xref: /freebsd/sys/net80211/ieee80211_ht.c (revision 9ce06829f29232e312130530c304d287b39b0059)
1 /*-
2  * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  */
25 
26 #include <sys/cdefs.h>
27 #ifdef __FreeBSD__
28 __FBSDID("$FreeBSD$");
29 #endif
30 
31 /*
32  * IEEE 802.11n protocol support.
33  */
34 
35 #include "opt_inet.h"
36 #include "opt_wlan.h"
37 
38 #include <sys/param.h>
39 #include <sys/kernel.h>
40 #include <sys/systm.h>
41 #include <sys/endian.h>
42 
43 #include <sys/socket.h>
44 
45 #include <net/if.h>
46 #include <net/if_var.h>
47 #include <net/if_media.h>
48 #include <net/ethernet.h>
49 
50 #include <net80211/ieee80211_var.h>
51 #include <net80211/ieee80211_action.h>
52 #include <net80211/ieee80211_input.h>
53 
54 /* define here, used throughout file */
55 #define	MS(_v, _f)	(((_v) & _f) >> _f##_S)
56 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
57 
58 const struct ieee80211_mcs_rates ieee80211_htrates[IEEE80211_HTRATE_MAXSIZE] = {
59 	{  13,  14,   27,   30 },	/* MCS 0 */
60 	{  26,  29,   54,   60 },	/* MCS 1 */
61 	{  39,  43,   81,   90 },	/* MCS 2 */
62 	{  52,  58,  108,  120 },	/* MCS 3 */
63 	{  78,  87,  162,  180 },	/* MCS 4 */
64 	{ 104, 116,  216,  240 },	/* MCS 5 */
65 	{ 117, 130,  243,  270 },	/* MCS 6 */
66 	{ 130, 144,  270,  300 },	/* MCS 7 */
67 	{  26,  29,   54,   60 },	/* MCS 8 */
68 	{  52,  58,  108,  120 },	/* MCS 9 */
69 	{  78,  87,  162,  180 },	/* MCS 10 */
70 	{ 104, 116,  216,  240 },	/* MCS 11 */
71 	{ 156, 173,  324,  360 },	/* MCS 12 */
72 	{ 208, 231,  432,  480 },	/* MCS 13 */
73 	{ 234, 260,  486,  540 },	/* MCS 14 */
74 	{ 260, 289,  540,  600 },	/* MCS 15 */
75 	{  39,  43,   81,   90 },	/* MCS 16 */
76 	{  78,  87,  162,  180 },	/* MCS 17 */
77 	{ 117, 130,  243,  270 },	/* MCS 18 */
78 	{ 156, 173,  324,  360 },	/* MCS 19 */
79 	{ 234, 260,  486,  540 },	/* MCS 20 */
80 	{ 312, 347,  648,  720 },	/* MCS 21 */
81 	{ 351, 390,  729,  810 },	/* MCS 22 */
82 	{ 390, 433,  810,  900 },	/* MCS 23 */
83 	{  52,  58,  108,  120 },	/* MCS 24 */
84 	{ 104, 116,  216,  240 },	/* MCS 25 */
85 	{ 156, 173,  324,  360 },	/* MCS 26 */
86 	{ 208, 231,  432,  480 },	/* MCS 27 */
87 	{ 312, 347,  648,  720 },	/* MCS 28 */
88 	{ 416, 462,  864,  960 },	/* MCS 29 */
89 	{ 468, 520,  972, 1080 },	/* MCS 30 */
90 	{ 520, 578, 1080, 1200 },	/* MCS 31 */
91 	{   0,   0,   12,   13 },	/* MCS 32 */
92 	{  78,  87,  162,  180 },	/* MCS 33 */
93 	{ 104, 116,  216,  240 },	/* MCS 34 */
94 	{ 130, 144,  270,  300 },	/* MCS 35 */
95 	{ 117, 130,  243,  270 },	/* MCS 36 */
96 	{ 156, 173,  324,  360 },	/* MCS 37 */
97 	{ 195, 217,  405,  450 },	/* MCS 38 */
98 	{ 104, 116,  216,  240 },	/* MCS 39 */
99 	{ 130, 144,  270,  300 },	/* MCS 40 */
100 	{ 130, 144,  270,  300 },	/* MCS 41 */
101 	{ 156, 173,  324,  360 },	/* MCS 42 */
102 	{ 182, 202,  378,  420 },	/* MCS 43 */
103 	{ 182, 202,  378,  420 },	/* MCS 44 */
104 	{ 208, 231,  432,  480 },	/* MCS 45 */
105 	{ 156, 173,  324,  360 },	/* MCS 46 */
106 	{ 195, 217,  405,  450 },	/* MCS 47 */
107 	{ 195, 217,  405,  450 },	/* MCS 48 */
108 	{ 234, 260,  486,  540 },	/* MCS 49 */
109 	{ 273, 303,  567,  630 },	/* MCS 50 */
110 	{ 273, 303,  567,  630 },	/* MCS 51 */
111 	{ 312, 347,  648,  720 },	/* MCS 52 */
112 	{ 130, 144,  270,  300 },	/* MCS 53 */
113 	{ 156, 173,  324,  360 },	/* MCS 54 */
114 	{ 182, 202,  378,  420 },	/* MCS 55 */
115 	{ 156, 173,  324,  360 },	/* MCS 56 */
116 	{ 182, 202,  378,  420 },	/* MCS 57 */
117 	{ 208, 231,  432,  480 },	/* MCS 58 */
118 	{ 234, 260,  486,  540 },	/* MCS 59 */
119 	{ 208, 231,  432,  480 },	/* MCS 60 */
120 	{ 234, 260,  486,  540 },	/* MCS 61 */
121 	{ 260, 289,  540,  600 },	/* MCS 62 */
122 	{ 260, 289,  540,  600 },	/* MCS 63 */
123 	{ 286, 318,  594,  660 },	/* MCS 64 */
124 	{ 195, 217,  405,  450 },	/* MCS 65 */
125 	{ 234, 260,  486,  540 },	/* MCS 66 */
126 	{ 273, 303,  567,  630 },	/* MCS 67 */
127 	{ 234, 260,  486,  540 },	/* MCS 68 */
128 	{ 273, 303,  567,  630 },	/* MCS 69 */
129 	{ 312, 347,  648,  720 },	/* MCS 70 */
130 	{ 351, 390,  729,  810 },	/* MCS 71 */
131 	{ 312, 347,  648,  720 },	/* MCS 72 */
132 	{ 351, 390,  729,  810 },	/* MCS 73 */
133 	{ 390, 433,  810,  900 },	/* MCS 74 */
134 	{ 390, 433,  810,  900 },	/* MCS 75 */
135 	{ 429, 477,  891,  990 },	/* MCS 76 */
136 };
137 
138 #ifdef IEEE80211_AMPDU_AGE
139 static	int ieee80211_ampdu_age = -1;	/* threshold for ampdu reorder q (ms) */
140 SYSCTL_PROC(_net_wlan, OID_AUTO, ampdu_age, CTLTYPE_INT | CTLFLAG_RW,
141 	&ieee80211_ampdu_age, 0, ieee80211_sysctl_msecs_ticks, "I",
142 	"AMPDU max reorder age (ms)");
143 #endif
144 
145 static	int ieee80211_recv_bar_ena = 1;
146 SYSCTL_INT(_net_wlan, OID_AUTO, recv_bar, CTLFLAG_RW, &ieee80211_recv_bar_ena,
147 	    0, "BAR frame processing (ena/dis)");
148 
149 static	int ieee80211_addba_timeout = -1;/* timeout for ADDBA response */
150 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_timeout, CTLTYPE_INT | CTLFLAG_RW,
151 	&ieee80211_addba_timeout, 0, ieee80211_sysctl_msecs_ticks, "I",
152 	"ADDBA request timeout (ms)");
153 static	int ieee80211_addba_backoff = -1;/* backoff after max ADDBA requests */
154 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_backoff, CTLTYPE_INT | CTLFLAG_RW,
155 	&ieee80211_addba_backoff, 0, ieee80211_sysctl_msecs_ticks, "I",
156 	"ADDBA request backoff (ms)");
157 static	int ieee80211_addba_maxtries = 3;/* max ADDBA requests before backoff */
158 SYSCTL_INT(_net_wlan, OID_AUTO, addba_maxtries, CTLFLAG_RW,
159 	&ieee80211_addba_maxtries, 0, "max ADDBA requests sent before backoff");
160 
161 static	int ieee80211_bar_timeout = -1;	/* timeout waiting for BAR response */
162 static	int ieee80211_bar_maxtries = 50;/* max BAR requests before DELBA */
163 
164 static	ieee80211_recv_action_func ht_recv_action_ba_addba_request;
165 static	ieee80211_recv_action_func ht_recv_action_ba_addba_response;
166 static	ieee80211_recv_action_func ht_recv_action_ba_delba;
167 static	ieee80211_recv_action_func ht_recv_action_ht_mimopwrsave;
168 static	ieee80211_recv_action_func ht_recv_action_ht_txchwidth;
169 
170 static	ieee80211_send_action_func ht_send_action_ba_addba;
171 static	ieee80211_send_action_func ht_send_action_ba_delba;
172 static	ieee80211_send_action_func ht_send_action_ht_txchwidth;
173 
174 static void
175 ieee80211_ht_init(void)
176 {
177 	/*
178 	 * Setup HT parameters that depends on the clock frequency.
179 	 */
180 #ifdef IEEE80211_AMPDU_AGE
181 	ieee80211_ampdu_age = msecs_to_ticks(500);
182 #endif
183 	ieee80211_addba_timeout = msecs_to_ticks(250);
184 	ieee80211_addba_backoff = msecs_to_ticks(10*1000);
185 	ieee80211_bar_timeout = msecs_to_ticks(250);
186 	/*
187 	 * Register action frame handlers.
188 	 */
189 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
190 	    IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_recv_action_ba_addba_request);
191 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
192 	    IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_recv_action_ba_addba_response);
193 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
194 	    IEEE80211_ACTION_BA_DELBA, ht_recv_action_ba_delba);
195 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT,
196 	    IEEE80211_ACTION_HT_MIMOPWRSAVE, ht_recv_action_ht_mimopwrsave);
197 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT,
198 	    IEEE80211_ACTION_HT_TXCHWIDTH, ht_recv_action_ht_txchwidth);
199 
200 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
201 	    IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_send_action_ba_addba);
202 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
203 	    IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_send_action_ba_addba);
204 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
205 	    IEEE80211_ACTION_BA_DELBA, ht_send_action_ba_delba);
206 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_HT,
207 	    IEEE80211_ACTION_HT_TXCHWIDTH, ht_send_action_ht_txchwidth);
208 }
209 SYSINIT(wlan_ht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_ht_init, NULL);
210 
211 static int ieee80211_ampdu_enable(struct ieee80211_node *ni,
212 	struct ieee80211_tx_ampdu *tap);
213 static int ieee80211_addba_request(struct ieee80211_node *ni,
214 	struct ieee80211_tx_ampdu *tap,
215 	int dialogtoken, int baparamset, int batimeout);
216 static int ieee80211_addba_response(struct ieee80211_node *ni,
217 	struct ieee80211_tx_ampdu *tap,
218 	int code, int baparamset, int batimeout);
219 static void ieee80211_addba_stop(struct ieee80211_node *ni,
220 	struct ieee80211_tx_ampdu *tap);
221 static void null_addba_response_timeout(struct ieee80211_node *ni,
222 	struct ieee80211_tx_ampdu *tap);
223 
224 static void ieee80211_bar_response(struct ieee80211_node *ni,
225 	struct ieee80211_tx_ampdu *tap, int status);
226 static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap);
227 static void bar_stop_timer(struct ieee80211_tx_ampdu *tap);
228 static int ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *,
229 	int baparamset, int batimeout, int baseqctl);
230 static void ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *);
231 
232 void
233 ieee80211_ht_attach(struct ieee80211com *ic)
234 {
235 	/* setup default aggregation policy */
236 	ic->ic_recv_action = ieee80211_recv_action;
237 	ic->ic_send_action = ieee80211_send_action;
238 	ic->ic_ampdu_enable = ieee80211_ampdu_enable;
239 	ic->ic_addba_request = ieee80211_addba_request;
240 	ic->ic_addba_response = ieee80211_addba_response;
241 	ic->ic_addba_response_timeout = null_addba_response_timeout;
242 	ic->ic_addba_stop = ieee80211_addba_stop;
243 	ic->ic_bar_response = ieee80211_bar_response;
244 	ic->ic_ampdu_rx_start = ampdu_rx_start;
245 	ic->ic_ampdu_rx_stop = ampdu_rx_stop;
246 
247 	ic->ic_htprotmode = IEEE80211_PROT_RTSCTS;
248 	ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE;
249 }
250 
251 void
252 ieee80211_ht_detach(struct ieee80211com *ic)
253 {
254 }
255 
256 void
257 ieee80211_ht_vattach(struct ieee80211vap *vap)
258 {
259 
260 	/* driver can override defaults */
261 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_8K;
262 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_NA;
263 	vap->iv_ampdu_limit = vap->iv_ampdu_rxmax;
264 	vap->iv_amsdu_limit = vap->iv_htcaps & IEEE80211_HTCAP_MAXAMSDU;
265 	/* tx aggregation traffic thresholds */
266 	vap->iv_ampdu_mintraffic[WME_AC_BK] = 128;
267 	vap->iv_ampdu_mintraffic[WME_AC_BE] = 64;
268 	vap->iv_ampdu_mintraffic[WME_AC_VO] = 32;
269 	vap->iv_ampdu_mintraffic[WME_AC_VI] = 32;
270 
271 	if (vap->iv_htcaps & IEEE80211_HTC_HT) {
272 		/*
273 		 * Device is HT capable; enable all HT-related
274 		 * facilities by default.
275 		 * XXX these choices may be too aggressive.
