1 /*- 2 * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 */ 25 26 #include <sys/cdefs.h> 27 #ifdef __FreeBSD__ 28 __FBSDID("$FreeBSD$"); 29 #endif 30 31 /* 32 * IEEE 802.11n protocol support. 33 */ 34 35 #include "opt_inet.h" 36 #include "opt_wlan.h" 37 38 #include <sys/param.h> 39 #include <sys/kernel.h> 40 #include <sys/systm.h> 41 #include <sys/endian.h> 42 43 #include <sys/socket.h> 44 45 #include <net/if.h> 46 #include <net/if_var.h> 47 #include <net/if_media.h> 48 #include <net/ethernet.h> 49 50 #include <net80211/ieee80211_var.h> 51 #include <net80211/ieee80211_action.h> 52 #include <net80211/ieee80211_input.h> 53 54 /* define here, used throughout file */ 55 #define MS(_v, _f) (((_v) & _f) >> _f##_S) 56 #define SM(_v, _f) (((_v) << _f##_S) & _f) 57 58 const struct ieee80211_mcs_rates ieee80211_htrates[IEEE80211_HTRATE_MAXSIZE] = { 59 { 13, 14, 27, 30 }, /* MCS 0 */ 60 { 26, 29, 54, 60 }, /* MCS 1 */ 61 { 39, 43, 81, 90 }, /* MCS 2 */ 62 { 52, 58, 108, 120 }, /* MCS 3 */ 63 { 78, 87, 162, 180 }, /* MCS 4 */ 64 { 104, 116, 216, 240 }, /* MCS 5 */ 65 { 117, 130, 243, 270 }, /* MCS 6 */ 66 { 130, 144, 270, 300 }, /* MCS 7 */ 67 { 26, 29, 54, 60 }, /* MCS 8 */ 68 { 52, 58, 108, 120 }, /* MCS 9 */ 69 { 78, 87, 162, 180 }, /* MCS 10 */ 70 { 104, 116, 216, 240 }, /* MCS 11 */ 71 { 156, 173, 324, 360 }, /* MCS 12 */ 72 { 208, 231, 432, 480 }, /* MCS 13 */ 73 { 234, 260, 486, 540 }, /* MCS 14 */ 74 { 260, 289, 540, 600 }, /* MCS 15 */ 75 { 39, 43, 81, 90 }, /* MCS 16 */ 76 { 78, 87, 162, 180 }, /* MCS 17 */ 77 { 117, 130, 243, 270 }, /* MCS 18 */ 78 { 156, 173, 324, 360 }, /* MCS 19 */ 79 { 234, 260, 486, 540 }, /* MCS 20 */ 80 { 312, 347, 648, 720 }, /* MCS 21 */ 81 { 351, 390, 729, 810 }, /* MCS 22 */ 82 { 390, 433, 810, 900 }, /* MCS 23 */ 83 { 52, 58, 108, 120 }, /* MCS 24 */ 84 { 104, 116, 216, 240 }, /* MCS 25 */ 85 { 156, 173, 324, 360 }, /* MCS 26 */ 86 { 208, 231, 432, 480 }, /* MCS 27 */ 87 { 312, 347, 648, 720 }, /* MCS 28 */ 88 { 416, 462, 864, 960 }, /* MCS 29 */ 89 { 468, 520, 972, 1080 }, /* MCS 30 */ 90 { 520, 578, 1080, 1200 }, /* MCS 31 */ 91 { 0, 0, 12, 13 }, /* MCS 32 */ 92 { 78, 87, 162, 180 }, /* MCS 33 */ 93 { 104, 116, 216, 240 }, /* MCS 34 */ 94 { 130, 144, 270, 300 }, /* MCS 35 */ 95 { 117, 130, 243, 270 }, /* MCS 36 */ 96 { 156, 173, 324, 360 }, /* MCS 37 */ 97 { 195, 217, 405, 450 }, /* MCS 38 */ 98 { 104, 116, 216, 240 }, /* MCS 39 */ 99 { 130, 144, 270, 300 }, /* MCS 40 */ 100 { 130, 144, 270, 300 }, /* MCS 41 */ 101 { 156, 173, 324, 360 }, /* MCS 42 */ 102 { 182, 202, 378, 420 }, /* MCS 43 */ 103 { 182, 202, 378, 420 }, /* MCS 44 */ 104 { 208, 231, 432, 480 }, /* MCS 45 */ 105 { 156, 173, 324, 360 }, /* MCS 46 */ 106 { 195, 217, 405, 450 }, /* MCS 47 */ 107 { 195, 217, 405, 450 }, /* MCS 48 */ 108 { 234, 260, 486, 540 }, /* MCS 49 */ 109 { 273, 303, 567, 630 }, /* MCS 50 */ 110 { 273, 303, 567, 630 }, /* MCS 51 */ 111 { 312, 347, 648, 720 }, /* MCS 52 */ 112 { 130, 144, 270, 300 }, /* MCS 53 */ 113 { 156, 173, 324, 360 }, /* MCS 54 */ 114 { 182, 202, 378, 420 }, /* MCS 55 */ 115 { 156, 173, 324, 360 }, /* MCS 56 */ 116 { 182, 202, 378, 420 }, /* MCS 57 */ 117 { 208, 231, 432, 480 }, /* MCS 58 */ 118 { 234, 260, 486, 540 }, /* MCS 59 */ 119 { 208, 231, 432, 480 }, /* MCS 60 */ 120 { 234, 260, 486, 540 }, /* MCS 61 */ 121 { 260, 289, 540, 600 }, /* MCS 62 */ 122 { 260, 289, 540, 600 }, /* MCS 63 */ 123 { 286, 318, 594, 660 }, /* MCS 64 */ 124 { 195, 217, 405, 450 }, /* MCS 65 */ 125 { 234, 260, 486, 540 }, /* MCS 66 */ 126 { 273, 303, 567, 630 }, /* MCS 67 */ 127 { 234, 260, 486, 540 }, /* MCS 68 */ 128 { 273, 303, 567, 630 }, /* MCS 69 */ 129 { 312, 347, 648, 720 }, /* MCS 70 */ 130 { 351, 390, 729, 810 }, /* MCS 71 */ 131 { 312, 347, 648, 720 }, /* MCS 72 */ 132 { 351, 390, 729, 810 }, /* MCS 73 */ 133 { 390, 433, 810, 900 }, /* MCS 74 */ 134 { 390, 433, 810, 900 }, /* MCS 75 */ 135 { 429, 477, 891, 990 }, /* MCS 76 */ 136 }; 137 138 #ifdef IEEE80211_AMPDU_AGE 139 static int ieee80211_ampdu_age = -1; /* threshold for ampdu reorder q (ms) */ 140 SYSCTL_PROC(_net_wlan, OID_AUTO, ampdu_age, CTLTYPE_INT | CTLFLAG_RW, 141 &ieee80211_ampdu_age, 0, ieee80211_sysctl_msecs_ticks, "I", 142 "AMPDU max reorder age (ms)"); 143 #endif 144 145 static int ieee80211_recv_bar_ena = 1; 146 SYSCTL_INT(_net_wlan, OID_AUTO, recv_bar, CTLFLAG_RW, &ieee80211_recv_bar_ena, 147 0, "BAR frame processing (ena/dis)"); 148 149 static int ieee80211_addba_timeout = -1;/* timeout for ADDBA response */ 150 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_timeout, CTLTYPE_INT | CTLFLAG_RW, 151 &ieee80211_addba_timeout, 0, ieee80211_sysctl_msecs_ticks, "I", 152 "ADDBA request timeout (ms)"); 153 static int ieee80211_addba_backoff = -1;/* backoff after max ADDBA requests */ 154 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_backoff, CTLTYPE_INT | CTLFLAG_RW, 155 &ieee80211_addba_backoff, 0, ieee80211_sysctl_msecs_ticks, "I", 156 "ADDBA request backoff (ms)"); 157 static int ieee80211_addba_maxtries = 3;/* max ADDBA requests before backoff */ 158 SYSCTL_INT(_net_wlan, OID_AUTO, addba_maxtries, CTLFLAG_RW, 159 &ieee80211_addba_maxtries, 0, "max ADDBA requests sent before backoff"); 160 161 static int ieee80211_bar_timeout = -1; /* timeout waiting for BAR response */ 162 static int ieee80211_bar_maxtries = 50;/* max BAR requests before DELBA */ 163 164 static ieee80211_recv_action_func ht_recv_action_ba_addba_request; 165 static ieee80211_recv_action_func ht_recv_action_ba_addba_response; 166 static ieee80211_recv_action_func ht_recv_action_ba_delba; 167 static ieee80211_recv_action_func ht_recv_action_ht_mimopwrsave; 168 static ieee80211_recv_action_func ht_recv_action_ht_txchwidth; 169 170 static ieee80211_send_action_func ht_send_action_ba_addba; 171 static ieee80211_send_action_func ht_send_action_ba_delba; 172 static ieee80211_send_action_func ht_send_action_ht_txchwidth; 173 174 static void 175 ieee80211_ht_init(void) 176 { 177 /* 178 * Setup HT parameters that depends on the clock frequency. 179 */ 180 #ifdef IEEE80211_AMPDU_AGE 181 ieee80211_ampdu_age = msecs_to_ticks(500); 182 #endif 183 ieee80211_addba_timeout = msecs_to_ticks(250); 184 ieee80211_addba_backoff = msecs_to_ticks(10*1000); 185 ieee80211_bar_timeout = msecs_to_ticks(250); 186 /* 187 * Register action frame handlers. 188 */ 189 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 190 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_recv_action_ba_addba_request); 191 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 192 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_recv_action_ba_addba_response); 193 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 194 IEEE80211_ACTION_BA_DELBA, ht_recv_action_ba_delba); 195 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 196 IEEE80211_ACTION_HT_MIMOPWRSAVE, ht_recv_action_ht_mimopwrsave); 197 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 198 IEEE80211_ACTION_HT_TXCHWIDTH, ht_recv_action_ht_txchwidth); 199 200 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 201 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_send_action_ba_addba); 202 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 203 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_send_action_ba_addba); 204 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 205 IEEE80211_ACTION_BA_DELBA, ht_send_action_ba_delba); 206 ieee80211_send_action_register(IEEE80211_ACTION_CAT_HT, 207 IEEE80211_ACTION_HT_TXCHWIDTH, ht_send_action_ht_txchwidth); 208 } 209 SYSINIT(wlan_ht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_ht_init, NULL); 210 211 static int ieee80211_ampdu_enable(struct ieee80211_node *ni, 212 struct ieee80211_tx_ampdu *tap); 213 static int ieee80211_addba_request(struct ieee80211_node *ni, 214 struct ieee80211_tx_ampdu *tap, 215 int dialogtoken, int baparamset, int batimeout); 216 static int ieee80211_addba_response(struct ieee80211_node *ni, 217 struct ieee80211_tx_ampdu *tap, 218 int code, int baparamset, int batimeout); 219 static void ieee80211_addba_stop(struct ieee80211_node *ni, 220 struct ieee80211_tx_ampdu *tap); 221 static void null_addba_response_timeout(struct ieee80211_node *ni, 222 struct ieee80211_tx_ampdu *tap); 223 224 static void ieee80211_bar_response(struct ieee80211_node *ni, 225 struct ieee80211_tx_ampdu *tap, int status); 226 static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap); 227 static void bar_stop_timer(struct ieee80211_tx_ampdu *tap); 228 static int ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *, 229 int baparamset, int batimeout, int baseqctl); 230 static void ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *); 231 232 void 233 ieee80211_ht_attach(struct ieee80211com *ic) 234 { 235 /* setup default aggregation policy */ 236 ic->ic_recv_action = ieee80211_recv_action; 237 ic->ic_send_action = ieee80211_send_action; 238 ic->ic_ampdu_enable = ieee80211_ampdu_enable; 239 ic->ic_addba_request = ieee80211_addba_request; 240 ic->ic_addba_response = ieee80211_addba_response; 241 ic->ic_addba_response_timeout = null_addba_response_timeout; 242 ic->ic_addba_stop = ieee80211_addba_stop; 243 ic->ic_bar_response = ieee80211_bar_response; 244 ic->ic_ampdu_rx_start = ampdu_rx_start; 245 ic->ic_ampdu_rx_stop = ampdu_rx_stop; 246 247 ic->ic_htprotmode = IEEE80211_PROT_RTSCTS; 248 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; 249 } 250 251 void 252 ieee80211_ht_detach(struct ieee80211com *ic) 253 { 254 } 255 256 void 257 ieee80211_ht_vattach(struct ieee80211vap *vap) 258 { 259 260 /* driver can override defaults */ 261 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_8K; 262 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_NA; 263 vap->iv_ampdu_limit = vap->iv_ampdu_rxmax; 264 vap->iv_amsdu_limit = vap->iv_htcaps & IEEE80211_HTCAP_MAXAMSDU; 265 /* tx aggregation traffic thresholds */ 266 vap->iv_ampdu_mintraffic[WME_AC_BK] = 128; 267 vap->iv_ampdu_mintraffic[WME_AC_BE] = 64; 268 vap->iv_ampdu_mintraffic[WME_AC_VO] = 32; 269 vap->iv_ampdu_mintraffic[WME_AC_VI] = 32; 270 271 if (vap->iv_htcaps & IEEE80211_HTC_HT) { 272 /* 273 * Device is HT capable; enable all HT-related 274 * facilities by default. 275 * XXX these choices may be too aggressive. 