1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 #ifdef __FreeBSD__ 30 __FBSDID("$FreeBSD$"); 31 #endif 32 33 /* 34 * IEEE 802.11n protocol support. 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_wlan.h" 39 40 #include <sys/param.h> 41 #include <sys/kernel.h> 42 #include <sys/malloc.h> 43 #include <sys/systm.h> 44 #include <sys/endian.h> 45 46 #include <sys/socket.h> 47 48 #include <net/if.h> 49 #include <net/if_var.h> 50 #include <net/if_media.h> 51 #include <net/ethernet.h> 52 53 #include <net80211/ieee80211_var.h> 54 #include <net80211/ieee80211_action.h> 55 #include <net80211/ieee80211_input.h> 56 57 /* define here, used throughout file */ 58 #define MS(_v, _f) (((_v) & _f) >> _f##_S) 59 #define SM(_v, _f) (((_v) << _f##_S) & _f) 60 61 const struct ieee80211_mcs_rates ieee80211_htrates[IEEE80211_HTRATE_MAXSIZE] = { 62 { 13, 14, 27, 30 }, /* MCS 0 */ 63 { 26, 29, 54, 60 }, /* MCS 1 */ 64 { 39, 43, 81, 90 }, /* MCS 2 */ 65 { 52, 58, 108, 120 }, /* MCS 3 */ 66 { 78, 87, 162, 180 }, /* MCS 4 */ 67 { 104, 116, 216, 240 }, /* MCS 5 */ 68 { 117, 130, 243, 270 }, /* MCS 6 */ 69 { 130, 144, 270, 300 }, /* MCS 7 */ 70 { 26, 29, 54, 60 }, /* MCS 8 */ 71 { 52, 58, 108, 120 }, /* MCS 9 */ 72 { 78, 87, 162, 180 }, /* MCS 10 */ 73 { 104, 116, 216, 240 }, /* MCS 11 */ 74 { 156, 173, 324, 360 }, /* MCS 12 */ 75 { 208, 231, 432, 480 }, /* MCS 13 */ 76 { 234, 260, 486, 540 }, /* MCS 14 */ 77 { 260, 289, 540, 600 }, /* MCS 15 */ 78 { 39, 43, 81, 90 }, /* MCS 16 */ 79 { 78, 87, 162, 180 }, /* MCS 17 */ 80 { 117, 130, 243, 270 }, /* MCS 18 */ 81 { 156, 173, 324, 360 }, /* MCS 19 */ 82 { 234, 260, 486, 540 }, /* MCS 20 */ 83 { 312, 347, 648, 720 }, /* MCS 21 */ 84 { 351, 390, 729, 810 }, /* MCS 22 */ 85 { 390, 433, 810, 900 }, /* MCS 23 */ 86 { 52, 58, 108, 120 }, /* MCS 24 */ 87 { 104, 116, 216, 240 }, /* MCS 25 */ 88 { 156, 173, 324, 360 }, /* MCS 26 */ 89 { 208, 231, 432, 480 }, /* MCS 27 */ 90 { 312, 347, 648, 720 }, /* MCS 28 */ 91 { 416, 462, 864, 960 }, /* MCS 29 */ 92 { 468, 520, 972, 1080 }, /* MCS 30 */ 93 { 520, 578, 1080, 1200 }, /* MCS 31 */ 94 { 0, 0, 12, 13 }, /* MCS 32 */ 95 { 78, 87, 162, 180 }, /* MCS 33 */ 96 { 104, 116, 216, 240 }, /* MCS 34 */ 97 { 130, 144, 270, 300 }, /* MCS 35 */ 98 { 117, 130, 243, 270 }, /* MCS 36 */ 99 { 156, 173, 324, 360 }, /* MCS 37 */ 100 { 195, 217, 405, 450 }, /* MCS 38 */ 101 { 104, 116, 216, 240 }, /* MCS 39 */ 102 { 130, 144, 270, 300 }, /* MCS 40 */ 103 { 130, 144, 270, 300 }, /* MCS 41 */ 104 { 156, 173, 324, 360 }, /* MCS 42 */ 105 { 182, 202, 378, 420 }, /* MCS 43 */ 106 { 182, 202, 378, 420 }, /* MCS 44 */ 107 { 208, 231, 432, 480 }, /* MCS 45 */ 108 { 156, 173, 324, 360 }, /* MCS 46 */ 109 { 195, 217, 405, 450 }, /* MCS 47 */ 110 { 195, 217, 405, 450 }, /* MCS 48 */ 111 { 234, 260, 486, 540 }, /* MCS 49 */ 112 { 273, 303, 567, 630 }, /* MCS 50 */ 113 { 273, 303, 567, 630 }, /* MCS 51 */ 114 { 312, 347, 648, 720 }, /* MCS 52 */ 115 { 130, 144, 270, 300 }, /* MCS 53 */ 116 { 156, 173, 324, 360 }, /* MCS 54 */ 117 { 182, 202, 378, 420 }, /* MCS 55 */ 118 { 156, 173, 324, 360 }, /* MCS 56 */ 119 { 182, 202, 378, 420 }, /* MCS 57 */ 120 { 208, 231, 432, 480 }, /* MCS 58 */ 121 { 234, 260, 486, 540 }, /* MCS 59 */ 122 { 208, 231, 432, 480 }, /* MCS 60 */ 123 { 234, 260, 486, 540 }, /* MCS 61 */ 124 { 260, 289, 540, 600 }, /* MCS 62 */ 125 { 260, 289, 540, 600 }, /* MCS 63 */ 126 { 286, 318, 594, 660 }, /* MCS 64 */ 127 { 195, 217, 405, 450 }, /* MCS 65 */ 128 { 234, 260, 486, 540 }, /* MCS 66 */ 129 { 273, 303, 567, 630 }, /* MCS 67 */ 130 { 234, 260, 486, 540 }, /* MCS 68 */ 131 { 273, 303, 567, 630 }, /* MCS 69 */ 132 { 312, 347, 648, 720 }, /* MCS 70 */ 133 { 351, 390, 729, 810 }, /* MCS 71 */ 134 { 312, 347, 648, 720 }, /* MCS 72 */ 135 { 351, 390, 729, 810 }, /* MCS 73 */ 136 { 390, 433, 810, 900 }, /* MCS 74 */ 137 { 390, 433, 810, 900 }, /* MCS 75 */ 138 { 429, 477, 891, 990 }, /* MCS 76 */ 139 }; 140 141 static int ieee80211_ampdu_age = -1; /* threshold for ampdu reorder q (ms) */ 142 SYSCTL_PROC(_net_wlan, OID_AUTO, ampdu_age, 143 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 144 &ieee80211_ampdu_age, 0, ieee80211_sysctl_msecs_ticks, "I", 145 "AMPDU max reorder age (ms)"); 146 147 static int ieee80211_recv_bar_ena = 1; 148 SYSCTL_INT(_net_wlan, OID_AUTO, recv_bar, CTLFLAG_RW, &ieee80211_recv_bar_ena, 149 0, "BAR frame processing (ena/dis)"); 150 151 static int ieee80211_addba_timeout = -1;/* timeout for ADDBA response */ 152 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_timeout, 153 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 154 &ieee80211_addba_timeout, 0, ieee80211_sysctl_msecs_ticks, "I", 155 "ADDBA request timeout (ms)"); 156 static int ieee80211_addba_backoff = -1;/* backoff after max ADDBA requests */ 157 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_backoff, 158 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 159 &ieee80211_addba_backoff, 0, ieee80211_sysctl_msecs_ticks, "I", 160 "ADDBA request backoff (ms)"); 161 static int ieee80211_addba_maxtries = 3;/* max ADDBA requests before backoff */ 162 SYSCTL_INT(_net_wlan, OID_AUTO, addba_maxtries, CTLFLAG_RW, 163 &ieee80211_addba_maxtries, 0, "max ADDBA requests sent before backoff"); 164 165 static int ieee80211_bar_timeout = -1; /* timeout waiting for BAR response */ 166 static int ieee80211_bar_maxtries = 50;/* max BAR requests before DELBA */ 167 168 static ieee80211_recv_action_func ht_recv_action_ba_addba_request; 169 static ieee80211_recv_action_func ht_recv_action_ba_addba_response; 170 static ieee80211_recv_action_func ht_recv_action_ba_delba; 171 static ieee80211_recv_action_func ht_recv_action_ht_mimopwrsave; 172 static ieee80211_recv_action_func ht_recv_action_ht_txchwidth; 173 174 static ieee80211_send_action_func ht_send_action_ba_addba; 175 static ieee80211_send_action_func ht_send_action_ba_delba; 176 static ieee80211_send_action_func ht_send_action_ht_txchwidth; 177 178 static void 179 ieee80211_ht_init(void) 180 { 181 /* 182 * Setup HT parameters that depends on the clock frequency. 183 */ 184 ieee80211_ampdu_age = msecs_to_ticks(500); 185 ieee80211_addba_timeout = msecs_to_ticks(250); 186 ieee80211_addba_backoff = msecs_to_ticks(10*1000); 187 ieee80211_bar_timeout = msecs_to_ticks(250); 188 /* 189 * Register action frame handlers. 190 */ 191 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 192 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_recv_action_ba_addba_request); 193 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 194 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_recv_action_ba_addba_response); 195 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 196 IEEE80211_ACTION_BA_DELBA, ht_recv_action_ba_delba); 197 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 198 IEEE80211_ACTION_HT_MIMOPWRSAVE, ht_recv_action_ht_mimopwrsave); 199 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 200 IEEE80211_ACTION_HT_TXCHWIDTH, ht_recv_action_ht_txchwidth); 201 202 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 203 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_send_action_ba_addba); 204 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 205 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_send_action_ba_addba); 206 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 207 IEEE80211_ACTION_BA_DELBA, ht_send_action_ba_delba); 208 ieee80211_send_action_register(IEEE80211_ACTION_CAT_HT, 209 IEEE80211_ACTION_HT_TXCHWIDTH, ht_send_action_ht_txchwidth); 210 } 211 SYSINIT(wlan_ht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_ht_init, NULL); 212 213 static int ieee80211_ampdu_enable(struct ieee80211_node *ni, 214 struct ieee80211_tx_ampdu *tap); 215 static int ieee80211_addba_request(struct ieee80211_node *ni, 216 struct ieee80211_tx_ampdu *tap, 217 int dialogtoken, int baparamset, int batimeout); 218 static int ieee80211_addba_response(struct ieee80211_node *ni, 219 struct ieee80211_tx_ampdu *tap, 220 int code, int baparamset, int batimeout); 221 static void ieee80211_addba_stop(struct ieee80211_node *ni, 222 struct ieee80211_tx_ampdu *tap); 223 static void null_addba_response_timeout(struct ieee80211_node *ni, 224 struct ieee80211_tx_ampdu *tap); 225 226 static void ieee80211_bar_response(struct ieee80211_node *ni, 227 struct ieee80211_tx_ampdu *tap, int status); 228 static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap); 229 static void bar_stop_timer(struct ieee80211_tx_ampdu *tap); 230 static int ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *, 231 int baparamset, int batimeout, int baseqctl); 232 static void ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *); 233 234 void 235 ieee80211_ht_attach(struct ieee80211com *ic) 236 { 237 /* setup default aggregation policy */ 238 ic->ic_recv_action = ieee80211_recv_action; 239 ic->ic_send_action = ieee80211_send_action; 240 ic->ic_ampdu_enable = ieee80211_ampdu_enable; 241 ic->ic_addba_request = ieee80211_addba_request; 242 ic->ic_addba_response = ieee80211_addba_response; 243 ic->ic_addba_response_timeout = null_addba_response_timeout; 244 ic->ic_addba_stop = ieee80211_addba_stop; 245 ic->ic_bar_response = ieee80211_bar_response; 246 ic->ic_ampdu_rx_start = ampdu_rx_start; 247 ic->ic_ampdu_rx_stop = ampdu_rx_stop; 248 249 ic->ic_htprotmode = IEEE80211_PROT_RTSCTS; 250 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; 251 } 252 253 void 254 ieee80211_ht_detach(struct ieee80211com *ic) 255 { 256 } 257 258 void 259 ieee80211_ht_vattach(struct ieee80211vap *vap) 260 { 261 262 /* driver can override defaults */ 263 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_8K; 264 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_NA; 265 vap->iv_ampdu_limit = vap->iv_ampdu_rxmax; 266 vap->iv_amsdu_limit = vap->iv_htcaps & IEEE80211_HTCAP_MAXAMSDU; 267 /* tx aggregation traffic thresholds */ 268 vap->iv_ampdu_mintraffic[WME_AC_BK] = 128; 269 vap->iv_ampdu_mintraffic[WME_AC_BE] = 64; 270 vap->iv_ampdu_mintraffic[WME_AC_VO] = 32; 271 vap->iv_ampdu_mintraffic[WME_AC_VI] = 32; 272 273 if (vap->iv_htcaps & IEEE80211_HTC_HT) { 274 /* 275 * Device is HT capable; enable all HT-related 276 * facilities by default. 277 * XXX these choices may be too aggressive. 