* max ADDBA requests before backoff */ 157 SYSCTL_INT(_net_wlan, OID_AUTO, addba_maxtries, CTLTYPE_INT | CTLFLAG_RW, 158 &ieee80211_addba_maxtries, 0, "max ADDBA requests sent before backoff"); 159 160 static int ieee80211_bar_timeout = -1; /* timeout waiting for BAR response */ 161 static int ieee80211_bar_maxtries = 50;/* max BAR requests before DELBA */ 162 163 static ieee80211_recv_action_func ht_recv_action_ba_addba_request; 164 static ieee80211_recv_action_func ht_recv_action_ba_addba_response; 165 static ieee80211_recv_action_func ht_recv_action_ba_delba; 166 static ieee80211_recv_action_func ht_recv_action_ht_mimopwrsave; 167 static ieee80211_recv_action_func ht_recv_action_ht_txchwidth; 168 169 static ieee80211_send_action_func ht_send_action_ba_addba; 170 static ieee80211_send_action_func ht_send_action_ba_delba; 171 static ieee80211_send_action_func ht_send_action_ht_txchwidth; 172 173 static void 174 ieee80211_ht_init(void) 175 { 176 /* 177 * Setup HT parameters that depends on the clock frequency. 178 */ 179 #ifdef IEEE80211_AMPDU_AGE 180 ieee80211_ampdu_age = msecs_to_ticks(500); 181 #endif 182 ieee80211_addba_timeout = msecs_to_ticks(250); 183 ieee80211_addba_backoff = msecs_to_ticks(10*1000); 184 ieee80211_bar_timeout = msecs_to_ticks(250); 185 /* 186 * Register action frame handlers. 187 */ 188 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 189 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_recv_action_ba_addba_request); 190 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 191 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_recv_action_ba_addba_response); 192 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 193 IEEE80211_ACTION_BA_DELBA, ht_recv_action_ba_delba); 194 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 195 IEEE80211_ACTION_HT_MIMOPWRSAVE, ht_recv_action_ht_mimopwrsave); 196 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 197 IEEE80211_ACTION_HT_TXCHWIDTH, ht_recv_action_ht_txchwidth); 198 199 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 200 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_send_action_ba_addba); 201 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 202 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_send_action_ba_addba); 203 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 204 IEEE80211_ACTION_BA_DELBA, ht_send_action_ba_delba); 205 ieee80211_send_action_register(IEEE80211_ACTION_CAT_HT, 206 IEEE80211_ACTION_HT_TXCHWIDTH, ht_send_action_ht_txchwidth); 207 } 208 SYSINIT(wlan_ht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_ht_init, NULL); 209 210 static int ieee80211_ampdu_enable(struct ieee80211_node *ni, 211 struct ieee80211_tx_ampdu *tap); 212 static int ieee80211_addba_request(struct ieee80211_node *ni, 213 struct ieee80211_tx_ampdu *tap, 214 int dialogtoken, int baparamset, int batimeout); 215 static int ieee80211_addba_response(struct ieee80211_node *ni, 216 struct ieee80211_tx_ampdu *tap, 217 int code, int baparamset, int batimeout); 218 static void ieee80211_addba_stop(struct ieee80211_node *ni, 219 struct ieee80211_tx_ampdu *tap); 220 static void null_addba_response_timeout(struct ieee80211_node *ni, 221 struct ieee80211_tx_ampdu *tap); 222 223 static void ieee80211_bar_response(struct ieee80211_node *ni, 224 struct ieee80211_tx_ampdu *tap, int status); 225 static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap); 226 static void bar_stop_timer(struct ieee80211_tx_ampdu *tap); 227 static int ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *, 228 int baparamset, int batimeout, int baseqctl); 229 static void ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *); 230 231 void 232 ieee80211_ht_attach(struct ieee80211com *ic) 233 { 234 /* setup default aggregation policy */ 235 ic->ic_recv_action = ieee80211_recv_action; 236 ic->ic_send_action = ieee80211_send_action; 237 ic->ic_ampdu_enable = ieee80211_ampdu_enable; 238 ic->ic_addba_request = ieee80211_addba_request; 239 ic->ic_addba_response = ieee80211_addba_response; 240 ic->ic_addba_response_timeout = null_addba_response_timeout; 241 ic->ic_addba_stop = ieee80211_addba_stop; 242 ic->ic_bar_response = ieee80211_bar_response; 243 ic->ic_ampdu_rx_start = ampdu_rx_start; 244 ic->ic_ampdu_rx_stop = ampdu_rx_stop; 245 246 ic->ic_htprotmode = IEEE80211_PROT_RTSCTS; 247 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; 248 } 249 250 void 251 ieee80211_ht_detach(struct ieee80211com *ic) 252 { 253 } 254 255 void 256 ieee80211_ht_vattach(struct ieee80211vap *vap) 257 { 258 259 /* driver can override defaults */ 260 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_8K; 261 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_NA; 262 vap->iv_ampdu_limit = vap->iv_ampdu_rxmax; 263 vap->iv_amsdu_limit = vap->iv_htcaps & IEEE80211_HTCAP_MAXAMSDU; 264 /* tx aggregation traffic thresholds */ 265 vap->iv_ampdu_mintraffic[WME_AC_BK] = 128; 266 vap->iv_ampdu_mintraffic[WME_AC_BE] = 64; 267 vap->iv_ampdu_mintraffic[WME_AC_VO] = 32; 268 vap->iv_ampdu_mintraffic[WME_AC_VI] = 32; 269 270 if (vap->iv_htcaps & IEEE80211_HTC_HT) { 271 /* 272 * Device is HT capable; enable all HT-related 273 * facilities by default. 274 * XXX these choices may be too aggressive. 275 */ 276 vap->iv_flags_ht |= IEEE80211_FHT_HT 277 | IEEE80211_FHT_HTCOMPAT 278 ; 279 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI20) 280 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20; 281 /* XXX infer from channel list? */ 282 if (vap->iv_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 283 vap->iv_flags_ht |= IEEE80211_FHT_USEHT40; 284 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI40) 285 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40; 286 } 287 /* enable RIFS if capable */ 288 if (vap->iv_htcaps & IEEE80211_HTC_RIFS) 289 vap->iv_flags_ht |= IEEE80211_FHT_RIFS; 290 291 /* NB: A-MPDU and A-MSDU rx are mandated, these are tx only */ 292 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX; 293 if (vap->iv_htcaps & IEEE80211_HTC_AMPDU) 294 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX; 295 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX; 296 if (vap->iv_htcaps & IEEE80211_HTC_AMSDU) 297 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX; 298 } 299 /* NB: disable default legacy WDS, too many issues right now */ 300 if (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) 301 vap->iv_flags_ht &= ~IEEE80211_FHT_HT; 302 } 303 304 void 305 ieee80211_ht_vdetach(struct ieee80211vap *vap) 306 { 307 } 308 309 static int 310 ht_getrate(struct ieee80211com *ic, int index, enum ieee80211_phymode mode, 311 int ratetype) 312 { 313 int mword, rate; 314 315 mword = ieee80211_rate2media(ic, index | IEEE80211_RATE_MCS, mode); 316 if (IFM_SUBTYPE(mword) != IFM_IEEE80211_MCS) 317 return (0); 318 switch (ratetype) { 319 case 0: 320 rate = ieee80211_htrates[index].ht20_rate_800ns; 321 break; 322 case 1: 323 rate = ieee80211_htrates[index].ht20_rate_400ns; 324 break; 325 case 2: 326 rate = ieee80211_htrates[index].ht40_rate_800ns; 327 break; 328 default: 329 rate = ieee80211_htrates[index].ht40_rate_400ns; 330 break; 331 } 332 return (rate); 333 } 334 335 static struct printranges { 336 int minmcs; 337 int maxmcs; 338 int txstream; 339 int ratetype; 340 int htcapflags; 341 } ranges[] = { 342 { 0, 7, 1, 0, 0 }, 343 { 8, 15, 2, 0, 0 }, 344 { 16, 23, 3, 0, 0 }, 345 { 24, 31, 4, 0, 0 }, 346 { 32, 0, 1, 2, IEEE80211_HTC_TXMCS32 }, 347 { 33, 38, 2, 0, IEEE80211_HTC_TXUNEQUAL }, 348 { 39, 52, 3, 0, IEEE80211_HTC_TXUNEQUAL }, 349 { 53, 76, 4, 0, IEEE80211_HTC_TXUNEQUAL }, 350 { 0, 0, 0, 0, 0 }, 351 }; 352 353 static void 354 ht_rateprint(struct ieee80211com *ic, enum ieee80211_phymode mode, int ratetype) 355 { 356 struct ifnet *ifp = ic->ic_ifp; 357 int minrate, maxrate; 358 struct printranges *range; 359 360 for (range = ranges; range->txstream != 0; range++) { 361 if (ic->ic_txstream < range->txstream) 362 continue; 363 if (range->htcapflags && 364 (ic->ic_htcaps & range->htcapflags) == 0) 365 continue; 366 if (ratetype < range->ratetype) 367 continue; 368 minrate = ht_getrate(ic, range->minmcs, mode, ratetype); 369 maxrate = ht_getrate(ic, range->maxmcs, mode, ratetype); 370 if (range->maxmcs) { 371 if_printf(ifp, "MCS %d-%d: %d%sMbps - %d%sMbps\n", 372 range->minmcs, range->maxmcs, 373 minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""), 374 maxrate/2, ((maxrate & 0x1) != 0 ? ".5" : "")); 375 } else { 376 if_printf(ifp, "MCS %d: %d%sMbps\n", range->minmcs, 377 minrate/2, ((minrate & 0x1) != 0 ? ".5" : "")); 378 } 379 } 380 } 381 382 static void 383 ht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode) 384 { 385 struct ifnet *ifp = ic->ic_ifp; 386 const char *modestr = ieee80211_phymode_name[mode]; 387 388 if_printf(ifp, "%s MCS 20MHz\n", modestr); 389 ht_rateprint(ic, mode, 0); 390 if (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) { 391 if_printf(ifp, "%s MCS 20MHz SGI\n", modestr); 392 ht_rateprint(ic, mode, 1); 393 } 394 if (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 395 if_printf(ifp, "%s MCS 40MHz:\n", modestr); 396 ht_rateprint(ic, mode, 2); 397 } 398 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 399 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) { 400 if_printf(ifp, "%s MCS 40MHz SGI:\n", modestr); 401 ht_rateprint(ic, mode, 3); 402 } 403 } 404 405 void 406 ieee80211_ht_announce(struct ieee80211com *ic) 407 { 408 struct ifnet *ifp = ic->ic_ifp; 409 410 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 411 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 412 if_printf(ifp, "%dT%dR\n", ic->ic_txstream, ic->ic_rxstream); 413 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA)) 414 ht_announce(ic, IEEE80211_MODE_11NA); 415 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 416 ht_announce(ic, IEEE80211_MODE_11NG); 417 } 418 419 static struct ieee80211_htrateset htrateset; 420 421 const struct ieee80211_htrateset * 422 ieee80211_get_suphtrates(struct ieee80211com *ic, 423 const struct ieee80211_channel *c) 424 { 425 #define ADDRATE(x) do { \ 426 htrateset.rs_rates[htrateset.rs_nrates] = x; \ 427 htrateset.rs_nrates++; \ 428 } while (0) 429 int i; 430 431 memset(&htrateset, 0, sizeof(struct ieee80211_htrateset)); 432 for (i = 0; i < ic->ic_txstream * 8; i++) 433 ADDRATE(i); 434 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 435 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32)) 436 ADDRATE(32); 437 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 438 if (ic->ic_txstream >= 2) { 439 for (i = 33; i <= 38; i++) 440 ADDRATE(i); 441 } 442 if (ic->ic_txstream >= 3) { 443 for (i = 39; i <= 52; i++) 444 ADDRATE(i); 445 } 446 if (ic->ic_txstream == 4) { 447 for (i = 53; i <= 76; i++) 448 ADDRATE(i); 449 } 450 } 451 return &htrateset; 452 #undef ADDRATE 453 } 454 455 /* 456 * Receive processing. 