276 */ 277 vap->iv_flags_ht |= IEEE80211_FHT_HT 278 | IEEE80211_FHT_HTCOMPAT 279 ; 280 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI20) 281 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20; 282 /* XXX infer from channel list? */ 283 if (vap->iv_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 284 vap->iv_flags_ht |= IEEE80211_FHT_USEHT40; 285 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI40) 286 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40; 287 } 288 /* enable RIFS if capable */ 289 if (vap->iv_htcaps & IEEE80211_HTC_RIFS) 290 vap->iv_flags_ht |= IEEE80211_FHT_RIFS; 291 292 /* NB: A-MPDU and A-MSDU rx are mandated, these are tx only */ 293 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX; 294 if (vap->iv_htcaps & IEEE80211_HTC_AMPDU) 295 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX; 296 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX; 297 if (vap->iv_htcaps & IEEE80211_HTC_AMSDU) 298 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX; 299 } 300 /* NB: disable default legacy WDS, too many issues right now */ 301 if (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) 302 vap->iv_flags_ht &= ~IEEE80211_FHT_HT; 303 } 304 305 void 306 ieee80211_ht_vdetach(struct ieee80211vap *vap) 307 { 308 } 309 310 static int 311 ht_getrate(struct ieee80211com *ic, int index, enum ieee80211_phymode mode, 312 int ratetype) 313 { 314 int mword, rate; 315 316 mword = ieee80211_rate2media(ic, index | IEEE80211_RATE_MCS, mode); 317 if (IFM_SUBTYPE(mword) != IFM_IEEE80211_MCS) 318 return (0); 319 switch (ratetype) { 320 case 0: 321 rate = ieee80211_htrates[index].ht20_rate_800ns; 322 break; 323 case 1: 324 rate = ieee80211_htrates[index].ht20_rate_400ns; 325 break; 326 case 2: 327 rate = ieee80211_htrates[index].ht40_rate_800ns; 328 break; 329 default: 330 rate = ieee80211_htrates[index].ht40_rate_400ns; 331 break; 332 } 333 return (rate); 334 } 335 336 static struct printranges { 337 int minmcs; 338 int maxmcs; 339 int txstream; 340 int ratetype; 341 int htcapflags; 342 } ranges[] = { 343 { 0, 7, 1, 0, 0 }, 344 { 8, 15, 2, 0, 0 }, 345 { 16, 23, 3, 0, 0 }, 346 { 24, 31, 4, 0, 0 }, 347 { 32, 0, 1, 2, IEEE80211_HTC_TXMCS32 }, 348 { 33, 38, 2, 0, IEEE80211_HTC_TXUNEQUAL }, 349 { 39, 52, 3, 0, IEEE80211_HTC_TXUNEQUAL }, 350 { 53, 76, 4, 0, IEEE80211_HTC_TXUNEQUAL }, 351 { 0, 0, 0, 0, 0 }, 352 }; 353 354 static void 355 ht_rateprint(struct ieee80211com *ic, enum ieee80211_phymode mode, int ratetype) 356 { 357 struct ifnet *ifp = ic->ic_ifp; 358 int minrate, maxrate; 359 struct printranges *range; 360 361 for (range = ranges; range->txstream != 0; range++) { 362 if (ic->ic_txstream < range->txstream) 363 continue; 364 if (range->htcapflags && 365 (ic->ic_htcaps & range->htcapflags) == 0) 366 continue; 367 if (ratetype < range->ratetype) 368 continue; 369 minrate = ht_getrate(ic, range->minmcs, mode, ratetype); 370 maxrate = ht_getrate(ic, range->maxmcs, mode, ratetype); 371 if (range->maxmcs) { 372 if_printf(ifp, "MCS %d-%d: %d%sMbps - %d%sMbps\n", 373 range->minmcs, range->maxmcs, 374 minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""), 375 maxrate/2, ((maxrate & 0x1) != 0 ? ".5" : "")); 376 } else { 377 if_printf(ifp, "MCS %d: %d%sMbps\n", range->minmcs, 378 minrate/2, ((minrate & 0x1) != 0 ? ".5" : "")); 379 } 380 } 381 } 382 383 static void 384 ht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode) 385 { 386 struct ifnet *ifp = ic->ic_ifp; 387 const char *modestr = ieee80211_phymode_name[mode]; 388 389 if_printf(ifp, "%s MCS 20MHz\n", modestr); 390 ht_rateprint(ic, mode, 0); 391 if (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) { 392 if_printf(ifp, "%s MCS 20MHz SGI\n", modestr); 393 ht_rateprint(ic, mode, 1); 394 } 395 if (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 396 if_printf(ifp, "%s MCS 40MHz:\n", modestr); 397 ht_rateprint(ic, mode, 2); 398 } 399 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 400 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) { 401 if_printf(ifp, "%s MCS 40MHz SGI:\n", modestr); 402 ht_rateprint(ic, mode, 3); 403 } 404 } 405 406 void 407 ieee80211_ht_announce(struct ieee80211com *ic) 408 { 409 struct ifnet *ifp = ic->ic_ifp; 410 411 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 412 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 413 if_printf(ifp, "%dT%dR\n", ic->ic_txstream, ic->ic_rxstream); 414 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA)) 415 ht_announce(ic, IEEE80211_MODE_11NA); 416 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 417 ht_announce(ic, IEEE80211_MODE_11NG); 418 } 419 420 static struct ieee80211_htrateset htrateset; 421 422 const struct ieee80211_htrateset * 423 ieee80211_get_suphtrates(struct ieee80211com *ic, 424 const struct ieee80211_channel *c) 425 { 426 #define ADDRATE(x) do { \ 427 htrateset.rs_rates[htrateset.rs_nrates] = x; \ 428 htrateset.rs_nrates++; \ 429 } while (0) 430 int i; 431 432 memset(&htrateset, 0, sizeof(struct ieee80211_htrateset)); 433 for (i = 0; i < ic->ic_txstream * 8; i++) 434 ADDRATE(i); 435 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 436 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32)) 437 ADDRATE(32); 438 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 439 if (ic->ic_txstream >= 2) { 440 for (i = 33; i <= 38; i++) 441 ADDRATE(i); 442 } 443 if (ic->ic_txstream >= 3) { 444 for (i = 39; i <= 52; i++) 445 ADDRATE(i); 446 } 447 if (ic->ic_txstream == 4) { 448 for (i = 53; i <= 76; i++) 449 ADDRATE(i); 450 } 451 } 452 return &htrateset; 453 #undef ADDRATE 454 } 455 456 /* 457 * Receive processing. 458 */ 459 460 /* 461 * Decap the encapsulated A-MSDU frames and dispatch all but 462 * the last for delivery. The last frame is returned for 463 * delivery via the normal path. 464 */ 465 struct mbuf * 466 ieee80211_decap_amsdu(struct ieee80211_node *ni, struct mbuf *m) 467 { 468 struct ieee80211vap *vap = ni->ni_vap; 469 int framelen; 470 struct mbuf *n; 471 472 /* discard 802.3 header inserted by ieee80211_decap */ 473 m_adj(m, sizeof(struct ether_header)); 474 475 vap->iv_stats.is_amsdu_decap++; 476 477 for (;;) { 478 /* 479 * Decap the first frame, bust it apart from the 480 * remainder and deliver. We leave the last frame 481 * delivery to the caller (for consistency with other 482 * code paths, could also do it here). 483 */ 484 m = ieee80211_decap1(m, &framelen); 485 if (m == NULL) { 486 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 487 ni->ni_macaddr, "a-msdu", "%s", "decap failed"); 488 vap->iv_stats.is_amsdu_tooshort++; 489 return NULL; 490 } 491 if (m->m_pkthdr.len == framelen) 492 break; 493 n = m_split(m, framelen, M_NOWAIT); 494 if (n == NULL) { 495 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 496 ni->ni_macaddr, "a-msdu", 497 "%s", "unable to split encapsulated frames"); 498 vap->iv_stats.is_amsdu_split++; 499 m_freem(m); /* NB: must reclaim */ 500 return NULL; 501 } 502 vap->iv_deliver_data(vap, ni, m); 503 504 /* 505 * Remove frame contents; each intermediate frame 506 * is required to be aligned to a 4-byte boundary. 507 */ 508 m = n; 509 m_adj(m, roundup2(framelen, 4) - framelen); /* padding */ 510 } 511 return m; /* last delivered by caller */ 512 } 513 514 /* 515 * Purge all frames in the A-MPDU re-order queue. 516 */ 517 static void 518 ampdu_rx_purge(struct ieee80211_rx_ampdu *rap) 519 { 520 struct mbuf *m; 521 int i; 522 523 for (i = 0; i < rap->rxa_wnd; i++) { 524 m = rap->rxa_m[i]; 525 if (m != NULL) { 526 rap->rxa_m[i] = NULL; 527 rap->rxa_qbytes -= m->m_pkthdr.len; 528 m_freem(m); 529 if (--rap->rxa_qframes == 0) 530 break; 531 } 532 } 533 KASSERT(rap->rxa_qbytes == 0 && rap->rxa_qframes == 0, 534 ("lost %u data, %u frames on ampdu rx q", 535 rap->rxa_qbytes, rap->rxa_qframes)); 536 } 537 538 /* 539 * Start A-MPDU rx/re-order processing for the specified TID. 540 */ 541 static int 542 ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap, 543 int baparamset, int batimeout, int baseqctl) 544 { 545 int bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 546 547 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 548 /* 549 * AMPDU previously setup and not terminated with a DELBA, 550 * flush the reorder q's in case anything remains. 551 */ 552 ampdu_rx_purge(rap); 553 } 554 memset(rap, 0, sizeof(*rap)); 555 rap->rxa_wnd = (bufsiz == 0) ? 556 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 557 rap->rxa_start = MS(baseqctl, IEEE80211_BASEQ_START); 558 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 559 560 return 0; 561 } 562 563 /* 564 * Stop A-MPDU rx processing for the specified TID. 565 */ 566 static void 567 ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 568 { 569 570 ampdu_rx_purge(rap); 571 rap->rxa_flags &= ~(IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND); 572 } 573 574 /* 575 * Dispatch a frame from the A-MPDU reorder queue. The 576 * frame is fed back into ieee80211_input marked with an 577 * M_AMPDU_MPDU flag so it doesn't come back to us (it also 578 * permits ieee80211_input to optimize re-processing). 579 */ 580 static __inline void 581 ampdu_dispatch(struct ieee80211_node *ni, struct mbuf *m) 582 { 583 m->m_flags |= M_AMPDU_MPDU; /* bypass normal processing */ 584 /* NB: rssi and noise are ignored w/ M_AMPDU_MPDU set */ 585 (void) ieee80211_input(ni, m, 0, 0); 586 } 587 588 /* 589 * Dispatch as many frames as possible from the re-order queue. 590 * Frames will always be "at the front"; we process all frames 591 * up to the first empty slot in the window. On completion we 592 * cleanup state if there are still pending frames in the current 593 * BA window. We assume the frame at slot 0 is already handled 594 * by the caller; we always start at slot 1. 595 */ 596 static void 597 ampdu_rx_dispatch(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni) 598 { 599 struct ieee80211vap *vap = ni->ni_vap; 600 struct mbuf *m; 601 int i; 602 603 /* flush run of frames */ 604 for (i = 1; i < rap->rxa_wnd; i++) { 605 m = rap->rxa_m[i]; 606 if (m == NULL) 607 break; 608 rap->rxa_m[i] = NULL; 609 rap->rxa_qbytes -= m->m_pkthdr.len; 610 rap->rxa_qframes--; 611 612 ampdu_dispatch(ni, m); 613 } 614 /* 615 * If frames remain, copy the mbuf pointers down so 616 * they correspond to the offsets in the new window. 617 */ 618 if (rap->rxa_qframes != 0) { 619 int n = rap->rxa_qframes, j; 620 for (j = i+1; j < rap->rxa_wnd; j++) { 621 if (rap->rxa_m[j] != NULL) { 622 rap->rxa_m[j-i] = rap->rxa_m[j]; 623 rap->rxa_m[j] = NULL; 624 if (--n == 0) 625 break; 626 } 627 } 628 KASSERT(n == 0, ("lost %d frames", n)); 629 vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; 630 } 631 /* 632 * Adjust the start of the BA window to 633 * reflect the frames just dispatched. 634 */ 635 rap->rxa_start = IEEE80211_SEQ_ADD(rap->rxa_start, i); 636 vap->iv_stats.is_ampdu_rx_oor += i; 637 } 638 639 #ifdef IEEE80211_AMPDU_AGE 640 /* 641 * Dispatch all frames in the A-MPDU re-order queue. 642 */ 643 static void 644 ampdu_rx_flush(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 645 { 646 struct ieee80211vap *vap = ni->ni_vap; 647 struct mbuf *m; 648 int i; 649 650 for (i = 0; i < rap->rxa_wnd; i++) { 651 m = rap->rxa_m[i]; 652 if (m == NULL) 653 continue; 654 rap->rxa_m[i] = NULL; 655 rap->rxa_qbytes -= m->m_pkthdr.len; 656 rap->rxa_qframes--; 657 vap->iv_stats.is_ampdu_rx_oor++; 658 659 ampdu_dispatch(ni, m); 660 if (rap->rxa_qframes == 0) 661 break; 662 } 663 } 664 #endif /* IEEE80211_AMPDU_AGE */ 665 666 /* 667 * Dispatch all frames in the A-MPDU re-order queue 668 * preceding the specified sequence number. This logic 669 * handles window moves due to a received MSDU or BAR. 670 */ 671 static void 672 ampdu_rx_flush_upto(struct ieee80211_node *ni, 673 struct ieee80211_rx_ampdu *rap, ieee80211_seq winstart) 674 { 675 struct ieee80211vap *vap = ni->ni_vap; 676 struct mbuf *m; 677 ieee80211_seq seqno; 678 int i; 679 680 /* 681 * Flush any complete MSDU's with a sequence number lower 682 * than winstart. Gaps may exist. Note that we may actually 683 * dispatch frames past winstart if a run continues; this is 684 * an optimization that avoids having to do a separate pass 685 * to dispatch frames after moving the BA window start. 686 */ 687 seqno = rap->rxa_start; 688 for (i = 0; i < rap->rxa_wnd; i++) { 689 m = rap->rxa_m[i]; 690 if (m != NULL) { 691 rap->rxa_m[i] = NULL; 692 rap->rxa_qbytes -= m->m_pkthdr.len; 693 rap->rxa_qframes--; 694 vap->iv_stats.is_ampdu_rx_oor++; 695 696 ampdu_dispatch(ni, m); 697 } else { 698 if (!IEEE80211_SEQ_BA_BEFORE(seqno, winstart)) 699 break; 700 } 701 seqno = IEEE80211_SEQ_INC(seqno); 702 } 703 /* 704 * If frames remain, copy the mbuf pointers down so 705 * they correspond to the offsets in the new window. 706 */ 707 if (rap->rxa_qframes != 0) { 708 int n = rap->rxa_qframes, j; 709 710 /* NB: this loop assumes i > 0 and/or rxa_m[0] is NULL */ 711 KASSERT(rap->rxa_m[0] == NULL, 712 ("%s: BA window slot 0 occupied", __func__)); 713 for (j = i+1; j < rap->rxa_wnd; j++) { 714 if (rap->rxa_m[j] != NULL) { 715 rap->rxa_m[j-i] = rap->rxa_m[j]; 716 rap->rxa_m[j] = NULL; 717 if (--n == 0) 718 break; 719 } 720 } 721 KASSERT(n == 0, ("%s: lost %d frames, qframes %d off %d " 722 "BA win <%d:%d> winstart %d", 723 __func__, n, rap->rxa_qframes, i, rap->rxa_start, 724 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 725 winstart)); 726 vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; 727 } 728 /* 729 * Move the start of the BA window; we use the 730 * sequence number of the last MSDU that was 731 * passed up the stack+1 or winstart if stopped on 732 * a gap in the reorder buffer. 