278 */ 279 vap->iv_flags_ht |= IEEE80211_FHT_HT 280 | IEEE80211_FHT_HTCOMPAT 281 ; 282 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI20) 283 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20; 284 /* XXX infer from channel list? */ 285 if (vap->iv_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 286 vap->iv_flags_ht |= IEEE80211_FHT_USEHT40; 287 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI40) 288 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40; 289 } 290 /* enable RIFS if capable */ 291 if (vap->iv_htcaps & IEEE80211_HTC_RIFS) 292 vap->iv_flags_ht |= IEEE80211_FHT_RIFS; 293 294 /* NB: A-MPDU and A-MSDU rx are mandated, these are tx only */ 295 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX; 296 if (vap->iv_htcaps & IEEE80211_HTC_AMPDU) 297 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX; 298 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX; 299 if (vap->iv_htcaps & IEEE80211_HTC_AMSDU) 300 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX; 301 302 if (vap->iv_htcaps & IEEE80211_HTCAP_TXSTBC) 303 vap->iv_flags_ht |= IEEE80211_FHT_STBC_TX; 304 if (vap->iv_htcaps & IEEE80211_HTCAP_RXSTBC) 305 vap->iv_flags_ht |= IEEE80211_FHT_STBC_RX; 306 307 if (vap->iv_htcaps & IEEE80211_HTCAP_LDPC) 308 vap->iv_flags_ht |= IEEE80211_FHT_LDPC_RX; 309 if (vap->iv_htcaps & IEEE80211_HTC_TXLDPC) 310 vap->iv_flags_ht |= IEEE80211_FHT_LDPC_TX; 311 } 312 /* NB: disable default legacy WDS, too many issues right now */ 313 if (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) 314 vap->iv_flags_ht &= ~IEEE80211_FHT_HT; 315 } 316 317 void 318 ieee80211_ht_vdetach(struct ieee80211vap *vap) 319 { 320 } 321 322 static int 323 ht_getrate(struct ieee80211com *ic, int index, enum ieee80211_phymode mode, 324 int ratetype) 325 { 326 int mword, rate; 327 328 mword = ieee80211_rate2media(ic, index | IEEE80211_RATE_MCS, mode); 329 if (IFM_SUBTYPE(mword) != IFM_IEEE80211_MCS) 330 return (0); 331 switch (ratetype) { 332 case 0: 333 rate = ieee80211_htrates[index].ht20_rate_800ns; 334 break; 335 case 1: 336 rate = ieee80211_htrates[index].ht20_rate_400ns; 337 break; 338 case 2: 339 rate = ieee80211_htrates[index].ht40_rate_800ns; 340 break; 341 default: 342 rate = ieee80211_htrates[index].ht40_rate_400ns; 343 break; 344 } 345 return (rate); 346 } 347 348 static struct printranges { 349 int minmcs; 350 int maxmcs; 351 int txstream; 352 int ratetype; 353 int htcapflags; 354 } ranges[] = { 355 { 0, 7, 1, 0, 0 }, 356 { 8, 15, 2, 0, 0 }, 357 { 16, 23, 3, 0, 0 }, 358 { 24, 31, 4, 0, 0 }, 359 { 32, 0, 1, 2, IEEE80211_HTC_TXMCS32 }, 360 { 33, 38, 2, 0, IEEE80211_HTC_TXUNEQUAL }, 361 { 39, 52, 3, 0, IEEE80211_HTC_TXUNEQUAL }, 362 { 53, 76, 4, 0, IEEE80211_HTC_TXUNEQUAL }, 363 { 0, 0, 0, 0, 0 }, 364 }; 365 366 static void 367 ht_rateprint(struct ieee80211com *ic, enum ieee80211_phymode mode, int ratetype) 368 { 369 int minrate, maxrate; 370 struct printranges *range; 371 372 for (range = ranges; range->txstream != 0; range++) { 373 if (ic->ic_txstream < range->txstream) 374 continue; 375 if (range->htcapflags && 376 (ic->ic_htcaps & range->htcapflags) == 0) 377 continue; 378 if (ratetype < range->ratetype) 379 continue; 380 minrate = ht_getrate(ic, range->minmcs, mode, ratetype); 381 maxrate = ht_getrate(ic, range->maxmcs, mode, ratetype); 382 if (range->maxmcs) { 383 ic_printf(ic, "MCS %d-%d: %d%sMbps - %d%sMbps\n", 384 range->minmcs, range->maxmcs, 385 minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""), 386 maxrate/2, ((maxrate & 0x1) != 0 ? ".5" : "")); 387 } else { 388 ic_printf(ic, "MCS %d: %d%sMbps\n", range->minmcs, 389 minrate/2, ((minrate & 0x1) != 0 ? ".5" : "")); 390 } 391 } 392 } 393 394 static void 395 ht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode) 396 { 397 const char *modestr = ieee80211_phymode_name[mode]; 398 399 ic_printf(ic, "%s MCS 20MHz\n", modestr); 400 ht_rateprint(ic, mode, 0); 401 if (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) { 402 ic_printf(ic, "%s MCS 20MHz SGI\n", modestr); 403 ht_rateprint(ic, mode, 1); 404 } 405 if (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 406 ic_printf(ic, "%s MCS 40MHz:\n", modestr); 407 ht_rateprint(ic, mode, 2); 408 } 409 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 410 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) { 411 ic_printf(ic, "%s MCS 40MHz SGI:\n", modestr); 412 ht_rateprint(ic, mode, 3); 413 } 414 } 415 416 void 417 ieee80211_ht_announce(struct ieee80211com *ic) 418 { 419 420 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 421 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 422 ic_printf(ic, "%dT%dR\n", ic->ic_txstream, ic->ic_rxstream); 423 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA)) 424 ht_announce(ic, IEEE80211_MODE_11NA); 425 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 426 ht_announce(ic, IEEE80211_MODE_11NG); 427 } 428 429 void 430 ieee80211_init_suphtrates(struct ieee80211com *ic) 431 { 432 #define ADDRATE(x) do { \ 433 htrateset->rs_rates[htrateset->rs_nrates] = x; \ 434 htrateset->rs_nrates++; \ 435 } while (0) 436 struct ieee80211_htrateset *htrateset = &ic->ic_sup_htrates; 437 int i; 438 439 memset(htrateset, 0, sizeof(struct ieee80211_htrateset)); 440 for (i = 0; i < ic->ic_txstream * 8; i++) 441 ADDRATE(i); 442 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 443 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32)) 444 ADDRATE(32); 445 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 446 if (ic->ic_txstream >= 2) { 447 for (i = 33; i <= 38; i++) 448 ADDRATE(i); 449 } 450 if (ic->ic_txstream >= 3) { 451 for (i = 39; i <= 52; i++) 452 ADDRATE(i); 453 } 454 if (ic->ic_txstream == 4) { 455 for (i = 53; i <= 76; i++) 456 ADDRATE(i); 457 } 458 } 459 #undef ADDRATE 460 } 461 462 /* 463 * Receive processing. 464 */ 465 466 /* 467 * Decap the encapsulated A-MSDU frames and dispatch all but 468 * the last for delivery. The last frame is returned for 469 * delivery via the normal path. 470 */ 471 struct mbuf * 472 ieee80211_decap_amsdu(struct ieee80211_node *ni, struct mbuf *m) 473 { 474 struct ieee80211vap *vap = ni->ni_vap; 475 int framelen; 476 struct mbuf *n; 477 478 /* discard 802.3 header inserted by ieee80211_decap */ 479 m_adj(m, sizeof(struct ether_header)); 480 481 vap->iv_stats.is_amsdu_decap++; 482 483 for (;;) { 484 /* 485 * Decap the first frame, bust it apart from the 486 * remainder and deliver. We leave the last frame 487 * delivery to the caller (for consistency with other 488 * code paths, could also do it here). 489 */ 490 m = ieee80211_decap1(m, &framelen); 491 if (m == NULL) { 492 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 493 ni->ni_macaddr, "a-msdu", "%s", "decap failed"); 494 vap->iv_stats.is_amsdu_tooshort++; 495 return NULL; 496 } 497 if (m->m_pkthdr.len == framelen) 498 break; 499 n = m_split(m, framelen, M_NOWAIT); 500 if (n == NULL) { 501 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 502 ni->ni_macaddr, "a-msdu", 503 "%s", "unable to split encapsulated frames"); 504 vap->iv_stats.is_amsdu_split++; 505 m_freem(m); /* NB: must reclaim */ 506 return NULL; 507 } 508 vap->iv_deliver_data(vap, ni, m); 509 510 /* 511 * Remove frame contents; each intermediate frame 512 * is required to be aligned to a 4-byte boundary. 513 */ 514 m = n; 515 m_adj(m, roundup2(framelen, 4) - framelen); /* padding */ 516 } 517 return m; /* last delivered by caller */ 518 } 519 520 static void 521 ampdu_rx_purge_slot(struct ieee80211_rx_ampdu *rap, int i) 522 { 523 struct mbuf *m; 524 525 /* Walk the queue, removing frames as appropriate */ 526 while (mbufq_len(&rap->rxa_mq[i]) != 0) { 527 m = mbufq_dequeue(&rap->rxa_mq[i]); 528 if (m == NULL) 529 break; 530 rap->rxa_qbytes -= m->m_pkthdr.len; 531 rap->rxa_qframes--; 532 m_freem(m); 533 } 534 } 535 536 /* 537 * Add the given frame to the current RX reorder slot. 538 * 539 * For future offloaded A-MSDU handling where multiple frames with 540 * the same sequence number show up here, this routine will append 541 * those frames as long as they're appropriately tagged. 542 */ 543 static int 544 ampdu_rx_add_slot(struct ieee80211_rx_ampdu *rap, int off, int tid, 545 ieee80211_seq rxseq, 546 struct ieee80211_node *ni, 547 struct mbuf *m, 548 const struct ieee80211_rx_stats *rxs) 549 { 550 const struct ieee80211_rx_stats *rxs_final = NULL; 551 struct ieee80211vap *vap = ni->ni_vap; 552 int toss_dup; 553 #define PROCESS 0 /* caller should process frame */ 554 #define CONSUMED 1 /* frame consumed, caller does nothing */ 555 556 /* 557 * Figure out if this is a duplicate frame for the given slot. 558 * 559 * We're assuming that the driver will hand us all the frames 560 * for a given AMSDU decap pass and if we get /a/ frame 561 * for an AMSDU decap then we'll get all of them. 562 * 563 * The tricksy bit is that we don't know when the /end/ of 564 * the decap pass is, because we aren't tracking state here 565 * per-slot to know that we've finished receiving the frame list. 566 * 567 * The driver sets RX_F_AMSDU and RX_F_AMSDU_MORE to tell us 568 * what's going on; so ideally we'd just check the frame at the 569 * end of the reassembly slot to see if its F_AMSDU w/ no F_AMSDU_MORE - 570 * that means we've received the whole AMSDU decap pass. 571 */ 572 573 /* 574 * Get the rxs of the final mbuf in the slot, if one exists. 575 */ 576 if (mbufq_len(&rap->rxa_mq[off]) != 0) { 577 rxs_final = ieee80211_get_rx_params_ptr(mbufq_last(&rap->rxa_mq[off])); 578 } 579 580 /* Default to tossing the duplicate frame */ 581 toss_dup = 1; 582 583 /* 584 * Check to see if the final frame has F_AMSDU and F_AMSDU set, AND 585 * this frame has F_AMSDU set (MORE or otherwise.) That's a sign 586 * that more can come. 587 */ 588 589 if ((rxs != NULL) && (rxs_final != NULL) && 590 ieee80211_check_rxseq_amsdu(rxs) && 591 ieee80211_check_rxseq_amsdu(rxs_final)) { 592 if (! ieee80211_check_rxseq_amsdu_more(rxs_final)) { 593 /* 594 * amsdu_more() returning 0 means "it's not the 595 * final frame" so we can append more 596 * frames here. 597 */ 598 toss_dup = 0; 599 } 600 } 601 602 /* 603 * If the list is empty OR we have determined we can put more 604 * driver decap'ed AMSDU frames in here, then insert. 605 */ 606 if ((mbufq_len(&rap->rxa_mq[off]) == 0) || (toss_dup == 0)) { 607 if (mbufq_enqueue(&rap->rxa_mq[off], m) != 0) { 608 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 609 ni->ni_macaddr, 610 "a-mpdu queue fail", 611 "seqno %u tid %u BA win <%u:%u> off=%d, qlen=%d, maxqlen=%d", 612 rxseq, tid, rap->rxa_start, 613 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 614 off, 615 mbufq_len(&rap->rxa_mq[off]), 616 rap->rxa_mq[off].mq_maxlen); 617 /* XXX error count */ 618 m_freem(m); 619 return CONSUMED; 620 } 621 rap->rxa_qframes++; 622 rap->rxa_qbytes += m->m_pkthdr.len; 623 vap->iv_stats.is_ampdu_rx_reorder++; 624 /* 625 * Statistics for AMSDU decap. 626 */ 627 if (rxs != NULL && ieee80211_check_rxseq_amsdu(rxs)) { 628 if (ieee80211_check_rxseq_amsdu_more(rxs)) { 629 /* more=1, AMSDU, end of batch */ 630 IEEE80211_NODE_STAT(ni, rx_amsdu_more_end); 631 } else { 632 IEEE80211_NODE_STAT(ni, rx_amsdu_more); 633 } 634 } 635 } else { 636 IEEE80211_DISCARD_MAC(vap, 637 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 638 ni->ni_macaddr, "a-mpdu duplicate", 639 "seqno %u tid %u BA win <%u:%u>", 640 rxseq, tid, rap->rxa_start, 641 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1)); 642 if (rxs != NULL) { 643 IEEE80211_DISCARD_MAC(vap, 644 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 645 ni->ni_macaddr, "a-mpdu duplicate", 646 "seqno %d tid %u pktflags 0x%08x\n", 647 rxseq, tid, rxs->c_pktflags); 648 } 649 if (rxs_final != NULL) { 650 IEEE80211_DISCARD_MAC(vap, 651 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 652 ni->ni_macaddr, "a-mpdu duplicate", 653 "final: pktflags 0x%08x\n", 654 rxs_final->c_pktflags); 655 } 656 vap->iv_stats.is_rx_dup++; 657 IEEE80211_NODE_STAT(ni, rx_dup); 658 m_freem(m); 659 } 660 return CONSUMED; 661 #undef CONSUMED 662 #undef PROCESS 663 } 664 665 /* 666 * Purge all frames in the A-MPDU re-order queue. 