276 		 */
277 		vap->iv_flags_ht |= IEEE80211_FHT_HT
278 				 |  IEEE80211_FHT_HTCOMPAT
279 				 ;
280 		if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI20)
281 			vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20;
282 		/* XXX infer from channel list? */
283 		if (vap->iv_htcaps & IEEE80211_HTCAP_CHWIDTH40) {
284 			vap->iv_flags_ht |= IEEE80211_FHT_USEHT40;
285 			if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI40)
286 				vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40;
287 		}
288 		/* enable RIFS if capable */
289 		if (vap->iv_htcaps & IEEE80211_HTC_RIFS)
290 			vap->iv_flags_ht |= IEEE80211_FHT_RIFS;
291 
292 		/* NB: A-MPDU and A-MSDU rx are mandated, these are tx only */
293 		vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX;
294 		if (vap->iv_htcaps & IEEE80211_HTC_AMPDU)
295 			vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX;
296 		vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX;
297 		if (vap->iv_htcaps & IEEE80211_HTC_AMSDU)
298 			vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX;
299 	}
300 	/* NB: disable default legacy WDS, too many issues right now */
301 	if (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)
302 		vap->iv_flags_ht &= ~IEEE80211_FHT_HT;
303 }
304 
305 void
306 ieee80211_ht_vdetach(struct ieee80211vap *vap)
307 {
308 }
309 
310 static int
311 ht_getrate(struct ieee80211com *ic, int index, enum ieee80211_phymode mode,
312     int ratetype)
313 {
314 	int mword, rate;
315 
316 	mword = ieee80211_rate2media(ic, index | IEEE80211_RATE_MCS, mode);
317 	if (IFM_SUBTYPE(mword) != IFM_IEEE80211_MCS)
318 		return (0);
319 	switch (ratetype) {
320 	case 0:
321 		rate = ieee80211_htrates[index].ht20_rate_800ns;
322 		break;
323 	case 1:
324 		rate = ieee80211_htrates[index].ht20_rate_400ns;
325 		break;
326 	case 2:
327 		rate = ieee80211_htrates[index].ht40_rate_800ns;
328 		break;
329 	default:
330 		rate = ieee80211_htrates[index].ht40_rate_400ns;
331 		break;
332 	}
333 	return (rate);
334 }
335 
336 static struct printranges {
337 	int	minmcs;
338 	int	maxmcs;
339 	int	txstream;
340 	int	ratetype;
341 	int	htcapflags;
342 } ranges[] = {
343 	{  0,  7, 1, 0, 0 },
344 	{  8, 15, 2, 0, 0 },
345 	{ 16, 23, 3, 0, 0 },
346 	{ 24, 31, 4, 0, 0 },
347 	{ 32,  0, 1, 2, IEEE80211_HTC_TXMCS32 },
348 	{ 33, 38, 2, 0, IEEE80211_HTC_TXUNEQUAL },
349 	{ 39, 52, 3, 0, IEEE80211_HTC_TXUNEQUAL },
350 	{ 53, 76, 4, 0, IEEE80211_HTC_TXUNEQUAL },
351 	{  0,  0, 0, 0, 0 },
352 };
353 
354 static void
355 ht_rateprint(struct ieee80211com *ic, enum ieee80211_phymode mode, int ratetype)
356 {
357 	int minrate, maxrate;
358 	struct printranges *range;
359 
360 	for (range = ranges; range->txstream != 0; range++) {
361 		if (ic->ic_txstream < range->txstream)
362 			continue;
363 		if (range->htcapflags &&
364 		    (ic->ic_htcaps & range->htcapflags) == 0)
365 			continue;
366 		if (ratetype < range->ratetype)
367 			continue;
368 		minrate = ht_getrate(ic, range->minmcs, mode, ratetype);
369 		maxrate = ht_getrate(ic, range->maxmcs, mode, ratetype);
370 		if (range->maxmcs) {
371 			ic_printf(ic, "MCS %d-%d: %d%sMbps - %d%sMbps\n",
372 			    range->minmcs, range->maxmcs,
373 			    minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""),
374 			    maxrate/2, ((maxrate & 0x1) != 0 ? ".5" : ""));
375 		} else {
376 			ic_printf(ic, "MCS %d: %d%sMbps\n", range->minmcs,
377 			    minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""));
378 		}
379 	}
380 }
381 
382 static void
383 ht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode)
384 {
385 	const char *modestr = ieee80211_phymode_name[mode];
386 
387 	ic_printf(ic, "%s MCS 20MHz\n", modestr);
388 	ht_rateprint(ic, mode, 0);
389 	if (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) {
390 		ic_printf(ic, "%s MCS 20MHz SGI\n", modestr);
391 		ht_rateprint(ic, mode, 1);
392 	}
393 	if (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) {
394 		ic_printf(ic, "%s MCS 40MHz:\n", modestr);
395 		ht_rateprint(ic, mode, 2);
396 	}
397 	if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
398 	    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) {
399 		ic_printf(ic, "%s MCS 40MHz SGI:\n", modestr);
400 		ht_rateprint(ic, mode, 3);
401 	}
402 }
403 
404 void
405 ieee80211_ht_announce(struct ieee80211com *ic)
406 {
407 
408 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
409 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG))
410 		ic_printf(ic, "%dT%dR\n", ic->ic_txstream, ic->ic_rxstream);
411 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA))
412 		ht_announce(ic, IEEE80211_MODE_11NA);
413 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NG))
414 		ht_announce(ic, IEEE80211_MODE_11NG);
415 }
416 
417 static struct ieee80211_htrateset htrateset;
418 
419 const struct ieee80211_htrateset *
420 ieee80211_get_suphtrates(struct ieee80211com *ic,
421     const struct ieee80211_channel *c)
422 {
423 #define	ADDRATE(x)	do {						\
424 	htrateset.rs_rates[htrateset.rs_nrates] = x;			\
425 	htrateset.rs_nrates++;						\
426 } while (0)
427 	int i;
428 
429 	memset(&htrateset, 0, sizeof(struct ieee80211_htrateset));
430 	for (i = 0; i < ic->ic_txstream * 8; i++)
431 		ADDRATE(i);
432 	if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
433 	    (ic->ic_htcaps & IEEE80211_HTC_TXMCS32))
434 		ADDRATE(32);
435 	if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) {
436 		if (ic->ic_txstream >= 2) {
437 			 for (i = 33; i <= 38; i++)
438 				ADDRATE(i);
439 		}
440 		if (ic->ic_txstream >= 3) {
441 			for (i = 39; i <= 52; i++)
442 				ADDRATE(i);
443 		}
444 		if (ic->ic_txstream == 4) {
445 			for (i = 53; i <= 76; i++)
446 				ADDRATE(i);
447 		}
448 	}
449 	return &htrateset;
450 #undef	ADDRATE
451 }
452 
453 /*
454  * Receive processing.
455  */
456 
457 /*
458  * Decap the encapsulated A-MSDU frames and dispatch all but
459  * the last for delivery.  The last frame is returned for
460  * delivery via the normal path.
461  */
462 struct mbuf *
463 ieee80211_decap_amsdu(struct ieee80211_node *ni, struct mbuf *m)
464 {
465 	struct ieee80211vap *vap = ni->ni_vap;
466 	int framelen;
467 	struct mbuf *n;
468 
469 	/* discard 802.3 header inserted by ieee80211_decap */
470 	m_adj(m, sizeof(struct ether_header));
471 
472 	vap->iv_stats.is_amsdu_decap++;
473 
474 	for (;;) {
475 		/*
476 		 * Decap the first frame, bust it apart from the
477 		 * remainder and deliver.  We leave the last frame
478 		 * delivery to the caller (for consistency with other
479 		 * code paths, could also do it here).
480 		 */
481 		m = ieee80211_decap1(m, &framelen);
482 		if (m == NULL) {
483 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
484 			    ni->ni_macaddr, "a-msdu", "%s", "decap failed");
485 			vap->iv_stats.is_amsdu_tooshort++;
486 			return NULL;
487 		}
488 		if (m->m_pkthdr.len == framelen)
489 			break;
490 		n = m_split(m, framelen, M_NOWAIT);
491 		if (n == NULL) {
492 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
493 			    ni->ni_macaddr, "a-msdu",
494 			    "%s", "unable to split encapsulated frames");
495 			vap->iv_stats.is_amsdu_split++;
496 			m_freem(m);			/* NB: must reclaim */
497 			return NULL;
498 		}
499 		vap->iv_deliver_data(vap, ni, m);
500 
501 		/*
502 		 * Remove frame contents; each intermediate frame
503 		 * is required to be aligned to a 4-byte boundary.
504 		 */
505 		m = n;
506 		m_adj(m, roundup2(framelen, 4) - framelen);	/* padding */
507 	}
508 	return m;				/* last delivered by caller */
509 }
510 
511 /*
512  * Purge all frames in the A-MPDU re-order queue.
513  */
514 static void
515 ampdu_rx_purge(struct ieee80211_rx_ampdu *rap)
516 {
517 	struct mbuf *m;
518 	int i;
519 
520 	for (i = 0; i < rap->rxa_wnd; i++) {
521 		m = rap->rxa_m[i];
522 		if (m != NULL) {
523 			rap->rxa_m[i] = NULL;
524 			rap->rxa_qbytes -= m->m_pkthdr.len;
525 			m_freem(m);
526 			if (--rap->rxa_qframes == 0)
527 				break;
528 		}
529 	}
530 	KASSERT(rap->rxa_qbytes == 0 && rap->rxa_qframes == 0,
531 	    ("lost %u data, %u frames on ampdu rx q",
532 	    rap->rxa_qbytes, rap->rxa_qframes));
533 }
534 
535 /*
536  * Start A-MPDU rx/re-order processing for the specified TID.
537  */
538 static int
539 ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
540 	int baparamset, int batimeout, int baseqctl)
541 {
542 	int bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
543 
544 	if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) {
545 		/*
546 		 * AMPDU previously setup and not terminated with a DELBA,
547 		 * flush the reorder q's in case anything remains.
548 		 */
549 		ampdu_rx_purge(rap);
550 	}
551 	memset(rap, 0, sizeof(*rap));
552 	rap->rxa_wnd = (bufsiz == 0) ?
553 	    IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
554 	rap->rxa_start = MS(baseqctl, IEEE80211_BASEQ_START);
555 	rap->rxa_flags |=  IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND;
556 
557 	return 0;
558 }
559 
560 /*
561  * Public function; manually setup the RX ampdu state.
562  */
563 int
564 ieee80211_ampdu_rx_start_ext(struct ieee80211_node *ni, int tid, int seq, int baw)
565 {
566 	struct ieee80211_rx_ampdu *rap;
567 
568 	/* XXX TODO: sanity check tid, seq, baw */
569 
570 	rap = &ni->ni_rx_ampdu[tid];
571 
572 	if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) {
573 		/*
574 		 * AMPDU previously setup and not terminated with a DELBA,
575 		 * flush the reorder q's in case anything remains.
576 		 */
577 		ampdu_rx_purge(rap);
578 	}
579 
580 	memset(rap, 0, sizeof(*rap));
581 	rap->rxa_wnd = (baw== 0) ?
582 	    IEEE80211_AGGR_BAWMAX : min(baw, IEEE80211_AGGR_BAWMAX);
583 	rap->rxa_start = seq;
584 	rap->rxa_flags |=  IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND;
585 
586 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni,
587 	    "%s: tid=%d, start=%d, wnd=%d, flags=0x%08x\n",
588 	    __func__,
589 	    tid,
590 	    seq,
591 	    rap->rxa_wnd,
592 	    rap->rxa_flags);
593 
594 	return 0;
595 }
596 
597 /*
598  * Stop A-MPDU rx processing for the specified TID.
599  */
600 static void
601 ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
602 {
603 
604 	ampdu_rx_purge(rap);
605 	rap->rxa_flags &= ~(IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND);
606 }
607 
608 /*
609  * Dispatch a frame from the A-MPDU reorder queue.  The
610  * frame is fed back into ieee80211_input marked with an
611  * M_AMPDU_MPDU flag so it doesn't come back to us (it also
612  * permits ieee80211_input to optimize re-processing).
613  */
614 static __inline void
615 ampdu_dispatch(struct ieee80211_node *ni, struct mbuf *m)
616 {
617 	m->m_flags |= M_AMPDU_MPDU;	/* bypass normal processing */
618 	/* NB: rssi and noise are ignored w/ M_AMPDU_MPDU set */
619 	(void) ieee80211_input(ni, m, 0, 0);
620 }
621 
622 /*
623  * Dispatch as many frames as possible from the re-order queue.
624  * Frames will always be "at the front"; we process all frames
625  * up to the first empty slot in the window.  On completion we
626  * cleanup state if there are still pending frames in the current
627  * BA window.  We assume the frame at slot 0 is already handled
628  * by the caller; we always start at slot 1.
629  */
630 static void
631 ampdu_rx_dispatch(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni)
632 {
633 	struct ieee80211vap *vap = ni->ni_vap;
634 	struct mbuf *m;
635 	int i;
636 
637 	/* flush run of frames */
638 	for (i = 1; i < rap->rxa_wnd; i++) {
639 		m = rap->rxa_m[i];
640 		if (m == NULL)
641 			break;
642 		rap->rxa_m[i] = NULL;
643 		rap->rxa_qbytes -= m->m_pkthdr.len;
644 		rap->rxa_qframes--;
645 
646 		ampdu_dispatch(ni, m);
647 	}
648 	/*
649 	 * If frames remain, copy the mbuf pointers down so
650 	 * they correspond to the offsets in the new window.
651 	 */
652 	if (rap->rxa_qframes != 0) {
653 		int n = rap->rxa_qframes, j;
654 		for (j = i+1; j < rap->rxa_wnd; j++) {
655 			if (rap->rxa_m[j] != NULL) {
656 				rap->rxa_m[j-i] = rap->rxa_m[j];
657 				rap->rxa_m[j] = NULL;
658 				if (--n == 0)
659 					break;
660 			}
661 		}
662 		KASSERT(n == 0, ("lost %d frames", n));
663 		vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes;
664 	}
665 	/*
666 	 * Adjust the start of the BA window to
667 	 * reflect the frames just dispatched.
668 	 */
669 	rap->rxa_start = IEEE80211_SEQ_ADD(rap->rxa_start, i);
670 	vap->iv_stats.is_ampdu_rx_oor += i;
671 }
672 
673 #ifdef IEEE80211_AMPDU_AGE
674 /*
675  * Dispatch all frames in the A-MPDU re-order queue.
676  */
677 static void
678 ampdu_rx_flush(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
679 {
680 	struct ieee80211vap *vap = ni->ni_vap;
681 	struct mbuf *m;
682 	int i;
683 
684 	for (i = 0; i < rap->rxa_wnd; i++) {
685 		m = rap->rxa_m[i];
686 		if (m == NULL)
687 			continue;
688 		rap->rxa_m[i] = NULL;
689 		rap->rxa_qbytes -= m->m_pkthdr.len;
690 		rap->rxa_qframes--;
691 		vap->iv_stats.is_ampdu_rx_oor++;
692 
693 		ampdu_dispatch(ni, m);
694 		if (rap->rxa_qframes == 0)
695 			break;
696 	}
697 }
698 #endif /* IEEE80211_AMPDU_AGE */
699 
700 /*
701  * Dispatch all frames in the A-MPDU re-order queue
702  * preceding the specified sequence number.  This logic
703  * handles window moves due to a received MSDU or BAR.
704  */
705 static void
706 ampdu_rx_flush_upto(struct ieee80211_node *ni,
707 	struct ieee80211_rx_ampdu *rap, ieee80211_seq winstart)
708 {
709 	struct ieee80211vap *vap = ni->ni_vap;
710 	struct mbuf *m;
711 	ieee80211_seq seqno;
712 	int i;
713 
714 	/*
715 	 * Flush any complete MSDU's with a sequence number lower
716 	 * than winstart.  Gaps may exist.  Note that we may actually
717 	 * dispatch frames past winstart if a run continues; this is
718 	 * an optimization that avoids having to do a separate pass
719 	 * to dispatch frames after moving the BA window start.
720 	 */
721 	seqno = rap->rxa_start;
722 	for (i = 0; i < rap->rxa_wnd; i++) {
723 		m = rap->rxa_m[i];
724 		if (m != NULL) {
725 			rap->rxa_m[i] = NULL;
726 			rap->rxa_qbytes -= m->m_pkthdr.len;
727 			rap->rxa_qframes--;
728 			vap->iv_stats.is_ampdu_rx_oor++;
729 
730 			ampdu_dispatch(ni, m);
731 		} else {
732 			if (!IEEE80211_SEQ_BA_BEFORE(seqno, winstart))
733 				break;
734 		}
735 		seqno = IEEE80211_SEQ_INC(seqno);
736 	}
737 	/*
738 	 * If frames remain, copy the mbuf pointers down so
739 	 * they correspond to the offsets in the new window.