733 */ 734 rap->rxa_start = seqno; 735 } 736 737 /* 738 * Process a received QoS data frame for an HT station. Handle 739 * A-MPDU reordering: if this frame is received out of order 740 * and falls within the BA window hold onto it. Otherwise if 741 * this frame completes a run, flush any pending frames. We 742 * return 1 if the frame is consumed. A 0 is returned if 743 * the frame should be processed normally by the caller. 744 */ 745 int 746 ieee80211_ampdu_reorder(struct ieee80211_node *ni, struct mbuf *m) 747 { 748 #define IEEE80211_FC0_QOSDATA \ 749 (IEEE80211_FC0_TYPE_DATA|IEEE80211_FC0_SUBTYPE_QOS|IEEE80211_FC0_VERSION_0) 750 #define PROCESS 0 /* caller should process frame */ 751 #define CONSUMED 1 /* frame consumed, caller does nothing */ 752 struct ieee80211vap *vap = ni->ni_vap; 753 struct ieee80211_qosframe *wh; 754 struct ieee80211_rx_ampdu *rap; 755 ieee80211_seq rxseq; 756 uint8_t tid; 757 int off; 758 759 KASSERT((m->m_flags & (M_AMPDU | M_AMPDU_MPDU)) == M_AMPDU, 760 ("!a-mpdu or already re-ordered, flags 0x%x", m->m_flags)); 761 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 762 763 /* NB: m_len known to be sufficient */ 764 wh = mtod(m, struct ieee80211_qosframe *); 765 if (wh->i_fc[0] != IEEE80211_FC0_QOSDATA) { 766 /* 767 * Not QoS data, shouldn't get here but just 768 * return it to the caller for processing. 769 */ 770 return PROCESS; 771 } 772 if (IEEE80211_IS_DSTODS(wh)) 773 tid = ((struct ieee80211_qosframe_addr4 *)wh)->i_qos[0]; 774 else 775 tid = wh->i_qos[0]; 776 tid &= IEEE80211_QOS_TID; 777 rap = &ni->ni_rx_ampdu[tid]; 778 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 779 /* 780 * No ADDBA request yet, don't touch. 781 */ 782 return PROCESS; 783 } 784 rxseq = le16toh(*(uint16_t *)wh->i_seq); 785 if ((rxseq & IEEE80211_SEQ_FRAG_MASK) != 0) { 786 /* 787 * Fragments are not allowed; toss. 788 */ 789 IEEE80211_DISCARD_MAC(vap, 790 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 791 "A-MPDU", "fragment, rxseq 0x%x tid %u%s", rxseq, tid, 792 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 793 vap->iv_stats.is_ampdu_rx_drop++; 794 IEEE80211_NODE_STAT(ni, rx_drop); 795 m_freem(m); 796 return CONSUMED; 797 } 798 rxseq >>= IEEE80211_SEQ_SEQ_SHIFT; 799 rap->rxa_nframes++; 800 again: 801 if (rxseq == rap->rxa_start) { 802 /* 803 * First frame in window. 804 */ 805 if (rap->rxa_qframes != 0) { 806 /* 807 * Dispatch as many packets as we can. 808 */ 809 KASSERT(rap->rxa_m[0] == NULL, ("unexpected dup")); 810 ampdu_dispatch(ni, m); 811 ampdu_rx_dispatch(rap, ni); 812 return CONSUMED; 813 } else { 814 /* 815 * In order; advance window and notify 816 * caller to dispatch directly. 817 */ 818 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 819 return PROCESS; 820 } 821 } 822 /* 823 * Frame is out of order; store if in the BA window. 824 */ 825 /* calculate offset in BA window */ 826 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 827 if (off < rap->rxa_wnd) { 828 /* 829 * Common case (hopefully): in the BA window. 830 * Sec 9.10.7.6.2 a) (p.137) 831 */ 832 #ifdef IEEE80211_AMPDU_AGE 833 /* 834 * Check for frames sitting too long in the reorder queue. 835 * This should only ever happen if frames are not delivered 836 * without the sender otherwise notifying us (e.g. with a 837 * BAR to move the window). Typically this happens because 838 * of vendor bugs that cause the sequence number to jump. 839 * When this happens we get a gap in the reorder queue that 840 * leaves frame sitting on the queue until they get pushed 841 * out due to window moves. When the vendor does not send 842 * BAR this move only happens due to explicit packet sends 843 * 844 * NB: we only track the time of the oldest frame in the 845 * reorder q; this means that if we flush we might push 846 * frames that still "new"; if this happens then subsequent 847 * frames will result in BA window moves which cost something 848 * but is still better than a big throughput dip. 849 */ 850 if (rap->rxa_qframes != 0) { 851 /* XXX honor batimeout? */ 852 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 853 /* 854 * Too long since we received the first 855 * frame; flush the reorder buffer. 856 */ 857 if (rap->rxa_qframes != 0) { 858 vap->iv_stats.is_ampdu_rx_age += 859 rap->rxa_qframes; 860 ampdu_rx_flush(ni, rap); 861 } 862 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 863 return PROCESS; 864 } 865 } else { 866 /* 867 * First frame, start aging timer. 868 */ 869 rap->rxa_age = ticks; 870 } 871 #endif /* IEEE80211_AMPDU_AGE */ 872 /* save packet */ 873 if (rap->rxa_m[off] == NULL) { 874 rap->rxa_m[off] = m; 875 rap->rxa_qframes++; 876 rap->rxa_qbytes += m->m_pkthdr.len; 877 vap->iv_stats.is_ampdu_rx_reorder++; 878 } else { 879 IEEE80211_DISCARD_MAC(vap, 880 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 881 ni->ni_macaddr, "a-mpdu duplicate", 882 "seqno %u tid %u BA win <%u:%u>", 883 rxseq, tid, rap->rxa_start, 884 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1)); 885 vap->iv_stats.is_rx_dup++; 886 IEEE80211_NODE_STAT(ni, rx_dup); 887 m_freem(m); 888 } 889 return CONSUMED; 890 } 891 if (off < IEEE80211_SEQ_BA_RANGE) { 892 /* 893 * Outside the BA window, but within range; 894 * flush the reorder q and move the window. 895 * Sec 9.10.7.6.2 b) (p.138) 896 */ 897 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 898 "move BA win <%u:%u> (%u frames) rxseq %u tid %u", 899 rap->rxa_start, 900 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 901 rap->rxa_qframes, rxseq, tid); 902 vap->iv_stats.is_ampdu_rx_move++; 903 904 /* 905 * The spec says to flush frames up to but not including: 906 * WinStart_B = rxseq - rap->rxa_wnd + 1 907 * Then insert the frame or notify the caller to process 908 * it immediately. We can safely do this by just starting 909 * over again because we know the frame will now be within 910 * the BA window. 911 */ 912 /* NB: rxa_wnd known to be >0 */ 913 ampdu_rx_flush_upto(ni, rap, 914 IEEE80211_SEQ_SUB(rxseq, rap->rxa_wnd-1)); 915 goto again; 916 } else { 917 /* 918 * Outside the BA window and out of range; toss. 919 * Sec 9.10.7.6.2 c) (p.138) 920 */ 921 IEEE80211_DISCARD_MAC(vap, 922 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 923 "MPDU", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 924 rap->rxa_start, 925 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 926 rap->rxa_qframes, rxseq, tid, 927 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 928 vap->iv_stats.is_ampdu_rx_drop++; 929 IEEE80211_NODE_STAT(ni, rx_drop); 930 m_freem(m); 931 return CONSUMED; 932 } 933 #undef CONSUMED 934 #undef PROCESS 935 #undef IEEE80211_FC0_QOSDATA 936 } 937 938 /* 939 * Process a BAR ctl frame. Dispatch all frames up to 940 * the sequence number of the frame. If this frame is 941 * out of range it's discarded. 942 */ 943 void 944 ieee80211_recv_bar(struct ieee80211_node *ni, struct mbuf *m0) 945 { 946 struct ieee80211vap *vap = ni->ni_vap; 947 struct ieee80211_frame_bar *wh; 948 struct ieee80211_rx_ampdu *rap; 949 ieee80211_seq rxseq; 950 int tid, off; 951 952 if (!ieee80211_recv_bar_ena) { 953 #if 0 954 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_11N, 955 ni->ni_macaddr, "BAR", "%s", "processing disabled"); 956 #endif 957 vap->iv_stats.is_ampdu_bar_bad++; 958 return; 959 } 960 wh = mtod(m0, struct ieee80211_frame_bar *); 961 /* XXX check basic BAR */ 962 tid = MS(le16toh(wh->i_ctl), IEEE80211_BAR_TID); 963 rap = &ni->ni_rx_ampdu[tid]; 964 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 965 /* 966 * No ADDBA request yet, don't touch. 967 */ 968 IEEE80211_DISCARD_MAC(vap, 969 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 970 ni->ni_macaddr, "BAR", "no BA stream, tid %u", tid); 971 vap->iv_stats.is_ampdu_bar_bad++; 972 return; 973 } 974 vap->iv_stats.is_ampdu_bar_rx++; 975 rxseq = le16toh(wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT; 976 if (rxseq == rap->rxa_start) 977 return; 978 /* calculate offset in BA window */ 979 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 980 if (off < IEEE80211_SEQ_BA_RANGE) { 981 /* 982 * Flush the reorder q up to rxseq and move the window. 983 * Sec 9.10.7.6.3 a) (p.138) 984 */ 985 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 986 "BAR moves BA win <%u:%u> (%u frames) rxseq %u tid %u", 987 rap->rxa_start, 988 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 989 rap->rxa_qframes, rxseq, tid); 990 vap->iv_stats.is_ampdu_bar_move++; 991 992 ampdu_rx_flush_upto(ni, rap, rxseq); 993 if (off >= rap->rxa_wnd) { 994 /* 995 * BAR specifies a window start to the right of BA 996 * window; we must move it explicitly since 997 * ampdu_rx_flush_upto will not. 998 */ 999 rap->rxa_start = rxseq; 1000 } 1001 } else { 1002 /* 1003 * Out of range; toss. 1004 * Sec 9.10.7.6.3 b) (p.138) 1005 */ 1006 IEEE80211_DISCARD_MAC(vap, 1007 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 1008 "BAR", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 1009 rap->rxa_start, 1010 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1011 rap->rxa_qframes, rxseq, tid, 1012 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 1013 vap->iv_stats.is_ampdu_bar_oow++; 1014 IEEE80211_NODE_STAT(ni, rx_drop); 1015 } 1016 } 1017 1018 /* 1019 * Setup HT-specific state in a node. Called only 1020 * when HT use is negotiated so we don't do extra 1021 * work for temporary and/or legacy sta's. 1022 */ 1023 void 1024 ieee80211_ht_node_init(struct ieee80211_node *ni) 1025 { 1026 struct ieee80211_tx_ampdu *tap; 1027 int tid; 1028 1029 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1030 ni, 1031 "%s: called", 1032 __func__); 1033 1034 if (ni->ni_flags & IEEE80211_NODE_HT) { 1035 /* 1036 * Clean AMPDU state on re-associate. This handles the case 1037 * where a station leaves w/o notifying us and then returns 1038 * before node is reaped for inactivity. 1039 */ 1040 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1041 ni, 1042 "%s: calling cleanup", 1043 __func__); 1044 ieee80211_ht_node_cleanup(ni); 1045 } 1046 for (tid = 0; tid < WME_NUM_TID; tid++) { 1047 tap = &ni->ni_tx_ampdu[tid]; 1048 tap->txa_tid = tid; 1049 tap->txa_ni = ni; 1050 tap->txa_lastsample = ticks; 1051 /* NB: further initialization deferred */ 1052 } 1053 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU; 1054 } 1055 1056 /* 1057 * Cleanup HT-specific state in a node. Called only 1058 * when HT use has been marked. 1059 */ 1060 void 1061 ieee80211_ht_node_cleanup(struct ieee80211_node *ni) 1062 { 1063 struct ieee80211com *ic = ni->ni_ic; 1064 int i; 1065 1066 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1067 ni, 1068 "%s: called", 1069 __func__); 1070 1071 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT node")); 1072 1073 /* XXX optimize this */ 1074 for (i = 0; i < WME_NUM_TID; i++) { 1075 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[i]; 1076 if (tap->txa_flags & IEEE80211_AGGR_SETUP) 1077 ampdu_tx_stop(tap); 1078 } 1079 for (i = 0; i < WME_NUM_TID; i++) 1080 ic->ic_ampdu_rx_stop(ni, &ni->ni_rx_ampdu[i]); 1081 1082 ni->ni_htcap = 0; 1083 ni->ni_flags &= ~IEEE80211_NODE_HT_ALL; 1084 } 1085 1086 /* 1087 * Age out HT resources for a station. 