457 */ 458 459 /* 460 * Decap the encapsulated A-MSDU frames and dispatch all but 461 * the last for delivery. The last frame is returned for 462 * delivery via the normal path. 463 */ 464 struct mbuf * 465 ieee80211_decap_amsdu(struct ieee80211_node *ni, struct mbuf *m) 466 { 467 struct ieee80211vap *vap = ni->ni_vap; 468 int framelen; 469 struct mbuf *n; 470 471 /* discard 802.3 header inserted by ieee80211_decap */ 472 m_adj(m, sizeof(struct ether_header)); 473 474 vap->iv_stats.is_amsdu_decap++; 475 476 for (;;) { 477 /* 478 * Decap the first frame, bust it apart from the 479 * remainder and deliver. We leave the last frame 480 * delivery to the caller (for consistency with other 481 * code paths, could also do it here). 482 */ 483 m = ieee80211_decap1(m, &framelen); 484 if (m == NULL) { 485 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 486 ni->ni_macaddr, "a-msdu", "%s", "decap failed"); 487 vap->iv_stats.is_amsdu_tooshort++; 488 return NULL; 489 } 490 if (m->m_pkthdr.len == framelen) 491 break; 492 n = m_split(m, framelen, M_NOWAIT); 493 if (n == NULL) { 494 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 495 ni->ni_macaddr, "a-msdu", 496 "%s", "unable to split encapsulated frames"); 497 vap->iv_stats.is_amsdu_split++; 498 m_freem(m); /* NB: must reclaim */ 499 return NULL; 500 } 501 vap->iv_deliver_data(vap, ni, m); 502 503 /* 504 * Remove frame contents; each intermediate frame 505 * is required to be aligned to a 4-byte boundary. 506 */ 507 m = n; 508 m_adj(m, roundup2(framelen, 4) - framelen); /* padding */ 509 } 510 return m; /* last delivered by caller */ 511 } 512 513 /* 514 * Purge all frames in the A-MPDU re-order queue. 515 */ 516 static void 517 ampdu_rx_purge(struct ieee80211_rx_ampdu *rap) 518 { 519 struct mbuf *m; 520 int i; 521 522 for (i = 0; i < rap->rxa_wnd; i++) { 523 m = rap->rxa_m[i]; 524 if (m != NULL) { 525 rap->rxa_m[i] = NULL; 526 rap->rxa_qbytes -= m->m_pkthdr.len; 527 m_freem(m); 528 if (--rap->rxa_qframes == 0) 529 break; 530 } 531 } 532 KASSERT(rap->rxa_qbytes == 0 && rap->rxa_qframes == 0, 533 ("lost %u data, %u frames on ampdu rx q", 534 rap->rxa_qbytes, rap->rxa_qframes)); 535 } 536 537 /* 538 * Start A-MPDU rx/re-order processing for the specified TID. 539 */ 540 static int 541 ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap, 542 int baparamset, int batimeout, int baseqctl) 543 { 544 int bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 545 546 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 547 /* 548 * AMPDU previously setup and not terminated with a DELBA, 549 * flush the reorder q's in case anything remains. 550 */ 551 ampdu_rx_purge(rap); 552 } 553 memset(rap, 0, sizeof(*rap)); 554 rap->rxa_wnd = (bufsiz == 0) ? 555 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 556 rap->rxa_start = MS(baseqctl, IEEE80211_BASEQ_START); 557 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 558 559 return 0; 560 } 561 562 /* 563 * Stop A-MPDU rx processing for the specified TID. 564 */ 565 static void 566 ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 567 { 568 569 ampdu_rx_purge(rap); 570 rap->rxa_flags &= ~(IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND); 571 } 572 573 /* 574 * Dispatch a frame from the A-MPDU reorder queue. The 575 * frame is fed back into ieee80211_input marked with an 576 * M_AMPDU_MPDU flag so it doesn't come back to us (it also 577 * permits ieee80211_input to optimize re-processing). 578 */ 579 static __inline void 580 ampdu_dispatch(struct ieee80211_node *ni, struct mbuf *m) 581 { 582 m->m_flags |= M_AMPDU_MPDU; /* bypass normal processing */ 583 /* NB: rssi and noise are ignored w/ M_AMPDU_MPDU set */ 584 (void) ieee80211_input(ni, m, 0, 0); 585 } 586 587 /* 588 * Dispatch as many frames as possible from the re-order queue. 589 * Frames will always be "at the front"; we process all frames 590 * up to the first empty slot in the window. On completion we 591 * cleanup state if there are still pending frames in the current 592 * BA window. We assume the frame at slot 0 is already handled 593 * by the caller; we always start at slot 1. 594 */ 595 static void 596 ampdu_rx_dispatch(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni) 597 { 598 struct ieee80211vap *vap = ni->ni_vap; 599 struct mbuf *m; 600 int i; 601 602 /* flush run of frames */ 603 for (i = 1; i < rap->rxa_wnd; i++) { 604 m = rap->rxa_m[i]; 605 if (m == NULL) 606 break; 607 rap->rxa_m[i] = NULL; 608 rap->rxa_qbytes -= m->m_pkthdr.len; 609 rap->rxa_qframes--; 610 611 ampdu_dispatch(ni, m); 612 } 613 /* 614 * If frames remain, copy the mbuf pointers down so 615 * they correspond to the offsets in the new window. 616 */ 617 if (rap->rxa_qframes != 0) { 618 int n = rap->rxa_qframes, j; 619 for (j = i+1; j < rap->rxa_wnd; j++) { 620 if (rap->rxa_m[j] != NULL) { 621 rap->rxa_m[j-i] = rap->rxa_m[j]; 622 rap->rxa_m[j] = NULL; 623 if (--n == 0) 624 break; 625 } 626 } 627 KASSERT(n == 0, ("lost %d frames", n)); 628 vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; 629 } 630 /* 631 * Adjust the start of the BA window to 632 * reflect the frames just dispatched. 633 */ 634 rap->rxa_start = IEEE80211_SEQ_ADD(rap->rxa_start, i); 635 vap->iv_stats.is_ampdu_rx_oor += i; 636 } 637 638 #ifdef IEEE80211_AMPDU_AGE 639 /* 640 * Dispatch all frames in the A-MPDU re-order queue. 641 */ 642 static void 643 ampdu_rx_flush(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 644 { 645 struct ieee80211vap *vap = ni->ni_vap; 646 struct mbuf *m; 647 int i; 648 649 for (i = 0; i < rap->rxa_wnd; i++) { 650 m = rap->rxa_m[i]; 651 if (m == NULL) 652 continue; 653 rap->rxa_m[i] = NULL; 654 rap->rxa_qbytes -= m->m_pkthdr.len; 655 rap->rxa_qframes--; 656 vap->iv_stats.is_ampdu_rx_oor++; 657 658 ampdu_dispatch(ni, m); 659 if (rap->rxa_qframes == 0) 660 break; 661 } 662 } 663 #endif /* IEEE80211_AMPDU_AGE */ 664 665 /* 666 * Dispatch all frames in the A-MPDU re-order queue 667 * preceding the specified sequence number. This logic 668 * handles window moves due to a received MSDU or BAR. 669 */ 670 static void 671 ampdu_rx_flush_upto(struct ieee80211_node *ni, 672 struct ieee80211_rx_ampdu *rap, ieee80211_seq winstart) 673 { 674 struct ieee80211vap *vap = ni->ni_vap; 675 struct mbuf *m; 676 ieee80211_seq seqno; 677 int i; 678 679 /* 680 * Flush any complete MSDU's with a sequence number lower 681 * than winstart. Gaps may exist. Note that we may actually 682 * dispatch frames past winstart if a run continues; this is 683 * an optimization that avoids having to do a separate pass 684 * to dispatch frames after moving the BA window start. 685 */ 686 seqno = rap->rxa_start; 687 for (i = 0; i < rap->rxa_wnd; i++) { 688 m = rap->rxa_m[i]; 689 if (m != NULL) { 690 rap->rxa_m[i] = NULL; 691 rap->rxa_qbytes -= m->m_pkthdr.len; 692 rap->rxa_qframes--; 693 vap->iv_stats.is_ampdu_rx_oor++; 694 695 ampdu_dispatch(ni, m); 696 } else { 697 if (!IEEE80211_SEQ_BA_BEFORE(seqno, winstart)) 698 break; 699 } 700 seqno = IEEE80211_SEQ_INC(seqno); 701 } 702 /* 703 * If frames remain, copy the mbuf pointers down so 704 * they correspond to the offsets in the new window. 705 */ 706 if (rap->rxa_qframes != 0) { 707 int n = rap->rxa_qframes, j; 708 709 /* NB: this loop assumes i > 0 and/or rxa_m[0] is NULL */ 710 KASSERT(rap->rxa_m[0] == NULL, 711 ("%s: BA window slot 0 occupied", __func__)); 712 for (j = i+1; j < rap->rxa_wnd; j++) { 713 if (rap->rxa_m[j] != NULL) { 714 rap->rxa_m[j-i] = rap->rxa_m[j]; 715 rap->rxa_m[j] = NULL; 716 if (--n == 0) 717 break; 718 } 719 } 720 KASSERT(n == 0, ("%s: lost %d frames, qframes %d off %d " 721 "BA win <%d:%d> winstart %d", 722 __func__, n, rap->rxa_qframes, i, rap->rxa_start, 723 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 724 winstart)); 725 vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; 726 } 727 /* 728 * Move the start of the BA window; we use the 729 * sequence number of the last MSDU that was 730 * passed up the stack+1 or winstart if stopped on 731 * a gap in the reorder buffer. 732 */ 733 rap->rxa_start = seqno; 734 } 735 736 /* 737 * Process a received QoS data frame for an HT station. Handle 738 * A-MPDU reordering: if this frame is received out of order 739 * and falls within the BA window hold onto it. Otherwise if 740 * this frame completes a run, flush any pending frames. We 741 * return 1 if the frame is consumed. A 0 is returned if 742 * the frame should be processed normally by the caller. 743 */ 744 int 745 ieee80211_ampdu_reorder(struct ieee80211_node *ni, struct mbuf *m) 746 { 747 #define IEEE80211_FC0_QOSDATA \ 748 (IEEE80211_FC0_TYPE_DATA|IEEE80211_FC0_SUBTYPE_QOS|IEEE80211_FC0_VERSION_0) 749 #define PROCESS 0 /* caller should process frame */ 750 #define CONSUMED 1 /* frame consumed, caller does nothing */ 751 struct ieee80211vap *vap = ni->ni_vap; 752 struct ieee80211_qosframe *wh; 753 struct ieee80211_rx_ampdu *rap; 754 ieee80211_seq rxseq; 755 uint8_t tid; 756 int off; 757 758 KASSERT((m->m_flags & (M_AMPDU | M_AMPDU_MPDU)) == M_AMPDU, 759 ("!a-mpdu or already re-ordered, flags 0x%x", m->m_flags)); 760 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 761 762 /* NB: m_len known to be sufficient */ 763 wh = mtod(m, struct ieee80211_qosframe *); 764 if (wh->i_fc[0] != IEEE80211_FC0_QOSDATA) { 765 /* 766 * Not QoS data, shouldn't get here but just 767 * return it to the caller for processing. 768 */ 769 return PROCESS; 770 } 771 if (IEEE80211_IS_DSTODS(wh)) 772 tid = ((struct ieee80211_qosframe_addr4 *)wh)->i_qos[0]; 773 else 774 tid = wh->i_qos[0]; 775 tid &= IEEE80211_QOS_TID; 776 rap = &ni->ni_rx_ampdu[tid]; 777 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 778 /* 779 * No ADDBA request yet, don't touch. 780 */ 781 return PROCESS; 782 } 783 rxseq = le16toh(*(uint16_t *)wh->i_seq); 784 if ((rxseq & IEEE80211_SEQ_FRAG_MASK) != 0) { 785 /* 786 * Fragments are not allowed; toss. 787 */ 788 IEEE80211_DISCARD_MAC(vap, 789 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 790 "A-MPDU", "fragment, rxseq 0x%x tid %u%s", rxseq, tid, 791 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 792 vap->iv_stats.is_ampdu_rx_drop++; 793 IEEE80211_NODE_STAT(ni, rx_drop); 794 m_freem(m); 795 return CONSUMED; 796 } 797 rxseq >>= IEEE80211_SEQ_SEQ_SHIFT; 798 rap->rxa_nframes++; 799 again: 800 if (rxseq == rap->rxa_start) { 801 /* 802 * First frame in window. 803 */ 804 if (rap->rxa_qframes != 0) { 805 /* 806 * Dispatch as many packets as we can. 807 */ 808 KASSERT(rap->rxa_m[0] == NULL, ("unexpected dup")); 809 ampdu_dispatch(ni, m); 810 ampdu_rx_dispatch(rap, ni); 811 return CONSUMED; 812 } else { 813 /* 814 * In order; advance window and notify 815 * caller to dispatch directly. 816 */ 817 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 818 return PROCESS; 819 } 820 } 821 /* 822 * Frame is out of order; store if in the BA window. 823 */ 824 /* calculate offset in BA window */ 825 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 826 if (off < rap->rxa_wnd) { 827 /* 828 * Common case (hopefully): in the BA window. 