740 	 */
741 	if (rap->rxa_qframes != 0) {
742 		int n = rap->rxa_qframes, j;
743 
744 		/* NB: this loop assumes i > 0 and/or rxa_m[0] is NULL */
745 		KASSERT(rap->rxa_m[0] == NULL,
746 		    ("%s: BA window slot 0 occupied", __func__));
747 		for (j = i+1; j < rap->rxa_wnd; j++) {
748 			if (rap->rxa_m[j] != NULL) {
749 				rap->rxa_m[j-i] = rap->rxa_m[j];
750 				rap->rxa_m[j] = NULL;
751 				if (--n == 0)
752 					break;
753 			}
754 		}
755 		KASSERT(n == 0, ("%s: lost %d frames, qframes %d off %d "
756 		    "BA win <%d:%d> winstart %d",
757 		    __func__, n, rap->rxa_qframes, i, rap->rxa_start,
758 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
759 		    winstart));
760 		vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes;
761 	}
762 	/*
763 	 * Move the start of the BA window; we use the
764 	 * sequence number of the last MSDU that was
765 	 * passed up the stack+1 or winstart if stopped on
766 	 * a gap in the reorder buffer.
767 	 */
768 	rap->rxa_start = seqno;
769 }
770 
771 /*
772  * Process a received QoS data frame for an HT station.  Handle
773  * A-MPDU reordering: if this frame is received out of order
774  * and falls within the BA window hold onto it.  Otherwise if
775  * this frame completes a run, flush any pending frames.  We
776  * return 1 if the frame is consumed.  A 0 is returned if
777  * the frame should be processed normally by the caller.
778  */
779 int
780 ieee80211_ampdu_reorder(struct ieee80211_node *ni, struct mbuf *m)
781 {
782 #define	IEEE80211_FC0_QOSDATA \
783 	(IEEE80211_FC0_TYPE_DATA|IEEE80211_FC0_SUBTYPE_QOS|IEEE80211_FC0_VERSION_0)
784 #define	PROCESS		0	/* caller should process frame */
785 #define	CONSUMED	1	/* frame consumed, caller does nothing */
786 	struct ieee80211vap *vap = ni->ni_vap;
787 	struct ieee80211_qosframe *wh;
788 	struct ieee80211_rx_ampdu *rap;
789 	ieee80211_seq rxseq;
790 	uint8_t tid;
791 	int off;
792 
793 	KASSERT((m->m_flags & (M_AMPDU | M_AMPDU_MPDU)) == M_AMPDU,
794 	    ("!a-mpdu or already re-ordered, flags 0x%x", m->m_flags));
795 	KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta"));
796 
797 	/* NB: m_len known to be sufficient */
798 	wh = mtod(m, struct ieee80211_qosframe *);
799 	if (wh->i_fc[0] != IEEE80211_FC0_QOSDATA) {
800 		/*
801 		 * Not QoS data, shouldn't get here but just
802 		 * return it to the caller for processing.
803 		 */
804 		return PROCESS;
805 	}
806 	if (IEEE80211_IS_DSTODS(wh))
807 		tid = ((struct ieee80211_qosframe_addr4 *)wh)->i_qos[0];
808 	else
809 		tid = wh->i_qos[0];
810 	tid &= IEEE80211_QOS_TID;
811 	rap = &ni->ni_rx_ampdu[tid];
812 	if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
813 		/*
814 		 * No ADDBA request yet, don't touch.
815 		 */
816 		return PROCESS;
817 	}
818 	rxseq = le16toh(*(uint16_t *)wh->i_seq);
819 	if ((rxseq & IEEE80211_SEQ_FRAG_MASK) != 0) {
820 		/*
821 		 * Fragments are not allowed; toss.
822 		 */
823 		IEEE80211_DISCARD_MAC(vap,
824 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
825 		    "A-MPDU", "fragment, rxseq 0x%x tid %u%s", rxseq, tid,
826 		    wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
827 		vap->iv_stats.is_ampdu_rx_drop++;
828 		IEEE80211_NODE_STAT(ni, rx_drop);
829 		m_freem(m);
830 		return CONSUMED;
831 	}
832 	rxseq >>= IEEE80211_SEQ_SEQ_SHIFT;
833 	rap->rxa_nframes++;
834 again:
835 	if (rxseq == rap->rxa_start) {
836 		/*
837 		 * First frame in window.
838 		 */
839 		if (rap->rxa_qframes != 0) {
840 			/*
841 			 * Dispatch as many packets as we can.
842 			 */
843 			KASSERT(rap->rxa_m[0] == NULL, ("unexpected dup"));
844 			ampdu_dispatch(ni, m);
845 			ampdu_rx_dispatch(rap, ni);
846 			return CONSUMED;
847 		} else {
848 			/*
849 			 * In order; advance window and notify
850 			 * caller to dispatch directly.
851 			 */
852 			rap->rxa_start = IEEE80211_SEQ_INC(rxseq);
853 			return PROCESS;
854 		}
855 	}
856 	/*
857 	 * Frame is out of order; store if in the BA window.
858 	 */
859 	/* calculate offset in BA window */
860 	off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start);
861 	if (off < rap->rxa_wnd) {
862 		/*
863 		 * Common case (hopefully): in the BA window.
864 		 * Sec 9.10.7.6.2 a) (p.137)
865 		 */
866 #ifdef IEEE80211_AMPDU_AGE
867 		/*
868 		 * Check for frames sitting too long in the reorder queue.
869 		 * This should only ever happen if frames are not delivered
870 		 * without the sender otherwise notifying us (e.g. with a
871 		 * BAR to move the window).  Typically this happens because
872 		 * of vendor bugs that cause the sequence number to jump.
873 		 * When this happens we get a gap in the reorder queue that
874 		 * leaves frame sitting on the queue until they get pushed
875 		 * out due to window moves.  When the vendor does not send
876 		 * BAR this move only happens due to explicit packet sends
877 		 *
878 		 * NB: we only track the time of the oldest frame in the
879 		 * reorder q; this means that if we flush we might push
880 		 * frames that still "new"; if this happens then subsequent
881 		 * frames will result in BA window moves which cost something
882 		 * but is still better than a big throughput dip.
883 		 */
884 		if (rap->rxa_qframes != 0) {
885 			/* XXX honor batimeout? */
886 			if (ticks - rap->rxa_age > ieee80211_ampdu_age) {
887 				/*
888 				 * Too long since we received the first
889 				 * frame; flush the reorder buffer.
890 				 */
891 				if (rap->rxa_qframes != 0) {
892 					vap->iv_stats.is_ampdu_rx_age +=
893 					    rap->rxa_qframes;
894 					ampdu_rx_flush(ni, rap);
895 				}
896 				rap->rxa_start = IEEE80211_SEQ_INC(rxseq);
897 				return PROCESS;
898 			}
899 		} else {
900 			/*
901 			 * First frame, start aging timer.
902 			 */
903 			rap->rxa_age = ticks;
904 		}
905 #endif /* IEEE80211_AMPDU_AGE */
906 		/* save packet */
907 		if (rap->rxa_m[off] == NULL) {
908 			rap->rxa_m[off] = m;
909 			rap->rxa_qframes++;
910 			rap->rxa_qbytes += m->m_pkthdr.len;
911 			vap->iv_stats.is_ampdu_rx_reorder++;
912 		} else {
913 			IEEE80211_DISCARD_MAC(vap,
914 			    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
915 			    ni->ni_macaddr, "a-mpdu duplicate",
916 			    "seqno %u tid %u BA win <%u:%u>",
917 			    rxseq, tid, rap->rxa_start,
918 			    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1));
919 			vap->iv_stats.is_rx_dup++;
920 			IEEE80211_NODE_STAT(ni, rx_dup);
921 			m_freem(m);
922 		}
923 		return CONSUMED;
924 	}
925 	if (off < IEEE80211_SEQ_BA_RANGE) {
926 		/*
927 		 * Outside the BA window, but within range;
928 		 * flush the reorder q and move the window.
929 		 * Sec 9.10.7.6.2 b) (p.138)
930 		 */
931 		IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
932 		    "move BA win <%u:%u> (%u frames) rxseq %u tid %u",
933 		    rap->rxa_start,
934 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
935 		    rap->rxa_qframes, rxseq, tid);
936 		vap->iv_stats.is_ampdu_rx_move++;
937 
938 		/*
939 		 * The spec says to flush frames up to but not including:
940 		 * 	WinStart_B = rxseq - rap->rxa_wnd + 1
941 		 * Then insert the frame or notify the caller to process
942 		 * it immediately.  We can safely do this by just starting
943 		 * over again because we know the frame will now be within
944 		 * the BA window.
945 		 */
946 		/* NB: rxa_wnd known to be >0 */
947 		ampdu_rx_flush_upto(ni, rap,
948 		    IEEE80211_SEQ_SUB(rxseq, rap->rxa_wnd-1));
949 		goto again;
950 	} else {
951 		/*
952 		 * Outside the BA window and out of range; toss.
953 		 * Sec 9.10.7.6.2 c) (p.138)
954 		 */
955 		IEEE80211_DISCARD_MAC(vap,
956 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
957 		    "MPDU", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s",
958 		    rap->rxa_start,
959 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
960 		    rap->rxa_qframes, rxseq, tid,
961 		    wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
962 		vap->iv_stats.is_ampdu_rx_drop++;
963 		IEEE80211_NODE_STAT(ni, rx_drop);
964 		m_freem(m);
965 		return CONSUMED;
966 	}
967 #undef CONSUMED
968 #undef PROCESS
969 #undef IEEE80211_FC0_QOSDATA
970 }
971 
972 /*
973  * Process a BAR ctl frame.  Dispatch all frames up to
974  * the sequence number of the frame.  If this frame is
975  * out of range it's discarded.
976  */
977 void
978 ieee80211_recv_bar(struct ieee80211_node *ni, struct mbuf *m0)
979 {
980 	struct ieee80211vap *vap = ni->ni_vap;
981 	struct ieee80211_frame_bar *wh;
982 	struct ieee80211_rx_ampdu *rap;
983 	ieee80211_seq rxseq;
984 	int tid, off;
985 
986 	if (!ieee80211_recv_bar_ena) {
987 #if 0
988 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_11N,
989 		    ni->ni_macaddr, "BAR", "%s", "processing disabled");
990 #endif
991 		vap->iv_stats.is_ampdu_bar_bad++;
992 		return;
993 	}
994 	wh = mtod(m0, struct ieee80211_frame_bar *);
995 	/* XXX check basic BAR */
996 	tid = MS(le16toh(wh->i_ctl), IEEE80211_BAR_TID);
997 	rap = &ni->ni_rx_ampdu[tid];
998 	if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
999 		/*
1000 		 * No ADDBA request yet, don't touch.
1001 		 */
1002 		IEEE80211_DISCARD_MAC(vap,
1003 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
1004 		    ni->ni_macaddr, "BAR", "no BA stream, tid %u", tid);
1005 		vap->iv_stats.is_ampdu_bar_bad++;
1006 		return;
1007 	}
1008 	vap->iv_stats.is_ampdu_bar_rx++;
1009 	rxseq = le16toh(wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT;
1010 	if (rxseq == rap->rxa_start)
1011 		return;
1012 	/* calculate offset in BA window */
1013 	off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start);
1014 	if (off < IEEE80211_SEQ_BA_RANGE) {
1015 		/*
1016 		 * Flush the reorder q up to rxseq and move the window.
1017 		 * Sec 9.10.7.6.3 a) (p.138)
1018 		 */
1019 		IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
1020 		    "BAR moves BA win <%u:%u> (%u frames) rxseq %u tid %u",
1021 		    rap->rxa_start,
1022 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
1023 		    rap->rxa_qframes, rxseq, tid);
1024 		vap->iv_stats.is_ampdu_bar_move++;
1025 
1026 		ampdu_rx_flush_upto(ni, rap, rxseq);
1027 		if (off >= rap->rxa_wnd) {
1028 			/*
1029 			 * BAR specifies a window start to the right of BA
1030 			 * window; we must move it explicitly since
1031 			 * ampdu_rx_flush_upto will not.
1032 			 */
1033 			rap->rxa_start = rxseq;
1034 		}
1035 	} else {
1036 		/*
1037 		 * Out of range; toss.
1038 		 * Sec 9.10.7.6.3 b) (p.138)
1039 		 */
1040 		IEEE80211_DISCARD_MAC(vap,
1041 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
1042 		    "BAR", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s",
1043 		    rap->rxa_start,
1044 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
1045 		    rap->rxa_qframes, rxseq, tid,
1046 		    wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
1047 		vap->iv_stats.is_ampdu_bar_oow++;
1048 		IEEE80211_NODE_STAT(ni, rx_drop);
1049 	}
1050 }
1051 
1052 /*
1053  * Setup HT-specific state in a node.  Called only
1054  * when HT use is negotiated so we don't do extra
1055  * work for temporary and/or legacy sta's.
1056  */
1057 void
1058 ieee80211_ht_node_init(struct ieee80211_node *ni)
1059 {
1060 	struct ieee80211_tx_ampdu *tap;
1061 	int tid;
1062 
1063 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
1064 	    ni,
1065 	    "%s: called",
1066 	    __func__);
1067 
1068 	if (ni->ni_flags & IEEE80211_NODE_HT) {
1069 		/*
1070 		 * Clean AMPDU state on re-associate.  This handles the case
1071 		 * where a station leaves w/o notifying us and then returns
1072 		 * before node is reaped for inactivity.
1073 		 */
1074 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
1075 		    ni,
1076 		    "%s: calling cleanup",
1077 		    __func__);
1078 		ieee80211_ht_node_cleanup(ni);
1079 	}
1080 	for (tid = 0; tid < WME_NUM_TID; tid++) {
1081 		tap = &ni->ni_tx_ampdu[tid];
1082 		tap->txa_tid = tid;
1083 		tap->txa_ni = ni;
1084 		tap->txa_lastsample = ticks;
1085 		/* NB: further initialization deferred */
1086 	}
1087 	ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU;
1088 }
1089 
1090 /*
1091  * Cleanup HT-specific state in a node.  Called only
1092  * when HT use has been marked.
1093  */
1094 void
1095 ieee80211_ht_node_cleanup(struct ieee80211_node *ni)
1096 {
1097 	struct ieee80211com *ic = ni->ni_ic;
1098 	int i;
1099 
1100 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
1101 	    ni,
1102 	    "%s: called",
1103 	    __func__);
1104 
1105 	KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT node"));
1106 
1107 	/* XXX optimize this */
1108 	for (i = 0; i < WME_NUM_TID; i++) {
1109 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[i];
1110 		if (tap->txa_flags & IEEE80211_AGGR_SETUP)
1111 			ampdu_tx_stop(tap);
1112 	}
1113 	for (i = 0; i < WME_NUM_TID; i++)
1114 		ic->ic_ampdu_rx_stop(ni, &ni->ni_rx_ampdu[i]);
1115 
1116 	ni->ni_htcap = 0;
1117 	ni->ni_flags &= ~IEEE80211_NODE_HT_ALL;
1118 }
1119 
1120 /*
1121  * Age out HT resources for a station.