1088 */ 1089 void 1090 ieee80211_ht_node_age(struct ieee80211_node *ni) 1091 { 1092 #ifdef IEEE80211_AMPDU_AGE 1093 struct ieee80211vap *vap = ni->ni_vap; 1094 uint8_t tid; 1095 #endif 1096 1097 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 1098 1099 #ifdef IEEE80211_AMPDU_AGE 1100 for (tid = 0; tid < WME_NUM_TID; tid++) { 1101 struct ieee80211_rx_ampdu *rap; 1102 1103 rap = &ni->ni_rx_ampdu[tid]; 1104 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) 1105 continue; 1106 if (rap->rxa_qframes == 0) 1107 continue; 1108 /* 1109 * Check for frames sitting too long in the reorder queue. 1110 * See above for more details on what's happening here. 1111 */ 1112 /* XXX honor batimeout? */ 1113 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 1114 /* 1115 * Too long since we received the first 1116 * frame; flush the reorder buffer. 1117 */ 1118 vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes; 1119 ampdu_rx_flush(ni, rap); 1120 } 1121 } 1122 #endif /* IEEE80211_AMPDU_AGE */ 1123 } 1124 1125 static struct ieee80211_channel * 1126 findhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int htflags) 1127 { 1128 return ieee80211_find_channel(ic, c->ic_freq, 1129 (c->ic_flags &~ IEEE80211_CHAN_HT) | htflags); 1130 } 1131 1132 /* 1133 * Adjust a channel to be HT/non-HT according to the vap's configuration. 1134 */ 1135 struct ieee80211_channel * 1136 ieee80211_ht_adjust_channel(struct ieee80211com *ic, 1137 struct ieee80211_channel *chan, int flags) 1138 { 1139 struct ieee80211_channel *c; 1140 1141 if (flags & IEEE80211_FHT_HT) { 1142 /* promote to HT if possible */ 1143 if (flags & IEEE80211_FHT_USEHT40) { 1144 if (!IEEE80211_IS_CHAN_HT40(chan)) { 1145 /* NB: arbitrarily pick ht40+ over ht40- */ 1146 c = findhtchan(ic, chan, IEEE80211_CHAN_HT40U); 1147 if (c == NULL) 1148 c = findhtchan(ic, chan, 1149 IEEE80211_CHAN_HT40D); 1150 if (c == NULL) 1151 c = findhtchan(ic, chan, 1152 IEEE80211_CHAN_HT20); 1153 if (c != NULL) 1154 chan = c; 1155 } 1156 } else if (!IEEE80211_IS_CHAN_HT20(chan)) { 1157 c = findhtchan(ic, chan, IEEE80211_CHAN_HT20); 1158 if (c != NULL) 1159 chan = c; 1160 } 1161 } else if (IEEE80211_IS_CHAN_HT(chan)) { 1162 /* demote to legacy, HT use is disabled */ 1163 c = ieee80211_find_channel(ic, chan->ic_freq, 1164 chan->ic_flags &~ IEEE80211_CHAN_HT); 1165 if (c != NULL) 1166 chan = c; 1167 } 1168 return chan; 1169 } 1170 1171 /* 1172 * Setup HT-specific state for a legacy WDS peer. 1173 */ 1174 void 1175 ieee80211_ht_wds_init(struct ieee80211_node *ni) 1176 { 1177 struct ieee80211vap *vap = ni->ni_vap; 1178 struct ieee80211_tx_ampdu *tap; 1179 int tid; 1180 1181 KASSERT(vap->iv_flags_ht & IEEE80211_FHT_HT, ("no HT requested")); 1182 1183 /* XXX check scan cache in case peer has an ap and we have info */ 1184 /* 1185 * If setup with a legacy channel; locate an HT channel. 1186 * Otherwise if the inherited channel (from a companion 1187 * AP) is suitable use it so we use the same location 1188 * for the extension channel). 1189 */ 1190 ni->ni_chan = ieee80211_ht_adjust_channel(ni->ni_ic, 1191 ni->ni_chan, ieee80211_htchanflags(ni->ni_chan)); 1192 1193 ni->ni_htcap = 0; 1194 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) 1195 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI20; 1196 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { 1197 ni->ni_htcap |= IEEE80211_HTCAP_CHWIDTH40; 1198 ni->ni_chw = 40; 1199 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 1200 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_ABOVE; 1201 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 1202 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_BELOW; 1203 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) 1204 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI40; 1205 } else { 1206 ni->ni_chw = 20; 1207 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_NONE; 1208 } 1209 ni->ni_htctlchan = ni->ni_chan->ic_ieee; 1210 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 1211 ni->ni_flags |= IEEE80211_NODE_RIFS; 1212 /* XXX does it make sense to enable SMPS? */ 1213 1214 ni->ni_htopmode = 0; /* XXX need protection state */ 1215 ni->ni_htstbc = 0; /* XXX need info */ 1216 1217 for (tid = 0; tid < WME_NUM_TID; tid++) { 1218 tap = &ni->ni_tx_ampdu[tid]; 1219 tap->txa_tid = tid; 1220 tap->txa_lastsample = ticks; 1221 } 1222 /* NB: AMPDU tx/rx governed by IEEE80211_FHT_AMPDU_{TX,RX} */ 1223 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU; 1224 } 1225 1226 /* 1227 * Notify hostap vaps of a change in the HTINFO ie. 1228 */ 1229 static void 1230 htinfo_notify(struct ieee80211com *ic) 1231 { 1232 struct ieee80211vap *vap; 1233 int first = 1; 1234 1235 IEEE80211_LOCK_ASSERT(ic); 1236 1237 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1238 if (vap->iv_opmode != IEEE80211_M_HOSTAP) 1239 continue; 1240 if (vap->iv_state != IEEE80211_S_RUN || 1241 !IEEE80211_IS_CHAN_HT(vap->iv_bss->ni_chan)) 1242 continue; 1243 if (first) { 1244 IEEE80211_NOTE(vap, 1245 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1246 vap->iv_bss, 1247 "HT bss occupancy change: %d sta, %d ht, " 1248 "%d ht40%s, HT protmode now 0x%x" 1249 , ic->ic_sta_assoc 1250 , ic->ic_ht_sta_assoc 1251 , ic->ic_ht40_sta_assoc 1252 , (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) ? 1253 ", non-HT sta present" : "" 1254 , ic->ic_curhtprotmode); 1255 first = 0; 1256 } 1257 ieee80211_beacon_notify(vap, IEEE80211_BEACON_HTINFO); 1258 } 1259 } 1260 1261 /* 1262 * Calculate HT protection mode from current 1263 * state and handle updates. 1264 */ 1265 static void 1266 htinfo_update(struct ieee80211com *ic) 1267 { 1268 uint8_t protmode; 1269 1270 if (ic->ic_sta_assoc != ic->ic_ht_sta_assoc) { 1271 protmode = IEEE80211_HTINFO_OPMODE_MIXED 1272 | IEEE80211_HTINFO_NONHT_PRESENT; 1273 } else if (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) { 1274 protmode = IEEE80211_HTINFO_OPMODE_PROTOPT 1275 | IEEE80211_HTINFO_NONHT_PRESENT; 1276 } else if (ic->ic_bsschan != IEEE80211_CHAN_ANYC && 1277 IEEE80211_IS_CHAN_HT40(ic->ic_bsschan) && 1278 ic->ic_sta_assoc != ic->ic_ht40_sta_assoc) { 1279 protmode = IEEE80211_HTINFO_OPMODE_HT20PR; 1280 } else { 1281 protmode = IEEE80211_HTINFO_OPMODE_PURE; 1282 } 1283 if (protmode != ic->ic_curhtprotmode) { 1284 ic->ic_curhtprotmode = protmode; 1285 htinfo_notify(ic); 1286 } 1287 } 1288 1289 /* 1290 * Handle an HT station joining a BSS. 1291 */ 1292 void 1293 ieee80211_ht_node_join(struct ieee80211_node *ni) 1294 { 1295 struct ieee80211com *ic = ni->ni_ic; 1296 1297 IEEE80211_LOCK_ASSERT(ic); 1298 1299 if (ni->ni_flags & IEEE80211_NODE_HT) { 1300 ic->ic_ht_sta_assoc++; 1301 if (ni->ni_chw == 40) 1302 ic->ic_ht40_sta_assoc++; 1303 } 1304 htinfo_update(ic); 1305 } 1306 1307 /* 1308 * Handle an HT station leaving a BSS. 1309 */ 1310 void 1311 ieee80211_ht_node_leave(struct ieee80211_node *ni) 1312 { 1313 struct ieee80211com *ic = ni->ni_ic; 1314 1315 IEEE80211_LOCK_ASSERT(ic); 1316 1317 if (ni->ni_flags & IEEE80211_NODE_HT) { 1318 ic->ic_ht_sta_assoc--; 1319 if (ni->ni_chw == 40) 1320 ic->ic_ht40_sta_assoc--; 1321 } 1322 htinfo_update(ic); 1323 } 1324 1325 /* 1326 * Public version of htinfo_update; used for processing 1327 * beacon frames from overlapping bss. 1328 * 1329 * Caller can specify either IEEE80211_HTINFO_OPMODE_MIXED 1330 * (on receipt of a beacon that advertises MIXED) or 1331 * IEEE80211_HTINFO_OPMODE_PROTOPT (on receipt of a beacon 1332 * from an overlapping legacy bss). We treat MIXED with 1333 * a higher precedence than PROTOPT (i.e. we will not change 1334 * change PROTOPT -> MIXED; only MIXED -> PROTOPT). This 1335 * corresponds to how we handle things in htinfo_update. 1336 */ 1337 void 1338 ieee80211_htprot_update(struct ieee80211com *ic, int protmode) 1339 { 1340 #define OPMODE(x) SM(x, IEEE80211_HTINFO_OPMODE) 1341 IEEE80211_LOCK(ic); 1342 1343 /* track non-HT station presence */ 1344 KASSERT(protmode & IEEE80211_HTINFO_NONHT_PRESENT, 1345 ("protmode 0x%x", protmode)); 1346 ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR; 1347 ic->ic_lastnonht = ticks; 1348 1349 if (protmode != ic->ic_curhtprotmode && 1350 (OPMODE(ic->ic_curhtprotmode) != IEEE80211_HTINFO_OPMODE_MIXED || 1351 OPMODE(protmode) == IEEE80211_HTINFO_OPMODE_PROTOPT)) { 1352 /* push beacon update */ 1353 ic->ic_curhtprotmode = protmode; 1354 htinfo_notify(ic); 1355 } 1356 IEEE80211_UNLOCK(ic); 1357 #undef OPMODE 1358 } 1359 1360 /* 1361 * Time out presence of an overlapping bss with non-HT 1362 * stations. When operating in hostap mode we listen for 1363 * beacons from other stations and if we identify a non-HT 1364 * station is present we update the opmode field of the 1365 * HTINFO ie. To identify when all non-HT stations are 1366 * gone we time out this condition. 1367 */ 1368 void 1369 ieee80211_ht_timeout(struct ieee80211com *ic) 1370 { 1371 IEEE80211_LOCK_ASSERT(ic); 1372 1373 if ((ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) && 1374 time_after(ticks, ic->ic_lastnonht + IEEE80211_NONHT_PRESENT_AGE)) { 1375 #if 0 1376 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1377 "%s", "time out non-HT STA present on channel"); 1378 #endif 1379 ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR; 1380 htinfo_update(ic); 1381 } 1382 } 1383 1384 /* unalligned little endian access */ 1385 #define LE_READ_2(p) \ 1386 ((uint16_t) \ 1387 ((((const uint8_t *)(p))[0] ) | \ 1388 (((const uint8_t *)(p))[1] << 8))) 1389 1390 /* 1391 * Process an 802.11n HT capabilities ie. 1392 */ 1393 void 1394 ieee80211_parse_htcap(struct ieee80211_node *ni, const uint8_t *ie) 1395 { 1396 if (ie[0] == IEEE80211_ELEMID_VENDOR) { 1397 /* 1398 * Station used Vendor OUI ie to associate; 1399 * mark the node so when we respond we'll use 1400 * the Vendor OUI's and not the standard ie's. 1401 */ 1402 ni->ni_flags |= IEEE80211_NODE_HTCOMPAT; 1403 ie += 4; 1404 } else 1405 ni->ni_flags &= ~IEEE80211_NODE_HTCOMPAT; 1406 1407 ni->ni_htcap = LE_READ_2(ie + 1408 __offsetof(struct ieee80211_ie_htcap, hc_cap)); 1409 ni->ni_htparam = ie[__offsetof(struct ieee80211_ie_htcap, hc_param)]; 1410 } 1411 1412 static void 1413 htinfo_parse(struct ieee80211_node *ni, 1414 const struct ieee80211_ie_htinfo *htinfo) 1415 { 1416 uint16_t w; 1417 1418 ni->ni_htctlchan = htinfo->hi_ctrlchannel; 1419 ni->ni_ht2ndchan = SM(htinfo->hi_byte1, IEEE80211_HTINFO_2NDCHAN); 1420 w = LE_READ_2(&htinfo->hi_byte2); 1421 ni->ni_htopmode = SM(w, IEEE80211_HTINFO_OPMODE); 1422 w = LE_READ_2(&htinfo->hi_byte45); 1423 ni->ni_htstbc = SM(w, IEEE80211_HTINFO_BASIC_STBCMCS); 1424 } 1425 1426 /* 1427 * Parse an 802.11n HT info ie and save useful information 1428 * to the node state. Note this does not effect any state 1429 * changes such as for channel width change. 1430 */ 1431 void 1432 ieee80211_parse_htinfo(struct ieee80211_node *ni, const uint8_t *ie) 1433 { 1434 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1435 ie += 4; 1436 htinfo_parse(ni, (const struct ieee80211_ie_htinfo *) ie); 1437 } 1438 1439 /* 1440 * Handle 11n channel switch. Use the received HT ie's to 1441 * identify the right channel to use. If we cannot locate it 1442 * in the channel table then fallback to legacy operation. 1443 * Note that we use this information to identify the node's 1444 * channel only; the caller is responsible for insuring any 1445 * required channel change is done (e.g. in sta mode when 1446 * parsing the contents of a beacon frame). 1447 */ 1448 static int 1449 htinfo_update_chw(struct ieee80211_node *ni, int htflags) 1450 { 1451 struct ieee80211com *ic = ni->ni_ic; 1452 struct ieee80211_channel *c; 1453 int chanflags; 1454 int ret = 0; 1455 1456 chanflags = (ni->ni_chan->ic_flags &~ IEEE80211_CHAN_HT) | htflags; 1457 if (chanflags != ni->ni_chan->ic_flags) { 1458 /* XXX not right for ht40- */ 1459 c = ieee80211_find_channel(ic, ni->ni_chan->ic_freq, chanflags); 1460 if (c == NULL && (htflags & IEEE80211_CHAN_HT40)) { 1461 /* 1462 * No HT40 channel entry in our table; fall back 1463 * to HT20 operation. This should not happen. 