667 */ 668 static void 669 ampdu_rx_purge(struct ieee80211_rx_ampdu *rap) 670 { 671 int i; 672 673 for (i = 0; i < rap->rxa_wnd; i++) { 674 ampdu_rx_purge_slot(rap, i); 675 if (rap->rxa_qframes == 0) 676 break; 677 } 678 KASSERT(rap->rxa_qbytes == 0 && rap->rxa_qframes == 0, 679 ("lost %u data, %u frames on ampdu rx q", 680 rap->rxa_qbytes, rap->rxa_qframes)); 681 } 682 683 static void 684 ieee80211_ampdu_rx_init_rap(struct ieee80211_node *ni, 685 struct ieee80211_rx_ampdu *rap) 686 { 687 int i; 688 689 /* XXX TODO: ensure the queues are empty */ 690 memset(rap, 0, sizeof(*rap)); 691 for (i = 0; i < IEEE80211_AGGR_BAWMAX; i++) 692 mbufq_init(&rap->rxa_mq[i], 256); 693 } 694 695 /* 696 * Start A-MPDU rx/re-order processing for the specified TID. 697 */ 698 static int 699 ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap, 700 int baparamset, int batimeout, int baseqctl) 701 { 702 struct ieee80211vap *vap = ni->ni_vap; 703 int bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 704 705 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 706 /* 707 * AMPDU previously setup and not terminated with a DELBA, 708 * flush the reorder q's in case anything remains. 709 */ 710 ampdu_rx_purge(rap); 711 } 712 ieee80211_ampdu_rx_init_rap(ni, rap); 713 rap->rxa_wnd = (bufsiz == 0) ? 714 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 715 rap->rxa_start = MS(baseqctl, IEEE80211_BASEQ_START); 716 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 717 718 /* XXX this should be a configuration flag */ 719 if ((vap->iv_htcaps & IEEE80211_HTC_RX_AMSDU_AMPDU) && 720 (MS(baparamset, IEEE80211_BAPS_AMSDU))) 721 rap->rxa_flags |= IEEE80211_AGGR_AMSDU; 722 else 723 rap->rxa_flags &= ~IEEE80211_AGGR_AMSDU; 724 725 return 0; 726 } 727 728 /* 729 * Public function; manually setup the RX ampdu state. 730 */ 731 int 732 ieee80211_ampdu_rx_start_ext(struct ieee80211_node *ni, int tid, int seq, int baw) 733 { 734 struct ieee80211_rx_ampdu *rap; 735 736 /* XXX TODO: sanity check tid, seq, baw */ 737 738 rap = &ni->ni_rx_ampdu[tid]; 739 740 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 741 /* 742 * AMPDU previously setup and not terminated with a DELBA, 743 * flush the reorder q's in case anything remains. 744 */ 745 ampdu_rx_purge(rap); 746 } 747 748 ieee80211_ampdu_rx_init_rap(ni, rap); 749 750 rap->rxa_wnd = (baw== 0) ? 751 IEEE80211_AGGR_BAWMAX : min(baw, IEEE80211_AGGR_BAWMAX); 752 if (seq == -1) { 753 /* Wait for the first RX frame, use that as BAW */ 754 rap->rxa_start = 0; 755 rap->rxa_flags |= IEEE80211_AGGR_WAITRX; 756 } else { 757 rap->rxa_start = seq; 758 } 759 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 760 761 /* XXX TODO: no amsdu flag */ 762 763 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 764 "%s: tid=%d, start=%d, wnd=%d, flags=0x%08x", 765 __func__, 766 tid, 767 seq, 768 rap->rxa_wnd, 769 rap->rxa_flags); 770 771 return 0; 772 } 773 774 /* 775 * Public function; manually stop the RX AMPDU state. 776 */ 777 void 778 ieee80211_ampdu_rx_stop_ext(struct ieee80211_node *ni, int tid) 779 { 780 struct ieee80211_rx_ampdu *rap; 781 782 /* XXX TODO: sanity check tid, seq, baw */ 783 rap = &ni->ni_rx_ampdu[tid]; 784 ampdu_rx_stop(ni, rap); 785 } 786 787 /* 788 * Stop A-MPDU rx processing for the specified TID. 789 */ 790 static void 791 ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 792 { 793 794 ampdu_rx_purge(rap); 795 rap->rxa_flags &= ~(IEEE80211_AGGR_RUNNING 796 | IEEE80211_AGGR_XCHGPEND 797 | IEEE80211_AGGR_WAITRX); 798 } 799 800 /* 801 * Dispatch a frame from the A-MPDU reorder queue. The 802 * frame is fed back into ieee80211_input marked with an 803 * M_AMPDU_MPDU flag so it doesn't come back to us (it also 804 * permits ieee80211_input to optimize re-processing). 805 */ 806 static __inline void 807 ampdu_dispatch(struct ieee80211_node *ni, struct mbuf *m) 808 { 809 m->m_flags |= M_AMPDU_MPDU; /* bypass normal processing */ 810 /* NB: rssi and noise are ignored w/ M_AMPDU_MPDU set */ 811 (void) ieee80211_input(ni, m, 0, 0); 812 } 813 814 static int 815 ampdu_dispatch_slot(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni, 816 int i) 817 { 818 struct mbuf *m; 819 int n = 0; 820 821 while (mbufq_len(&rap->rxa_mq[i]) != 0) { 822 m = mbufq_dequeue(&rap->rxa_mq[i]); 823 if (m == NULL) 824 break; 825 n++; 826 827 rap->rxa_qbytes -= m->m_pkthdr.len; 828 rap->rxa_qframes--; 829 830 ampdu_dispatch(ni, m); 831 } 832 return (n); 833 } 834 835 static void 836 ampdu_rx_moveup(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni, 837 int i, int winstart) 838 { 839 struct ieee80211vap *vap = ni->ni_vap; 840 841 /* 842 * If frames remain, copy the mbuf pointers down so 843 * they correspond to the offsets in the new window. 844 */ 845 if (rap->rxa_qframes != 0) { 846 int n = rap->rxa_qframes, j; 847 for (j = i+1; j < rap->rxa_wnd; j++) { 848 /* 849 * Concat the list contents over, which will 850 * blank the source list for us. 851 */ 852 if (mbufq_len(&rap->rxa_mq[j]) != 0) { 853 n = n - mbufq_len(&rap->rxa_mq[j]); 854 mbufq_concat(&rap->rxa_mq[j-i], &rap->rxa_mq[j]); 855 KASSERT(n >= 0, ("%s: n < 0 (%d)", __func__, n)); 856 if (n == 0) 857 break; 858 } 859 } 860 KASSERT(n == 0, ("%s: lost %d frames, qframes %d off %d " 861 "BA win <%d:%d> winstart %d", 862 __func__, n, rap->rxa_qframes, i, rap->rxa_start, 863 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 864 winstart)); 865 vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; 866 } 867 } 868 869 /* 870 * Dispatch as many frames as possible from the re-order queue. 871 * Frames will always be "at the front"; we process all frames 872 * up to the first empty slot in the window. On completion we 873 * cleanup state if there are still pending frames in the current 874 * BA window. We assume the frame at slot 0 is already handled 875 * by the caller; we always start at slot 1. 876 */ 877 static void 878 ampdu_rx_dispatch(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni) 879 { 880 struct ieee80211vap *vap = ni->ni_vap; 881 int i, r, r2; 882 883 /* flush run of frames */ 884 r2 = 0; 885 for (i = 1; i < rap->rxa_wnd; i++) { 886 r = ampdu_dispatch_slot(rap, ni, i); 887 if (r == 0) 888 break; 889 r2 += r; 890 } 891 892 /* move up frames */ 893 ampdu_rx_moveup(rap, ni, i, -1); 894 895 /* 896 * Adjust the start of the BA window to 897 * reflect the frames just dispatched. 898 */ 899 rap->rxa_start = IEEE80211_SEQ_ADD(rap->rxa_start, i); 900 vap->iv_stats.is_ampdu_rx_oor += r2; 901 902 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 903 "%s: moved slot up %d slots to start at %d (%d frames)", 904 __func__, 905 i, 906 rap->rxa_start, 907 r2); 908 } 909 910 /* 911 * Dispatch all frames in the A-MPDU re-order queue. 912 */ 913 static void 914 ampdu_rx_flush(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 915 { 916 int i, r; 917 918 for (i = 0; i < rap->rxa_wnd; i++) { 919 r = ampdu_dispatch_slot(rap, ni, i); 920 if (r == 0) 921 continue; 922 ni->ni_vap->iv_stats.is_ampdu_rx_oor += r; 923 924 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 925 "%s: moved slot up %d slots to start at %d (%d frames)", 926 __func__, 927 1, 928 rap->rxa_start, 929 r); 930 931 if (rap->rxa_qframes == 0) 932 break; 933 } 934 } 935 936 /* 937 * Dispatch all frames in the A-MPDU re-order queue 938 * preceding the specified sequence number. This logic 939 * handles window moves due to a received MSDU or BAR. 940 */ 941 static void 942 ampdu_rx_flush_upto(struct ieee80211_node *ni, 943 struct ieee80211_rx_ampdu *rap, ieee80211_seq winstart) 944 { 945 struct ieee80211vap *vap = ni->ni_vap; 946 ieee80211_seq seqno; 947 int i, r; 948 949 /* 950 * Flush any complete MSDU's with a sequence number lower 951 * than winstart. Gaps may exist. Note that we may actually 952 * dispatch frames past winstart if a run continues; this is 953 * an optimization that avoids having to do a separate pass 954 * to dispatch frames after moving the BA window start. 955 */ 956 seqno = rap->rxa_start; 957 for (i = 0; i < rap->rxa_wnd; i++) { 958 if ((r = mbufq_len(&rap->rxa_mq[i])) != 0) { 959 (void) ampdu_dispatch_slot(rap, ni, i); 960 } else { 961 if (!IEEE80211_SEQ_BA_BEFORE(seqno, winstart)) 962 break; 963 } 964 vap->iv_stats.is_ampdu_rx_oor += r; 965 seqno = IEEE80211_SEQ_INC(seqno); 966 967 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 968 "%s: moved slot up %d slots to start at %d (%d frames)", 969 __func__, 970 1, 971 seqno, 972 r); 973 } 974 975 /* 976 * If frames remain, copy the mbuf pointers down so 977 * they correspond to the offsets in the new window. 978 */ 979 ampdu_rx_moveup(rap, ni, i, winstart); 980 981 /* 982 * Move the start of the BA window; we use the 983 * sequence number of the last MSDU that was 984 * passed up the stack+1 or winstart if stopped on 985 * a gap in the reorder buffer. 986 */ 987 rap->rxa_start = seqno; 988 } 989 990 /* 991 * Process a received QoS data frame for an HT station. Handle 992 * A-MPDU reordering: if this frame is received out of order 993 * and falls within the BA window hold onto it. Otherwise if 994 * this frame completes a run, flush any pending frames. We 995 * return 1 if the frame is consumed. A 0 is returned if 996 * the frame should be processed normally by the caller. 997 * 998 * A-MSDU: handle hardware decap'ed A-MSDU frames that are 999 * pretending to be MPDU's. They're dispatched directly if 1000 * able; or attempted to put into the receive reordering slot. 1001 */ 1002 int 1003 ieee80211_ampdu_reorder(struct ieee80211_node *ni, struct mbuf *m, 1004 const struct ieee80211_rx_stats *rxs) 1005 { 1006 #define PROCESS 0 /* caller should process frame */ 1007 #define CONSUMED 1 /* frame consumed, caller does nothing */ 1008 struct ieee80211vap *vap = ni->ni_vap; 1009 struct ieee80211_qosframe *wh; 1010 struct ieee80211_rx_ampdu *rap; 1011 ieee80211_seq rxseq; 1012 uint8_t tid; 1013 int off; 1014 int amsdu = ieee80211_check_rxseq_amsdu(rxs); 1015 int amsdu_end = ieee80211_check_rxseq_amsdu_more(rxs); 1016 1017 KASSERT((m->m_flags & (M_AMPDU | M_AMPDU_MPDU)) == M_AMPDU, 1018 ("!a-mpdu or already re-ordered, flags 0x%x", m->m_flags)); 1019 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 1020 1021 /* NB: m_len known to be sufficient */ 1022 wh = mtod(m, struct ieee80211_qosframe *); 1023 if (wh->i_fc[0] != IEEE80211_FC0_QOSDATA) { 1024 /* 1025 * Not QoS data, shouldn't get here but just 1026 * return it to the caller for processing. 1027 */ 1028 return PROCESS; 1029 } 1030 1031 /* 1032 * 802.11-2012 9.3.2.10 - Duplicate detection and recovery. 1033 * 1034 * Multicast QoS data frames are checked against a different 1035 * counter, not the per-TID counter. 