1122  */
1123 void
1124 ieee80211_ht_node_age(struct ieee80211_node *ni)
1125 {
1126 #ifdef IEEE80211_AMPDU_AGE
1127 	struct ieee80211vap *vap = ni->ni_vap;
1128 	uint8_t tid;
1129 #endif
1130 
1131 	KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta"));
1132 
1133 #ifdef IEEE80211_AMPDU_AGE
1134 	for (tid = 0; tid < WME_NUM_TID; tid++) {
1135 		struct ieee80211_rx_ampdu *rap;
1136 
1137 		rap = &ni->ni_rx_ampdu[tid];
1138 		if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0)
1139 			continue;
1140 		if (rap->rxa_qframes == 0)
1141 			continue;
1142 		/*
1143 		 * Check for frames sitting too long in the reorder queue.
1144 		 * See above for more details on what's happening here.
1145 		 */
1146 		/* XXX honor batimeout? */
1147 		if (ticks - rap->rxa_age > ieee80211_ampdu_age) {
1148 			/*
1149 			 * Too long since we received the first
1150 			 * frame; flush the reorder buffer.
1151 			 */
1152 			vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes;
1153 			ampdu_rx_flush(ni, rap);
1154 		}
1155 	}
1156 #endif /* IEEE80211_AMPDU_AGE */
1157 }
1158 
1159 static struct ieee80211_channel *
1160 findhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int htflags)
1161 {
1162 	return ieee80211_find_channel(ic, c->ic_freq,
1163 	    (c->ic_flags &~ IEEE80211_CHAN_HT) | htflags);
1164 }
1165 
1166 /*
1167  * Adjust a channel to be HT/non-HT according to the vap's configuration.
1168  */
1169 struct ieee80211_channel *
1170 ieee80211_ht_adjust_channel(struct ieee80211com *ic,
1171 	struct ieee80211_channel *chan, int flags)
1172 {
1173 	struct ieee80211_channel *c;
1174 
1175 	if (flags & IEEE80211_FHT_HT) {
1176 		/* promote to HT if possible */
1177 		if (flags & IEEE80211_FHT_USEHT40) {
1178 			if (!IEEE80211_IS_CHAN_HT40(chan)) {
1179 				/* NB: arbitrarily pick ht40+ over ht40- */
1180 				c = findhtchan(ic, chan, IEEE80211_CHAN_HT40U);
1181 				if (c == NULL)
1182 					c = findhtchan(ic, chan,
1183 						IEEE80211_CHAN_HT40D);
1184 				if (c == NULL)
1185 					c = findhtchan(ic, chan,
1186 						IEEE80211_CHAN_HT20);
1187 				if (c != NULL)
1188 					chan = c;
1189 			}
1190 		} else if (!IEEE80211_IS_CHAN_HT20(chan)) {
1191 			c = findhtchan(ic, chan, IEEE80211_CHAN_HT20);
1192 			if (c != NULL)
1193 				chan = c;
1194 		}
1195 	} else if (IEEE80211_IS_CHAN_HT(chan)) {
1196 		/* demote to legacy, HT use is disabled */
1197 		c = ieee80211_find_channel(ic, chan->ic_freq,
1198 		    chan->ic_flags &~ IEEE80211_CHAN_HT);
1199 		if (c != NULL)
1200 			chan = c;
1201 	}
1202 	return chan;
1203 }
1204 
1205 /*
1206  * Setup HT-specific state for a legacy WDS peer.
1207  */
1208 void
1209 ieee80211_ht_wds_init(struct ieee80211_node *ni)
1210 {
1211 	struct ieee80211vap *vap = ni->ni_vap;
1212 	struct ieee80211_tx_ampdu *tap;
1213 	int tid;
1214 
1215 	KASSERT(vap->iv_flags_ht & IEEE80211_FHT_HT, ("no HT requested"));
1216 
1217 	/* XXX check scan cache in case peer has an ap and we have info */
1218 	/*
1219 	 * If setup with a legacy channel; locate an HT channel.
1220 	 * Otherwise if the inherited channel (from a companion
1221 	 * AP) is suitable use it so we use the same location
1222 	 * for the extension channel).
1223 	 */
1224 	ni->ni_chan = ieee80211_ht_adjust_channel(ni->ni_ic,
1225 	    ni->ni_chan, ieee80211_htchanflags(ni->ni_chan));
1226 
1227 	ni->ni_htcap = 0;
1228 	if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)
1229 		ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI20;
1230 	if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
1231 		ni->ni_htcap |= IEEE80211_HTCAP_CHWIDTH40;
1232 		ni->ni_chw = 40;
1233 		if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
1234 			ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_ABOVE;
1235 		else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
1236 			ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_BELOW;
1237 		if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)
1238 			ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI40;
1239 	} else {
1240 		ni->ni_chw = 20;
1241 		ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_NONE;
1242 	}
1243 	ni->ni_htctlchan = ni->ni_chan->ic_ieee;
1244 	if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
1245 		ni->ni_flags |= IEEE80211_NODE_RIFS;
1246 	/* XXX does it make sense to enable SMPS? */
1247 
1248 	ni->ni_htopmode = 0;		/* XXX need protection state */
1249 	ni->ni_htstbc = 0;		/* XXX need info */
1250 
1251 	for (tid = 0; tid < WME_NUM_TID; tid++) {
1252 		tap = &ni->ni_tx_ampdu[tid];
1253 		tap->txa_tid = tid;
1254 		tap->txa_lastsample = ticks;
1255 	}
1256 	/* NB: AMPDU tx/rx governed by IEEE80211_FHT_AMPDU_{TX,RX} */
1257 	ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU;
1258 }
1259 
1260 /*
1261  * Notify hostap vaps of a change in the HTINFO ie.
1262  */
1263 static void
1264 htinfo_notify(struct ieee80211com *ic)
1265 {
1266 	struct ieee80211vap *vap;
1267 	int first = 1;
1268 
1269 	IEEE80211_LOCK_ASSERT(ic);
1270 
1271 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1272 		if (vap->iv_opmode != IEEE80211_M_HOSTAP)
1273 			continue;
1274 		if (vap->iv_state != IEEE80211_S_RUN ||
1275 		    !IEEE80211_IS_CHAN_HT(vap->iv_bss->ni_chan))
1276 			continue;
1277 		if (first) {
1278 			IEEE80211_NOTE(vap,
1279 			    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N,
1280 			    vap->iv_bss,
1281 			    "HT bss occupancy change: %d sta, %d ht, "
1282 			    "%d ht40%s, HT protmode now 0x%x"
1283 			    , ic->ic_sta_assoc
1284 			    , ic->ic_ht_sta_assoc
1285 			    , ic->ic_ht40_sta_assoc
1286 			    , (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) ?
1287 				 ", non-HT sta present" : ""
1288 			    , ic->ic_curhtprotmode);
1289 			first = 0;
1290 		}
1291 		ieee80211_beacon_notify(vap, IEEE80211_BEACON_HTINFO);
1292 	}
1293 }
1294 
1295 /*
1296  * Calculate HT protection mode from current
1297  * state and handle updates.
1298  */
1299 static void
1300 htinfo_update(struct ieee80211com *ic)
1301 {
1302 	uint8_t protmode;
1303 
1304 	if (ic->ic_sta_assoc != ic->ic_ht_sta_assoc) {
1305 		protmode = IEEE80211_HTINFO_OPMODE_MIXED
1306 			 | IEEE80211_HTINFO_NONHT_PRESENT;
1307 	} else if (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) {
1308 		protmode = IEEE80211_HTINFO_OPMODE_PROTOPT
1309 			 | IEEE80211_HTINFO_NONHT_PRESENT;
1310 	} else if (ic->ic_bsschan != IEEE80211_CHAN_ANYC &&
1311 	    IEEE80211_IS_CHAN_HT40(ic->ic_bsschan) &&
1312 	    ic->ic_sta_assoc != ic->ic_ht40_sta_assoc) {
1313 		protmode = IEEE80211_HTINFO_OPMODE_HT20PR;
1314 	} else {
1315 		protmode = IEEE80211_HTINFO_OPMODE_PURE;
1316 	}
1317 	if (protmode != ic->ic_curhtprotmode) {
1318 		ic->ic_curhtprotmode = protmode;
1319 		htinfo_notify(ic);
1320 	}
1321 }
1322 
1323 /*
1324  * Handle an HT station joining a BSS.
1325  */
1326 void
1327 ieee80211_ht_node_join(struct ieee80211_node *ni)
1328 {
1329 	struct ieee80211com *ic = ni->ni_ic;
1330 
1331 	IEEE80211_LOCK_ASSERT(ic);
1332 
1333 	if (ni->ni_flags & IEEE80211_NODE_HT) {
1334 		ic->ic_ht_sta_assoc++;
1335 		if (ni->ni_chw == 40)
1336 			ic->ic_ht40_sta_assoc++;
1337 	}
1338 	htinfo_update(ic);
1339 }
1340 
1341 /*
1342  * Handle an HT station leaving a BSS.
1343  */
1344 void
1345 ieee80211_ht_node_leave(struct ieee80211_node *ni)
1346 {
1347 	struct ieee80211com *ic = ni->ni_ic;
1348 
1349 	IEEE80211_LOCK_ASSERT(ic);
1350 
1351 	if (ni->ni_flags & IEEE80211_NODE_HT) {
1352 		ic->ic_ht_sta_assoc--;
1353 		if (ni->ni_chw == 40)
1354 			ic->ic_ht40_sta_assoc--;
1355 	}
1356 	htinfo_update(ic);
1357 }
1358 
1359 /*
1360  * Public version of htinfo_update; used for processing
1361  * beacon frames from overlapping bss.
1362  *
1363  * Caller can specify either IEEE80211_HTINFO_OPMODE_MIXED
1364  * (on receipt of a beacon that advertises MIXED) or
1365  * IEEE80211_HTINFO_OPMODE_PROTOPT (on receipt of a beacon
1366  * from an overlapping legacy bss).  We treat MIXED with
1367  * a higher precedence than PROTOPT (i.e. we will not change
1368  * change PROTOPT -> MIXED; only MIXED -> PROTOPT).  This
1369  * corresponds to how we handle things in htinfo_update.
1370  */
1371 void
1372 ieee80211_htprot_update(struct ieee80211com *ic, int protmode)
1373 {
1374 #define	OPMODE(x)	SM(x, IEEE80211_HTINFO_OPMODE)
1375 	IEEE80211_LOCK(ic);
1376 
1377 	/* track non-HT station presence */
1378 	KASSERT(protmode & IEEE80211_HTINFO_NONHT_PRESENT,
1379 	    ("protmode 0x%x", protmode));
1380 	ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR;
1381 	ic->ic_lastnonht = ticks;
1382 
1383 	if (protmode != ic->ic_curhtprotmode &&
1384 	    (OPMODE(ic->ic_curhtprotmode) != IEEE80211_HTINFO_OPMODE_MIXED ||
1385 	     OPMODE(protmode) == IEEE80211_HTINFO_OPMODE_PROTOPT)) {
1386 		/* push beacon update */
1387 		ic->ic_curhtprotmode = protmode;
1388 		htinfo_notify(ic);
1389 	}
1390 	IEEE80211_UNLOCK(ic);
1391 #undef OPMODE
1392 }
1393 
1394 /*
1395  * Time out presence of an overlapping bss with non-HT
1396  * stations.  When operating in hostap mode we listen for
1397  * beacons from other stations and if we identify a non-HT
1398  * station is present we update the opmode field of the
1399  * HTINFO ie.  To identify when all non-HT stations are
1400  * gone we time out this condition.
1401  */
1402 void
1403 ieee80211_ht_timeout(struct ieee80211com *ic)
1404 {
1405 	IEEE80211_LOCK_ASSERT(ic);
1406 
1407 	if ((ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) &&
1408 	    time_after(ticks, ic->ic_lastnonht + IEEE80211_NONHT_PRESENT_AGE)) {
1409 #if 0
1410 		IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
1411 		    "%s", "time out non-HT STA present on channel");
1412 #endif
1413 		ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR;
1414 		htinfo_update(ic);
1415 	}
1416 }
1417 
1418 /*
1419  * Process an 802.11n HT capabilities ie.
1420  */
1421 void
1422 ieee80211_parse_htcap(struct ieee80211_node *ni, const uint8_t *ie)
1423 {
1424 	if (ie[0] == IEEE80211_ELEMID_VENDOR) {
1425 		/*
1426 		 * Station used Vendor OUI ie to associate;
1427 		 * mark the node so when we respond we'll use
1428 		 * the Vendor OUI's and not the standard ie's.
1429 		 */
1430 		ni->ni_flags |= IEEE80211_NODE_HTCOMPAT;
1431 		ie += 4;
1432 	} else
1433 		ni->ni_flags &= ~IEEE80211_NODE_HTCOMPAT;
1434 
1435 	ni->ni_htcap = LE_READ_2(ie +
1436 		__offsetof(struct ieee80211_ie_htcap, hc_cap));
1437 	ni->ni_htparam = ie[__offsetof(struct ieee80211_ie_htcap, hc_param)];
1438 }
1439 
1440 static void
1441 htinfo_parse(struct ieee80211_node *ni,
1442 	const struct ieee80211_ie_htinfo *htinfo)
1443 {
1444 	uint16_t w;
1445 
1446 	ni->ni_htctlchan = htinfo->hi_ctrlchannel;
1447 	ni->ni_ht2ndchan = SM(htinfo->hi_byte1, IEEE80211_HTINFO_2NDCHAN);
1448 	w = LE_READ_2(&htinfo->hi_byte2);
1449 	ni->ni_htopmode = SM(w, IEEE80211_HTINFO_OPMODE);
1450 	w = LE_READ_2(&htinfo->hi_byte45);
1451 	ni->ni_htstbc = SM(w, IEEE80211_HTINFO_BASIC_STBCMCS);
1452 }
1453 
1454 /*
1455  * Parse an 802.11n HT info ie and save useful information
1456  * to the node state.  Note this does not effect any state
1457  * changes such as for channel width change.
1458  */
1459 void
1460 ieee80211_parse_htinfo(struct ieee80211_node *ni, const uint8_t *ie)
1461 {
1462 	if (ie[0] == IEEE80211_ELEMID_VENDOR)
1463 		ie += 4;
1464 	htinfo_parse(ni, (const struct ieee80211_ie_htinfo *) ie);
1465 }
1466 
1467 /*
1468  * Handle 11n channel switch.  Use the received HT ie's to
1469  * identify the right channel to use.  If we cannot locate it
1470  * in the channel table then fallback to legacy operation.
1471  * Note that we use this information to identify the node's
1472  * channel only; the caller is responsible for insuring any
1473  * required channel change is done (e.g. in sta mode when
1474  * parsing the contents of a beacon frame).
1475  */
1476 static int
1477 htinfo_update_chw(struct ieee80211_node *ni, int htflags)
1478 {
1479 	struct ieee80211com *ic = ni->ni_ic;
1480 	struct ieee80211_channel *c;
1481 	int chanflags;
1482 	int ret = 0;
1483 
1484 	chanflags = (ni->ni_chan->ic_flags &~ IEEE80211_CHAN_HT) | htflags;
1485 	if (chanflags != ni->ni_chan->ic_flags) {
1486 		/* XXX not right for ht40- */
1487 		c = ieee80211_find_channel(ic, ni->ni_chan->ic_freq, chanflags);
1488 		if (c == NULL && (htflags & IEEE80211_CHAN_HT40)) {
1489 			/*
1490 			 * No HT40 channel entry in our table; fall back
1491 			 * to HT20 operation.  This should not happen.