1464 */ 1465 c = findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT20); 1466 #if 0 1467 IEEE80211_NOTE(ni->ni_vap, 1468 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1469 "no HT40 channel (freq %u), falling back to HT20", 1470 ni->ni_chan->ic_freq); 1471 #endif 1472 /* XXX stat */ 1473 } 1474 if (c != NULL && c != ni->ni_chan) { 1475 IEEE80211_NOTE(ni->ni_vap, 1476 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1477 "switch station to HT%d channel %u/0x%x", 1478 IEEE80211_IS_CHAN_HT40(c) ? 40 : 20, 1479 c->ic_freq, c->ic_flags); 1480 ni->ni_chan = c; 1481 ret = 1; 1482 } 1483 /* NB: caller responsible for forcing any channel change */ 1484 } 1485 /* update node's tx channel width */ 1486 ni->ni_chw = IEEE80211_IS_CHAN_HT40(ni->ni_chan)? 40 : 20; 1487 return (ret); 1488 } 1489 1490 /* 1491 * Update 11n MIMO PS state according to received htcap. 1492 */ 1493 static __inline int 1494 htcap_update_mimo_ps(struct ieee80211_node *ni) 1495 { 1496 uint16_t oflags = ni->ni_flags; 1497 1498 switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) { 1499 case IEEE80211_HTCAP_SMPS_DYNAMIC: 1500 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1501 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 1502 break; 1503 case IEEE80211_HTCAP_SMPS_ENA: 1504 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1505 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1506 break; 1507 case IEEE80211_HTCAP_SMPS_OFF: 1508 default: /* disable on rx of reserved value */ 1509 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 1510 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1511 break; 1512 } 1513 return (oflags ^ ni->ni_flags); 1514 } 1515 1516 /* 1517 * Update short GI state according to received htcap 1518 * and local settings. 1519 */ 1520 static __inline void 1521 htcap_update_shortgi(struct ieee80211_node *ni) 1522 { 1523 struct ieee80211vap *vap = ni->ni_vap; 1524 1525 ni->ni_flags &= ~(IEEE80211_NODE_SGI20|IEEE80211_NODE_SGI40); 1526 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) && 1527 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)) 1528 ni->ni_flags |= IEEE80211_NODE_SGI20; 1529 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) && 1530 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)) 1531 ni->ni_flags |= IEEE80211_NODE_SGI40; 1532 } 1533 1534 /* 1535 * Parse and update HT-related state extracted from 1536 * the HT cap and info ie's. 1537 */ 1538 int 1539 ieee80211_ht_updateparams(struct ieee80211_node *ni, 1540 const uint8_t *htcapie, const uint8_t *htinfoie) 1541 { 1542 struct ieee80211vap *vap = ni->ni_vap; 1543 const struct ieee80211_ie_htinfo *htinfo; 1544 int htflags; 1545 int ret = 0; 1546 1547 ieee80211_parse_htcap(ni, htcapie); 1548 if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS) 1549 htcap_update_mimo_ps(ni); 1550 htcap_update_shortgi(ni); 1551 1552 if (htinfoie[0] == IEEE80211_ELEMID_VENDOR) 1553 htinfoie += 4; 1554 htinfo = (const struct ieee80211_ie_htinfo *) htinfoie; 1555 htinfo_parse(ni, htinfo); 1556 1557 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 1558 IEEE80211_CHAN_HT20 : 0; 1559 /* NB: honor operating mode constraint */ 1560 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH_2040) && 1561 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 1562 if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_ABOVE) 1563 htflags = IEEE80211_CHAN_HT40U; 1564 else if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_BELOW) 1565 htflags = IEEE80211_CHAN_HT40D; 1566 } 1567 if (htinfo_update_chw(ni, htflags)) 1568 ret = 1; 1569 1570 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_RIFSMODE_PERM) && 1571 (vap->iv_flags_ht & IEEE80211_FHT_RIFS)) 1572 ni->ni_flags |= IEEE80211_NODE_RIFS; 1573 else 1574 ni->ni_flags &= ~IEEE80211_NODE_RIFS; 1575 1576 return (ret); 1577 } 1578 1579 /* 1580 * Parse and update HT-related state extracted from the HT cap ie 1581 * for a station joining an HT BSS. 1582 */ 1583 void 1584 ieee80211_ht_updatehtcap(struct ieee80211_node *ni, const uint8_t *htcapie) 1585 { 1586 struct ieee80211vap *vap = ni->ni_vap; 1587 int htflags; 1588 1589 ieee80211_parse_htcap(ni, htcapie); 1590 if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS) 1591 htcap_update_mimo_ps(ni); 1592 htcap_update_shortgi(ni); 1593 1594 /* NB: honor operating mode constraint */ 1595 /* XXX 40 MHz intolerant */ 1596 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 1597 IEEE80211_CHAN_HT20 : 0; 1598 if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) && 1599 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 1600 if (IEEE80211_IS_CHAN_HT40U(vap->iv_bss->ni_chan)) 1601 htflags = IEEE80211_CHAN_HT40U; 1602 else if (IEEE80211_IS_CHAN_HT40D(vap->iv_bss->ni_chan)) 1603 htflags = IEEE80211_CHAN_HT40D; 1604 } 1605 (void) htinfo_update_chw(ni, htflags); 1606 } 1607 1608 /* 1609 * Install received HT rate set by parsing the HT cap ie. 1610 */ 1611 int 1612 ieee80211_setup_htrates(struct ieee80211_node *ni, const uint8_t *ie, int flags) 1613 { 1614 struct ieee80211com *ic = ni->ni_ic; 1615 struct ieee80211vap *vap = ni->ni_vap; 1616 const struct ieee80211_ie_htcap *htcap; 1617 struct ieee80211_htrateset *rs; 1618 int i, maxequalmcs, maxunequalmcs; 1619 1620 maxequalmcs = ic->ic_txstream * 8 - 1; 1621 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 1622 if (ic->ic_txstream >= 2) 1623 maxunequalmcs = 38; 1624 if (ic->ic_txstream >= 3) 1625 maxunequalmcs = 52; 1626 if (ic->ic_txstream >= 4) 1627 maxunequalmcs = 76; 1628 } else 1629 maxunequalmcs = 0; 1630 1631 rs = &ni->ni_htrates; 1632 memset(rs, 0, sizeof(*rs)); 1633 if (ie != NULL) { 1634 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1635 ie += 4; 1636 htcap = (const struct ieee80211_ie_htcap *) ie; 1637 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 1638 if (isclr(htcap->hc_mcsset, i)) 1639 continue; 1640 if (rs->rs_nrates == IEEE80211_HTRATE_MAXSIZE) { 1641 IEEE80211_NOTE(vap, 1642 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 1643 "WARNING, HT rate set too large; only " 1644 "using %u rates", IEEE80211_HTRATE_MAXSIZE); 1645 vap->iv_stats.is_rx_rstoobig++; 1646 break; 1647 } 1648 if (i <= 31 && i > maxequalmcs) 1649 continue; 1650 if (i == 32 && 1651 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0) 1652 continue; 1653 if (i > 32 && i > maxunequalmcs) 1654 continue; 1655 rs->rs_rates[rs->rs_nrates++] = i; 1656 } 1657 } 1658 return ieee80211_fix_rate(ni, (struct ieee80211_rateset *) rs, flags); 1659 } 1660 1661 /* 1662 * Mark rates in a node's HT rate set as basic according 1663 * to the information in the supplied HT info ie. 1664 */ 1665 void 1666 ieee80211_setup_basic_htrates(struct ieee80211_node *ni, const uint8_t *ie) 1667 { 1668 const struct ieee80211_ie_htinfo *htinfo; 1669 struct ieee80211_htrateset *rs; 1670 int i, j; 1671 1672 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1673 ie += 4; 1674 htinfo = (const struct ieee80211_ie_htinfo *) ie; 1675 rs = &ni->ni_htrates; 1676 if (rs->rs_nrates == 0) { 1677 IEEE80211_NOTE(ni->ni_vap, 1678 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 1679 "%s", "WARNING, empty HT rate set"); 1680 return; 1681 } 1682 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 1683 if (isclr(htinfo->hi_basicmcsset, i)) 1684 continue; 1685 for (j = 0; j < rs->rs_nrates; j++) 1686 if ((rs->rs_rates[j] & IEEE80211_RATE_VAL) == i) 1687 rs->rs_rates[j] |= IEEE80211_RATE_BASIC; 1688 } 1689 } 1690 1691 static void 1692 ampdu_tx_setup(struct ieee80211_tx_ampdu *tap) 1693 { 1694 callout_init(&tap->txa_timer, CALLOUT_MPSAFE); 1695 tap->txa_flags |= IEEE80211_AGGR_SETUP; 1696 tap->txa_lastsample = ticks; 1697 } 1698 1699 static void 1700 ampdu_tx_stop(struct ieee80211_tx_ampdu *tap) 1701 { 1702 struct ieee80211_node *ni = tap->txa_ni; 1703 struct ieee80211com *ic = ni->ni_ic; 1704 1705 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 1706 tap->txa_ni, 1707 "%s: called", 1708 __func__); 1709 1710 KASSERT(tap->txa_flags & IEEE80211_AGGR_SETUP, 1711 ("txa_flags 0x%x tid %d ac %d", tap->txa_flags, tap->txa_tid, 1712 TID_TO_WME_AC(tap->txa_tid))); 1713 1714 /* 1715 * Stop BA stream if setup so driver has a chance 1716 * to reclaim any resources it might have allocated. 1717 */ 1718 ic->ic_addba_stop(ni, tap); 1719 /* 1720 * Stop any pending BAR transmit. 1721 */ 1722 bar_stop_timer(tap); 1723 1724 /* 1725 * Reset packet estimate. 1726 */ 1727 tap->txa_lastsample = ticks; 1728 tap->txa_avgpps = 0; 1729 1730 /* NB: clearing NAK means we may re-send ADDBA */ 1731 tap->txa_flags &= ~(IEEE80211_AGGR_SETUP | IEEE80211_AGGR_NAK); 1732 } 1733 1734 /* 1735 * ADDBA response timeout. 1736 * 1737 * If software aggregation and per-TID queue management was done here, 1738 * that queue would be unpaused after the ADDBA timeout occurs. 1739 */ 1740 static void 1741 addba_timeout(void *arg) 1742 { 1743 struct ieee80211_tx_ampdu *tap = arg; 1744 struct ieee80211_node *ni = tap->txa_ni; 1745 struct ieee80211com *ic = ni->ni_ic; 1746 1747 /* XXX ? */ 1748 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 1749 tap->txa_attempts++; 1750 ic->ic_addba_response_timeout(ni, tap); 1751 } 1752 1753 static void 1754 addba_start_timeout(struct ieee80211_tx_ampdu *tap) 1755 { 1756 /* XXX use CALLOUT_PENDING instead? */ 1757 callout_reset(&tap->txa_timer, ieee80211_addba_timeout, 1758 addba_timeout, tap); 1759 tap->txa_flags |= IEEE80211_AGGR_XCHGPEND; 1760 tap->txa_nextrequest = ticks + ieee80211_addba_timeout; 1761 } 1762 1763 static void 1764 addba_stop_timeout(struct ieee80211_tx_ampdu *tap) 1765 { 1766 /* XXX use CALLOUT_PENDING instead? */ 1767 if (tap->txa_flags & IEEE80211_AGGR_XCHGPEND) { 1768 callout_stop(&tap->txa_timer); 1769 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 1770 } 1771 } 1772 1773 static void 1774 null_addba_response_timeout(struct ieee80211_node *ni, 1775 struct ieee80211_tx_ampdu *tap) 1776 { 1777 } 1778 1779 /* 1780 * Default method for requesting A-MPDU tx aggregation. 1781 * We setup the specified state block and start a timer 1782 * to wait for an ADDBA response frame. 1783 */ 1784 static int 1785 ieee80211_addba_request(struct ieee80211_node *ni, 1786 struct ieee80211_tx_ampdu *tap, 1787 int dialogtoken, int baparamset, int batimeout) 1788 { 1789 int bufsiz; 1790 1791 /* XXX locking */ 1792 tap->txa_token = dialogtoken; 1793 tap->txa_flags |= IEEE80211_AGGR_IMMEDIATE; 1794 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 1795 tap->txa_wnd = (bufsiz == 0) ? 1796 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 1797 addba_start_timeout(tap); 1798 return 1; 1799 } 1800 1801 /* 1802 * Default method for processing an A-MPDU tx aggregation 1803 * response. We shutdown any pending timer and update the 1804 * state block according to the reply. 1805 */ 1806 static int 1807 ieee80211_addba_response(struct ieee80211_node *ni, 1808 struct ieee80211_tx_ampdu *tap, 1809 int status, int baparamset, int batimeout) 1810 { 1811 int bufsiz, tid; 1812 1813 /* XXX locking */ 1814 addba_stop_timeout(tap); 1815 if (status == IEEE80211_STATUS_SUCCESS) { 1816 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 1817 /* XXX override our request? */ 1818 tap->txa_wnd = (bufsiz == 0) ? 1819 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 1820 /* XXX AC/TID */ 1821 tid = MS(baparamset, IEEE80211_BAPS_TID); 1822 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 1823 tap->txa_attempts = 0; 1824 } else { 1825 /* mark tid so we don't try again */ 1826 tap->txa_flags |= IEEE80211_AGGR_NAK; 1827 } 1828 return 1; 1829 } 1830 1831 /* 1832 * Default method for stopping A-MPDU tx aggregation. 