829 * Sec 9.10.7.6.2 a) (p.137) 830 */ 831 #ifdef IEEE80211_AMPDU_AGE 832 /* 833 * Check for frames sitting too long in the reorder queue. 834 * This should only ever happen if frames are not delivered 835 * without the sender otherwise notifying us (e.g. with a 836 * BAR to move the window). Typically this happens because 837 * of vendor bugs that cause the sequence number to jump. 838 * When this happens we get a gap in the reorder queue that 839 * leaves frame sitting on the queue until they get pushed 840 * out due to window moves. When the vendor does not send 841 * BAR this move only happens due to explicit packet sends 842 * 843 * NB: we only track the time of the oldest frame in the 844 * reorder q; this means that if we flush we might push 845 * frames that still "new"; if this happens then subsequent 846 * frames will result in BA window moves which cost something 847 * but is still better than a big throughput dip. 848 */ 849 if (rap->rxa_qframes != 0) { 850 /* XXX honor batimeout? */ 851 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 852 /* 853 * Too long since we received the first 854 * frame; flush the reorder buffer. 855 */ 856 if (rap->rxa_qframes != 0) { 857 vap->iv_stats.is_ampdu_rx_age += 858 rap->rxa_qframes; 859 ampdu_rx_flush(ni, rap); 860 } 861 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 862 return PROCESS; 863 } 864 } else { 865 /* 866 * First frame, start aging timer. 867 */ 868 rap->rxa_age = ticks; 869 } 870 #endif /* IEEE80211_AMPDU_AGE */ 871 /* save packet */ 872 if (rap->rxa_m[off] == NULL) { 873 rap->rxa_m[off] = m; 874 rap->rxa_qframes++; 875 rap->rxa_qbytes += m->m_pkthdr.len; 876 vap->iv_stats.is_ampdu_rx_reorder++; 877 } else { 878 IEEE80211_DISCARD_MAC(vap, 879 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 880 ni->ni_macaddr, "a-mpdu duplicate", 881 "seqno %u tid %u BA win <%u:%u>", 882 rxseq, tid, rap->rxa_start, 883 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1)); 884 vap->iv_stats.is_rx_dup++; 885 IEEE80211_NODE_STAT(ni, rx_dup); 886 m_freem(m); 887 } 888 return CONSUMED; 889 } 890 if (off < IEEE80211_SEQ_BA_RANGE) { 891 /* 892 * Outside the BA window, but within range; 893 * flush the reorder q and move the window. 894 * Sec 9.10.7.6.2 b) (p.138) 895 */ 896 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 897 "move BA win <%u:%u> (%u frames) rxseq %u tid %u", 898 rap->rxa_start, 899 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 900 rap->rxa_qframes, rxseq, tid); 901 vap->iv_stats.is_ampdu_rx_move++; 902 903 /* 904 * The spec says to flush frames up to but not including: 905 * WinStart_B = rxseq - rap->rxa_wnd + 1 906 * Then insert the frame or notify the caller to process 907 * it immediately. We can safely do this by just starting 908 * over again because we know the frame will now be within 909 * the BA window. 910 */ 911 /* NB: rxa_wnd known to be >0 */ 912 ampdu_rx_flush_upto(ni, rap, 913 IEEE80211_SEQ_SUB(rxseq, rap->rxa_wnd-1)); 914 goto again; 915 } else { 916 /* 917 * Outside the BA window and out of range; toss. 918 * Sec 9.10.7.6.2 c) (p.138) 919 */ 920 IEEE80211_DISCARD_MAC(vap, 921 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 922 "MPDU", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 923 rap->rxa_start, 924 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 925 rap->rxa_qframes, rxseq, tid, 926 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 927 vap->iv_stats.is_ampdu_rx_drop++; 928 IEEE80211_NODE_STAT(ni, rx_drop); 929 m_freem(m); 930 return CONSUMED; 931 } 932 #undef CONSUMED 933 #undef PROCESS 934 #undef IEEE80211_FC0_QOSDATA 935 } 936 937 /* 938 * Process a BAR ctl frame. Dispatch all frames up to 939 * the sequence number of the frame. If this frame is 940 * out of range it's discarded. 941 */ 942 void 943 ieee80211_recv_bar(struct ieee80211_node *ni, struct mbuf *m0) 944 { 945 struct ieee80211vap *vap = ni->ni_vap; 946 struct ieee80211_frame_bar *wh; 947 struct ieee80211_rx_ampdu *rap; 948 ieee80211_seq rxseq; 949 int tid, off; 950 951 if (!ieee80211_recv_bar_ena) { 952 #if 0 953 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_11N, 954 ni->ni_macaddr, "BAR", "%s", "processing disabled"); 955 #endif 956 vap->iv_stats.is_ampdu_bar_bad++; 957 return; 958 } 959 wh = mtod(m0, struct ieee80211_frame_bar *); 960 /* XXX check basic BAR */ 961 tid = MS(le16toh(wh->i_ctl), IEEE80211_BAR_TID); 962 rap = &ni->ni_rx_ampdu[tid]; 963 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 964 /* 965 * No ADDBA request yet, don't touch. 966 */ 967 IEEE80211_DISCARD_MAC(vap, 968 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 969 ni->ni_macaddr, "BAR", "no BA stream, tid %u", tid); 970 vap->iv_stats.is_ampdu_bar_bad++; 971 return; 972 } 973 vap->iv_stats.is_ampdu_bar_rx++; 974 rxseq = le16toh(wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT; 975 if (rxseq == rap->rxa_start) 976 return; 977 /* calculate offset in BA window */ 978 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 979 if (off < IEEE80211_SEQ_BA_RANGE) { 980 /* 981 * Flush the reorder q up to rxseq and move the window. 982 * Sec 9.10.7.6.3 a) (p.138) 983 */ 984 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 985 "BAR moves BA win <%u:%u> (%u frames) rxseq %u tid %u", 986 rap->rxa_start, 987 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 988 rap->rxa_qframes, rxseq, tid); 989 vap->iv_stats.is_ampdu_bar_move++; 990 991 ampdu_rx_flush_upto(ni, rap, rxseq); 992 if (off >= rap->rxa_wnd) { 993 /* 994 * BAR specifies a window start to the right of BA 995 * window; we must move it explicitly since 996 * ampdu_rx_flush_upto will not. 997 */ 998 rap->rxa_start = rxseq; 999 } 1000 } else { 1001 /* 1002 * Out of range; toss. 1003 * Sec 9.10.7.6.3 b) (p.138) 1004 */ 1005 IEEE80211_DISCARD_MAC(vap, 1006 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 1007 "BAR", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 1008 rap->rxa_start, 1009 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1010 rap->rxa_qframes, rxseq, tid, 1011 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 1012 vap->iv_stats.is_ampdu_bar_oow++; 1013 IEEE80211_NODE_STAT(ni, rx_drop); 1014 } 1015 } 1016 1017 /* 1018 * Setup HT-specific state in a node. Called only 1019 * when HT use is negotiated so we don't do extra 1020 * work for temporary and/or legacy sta's. 1021 */ 1022 void 1023 ieee80211_ht_node_init(struct ieee80211_node *ni) 1024 { 1025 struct ieee80211_tx_ampdu *tap; 1026 int tid; 1027 1028 if (ni->ni_flags & IEEE80211_NODE_HT) { 1029 /* 1030 * Clean AMPDU state on re-associate. This handles the case 1031 * where a station leaves w/o notifying us and then returns 1032 * before node is reaped for inactivity. 1033 */ 1034 ieee80211_ht_node_cleanup(ni); 1035 } 1036 for (tid = 0; tid < WME_NUM_TID; tid++) { 1037 tap = &ni->ni_tx_ampdu[tid]; 1038 tap->txa_tid = tid; 1039 tap->txa_ni = ni; 1040 /* NB: further initialization deferred */ 1041 } 1042 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU; 1043 } 1044 1045 /* 1046 * Cleanup HT-specific state in a node. Called only 1047 * when HT use has been marked. 1048 */ 1049 void 1050 ieee80211_ht_node_cleanup(struct ieee80211_node *ni) 1051 { 1052 struct ieee80211com *ic = ni->ni_ic; 1053 int i; 1054 1055 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT node")); 1056 1057 /* XXX optimize this */ 1058 for (i = 0; i < WME_NUM_TID; i++) { 1059 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[i]; 1060 if (tap->txa_flags & IEEE80211_AGGR_SETUP) 1061 ampdu_tx_stop(tap); 1062 } 1063 for (i = 0; i < WME_NUM_TID; i++) 1064 ic->ic_ampdu_rx_stop(ni, &ni->ni_rx_ampdu[i]); 1065 1066 ni->ni_htcap = 0; 1067 ni->ni_flags &= ~IEEE80211_NODE_HT_ALL; 1068 } 1069 1070 /* 1071 * Age out HT resources for a station. 1072 */ 1073 void 1074 ieee80211_ht_node_age(struct ieee80211_node *ni) 1075 { 1076 #ifdef IEEE80211_AMPDU_AGE 1077 struct ieee80211vap *vap = ni->ni_vap; 1078 uint8_t tid; 1079 #endif 1080 1081 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 1082 1083 #ifdef IEEE80211_AMPDU_AGE 1084 for (tid = 0; tid < WME_NUM_TID; tid++) { 1085 struct ieee80211_rx_ampdu *rap; 1086 1087 rap = &ni->ni_rx_ampdu[tid]; 1088 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) 1089 continue; 1090 if (rap->rxa_qframes == 0) 1091 continue; 1092 /* 1093 * Check for frames sitting too long in the reorder queue. 1094 * See above for more details on what's happening here. 1095 */ 1096 /* XXX honor batimeout? */ 1097 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 1098 /* 1099 * Too long since we received the first 1100 * frame; flush the reorder buffer. 1101 */ 1102 vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes; 1103 ampdu_rx_flush(ni, rap); 1104 } 1105 } 1106 #endif /* IEEE80211_AMPDU_AGE */ 1107 } 1108 1109 static struct ieee80211_channel * 1110 findhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int htflags) 1111 { 1112 return ieee80211_find_channel(ic, c->ic_freq, 1113 (c->ic_flags &~ IEEE80211_CHAN_HT) | htflags); 1114 } 1115 1116 /* 1117 * Adjust a channel to be HT/non-HT according to the vap's configuration. 1118 */ 1119 struct ieee80211_channel * 1120 ieee80211_ht_adjust_channel(struct ieee80211com *ic, 1121 struct ieee80211_channel *chan, int flags) 1122 { 1123 struct ieee80211_channel *c; 1124 1125 if (flags & IEEE80211_FHT_HT) { 1126 /* promote to HT if possible */ 1127 if (flags & IEEE80211_FHT_USEHT40) { 1128 if (!IEEE80211_IS_CHAN_HT40(chan)) { 1129 /* NB: arbitrarily pick ht40+ over ht40- */ 1130 c = findhtchan(ic, chan, IEEE80211_CHAN_HT40U); 1131 if (c == NULL) 1132 c = findhtchan(ic, chan, 1133 IEEE80211_CHAN_HT40D); 1134 if (c == NULL) 1135 c = findhtchan(ic, chan, 1136 IEEE80211_CHAN_HT20); 1137 if (c != NULL) 1138 chan = c; 1139 } 1140 } else if (!IEEE80211_IS_CHAN_HT20(chan)) { 1141 c = findhtchan(ic, chan, IEEE80211_CHAN_HT20); 1142 if (c != NULL) 1143 chan = c; 1144 } 1145 } else if (IEEE80211_IS_CHAN_HT(chan)) { 1146 /* demote to legacy, HT use is disabled */ 1147 c = ieee80211_find_channel(ic, chan->ic_freq, 1148 chan->ic_flags &~ IEEE80211_CHAN_HT); 1149 if (c != NULL) 1150 chan = c; 1151 } 1152 return chan; 1153 } 1154 1155 /* 1156 * Setup HT-specific state for a legacy WDS peer. 1157 */ 1158 void 1159 ieee80211_ht_wds_init(struct ieee80211_node *ni) 1160 { 1161 struct ieee80211vap *vap = ni->ni_vap; 1162 struct ieee80211_tx_ampdu *tap; 1163 int tid; 1164 1165 KASSERT(vap->iv_flags_ht & IEEE80211_FHT_HT, ("no HT requested")); 1166 1167 /* XXX check scan cache in case peer has an ap and we have info */ 1168 /* 1169 * If setup with a legacy channel; locate an HT channel. 1170 * Otherwise if the inherited channel (from a companion 1171 * AP) is suitable use it so we use the same location 1172 * for the extension channel). 