1492 			 */
1493 			c = findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT20);
1494 #if 0
1495 			IEEE80211_NOTE(ni->ni_vap,
1496 			    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni,
1497 			    "no HT40 channel (freq %u), falling back to HT20",
1498 			    ni->ni_chan->ic_freq);
1499 #endif
1500 			/* XXX stat */
1501 		}
1502 		if (c != NULL && c != ni->ni_chan) {
1503 			IEEE80211_NOTE(ni->ni_vap,
1504 			    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni,
1505 			    "switch station to HT%d channel %u/0x%x",
1506 			    IEEE80211_IS_CHAN_HT40(c) ? 40 : 20,
1507 			    c->ic_freq, c->ic_flags);
1508 			ni->ni_chan = c;
1509 			ret = 1;
1510 		}
1511 		/* NB: caller responsible for forcing any channel change */
1512 	}
1513 	/* update node's tx channel width */
1514 	ni->ni_chw = IEEE80211_IS_CHAN_HT40(ni->ni_chan)? 40 : 20;
1515 	return (ret);
1516 }
1517 
1518 /*
1519  * Update 11n MIMO PS state according to received htcap.
1520  */
1521 static __inline int
1522 htcap_update_mimo_ps(struct ieee80211_node *ni)
1523 {
1524 	uint16_t oflags = ni->ni_flags;
1525 
1526 	switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
1527 	case IEEE80211_HTCAP_SMPS_DYNAMIC:
1528 		ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
1529 		ni->ni_flags |= IEEE80211_NODE_MIMO_RTS;
1530 		break;
1531 	case IEEE80211_HTCAP_SMPS_ENA:
1532 		ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
1533 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
1534 		break;
1535 	case IEEE80211_HTCAP_SMPS_OFF:
1536 	default:		/* disable on rx of reserved value */
1537 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS;
1538 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
1539 		break;
1540 	}
1541 	return (oflags ^ ni->ni_flags);
1542 }
1543 
1544 /*
1545  * Update short GI state according to received htcap
1546  * and local settings.
1547  */
1548 static __inline void
1549 htcap_update_shortgi(struct ieee80211_node *ni)
1550 {
1551 	struct ieee80211vap *vap = ni->ni_vap;
1552 
1553 	ni->ni_flags &= ~(IEEE80211_NODE_SGI20|IEEE80211_NODE_SGI40);
1554 	if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) &&
1555 	    (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20))
1556 		ni->ni_flags |= IEEE80211_NODE_SGI20;
1557 	if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) &&
1558 	    (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40))
1559 		ni->ni_flags |= IEEE80211_NODE_SGI40;
1560 }
1561 
1562 /*
1563  * Parse and update HT-related state extracted from
1564  * the HT cap and info ie's.
1565  */
1566 int
1567 ieee80211_ht_updateparams(struct ieee80211_node *ni,
1568 	const uint8_t *htcapie, const uint8_t *htinfoie)
1569 {
1570 	struct ieee80211vap *vap = ni->ni_vap;
1571 	const struct ieee80211_ie_htinfo *htinfo;
1572 	int htflags;
1573 	int ret = 0;
1574 
1575 	ieee80211_parse_htcap(ni, htcapie);
1576 	if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS)
1577 		htcap_update_mimo_ps(ni);
1578 	htcap_update_shortgi(ni);
1579 
1580 	if (htinfoie[0] == IEEE80211_ELEMID_VENDOR)
1581 		htinfoie += 4;
1582 	htinfo = (const struct ieee80211_ie_htinfo *) htinfoie;
1583 	htinfo_parse(ni, htinfo);
1584 
1585 	htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ?
1586 	    IEEE80211_CHAN_HT20 : 0;
1587 	/* NB: honor operating mode constraint */
1588 	if ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH_2040) &&
1589 	    (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) {
1590 		if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_ABOVE)
1591 			htflags = IEEE80211_CHAN_HT40U;
1592 		else if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_BELOW)
1593 			htflags = IEEE80211_CHAN_HT40D;
1594 	}
1595 	if (htinfo_update_chw(ni, htflags))
1596 		ret = 1;
1597 
1598 	if ((htinfo->hi_byte1 & IEEE80211_HTINFO_RIFSMODE_PERM) &&
1599 	    (vap->iv_flags_ht & IEEE80211_FHT_RIFS))
1600 		ni->ni_flags |= IEEE80211_NODE_RIFS;
1601 	else
1602 		ni->ni_flags &= ~IEEE80211_NODE_RIFS;
1603 
1604 	return (ret);
1605 }
1606 
1607 /*
1608  * Parse and update HT-related state extracted from the HT cap ie
1609  * for a station joining an HT BSS.
1610  */
1611 void
1612 ieee80211_ht_updatehtcap(struct ieee80211_node *ni, const uint8_t *htcapie)
1613 {
1614 	struct ieee80211vap *vap = ni->ni_vap;
1615 	int htflags;
1616 
1617 	ieee80211_parse_htcap(ni, htcapie);
1618 	if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS)
1619 		htcap_update_mimo_ps(ni);
1620 	htcap_update_shortgi(ni);
1621 
1622 	/* NB: honor operating mode constraint */
1623 	/* XXX 40 MHz intolerant */
1624 	htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ?
1625 	    IEEE80211_CHAN_HT20 : 0;
1626 	if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) &&
1627 	    (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) {
1628 		if (IEEE80211_IS_CHAN_HT40U(vap->iv_bss->ni_chan))
1629 			htflags = IEEE80211_CHAN_HT40U;
1630 		else if (IEEE80211_IS_CHAN_HT40D(vap->iv_bss->ni_chan))
1631 			htflags = IEEE80211_CHAN_HT40D;
1632 	}
1633 	(void) htinfo_update_chw(ni, htflags);
1634 }
1635 
1636 /*
1637  * Install received HT rate set by parsing the HT cap ie.
1638  */
1639 int
1640 ieee80211_setup_htrates(struct ieee80211_node *ni, const uint8_t *ie, int flags)
1641 {
1642 	struct ieee80211com *ic = ni->ni_ic;
1643 	struct ieee80211vap *vap = ni->ni_vap;
1644 	const struct ieee80211_ie_htcap *htcap;
1645 	struct ieee80211_htrateset *rs;
1646 	int i, maxequalmcs, maxunequalmcs;
1647 
1648 	maxequalmcs = ic->ic_txstream * 8 - 1;
1649 	if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) {
1650 		if (ic->ic_txstream >= 2)
1651 			maxunequalmcs = 38;
1652 		if (ic->ic_txstream >= 3)
1653 			maxunequalmcs = 52;
1654 		if (ic->ic_txstream >= 4)
1655 			maxunequalmcs = 76;
1656 	} else
1657 		maxunequalmcs = 0;
1658 
1659 	rs = &ni->ni_htrates;
1660 	memset(rs, 0, sizeof(*rs));
1661 	if (ie != NULL) {
1662 		if (ie[0] == IEEE80211_ELEMID_VENDOR)
1663 			ie += 4;
1664 		htcap = (const struct ieee80211_ie_htcap *) ie;
1665 		for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) {
1666 			if (isclr(htcap->hc_mcsset, i))
1667 				continue;
1668 			if (rs->rs_nrates == IEEE80211_HTRATE_MAXSIZE) {
1669 				IEEE80211_NOTE(vap,
1670 				    IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
1671 				    "WARNING, HT rate set too large; only "
1672 				    "using %u rates", IEEE80211_HTRATE_MAXSIZE);
1673 				vap->iv_stats.is_rx_rstoobig++;
1674 				break;
1675 			}
1676 			if (i <= 31 && i > maxequalmcs)
1677 				continue;
1678 			if (i == 32 &&
1679 			    (ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0)
1680 				continue;
1681 			if (i > 32 && i > maxunequalmcs)
1682 				continue;
1683 			rs->rs_rates[rs->rs_nrates++] = i;
1684 		}
1685 	}
1686 	return ieee80211_fix_rate(ni, (struct ieee80211_rateset *) rs, flags);
1687 }
1688 
1689 /*
1690  * Mark rates in a node's HT rate set as basic according
1691  * to the information in the supplied HT info ie.
1692  */
1693 void
1694 ieee80211_setup_basic_htrates(struct ieee80211_node *ni, const uint8_t *ie)
1695 {
1696 	const struct ieee80211_ie_htinfo *htinfo;
1697 	struct ieee80211_htrateset *rs;
1698 	int i, j;
1699 
1700 	if (ie[0] == IEEE80211_ELEMID_VENDOR)
1701 		ie += 4;
1702 	htinfo = (const struct ieee80211_ie_htinfo *) ie;
1703 	rs = &ni->ni_htrates;
1704 	if (rs->rs_nrates == 0) {
1705 		IEEE80211_NOTE(ni->ni_vap,
1706 		    IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
1707 		    "%s", "WARNING, empty HT rate set");
1708 		return;
1709 	}
1710 	for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) {
1711 		if (isclr(htinfo->hi_basicmcsset, i))
1712 			continue;
1713 		for (j = 0; j < rs->rs_nrates; j++)
1714 			if ((rs->rs_rates[j] & IEEE80211_RATE_VAL) == i)
1715 				rs->rs_rates[j] |= IEEE80211_RATE_BASIC;
1716 	}
1717 }
1718 
1719 static void
1720 ampdu_tx_setup(struct ieee80211_tx_ampdu *tap)
1721 {
1722 	callout_init(&tap->txa_timer, 1);
1723 	tap->txa_flags |= IEEE80211_AGGR_SETUP;
1724 	tap->txa_lastsample = ticks;
1725 }
1726 
1727 static void
1728 ampdu_tx_stop(struct ieee80211_tx_ampdu *tap)
1729 {
1730 	struct ieee80211_node *ni = tap->txa_ni;
1731 	struct ieee80211com *ic = ni->ni_ic;
1732 
1733 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
1734 	    tap->txa_ni,
1735 	    "%s: called",
1736 	    __func__);
1737 
1738 	KASSERT(tap->txa_flags & IEEE80211_AGGR_SETUP,
1739 	    ("txa_flags 0x%x tid %d ac %d", tap->txa_flags, tap->txa_tid,
1740 	    TID_TO_WME_AC(tap->txa_tid)));
1741 
1742 	/*
1743 	 * Stop BA stream if setup so driver has a chance
1744 	 * to reclaim any resources it might have allocated.
1745 	 */
1746 	ic->ic_addba_stop(ni, tap);
1747 	/*
1748 	 * Stop any pending BAR transmit.
1749 	 */
1750 	bar_stop_timer(tap);
1751 
1752 	/*
1753 	 * Reset packet estimate.
1754 	 */
1755 	tap->txa_lastsample = ticks;
1756 	tap->txa_avgpps = 0;
1757 
1758 	/* NB: clearing NAK means we may re-send ADDBA */
1759 	tap->txa_flags &= ~(IEEE80211_AGGR_SETUP | IEEE80211_AGGR_NAK);
1760 }
1761 
1762 /*
1763  * ADDBA response timeout.
1764  *
1765  * If software aggregation and per-TID queue management was done here,
1766  * that queue would be unpaused after the ADDBA timeout occurs.
1767  */
1768 static void
1769 addba_timeout(void *arg)
1770 {
1771 	struct ieee80211_tx_ampdu *tap = arg;
1772 	struct ieee80211_node *ni = tap->txa_ni;
1773 	struct ieee80211com *ic = ni->ni_ic;
1774 
1775 	/* XXX ? */
1776 	tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND;
1777 	tap->txa_attempts++;
1778 	ic->ic_addba_response_timeout(ni, tap);
1779 }
1780 
1781 static void
1782 addba_start_timeout(struct ieee80211_tx_ampdu *tap)
1783 {
1784 	/* XXX use CALLOUT_PENDING instead? */
1785 	callout_reset(&tap->txa_timer, ieee80211_addba_timeout,
1786 	    addba_timeout, tap);
1787 	tap->txa_flags |= IEEE80211_AGGR_XCHGPEND;
1788 	tap->txa_nextrequest = ticks + ieee80211_addba_timeout;
1789 }
1790 
1791 static void
1792 addba_stop_timeout(struct ieee80211_tx_ampdu *tap)
1793 {
1794 	/* XXX use CALLOUT_PENDING instead? */
1795 	if (tap->txa_flags & IEEE80211_AGGR_XCHGPEND) {
1796 		callout_stop(&tap->txa_timer);
1797 		tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND;
1798 	}
1799 }
1800 
1801 static void
1802 null_addba_response_timeout(struct ieee80211_node *ni,
1803     struct ieee80211_tx_ampdu *tap)
1804 {
1805 }
1806 
1807 /*
1808  * Default method for requesting A-MPDU tx aggregation.
1809  * We setup the specified state block and start a timer
1810  * to wait for an ADDBA response frame.
1811  */
1812 static int
1813 ieee80211_addba_request(struct ieee80211_node *ni,
1814 	struct ieee80211_tx_ampdu *tap,
1815 	int dialogtoken, int baparamset, int batimeout)
1816 {
1817 	int bufsiz;
1818 
1819 	/* XXX locking */
1820 	tap->txa_token = dialogtoken;
1821 	tap->txa_flags |= IEEE80211_AGGR_IMMEDIATE;
1822 	bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
1823 	tap->txa_wnd = (bufsiz == 0) ?
1824 	    IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
1825 	addba_start_timeout(tap);
1826 	return 1;
1827 }
1828 
1829 /*
1830  * Called by drivers that wish to request an ADDBA session be
1831  * setup.  This brings it up and starts the request timer.
1832  */
1833 int
1834 ieee80211_ampdu_tx_request_ext(struct ieee80211_node *ni, int tid)
1835 {
1836 	struct ieee80211_tx_ampdu *tap;
1837 
1838 	if (tid < 0 || tid > 15)
1839 		return (0);
1840 	tap = &ni->ni_tx_ampdu[tid];
1841 
1842 	/* XXX locking */
1843 	if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) {
1844 		/* do deferred setup of state */
1845 		ampdu_tx_setup(tap);
1846 	}
1847 	/* XXX hack for not doing proper locking */
1848 	tap->txa_flags &= ~IEEE80211_AGGR_NAK;
1849 	addba_start_timeout(tap);
1850 	return (1);
1851 }
1852 
1853 /*
1854  * Called by drivers that have marked a session as active.
1855  */
1856 int
1857 ieee80211_ampdu_tx_request_active_ext(struct ieee80211_node *ni, int tid,
1858     int status)
1859 {
1860 	struct ieee80211_tx_ampdu *tap;
1861 
1862 	if (tid < 0 || tid > 15)
1863 		return (0);
1864 	tap = &ni->ni_tx_ampdu[tid];
1865 
1866 	/* XXX locking */
1867 	addba_stop_timeout(tap);
1868 	if (status == 1) {
1869 		tap->txa_flags |= IEEE80211_AGGR_RUNNING;
1870 		tap->txa_attempts = 0;
1871 	} else {
1872 		/* mark tid so we don't try again */
1873 		tap->txa_flags |= IEEE80211_AGGR_NAK;
1874 	}
1875 	return (1);
1876 }
1877 
1878 /*
1879  * Default method for processing an A-MPDU tx aggregation
1880  * response.  We shutdown any pending timer and update the
1881  * state block according to the reply.