1833 * Any timer is cleared and we drain any pending frames. 1834 */ 1835 static void 1836 ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 1837 { 1838 /* XXX locking */ 1839 addba_stop_timeout(tap); 1840 if (tap->txa_flags & IEEE80211_AGGR_RUNNING) { 1841 /* XXX clear aggregation queue */ 1842 tap->txa_flags &= ~IEEE80211_AGGR_RUNNING; 1843 } 1844 tap->txa_attempts = 0; 1845 } 1846 1847 /* 1848 * Process a received action frame using the default aggregation 1849 * policy. We intercept ADDBA-related frames and use them to 1850 * update our aggregation state. All other frames are passed up 1851 * for processing by ieee80211_recv_action. 1852 */ 1853 static int 1854 ht_recv_action_ba_addba_request(struct ieee80211_node *ni, 1855 const struct ieee80211_frame *wh, 1856 const uint8_t *frm, const uint8_t *efrm) 1857 { 1858 struct ieee80211com *ic = ni->ni_ic; 1859 struct ieee80211vap *vap = ni->ni_vap; 1860 struct ieee80211_rx_ampdu *rap; 1861 uint8_t dialogtoken; 1862 uint16_t baparamset, batimeout, baseqctl; 1863 uint16_t args[5]; 1864 int tid; 1865 1866 dialogtoken = frm[2]; 1867 baparamset = LE_READ_2(frm+3); 1868 batimeout = LE_READ_2(frm+5); 1869 baseqctl = LE_READ_2(frm+7); 1870 1871 tid = MS(baparamset, IEEE80211_BAPS_TID); 1872 1873 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 1874 "recv ADDBA request: dialogtoken %u baparamset 0x%x " 1875 "(tid %d bufsiz %d) batimeout %d baseqctl %d:%d", 1876 dialogtoken, baparamset, 1877 tid, MS(baparamset, IEEE80211_BAPS_BUFSIZ), 1878 batimeout, 1879 MS(baseqctl, IEEE80211_BASEQ_START), 1880 MS(baseqctl, IEEE80211_BASEQ_FRAG)); 1881 1882 rap = &ni->ni_rx_ampdu[tid]; 1883 1884 /* Send ADDBA response */ 1885 args[0] = dialogtoken; 1886 /* 1887 * NB: We ack only if the sta associated with HT and 1888 * the ap is configured to do AMPDU rx (the latter 1889 * violates the 11n spec and is mostly for testing). 1890 */ 1891 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_RX) && 1892 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX)) { 1893 /* XXX handle ampdu_rx_start failure */ 1894 ic->ic_ampdu_rx_start(ni, rap, 1895 baparamset, batimeout, baseqctl); 1896 1897 args[1] = IEEE80211_STATUS_SUCCESS; 1898 } else { 1899 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 1900 ni, "reject ADDBA request: %s", 1901 ni->ni_flags & IEEE80211_NODE_AMPDU_RX ? 1902 "administratively disabled" : 1903 "not negotiated for station"); 1904 vap->iv_stats.is_addba_reject++; 1905 args[1] = IEEE80211_STATUS_UNSPECIFIED; 1906 } 1907 /* XXX honor rap flags? */ 1908 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 1909 | SM(tid, IEEE80211_BAPS_TID) 1910 | SM(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ) 1911 ; 1912 args[3] = 0; 1913 args[4] = 0; 1914 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 1915 IEEE80211_ACTION_BA_ADDBA_RESPONSE, args); 1916 return 0; 1917 } 1918 1919 static int 1920 ht_recv_action_ba_addba_response(struct ieee80211_node *ni, 1921 const struct ieee80211_frame *wh, 1922 const uint8_t *frm, const uint8_t *efrm) 1923 { 1924 struct ieee80211com *ic = ni->ni_ic; 1925 struct ieee80211vap *vap = ni->ni_vap; 1926 struct ieee80211_tx_ampdu *tap; 1927 uint8_t dialogtoken, policy; 1928 uint16_t baparamset, batimeout, code; 1929 int tid, bufsiz; 1930 1931 dialogtoken = frm[2]; 1932 code = LE_READ_2(frm+3); 1933 baparamset = LE_READ_2(frm+5); 1934 tid = MS(baparamset, IEEE80211_BAPS_TID); 1935 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 1936 policy = MS(baparamset, IEEE80211_BAPS_POLICY); 1937 batimeout = LE_READ_2(frm+7); 1938 1939 tap = &ni->ni_tx_ampdu[tid]; 1940 if ((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 1941 IEEE80211_DISCARD_MAC(vap, 1942 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 1943 ni->ni_macaddr, "ADDBA response", 1944 "no pending ADDBA, tid %d dialogtoken %u " 1945 "code %d", tid, dialogtoken, code); 1946 vap->iv_stats.is_addba_norequest++; 1947 return 0; 1948 } 1949 if (dialogtoken != tap->txa_token) { 1950 IEEE80211_DISCARD_MAC(vap, 1951 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 1952 ni->ni_macaddr, "ADDBA response", 1953 "dialogtoken mismatch: waiting for %d, " 1954 "received %d, tid %d code %d", 1955 tap->txa_token, dialogtoken, tid, code); 1956 vap->iv_stats.is_addba_badtoken++; 1957 return 0; 1958 } 1959 /* NB: assumes IEEE80211_AGGR_IMMEDIATE is 1 */ 1960 if (policy != (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE)) { 1961 IEEE80211_DISCARD_MAC(vap, 1962 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 1963 ni->ni_macaddr, "ADDBA response", 1964 "policy mismatch: expecting %s, " 1965 "received %s, tid %d code %d", 1966 tap->txa_flags & IEEE80211_AGGR_IMMEDIATE, 1967 policy, tid, code); 1968 vap->iv_stats.is_addba_badpolicy++; 1969 return 0; 1970 } 1971 #if 0 1972 /* XXX we take MIN in ieee80211_addba_response */ 1973 if (bufsiz > IEEE80211_AGGR_BAWMAX) { 1974 IEEE80211_DISCARD_MAC(vap, 1975 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 1976 ni->ni_macaddr, "ADDBA response", 1977 "BA window too large: max %d, " 1978 "received %d, tid %d code %d", 1979 bufsiz, IEEE80211_AGGR_BAWMAX, tid, code); 1980 vap->iv_stats.is_addba_badbawinsize++; 1981 return 0; 1982 } 1983 #endif 1984 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 1985 "recv ADDBA response: dialogtoken %u code %d " 1986 "baparamset 0x%x (tid %d bufsiz %d) batimeout %d", 1987 dialogtoken, code, baparamset, tid, bufsiz, 1988 batimeout); 1989 ic->ic_addba_response(ni, tap, code, baparamset, batimeout); 1990 return 0; 1991 } 1992 1993 static int 1994 ht_recv_action_ba_delba(struct ieee80211_node *ni, 1995 const struct ieee80211_frame *wh, 1996 const uint8_t *frm, const uint8_t *efrm) 1997 { 1998 struct ieee80211com *ic = ni->ni_ic; 1999 struct ieee80211_rx_ampdu *rap; 2000 struct ieee80211_tx_ampdu *tap; 2001 uint16_t baparamset, code; 2002 int tid; 2003 2004 baparamset = LE_READ_2(frm+2); 2005 code = LE_READ_2(frm+4); 2006 2007 tid = MS(baparamset, IEEE80211_DELBAPS_TID); 2008 2009 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2010 "recv DELBA: baparamset 0x%x (tid %d initiator %d) " 2011 "code %d", baparamset, tid, 2012 MS(baparamset, IEEE80211_DELBAPS_INIT), code); 2013 2014 if ((baparamset & IEEE80211_DELBAPS_INIT) == 0) { 2015 tap = &ni->ni_tx_ampdu[tid]; 2016 ic->ic_addba_stop(ni, tap); 2017 } else { 2018 rap = &ni->ni_rx_ampdu[tid]; 2019 ic->ic_ampdu_rx_stop(ni, rap); 2020 } 2021 return 0; 2022 } 2023 2024 static int 2025 ht_recv_action_ht_txchwidth(struct ieee80211_node *ni, 2026 const struct ieee80211_frame *wh, 2027 const uint8_t *frm, const uint8_t *efrm) 2028 { 2029 int chw; 2030 2031 chw = (frm[2] == IEEE80211_A_HT_TXCHWIDTH_2040) ? 40 : 20; 2032 2033 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2034 "%s: HT txchwidth, width %d%s", 2035 __func__, chw, ni->ni_chw != chw ? "*" : ""); 2036 if (chw != ni->ni_chw) { 2037 ni->ni_chw = chw; 2038 /* XXX notify on change */ 2039 } 2040 return 0; 2041 } 2042 2043 static int 2044 ht_recv_action_ht_mimopwrsave(struct ieee80211_node *ni, 2045 const struct ieee80211_frame *wh, 2046 const uint8_t *frm, const uint8_t *efrm) 2047 { 2048 const struct ieee80211_action_ht_mimopowersave *mps = 2049 (const struct ieee80211_action_ht_mimopowersave *) frm; 2050 2051 /* XXX check iv_htcaps */ 2052 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA) 2053 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 2054 else 2055 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 2056 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_MODE) 2057 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 2058 else 2059 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 2060 /* XXX notify on change */ 2061 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2062 "%s: HT MIMO PS (%s%s)", __func__, 2063 (ni->ni_flags & IEEE80211_NODE_MIMO_PS) ? "on" : "off", 2064 (ni->ni_flags & IEEE80211_NODE_MIMO_RTS) ? "+rts" : "" 2065 ); 2066 return 0; 2067 } 2068 2069 /* 2070 * Transmit processing. 2071 */ 2072 2073 /* 2074 * Check if A-MPDU should be requested/enabled for a stream. 2075 * We require a traffic rate above a per-AC threshold and we 2076 * also handle backoff from previous failed attempts. 2077 * 2078 * Drivers may override this method to bring in information 2079 * such as link state conditions in making the decision. 2080 */ 2081 static int 2082 ieee80211_ampdu_enable(struct ieee80211_node *ni, 2083 struct ieee80211_tx_ampdu *tap) 2084 { 2085 struct ieee80211vap *vap = ni->ni_vap; 2086 2087 if (tap->txa_avgpps < 2088 vap->iv_ampdu_mintraffic[TID_TO_WME_AC(tap->txa_tid)]) 2089 return 0; 2090 /* XXX check rssi? */ 2091 if (tap->txa_attempts >= ieee80211_addba_maxtries && 2092 ticks < tap->txa_nextrequest) { 2093 /* 2094 * Don't retry too often; txa_nextrequest is set 2095 * to the minimum interval we'll retry after 2096 * ieee80211_addba_maxtries failed attempts are made. 2097 */ 2098 return 0; 2099 } 2100 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 2101 "enable AMPDU on tid %d (%s), avgpps %d pkts %d", 2102 tap->txa_tid, ieee80211_wme_acnames[TID_TO_WME_AC(tap->txa_tid)], 2103 tap->txa_avgpps, tap->txa_pkts); 2104 return 1; 2105 } 2106 2107 /* 2108 * Request A-MPDU tx aggregation. Setup local state and 2109 * issue an ADDBA request. BA use will only happen after 2110 * the other end replies with ADDBA response. 2111 */ 2112 int 2113 ieee80211_ampdu_request(struct ieee80211_node *ni, 2114 struct ieee80211_tx_ampdu *tap) 2115 { 2116 struct ieee80211com *ic = ni->ni_ic; 2117 uint16_t args[5]; 2118 int tid, dialogtoken; 2119 static int tokens = 0; /* XXX */ 2120 2121 /* XXX locking */ 2122 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 2123 /* do deferred setup of state */ 2124 ampdu_tx_setup(tap); 2125 } 2126 /* XXX hack for not doing proper locking */ 2127 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 2128 2129 dialogtoken = (tokens+1) % 63; /* XXX */ 2130 tid = tap->txa_tid; 2131 tap->txa_start = ni->ni_txseqs[tid]; 2132 2133 args[0] = dialogtoken; 2134 args[1] = 0; /* NB: status code not used */ 2135 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 2136 | SM(tid, IEEE80211_BAPS_TID) 2137 | SM(IEEE80211_AGGR_BAWMAX, IEEE80211_BAPS_BUFSIZ) 2138 ; 2139 args[3] = 0; /* batimeout */ 2140 /* NB: do first so there's no race against reply */ 2141 if (!ic->ic_addba_request(ni, tap, dialogtoken, args[2], args[3])) { 2142 /* unable to setup state, don't make request */ 2143 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2144 ni, "%s: could not setup BA stream for TID %d AC %d", 2145 __func__, tap->txa_tid, TID_TO_WME_AC(tap->txa_tid)); 2146 /* defer next try so we don't slam the driver with requests */ 2147 tap->txa_attempts = ieee80211_addba_maxtries; 2148 /* NB: check in case driver wants to override */ 2149 if (tap->txa_nextrequest <= ticks) 2150 tap->txa_nextrequest = ticks + ieee80211_addba_backoff; 2151 return 0; 2152 } 2153 tokens = dialogtoken; /* allocate token */ 2154 /* NB: after calling ic_addba_request so driver can set txa_start */ 2155 args[4] = SM(tap->txa_start, IEEE80211_BASEQ_START) 2156 | SM(0, IEEE80211_BASEQ_FRAG) 2157 ; 2158 return ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2159 IEEE80211_ACTION_BA_ADDBA_REQUEST, args); 2160 } 2161 2162 /* 2163 * Terminate an AMPDU tx stream. State is reclaimed 2164 * and the peer notified with a DelBA Action frame. 