1173 */ 1174 ni->ni_chan = ieee80211_ht_adjust_channel(ni->ni_ic, 1175 ni->ni_chan, ieee80211_htchanflags(ni->ni_chan)); 1176 1177 ni->ni_htcap = 0; 1178 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) 1179 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI20; 1180 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { 1181 ni->ni_htcap |= IEEE80211_HTCAP_CHWIDTH40; 1182 ni->ni_chw = 40; 1183 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 1184 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_ABOVE; 1185 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 1186 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_BELOW; 1187 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) 1188 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI40; 1189 } else { 1190 ni->ni_chw = 20; 1191 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_NONE; 1192 } 1193 ni->ni_htctlchan = ni->ni_chan->ic_ieee; 1194 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 1195 ni->ni_flags |= IEEE80211_NODE_RIFS; 1196 /* XXX does it make sense to enable SMPS? */ 1197 1198 ni->ni_htopmode = 0; /* XXX need protection state */ 1199 ni->ni_htstbc = 0; /* XXX need info */ 1200 1201 for (tid = 0; tid < WME_NUM_TID; tid++) { 1202 tap = &ni->ni_tx_ampdu[tid]; 1203 tap->txa_tid = tid; 1204 } 1205 /* NB: AMPDU tx/rx governed by IEEE80211_FHT_AMPDU_{TX,RX} */ 1206 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU; 1207 } 1208 1209 /* 1210 * Notify hostap vaps of a change in the HTINFO ie. 1211 */ 1212 static void 1213 htinfo_notify(struct ieee80211com *ic) 1214 { 1215 struct ieee80211vap *vap; 1216 int first = 1; 1217 1218 IEEE80211_LOCK_ASSERT(ic); 1219 1220 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1221 if (vap->iv_opmode != IEEE80211_M_HOSTAP) 1222 continue; 1223 if (vap->iv_state != IEEE80211_S_RUN || 1224 !IEEE80211_IS_CHAN_HT(vap->iv_bss->ni_chan)) 1225 continue; 1226 if (first) { 1227 IEEE80211_NOTE(vap, 1228 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1229 vap->iv_bss, 1230 "HT bss occupancy change: %d sta, %d ht, " 1231 "%d ht40%s, HT protmode now 0x%x" 1232 , ic->ic_sta_assoc 1233 , ic->ic_ht_sta_assoc 1234 , ic->ic_ht40_sta_assoc 1235 , (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) ? 1236 ", non-HT sta present" : "" 1237 , ic->ic_curhtprotmode); 1238 first = 0; 1239 } 1240 ieee80211_beacon_notify(vap, IEEE80211_BEACON_HTINFO); 1241 } 1242 } 1243 1244 /* 1245 * Calculate HT protection mode from current 1246 * state and handle updates. 1247 */ 1248 static void 1249 htinfo_update(struct ieee80211com *ic) 1250 { 1251 uint8_t protmode; 1252 1253 if (ic->ic_sta_assoc != ic->ic_ht_sta_assoc) { 1254 protmode = IEEE80211_HTINFO_OPMODE_MIXED 1255 | IEEE80211_HTINFO_NONHT_PRESENT; 1256 } else if (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) { 1257 protmode = IEEE80211_HTINFO_OPMODE_PROTOPT 1258 | IEEE80211_HTINFO_NONHT_PRESENT; 1259 } else if (ic->ic_bsschan != IEEE80211_CHAN_ANYC && 1260 IEEE80211_IS_CHAN_HT40(ic->ic_bsschan) && 1261 ic->ic_sta_assoc != ic->ic_ht40_sta_assoc) { 1262 protmode = IEEE80211_HTINFO_OPMODE_HT20PR; 1263 } else { 1264 protmode = IEEE80211_HTINFO_OPMODE_PURE; 1265 } 1266 if (protmode != ic->ic_curhtprotmode) { 1267 ic->ic_curhtprotmode = protmode; 1268 htinfo_notify(ic); 1269 } 1270 } 1271 1272 /* 1273 * Handle an HT station joining a BSS. 1274 */ 1275 void 1276 ieee80211_ht_node_join(struct ieee80211_node *ni) 1277 { 1278 struct ieee80211com *ic = ni->ni_ic; 1279 1280 IEEE80211_LOCK_ASSERT(ic); 1281 1282 if (ni->ni_flags & IEEE80211_NODE_HT) { 1283 ic->ic_ht_sta_assoc++; 1284 if (ni->ni_chw == 40) 1285 ic->ic_ht40_sta_assoc++; 1286 } 1287 htinfo_update(ic); 1288 } 1289 1290 /* 1291 * Handle an HT station leaving a BSS. 1292 */ 1293 void 1294 ieee80211_ht_node_leave(struct ieee80211_node *ni) 1295 { 1296 struct ieee80211com *ic = ni->ni_ic; 1297 1298 IEEE80211_LOCK_ASSERT(ic); 1299 1300 if (ni->ni_flags & IEEE80211_NODE_HT) { 1301 ic->ic_ht_sta_assoc--; 1302 if (ni->ni_chw == 40) 1303 ic->ic_ht40_sta_assoc--; 1304 } 1305 htinfo_update(ic); 1306 } 1307 1308 /* 1309 * Public version of htinfo_update; used for processing 1310 * beacon frames from overlapping bss. 1311 * 1312 * Caller can specify either IEEE80211_HTINFO_OPMODE_MIXED 1313 * (on receipt of a beacon that advertises MIXED) or 1314 * IEEE80211_HTINFO_OPMODE_PROTOPT (on receipt of a beacon 1315 * from an overlapping legacy bss). We treat MIXED with 1316 * a higher precedence than PROTOPT (i.e. we will not change 1317 * change PROTOPT -> MIXED; only MIXED -> PROTOPT). This 1318 * corresponds to how we handle things in htinfo_update. 1319 */ 1320 void 1321 ieee80211_htprot_update(struct ieee80211com *ic, int protmode) 1322 { 1323 #define OPMODE(x) SM(x, IEEE80211_HTINFO_OPMODE) 1324 IEEE80211_LOCK(ic); 1325 1326 /* track non-HT station presence */ 1327 KASSERT(protmode & IEEE80211_HTINFO_NONHT_PRESENT, 1328 ("protmode 0x%x", protmode)); 1329 ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR; 1330 ic->ic_lastnonht = ticks; 1331 1332 if (protmode != ic->ic_curhtprotmode && 1333 (OPMODE(ic->ic_curhtprotmode) != IEEE80211_HTINFO_OPMODE_MIXED || 1334 OPMODE(protmode) == IEEE80211_HTINFO_OPMODE_PROTOPT)) { 1335 /* push beacon update */ 1336 ic->ic_curhtprotmode = protmode; 1337 htinfo_notify(ic); 1338 } 1339 IEEE80211_UNLOCK(ic); 1340 #undef OPMODE 1341 } 1342 1343 /* 1344 * Time out presence of an overlapping bss with non-HT 1345 * stations. When operating in hostap mode we listen for 1346 * beacons from other stations and if we identify a non-HT 1347 * station is present we update the opmode field of the 1348 * HTINFO ie. To identify when all non-HT stations are 1349 * gone we time out this condition. 1350 */ 1351 void 1352 ieee80211_ht_timeout(struct ieee80211com *ic) 1353 { 1354 IEEE80211_LOCK_ASSERT(ic); 1355 1356 if ((ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) && 1357 time_after(ticks, ic->ic_lastnonht + IEEE80211_NONHT_PRESENT_AGE)) { 1358 #if 0 1359 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1360 "%s", "time out non-HT STA present on channel"); 1361 #endif 1362 ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR; 1363 htinfo_update(ic); 1364 } 1365 } 1366 1367 /* unalligned little endian access */ 1368 #define LE_READ_2(p) \ 1369 ((uint16_t) \ 1370 ((((const uint8_t *)(p))[0] ) | \ 1371 (((const uint8_t *)(p))[1] << 8))) 1372 1373 /* 1374 * Process an 802.11n HT capabilities ie. 1375 */ 1376 void 1377 ieee80211_parse_htcap(struct ieee80211_node *ni, const uint8_t *ie) 1378 { 1379 if (ie[0] == IEEE80211_ELEMID_VENDOR) { 1380 /* 1381 * Station used Vendor OUI ie to associate; 1382 * mark the node so when we respond we'll use 1383 * the Vendor OUI's and not the standard ie's. 1384 */ 1385 ni->ni_flags |= IEEE80211_NODE_HTCOMPAT; 1386 ie += 4; 1387 } else 1388 ni->ni_flags &= ~IEEE80211_NODE_HTCOMPAT; 1389 1390 ni->ni_htcap = LE_READ_2(ie + 1391 __offsetof(struct ieee80211_ie_htcap, hc_cap)); 1392 ni->ni_htparam = ie[__offsetof(struct ieee80211_ie_htcap, hc_param)]; 1393 } 1394 1395 static void 1396 htinfo_parse(struct ieee80211_node *ni, 1397 const struct ieee80211_ie_htinfo *htinfo) 1398 { 1399 uint16_t w; 1400 1401 ni->ni_htctlchan = htinfo->hi_ctrlchannel; 1402 ni->ni_ht2ndchan = SM(htinfo->hi_byte1, IEEE80211_HTINFO_2NDCHAN); 1403 w = LE_READ_2(&htinfo->hi_byte2); 1404 ni->ni_htopmode = SM(w, IEEE80211_HTINFO_OPMODE); 1405 w = LE_READ_2(&htinfo->hi_byte45); 1406 ni->ni_htstbc = SM(w, IEEE80211_HTINFO_BASIC_STBCMCS); 1407 } 1408 1409 /* 1410 * Parse an 802.11n HT info ie and save useful information 1411 * to the node state. Note this does not effect any state 1412 * changes such as for channel width change. 1413 */ 1414 void 1415 ieee80211_parse_htinfo(struct ieee80211_node *ni, const uint8_t *ie) 1416 { 1417 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1418 ie += 4; 1419 htinfo_parse(ni, (const struct ieee80211_ie_htinfo *) ie); 1420 } 1421 1422 /* 1423 * Handle 11n channel switch. Use the received HT ie's to 1424 * identify the right channel to use. If we cannot locate it 1425 * in the channel table then fallback to legacy operation. 1426 * Note that we use this information to identify the node's 1427 * channel only; the caller is responsible for insuring any 1428 * required channel change is done (e.g. in sta mode when 1429 * parsing the contents of a beacon frame). 1430 */ 1431 static int 1432 htinfo_update_chw(struct ieee80211_node *ni, int htflags) 1433 { 1434 struct ieee80211com *ic = ni->ni_ic; 1435 struct ieee80211_channel *c; 1436 int chanflags; 1437 int ret = 0; 1438 1439 chanflags = (ni->ni_chan->ic_flags &~ IEEE80211_CHAN_HT) | htflags; 1440 if (chanflags != ni->ni_chan->ic_flags) { 1441 /* XXX not right for ht40- */ 1442 c = ieee80211_find_channel(ic, ni->ni_chan->ic_freq, chanflags); 1443 if (c == NULL && (htflags & IEEE80211_CHAN_HT40)) { 1444 /* 1445 * No HT40 channel entry in our table; fall back 1446 * to HT20 operation. This should not happen. 1447 */ 1448 c = findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT20); 1449 #if 0 1450 IEEE80211_NOTE(ni->ni_vap, 1451 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1452 "no HT40 channel (freq %u), falling back to HT20", 1453 ni->ni_chan->ic_freq); 1454 #endif 1455 /* XXX stat */ 1456 } 1457 if (c != NULL && c != ni->ni_chan) { 1458 IEEE80211_NOTE(ni->ni_vap, 1459 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1460 "switch station to HT%d channel %u/0x%x", 1461 IEEE80211_IS_CHAN_HT40(c) ? 40 : 20, 1462 c->ic_freq, c->ic_flags); 1463 ni->ni_chan = c; 1464 ret = 1; 1465 } 1466 /* NB: caller responsible for forcing any channel change */ 1467 } 1468 /* update node's tx channel width */ 1469 ni->ni_chw = IEEE80211_IS_CHAN_HT40(ni->ni_chan)? 40 : 20; 1470 return (ret); 1471 } 1472 1473 /* 1474 * Update 11n MIMO PS state according to received htcap. 1475 */ 1476 static __inline int 1477 htcap_update_mimo_ps(struct ieee80211_node *ni) 1478 { 1479 uint16_t oflags = ni->ni_flags; 1480 1481 switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) { 1482 case IEEE80211_HTCAP_SMPS_DYNAMIC: 1483 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1484 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 1485 break; 1486 case IEEE80211_HTCAP_SMPS_ENA: 1487 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1488 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1489 break; 1490 case IEEE80211_HTCAP_SMPS_OFF: 1491 default: /* disable on rx of reserved value */ 1492 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 1493 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1494 break; 1495 } 1496 return (oflags ^ ni->ni_flags); 1497 } 1498 1499 /* 1500 * Update short GI state according to received htcap 1501 * and local settings. 