1882  */
1883 static int
1884 ieee80211_addba_response(struct ieee80211_node *ni,
1885 	struct ieee80211_tx_ampdu *tap,
1886 	int status, int baparamset, int batimeout)
1887 {
1888 	int bufsiz, tid;
1889 
1890 	/* XXX locking */
1891 	addba_stop_timeout(tap);
1892 	if (status == IEEE80211_STATUS_SUCCESS) {
1893 		bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
1894 		/* XXX override our request? */
1895 		tap->txa_wnd = (bufsiz == 0) ?
1896 		    IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
1897 		/* XXX AC/TID */
1898 		tid = MS(baparamset, IEEE80211_BAPS_TID);
1899 		tap->txa_flags |= IEEE80211_AGGR_RUNNING;
1900 		tap->txa_attempts = 0;
1901 	} else {
1902 		/* mark tid so we don't try again */
1903 		tap->txa_flags |= IEEE80211_AGGR_NAK;
1904 	}
1905 	return 1;
1906 }
1907 
1908 /*
1909  * Default method for stopping A-MPDU tx aggregation.
1910  * Any timer is cleared and we drain any pending frames.
1911  */
1912 static void
1913 ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
1914 {
1915 	/* XXX locking */
1916 	addba_stop_timeout(tap);
1917 	if (tap->txa_flags & IEEE80211_AGGR_RUNNING) {
1918 		/* XXX clear aggregation queue */
1919 		tap->txa_flags &= ~IEEE80211_AGGR_RUNNING;
1920 	}
1921 	tap->txa_attempts = 0;
1922 }
1923 
1924 /*
1925  * Process a received action frame using the default aggregation
1926  * policy.  We intercept ADDBA-related frames and use them to
1927  * update our aggregation state.  All other frames are passed up
1928  * for processing by ieee80211_recv_action.
1929  */
1930 static int
1931 ht_recv_action_ba_addba_request(struct ieee80211_node *ni,
1932 	const struct ieee80211_frame *wh,
1933 	const uint8_t *frm, const uint8_t *efrm)
1934 {
1935 	struct ieee80211com *ic = ni->ni_ic;
1936 	struct ieee80211vap *vap = ni->ni_vap;
1937 	struct ieee80211_rx_ampdu *rap;
1938 	uint8_t dialogtoken;
1939 	uint16_t baparamset, batimeout, baseqctl;
1940 	uint16_t args[5];
1941 	int tid;
1942 
1943 	dialogtoken = frm[2];
1944 	baparamset = LE_READ_2(frm+3);
1945 	batimeout = LE_READ_2(frm+5);
1946 	baseqctl = LE_READ_2(frm+7);
1947 
1948 	tid = MS(baparamset, IEEE80211_BAPS_TID);
1949 
1950 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
1951 	    "recv ADDBA request: dialogtoken %u baparamset 0x%x "
1952 	    "(tid %d bufsiz %d) batimeout %d baseqctl %d:%d",
1953 	    dialogtoken, baparamset,
1954 	    tid, MS(baparamset, IEEE80211_BAPS_BUFSIZ),
1955 	    batimeout,
1956 	    MS(baseqctl, IEEE80211_BASEQ_START),
1957 	    MS(baseqctl, IEEE80211_BASEQ_FRAG));
1958 
1959 	rap = &ni->ni_rx_ampdu[tid];
1960 
1961 	/* Send ADDBA response */
1962 	args[0] = dialogtoken;
1963 	/*
1964 	 * NB: We ack only if the sta associated with HT and
1965 	 * the ap is configured to do AMPDU rx (the latter
1966 	 * violates the 11n spec and is mostly for testing).
1967 	 */
1968 	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_RX) &&
1969 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX)) {
1970 		/* XXX handle ampdu_rx_start failure */
1971 		ic->ic_ampdu_rx_start(ni, rap,
1972 		    baparamset, batimeout, baseqctl);
1973 
1974 		args[1] = IEEE80211_STATUS_SUCCESS;
1975 	} else {
1976 		IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
1977 		    ni, "reject ADDBA request: %s",
1978 		    ni->ni_flags & IEEE80211_NODE_AMPDU_RX ?
1979 		       "administratively disabled" :
1980 		       "not negotiated for station");
1981 		vap->iv_stats.is_addba_reject++;
1982 		args[1] = IEEE80211_STATUS_UNSPECIFIED;
1983 	}
1984 	/* XXX honor rap flags? */
1985 	args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE
1986 		| SM(tid, IEEE80211_BAPS_TID)
1987 		| SM(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ)
1988 		;
1989 	args[3] = 0;
1990 	args[4] = 0;
1991 	ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
1992 		IEEE80211_ACTION_BA_ADDBA_RESPONSE, args);
1993 	return 0;
1994 }
1995 
1996 static int
1997 ht_recv_action_ba_addba_response(struct ieee80211_node *ni,
1998 	const struct ieee80211_frame *wh,
1999 	const uint8_t *frm, const uint8_t *efrm)
2000 {
2001 	struct ieee80211com *ic = ni->ni_ic;
2002 	struct ieee80211vap *vap = ni->ni_vap;
2003 	struct ieee80211_tx_ampdu *tap;
2004 	uint8_t dialogtoken, policy;
2005 	uint16_t baparamset, batimeout, code;
2006 	int tid, bufsiz;
2007 
2008 	dialogtoken = frm[2];
2009 	code = LE_READ_2(frm+3);
2010 	baparamset = LE_READ_2(frm+5);
2011 	tid = MS(baparamset, IEEE80211_BAPS_TID);
2012 	bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
2013 	policy = MS(baparamset, IEEE80211_BAPS_POLICY);
2014 	batimeout = LE_READ_2(frm+7);
2015 
2016 	tap = &ni->ni_tx_ampdu[tid];
2017 	if ((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
2018 		IEEE80211_DISCARD_MAC(vap,
2019 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2020 		    ni->ni_macaddr, "ADDBA response",
2021 		    "no pending ADDBA, tid %d dialogtoken %u "
2022 		    "code %d", tid, dialogtoken, code);
2023 		vap->iv_stats.is_addba_norequest++;
2024 		return 0;
2025 	}
2026 	if (dialogtoken != tap->txa_token) {
2027 		IEEE80211_DISCARD_MAC(vap,
2028 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2029 		    ni->ni_macaddr, "ADDBA response",
2030 		    "dialogtoken mismatch: waiting for %d, "
2031 		    "received %d, tid %d code %d",
2032 		    tap->txa_token, dialogtoken, tid, code);
2033 		vap->iv_stats.is_addba_badtoken++;
2034 		return 0;
2035 	}
2036 	/* NB: assumes IEEE80211_AGGR_IMMEDIATE is 1 */
2037 	if (policy != (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE)) {
2038 		IEEE80211_DISCARD_MAC(vap,
2039 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2040 		    ni->ni_macaddr, "ADDBA response",
2041 		    "policy mismatch: expecting %s, "
2042 		    "received %s, tid %d code %d",
2043 		    tap->txa_flags & IEEE80211_AGGR_IMMEDIATE,
2044 		    policy, tid, code);
2045 		vap->iv_stats.is_addba_badpolicy++;
2046 		return 0;
2047 	}
2048 #if 0
2049 	/* XXX we take MIN in ieee80211_addba_response */
2050 	if (bufsiz > IEEE80211_AGGR_BAWMAX) {
2051 		IEEE80211_DISCARD_MAC(vap,
2052 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2053 		    ni->ni_macaddr, "ADDBA response",
2054 		    "BA window too large: max %d, "
2055 		    "received %d, tid %d code %d",
2056 		    bufsiz, IEEE80211_AGGR_BAWMAX, tid, code);
2057 		vap->iv_stats.is_addba_badbawinsize++;
2058 		return 0;
2059 	}
2060 #endif
2061 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2062 	    "recv ADDBA response: dialogtoken %u code %d "
2063 	    "baparamset 0x%x (tid %d bufsiz %d) batimeout %d",
2064 	    dialogtoken, code, baparamset, tid, bufsiz,
2065 	    batimeout);
2066 	ic->ic_addba_response(ni, tap, code, baparamset, batimeout);
2067 	return 0;
2068 }
2069 
2070 static int
2071 ht_recv_action_ba_delba(struct ieee80211_node *ni,
2072 	const struct ieee80211_frame *wh,
2073 	const uint8_t *frm, const uint8_t *efrm)
2074 {
2075 	struct ieee80211com *ic = ni->ni_ic;
2076 	struct ieee80211_rx_ampdu *rap;
2077 	struct ieee80211_tx_ampdu *tap;
2078 	uint16_t baparamset, code;
2079 	int tid;
2080 
2081 	baparamset = LE_READ_2(frm+2);
2082 	code = LE_READ_2(frm+4);
2083 
2084 	tid = MS(baparamset, IEEE80211_DELBAPS_TID);
2085 
2086 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2087 	    "recv DELBA: baparamset 0x%x (tid %d initiator %d) "
2088 	    "code %d", baparamset, tid,
2089 	    MS(baparamset, IEEE80211_DELBAPS_INIT), code);
2090 
2091 	if ((baparamset & IEEE80211_DELBAPS_INIT) == 0) {
2092 		tap = &ni->ni_tx_ampdu[tid];
2093 		ic->ic_addba_stop(ni, tap);
2094 	} else {
2095 		rap = &ni->ni_rx_ampdu[tid];
2096 		ic->ic_ampdu_rx_stop(ni, rap);
2097 	}
2098 	return 0;
2099 }
2100 
2101 static int
2102 ht_recv_action_ht_txchwidth(struct ieee80211_node *ni,
2103 	const struct ieee80211_frame *wh,
2104 	const uint8_t *frm, const uint8_t *efrm)
2105 {
2106 	int chw;
2107 
2108 	chw = (frm[2] == IEEE80211_A_HT_TXCHWIDTH_2040) ? 40 : 20;
2109 
2110 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2111 	    "%s: HT txchwidth, width %d%s",
2112 	    __func__, chw, ni->ni_chw != chw ? "*" : "");
2113 	if (chw != ni->ni_chw) {
2114 		ni->ni_chw = chw;
2115 		/* XXX notify on change */
2116 	}
2117 	return 0;
2118 }
2119 
2120 static int
2121 ht_recv_action_ht_mimopwrsave(struct ieee80211_node *ni,
2122 	const struct ieee80211_frame *wh,
2123 	const uint8_t *frm, const uint8_t *efrm)
2124 {
2125 	const struct ieee80211_action_ht_mimopowersave *mps =
2126 	    (const struct ieee80211_action_ht_mimopowersave *) frm;
2127 
2128 	/* XXX check iv_htcaps */
2129 	if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA)
2130 		ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
2131 	else
2132 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS;
2133 	if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_MODE)
2134 		ni->ni_flags |= IEEE80211_NODE_MIMO_RTS;
2135 	else
2136 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
2137 	/* XXX notify on change */
2138 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2139 	    "%s: HT MIMO PS (%s%s)", __func__,
2140 	    (ni->ni_flags & IEEE80211_NODE_MIMO_PS) ?  "on" : "off",
2141 	    (ni->ni_flags & IEEE80211_NODE_MIMO_RTS) ?  "+rts" : ""
2142 	);
2143 	return 0;
2144 }
2145 
2146 /*
2147  * Transmit processing.
2148  */
2149 
2150 /*
2151  * Check if A-MPDU should be requested/enabled for a stream.
2152  * We require a traffic rate above a per-AC threshold and we
2153  * also handle backoff from previous failed attempts.
2154  *
2155  * Drivers may override this method to bring in information
2156  * such as link state conditions in making the decision.
2157  */
2158 static int
2159 ieee80211_ampdu_enable(struct ieee80211_node *ni,
2160 	struct ieee80211_tx_ampdu *tap)
2161 {
2162 	struct ieee80211vap *vap = ni->ni_vap;
2163 
2164 	if (tap->txa_avgpps <
2165 	    vap->iv_ampdu_mintraffic[TID_TO_WME_AC(tap->txa_tid)])
2166 		return 0;
2167 	/* XXX check rssi? */
2168 	if (tap->txa_attempts >= ieee80211_addba_maxtries &&
2169 	    ticks < tap->txa_nextrequest) {
2170 		/*
2171 		 * Don't retry too often; txa_nextrequest is set
2172 		 * to the minimum interval we'll retry after
2173 		 * ieee80211_addba_maxtries failed attempts are made.
2174 		 */
2175 		return 0;
2176 	}
2177 	IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
2178 	    "enable AMPDU on tid %d (%s), avgpps %d pkts %d",
2179 	    tap->txa_tid, ieee80211_wme_acnames[TID_TO_WME_AC(tap->txa_tid)],
2180 	    tap->txa_avgpps, tap->txa_pkts);
2181 	return 1;
2182 }
2183 
2184 /*
2185  * Request A-MPDU tx aggregation.  Setup local state and
2186  * issue an ADDBA request.  BA use will only happen after
2187  * the other end replies with ADDBA response.
2188  */
2189 int
2190 ieee80211_ampdu_request(struct ieee80211_node *ni,
2191 	struct ieee80211_tx_ampdu *tap)
2192 {
2193 	struct ieee80211com *ic = ni->ni_ic;
2194 	uint16_t args[5];
2195 	int tid, dialogtoken;
2196 	static int tokens = 0;	/* XXX */
2197 
2198 	/* XXX locking */
2199 	if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) {
2200 		/* do deferred setup of state */
2201 		ampdu_tx_setup(tap);
2202 	}
2203 	/* XXX hack for not doing proper locking */
2204 	tap->txa_flags &= ~IEEE80211_AGGR_NAK;
2205 
2206 	dialogtoken = (tokens+1) % 63;		/* XXX */
2207 	tid = tap->txa_tid;
2208 	tap->txa_start = ni->ni_txseqs[tid];
2209 
2210 	args[0] = dialogtoken;
2211 	args[1] = 0;	/* NB: status code not used */
2212 	args[2]	= IEEE80211_BAPS_POLICY_IMMEDIATE
2213 		| SM(tid, IEEE80211_BAPS_TID)
2214 		| SM(IEEE80211_AGGR_BAWMAX, IEEE80211_BAPS_BUFSIZ)
2215 		;
2216 	args[3] = 0;	/* batimeout */
2217 	/* NB: do first so there's no race against reply */
2218 	if (!ic->ic_addba_request(ni, tap, dialogtoken, args[2], args[3])) {
2219 		/* unable to setup state, don't make request */
2220 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2221 		    ni, "%s: could not setup BA stream for TID %d AC %d",
2222 		    __func__, tap->txa_tid, TID_TO_WME_AC(tap->txa_tid));
2223 		/* defer next try so we don't slam the driver with requests */
2224 		tap->txa_attempts = ieee80211_addba_maxtries;
2225 		/* NB: check in case driver wants to override */
2226 		if (tap->txa_nextrequest <= ticks)
2227 			tap->txa_nextrequest = ticks + ieee80211_addba_backoff;
2228 		return 0;
2229 	}
2230 	tokens = dialogtoken;			/* allocate token */
2231 	/* NB: after calling ic_addba_request so driver can set txa_start */
2232 	args[4] = SM(tap->txa_start, IEEE80211_BASEQ_START)
2233 		| SM(0, IEEE80211_BASEQ_FRAG)
2234 		;
2235 	return ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
2236 		IEEE80211_ACTION_BA_ADDBA_REQUEST, args);
2237 }
2238 
2239 /*
2240  * Terminate an AMPDU tx stream.  State is reclaimed
2241  * and the peer notified with a DelBA Action frame.