1036 */ 1037 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1038 return PROCESS; 1039 1040 tid = ieee80211_getqos(wh)[0]; 1041 tid &= IEEE80211_QOS_TID; 1042 rap = &ni->ni_rx_ampdu[tid]; 1043 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 1044 /* 1045 * No ADDBA request yet, don't touch. 1046 */ 1047 return PROCESS; 1048 } 1049 rxseq = le16toh(*(uint16_t *)wh->i_seq); 1050 if ((rxseq & IEEE80211_SEQ_FRAG_MASK) != 0) { 1051 /* 1052 * Fragments are not allowed; toss. 1053 */ 1054 IEEE80211_DISCARD_MAC(vap, 1055 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 1056 "A-MPDU", "fragment, rxseq 0x%x tid %u%s", rxseq, tid, 1057 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 1058 vap->iv_stats.is_ampdu_rx_drop++; 1059 IEEE80211_NODE_STAT(ni, rx_drop); 1060 m_freem(m); 1061 return CONSUMED; 1062 } 1063 rxseq >>= IEEE80211_SEQ_SEQ_SHIFT; 1064 rap->rxa_nframes++; 1065 1066 /* 1067 * Handle waiting for the first frame to define the BAW. 1068 * Some firmware doesn't provide the RX of the starting point 1069 * of the BAW and we have to cope. 1070 */ 1071 if (rap->rxa_flags & IEEE80211_AGGR_WAITRX) { 1072 rap->rxa_flags &= ~IEEE80211_AGGR_WAITRX; 1073 rap->rxa_start = rxseq; 1074 } 1075 again: 1076 if (rxseq == rap->rxa_start) { 1077 /* 1078 * First frame in window. 1079 */ 1080 if (rap->rxa_qframes != 0) { 1081 /* 1082 * Dispatch as many packets as we can. 1083 */ 1084 KASSERT((mbufq_len(&rap->rxa_mq[0]) == 0), ("unexpected dup")); 1085 ampdu_dispatch(ni, m); 1086 ampdu_rx_dispatch(rap, ni); 1087 return CONSUMED; 1088 } else { 1089 /* 1090 * In order; advance window if needed and notify 1091 * caller to dispatch directly. 1092 */ 1093 if (amsdu) { 1094 if (amsdu_end) { 1095 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 1096 IEEE80211_NODE_STAT(ni, rx_amsdu_more_end); 1097 } else { 1098 IEEE80211_NODE_STAT(ni, rx_amsdu_more); 1099 } 1100 } else { 1101 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 1102 } 1103 return PROCESS; 1104 } 1105 } 1106 /* 1107 * Frame is out of order; store if in the BA window. 1108 */ 1109 /* calculate offset in BA window */ 1110 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 1111 if (off < rap->rxa_wnd) { 1112 /* 1113 * Common case (hopefully): in the BA window. 1114 * Sec 9.10.7.6.2 a) (p.137) 1115 */ 1116 1117 /* 1118 * Check for frames sitting too long in the reorder queue. 1119 * This should only ever happen if frames are not delivered 1120 * without the sender otherwise notifying us (e.g. with a 1121 * BAR to move the window). Typically this happens because 1122 * of vendor bugs that cause the sequence number to jump. 1123 * When this happens we get a gap in the reorder queue that 1124 * leaves frame sitting on the queue until they get pushed 1125 * out due to window moves. When the vendor does not send 1126 * BAR this move only happens due to explicit packet sends 1127 * 1128 * NB: we only track the time of the oldest frame in the 1129 * reorder q; this means that if we flush we might push 1130 * frames that still "new"; if this happens then subsequent 1131 * frames will result in BA window moves which cost something 1132 * but is still better than a big throughput dip. 1133 */ 1134 if (rap->rxa_qframes != 0) { 1135 /* XXX honor batimeout? */ 1136 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 1137 /* 1138 * Too long since we received the first 1139 * frame; flush the reorder buffer. 1140 */ 1141 if (rap->rxa_qframes != 0) { 1142 vap->iv_stats.is_ampdu_rx_age += 1143 rap->rxa_qframes; 1144 ampdu_rx_flush(ni, rap); 1145 } 1146 /* 1147 * Advance the window if needed and notify 1148 * the caller to dispatch directly. 1149 */ 1150 if (amsdu) { 1151 if (amsdu_end) { 1152 rap->rxa_start = 1153 IEEE80211_SEQ_INC(rxseq); 1154 IEEE80211_NODE_STAT(ni, 1155 rx_amsdu_more_end); 1156 } else { 1157 IEEE80211_NODE_STAT(ni, 1158 rx_amsdu_more); 1159 } 1160 } else { 1161 rap->rxa_start = 1162 IEEE80211_SEQ_INC(rxseq); 1163 } 1164 return PROCESS; 1165 } 1166 } else { 1167 /* 1168 * First frame, start aging timer. 1169 */ 1170 rap->rxa_age = ticks; 1171 } 1172 1173 /* save packet - this consumes, no matter what */ 1174 ampdu_rx_add_slot(rap, off, tid, rxseq, ni, m, rxs); 1175 return CONSUMED; 1176 } 1177 if (off < IEEE80211_SEQ_BA_RANGE) { 1178 /* 1179 * Outside the BA window, but within range; 1180 * flush the reorder q and move the window. 1181 * Sec 9.10.7.6.2 b) (p.138) 1182 */ 1183 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1184 "move BA win <%u:%u> (%u frames) rxseq %u tid %u", 1185 rap->rxa_start, 1186 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1187 rap->rxa_qframes, rxseq, tid); 1188 vap->iv_stats.is_ampdu_rx_move++; 1189 1190 /* 1191 * The spec says to flush frames up to but not including: 1192 * WinStart_B = rxseq - rap->rxa_wnd + 1 1193 * Then insert the frame or notify the caller to process 1194 * it immediately. We can safely do this by just starting 1195 * over again because we know the frame will now be within 1196 * the BA window. 1197 */ 1198 /* NB: rxa_wnd known to be >0 */ 1199 ampdu_rx_flush_upto(ni, rap, 1200 IEEE80211_SEQ_SUB(rxseq, rap->rxa_wnd-1)); 1201 goto again; 1202 } else { 1203 /* 1204 * Outside the BA window and out of range; toss. 1205 * Sec 9.10.7.6.2 c) (p.138) 1206 */ 1207 IEEE80211_DISCARD_MAC(vap, 1208 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 1209 "MPDU", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 1210 rap->rxa_start, 1211 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1212 rap->rxa_qframes, rxseq, tid, 1213 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 1214 vap->iv_stats.is_ampdu_rx_drop++; 1215 IEEE80211_NODE_STAT(ni, rx_drop); 1216 m_freem(m); 1217 return CONSUMED; 1218 } 1219 #undef CONSUMED 1220 #undef PROCESS 1221 } 1222 1223 /* 1224 * Process a BAR ctl frame. Dispatch all frames up to 1225 * the sequence number of the frame. If this frame is 1226 * out of range it's discarded. 1227 */ 1228 void 1229 ieee80211_recv_bar(struct ieee80211_node *ni, struct mbuf *m0) 1230 { 1231 struct ieee80211vap *vap = ni->ni_vap; 1232 struct ieee80211_frame_bar *wh; 1233 struct ieee80211_rx_ampdu *rap; 1234 ieee80211_seq rxseq; 1235 int tid, off; 1236 1237 if (!ieee80211_recv_bar_ena) { 1238 #if 0 1239 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_11N, 1240 ni->ni_macaddr, "BAR", "%s", "processing disabled"); 1241 #endif 1242 vap->iv_stats.is_ampdu_bar_bad++; 1243 return; 1244 } 1245 wh = mtod(m0, struct ieee80211_frame_bar *); 1246 /* XXX check basic BAR */ 1247 tid = MS(le16toh(wh->i_ctl), IEEE80211_BAR_TID); 1248 rap = &ni->ni_rx_ampdu[tid]; 1249 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 1250 /* 1251 * No ADDBA request yet, don't touch. 1252 */ 1253 IEEE80211_DISCARD_MAC(vap, 1254 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 1255 ni->ni_macaddr, "BAR", "no BA stream, tid %u", tid); 1256 vap->iv_stats.is_ampdu_bar_bad++; 1257 return; 1258 } 1259 vap->iv_stats.is_ampdu_bar_rx++; 1260 rxseq = le16toh(wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT; 1261 if (rxseq == rap->rxa_start) 1262 return; 1263 /* calculate offset in BA window */ 1264 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 1265 if (off < IEEE80211_SEQ_BA_RANGE) { 1266 /* 1267 * Flush the reorder q up to rxseq and move the window. 1268 * Sec 9.10.7.6.3 a) (p.138) 1269 */ 1270 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1271 "BAR moves BA win <%u:%u> (%u frames) rxseq %u tid %u", 1272 rap->rxa_start, 1273 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1274 rap->rxa_qframes, rxseq, tid); 1275 vap->iv_stats.is_ampdu_bar_move++; 1276 1277 ampdu_rx_flush_upto(ni, rap, rxseq); 1278 if (off >= rap->rxa_wnd) { 1279 /* 1280 * BAR specifies a window start to the right of BA 1281 * window; we must move it explicitly since 1282 * ampdu_rx_flush_upto will not. 1283 */ 1284 rap->rxa_start = rxseq; 1285 } 1286 } else { 1287 /* 1288 * Out of range; toss. 1289 * Sec 9.10.7.6.3 b) (p.138) 1290 */ 1291 IEEE80211_DISCARD_MAC(vap, 1292 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 1293 "BAR", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 1294 rap->rxa_start, 1295 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1296 rap->rxa_qframes, rxseq, tid, 1297 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 1298 vap->iv_stats.is_ampdu_bar_oow++; 1299 IEEE80211_NODE_STAT(ni, rx_drop); 1300 } 1301 } 1302 1303 /* 1304 * Setup HT-specific state in a node. Called only 1305 * when HT use is negotiated so we don't do extra 1306 * work for temporary and/or legacy sta's. 1307 */ 1308 void 1309 ieee80211_ht_node_init(struct ieee80211_node *ni) 1310 { 1311 struct ieee80211_tx_ampdu *tap; 1312 int tid; 1313 1314 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1315 ni, 1316 "%s: called (%p)", 1317 __func__, 1318 ni); 1319 1320 if (ni->ni_flags & IEEE80211_NODE_HT) { 1321 /* 1322 * Clean AMPDU state on re-associate. This handles the case 1323 * where a station leaves w/o notifying us and then returns 1324 * before node is reaped for inactivity. 1325 */ 1326 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1327 ni, 1328 "%s: calling cleanup (%p)", 1329 __func__, ni); 1330 ieee80211_ht_node_cleanup(ni); 1331 } 1332 for (tid = 0; tid < WME_NUM_TID; tid++) { 1333 tap = &ni->ni_tx_ampdu[tid]; 1334 tap->txa_tid = tid; 1335 tap->txa_ni = ni; 1336 ieee80211_txampdu_init_pps(tap); 1337 /* NB: further initialization deferred */ 1338 ieee80211_ampdu_rx_init_rap(ni, &ni->ni_rx_ampdu[tid]); 1339 } 1340 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU | 1341 IEEE80211_NODE_AMSDU; 1342 } 1343 1344 /* 1345 * Cleanup HT-specific state in a node. Called only 1346 * when HT use has been marked. 1347 */ 1348 void 1349 ieee80211_ht_node_cleanup(struct ieee80211_node *ni) 1350 { 1351 struct ieee80211com *ic = ni->ni_ic; 1352 int i; 1353 1354 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1355 ni, 1356 "%s: called (%p)", 1357 __func__, ni); 1358 1359 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT node")); 1360 1361 /* XXX optimize this */ 1362 for (i = 0; i < WME_NUM_TID; i++) { 1363 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[i]; 1364 if (tap->txa_flags & IEEE80211_AGGR_SETUP) 1365 ampdu_tx_stop(tap); 1366 } 1367 for (i = 0; i < WME_NUM_TID; i++) 1368 ic->ic_ampdu_rx_stop(ni, &ni->ni_rx_ampdu[i]); 1369 1370 ni->ni_htcap = 0; 1371 ni->ni_flags &= ~IEEE80211_NODE_HT_ALL; 1372 } 1373 1374 /* 1375 * Age out HT resources for a station. 1376 */ 1377 void 1378 ieee80211_ht_node_age(struct ieee80211_node *ni) 1379 { 1380 struct ieee80211vap *vap = ni->ni_vap; 1381 uint8_t tid; 1382 1383 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 1384 1385 for (tid = 0; tid < WME_NUM_TID; tid++) { 1386 struct ieee80211_rx_ampdu *rap; 1387 1388 rap = &ni->ni_rx_ampdu[tid]; 1389 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) 1390 continue; 1391 if (rap->rxa_qframes == 0) 1392 continue; 1393 /* 1394 * Check for frames sitting too long in the reorder queue. 