2165 */ 2166 void 2167 ieee80211_ampdu_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 2168 int reason) 2169 { 2170 struct ieee80211com *ic = ni->ni_ic; 2171 struct ieee80211vap *vap = ni->ni_vap; 2172 uint16_t args[4]; 2173 2174 /* XXX locking */ 2175 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2176 if (IEEE80211_AMPDU_RUNNING(tap)) { 2177 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2178 ni, "%s: stop BA stream for TID %d (reason %d)", 2179 __func__, tap->txa_tid, reason); 2180 vap->iv_stats.is_ampdu_stop++; 2181 2182 ic->ic_addba_stop(ni, tap); 2183 args[0] = tap->txa_tid; 2184 args[1] = IEEE80211_DELBAPS_INIT; 2185 args[2] = reason; /* XXX reason code */ 2186 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2187 IEEE80211_ACTION_BA_DELBA, args); 2188 } else { 2189 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2190 ni, "%s: BA stream for TID %d not running (reason %d)", 2191 __func__, tap->txa_tid, reason); 2192 vap->iv_stats.is_ampdu_stop_failed++; 2193 } 2194 } 2195 2196 /* XXX */ 2197 static void bar_start_timer(struct ieee80211_tx_ampdu *tap); 2198 2199 static void 2200 bar_timeout(void *arg) 2201 { 2202 struct ieee80211_tx_ampdu *tap = arg; 2203 struct ieee80211_node *ni = tap->txa_ni; 2204 2205 KASSERT((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0, 2206 ("bar/addba collision, flags 0x%x", tap->txa_flags)); 2207 2208 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2209 ni, "%s: tid %u flags 0x%x attempts %d", __func__, 2210 tap->txa_tid, tap->txa_flags, tap->txa_attempts); 2211 2212 /* guard against race with bar_tx_complete */ 2213 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2214 return; 2215 /* XXX ? */ 2216 if (tap->txa_attempts >= ieee80211_bar_maxtries) { 2217 struct ieee80211com *ic = ni->ni_ic; 2218 2219 ni->ni_vap->iv_stats.is_ampdu_bar_tx_fail++; 2220 /* 2221 * If (at least) the last BAR TX timeout was due to 2222 * an ieee80211_send_bar() failures, then we need 2223 * to make sure we notify the driver that a BAR 2224 * TX did occur and fail. This gives the driver 2225 * a chance to undo any queue pause that may 2226 * have occured. 2227 */ 2228 ic->ic_bar_response(ni, tap, 1); 2229 ieee80211_ampdu_stop(ni, tap, IEEE80211_REASON_TIMEOUT); 2230 } else { 2231 ni->ni_vap->iv_stats.is_ampdu_bar_tx_retry++; 2232 if (ieee80211_send_bar(ni, tap, tap->txa_seqpending) != 0) { 2233 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2234 ni, "%s: failed to TX, starting timer\n", 2235 __func__); 2236 /* 2237 * If ieee80211_send_bar() fails here, the 2238 * timer may have stopped and/or the pending 2239 * flag may be clear. Because of this, 2240 * fake the BARPEND and reset the timer. 2241 * A retransmission attempt will then occur 2242 * during the next timeout. 2243 */ 2244 /* XXX locking */ 2245 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2246 bar_start_timer(tap); 2247 } 2248 } 2249 } 2250 2251 static void 2252 bar_start_timer(struct ieee80211_tx_ampdu *tap) 2253 { 2254 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2255 tap->txa_ni, 2256 "%s: called", 2257 __func__); 2258 callout_reset(&tap->txa_timer, ieee80211_bar_timeout, bar_timeout, tap); 2259 } 2260 2261 static void 2262 bar_stop_timer(struct ieee80211_tx_ampdu *tap) 2263 { 2264 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2265 tap->txa_ni, 2266 "%s: called", 2267 __func__); 2268 callout_stop(&tap->txa_timer); 2269 } 2270 2271 static void 2272 bar_tx_complete(struct ieee80211_node *ni, void *arg, int status) 2273 { 2274 struct ieee80211_tx_ampdu *tap = arg; 2275 2276 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2277 ni, "%s: tid %u flags 0x%x pending %d status %d", 2278 __func__, tap->txa_tid, tap->txa_flags, 2279 callout_pending(&tap->txa_timer), status); 2280 2281 ni->ni_vap->iv_stats.is_ampdu_bar_tx++; 2282 /* XXX locking */ 2283 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) && 2284 callout_pending(&tap->txa_timer)) { 2285 struct ieee80211com *ic = ni->ni_ic; 2286 2287 if (status == 0) /* ACK'd */ 2288 bar_stop_timer(tap); 2289 ic->ic_bar_response(ni, tap, status); 2290 /* NB: just let timer expire so we pace requests */ 2291 } 2292 } 2293 2294 static void 2295 ieee80211_bar_response(struct ieee80211_node *ni, 2296 struct ieee80211_tx_ampdu *tap, int status) 2297 { 2298 2299 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2300 tap->txa_ni, 2301 "%s: called", 2302 __func__); 2303 if (status == 0) { /* got ACK */ 2304 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2305 ni, "BAR moves BA win <%u:%u> (%u frames) txseq %u tid %u", 2306 tap->txa_start, 2307 IEEE80211_SEQ_ADD(tap->txa_start, tap->txa_wnd-1), 2308 tap->txa_qframes, tap->txa_seqpending, 2309 tap->txa_tid); 2310 2311 /* NB: timer already stopped in bar_tx_complete */ 2312 tap->txa_start = tap->txa_seqpending; 2313 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2314 } 2315 } 2316 2317 /* 2318 * Transmit a BAR frame to the specified node. The 2319 * BAR contents are drawn from the supplied aggregation 2320 * state associated with the node. 2321 * 2322 * NB: we only handle immediate ACK w/ compressed bitmap. 2323 */ 2324 int 2325 ieee80211_send_bar(struct ieee80211_node *ni, 2326 struct ieee80211_tx_ampdu *tap, ieee80211_seq seq) 2327 { 2328 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2329 struct ieee80211vap *vap = ni->ni_vap; 2330 struct ieee80211com *ic = ni->ni_ic; 2331 struct ieee80211_frame_bar *bar; 2332 struct mbuf *m; 2333 uint16_t barctl, barseqctl; 2334 uint8_t *frm; 2335 int tid, ret; 2336 2337 2338 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2339 tap->txa_ni, 2340 "%s: called", 2341 __func__); 2342 2343 if ((tap->txa_flags & IEEE80211_AGGR_RUNNING) == 0) { 2344 /* no ADDBA response, should not happen */ 2345 /* XXX stat+msg */ 2346 return EINVAL; 2347 } 2348 /* XXX locking */ 2349 bar_stop_timer(tap); 2350 2351 ieee80211_ref_node(ni); 2352 2353 m = ieee80211_getmgtframe(&frm, ic->ic_headroom, sizeof(*bar)); 2354 if (m == NULL) 2355 senderr(ENOMEM, is_tx_nobuf); 2356 2357 if (!ieee80211_add_callback(m, bar_tx_complete, tap)) { 2358 m_freem(m); 2359 senderr(ENOMEM, is_tx_nobuf); /* XXX */ 2360 /* NOTREACHED */ 2361 } 2362 2363 bar = mtod(m, struct ieee80211_frame_bar *); 2364 bar->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2365 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR; 2366 bar->i_fc[1] = 0; 2367 IEEE80211_ADDR_COPY(bar->i_ra, ni->ni_macaddr); 2368 IEEE80211_ADDR_COPY(bar->i_ta, vap->iv_myaddr); 2369 2370 tid = tap->txa_tid; 2371 barctl = (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE ? 2372 0 : IEEE80211_BAR_NOACK) 2373 | IEEE80211_BAR_COMP 2374 | SM(tid, IEEE80211_BAR_TID) 2375 ; 2376 barseqctl = SM(seq, IEEE80211_BAR_SEQ_START); 2377 /* NB: known to have proper alignment */ 2378 bar->i_ctl = htole16(barctl); 2379 bar->i_seq = htole16(barseqctl); 2380 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_bar); 2381 2382 M_WME_SETAC(m, WME_AC_VO); 2383 2384 IEEE80211_NODE_STAT(ni, tx_mgmt); /* XXX tx_ctl? */ 2385 2386 /* XXX locking */ 2387 /* init/bump attempts counter */ 2388 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2389 tap->txa_attempts = 1; 2390 else 2391 tap->txa_attempts++; 2392 tap->txa_seqpending = seq; 2393 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2394 2395 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2396 ni, "send BAR: tid %u ctl 0x%x start %u (attempt %d)", 2397 tid, barctl, seq, tap->txa_attempts); 2398 2399 /* 2400 * ic_raw_xmit will free the node reference 2401 * regardless of queue/TX success or failure. 2402 */ 2403 IEEE80211_TX_LOCK(ic); 2404 ret = ieee80211_raw_output(vap, ni, m, NULL); 2405 IEEE80211_TX_UNLOCK(ic); 2406 if (ret != 0) { 2407 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2408 ni, "send BAR: failed: (ret = %d)\n", 2409 ret); 2410 /* xmit failed, clear state flag */ 2411 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2412 vap->iv_stats.is_ampdu_bar_tx_fail++; 2413 return ret; 2414 } 2415 /* XXX hack against tx complete happening before timer is started */ 2416 if (tap->txa_flags & IEEE80211_AGGR_BARPEND) 2417 bar_start_timer(tap); 2418 return 0; 2419 bad: 2420 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2421 tap->txa_ni, 2422 "%s: bad! ret=%d", 2423 __func__, ret); 2424 vap->iv_stats.is_ampdu_bar_tx_fail++; 2425 ieee80211_free_node(ni); 2426 return ret; 2427 #undef senderr 2428 } 2429 2430 static int 2431 ht_action_output(struct ieee80211_node *ni, struct mbuf *m) 2432 { 2433 struct ieee80211_bpf_params params; 2434 2435 memset(¶ms, 0, sizeof(params)); 2436 params.ibp_pri = WME_AC_VO; 2437 params.ibp_rate0 = ni->ni_txparms->mgmtrate; 2438 /* NB: we know all frames are unicast */ 2439 params.ibp_try0 = ni->ni_txparms->maxretry; 2440 params.ibp_power = ni->ni_txpower; 2441 return ieee80211_mgmt_output(ni, m, IEEE80211_FC0_SUBTYPE_ACTION, 2442 ¶ms); 2443 } 2444 2445 #define ADDSHORT(frm, v) do { \ 2446 frm[0] = (v) & 0xff; \ 2447 frm[1] = (v) >> 8; \ 2448 frm += 2; \ 2449 } while (0) 2450 2451 /* 2452 * Send an action management frame. The arguments are stuff 2453 * into a frame without inspection; the caller is assumed to 2454 * prepare them carefully (e.g. based on the aggregation state). 2455 */ 2456 static int 2457 ht_send_action_ba_addba(struct ieee80211_node *ni, 2458 int category, int action, void *arg0) 2459 { 2460 struct ieee80211vap *vap = ni->ni_vap; 2461 struct ieee80211com *ic = ni->ni_ic; 2462 uint16_t *args = arg0; 2463 struct mbuf *m; 2464 uint8_t *frm; 2465 2466 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2467 "send ADDBA %s: dialogtoken %d status %d " 2468 "baparamset 0x%x (tid %d) batimeout 0x%x baseqctl 0x%x", 2469 (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ? 2470 "request" : "response", 2471 args[0], args[1], args[2], MS(args[2], IEEE80211_BAPS_TID), 2472 args[3], args[4]); 2473 2474 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2475 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2476 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2477 ieee80211_ref_node(ni); 2478 2479 m = ieee80211_getmgtframe(&frm, 2480 ic->ic_headroom + sizeof(struct ieee80211_frame), 2481 sizeof(uint16_t) /* action+category */ 2482 /* XXX may action payload */ 2483 + sizeof(struct ieee80211_action_ba_addbaresponse) 2484 ); 2485 if (m != NULL) { 2486 *frm++ = category; 2487 *frm++ = action; 2488 *frm++ = args[0]; /* dialog token */ 2489 if (action == IEEE80211_ACTION_BA_ADDBA_RESPONSE) 2490 ADDSHORT(frm, args[1]); /* status code */ 2491 ADDSHORT(frm, args[2]); /* baparamset */ 2492 ADDSHORT(frm, args[3]); /* batimeout */ 2493 if (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) 2494 ADDSHORT(frm, args[4]); /* baseqctl */ 2495 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2496 return ht_action_output(ni, m); 2497 } else { 2498 vap->iv_stats.is_tx_nobuf++; 2499 ieee80211_free_node(ni); 2500 return ENOMEM; 2501 } 2502 } 2503 2504 static int 2505 ht_send_action_ba_delba(struct ieee80211_node *ni, 2506 int category, int action, void *arg0) 2507 { 2508 struct ieee80211vap *vap = ni->ni_vap; 2509 struct ieee80211com *ic = ni->ni_ic; 2510 uint16_t *args = arg0; 2511 struct mbuf *m; 2512 uint16_t baparamset; 2513 uint8_t *frm; 2514 2515 baparamset = SM(args[0], IEEE80211_DELBAPS_TID) 2516 | args[1] 2517 ; 2518 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2519 "send DELBA action: tid %d, initiator %d reason %d", 2520 args[0], args[1], args[2]); 2521 2522 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2523 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2524 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2525 ieee80211_ref_node(ni); 2526 2527 m = ieee80211_getmgtframe(&frm, 2528 ic->ic_headroom + sizeof(struct ieee80211_frame), 2529 sizeof(uint16_t) /* action+category */ 2530 /* XXX may action payload */ 2531 + sizeof(struct ieee80211_action_ba_addbaresponse) 2532 ); 2533 if (m != NULL) { 2534 *frm++ = category; 2535 *frm++ = action; 2536 ADDSHORT(frm, baparamset); 2537 ADDSHORT(frm, args[2]); /* reason code */ 2538 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2539 return ht_action_output(ni, m); 2540 } else { 2541 vap->iv_stats.is_tx_nobuf++; 2542 ieee80211_free_node(ni); 2543 return ENOMEM; 2544 } 2545 } 2546 2547 static int 2548 ht_send_action_ht_txchwidth(struct ieee80211_node *ni, 2549 int category, int action, void *arg0) 2550 { 2551 struct ieee80211vap *vap = ni->ni_vap; 2552 struct ieee80211com *ic = ni->ni_ic; 2553 struct mbuf *m; 2554 uint8_t *frm; 2555 2556 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2557 "send HT txchwidth: width %d", 2558 IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 40 : 20); 2559 2560 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2561 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2562 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2563 ieee80211_ref_node(ni); 2564 2565 m = ieee80211_getmgtframe(&frm, 2566 ic->ic_headroom + sizeof(struct ieee80211_frame), 2567 sizeof(uint16_t) /* action+category */ 2568 /* XXX may action payload */ 2569 + sizeof(struct ieee80211_action_ba_addbaresponse) 2570 ); 2571 if (m != NULL) { 2572 *frm++ = category; 2573 *frm++ = action; 2574 *frm++ = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 2575 IEEE80211_A_HT_TXCHWIDTH_2040 : 2576 IEEE80211_A_HT_TXCHWIDTH_20; 2577 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2578 return ht_action_output(ni, m); 2579 } else { 2580 vap->iv_stats.is_tx_nobuf++; 2581 ieee80211_free_node(ni); 2582 return ENOMEM; 2583 } 2584 } 2585 #undef ADDSHORT 2586 2587 /* 2588 * Construct the MCS bit mask for inclusion in an HT capabilities 2589 * information element. 