1502 */ 1503 static __inline void 1504 htcap_update_shortgi(struct ieee80211_node *ni) 1505 { 1506 struct ieee80211vap *vap = ni->ni_vap; 1507 1508 ni->ni_flags &= ~(IEEE80211_NODE_SGI20|IEEE80211_NODE_SGI40); 1509 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) && 1510 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)) 1511 ni->ni_flags |= IEEE80211_NODE_SGI20; 1512 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) && 1513 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)) 1514 ni->ni_flags |= IEEE80211_NODE_SGI40; 1515 } 1516 1517 /* 1518 * Parse and update HT-related state extracted from 1519 * the HT cap and info ie's. 1520 */ 1521 int 1522 ieee80211_ht_updateparams(struct ieee80211_node *ni, 1523 const uint8_t *htcapie, const uint8_t *htinfoie) 1524 { 1525 struct ieee80211vap *vap = ni->ni_vap; 1526 const struct ieee80211_ie_htinfo *htinfo; 1527 int htflags; 1528 int ret = 0; 1529 1530 ieee80211_parse_htcap(ni, htcapie); 1531 if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS) 1532 htcap_update_mimo_ps(ni); 1533 htcap_update_shortgi(ni); 1534 1535 if (htinfoie[0] == IEEE80211_ELEMID_VENDOR) 1536 htinfoie += 4; 1537 htinfo = (const struct ieee80211_ie_htinfo *) htinfoie; 1538 htinfo_parse(ni, htinfo); 1539 1540 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 1541 IEEE80211_CHAN_HT20 : 0; 1542 /* NB: honor operating mode constraint */ 1543 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH_2040) && 1544 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 1545 if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_ABOVE) 1546 htflags = IEEE80211_CHAN_HT40U; 1547 else if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_BELOW) 1548 htflags = IEEE80211_CHAN_HT40D; 1549 } 1550 if (htinfo_update_chw(ni, htflags)) 1551 ret = 1; 1552 1553 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_RIFSMODE_PERM) && 1554 (vap->iv_flags_ht & IEEE80211_FHT_RIFS)) 1555 ni->ni_flags |= IEEE80211_NODE_RIFS; 1556 else 1557 ni->ni_flags &= ~IEEE80211_NODE_RIFS; 1558 1559 return (ret); 1560 } 1561 1562 /* 1563 * Parse and update HT-related state extracted from the HT cap ie 1564 * for a station joining an HT BSS. 1565 */ 1566 void 1567 ieee80211_ht_updatehtcap(struct ieee80211_node *ni, const uint8_t *htcapie) 1568 { 1569 struct ieee80211vap *vap = ni->ni_vap; 1570 int htflags; 1571 1572 ieee80211_parse_htcap(ni, htcapie); 1573 if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS) 1574 htcap_update_mimo_ps(ni); 1575 htcap_update_shortgi(ni); 1576 1577 /* NB: honor operating mode constraint */ 1578 /* XXX 40 MHz intolerant */ 1579 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 1580 IEEE80211_CHAN_HT20 : 0; 1581 if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) && 1582 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 1583 if (IEEE80211_IS_CHAN_HT40U(vap->iv_bss->ni_chan)) 1584 htflags = IEEE80211_CHAN_HT40U; 1585 else if (IEEE80211_IS_CHAN_HT40D(vap->iv_bss->ni_chan)) 1586 htflags = IEEE80211_CHAN_HT40D; 1587 } 1588 (void) htinfo_update_chw(ni, htflags); 1589 } 1590 1591 /* 1592 * Install received HT rate set by parsing the HT cap ie. 1593 */ 1594 int 1595 ieee80211_setup_htrates(struct ieee80211_node *ni, const uint8_t *ie, int flags) 1596 { 1597 struct ieee80211com *ic = ni->ni_ic; 1598 struct ieee80211vap *vap = ni->ni_vap; 1599 const struct ieee80211_ie_htcap *htcap; 1600 struct ieee80211_htrateset *rs; 1601 int i, maxequalmcs, maxunequalmcs; 1602 1603 maxequalmcs = ic->ic_txstream * 8 - 1; 1604 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 1605 if (ic->ic_txstream >= 2) 1606 maxunequalmcs = 38; 1607 if (ic->ic_txstream >= 3) 1608 maxunequalmcs = 52; 1609 if (ic->ic_txstream >= 4) 1610 maxunequalmcs = 76; 1611 } else 1612 maxunequalmcs = 0; 1613 1614 rs = &ni->ni_htrates; 1615 memset(rs, 0, sizeof(*rs)); 1616 if (ie != NULL) { 1617 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1618 ie += 4; 1619 htcap = (const struct ieee80211_ie_htcap *) ie; 1620 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 1621 if (isclr(htcap->hc_mcsset, i)) 1622 continue; 1623 if (rs->rs_nrates == IEEE80211_HTRATE_MAXSIZE) { 1624 IEEE80211_NOTE(vap, 1625 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 1626 "WARNING, HT rate set too large; only " 1627 "using %u rates", IEEE80211_HTRATE_MAXSIZE); 1628 vap->iv_stats.is_rx_rstoobig++; 1629 break; 1630 } 1631 if (i <= 31 && i > maxequalmcs) 1632 continue; 1633 if (i == 32 && 1634 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0) 1635 continue; 1636 if (i > 32 && i > maxunequalmcs) 1637 continue; 1638 rs->rs_rates[rs->rs_nrates++] = i; 1639 } 1640 } 1641 return ieee80211_fix_rate(ni, (struct ieee80211_rateset *) rs, flags); 1642 } 1643 1644 /* 1645 * Mark rates in a node's HT rate set as basic according 1646 * to the information in the supplied HT info ie. 1647 */ 1648 void 1649 ieee80211_setup_basic_htrates(struct ieee80211_node *ni, const uint8_t *ie) 1650 { 1651 const struct ieee80211_ie_htinfo *htinfo; 1652 struct ieee80211_htrateset *rs; 1653 int i, j; 1654 1655 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1656 ie += 4; 1657 htinfo = (const struct ieee80211_ie_htinfo *) ie; 1658 rs = &ni->ni_htrates; 1659 if (rs->rs_nrates == 0) { 1660 IEEE80211_NOTE(ni->ni_vap, 1661 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 1662 "%s", "WARNING, empty HT rate set"); 1663 return; 1664 } 1665 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 1666 if (isclr(htinfo->hi_basicmcsset, i)) 1667 continue; 1668 for (j = 0; j < rs->rs_nrates; j++) 1669 if ((rs->rs_rates[j] & IEEE80211_RATE_VAL) == i) 1670 rs->rs_rates[j] |= IEEE80211_RATE_BASIC; 1671 } 1672 } 1673 1674 static void 1675 ampdu_tx_setup(struct ieee80211_tx_ampdu *tap) 1676 { 1677 callout_init(&tap->txa_timer, CALLOUT_MPSAFE); 1678 tap->txa_flags |= IEEE80211_AGGR_SETUP; 1679 } 1680 1681 static void 1682 ampdu_tx_stop(struct ieee80211_tx_ampdu *tap) 1683 { 1684 struct ieee80211_node *ni = tap->txa_ni; 1685 struct ieee80211com *ic = ni->ni_ic; 1686 1687 KASSERT(tap->txa_flags & IEEE80211_AGGR_SETUP, 1688 ("txa_flags 0x%x tid %d ac %d", tap->txa_flags, tap->txa_tid, 1689 TID_TO_WME_AC(tap->txa_tid))); 1690 1691 /* 1692 * Stop BA stream if setup so driver has a chance 1693 * to reclaim any resources it might have allocated. 1694 */ 1695 ic->ic_addba_stop(ni, tap); 1696 /* 1697 * Stop any pending BAR transmit. 1698 */ 1699 bar_stop_timer(tap); 1700 1701 tap->txa_lastsample = 0; 1702 tap->txa_avgpps = 0; 1703 /* NB: clearing NAK means we may re-send ADDBA */ 1704 tap->txa_flags &= ~(IEEE80211_AGGR_SETUP | IEEE80211_AGGR_NAK); 1705 } 1706 1707 /* 1708 * ADDBA response timeout. 1709 * 1710 * If software aggregation and per-TID queue management was done here, 1711 * that queue would be unpaused after the ADDBA timeout occurs. 1712 */ 1713 static void 1714 addba_timeout(void *arg) 1715 { 1716 struct ieee80211_tx_ampdu *tap = arg; 1717 struct ieee80211_node *ni = tap->txa_ni; 1718 struct ieee80211com *ic = ni->ni_ic; 1719 1720 /* XXX ? */ 1721 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 1722 tap->txa_attempts++; 1723 ic->ic_addba_response_timeout(ni, tap); 1724 } 1725 1726 static void 1727 addba_start_timeout(struct ieee80211_tx_ampdu *tap) 1728 { 1729 /* XXX use CALLOUT_PENDING instead? */ 1730 callout_reset(&tap->txa_timer, ieee80211_addba_timeout, 1731 addba_timeout, tap); 1732 tap->txa_flags |= IEEE80211_AGGR_XCHGPEND; 1733 tap->txa_nextrequest = ticks + ieee80211_addba_timeout; 1734 } 1735 1736 static void 1737 addba_stop_timeout(struct ieee80211_tx_ampdu *tap) 1738 { 1739 /* XXX use CALLOUT_PENDING instead? */ 1740 if (tap->txa_flags & IEEE80211_AGGR_XCHGPEND) { 1741 callout_stop(&tap->txa_timer); 1742 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 1743 } 1744 } 1745 1746 static void 1747 null_addba_response_timeout(struct ieee80211_node *ni, 1748 struct ieee80211_tx_ampdu *tap) 1749 { 1750 } 1751 1752 /* 1753 * Default method for requesting A-MPDU tx aggregation. 1754 * We setup the specified state block and start a timer 1755 * to wait for an ADDBA response frame. 1756 */ 1757 static int 1758 ieee80211_addba_request(struct ieee80211_node *ni, 1759 struct ieee80211_tx_ampdu *tap, 1760 int dialogtoken, int baparamset, int batimeout) 1761 { 1762 int bufsiz; 1763 1764 /* XXX locking */ 1765 tap->txa_token = dialogtoken; 1766 tap->txa_flags |= IEEE80211_AGGR_IMMEDIATE; 1767 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 1768 tap->txa_wnd = (bufsiz == 0) ? 1769 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 1770 addba_start_timeout(tap); 1771 return 1; 1772 } 1773 1774 /* 1775 * Default method for processing an A-MPDU tx aggregation 1776 * response. We shutdown any pending timer and update the 1777 * state block according to the reply. 1778 */ 1779 static int 1780 ieee80211_addba_response(struct ieee80211_node *ni, 1781 struct ieee80211_tx_ampdu *tap, 1782 int status, int baparamset, int batimeout) 1783 { 1784 int bufsiz, tid; 1785 1786 /* XXX locking */ 1787 addba_stop_timeout(tap); 1788 if (status == IEEE80211_STATUS_SUCCESS) { 1789 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 1790 /* XXX override our request? */ 1791 tap->txa_wnd = (bufsiz == 0) ? 1792 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 1793 /* XXX AC/TID */ 1794 tid = MS(baparamset, IEEE80211_BAPS_TID); 1795 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 1796 tap->txa_attempts = 0; 1797 } else { 1798 /* mark tid so we don't try again */ 1799 tap->txa_flags |= IEEE80211_AGGR_NAK; 1800 } 1801 return 1; 1802 } 1803 1804 /* 1805 * Default method for stopping A-MPDU tx aggregation. 1806 * Any timer is cleared and we drain any pending frames. 1807 */ 1808 static void 1809 ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 1810 { 1811 /* XXX locking */ 1812 addba_stop_timeout(tap); 1813 if (tap->txa_flags & IEEE80211_AGGR_RUNNING) { 1814 /* XXX clear aggregation queue */ 1815 tap->txa_flags &= ~IEEE80211_AGGR_RUNNING; 1816 } 1817 tap->txa_attempts = 0; 1818 } 1819 1820 /* 1821 * Process a received action frame using the default aggregation 1822 * policy. We intercept ADDBA-related frames and use them to 1823 * update our aggregation state. All other frames are passed up 1824 * for processing by ieee80211_recv_action. 1825 */ 1826 static int 1827 ht_recv_action_ba_addba_request(struct ieee80211_node *ni, 1828 const struct ieee80211_frame *wh, 1829 const uint8_t *frm, const uint8_t *efrm) 1830 { 1831 struct ieee80211com *ic = ni->ni_ic; 1832 struct ieee80211vap *vap = ni->ni_vap; 1833 struct ieee80211_rx_ampdu *rap; 1834 uint8_t dialogtoken; 1835 uint16_t baparamset, batimeout, baseqctl; 1836 uint16_t args[5]; 1837 int tid; 1838 1839 dialogtoken = frm[2]; 1840 baparamset = LE_READ_2(frm+3); 1841 batimeout = LE_READ_2(frm+5); 1842 baseqctl = LE_READ_2(frm+7); 1843 1844 tid = MS(baparamset, IEEE80211_BAPS_TID); 1845 1846 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 1847 "recv ADDBA request: dialogtoken %u baparamset 0x%x " 1848 "(tid %d bufsiz %d) batimeout %d baseqctl %d:%d", 1849 dialogtoken, baparamset, 1850 tid, MS(baparamset, IEEE80211_BAPS_BUFSIZ), 1851 batimeout, 1852 MS(baseqctl, IEEE80211_BASEQ_START), 1853 MS(baseqctl, IEEE80211_BASEQ_FRAG)); 1854 1855 rap = &ni->ni_rx_ampdu[tid]; 1856 1857 /* Send ADDBA response */ 1858 args[0] = dialogtoken; 1859 /* 1860 * NB: We ack only if the sta associated with HT and 1861 * the ap is configured to do AMPDU rx (the latter 1862 * violates the 11n spec and is mostly for testing). 