1395 * See above for more details on what's happening here. 1396 */ 1397 /* XXX honor batimeout? */ 1398 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 1399 /* 1400 * Too long since we received the first 1401 * frame; flush the reorder buffer. 1402 */ 1403 vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes; 1404 ampdu_rx_flush(ni, rap); 1405 } 1406 } 1407 } 1408 1409 static struct ieee80211_channel * 1410 findhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int htflags) 1411 { 1412 return ieee80211_find_channel(ic, c->ic_freq, 1413 (c->ic_flags &~ IEEE80211_CHAN_HT) | htflags); 1414 } 1415 1416 /* 1417 * Adjust a channel to be HT/non-HT according to the vap's configuration. 1418 */ 1419 struct ieee80211_channel * 1420 ieee80211_ht_adjust_channel(struct ieee80211com *ic, 1421 struct ieee80211_channel *chan, int flags) 1422 { 1423 struct ieee80211_channel *c; 1424 1425 if (flags & IEEE80211_FHT_HT) { 1426 /* promote to HT if possible */ 1427 if (flags & IEEE80211_FHT_USEHT40) { 1428 if (!IEEE80211_IS_CHAN_HT40(chan)) { 1429 /* NB: arbitrarily pick ht40+ over ht40- */ 1430 c = findhtchan(ic, chan, IEEE80211_CHAN_HT40U); 1431 if (c == NULL) 1432 c = findhtchan(ic, chan, 1433 IEEE80211_CHAN_HT40D); 1434 if (c == NULL) 1435 c = findhtchan(ic, chan, 1436 IEEE80211_CHAN_HT20); 1437 if (c != NULL) 1438 chan = c; 1439 } 1440 } else if (!IEEE80211_IS_CHAN_HT20(chan)) { 1441 c = findhtchan(ic, chan, IEEE80211_CHAN_HT20); 1442 if (c != NULL) 1443 chan = c; 1444 } 1445 } else if (IEEE80211_IS_CHAN_HT(chan)) { 1446 /* demote to legacy, HT use is disabled */ 1447 c = ieee80211_find_channel(ic, chan->ic_freq, 1448 chan->ic_flags &~ IEEE80211_CHAN_HT); 1449 if (c != NULL) 1450 chan = c; 1451 } 1452 return chan; 1453 } 1454 1455 /* 1456 * Setup HT-specific state for a legacy WDS peer. 1457 */ 1458 void 1459 ieee80211_ht_wds_init(struct ieee80211_node *ni) 1460 { 1461 struct ieee80211vap *vap = ni->ni_vap; 1462 struct ieee80211_tx_ampdu *tap; 1463 int tid; 1464 1465 KASSERT(vap->iv_flags_ht & IEEE80211_FHT_HT, ("no HT requested")); 1466 1467 /* XXX check scan cache in case peer has an ap and we have info */ 1468 /* 1469 * If setup with a legacy channel; locate an HT channel. 1470 * Otherwise if the inherited channel (from a companion 1471 * AP) is suitable use it so we use the same location 1472 * for the extension channel). 1473 */ 1474 ni->ni_chan = ieee80211_ht_adjust_channel(ni->ni_ic, 1475 ni->ni_chan, ieee80211_htchanflags(ni->ni_chan)); 1476 1477 ni->ni_htcap = 0; 1478 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) 1479 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI20; 1480 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { 1481 ni->ni_htcap |= IEEE80211_HTCAP_CHWIDTH40; 1482 ni->ni_chw = 40; 1483 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 1484 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_ABOVE; 1485 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 1486 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_BELOW; 1487 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) 1488 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI40; 1489 } else { 1490 ni->ni_chw = 20; 1491 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_NONE; 1492 } 1493 ni->ni_htctlchan = ni->ni_chan->ic_ieee; 1494 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 1495 ni->ni_flags |= IEEE80211_NODE_RIFS; 1496 /* XXX does it make sense to enable SMPS? */ 1497 1498 ni->ni_htopmode = 0; /* XXX need protection state */ 1499 ni->ni_htstbc = 0; /* XXX need info */ 1500 1501 for (tid = 0; tid < WME_NUM_TID; tid++) { 1502 tap = &ni->ni_tx_ampdu[tid]; 1503 tap->txa_tid = tid; 1504 ieee80211_txampdu_init_pps(tap); 1505 } 1506 /* NB: AMPDU tx/rx governed by IEEE80211_FHT_AMPDU_{TX,RX} */ 1507 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU | 1508 IEEE80211_NODE_AMSDU; 1509 } 1510 1511 /* 1512 * Notify hostap vaps of a change in the HTINFO ie. 1513 */ 1514 static void 1515 htinfo_notify(struct ieee80211com *ic) 1516 { 1517 struct ieee80211vap *vap; 1518 int first = 1; 1519 1520 IEEE80211_LOCK_ASSERT(ic); 1521 1522 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1523 if (vap->iv_opmode != IEEE80211_M_HOSTAP) 1524 continue; 1525 if (vap->iv_state != IEEE80211_S_RUN || 1526 !IEEE80211_IS_CHAN_HT(vap->iv_bss->ni_chan)) 1527 continue; 1528 if (first) { 1529 IEEE80211_NOTE(vap, 1530 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1531 vap->iv_bss, 1532 "HT bss occupancy change: %d sta, %d ht, " 1533 "%d ht40%s, HT protmode now 0x%x" 1534 , ic->ic_sta_assoc 1535 , ic->ic_ht_sta_assoc 1536 , ic->ic_ht40_sta_assoc 1537 , (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) ? 1538 ", non-HT sta present" : "" 1539 , ic->ic_curhtprotmode); 1540 first = 0; 1541 } 1542 ieee80211_beacon_notify(vap, IEEE80211_BEACON_HTINFO); 1543 } 1544 } 1545 1546 /* 1547 * Calculate HT protection mode from current 1548 * state and handle updates. 1549 */ 1550 static void 1551 htinfo_update(struct ieee80211com *ic) 1552 { 1553 uint8_t protmode; 1554 1555 if (ic->ic_sta_assoc != ic->ic_ht_sta_assoc) { 1556 protmode = IEEE80211_HTINFO_OPMODE_MIXED 1557 | IEEE80211_HTINFO_NONHT_PRESENT; 1558 } else if (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) { 1559 protmode = IEEE80211_HTINFO_OPMODE_PROTOPT 1560 | IEEE80211_HTINFO_NONHT_PRESENT; 1561 } else if (ic->ic_bsschan != IEEE80211_CHAN_ANYC && 1562 IEEE80211_IS_CHAN_HT40(ic->ic_bsschan) && 1563 ic->ic_sta_assoc != ic->ic_ht40_sta_assoc) { 1564 protmode = IEEE80211_HTINFO_OPMODE_HT20PR; 1565 } else { 1566 protmode = IEEE80211_HTINFO_OPMODE_PURE; 1567 } 1568 if (protmode != ic->ic_curhtprotmode) { 1569 ic->ic_curhtprotmode = protmode; 1570 htinfo_notify(ic); 1571 } 1572 } 1573 1574 /* 1575 * Handle an HT station joining a BSS. 1576 */ 1577 void 1578 ieee80211_ht_node_join(struct ieee80211_node *ni) 1579 { 1580 struct ieee80211com *ic = ni->ni_ic; 1581 1582 IEEE80211_LOCK_ASSERT(ic); 1583 1584 if (ni->ni_flags & IEEE80211_NODE_HT) { 1585 ic->ic_ht_sta_assoc++; 1586 if (ni->ni_chw == 40) 1587 ic->ic_ht40_sta_assoc++; 1588 } 1589 htinfo_update(ic); 1590 } 1591 1592 /* 1593 * Handle an HT station leaving a BSS. 1594 */ 1595 void 1596 ieee80211_ht_node_leave(struct ieee80211_node *ni) 1597 { 1598 struct ieee80211com *ic = ni->ni_ic; 1599 1600 IEEE80211_LOCK_ASSERT(ic); 1601 1602 if (ni->ni_flags & IEEE80211_NODE_HT) { 1603 ic->ic_ht_sta_assoc--; 1604 if (ni->ni_chw == 40) 1605 ic->ic_ht40_sta_assoc--; 1606 } 1607 htinfo_update(ic); 1608 } 1609 1610 /* 1611 * Public version of htinfo_update; used for processing 1612 * beacon frames from overlapping bss. 1613 * 1614 * Caller can specify either IEEE80211_HTINFO_OPMODE_MIXED 1615 * (on receipt of a beacon that advertises MIXED) or 1616 * IEEE80211_HTINFO_OPMODE_PROTOPT (on receipt of a beacon 1617 * from an overlapping legacy bss). We treat MIXED with 1618 * a higher precedence than PROTOPT (i.e. we will not change 1619 * change PROTOPT -> MIXED; only MIXED -> PROTOPT). This 1620 * corresponds to how we handle things in htinfo_update. 1621 */ 1622 void 1623 ieee80211_htprot_update(struct ieee80211com *ic, int protmode) 1624 { 1625 #define OPMODE(x) SM(x, IEEE80211_HTINFO_OPMODE) 1626 IEEE80211_LOCK(ic); 1627 1628 /* track non-HT station presence */ 1629 KASSERT(protmode & IEEE80211_HTINFO_NONHT_PRESENT, 1630 ("protmode 0x%x", protmode)); 1631 ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR; 1632 ic->ic_lastnonht = ticks; 1633 1634 if (protmode != ic->ic_curhtprotmode && 1635 (OPMODE(ic->ic_curhtprotmode) != IEEE80211_HTINFO_OPMODE_MIXED || 1636 OPMODE(protmode) == IEEE80211_HTINFO_OPMODE_PROTOPT)) { 1637 /* push beacon update */ 1638 ic->ic_curhtprotmode = protmode; 1639 htinfo_notify(ic); 1640 } 1641 IEEE80211_UNLOCK(ic); 1642 #undef OPMODE 1643 } 1644 1645 /* 1646 * Time out presence of an overlapping bss with non-HT 1647 * stations. When operating in hostap mode we listen for 1648 * beacons from other stations and if we identify a non-HT 1649 * station is present we update the opmode field of the 1650 * HTINFO ie. To identify when all non-HT stations are 1651 * gone we time out this condition. 1652 */ 1653 void 1654 ieee80211_ht_timeout(struct ieee80211com *ic) 1655 { 1656 IEEE80211_LOCK_ASSERT(ic); 1657 1658 if ((ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) && 1659 ieee80211_time_after(ticks, ic->ic_lastnonht + IEEE80211_NONHT_PRESENT_AGE)) { 1660 #if 0 1661 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1662 "%s", "time out non-HT STA present on channel"); 1663 #endif 1664 ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR; 1665 htinfo_update(ic); 1666 } 1667 } 1668 1669 /* 1670 * Process an 802.11n HT capabilities ie. 1671 */ 1672 void 1673 ieee80211_parse_htcap(struct ieee80211_node *ni, const uint8_t *ie) 1674 { 1675 if (ie[0] == IEEE80211_ELEMID_VENDOR) { 1676 /* 1677 * Station used Vendor OUI ie to associate; 1678 * mark the node so when we respond we'll use 1679 * the Vendor OUI's and not the standard ie's. 1680 */ 1681 ni->ni_flags |= IEEE80211_NODE_HTCOMPAT; 1682 ie += 4; 1683 } else 1684 ni->ni_flags &= ~IEEE80211_NODE_HTCOMPAT; 1685 1686 ni->ni_htcap = le16dec(ie + 1687 __offsetof(struct ieee80211_ie_htcap, hc_cap)); 1688 ni->ni_htparam = ie[__offsetof(struct ieee80211_ie_htcap, hc_param)]; 1689 } 1690 1691 static void 1692 htinfo_parse(struct ieee80211_node *ni, 1693 const struct ieee80211_ie_htinfo *htinfo) 1694 { 1695 uint16_t w; 1696 1697 ni->ni_htctlchan = htinfo->hi_ctrlchannel; 1698 ni->ni_ht2ndchan = SM(htinfo->hi_byte1, IEEE80211_HTINFO_2NDCHAN); 1699 w = le16dec(&htinfo->hi_byte2); 1700 ni->ni_htopmode = SM(w, IEEE80211_HTINFO_OPMODE); 1701 w = le16dec(&htinfo->hi_byte45); 1702 ni->ni_htstbc = SM(w, IEEE80211_HTINFO_BASIC_STBCMCS); 1703 } 1704 1705 /* 1706 * Parse an 802.11n HT info ie and save useful information 1707 * to the node state. Note this does not effect any state 1708 * changes such as for channel width change. 1709 */ 1710 void 1711 ieee80211_parse_htinfo(struct ieee80211_node *ni, const uint8_t *ie) 1712 { 1713 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1714 ie += 4; 1715 htinfo_parse(ni, (const struct ieee80211_ie_htinfo *) ie); 1716 } 1717 1718 /* 1719 * Handle 11n/11ac channel switch. 1720 * 1721 * Use the received HT/VHT ie's to identify the right channel to use. 1722 * If we cannot locate it in the channel table then fallback to 1723 * legacy operation. 1724 * 1725 * Note that we use this information to identify the node's 1726 * channel only; the caller is responsible for insuring any 1727 * required channel change is done (e.g. in sta mode when 1728 * parsing the contents of a beacon frame). 1729 */ 1730 static int 1731 htinfo_update_chw(struct ieee80211_node *ni, int htflags, int vhtflags) 1732 { 1733 struct ieee80211com *ic = ni->ni_ic; 1734 struct ieee80211_channel *c; 1735 int chanflags; 1736 int ret = 0; 1737 1738 /* 1739 * First step - do HT/VHT only channel lookup based on operating mode 1740 * flags. This involves masking out the VHT flags as well. 1741 * Otherwise we end up doing the full channel walk each time 1742 * we trigger this, which is expensive. 