2242  */
2243 void
2244 ieee80211_ampdu_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
2245 	int reason)
2246 {
2247 	struct ieee80211com *ic = ni->ni_ic;
2248 	struct ieee80211vap *vap = ni->ni_vap;
2249 	uint16_t args[4];
2250 
2251 	/* XXX locking */
2252 	tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
2253 	if (IEEE80211_AMPDU_RUNNING(tap)) {
2254 		IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2255 		    ni, "%s: stop BA stream for TID %d (reason %d)",
2256 		    __func__, tap->txa_tid, reason);
2257 		vap->iv_stats.is_ampdu_stop++;
2258 
2259 		ic->ic_addba_stop(ni, tap);
2260 		args[0] = tap->txa_tid;
2261 		args[1] = IEEE80211_DELBAPS_INIT;
2262 		args[2] = reason;			/* XXX reason code */
2263 		ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
2264 			IEEE80211_ACTION_BA_DELBA, args);
2265 	} else {
2266 		IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2267 		    ni, "%s: BA stream for TID %d not running (reason %d)",
2268 		    __func__, tap->txa_tid, reason);
2269 		vap->iv_stats.is_ampdu_stop_failed++;
2270 	}
2271 }
2272 
2273 /* XXX */
2274 static void bar_start_timer(struct ieee80211_tx_ampdu *tap);
2275 
2276 static void
2277 bar_timeout(void *arg)
2278 {
2279 	struct ieee80211_tx_ampdu *tap = arg;
2280 	struct ieee80211_node *ni = tap->txa_ni;
2281 
2282 	KASSERT((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0,
2283 	    ("bar/addba collision, flags 0x%x", tap->txa_flags));
2284 
2285 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2286 	    ni, "%s: tid %u flags 0x%x attempts %d", __func__,
2287 	    tap->txa_tid, tap->txa_flags, tap->txa_attempts);
2288 
2289 	/* guard against race with bar_tx_complete */
2290 	if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0)
2291 		return;
2292 	/* XXX ? */
2293 	if (tap->txa_attempts >= ieee80211_bar_maxtries) {
2294 		struct ieee80211com *ic = ni->ni_ic;
2295 
2296 		ni->ni_vap->iv_stats.is_ampdu_bar_tx_fail++;
2297 		/*
2298 		 * If (at least) the last BAR TX timeout was due to
2299 		 * an ieee80211_send_bar() failures, then we need
2300 		 * to make sure we notify the driver that a BAR
2301 		 * TX did occur and fail.  This gives the driver
2302 		 * a chance to undo any queue pause that may
2303 		 * have occured.
2304 		 */
2305 		ic->ic_bar_response(ni, tap, 1);
2306 		ieee80211_ampdu_stop(ni, tap, IEEE80211_REASON_TIMEOUT);
2307 	} else {
2308 		ni->ni_vap->iv_stats.is_ampdu_bar_tx_retry++;
2309 		if (ieee80211_send_bar(ni, tap, tap->txa_seqpending) != 0) {
2310 			IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2311 			    ni, "%s: failed to TX, starting timer\n",
2312 			    __func__);
2313 			/*
2314 			 * If ieee80211_send_bar() fails here, the
2315 			 * timer may have stopped and/or the pending
2316 			 * flag may be clear.  Because of this,
2317 			 * fake the BARPEND and reset the timer.
2318 			 * A retransmission attempt will then occur
2319 			 * during the next timeout.
2320 			 */
2321 			/* XXX locking */
2322 			tap->txa_flags |= IEEE80211_AGGR_BARPEND;
2323 			bar_start_timer(tap);
2324 		}
2325 	}
2326 }
2327 
2328 static void
2329 bar_start_timer(struct ieee80211_tx_ampdu *tap)
2330 {
2331 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2332 	    tap->txa_ni,
2333 	    "%s: called",
2334 	    __func__);
2335 	callout_reset(&tap->txa_timer, ieee80211_bar_timeout, bar_timeout, tap);
2336 }
2337 
2338 static void
2339 bar_stop_timer(struct ieee80211_tx_ampdu *tap)
2340 {
2341 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2342 	    tap->txa_ni,
2343 	    "%s: called",
2344 	    __func__);
2345 	callout_stop(&tap->txa_timer);
2346 }
2347 
2348 static void
2349 bar_tx_complete(struct ieee80211_node *ni, void *arg, int status)
2350 {
2351 	struct ieee80211_tx_ampdu *tap = arg;
2352 
2353 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2354 	    ni, "%s: tid %u flags 0x%x pending %d status %d",
2355 	    __func__, tap->txa_tid, tap->txa_flags,
2356 	    callout_pending(&tap->txa_timer), status);
2357 
2358 	ni->ni_vap->iv_stats.is_ampdu_bar_tx++;
2359 	/* XXX locking */
2360 	if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) &&
2361 	    callout_pending(&tap->txa_timer)) {
2362 		struct ieee80211com *ic = ni->ni_ic;
2363 
2364 		if (status == 0)		/* ACK'd */
2365 			bar_stop_timer(tap);
2366 		ic->ic_bar_response(ni, tap, status);
2367 		/* NB: just let timer expire so we pace requests */
2368 	}
2369 }
2370 
2371 static void
2372 ieee80211_bar_response(struct ieee80211_node *ni,
2373 	struct ieee80211_tx_ampdu *tap, int status)
2374 {
2375 
2376 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2377 	    tap->txa_ni,
2378 	    "%s: called",
2379 	    __func__);
2380 	if (status == 0) {		/* got ACK */
2381 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2382 		    ni, "BAR moves BA win <%u:%u> (%u frames) txseq %u tid %u",
2383 		    tap->txa_start,
2384 		    IEEE80211_SEQ_ADD(tap->txa_start, tap->txa_wnd-1),
2385 		    tap->txa_qframes, tap->txa_seqpending,
2386 		    tap->txa_tid);
2387 
2388 		/* NB: timer already stopped in bar_tx_complete */
2389 		tap->txa_start = tap->txa_seqpending;
2390 		tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
2391 	}
2392 }
2393 
2394 /*
2395  * Transmit a BAR frame to the specified node.  The
2396  * BAR contents are drawn from the supplied aggregation
2397  * state associated with the node.
2398  *
2399  * NB: we only handle immediate ACK w/ compressed bitmap.
2400  */
2401 int
2402 ieee80211_send_bar(struct ieee80211_node *ni,
2403 	struct ieee80211_tx_ampdu *tap, ieee80211_seq seq)
2404 {
2405 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2406 	struct ieee80211vap *vap = ni->ni_vap;
2407 	struct ieee80211com *ic = ni->ni_ic;
2408 	struct ieee80211_frame_bar *bar;
2409 	struct mbuf *m;
2410 	uint16_t barctl, barseqctl;
2411 	uint8_t *frm;
2412 	int tid, ret;
2413 
2414 
2415 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2416 	    tap->txa_ni,
2417 	    "%s: called",
2418 	    __func__);
2419 
2420 	if ((tap->txa_flags & IEEE80211_AGGR_RUNNING) == 0) {
2421 		/* no ADDBA response, should not happen */
2422 		/* XXX stat+msg */
2423 		return EINVAL;
2424 	}
2425 	/* XXX locking */
2426 	bar_stop_timer(tap);
2427 
2428 	ieee80211_ref_node(ni);
2429 
2430 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom, sizeof(*bar));
2431 	if (m == NULL)
2432 		senderr(ENOMEM, is_tx_nobuf);
2433 
2434 	if (!ieee80211_add_callback(m, bar_tx_complete, tap)) {
2435 		m_freem(m);
2436 		senderr(ENOMEM, is_tx_nobuf);	/* XXX */
2437 		/* NOTREACHED */
2438 	}
2439 
2440 	bar = mtod(m, struct ieee80211_frame_bar *);
2441 	bar->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2442 		IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR;
2443 	bar->i_fc[1] = 0;
2444 	IEEE80211_ADDR_COPY(bar->i_ra, ni->ni_macaddr);
2445 	IEEE80211_ADDR_COPY(bar->i_ta, vap->iv_myaddr);
2446 
2447 	tid = tap->txa_tid;
2448 	barctl 	= (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE ?
2449 			0 : IEEE80211_BAR_NOACK)
2450 		| IEEE80211_BAR_COMP
2451 		| SM(tid, IEEE80211_BAR_TID)
2452 		;
2453 	barseqctl = SM(seq, IEEE80211_BAR_SEQ_START);
2454 	/* NB: known to have proper alignment */
2455 	bar->i_ctl = htole16(barctl);
2456 	bar->i_seq = htole16(barseqctl);
2457 	m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_bar);
2458 
2459 	M_WME_SETAC(m, WME_AC_VO);
2460 
2461 	IEEE80211_NODE_STAT(ni, tx_mgmt);	/* XXX tx_ctl? */
2462 
2463 	/* XXX locking */
2464 	/* init/bump attempts counter */
2465 	if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0)
2466 		tap->txa_attempts = 1;
2467 	else
2468 		tap->txa_attempts++;
2469 	tap->txa_seqpending = seq;
2470 	tap->txa_flags |= IEEE80211_AGGR_BARPEND;
2471 
2472 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N,
2473 	    ni, "send BAR: tid %u ctl 0x%x start %u (attempt %d)",
2474 	    tid, barctl, seq, tap->txa_attempts);
2475 
2476 	/*
2477 	 * ic_raw_xmit will free the node reference
2478 	 * regardless of queue/TX success or failure.
2479 	 */
2480 	IEEE80211_TX_LOCK(ic);
2481 	ret = ieee80211_raw_output(vap, ni, m, NULL);
2482 	IEEE80211_TX_UNLOCK(ic);
2483 	if (ret != 0) {
2484 		IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N,
2485 		    ni, "send BAR: failed: (ret = %d)\n",
2486 		    ret);
2487 		/* xmit failed, clear state flag */
2488 		tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
2489 		vap->iv_stats.is_ampdu_bar_tx_fail++;
2490 		return ret;
2491 	}
2492 	/* XXX hack against tx complete happening before timer is started */
2493 	if (tap->txa_flags & IEEE80211_AGGR_BARPEND)
2494 		bar_start_timer(tap);
2495 	return 0;
2496 bad:
2497 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2498 	    tap->txa_ni,
2499 	    "%s: bad! ret=%d",
2500 	    __func__, ret);
2501 	vap->iv_stats.is_ampdu_bar_tx_fail++;
2502 	ieee80211_free_node(ni);
2503 	return ret;
2504 #undef senderr
2505 }
2506 
2507 static int
2508 ht_action_output(struct ieee80211_node *ni, struct mbuf *m)
2509 {
2510 	struct ieee80211_bpf_params params;
2511 
2512 	memset(&params, 0, sizeof(params));
2513 	params.ibp_pri = WME_AC_VO;
2514 	params.ibp_rate0 = ni->ni_txparms->mgmtrate;
2515 	/* NB: we know all frames are unicast */
2516 	params.ibp_try0 = ni->ni_txparms->maxretry;
2517 	params.ibp_power = ni->ni_txpower;
2518 	return ieee80211_mgmt_output(ni, m, IEEE80211_FC0_SUBTYPE_ACTION,
2519 	     &params);
2520 }
2521 
2522 #define	ADDSHORT(frm, v) do {			\
2523 	frm[0] = (v) & 0xff;			\
2524 	frm[1] = (v) >> 8;			\
2525 	frm += 2;				\
2526 } while (0)
2527 
2528 /*
2529  * Send an action management frame.  The arguments are stuff
2530  * into a frame without inspection; the caller is assumed to
2531  * prepare them carefully (e.g. based on the aggregation state).
2532  */
2533 static int
2534 ht_send_action_ba_addba(struct ieee80211_node *ni,
2535 	int category, int action, void *arg0)
2536 {
2537 	struct ieee80211vap *vap = ni->ni_vap;
2538 	struct ieee80211com *ic = ni->ni_ic;
2539 	uint16_t *args = arg0;
2540 	struct mbuf *m;
2541 	uint8_t *frm;
2542 
2543 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2544 	    "send ADDBA %s: dialogtoken %d status %d "
2545 	    "baparamset 0x%x (tid %d) batimeout 0x%x baseqctl 0x%x",
2546 	    (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ?
2547 		"request" : "response",
2548 	    args[0], args[1], args[2], MS(args[2], IEEE80211_BAPS_TID),
2549 	    args[3], args[4]);
2550 
2551 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2552 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
2553 	    ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
2554 	ieee80211_ref_node(ni);
2555 
2556 	m = ieee80211_getmgtframe(&frm,
2557 	    ic->ic_headroom + sizeof(struct ieee80211_frame),
2558 	    sizeof(uint16_t)	/* action+category */
2559 	    /* XXX may action payload */
2560 	    + sizeof(struct ieee80211_action_ba_addbaresponse)
2561 	);
2562 	if (m != NULL) {
2563 		*frm++ = category;
2564 		*frm++ = action;
2565 		*frm++ = args[0];		/* dialog token */
2566 		if (action == IEEE80211_ACTION_BA_ADDBA_RESPONSE)
2567 			ADDSHORT(frm, args[1]);	/* status code */
2568 		ADDSHORT(frm, args[2]);		/* baparamset */
2569 		ADDSHORT(frm, args[3]);		/* batimeout */
2570 		if (action == IEEE80211_ACTION_BA_ADDBA_REQUEST)
2571 			ADDSHORT(frm, args[4]);	/* baseqctl */
2572 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2573 		return ht_action_output(ni, m);
2574 	} else {
2575 		vap->iv_stats.is_tx_nobuf++;
2576 		ieee80211_free_node(ni);
2577 		return ENOMEM;
2578 	}
2579 }
2580 
2581 static int
2582 ht_send_action_ba_delba(struct ieee80211_node *ni,
2583 	int category, int action, void *arg0)
2584 {
2585 	struct ieee80211vap *vap = ni->ni_vap;
2586 	struct ieee80211com *ic = ni->ni_ic;
2587 	uint16_t *args = arg0;
2588 	struct mbuf *m;
2589 	uint16_t baparamset;
2590 	uint8_t *frm;
2591 
2592 	baparamset = SM(args[0], IEEE80211_DELBAPS_TID)
2593 		   | args[1]
2594 		   ;
2595 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2596 	    "send DELBA action: tid %d, initiator %d reason %d",
2597 	    args[0], args[1], args[2]);
2598 
2599 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2600 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
2601 	    ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
2602 	ieee80211_ref_node(ni);
2603 
2604 	m = ieee80211_getmgtframe(&frm,
2605 	    ic->ic_headroom + sizeof(struct ieee80211_frame),
2606 	    sizeof(uint16_t)	/* action+category */
2607 	    /* XXX may action payload */
2608 	    + sizeof(struct ieee80211_action_ba_addbaresponse)
2609 	);
2610 	if (m != NULL) {
2611 		*frm++ = category;
2612 		*frm++ = action;
2613 		ADDSHORT(frm, baparamset);
2614 		ADDSHORT(frm, args[2]);		/* reason code */
2615 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2616 		return ht_action_output(ni, m);
2617 	} else {
2618 		vap->iv_stats.is_tx_nobuf++;
2619 		ieee80211_free_node(ni);
2620 		return ENOMEM;
2621 	}
2622 }
2623 
2624 static int
2625 ht_send_action_ht_txchwidth(struct ieee80211_node *ni,
2626 	int category, int action, void *arg0)
2627 {
2628 	struct ieee80211vap *vap = ni->ni_vap;
2629 	struct ieee80211com *ic = ni->ni_ic;
2630 	struct mbuf *m;
2631 	uint8_t *frm;
2632 
2633 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2634 	    "send HT txchwidth: width %d",
2635 	    IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 40 : 20);
2636 
2637 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2638 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
2639 	    ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
2640 	ieee80211_ref_node(ni);
2641 
2642 	m = ieee80211_getmgtframe(&frm,
2643 	    ic->ic_headroom + sizeof(struct ieee80211_frame),
2644 	    sizeof(uint16_t)	/* action+category */
2645 	    /* XXX may action payload */
2646 	    + sizeof(struct ieee80211_action_ba_addbaresponse)
2647 	);
2648 	if (m != NULL) {
2649 		*frm++ = category;
2650 		*frm++ = action;
2651 		*frm++ = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ?