1863 */ 1864 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_RX) && 1865 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX)) { 1866 /* XXX handle ampdu_rx_start failure */ 1867 ic->ic_ampdu_rx_start(ni, rap, 1868 baparamset, batimeout, baseqctl); 1869 1870 args[1] = IEEE80211_STATUS_SUCCESS; 1871 } else { 1872 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 1873 ni, "reject ADDBA request: %s", 1874 ni->ni_flags & IEEE80211_NODE_AMPDU_RX ? 1875 "administratively disabled" : 1876 "not negotiated for station"); 1877 vap->iv_stats.is_addba_reject++; 1878 args[1] = IEEE80211_STATUS_UNSPECIFIED; 1879 } 1880 /* XXX honor rap flags? */ 1881 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 1882 | SM(tid, IEEE80211_BAPS_TID) 1883 | SM(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ) 1884 ; 1885 args[3] = 0; 1886 args[4] = 0; 1887 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 1888 IEEE80211_ACTION_BA_ADDBA_RESPONSE, args); 1889 return 0; 1890 } 1891 1892 static int 1893 ht_recv_action_ba_addba_response(struct ieee80211_node *ni, 1894 const struct ieee80211_frame *wh, 1895 const uint8_t *frm, const uint8_t *efrm) 1896 { 1897 struct ieee80211com *ic = ni->ni_ic; 1898 struct ieee80211vap *vap = ni->ni_vap; 1899 struct ieee80211_tx_ampdu *tap; 1900 uint8_t dialogtoken, policy; 1901 uint16_t baparamset, batimeout, code; 1902 int tid, bufsiz; 1903 1904 dialogtoken = frm[2]; 1905 code = LE_READ_2(frm+3); 1906 baparamset = LE_READ_2(frm+5); 1907 tid = MS(baparamset, IEEE80211_BAPS_TID); 1908 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 1909 policy = MS(baparamset, IEEE80211_BAPS_POLICY); 1910 batimeout = LE_READ_2(frm+7); 1911 1912 tap = &ni->ni_tx_ampdu[tid]; 1913 if ((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 1914 IEEE80211_DISCARD_MAC(vap, 1915 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 1916 ni->ni_macaddr, "ADDBA response", 1917 "no pending ADDBA, tid %d dialogtoken %u " 1918 "code %d", tid, dialogtoken, code); 1919 vap->iv_stats.is_addba_norequest++; 1920 return 0; 1921 } 1922 if (dialogtoken != tap->txa_token) { 1923 IEEE80211_DISCARD_MAC(vap, 1924 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 1925 ni->ni_macaddr, "ADDBA response", 1926 "dialogtoken mismatch: waiting for %d, " 1927 "received %d, tid %d code %d", 1928 tap->txa_token, dialogtoken, tid, code); 1929 vap->iv_stats.is_addba_badtoken++; 1930 return 0; 1931 } 1932 /* NB: assumes IEEE80211_AGGR_IMMEDIATE is 1 */ 1933 if (policy != (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE)) { 1934 IEEE80211_DISCARD_MAC(vap, 1935 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 1936 ni->ni_macaddr, "ADDBA response", 1937 "policy mismatch: expecting %s, " 1938 "received %s, tid %d code %d", 1939 tap->txa_flags & IEEE80211_AGGR_IMMEDIATE, 1940 policy, tid, code); 1941 vap->iv_stats.is_addba_badpolicy++; 1942 return 0; 1943 } 1944 #if 0 1945 /* XXX we take MIN in ieee80211_addba_response */ 1946 if (bufsiz > IEEE80211_AGGR_BAWMAX) { 1947 IEEE80211_DISCARD_MAC(vap, 1948 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 1949 ni->ni_macaddr, "ADDBA response", 1950 "BA window too large: max %d, " 1951 "received %d, tid %d code %d", 1952 bufsiz, IEEE80211_AGGR_BAWMAX, tid, code); 1953 vap->iv_stats.is_addba_badbawinsize++; 1954 return 0; 1955 } 1956 #endif 1957 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 1958 "recv ADDBA response: dialogtoken %u code %d " 1959 "baparamset 0x%x (tid %d bufsiz %d) batimeout %d", 1960 dialogtoken, code, baparamset, tid, bufsiz, 1961 batimeout); 1962 ic->ic_addba_response(ni, tap, code, baparamset, batimeout); 1963 return 0; 1964 } 1965 1966 static int 1967 ht_recv_action_ba_delba(struct ieee80211_node *ni, 1968 const struct ieee80211_frame *wh, 1969 const uint8_t *frm, const uint8_t *efrm) 1970 { 1971 struct ieee80211com *ic = ni->ni_ic; 1972 struct ieee80211_rx_ampdu *rap; 1973 struct ieee80211_tx_ampdu *tap; 1974 uint16_t baparamset, code; 1975 int tid; 1976 1977 baparamset = LE_READ_2(frm+2); 1978 code = LE_READ_2(frm+4); 1979 1980 tid = MS(baparamset, IEEE80211_DELBAPS_TID); 1981 1982 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 1983 "recv DELBA: baparamset 0x%x (tid %d initiator %d) " 1984 "code %d", baparamset, tid, 1985 MS(baparamset, IEEE80211_DELBAPS_INIT), code); 1986 1987 if ((baparamset & IEEE80211_DELBAPS_INIT) == 0) { 1988 tap = &ni->ni_tx_ampdu[tid]; 1989 ic->ic_addba_stop(ni, tap); 1990 } else { 1991 rap = &ni->ni_rx_ampdu[tid]; 1992 ic->ic_ampdu_rx_stop(ni, rap); 1993 } 1994 return 0; 1995 } 1996 1997 static int 1998 ht_recv_action_ht_txchwidth(struct ieee80211_node *ni, 1999 const struct ieee80211_frame *wh, 2000 const uint8_t *frm, const uint8_t *efrm) 2001 { 2002 int chw; 2003 2004 chw = (frm[2] == IEEE80211_A_HT_TXCHWIDTH_2040) ? 40 : 20; 2005 2006 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2007 "%s: HT txchwidth, width %d%s", 2008 __func__, chw, ni->ni_chw != chw ? "*" : ""); 2009 if (chw != ni->ni_chw) { 2010 ni->ni_chw = chw; 2011 /* XXX notify on change */ 2012 } 2013 return 0; 2014 } 2015 2016 static int 2017 ht_recv_action_ht_mimopwrsave(struct ieee80211_node *ni, 2018 const struct ieee80211_frame *wh, 2019 const uint8_t *frm, const uint8_t *efrm) 2020 { 2021 const struct ieee80211_action_ht_mimopowersave *mps = 2022 (const struct ieee80211_action_ht_mimopowersave *) frm; 2023 2024 /* XXX check iv_htcaps */ 2025 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA) 2026 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 2027 else 2028 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 2029 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_MODE) 2030 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 2031 else 2032 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 2033 /* XXX notify on change */ 2034 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2035 "%s: HT MIMO PS (%s%s)", __func__, 2036 (ni->ni_flags & IEEE80211_NODE_MIMO_PS) ? "on" : "off", 2037 (ni->ni_flags & IEEE80211_NODE_MIMO_RTS) ? "+rts" : "" 2038 ); 2039 return 0; 2040 } 2041 2042 /* 2043 * Transmit processing. 2044 */ 2045 2046 /* 2047 * Check if A-MPDU should be requested/enabled for a stream. 2048 * We require a traffic rate above a per-AC threshold and we 2049 * also handle backoff from previous failed attempts. 2050 * 2051 * Drivers may override this method to bring in information 2052 * such as link state conditions in making the decision. 2053 */ 2054 static int 2055 ieee80211_ampdu_enable(struct ieee80211_node *ni, 2056 struct ieee80211_tx_ampdu *tap) 2057 { 2058 struct ieee80211vap *vap = ni->ni_vap; 2059 2060 if (tap->txa_avgpps < 2061 vap->iv_ampdu_mintraffic[TID_TO_WME_AC(tap->txa_tid)]) 2062 return 0; 2063 /* XXX check rssi? */ 2064 if (tap->txa_attempts >= ieee80211_addba_maxtries && 2065 ticks < tap->txa_nextrequest) { 2066 /* 2067 * Don't retry too often; txa_nextrequest is set 2068 * to the minimum interval we'll retry after 2069 * ieee80211_addba_maxtries failed attempts are made. 2070 */ 2071 return 0; 2072 } 2073 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 2074 "enable AMPDU on tid %d (%s), avgpps %d pkts %d", 2075 tap->txa_tid, ieee80211_wme_acnames[TID_TO_WME_AC(tap->txa_tid)], 2076 tap->txa_avgpps, tap->txa_pkts); 2077 return 1; 2078 } 2079 2080 /* 2081 * Request A-MPDU tx aggregation. Setup local state and 2082 * issue an ADDBA request. BA use will only happen after 2083 * the other end replies with ADDBA response. 2084 */ 2085 int 2086 ieee80211_ampdu_request(struct ieee80211_node *ni, 2087 struct ieee80211_tx_ampdu *tap) 2088 { 2089 struct ieee80211com *ic = ni->ni_ic; 2090 uint16_t args[5]; 2091 int tid, dialogtoken; 2092 static int tokens = 0; /* XXX */ 2093 2094 /* XXX locking */ 2095 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 2096 /* do deferred setup of state */ 2097 ampdu_tx_setup(tap); 2098 } 2099 /* XXX hack for not doing proper locking */ 2100 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 2101 2102 dialogtoken = (tokens+1) % 63; /* XXX */ 2103 tid = tap->txa_tid; 2104 tap->txa_start = ni->ni_txseqs[tid]; 2105 2106 args[0] = dialogtoken; 2107 args[1] = 0; /* NB: status code not used */ 2108 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 2109 | SM(tid, IEEE80211_BAPS_TID) 2110 | SM(IEEE80211_AGGR_BAWMAX, IEEE80211_BAPS_BUFSIZ) 2111 ; 2112 args[3] = 0; /* batimeout */ 2113 /* NB: do first so there's no race against reply */ 2114 if (!ic->ic_addba_request(ni, tap, dialogtoken, args[2], args[3])) { 2115 /* unable to setup state, don't make request */ 2116 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2117 ni, "%s: could not setup BA stream for TID %d AC %d", 2118 __func__, tap->txa_tid, TID_TO_WME_AC(tap->txa_tid)); 2119 /* defer next try so we don't slam the driver with requests */ 2120 tap->txa_attempts = ieee80211_addba_maxtries; 2121 /* NB: check in case driver wants to override */ 2122 if (tap->txa_nextrequest <= ticks) 2123 tap->txa_nextrequest = ticks + ieee80211_addba_backoff; 2124 return 0; 2125 } 2126 tokens = dialogtoken; /* allocate token */ 2127 /* NB: after calling ic_addba_request so driver can set txa_start */ 2128 args[4] = SM(tap->txa_start, IEEE80211_BASEQ_START) 2129 | SM(0, IEEE80211_BASEQ_FRAG) 2130 ; 2131 return ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2132 IEEE80211_ACTION_BA_ADDBA_REQUEST, args); 2133 } 2134 2135 /* 2136 * Terminate an AMPDU tx stream. State is reclaimed 2137 * and the peer notified with a DelBA Action frame. 