1743 */ 1744 chanflags = (ni->ni_chan->ic_flags &~ 1745 (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags | vhtflags; 1746 1747 if (chanflags == ni->ni_chan->ic_flags) 1748 goto done; 1749 1750 /* 1751 * If HT /or/ VHT flags have changed then check both. 1752 * We need to start by picking a HT channel anyway. 1753 */ 1754 1755 c = NULL; 1756 chanflags = (ni->ni_chan->ic_flags &~ 1757 (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags; 1758 /* XXX not right for ht40- */ 1759 c = ieee80211_find_channel(ic, ni->ni_chan->ic_freq, chanflags); 1760 if (c == NULL && (htflags & IEEE80211_CHAN_HT40)) { 1761 /* 1762 * No HT40 channel entry in our table; fall back 1763 * to HT20 operation. This should not happen. 1764 */ 1765 c = findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT20); 1766 #if 0 1767 IEEE80211_NOTE(ni->ni_vap, 1768 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1769 "no HT40 channel (freq %u), falling back to HT20", 1770 ni->ni_chan->ic_freq); 1771 #endif 1772 /* XXX stat */ 1773 } 1774 1775 /* Nothing found - leave it alone; move onto VHT */ 1776 if (c == NULL) 1777 c = ni->ni_chan; 1778 1779 /* 1780 * If it's non-HT, then bail out now. 1781 */ 1782 if (! IEEE80211_IS_CHAN_HT(c)) { 1783 IEEE80211_NOTE(ni->ni_vap, 1784 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1785 "not HT; skipping VHT check (%u/0x%x)", 1786 c->ic_freq, c->ic_flags); 1787 goto done; 1788 } 1789 1790 /* 1791 * Next step - look at the current VHT flags and determine 1792 * if we need to upgrade. Mask out the VHT and HT flags since 1793 * the vhtflags field will already have the correct HT 1794 * flags to use. 1795 */ 1796 if (IEEE80211_CONF_VHT(ic) && ni->ni_vhtcap != 0 && vhtflags != 0) { 1797 chanflags = (c->ic_flags 1798 &~ (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) 1799 | vhtflags; 1800 IEEE80211_NOTE(ni->ni_vap, 1801 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1802 ni, 1803 "%s: VHT; chanwidth=0x%02x; vhtflags=0x%08x", 1804 __func__, ni->ni_vht_chanwidth, vhtflags); 1805 1806 IEEE80211_NOTE(ni->ni_vap, 1807 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1808 ni, 1809 "%s: VHT; trying lookup for %d/0x%08x", 1810 __func__, c->ic_freq, chanflags); 1811 c = ieee80211_find_channel(ic, c->ic_freq, chanflags); 1812 } 1813 1814 /* Finally, if it's changed */ 1815 if (c != NULL && c != ni->ni_chan) { 1816 IEEE80211_NOTE(ni->ni_vap, 1817 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1818 "switch station to %s%d channel %u/0x%x", 1819 IEEE80211_IS_CHAN_VHT(c) ? "VHT" : "HT", 1820 IEEE80211_IS_CHAN_VHT80(c) ? 80 : 1821 (IEEE80211_IS_CHAN_HT40(c) ? 40 : 20), 1822 c->ic_freq, c->ic_flags); 1823 ni->ni_chan = c; 1824 ret = 1; 1825 } 1826 /* NB: caller responsible for forcing any channel change */ 1827 1828 done: 1829 /* update node's (11n) tx channel width */ 1830 ni->ni_chw = IEEE80211_IS_CHAN_HT40(ni->ni_chan)? 40 : 20; 1831 return (ret); 1832 } 1833 1834 /* 1835 * Update 11n MIMO PS state according to received htcap. 1836 */ 1837 static __inline int 1838 htcap_update_mimo_ps(struct ieee80211_node *ni) 1839 { 1840 uint16_t oflags = ni->ni_flags; 1841 1842 switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) { 1843 case IEEE80211_HTCAP_SMPS_DYNAMIC: 1844 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1845 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 1846 break; 1847 case IEEE80211_HTCAP_SMPS_ENA: 1848 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1849 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1850 break; 1851 case IEEE80211_HTCAP_SMPS_OFF: 1852 default: /* disable on rx of reserved value */ 1853 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 1854 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1855 break; 1856 } 1857 return (oflags ^ ni->ni_flags); 1858 } 1859 1860 /* 1861 * Update short GI state according to received htcap 1862 * and local settings. 1863 */ 1864 static __inline void 1865 htcap_update_shortgi(struct ieee80211_node *ni) 1866 { 1867 struct ieee80211vap *vap = ni->ni_vap; 1868 1869 ni->ni_flags &= ~(IEEE80211_NODE_SGI20|IEEE80211_NODE_SGI40); 1870 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) && 1871 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)) 1872 ni->ni_flags |= IEEE80211_NODE_SGI20; 1873 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) && 1874 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)) 1875 ni->ni_flags |= IEEE80211_NODE_SGI40; 1876 } 1877 1878 /* 1879 * Update LDPC state according to received htcap 1880 * and local settings. 1881 */ 1882 static __inline void 1883 htcap_update_ldpc(struct ieee80211_node *ni) 1884 { 1885 struct ieee80211vap *vap = ni->ni_vap; 1886 1887 if ((ni->ni_htcap & IEEE80211_HTCAP_LDPC) && 1888 (vap->iv_flags_ht & IEEE80211_FHT_LDPC_TX)) 1889 ni->ni_flags |= IEEE80211_NODE_LDPC; 1890 } 1891 1892 /* 1893 * Parse and update HT-related state extracted from 1894 * the HT cap and info ie's. 1895 * 1896 * This is called from the STA management path and 1897 * the ieee80211_node_join() path. It will take into 1898 * account the IEs discovered during scanning and 1899 * adjust things accordingly. 1900 */ 1901 void 1902 ieee80211_ht_updateparams(struct ieee80211_node *ni, 1903 const uint8_t *htcapie, const uint8_t *htinfoie) 1904 { 1905 struct ieee80211vap *vap = ni->ni_vap; 1906 const struct ieee80211_ie_htinfo *htinfo; 1907 1908 ieee80211_parse_htcap(ni, htcapie); 1909 if (vap->iv_htcaps & IEEE80211_HTC_SMPS) 1910 htcap_update_mimo_ps(ni); 1911 htcap_update_shortgi(ni); 1912 htcap_update_ldpc(ni); 1913 1914 if (htinfoie[0] == IEEE80211_ELEMID_VENDOR) 1915 htinfoie += 4; 1916 htinfo = (const struct ieee80211_ie_htinfo *) htinfoie; 1917 htinfo_parse(ni, htinfo); 1918 1919 /* 1920 * Defer the node channel change; we need to now 1921 * update VHT parameters before we do it. 1922 */ 1923 1924 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_RIFSMODE_PERM) && 1925 (vap->iv_flags_ht & IEEE80211_FHT_RIFS)) 1926 ni->ni_flags |= IEEE80211_NODE_RIFS; 1927 else 1928 ni->ni_flags &= ~IEEE80211_NODE_RIFS; 1929 } 1930 1931 static uint32_t 1932 ieee80211_vht_get_vhtflags(struct ieee80211_node *ni, uint32_t htflags) 1933 { 1934 struct ieee80211vap *vap = ni->ni_vap; 1935 uint32_t vhtflags = 0; 1936 1937 vhtflags = 0; 1938 if (ni->ni_flags & IEEE80211_NODE_VHT && vap->iv_flags_vht & IEEE80211_FVHT_VHT) { 1939 if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_160MHZ) && 1940 /* XXX 2 means "160MHz and 80+80MHz", 1 means "160MHz" */ 1941 (MS(vap->iv_vhtcaps, 1942 IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) >= 1) && 1943 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT160)) { 1944 vhtflags = IEEE80211_CHAN_VHT160; 1945 /* Mirror the HT40 flags */ 1946 if (htflags == IEEE80211_CHAN_HT40U) { 1947 vhtflags |= IEEE80211_CHAN_HT40U; 1948 } else if (htflags == IEEE80211_CHAN_HT40D) { 1949 vhtflags |= IEEE80211_CHAN_HT40D; 1950 } 1951 } else if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_80P80MHZ) && 1952 /* XXX 2 means "160MHz and 80+80MHz" */ 1953 (MS(vap->iv_vhtcaps, 1954 IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) == 2) && 1955 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT80P80)) { 1956 vhtflags = IEEE80211_CHAN_VHT80_80; 1957 /* Mirror the HT40 flags */ 1958 if (htflags == IEEE80211_CHAN_HT40U) { 1959 vhtflags |= IEEE80211_CHAN_HT40U; 1960 } else if (htflags == IEEE80211_CHAN_HT40D) { 1961 vhtflags |= IEEE80211_CHAN_HT40D; 1962 } 1963 } else if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_80MHZ) && 1964 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT80)) { 1965 vhtflags = IEEE80211_CHAN_VHT80; 1966 /* Mirror the HT40 flags */ 1967 if (htflags == IEEE80211_CHAN_HT40U) { 1968 vhtflags |= IEEE80211_CHAN_HT40U; 1969 } else if (htflags == IEEE80211_CHAN_HT40D) { 1970 vhtflags |= IEEE80211_CHAN_HT40D; 1971 } 1972 } else if (ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_USE_HT) { 1973 /* Mirror the HT40 flags */ 1974 /* 1975 * XXX TODO: if ht40 is disabled, but vht40 isn't 1976 * disabled then this logic will get very, very sad. 1977 * It's quite possible the only sane thing to do is 1978 * to not have vht40 as an option, and just obey 1979 * 'ht40' as that flag. 1980 */ 1981 if ((htflags == IEEE80211_CHAN_HT40U) && 1982 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT40)) { 1983 vhtflags = IEEE80211_CHAN_VHT40U 1984 | IEEE80211_CHAN_HT40U; 1985 } else if (htflags == IEEE80211_CHAN_HT40D && 1986 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT40)) { 1987 vhtflags = IEEE80211_CHAN_VHT40D 1988 | IEEE80211_CHAN_HT40D; 1989 } else if (htflags == IEEE80211_CHAN_HT20) { 1990 vhtflags = IEEE80211_CHAN_VHT20 1991 | IEEE80211_CHAN_HT20; 1992 } 1993 } else { 1994 vhtflags = IEEE80211_CHAN_VHT20; 1995 } 1996 } 1997 return (vhtflags); 1998 } 1999 2000 /* 2001 * Final part of updating the HT parameters. 2002 * 2003 * This is called from the STA management path and 2004 * the ieee80211_node_join() path. It will take into 2005 * account the IEs discovered during scanning and 2006 * adjust things accordingly. 2007 * 2008 * This is done after a call to ieee80211_ht_updateparams() 2009 * because it (and the upcoming VHT version of updateparams) 2010 * needs to ensure everything is parsed before htinfo_update_chw() 2011 * is called - which will change the channel config for the 2012 * node for us. 2013 */ 2014 int 2015 ieee80211_ht_updateparams_final(struct ieee80211_node *ni, 2016 const uint8_t *htcapie, const uint8_t *htinfoie) 2017 { 2018 struct ieee80211vap *vap = ni->ni_vap; 2019 const struct ieee80211_ie_htinfo *htinfo; 2020 int htflags, vhtflags; 2021 int ret = 0; 2022 2023 htinfo = (const struct ieee80211_ie_htinfo *) htinfoie; 2024 2025 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 2026 IEEE80211_CHAN_HT20 : 0; 2027 2028 /* NB: honor operating mode constraint */ 2029 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH_2040) && 2030 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 2031 if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_ABOVE) 2032 htflags = IEEE80211_CHAN_HT40U; 2033 else if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_BELOW) 2034 htflags = IEEE80211_CHAN_HT40D; 2035 } 2036 2037 /* 2038 * VHT flags - do much the same; check whether VHT is available 2039 * and if so, what our ideal channel use would be based on our 2040 * capabilities and the (pre-parsed) VHT info IE. 2041 */ 2042 vhtflags = ieee80211_vht_get_vhtflags(ni, htflags); 2043 2044 if (htinfo_update_chw(ni, htflags, vhtflags)) 2045 ret = 1; 2046 2047 return (ret); 2048 } 2049 2050 /* 2051 * Parse and update HT-related state extracted from the HT cap ie 2052 * for a station joining an HT BSS. 2053 * 2054 * This is called from the hostap path for each station. 