2652 			IEEE80211_A_HT_TXCHWIDTH_2040 :
2653 			IEEE80211_A_HT_TXCHWIDTH_20;
2654 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2655 		return ht_action_output(ni, m);
2656 	} else {
2657 		vap->iv_stats.is_tx_nobuf++;
2658 		ieee80211_free_node(ni);
2659 		return ENOMEM;
2660 	}
2661 }
2662 #undef ADDSHORT
2663 
2664 /*
2665  * Construct the MCS bit mask for inclusion in an HT capabilities
2666  * information element.
2667  */
2668 static void
2669 ieee80211_set_mcsset(struct ieee80211com *ic, uint8_t *frm)
2670 {
2671 	int i;
2672 	uint8_t txparams;
2673 
2674 	KASSERT((ic->ic_rxstream > 0 && ic->ic_rxstream <= 4),
2675 	    ("ic_rxstream %d out of range", ic->ic_rxstream));
2676 	KASSERT((ic->ic_txstream > 0 && ic->ic_txstream <= 4),
2677 	    ("ic_txstream %d out of range", ic->ic_txstream));
2678 
2679 	for (i = 0; i < ic->ic_rxstream * 8; i++)
2680 		setbit(frm, i);
2681 	if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
2682 	    (ic->ic_htcaps & IEEE80211_HTC_RXMCS32))
2683 		setbit(frm, 32);
2684 	if (ic->ic_htcaps & IEEE80211_HTC_RXUNEQUAL) {
2685 		if (ic->ic_rxstream >= 2) {
2686 			for (i = 33; i <= 38; i++)
2687 				setbit(frm, i);
2688 		}
2689 		if (ic->ic_rxstream >= 3) {
2690 			for (i = 39; i <= 52; i++)
2691 				setbit(frm, i);
2692 		}
2693 		if (ic->ic_txstream >= 4) {
2694 			for (i = 53; i <= 76; i++)
2695 				setbit(frm, i);
2696 		}
2697 	}
2698 
2699 	if (ic->ic_rxstream != ic->ic_txstream) {
2700 		txparams = 0x1;			/* TX MCS set defined */
2701 		txparams |= 0x2;		/* TX RX MCS not equal */
2702 		txparams |= (ic->ic_txstream - 1) << 2;	/* num TX streams */
2703 		if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL)
2704 			txparams |= 0x16;	/* TX unequal modulation sup */
2705 	} else
2706 		txparams = 0;
2707 	frm[12] = txparams;
2708 }
2709 
2710 /*
2711  * Add body of an HTCAP information element.
2712  */
2713 static uint8_t *
2714 ieee80211_add_htcap_body(uint8_t *frm, struct ieee80211_node *ni)
2715 {
2716 #define	ADDSHORT(frm, v) do {			\
2717 	frm[0] = (v) & 0xff;			\
2718 	frm[1] = (v) >> 8;			\
2719 	frm += 2;				\
2720 } while (0)
2721 	struct ieee80211com *ic = ni->ni_ic;
2722 	struct ieee80211vap *vap = ni->ni_vap;
2723 	uint16_t caps, extcaps;
2724 	int rxmax, density;
2725 
2726 	/* HT capabilities */
2727 	caps = vap->iv_htcaps & 0xffff;
2728 	/*
2729 	 * Note channel width depends on whether we are operating as
2730 	 * a sta or not.  When operating as a sta we are generating
2731 	 * a request based on our desired configuration.  Otherwise
2732 	 * we are operational and the channel attributes identify
2733 	 * how we've been setup (which might be different if a fixed
2734 	 * channel is specified).
2735 	 */
2736 	if (vap->iv_opmode == IEEE80211_M_STA) {
2737 		/* override 20/40 use based on config */
2738 		if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)
2739 			caps |= IEEE80211_HTCAP_CHWIDTH40;
2740 		else
2741 			caps &= ~IEEE80211_HTCAP_CHWIDTH40;
2742 
2743 		/* Start by using the advertised settings */
2744 		rxmax = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU);
2745 		density = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY);
2746 
2747 		/* Cap at VAP rxmax */
2748 		if (rxmax > vap->iv_ampdu_rxmax)
2749 			rxmax = vap->iv_ampdu_rxmax;
2750 
2751 		/*
2752 		 * If the VAP ampdu density value greater, use that.
2753 		 *
2754 		 * (Larger density value == larger minimum gap between A-MPDU
2755 		 * subframes.)
2756 		 */
2757 		if (vap->iv_ampdu_density > density)
2758 			density = vap->iv_ampdu_density;
2759 
2760 		/*
2761 		 * NB: Hardware might support HT40 on some but not all
2762 		 * channels. We can't determine this earlier because only
2763 		 * after association the channel is upgraded to HT based
2764 		 * on the negotiated capabilities.
2765 		 */
2766 		if (ni->ni_chan != IEEE80211_CHAN_ANYC &&
2767 		    findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40U) == NULL &&
2768 		    findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40D) == NULL)
2769 			caps &= ~IEEE80211_HTCAP_CHWIDTH40;
2770 	} else {
2771 		/* override 20/40 use based on current channel */
2772 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
2773 			caps |= IEEE80211_HTCAP_CHWIDTH40;
2774 		else
2775 			caps &= ~IEEE80211_HTCAP_CHWIDTH40;
2776 
2777 		/* XXX TODO should it start by using advertised settings? */
2778 		rxmax = vap->iv_ampdu_rxmax;
2779 		density = vap->iv_ampdu_density;
2780 	}
2781 
2782 	/* adjust short GI based on channel and config */
2783 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0)
2784 		caps &= ~IEEE80211_HTCAP_SHORTGI20;
2785 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 ||
2786 	    (caps & IEEE80211_HTCAP_CHWIDTH40) == 0)
2787 		caps &= ~IEEE80211_HTCAP_SHORTGI40;
2788 	ADDSHORT(frm, caps);
2789 
2790 	/* HT parameters */
2791 	*frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU)
2792 	     | SM(density, IEEE80211_HTCAP_MPDUDENSITY)
2793 	     ;
2794 	frm++;
2795 
2796 	/* pre-zero remainder of ie */
2797 	memset(frm, 0, sizeof(struct ieee80211_ie_htcap) -
2798 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset));
2799 
2800 	/* supported MCS set */
2801 	/*
2802 	 * XXX: For sta mode the rate set should be restricted based
2803 	 * on the AP's capabilities, but ni_htrates isn't setup when
2804 	 * we're called to form an AssocReq frame so for now we're
2805 	 * restricted to the device capabilities.
2806 	 */
2807 	ieee80211_set_mcsset(ni->ni_ic, frm);
2808 
2809 	frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) -
2810 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset);
2811 
2812 	/* HT extended capabilities */
2813 	extcaps = vap->iv_htextcaps & 0xffff;
2814 
2815 	ADDSHORT(frm, extcaps);
2816 
2817 	frm += sizeof(struct ieee80211_ie_htcap) -
2818 		__offsetof(struct ieee80211_ie_htcap, hc_txbf);
2819 
2820 	return frm;
2821 #undef ADDSHORT
2822 }
2823 
2824 /*
2825  * Add 802.11n HT capabilities information element
2826  */
2827 uint8_t *
2828 ieee80211_add_htcap(uint8_t *frm, struct ieee80211_node *ni)
2829 {
2830 	frm[0] = IEEE80211_ELEMID_HTCAP;
2831 	frm[1] = sizeof(struct ieee80211_ie_htcap) - 2;
2832 	return ieee80211_add_htcap_body(frm + 2, ni);
2833 }
2834 
2835 /*
2836  * Add Broadcom OUI wrapped standard HTCAP ie; this is
2837  * used for compatibility w/ pre-draft implementations.
2838  */
2839 uint8_t *
2840 ieee80211_add_htcap_vendor(uint8_t *frm, struct ieee80211_node *ni)
2841 {
2842 	frm[0] = IEEE80211_ELEMID_VENDOR;
2843 	frm[1] = 4 + sizeof(struct ieee80211_ie_htcap) - 2;
2844 	frm[2] = (BCM_OUI >> 0) & 0xff;
2845 	frm[3] = (BCM_OUI >> 8) & 0xff;
2846 	frm[4] = (BCM_OUI >> 16) & 0xff;
2847 	frm[5] = BCM_OUI_HTCAP;
2848 	return ieee80211_add_htcap_body(frm + 6, ni);
2849 }
2850 
2851 /*
2852  * Construct the MCS bit mask of basic rates
2853  * for inclusion in an HT information element.
2854  */
2855 static void
2856 ieee80211_set_basic_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs)
2857 {
2858 	int i;
2859 
2860 	for (i = 0; i < rs->rs_nrates; i++) {
2861 		int r = rs->rs_rates[i] & IEEE80211_RATE_VAL;
2862 		if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) &&
2863 		    r < IEEE80211_HTRATE_MAXSIZE) {
2864 			/* NB: this assumes a particular implementation */
2865 			setbit(frm, r);
2866 		}
2867 	}
2868 }
2869 
2870 /*
2871  * Update the HTINFO ie for a beacon frame.
2872  */
2873 void
2874 ieee80211_ht_update_beacon(struct ieee80211vap *vap,
2875 	struct ieee80211_beacon_offsets *bo)
2876 {
2877 #define	PROTMODE	(IEEE80211_HTINFO_OPMODE|IEEE80211_HTINFO_NONHT_PRESENT)
2878 	struct ieee80211_node *ni;
2879 	const struct ieee80211_channel *bsschan;
2880 	struct ieee80211com *ic = vap->iv_ic;
2881 	struct ieee80211_ie_htinfo *ht =
2882 	   (struct ieee80211_ie_htinfo *) bo->bo_htinfo;
2883 
2884 	ni = ieee80211_ref_node(vap->iv_bss);
2885 	bsschan = ni->ni_chan;
2886 
2887 	/* XXX only update on channel change */
2888 	ht->hi_ctrlchannel = ieee80211_chan2ieee(ic, bsschan);
2889 	if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
2890 		ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PERM;
2891 	else
2892 		ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PROH;
2893 	if (IEEE80211_IS_CHAN_HT40U(bsschan))
2894 		ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_ABOVE;
2895 	else if (IEEE80211_IS_CHAN_HT40D(bsschan))
2896 		ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_BELOW;
2897 	else
2898 		ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_NONE;
2899 	if (IEEE80211_IS_CHAN_HT40(bsschan))
2900 		ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040;
2901 
2902 	/* protection mode */
2903 	ht->hi_byte2 = (ht->hi_byte2 &~ PROTMODE) | ic->ic_curhtprotmode;
2904 
2905 	ieee80211_free_node(ni);
2906 
2907 	/* XXX propagate to vendor ie's */
2908 #undef PROTMODE
2909 }
2910 
2911 /*
2912  * Add body of an HTINFO information element.
2913  *
2914  * NB: We don't use struct ieee80211_ie_htinfo because we can
2915  * be called to fillin both a standard ie and a compat ie that
2916  * has a vendor OUI at the front.
2917  */
2918 static uint8_t *
2919 ieee80211_add_htinfo_body(uint8_t *frm, struct ieee80211_node *ni)
2920 {
2921 	struct ieee80211vap *vap = ni->ni_vap;
2922 	struct ieee80211com *ic = ni->ni_ic;
2923 
2924 	/* pre-zero remainder of ie */
2925 	memset(frm, 0, sizeof(struct ieee80211_ie_htinfo) - 2);
2926 
2927 	/* primary/control channel center */
2928 	*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2929 
2930 	if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
2931 		frm[0] = IEEE80211_HTINFO_RIFSMODE_PERM;
2932 	else
2933 		frm[0] = IEEE80211_HTINFO_RIFSMODE_PROH;
2934 	if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
2935 		frm[0] |= IEEE80211_HTINFO_2NDCHAN_ABOVE;
2936 	else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
2937 		frm[0] |= IEEE80211_HTINFO_2NDCHAN_BELOW;
2938 	else
2939 		frm[0] |= IEEE80211_HTINFO_2NDCHAN_NONE;
2940 	if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
2941 		frm[0] |= IEEE80211_HTINFO_TXWIDTH_2040;
2942 
2943 	frm[1] = ic->ic_curhtprotmode;
2944 
2945 	frm += 5;
2946 
2947 	/* basic MCS set */
2948 	ieee80211_set_basic_htrates(frm, &ni->ni_htrates);
2949 	frm += sizeof(struct ieee80211_ie_htinfo) -
2950 		__offsetof(struct ieee80211_ie_htinfo, hi_basicmcsset);
2951 	return frm;
2952 }
2953 
2954 /*
2955  * Add 802.11n HT information information element.
2956  */
2957 uint8_t *
2958 ieee80211_add_htinfo(uint8_t *frm, struct ieee80211_node *ni)
2959 {
2960 	frm[0] = IEEE80211_ELEMID_HTINFO;
2961 	frm[1] = sizeof(struct ieee80211_ie_htinfo) - 2;
2962 	return ieee80211_add_htinfo_body(frm + 2, ni);
2963 }
2964 
2965 /*
2966  * Add Broadcom OUI wrapped standard HTINFO ie; this is
2967  * used for compatibility w/ pre-draft implementations.
2968  */
2969 uint8_t *
2970 ieee80211_add_htinfo_vendor(uint8_t *frm, struct ieee80211_node *ni)
2971 {
2972 	frm[0] = IEEE80211_ELEMID_VENDOR;
2973 	frm[1] = 4 + sizeof(struct ieee80211_ie_htinfo) - 2;
2974 	frm[2] = (BCM_OUI >> 0) & 0xff;
2975 	frm[3] = (BCM_OUI >> 8) & 0xff;
2976 	frm[4] = (BCM_OUI >> 16) & 0xff;
2977 	frm[5] = BCM_OUI_HTINFO;
2978 	return ieee80211_add_htinfo_body(frm + 6, ni);
2979 }
2980