2138 */ 2139 void 2140 ieee80211_ampdu_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 2141 int reason) 2142 { 2143 struct ieee80211com *ic = ni->ni_ic; 2144 struct ieee80211vap *vap = ni->ni_vap; 2145 uint16_t args[4]; 2146 2147 /* XXX locking */ 2148 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2149 if (IEEE80211_AMPDU_RUNNING(tap)) { 2150 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2151 ni, "%s: stop BA stream for TID %d (reason %d)", 2152 __func__, tap->txa_tid, reason); 2153 vap->iv_stats.is_ampdu_stop++; 2154 2155 ic->ic_addba_stop(ni, tap); 2156 args[0] = tap->txa_tid; 2157 args[1] = IEEE80211_DELBAPS_INIT; 2158 args[2] = reason; /* XXX reason code */ 2159 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2160 IEEE80211_ACTION_BA_DELBA, args); 2161 } else { 2162 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2163 ni, "%s: BA stream for TID %d not running (reason %d)", 2164 __func__, tap->txa_tid, reason); 2165 vap->iv_stats.is_ampdu_stop_failed++; 2166 } 2167 } 2168 2169 /* XXX */ 2170 static void bar_start_timer(struct ieee80211_tx_ampdu *tap); 2171 2172 static void 2173 bar_timeout(void *arg) 2174 { 2175 struct ieee80211_tx_ampdu *tap = arg; 2176 struct ieee80211_node *ni = tap->txa_ni; 2177 2178 KASSERT((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0, 2179 ("bar/addba collision, flags 0x%x", tap->txa_flags)); 2180 2181 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2182 ni, "%s: tid %u flags 0x%x attempts %d", __func__, 2183 tap->txa_tid, tap->txa_flags, tap->txa_attempts); 2184 2185 /* guard against race with bar_tx_complete */ 2186 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2187 return; 2188 /* XXX ? */ 2189 if (tap->txa_attempts >= ieee80211_bar_maxtries) { 2190 struct ieee80211com *ic = ni->ni_ic; 2191 2192 ni->ni_vap->iv_stats.is_ampdu_bar_tx_fail++; 2193 /* 2194 * If (at least) the last BAR TX timeout was due to 2195 * an ieee80211_send_bar() failures, then we need 2196 * to make sure we notify the driver that a BAR 2197 * TX did occur and fail. This gives the driver 2198 * a chance to undo any queue pause that may 2199 * have occured. 2200 */ 2201 ic->ic_bar_response(ni, tap, 1); 2202 ieee80211_ampdu_stop(ni, tap, IEEE80211_REASON_TIMEOUT); 2203 } else { 2204 ni->ni_vap->iv_stats.is_ampdu_bar_tx_retry++; 2205 if (ieee80211_send_bar(ni, tap, tap->txa_seqpending) != 0) { 2206 /* 2207 * If ieee80211_send_bar() fails here, the 2208 * timer may have stopped and/or the pending 2209 * flag may be clear. Because of this, 2210 * fake the BARPEND and reset the timer. 2211 * A retransmission attempt will then occur 2212 * during the next timeout. 2213 */ 2214 /* XXX locking */ 2215 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2216 bar_start_timer(tap); 2217 } 2218 } 2219 } 2220 2221 static void 2222 bar_start_timer(struct ieee80211_tx_ampdu *tap) 2223 { 2224 callout_reset(&tap->txa_timer, ieee80211_bar_timeout, bar_timeout, tap); 2225 } 2226 2227 static void 2228 bar_stop_timer(struct ieee80211_tx_ampdu *tap) 2229 { 2230 callout_stop(&tap->txa_timer); 2231 } 2232 2233 static void 2234 bar_tx_complete(struct ieee80211_node *ni, void *arg, int status) 2235 { 2236 struct ieee80211_tx_ampdu *tap = arg; 2237 2238 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2239 ni, "%s: tid %u flags 0x%x pending %d status %d", 2240 __func__, tap->txa_tid, tap->txa_flags, 2241 callout_pending(&tap->txa_timer), status); 2242 2243 ni->ni_vap->iv_stats.is_ampdu_bar_tx++; 2244 /* XXX locking */ 2245 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) && 2246 callout_pending(&tap->txa_timer)) { 2247 struct ieee80211com *ic = ni->ni_ic; 2248 2249 if (status == 0) /* ACK'd */ 2250 bar_stop_timer(tap); 2251 ic->ic_bar_response(ni, tap, status); 2252 /* NB: just let timer expire so we pace requests */ 2253 } 2254 } 2255 2256 static void 2257 ieee80211_bar_response(struct ieee80211_node *ni, 2258 struct ieee80211_tx_ampdu *tap, int status) 2259 { 2260 2261 if (status == 0) { /* got ACK */ 2262 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2263 ni, "BAR moves BA win <%u:%u> (%u frames) txseq %u tid %u", 2264 tap->txa_start, 2265 IEEE80211_SEQ_ADD(tap->txa_start, tap->txa_wnd-1), 2266 tap->txa_qframes, tap->txa_seqpending, 2267 tap->txa_tid); 2268 2269 /* NB: timer already stopped in bar_tx_complete */ 2270 tap->txa_start = tap->txa_seqpending; 2271 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2272 } 2273 } 2274 2275 /* 2276 * Transmit a BAR frame to the specified node. The 2277 * BAR contents are drawn from the supplied aggregation 2278 * state associated with the node. 2279 * 2280 * NB: we only handle immediate ACK w/ compressed bitmap. 2281 */ 2282 int 2283 ieee80211_send_bar(struct ieee80211_node *ni, 2284 struct ieee80211_tx_ampdu *tap, ieee80211_seq seq) 2285 { 2286 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2287 struct ieee80211vap *vap = ni->ni_vap; 2288 struct ieee80211com *ic = ni->ni_ic; 2289 struct ieee80211_frame_bar *bar; 2290 struct mbuf *m; 2291 uint16_t barctl, barseqctl; 2292 uint8_t *frm; 2293 int tid, ret; 2294 2295 if ((tap->txa_flags & IEEE80211_AGGR_RUNNING) == 0) { 2296 /* no ADDBA response, should not happen */ 2297 /* XXX stat+msg */ 2298 return EINVAL; 2299 } 2300 /* XXX locking */ 2301 bar_stop_timer(tap); 2302 2303 ieee80211_ref_node(ni); 2304 2305 m = ieee80211_getmgtframe(&frm, ic->ic_headroom, sizeof(*bar)); 2306 if (m == NULL) 2307 senderr(ENOMEM, is_tx_nobuf); 2308 2309 if (!ieee80211_add_callback(m, bar_tx_complete, tap)) { 2310 m_freem(m); 2311 senderr(ENOMEM, is_tx_nobuf); /* XXX */ 2312 /* NOTREACHED */ 2313 } 2314 2315 bar = mtod(m, struct ieee80211_frame_bar *); 2316 bar->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2317 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR; 2318 bar->i_fc[1] = 0; 2319 IEEE80211_ADDR_COPY(bar->i_ra, ni->ni_macaddr); 2320 IEEE80211_ADDR_COPY(bar->i_ta, vap->iv_myaddr); 2321 2322 tid = tap->txa_tid; 2323 barctl = (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE ? 2324 0 : IEEE80211_BAR_NOACK) 2325 | IEEE80211_BAR_COMP 2326 | SM(tid, IEEE80211_BAR_TID) 2327 ; 2328 barseqctl = SM(seq, IEEE80211_BAR_SEQ_START); 2329 /* NB: known to have proper alignment */ 2330 bar->i_ctl = htole16(barctl); 2331 bar->i_seq = htole16(barseqctl); 2332 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_bar); 2333 2334 M_WME_SETAC(m, WME_AC_VO); 2335 2336 IEEE80211_NODE_STAT(ni, tx_mgmt); /* XXX tx_ctl? */ 2337 2338 /* XXX locking */ 2339 /* init/bump attempts counter */ 2340 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2341 tap->txa_attempts = 1; 2342 else 2343 tap->txa_attempts++; 2344 tap->txa_seqpending = seq; 2345 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2346 2347 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2348 ni, "send BAR: tid %u ctl 0x%x start %u (attempt %d)", 2349 tid, barctl, seq, tap->txa_attempts); 2350 2351 /* 2352 * ic_raw_xmit will free the node reference 2353 * regardless of queue/TX success or failure. 2354 */ 2355 ret = ic->ic_raw_xmit(ni, m, NULL); 2356 if (ret != 0) { 2357 /* xmit failed, clear state flag */ 2358 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2359 vap->iv_stats.is_ampdu_bar_tx_fail++; 2360 return ret; 2361 } 2362 /* XXX hack against tx complete happening before timer is started */ 2363 if (tap->txa_flags & IEEE80211_AGGR_BARPEND) 2364 bar_start_timer(tap); 2365 return 0; 2366 bad: 2367 vap->iv_stats.is_ampdu_bar_tx_fail++; 2368 ieee80211_free_node(ni); 2369 return ret; 2370 #undef senderr 2371 } 2372 2373 static int 2374 ht_action_output(struct ieee80211_node *ni, struct mbuf *m) 2375 { 2376 struct ieee80211_bpf_params params; 2377 2378 memset(¶ms, 0, sizeof(params)); 2379 params.ibp_pri = WME_AC_VO; 2380 params.ibp_rate0 = ni->ni_txparms->mgmtrate; 2381 /* NB: we know all frames are unicast */ 2382 params.ibp_try0 = ni->ni_txparms->maxretry; 2383 params.ibp_power = ni->ni_txpower; 2384 return ieee80211_mgmt_output(ni, m, IEEE80211_FC0_SUBTYPE_ACTION, 2385 ¶ms); 2386 } 2387 2388 #define ADDSHORT(frm, v) do { \ 2389 frm[0] = (v) & 0xff; \ 2390 frm[1] = (v) >> 8; \ 2391 frm += 2; \ 2392 } while (0) 2393 2394 /* 2395 * Send an action management frame. The arguments are stuff 2396 * into a frame without inspection; the caller is assumed to 2397 * prepare them carefully (e.g. based on the aggregation state). 2398 */ 2399 static int 2400 ht_send_action_ba_addba(struct ieee80211_node *ni, 2401 int category, int action, void *arg0) 2402 { 2403 struct ieee80211vap *vap = ni->ni_vap; 2404 struct ieee80211com *ic = ni->ni_ic; 2405 uint16_t *args = arg0; 2406 struct mbuf *m; 2407 uint8_t *frm; 2408 2409 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2410 "send ADDBA %s: dialogtoken %d status %d " 2411 "baparamset 0x%x (tid %d) batimeout 0x%x baseqctl 0x%x", 2412 (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ? 2413 "request" : "response", 2414 args[0], args[1], args[2], MS(args[2], IEEE80211_BAPS_TID), 2415 args[3], args[4]); 2416 2417 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2418 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2419 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2420 ieee80211_ref_node(ni); 2421 2422 m = ieee80211_getmgtframe(&frm, 2423 ic->ic_headroom + sizeof(struct ieee80211_frame), 2424 sizeof(uint16_t) /* action+category */ 2425 /* XXX may action payload */ 2426 + sizeof(struct ieee80211_action_ba_addbaresponse) 2427 ); 2428 if (m != NULL) { 2429 *frm++ = category; 2430 *frm++ = action; 2431 *frm++ = args[0]; /* dialog token */ 2432 if (action == IEEE80211_ACTION_BA_ADDBA_RESPONSE) 2433 ADDSHORT(frm, args[1]); /* status code */ 2434 ADDSHORT(frm, args[2]); /* baparamset */ 2435 ADDSHORT(frm, args[3]); /* batimeout */ 2436 if (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) 2437 ADDSHORT(frm, args[4]); /* baseqctl */ 2438 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2439 return ht_action_output(ni, m); 2440 } else { 2441 vap->iv_stats.is_tx_nobuf++; 2442 ieee80211_free_node(ni); 2443 return ENOMEM; 2444 } 2445 } 2446 2447 static int 2448 ht_send_action_ba_delba(struct ieee80211_node *ni, 2449 int category, int action, void *arg0) 2450 { 2451 struct ieee80211vap *vap = ni->ni_vap; 2452 struct ieee80211com *ic = ni->ni_ic; 2453 uint16_t *args = arg0; 2454 struct mbuf *m; 2455 uint16_t baparamset; 2456 uint8_t *frm; 2457 2458 baparamset = SM(args[0], IEEE80211_DELBAPS_TID) 2459 | args[1] 2460 ; 2461 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2462 "send DELBA action: tid %d, initiator %d reason %d", 2463 args[0], args[1], args[2]); 2464 2465 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2466 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2467 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2468 ieee80211_ref_node(ni); 2469 2470 m = ieee80211_getmgtframe(&frm, 2471 ic->ic_headroom + sizeof(struct ieee80211_frame), 2472 sizeof(uint16_t) /* action+category */ 2473 /* XXX may action payload */ 2474 + sizeof(struct ieee80211_action_ba_addbaresponse) 2475 ); 2476 if (m != NULL) { 2477 *frm++ = category; 2478 *frm++ = action; 2479 ADDSHORT(frm, baparamset); 2480 ADDSHORT(frm, args[2]); /* reason code */ 2481 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2482 return ht_action_output(ni, m); 2483 } else { 2484 vap->iv_stats.is_tx_nobuf++; 2485 ieee80211_free_node(ni); 2486 return ENOMEM; 2487 } 2488 } 2489 2490 static int 2491 ht_send_action_ht_txchwidth(struct ieee80211_node *ni, 2492 int category, int action, void *arg0) 2493 { 2494 struct ieee80211vap *vap = ni->ni_vap; 2495 struct ieee80211com *ic = ni->ni_ic; 2496 struct mbuf *m; 2497 uint8_t *frm; 2498 2499 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2500 "send HT txchwidth: width %d", 2501 IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 40 : 20); 2502 2503 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2504 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2505 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2506 ieee80211_ref_node(ni); 2507 2508 m = ieee80211_getmgtframe(&frm, 2509 ic->ic_headroom + sizeof(struct ieee80211_frame), 2510 sizeof(uint16_t) /* action+category */ 2511 /* XXX may action payload */ 2512 + sizeof(struct ieee80211_action_ba_addbaresponse) 2513 ); 2514 if (m != NULL) { 2515 *frm++ = category; 2516 *frm++ = action; 2517 *frm++ = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 2518 IEEE80211_A_HT_TXCHWIDTH_2040 : 2519 IEEE80211_A_HT_TXCHWIDTH_20; 2520 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2521 return ht_action_output(ni, m); 2522 } else { 2523 vap->iv_stats.is_tx_nobuf++; 2524 ieee80211_free_node(ni); 2525 return ENOMEM; 2526 } 2527 } 2528 #undef ADDSHORT 2529 2530 /* 2531 * Construct the MCS bit mask for inclusion in an HT capabilities 2532 * information element. 