2055 */ 2056 void 2057 ieee80211_ht_updatehtcap(struct ieee80211_node *ni, const uint8_t *htcapie) 2058 { 2059 struct ieee80211vap *vap = ni->ni_vap; 2060 2061 ieee80211_parse_htcap(ni, htcapie); 2062 if (vap->iv_htcaps & IEEE80211_HTC_SMPS) 2063 htcap_update_mimo_ps(ni); 2064 htcap_update_shortgi(ni); 2065 htcap_update_ldpc(ni); 2066 } 2067 2068 /* 2069 * Called once HT and VHT capabilities are parsed in hostap mode - 2070 * this will adjust the channel configuration of the given node 2071 * based on the configuration and capabilities. 2072 */ 2073 void 2074 ieee80211_ht_updatehtcap_final(struct ieee80211_node *ni) 2075 { 2076 struct ieee80211vap *vap = ni->ni_vap; 2077 int htflags; 2078 int vhtflags; 2079 2080 /* NB: honor operating mode constraint */ 2081 /* XXX 40 MHz intolerant */ 2082 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 2083 IEEE80211_CHAN_HT20 : 0; 2084 if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) && 2085 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 2086 if (IEEE80211_IS_CHAN_HT40U(vap->iv_bss->ni_chan)) 2087 htflags = IEEE80211_CHAN_HT40U; 2088 else if (IEEE80211_IS_CHAN_HT40D(vap->iv_bss->ni_chan)) 2089 htflags = IEEE80211_CHAN_HT40D; 2090 } 2091 /* 2092 * VHT flags - do much the same; check whether VHT is available 2093 * and if so, what our ideal channel use would be based on our 2094 * capabilities and the (pre-parsed) VHT info IE. 2095 */ 2096 vhtflags = ieee80211_vht_get_vhtflags(ni, htflags); 2097 2098 (void) htinfo_update_chw(ni, htflags, vhtflags); 2099 } 2100 2101 /* 2102 * Install received HT rate set by parsing the HT cap ie. 2103 */ 2104 int 2105 ieee80211_setup_htrates(struct ieee80211_node *ni, const uint8_t *ie, int flags) 2106 { 2107 struct ieee80211com *ic = ni->ni_ic; 2108 struct ieee80211vap *vap = ni->ni_vap; 2109 const struct ieee80211_ie_htcap *htcap; 2110 struct ieee80211_htrateset *rs; 2111 int i, maxequalmcs, maxunequalmcs; 2112 2113 maxequalmcs = ic->ic_txstream * 8 - 1; 2114 maxunequalmcs = 0; 2115 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 2116 if (ic->ic_txstream >= 2) 2117 maxunequalmcs = 38; 2118 if (ic->ic_txstream >= 3) 2119 maxunequalmcs = 52; 2120 if (ic->ic_txstream >= 4) 2121 maxunequalmcs = 76; 2122 } 2123 2124 rs = &ni->ni_htrates; 2125 memset(rs, 0, sizeof(*rs)); 2126 if (ie != NULL) { 2127 if (ie[0] == IEEE80211_ELEMID_VENDOR) 2128 ie += 4; 2129 htcap = (const struct ieee80211_ie_htcap *) ie; 2130 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 2131 if (isclr(htcap->hc_mcsset, i)) 2132 continue; 2133 if (rs->rs_nrates == IEEE80211_HTRATE_MAXSIZE) { 2134 IEEE80211_NOTE(vap, 2135 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 2136 "WARNING, HT rate set too large; only " 2137 "using %u rates", IEEE80211_HTRATE_MAXSIZE); 2138 vap->iv_stats.is_rx_rstoobig++; 2139 break; 2140 } 2141 if (i <= 31 && i > maxequalmcs) 2142 continue; 2143 if (i == 32 && 2144 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0) 2145 continue; 2146 if (i > 32 && i > maxunequalmcs) 2147 continue; 2148 rs->rs_rates[rs->rs_nrates++] = i; 2149 } 2150 } 2151 return ieee80211_fix_rate(ni, (struct ieee80211_rateset *) rs, flags); 2152 } 2153 2154 /* 2155 * Mark rates in a node's HT rate set as basic according 2156 * to the information in the supplied HT info ie. 2157 */ 2158 void 2159 ieee80211_setup_basic_htrates(struct ieee80211_node *ni, const uint8_t *ie) 2160 { 2161 const struct ieee80211_ie_htinfo *htinfo; 2162 struct ieee80211_htrateset *rs; 2163 int i, j; 2164 2165 if (ie[0] == IEEE80211_ELEMID_VENDOR) 2166 ie += 4; 2167 htinfo = (const struct ieee80211_ie_htinfo *) ie; 2168 rs = &ni->ni_htrates; 2169 if (rs->rs_nrates == 0) { 2170 IEEE80211_NOTE(ni->ni_vap, 2171 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 2172 "%s", "WARNING, empty HT rate set"); 2173 return; 2174 } 2175 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 2176 if (isclr(htinfo->hi_basicmcsset, i)) 2177 continue; 2178 for (j = 0; j < rs->rs_nrates; j++) 2179 if ((rs->rs_rates[j] & IEEE80211_RATE_VAL) == i) 2180 rs->rs_rates[j] |= IEEE80211_RATE_BASIC; 2181 } 2182 } 2183 2184 static void 2185 ampdu_tx_setup(struct ieee80211_tx_ampdu *tap) 2186 { 2187 callout_init(&tap->txa_timer, 1); 2188 tap->txa_flags |= IEEE80211_AGGR_SETUP; 2189 tap->txa_lastsample = ticks; 2190 } 2191 2192 static void 2193 ampdu_tx_stop(struct ieee80211_tx_ampdu *tap) 2194 { 2195 struct ieee80211_node *ni = tap->txa_ni; 2196 struct ieee80211com *ic = ni->ni_ic; 2197 2198 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2199 tap->txa_ni, 2200 "%s: called", 2201 __func__); 2202 2203 KASSERT(tap->txa_flags & IEEE80211_AGGR_SETUP, 2204 ("txa_flags 0x%x tid %d ac %d", tap->txa_flags, tap->txa_tid, 2205 TID_TO_WME_AC(tap->txa_tid))); 2206 2207 /* 2208 * Stop BA stream if setup so driver has a chance 2209 * to reclaim any resources it might have allocated. 2210 */ 2211 ic->ic_addba_stop(ni, tap); 2212 /* 2213 * Stop any pending BAR transmit. 2214 */ 2215 bar_stop_timer(tap); 2216 2217 /* 2218 * Reset packet estimate. 2219 */ 2220 ieee80211_txampdu_init_pps(tap); 2221 2222 /* NB: clearing NAK means we may re-send ADDBA */ 2223 tap->txa_flags &= ~(IEEE80211_AGGR_SETUP | IEEE80211_AGGR_NAK); 2224 } 2225 2226 /* 2227 * ADDBA response timeout. 2228 * 2229 * If software aggregation and per-TID queue management was done here, 2230 * that queue would be unpaused after the ADDBA timeout occurs. 2231 */ 2232 static void 2233 addba_timeout(void *arg) 2234 { 2235 struct ieee80211_tx_ampdu *tap = arg; 2236 struct ieee80211_node *ni = tap->txa_ni; 2237 struct ieee80211com *ic = ni->ni_ic; 2238 2239 /* XXX ? */ 2240 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 2241 tap->txa_attempts++; 2242 ic->ic_addba_response_timeout(ni, tap); 2243 } 2244 2245 static void 2246 addba_start_timeout(struct ieee80211_tx_ampdu *tap) 2247 { 2248 /* XXX use CALLOUT_PENDING instead? */ 2249 callout_reset(&tap->txa_timer, ieee80211_addba_timeout, 2250 addba_timeout, tap); 2251 tap->txa_flags |= IEEE80211_AGGR_XCHGPEND; 2252 tap->txa_nextrequest = ticks + ieee80211_addba_timeout; 2253 } 2254 2255 static void 2256 addba_stop_timeout(struct ieee80211_tx_ampdu *tap) 2257 { 2258 /* XXX use CALLOUT_PENDING instead? */ 2259 if (tap->txa_flags & IEEE80211_AGGR_XCHGPEND) { 2260 callout_stop(&tap->txa_timer); 2261 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 2262 } 2263 } 2264 2265 static void 2266 null_addba_response_timeout(struct ieee80211_node *ni, 2267 struct ieee80211_tx_ampdu *tap) 2268 { 2269 } 2270 2271 /* 2272 * Default method for requesting A-MPDU tx aggregation. 2273 * We setup the specified state block and start a timer 2274 * to wait for an ADDBA response frame. 2275 */ 2276 static int 2277 ieee80211_addba_request(struct ieee80211_node *ni, 2278 struct ieee80211_tx_ampdu *tap, 2279 int dialogtoken, int baparamset, int batimeout) 2280 { 2281 int bufsiz; 2282 2283 /* XXX locking */ 2284 tap->txa_token = dialogtoken; 2285 tap->txa_flags |= IEEE80211_AGGR_IMMEDIATE; 2286 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 2287 tap->txa_wnd = (bufsiz == 0) ? 2288 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 2289 addba_start_timeout(tap); 2290 return 1; 2291 } 2292 2293 /* 2294 * Called by drivers that wish to request an ADDBA session be 2295 * setup. This brings it up and starts the request timer. 2296 */ 2297 int 2298 ieee80211_ampdu_tx_request_ext(struct ieee80211_node *ni, int tid) 2299 { 2300 struct ieee80211_tx_ampdu *tap; 2301 2302 if (tid < 0 || tid > 15) 2303 return (0); 2304 tap = &ni->ni_tx_ampdu[tid]; 2305 2306 /* XXX locking */ 2307 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 2308 /* do deferred setup of state */ 2309 ampdu_tx_setup(tap); 2310 } 2311 /* XXX hack for not doing proper locking */ 2312 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 2313 addba_start_timeout(tap); 2314 return (1); 2315 } 2316 2317 /* 2318 * Called by drivers that have marked a session as active. 2319 */ 2320 int 2321 ieee80211_ampdu_tx_request_active_ext(struct ieee80211_node *ni, int tid, 2322 int status) 2323 { 2324 struct ieee80211_tx_ampdu *tap; 2325 2326 if (tid < 0 || tid > 15) 2327 return (0); 2328 tap = &ni->ni_tx_ampdu[tid]; 2329 2330 /* XXX locking */ 2331 addba_stop_timeout(tap); 2332 if (status == 1) { 2333 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 2334 tap->txa_attempts = 0; 2335 } else { 2336 /* mark tid so we don't try again */ 2337 tap->txa_flags |= IEEE80211_AGGR_NAK; 2338 } 2339 return (1); 2340 } 2341 2342 /* 2343 * Default method for processing an A-MPDU tx aggregation 2344 * response. We shutdown any pending timer and update the 2345 * state block according to the reply. 2346 */ 2347 static int 2348 ieee80211_addba_response(struct ieee80211_node *ni, 2349 struct ieee80211_tx_ampdu *tap, 2350 int status, int baparamset, int batimeout) 2351 { 2352 struct ieee80211vap *vap = ni->ni_vap; 2353 int bufsiz, tid; 2354 2355 /* XXX locking */ 2356 addba_stop_timeout(tap); 2357 if (status == IEEE80211_STATUS_SUCCESS) { 2358 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 2359 /* XXX override our request? */ 2360 tap->txa_wnd = (bufsiz == 0) ? 2361 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 2362 tid = MS(baparamset, IEEE80211_BAPS_TID); 2363 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 2364 tap->txa_attempts = 0; 2365 /* TODO: this should be a vap flag */ 2366 if ((vap->iv_htcaps & IEEE80211_HTC_TX_AMSDU_AMPDU) && 2367 (ni->ni_flags & IEEE80211_NODE_AMSDU_TX) && 2368 (MS(baparamset, IEEE80211_BAPS_AMSDU))) 2369 tap->txa_flags |= IEEE80211_AGGR_AMSDU; 2370 else 2371 tap->txa_flags &= ~IEEE80211_AGGR_AMSDU; 2372 } else { 2373 /* mark tid so we don't try again */ 2374 tap->txa_flags |= IEEE80211_AGGR_NAK; 2375 } 2376 return 1; 2377 } 2378 2379 /* 2380 * Default method for stopping A-MPDU tx aggregation. 2381 * Any timer is cleared and we drain any pending frames. 2382 */ 2383 static void 2384 ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 2385 { 2386 /* XXX locking */ 2387 addba_stop_timeout(tap); 2388 if (tap->txa_flags & IEEE80211_AGGR_RUNNING) { 2389 /* XXX clear aggregation queue */ 2390 tap->txa_flags &= ~(IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_AMSDU); 2391 } 2392 tap->txa_attempts = 0; 2393 } 2394 2395 /* 2396 * Process a received action frame using the default aggregation 2397 * policy. We intercept ADDBA-related frames and use them to 2398 * update our aggregation state. All other frames are passed up 2399 * for processing by ieee80211_recv_action. 