2590 */ 2591 static void 2592 ieee80211_set_mcsset(struct ieee80211com *ic, uint8_t *frm) 2593 { 2594 int i; 2595 uint8_t txparams; 2596 2597 KASSERT((ic->ic_rxstream > 0 && ic->ic_rxstream <= 4), 2598 ("ic_rxstream %d out of range", ic->ic_rxstream)); 2599 KASSERT((ic->ic_txstream > 0 && ic->ic_txstream <= 4), 2600 ("ic_txstream %d out of range", ic->ic_txstream)); 2601 2602 for (i = 0; i < ic->ic_rxstream * 8; i++) 2603 setbit(frm, i); 2604 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 2605 (ic->ic_htcaps & IEEE80211_HTC_RXMCS32)) 2606 setbit(frm, 32); 2607 if (ic->ic_htcaps & IEEE80211_HTC_RXUNEQUAL) { 2608 if (ic->ic_rxstream >= 2) { 2609 for (i = 33; i <= 38; i++) 2610 setbit(frm, i); 2611 } 2612 if (ic->ic_rxstream >= 3) { 2613 for (i = 39; i <= 52; i++) 2614 setbit(frm, i); 2615 } 2616 if (ic->ic_txstream >= 4) { 2617 for (i = 53; i <= 76; i++) 2618 setbit(frm, i); 2619 } 2620 } 2621 2622 if (ic->ic_rxstream != ic->ic_txstream) { 2623 txparams = 0x1; /* TX MCS set defined */ 2624 txparams |= 0x2; /* TX RX MCS not equal */ 2625 txparams |= (ic->ic_txstream - 1) << 2; /* num TX streams */ 2626 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) 2627 txparams |= 0x16; /* TX unequal modulation sup */ 2628 } else 2629 txparams = 0; 2630 frm[12] = txparams; 2631 } 2632 2633 /* 2634 * Add body of an HTCAP information element. 2635 */ 2636 static uint8_t * 2637 ieee80211_add_htcap_body(uint8_t *frm, struct ieee80211_node *ni) 2638 { 2639 #define ADDSHORT(frm, v) do { \ 2640 frm[0] = (v) & 0xff; \ 2641 frm[1] = (v) >> 8; \ 2642 frm += 2; \ 2643 } while (0) 2644 struct ieee80211com *ic = ni->ni_ic; 2645 struct ieee80211vap *vap = ni->ni_vap; 2646 uint16_t caps, extcaps; 2647 int rxmax, density; 2648 2649 /* HT capabilities */ 2650 caps = vap->iv_htcaps & 0xffff; 2651 /* 2652 * Note channel width depends on whether we are operating as 2653 * a sta or not. When operating as a sta we are generating 2654 * a request based on our desired configuration. Otherwise 2655 * we are operational and the channel attributes identify 2656 * how we've been setup (which might be different if a fixed 2657 * channel is specified). 2658 */ 2659 if (vap->iv_opmode == IEEE80211_M_STA) { 2660 /* override 20/40 use based on config */ 2661 if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40) 2662 caps |= IEEE80211_HTCAP_CHWIDTH40; 2663 else 2664 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2665 /* use advertised setting (XXX locally constraint) */ 2666 rxmax = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU); 2667 density = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY); 2668 2669 /* 2670 * NB: Hardware might support HT40 on some but not all 2671 * channels. We can't determine this earlier because only 2672 * after association the channel is upgraded to HT based 2673 * on the negotiated capabilities. 2674 */ 2675 if (ni->ni_chan != IEEE80211_CHAN_ANYC && 2676 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40U) == NULL && 2677 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40D) == NULL) 2678 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2679 } else { 2680 /* override 20/40 use based on current channel */ 2681 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 2682 caps |= IEEE80211_HTCAP_CHWIDTH40; 2683 else 2684 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2685 rxmax = vap->iv_ampdu_rxmax; 2686 density = vap->iv_ampdu_density; 2687 } 2688 /* adjust short GI based on channel and config */ 2689 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) 2690 caps &= ~IEEE80211_HTCAP_SHORTGI20; 2691 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || 2692 (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) 2693 caps &= ~IEEE80211_HTCAP_SHORTGI40; 2694 ADDSHORT(frm, caps); 2695 2696 /* HT parameters */ 2697 *frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) 2698 | SM(density, IEEE80211_HTCAP_MPDUDENSITY) 2699 ; 2700 frm++; 2701 2702 /* pre-zero remainder of ie */ 2703 memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - 2704 __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); 2705 2706 /* supported MCS set */ 2707 /* 2708 * XXX: For sta mode the rate set should be restricted based 2709 * on the AP's capabilities, but ni_htrates isn't setup when 2710 * we're called to form an AssocReq frame so for now we're 2711 * restricted to the device capabilities. 2712 */ 2713 ieee80211_set_mcsset(ni->ni_ic, frm); 2714 2715 frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - 2716 __offsetof(struct ieee80211_ie_htcap, hc_mcsset); 2717 2718 /* HT extended capabilities */ 2719 extcaps = vap->iv_htextcaps & 0xffff; 2720 2721 ADDSHORT(frm, extcaps); 2722 2723 frm += sizeof(struct ieee80211_ie_htcap) - 2724 __offsetof(struct ieee80211_ie_htcap, hc_txbf); 2725 2726 return frm; 2727 #undef ADDSHORT 2728 } 2729 2730 /* 2731 * Add 802.11n HT capabilities information element 2732 */ 2733 uint8_t * 2734 ieee80211_add_htcap(uint8_t *frm, struct ieee80211_node *ni) 2735 { 2736 frm[0] = IEEE80211_ELEMID_HTCAP; 2737 frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; 2738 return ieee80211_add_htcap_body(frm + 2, ni); 2739 } 2740 2741 /* 2742 * Add Broadcom OUI wrapped standard HTCAP ie; this is 2743 * used for compatibility w/ pre-draft implementations. 2744 */ 2745 uint8_t * 2746 ieee80211_add_htcap_vendor(uint8_t *frm, struct ieee80211_node *ni) 2747 { 2748 frm[0] = IEEE80211_ELEMID_VENDOR; 2749 frm[1] = 4 + sizeof(struct ieee80211_ie_htcap) - 2; 2750 frm[2] = (BCM_OUI >> 0) & 0xff; 2751 frm[3] = (BCM_OUI >> 8) & 0xff; 2752 frm[4] = (BCM_OUI >> 16) & 0xff; 2753 frm[5] = BCM_OUI_HTCAP; 2754 return ieee80211_add_htcap_body(frm + 6, ni); 2755 } 2756 2757 /* 2758 * Construct the MCS bit mask of basic rates 2759 * for inclusion in an HT information element. 2760 */ 2761 static void 2762 ieee80211_set_basic_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs) 2763 { 2764 int i; 2765 2766 for (i = 0; i < rs->rs_nrates; i++) { 2767 int r = rs->rs_rates[i] & IEEE80211_RATE_VAL; 2768 if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) && 2769 r < IEEE80211_HTRATE_MAXSIZE) { 2770 /* NB: this assumes a particular implementation */ 2771 setbit(frm, r); 2772 } 2773 } 2774 } 2775 2776 /* 2777 * Update the HTINFO ie for a beacon frame. 2778 */ 2779 void 2780 ieee80211_ht_update_beacon(struct ieee80211vap *vap, 2781 struct ieee80211_beacon_offsets *bo) 2782 { 2783 #define PROTMODE (IEEE80211_HTINFO_OPMODE|IEEE80211_HTINFO_NONHT_PRESENT) 2784 struct ieee80211_node *ni; 2785 const struct ieee80211_channel *bsschan; 2786 struct ieee80211com *ic = vap->iv_ic; 2787 struct ieee80211_ie_htinfo *ht = 2788 (struct ieee80211_ie_htinfo *) bo->bo_htinfo; 2789 2790 ni = ieee80211_ref_node(vap->iv_bss); 2791 bsschan = ni->ni_chan; 2792 2793 /* XXX only update on channel change */ 2794 ht->hi_ctrlchannel = ieee80211_chan2ieee(ic, bsschan); 2795 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 2796 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PERM; 2797 else 2798 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PROH; 2799 if (IEEE80211_IS_CHAN_HT40U(bsschan)) 2800 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 2801 else if (IEEE80211_IS_CHAN_HT40D(bsschan)) 2802 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_BELOW; 2803 else 2804 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_NONE; 2805 if (IEEE80211_IS_CHAN_HT40(bsschan)) 2806 ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040; 2807 2808 /* protection mode */ 2809 ht->hi_byte2 = (ht->hi_byte2 &~ PROTMODE) | ic->ic_curhtprotmode; 2810 2811 ieee80211_free_node(ni); 2812 2813 /* XXX propagate to vendor ie's */ 2814 #undef PROTMODE 2815 } 2816 2817 /* 2818 * Add body of an HTINFO information element. 2819 * 2820 * NB: We don't use struct ieee80211_ie_htinfo because we can 2821 * be called to fillin both a standard ie and a compat ie that 2822 * has a vendor OUI at the front. 2823 */ 2824 static uint8_t * 2825 ieee80211_add_htinfo_body(uint8_t *frm, struct ieee80211_node *ni) 2826 { 2827 struct ieee80211vap *vap = ni->ni_vap; 2828 struct ieee80211com *ic = ni->ni_ic; 2829 2830 /* pre-zero remainder of ie */ 2831 memset(frm, 0, sizeof(struct ieee80211_ie_htinfo) - 2); 2832 2833 /* primary/control channel center */ 2834 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 2835 2836 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 2837 frm[0] = IEEE80211_HTINFO_RIFSMODE_PERM; 2838 else 2839 frm[0] = IEEE80211_HTINFO_RIFSMODE_PROH; 2840 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 2841 frm[0] |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 2842 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 2843 frm[0] |= IEEE80211_HTINFO_2NDCHAN_BELOW; 2844 else 2845 frm[0] |= IEEE80211_HTINFO_2NDCHAN_NONE; 2846 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 2847 frm[0] |= IEEE80211_HTINFO_TXWIDTH_2040; 2848 2849 frm[1] = ic->ic_curhtprotmode; 2850 2851 frm += 5; 2852 2853 /* basic MCS set */ 2854 ieee80211_set_basic_htrates(frm, &ni->ni_htrates); 2855 frm += sizeof(struct ieee80211_ie_htinfo) - 2856 __offsetof(struct ieee80211_ie_htinfo, hi_basicmcsset); 2857 return frm; 2858 } 2859 2860 /* 2861 * Add 802.11n HT information information element. 2862 */ 2863 uint8_t * 2864 ieee80211_add_htinfo(uint8_t *frm, struct ieee80211_node *ni) 2865 { 2866 frm[0] = IEEE80211_ELEMID_HTINFO; 2867 frm[1] = sizeof(struct ieee80211_ie_htinfo) - 2; 2868 return ieee80211_add_htinfo_body(frm + 2, ni); 2869 } 2870 2871 /* 2872 * Add Broadcom OUI wrapped standard HTINFO ie; this is 2873 * used for compatibility w/ pre-draft implementations. 2874 */ 2875 uint8_t * 2876 ieee80211_add_htinfo_vendor(uint8_t *frm, struct ieee80211_node *ni) 2877 { 2878 frm[0] = IEEE80211_ELEMID_VENDOR; 2879 frm[1] = 4 + sizeof(struct ieee80211_ie_htinfo) - 2; 2880 frm[2] = (BCM_OUI >> 0) & 0xff; 2881 frm[3] = (BCM_OUI >> 8) & 0xff; 2882 frm[4] = (BCM_OUI >> 16) & 0xff; 2883 frm[5] = BCM_OUI_HTINFO; 2884 return ieee80211_add_htinfo_body(frm + 6, ni); 2885 } 2886