2533 */ 2534 static void 2535 ieee80211_set_mcsset(struct ieee80211com *ic, uint8_t *frm) 2536 { 2537 int i; 2538 uint8_t txparams; 2539 2540 KASSERT((ic->ic_rxstream > 0 && ic->ic_rxstream <= 4), 2541 ("ic_rxstream %d out of range", ic->ic_rxstream)); 2542 KASSERT((ic->ic_txstream > 0 && ic->ic_txstream <= 4), 2543 ("ic_txstream %d out of range", ic->ic_txstream)); 2544 2545 for (i = 0; i < ic->ic_rxstream * 8; i++) 2546 setbit(frm, i); 2547 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 2548 (ic->ic_htcaps & IEEE80211_HTC_RXMCS32)) 2549 setbit(frm, 32); 2550 if (ic->ic_htcaps & IEEE80211_HTC_RXUNEQUAL) { 2551 if (ic->ic_rxstream >= 2) { 2552 for (i = 33; i <= 38; i++) 2553 setbit(frm, i); 2554 } 2555 if (ic->ic_rxstream >= 3) { 2556 for (i = 39; i <= 52; i++) 2557 setbit(frm, i); 2558 } 2559 if (ic->ic_txstream >= 4) { 2560 for (i = 53; i <= 76; i++) 2561 setbit(frm, i); 2562 } 2563 } 2564 2565 if (ic->ic_rxstream != ic->ic_txstream) { 2566 txparams = 0x1; /* TX MCS set defined */ 2567 txparams |= 0x2; /* TX RX MCS not equal */ 2568 txparams |= (ic->ic_txstream - 1) << 2; /* num TX streams */ 2569 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) 2570 txparams |= 0x16; /* TX unequal modulation sup */ 2571 } else 2572 txparams = 0; 2573 frm[12] = txparams; 2574 } 2575 2576 /* 2577 * Add body of an HTCAP information element. 2578 */ 2579 static uint8_t * 2580 ieee80211_add_htcap_body(uint8_t *frm, struct ieee80211_node *ni) 2581 { 2582 #define ADDSHORT(frm, v) do { \ 2583 frm[0] = (v) & 0xff; \ 2584 frm[1] = (v) >> 8; \ 2585 frm += 2; \ 2586 } while (0) 2587 struct ieee80211com *ic = ni->ni_ic; 2588 struct ieee80211vap *vap = ni->ni_vap; 2589 uint16_t caps, extcaps; 2590 int rxmax, density; 2591 2592 /* HT capabilities */ 2593 caps = vap->iv_htcaps & 0xffff; 2594 /* 2595 * Note channel width depends on whether we are operating as 2596 * a sta or not. When operating as a sta we are generating 2597 * a request based on our desired configuration. Otherwise 2598 * we are operational and the channel attributes identify 2599 * how we've been setup (which might be different if a fixed 2600 * channel is specified). 2601 */ 2602 if (vap->iv_opmode == IEEE80211_M_STA) { 2603 /* override 20/40 use based on config */ 2604 if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40) 2605 caps |= IEEE80211_HTCAP_CHWIDTH40; 2606 else 2607 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2608 /* use advertised setting (XXX locally constraint) */ 2609 rxmax = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU); 2610 density = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY); 2611 2612 /* 2613 * NB: Hardware might support HT40 on some but not all 2614 * channels. We can't determine this earlier because only 2615 * after association the channel is upgraded to HT based 2616 * on the negotiated capabilities. 2617 */ 2618 if (ni->ni_chan != IEEE80211_CHAN_ANYC && 2619 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40U) == NULL && 2620 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40D) == NULL) 2621 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2622 } else { 2623 /* override 20/40 use based on current channel */ 2624 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 2625 caps |= IEEE80211_HTCAP_CHWIDTH40; 2626 else 2627 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2628 rxmax = vap->iv_ampdu_rxmax; 2629 density = vap->iv_ampdu_density; 2630 } 2631 /* adjust short GI based on channel and config */ 2632 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) 2633 caps &= ~IEEE80211_HTCAP_SHORTGI20; 2634 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || 2635 (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) 2636 caps &= ~IEEE80211_HTCAP_SHORTGI40; 2637 ADDSHORT(frm, caps); 2638 2639 /* HT parameters */ 2640 *frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) 2641 | SM(density, IEEE80211_HTCAP_MPDUDENSITY) 2642 ; 2643 frm++; 2644 2645 /* pre-zero remainder of ie */ 2646 memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - 2647 __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); 2648 2649 /* supported MCS set */ 2650 /* 2651 * XXX: For sta mode the rate set should be restricted based 2652 * on the AP's capabilities, but ni_htrates isn't setup when 2653 * we're called to form an AssocReq frame so for now we're 2654 * restricted to the device capabilities. 2655 */ 2656 ieee80211_set_mcsset(ni->ni_ic, frm); 2657 2658 frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - 2659 __offsetof(struct ieee80211_ie_htcap, hc_mcsset); 2660 2661 /* HT extended capabilities */ 2662 extcaps = vap->iv_htextcaps & 0xffff; 2663 2664 ADDSHORT(frm, extcaps); 2665 2666 frm += sizeof(struct ieee80211_ie_htcap) - 2667 __offsetof(struct ieee80211_ie_htcap, hc_txbf); 2668 2669 return frm; 2670 #undef ADDSHORT 2671 } 2672 2673 /* 2674 * Add 802.11n HT capabilities information element 2675 */ 2676 uint8_t * 2677 ieee80211_add_htcap(uint8_t *frm, struct ieee80211_node *ni) 2678 { 2679 frm[0] = IEEE80211_ELEMID_HTCAP; 2680 frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; 2681 return ieee80211_add_htcap_body(frm + 2, ni); 2682 } 2683 2684 /* 2685 * Add Broadcom OUI wrapped standard HTCAP ie; this is 2686 * used for compatibility w/ pre-draft implementations. 2687 */ 2688 uint8_t * 2689 ieee80211_add_htcap_vendor(uint8_t *frm, struct ieee80211_node *ni) 2690 { 2691 frm[0] = IEEE80211_ELEMID_VENDOR; 2692 frm[1] = 4 + sizeof(struct ieee80211_ie_htcap) - 2; 2693 frm[2] = (BCM_OUI >> 0) & 0xff; 2694 frm[3] = (BCM_OUI >> 8) & 0xff; 2695 frm[4] = (BCM_OUI >> 16) & 0xff; 2696 frm[5] = BCM_OUI_HTCAP; 2697 return ieee80211_add_htcap_body(frm + 6, ni); 2698 } 2699 2700 /* 2701 * Construct the MCS bit mask of basic rates 2702 * for inclusion in an HT information element. 2703 */ 2704 static void 2705 ieee80211_set_basic_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs) 2706 { 2707 int i; 2708 2709 for (i = 0; i < rs->rs_nrates; i++) { 2710 int r = rs->rs_rates[i] & IEEE80211_RATE_VAL; 2711 if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) && 2712 r < IEEE80211_HTRATE_MAXSIZE) { 2713 /* NB: this assumes a particular implementation */ 2714 setbit(frm, r); 2715 } 2716 } 2717 } 2718 2719 /* 2720 * Update the HTINFO ie for a beacon frame. 2721 */ 2722 void 2723 ieee80211_ht_update_beacon(struct ieee80211vap *vap, 2724 struct ieee80211_beacon_offsets *bo) 2725 { 2726 #define PROTMODE (IEEE80211_HTINFO_OPMODE|IEEE80211_HTINFO_NONHT_PRESENT) 2727 const struct ieee80211_channel *bsschan = vap->iv_bss->ni_chan; 2728 struct ieee80211com *ic = vap->iv_ic; 2729 struct ieee80211_ie_htinfo *ht = 2730 (struct ieee80211_ie_htinfo *) bo->bo_htinfo; 2731 2732 /* XXX only update on channel change */ 2733 ht->hi_ctrlchannel = ieee80211_chan2ieee(ic, bsschan); 2734 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 2735 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PERM; 2736 else 2737 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PROH; 2738 if (IEEE80211_IS_CHAN_HT40U(bsschan)) 2739 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 2740 else if (IEEE80211_IS_CHAN_HT40D(bsschan)) 2741 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_BELOW; 2742 else 2743 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_NONE; 2744 if (IEEE80211_IS_CHAN_HT40(bsschan)) 2745 ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040; 2746 2747 /* protection mode */ 2748 ht->hi_byte2 = (ht->hi_byte2 &~ PROTMODE) | ic->ic_curhtprotmode; 2749 2750 /* XXX propagate to vendor ie's */ 2751 #undef PROTMODE 2752 } 2753 2754 /* 2755 * Add body of an HTINFO information element. 2756 * 2757 * NB: We don't use struct ieee80211_ie_htinfo because we can 2758 * be called to fillin both a standard ie and a compat ie that 2759 * has a vendor OUI at the front. 2760 */ 2761 static uint8_t * 2762 ieee80211_add_htinfo_body(uint8_t *frm, struct ieee80211_node *ni) 2763 { 2764 struct ieee80211vap *vap = ni->ni_vap; 2765 struct ieee80211com *ic = ni->ni_ic; 2766 2767 /* pre-zero remainder of ie */ 2768 memset(frm, 0, sizeof(struct ieee80211_ie_htinfo) - 2); 2769 2770 /* primary/control channel center */ 2771 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 2772 2773 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 2774 frm[0] = IEEE80211_HTINFO_RIFSMODE_PERM; 2775 else 2776 frm[0] = IEEE80211_HTINFO_RIFSMODE_PROH; 2777 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 2778 frm[0] |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 2779 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 2780 frm[0] |= IEEE80211_HTINFO_2NDCHAN_BELOW; 2781 else 2782 frm[0] |= IEEE80211_HTINFO_2NDCHAN_NONE; 2783 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 2784 frm[0] |= IEEE80211_HTINFO_TXWIDTH_2040; 2785 2786 frm[1] = ic->ic_curhtprotmode; 2787 2788 frm += 5; 2789 2790 /* basic MCS set */ 2791 ieee80211_set_basic_htrates(frm, &ni->ni_htrates); 2792 frm += sizeof(struct ieee80211_ie_htinfo) - 2793 __offsetof(struct ieee80211_ie_htinfo, hi_basicmcsset); 2794 return frm; 2795 } 2796 2797 /* 2798 * Add 802.11n HT information information element. 2799 */ 2800 uint8_t * 2801 ieee80211_add_htinfo(uint8_t *frm, struct ieee80211_node *ni) 2802 { 2803 frm[0] = IEEE80211_ELEMID_HTINFO; 2804 frm[1] = sizeof(struct ieee80211_ie_htinfo) - 2; 2805 return ieee80211_add_htinfo_body(frm + 2, ni); 2806 } 2807 2808 /* 2809 * Add Broadcom OUI wrapped standard HTINFO ie; this is 2810 * used for compatibility w/ pre-draft implementations. 2811 */ 2812 uint8_t * 2813 ieee80211_add_htinfo_vendor(uint8_t *frm, struct ieee80211_node *ni) 2814 { 2815 frm[0] = IEEE80211_ELEMID_VENDOR; 2816 frm[1] = 4 + sizeof(struct ieee80211_ie_htinfo) - 2; 2817 frm[2] = (BCM_OUI >> 0) & 0xff; 2818 frm[3] = (BCM_OUI >> 8) & 0xff; 2819 frm[4] = (BCM_OUI >> 16) & 0xff; 2820 frm[5] = BCM_OUI_HTINFO; 2821 return ieee80211_add_htinfo_body(frm + 6, ni); 2822 } 2823