2400 */ 2401 static int 2402 ht_recv_action_ba_addba_request(struct ieee80211_node *ni, 2403 const struct ieee80211_frame *wh, 2404 const uint8_t *frm, const uint8_t *efrm) 2405 { 2406 struct ieee80211com *ic = ni->ni_ic; 2407 struct ieee80211vap *vap = ni->ni_vap; 2408 struct ieee80211_rx_ampdu *rap; 2409 uint8_t dialogtoken; 2410 uint16_t baparamset, batimeout, baseqctl; 2411 uint16_t args[5]; 2412 int tid; 2413 2414 dialogtoken = frm[2]; 2415 baparamset = le16dec(frm+3); 2416 batimeout = le16dec(frm+5); 2417 baseqctl = le16dec(frm+7); 2418 2419 tid = MS(baparamset, IEEE80211_BAPS_TID); 2420 2421 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2422 "recv ADDBA request: dialogtoken %u baparamset 0x%x " 2423 "(tid %d bufsiz %d) batimeout %d baseqctl %d:%d amsdu %d", 2424 dialogtoken, baparamset, 2425 tid, MS(baparamset, IEEE80211_BAPS_BUFSIZ), 2426 batimeout, 2427 MS(baseqctl, IEEE80211_BASEQ_START), 2428 MS(baseqctl, IEEE80211_BASEQ_FRAG), 2429 MS(baparamset, IEEE80211_BAPS_AMSDU)); 2430 2431 rap = &ni->ni_rx_ampdu[tid]; 2432 2433 /* Send ADDBA response */ 2434 args[0] = dialogtoken; 2435 /* 2436 * NB: We ack only if the sta associated with HT and 2437 * the ap is configured to do AMPDU rx (the latter 2438 * violates the 11n spec and is mostly for testing). 2439 */ 2440 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_RX) && 2441 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX)) { 2442 /* XXX TODO: handle ampdu_rx_start failure */ 2443 ic->ic_ampdu_rx_start(ni, rap, 2444 baparamset, batimeout, baseqctl); 2445 2446 args[1] = IEEE80211_STATUS_SUCCESS; 2447 } else { 2448 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2449 ni, "reject ADDBA request: %s", 2450 ni->ni_flags & IEEE80211_NODE_AMPDU_RX ? 2451 "administratively disabled" : 2452 "not negotiated for station"); 2453 vap->iv_stats.is_addba_reject++; 2454 args[1] = IEEE80211_STATUS_UNSPECIFIED; 2455 } 2456 /* XXX honor rap flags? */ 2457 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 2458 | SM(tid, IEEE80211_BAPS_TID) 2459 | SM(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ) 2460 ; 2461 2462 /* 2463 * TODO: we're out of iv_flags_ht fields; once 2464 * this is extended we should make this configurable. 2465 */ 2466 if ((baparamset & IEEE80211_BAPS_AMSDU) && 2467 (ni->ni_flags & IEEE80211_NODE_AMSDU_RX) && 2468 (vap->iv_htcaps & IEEE80211_HTC_RX_AMSDU_AMPDU)) 2469 args[2] |= IEEE80211_BAPS_AMSDU; 2470 2471 args[3] = 0; 2472 args[4] = 0; 2473 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2474 IEEE80211_ACTION_BA_ADDBA_RESPONSE, args); 2475 return 0; 2476 } 2477 2478 static int 2479 ht_recv_action_ba_addba_response(struct ieee80211_node *ni, 2480 const struct ieee80211_frame *wh, 2481 const uint8_t *frm, const uint8_t *efrm) 2482 { 2483 struct ieee80211com *ic = ni->ni_ic; 2484 struct ieee80211vap *vap = ni->ni_vap; 2485 struct ieee80211_tx_ampdu *tap; 2486 uint8_t dialogtoken, policy; 2487 uint16_t baparamset, batimeout, code; 2488 int tid, bufsiz; 2489 int amsdu; 2490 2491 dialogtoken = frm[2]; 2492 code = le16dec(frm+3); 2493 baparamset = le16dec(frm+5); 2494 tid = MS(baparamset, IEEE80211_BAPS_TID); 2495 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 2496 policy = MS(baparamset, IEEE80211_BAPS_POLICY); 2497 amsdu = !! MS(baparamset, IEEE80211_BAPS_AMSDU); 2498 batimeout = le16dec(frm+7); 2499 2500 tap = &ni->ni_tx_ampdu[tid]; 2501 if ((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 2502 IEEE80211_DISCARD_MAC(vap, 2503 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2504 ni->ni_macaddr, "ADDBA response", 2505 "no pending ADDBA, tid %d dialogtoken %u " 2506 "code %d", tid, dialogtoken, code); 2507 vap->iv_stats.is_addba_norequest++; 2508 return 0; 2509 } 2510 if (dialogtoken != tap->txa_token) { 2511 IEEE80211_DISCARD_MAC(vap, 2512 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2513 ni->ni_macaddr, "ADDBA response", 2514 "dialogtoken mismatch: waiting for %d, " 2515 "received %d, tid %d code %d", 2516 tap->txa_token, dialogtoken, tid, code); 2517 vap->iv_stats.is_addba_badtoken++; 2518 return 0; 2519 } 2520 /* NB: assumes IEEE80211_AGGR_IMMEDIATE is 1 */ 2521 if (policy != (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE)) { 2522 IEEE80211_DISCARD_MAC(vap, 2523 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2524 ni->ni_macaddr, "ADDBA response", 2525 "policy mismatch: expecting %s, " 2526 "received %s, tid %d code %d", 2527 tap->txa_flags & IEEE80211_AGGR_IMMEDIATE, 2528 policy, tid, code); 2529 vap->iv_stats.is_addba_badpolicy++; 2530 return 0; 2531 } 2532 #if 0 2533 /* XXX we take MIN in ieee80211_addba_response */ 2534 if (bufsiz > IEEE80211_AGGR_BAWMAX) { 2535 IEEE80211_DISCARD_MAC(vap, 2536 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2537 ni->ni_macaddr, "ADDBA response", 2538 "BA window too large: max %d, " 2539 "received %d, tid %d code %d", 2540 bufsiz, IEEE80211_AGGR_BAWMAX, tid, code); 2541 vap->iv_stats.is_addba_badbawinsize++; 2542 return 0; 2543 } 2544 #endif 2545 2546 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2547 "recv ADDBA response: dialogtoken %u code %d " 2548 "baparamset 0x%x (tid %d bufsiz %d amsdu %d) batimeout %d", 2549 dialogtoken, code, baparamset, tid, 2550 bufsiz, 2551 amsdu, 2552 batimeout); 2553 ic->ic_addba_response(ni, tap, code, baparamset, batimeout); 2554 return 0; 2555 } 2556 2557 static int 2558 ht_recv_action_ba_delba(struct ieee80211_node *ni, 2559 const struct ieee80211_frame *wh, 2560 const uint8_t *frm, const uint8_t *efrm) 2561 { 2562 struct ieee80211com *ic = ni->ni_ic; 2563 struct ieee80211_rx_ampdu *rap; 2564 struct ieee80211_tx_ampdu *tap; 2565 uint16_t baparamset, code; 2566 int tid; 2567 2568 baparamset = le16dec(frm+2); 2569 code = le16dec(frm+4); 2570 2571 tid = MS(baparamset, IEEE80211_DELBAPS_TID); 2572 2573 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2574 "recv DELBA: baparamset 0x%x (tid %d initiator %d) " 2575 "code %d", baparamset, tid, 2576 MS(baparamset, IEEE80211_DELBAPS_INIT), code); 2577 2578 if ((baparamset & IEEE80211_DELBAPS_INIT) == 0) { 2579 tap = &ni->ni_tx_ampdu[tid]; 2580 ic->ic_addba_stop(ni, tap); 2581 } else { 2582 rap = &ni->ni_rx_ampdu[tid]; 2583 ic->ic_ampdu_rx_stop(ni, rap); 2584 } 2585 return 0; 2586 } 2587 2588 static int 2589 ht_recv_action_ht_txchwidth(struct ieee80211_node *ni, 2590 const struct ieee80211_frame *wh, 2591 const uint8_t *frm, const uint8_t *efrm) 2592 { 2593 int chw; 2594 2595 chw = (frm[2] == IEEE80211_A_HT_TXCHWIDTH_2040) ? 40 : 20; 2596 2597 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2598 "%s: HT txchwidth, width %d%s", 2599 __func__, chw, ni->ni_chw != chw ? "*" : ""); 2600 if (chw != ni->ni_chw) { 2601 /* XXX does this need to change the ht40 station count? */ 2602 ni->ni_chw = chw; 2603 /* XXX notify on change */ 2604 } 2605 return 0; 2606 } 2607 2608 static int 2609 ht_recv_action_ht_mimopwrsave(struct ieee80211_node *ni, 2610 const struct ieee80211_frame *wh, 2611 const uint8_t *frm, const uint8_t *efrm) 2612 { 2613 const struct ieee80211_action_ht_mimopowersave *mps = 2614 (const struct ieee80211_action_ht_mimopowersave *) frm; 2615 2616 /* XXX check iv_htcaps */ 2617 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA) 2618 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 2619 else 2620 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 2621 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_MODE) 2622 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 2623 else 2624 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 2625 /* XXX notify on change */ 2626 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2627 "%s: HT MIMO PS (%s%s)", __func__, 2628 (ni->ni_flags & IEEE80211_NODE_MIMO_PS) ? "on" : "off", 2629 (ni->ni_flags & IEEE80211_NODE_MIMO_RTS) ? "+rts" : "" 2630 ); 2631 return 0; 2632 } 2633 2634 /* 2635 * Transmit processing. 2636 */ 2637 2638 /* 2639 * Check if A-MPDU should be requested/enabled for a stream. 2640 * We require a traffic rate above a per-AC threshold and we 2641 * also handle backoff from previous failed attempts. 2642 * 2643 * Drivers may override this method to bring in information 2644 * such as link state conditions in making the decision. 2645 */ 2646 static int 2647 ieee80211_ampdu_enable(struct ieee80211_node *ni, 2648 struct ieee80211_tx_ampdu *tap) 2649 { 2650 struct ieee80211vap *vap = ni->ni_vap; 2651 2652 if (tap->txa_avgpps < 2653 vap->iv_ampdu_mintraffic[TID_TO_WME_AC(tap->txa_tid)]) 2654 return 0; 2655 /* XXX check rssi? */ 2656 if (tap->txa_attempts >= ieee80211_addba_maxtries && 2657 ieee80211_time_after(ticks, tap->txa_nextrequest)) { 2658 /* 2659 * Don't retry too often; txa_nextrequest is set 2660 * to the minimum interval we'll retry after 2661 * ieee80211_addba_maxtries failed attempts are made. 2662 */ 2663 return 0; 2664 } 2665 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 2666 "enable AMPDU on tid %d (%s), avgpps %d pkts %d attempt %d", 2667 tap->txa_tid, ieee80211_wme_acnames[TID_TO_WME_AC(tap->txa_tid)], 2668 tap->txa_avgpps, tap->txa_pkts, tap->txa_attempts); 2669 return 1; 2670 } 2671 2672 /* 2673 * Request A-MPDU tx aggregation. Setup local state and 2674 * issue an ADDBA request. BA use will only happen after 2675 * the other end replies with ADDBA response. 2676 */ 2677 int 2678 ieee80211_ampdu_request(struct ieee80211_node *ni, 2679 struct ieee80211_tx_ampdu *tap) 2680 { 2681 struct ieee80211com *ic = ni->ni_ic; 2682 uint16_t args[5]; 2683 int tid, dialogtoken; 2684 static int tokens = 0; /* XXX */ 2685 2686 /* XXX locking */ 2687 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 2688 /* do deferred setup of state */ 2689 ampdu_tx_setup(tap); 2690 } 2691 /* XXX hack for not doing proper locking */ 2692 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 2693 2694 dialogtoken = (tokens+1) % 63; /* XXX */ 2695 tid = tap->txa_tid; 2696 2697 /* 2698 * XXX TODO: This is racy with any other parallel TX going on. :( 2699 */ 2700 tap->txa_start = ni->ni_txseqs[tid]; 2701 2702 args[0] = dialogtoken; 2703 args[1] = 0; /* NB: status code not used */ 2704 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 2705 | SM(tid, IEEE80211_BAPS_TID) 2706 | SM(IEEE80211_AGGR_BAWMAX, IEEE80211_BAPS_BUFSIZ) 2707 ; 2708 2709 /* XXX TODO: this should be a flag, not iv_htcaps */ 2710 if ((ni->ni_flags & IEEE80211_NODE_AMSDU_TX) && 2711 (ni->ni_vap->iv_htcaps & IEEE80211_HTC_TX_AMSDU_AMPDU)) 2712 args[2] |= IEEE80211_BAPS_AMSDU; 2713 2714 args[3] = 0; /* batimeout */ 2715 /* NB: do first so there's no race against reply */ 2716 if (!ic->ic_addba_request(ni, tap, dialogtoken, args[2], args[3])) { 2717 /* unable to setup state, don't make request */ 2718 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2719 ni, "%s: could not setup BA stream for TID %d AC %d", 2720 __func__, tap->txa_tid, TID_TO_WME_AC(tap->txa_tid)); 2721 /* defer next try so we don't slam the driver with requests */ 2722 tap->txa_attempts = ieee80211_addba_maxtries; 2723 /* NB: check in case driver wants to override */ 2724 if (tap->txa_nextrequest <= ticks) 2725 tap->txa_nextrequest = ticks + ieee80211_addba_backoff; 2726 return 0; 2727 } 2728 tokens = dialogtoken; /* allocate token */ 2729 /* NB: after calling ic_addba_request so driver can set txa_start */ 2730 args[4] = SM(tap->txa_start, IEEE80211_BASEQ_START) 2731 | SM(0, IEEE80211_BASEQ_FRAG) 2732 ; 2733 return ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2734 IEEE80211_ACTION_BA_ADDBA_REQUEST, args); 2735 } 2736 2737 /* 2738 * Terminate an AMPDU tx stream. State is reclaimed 2739 * and the peer notified with a DelBA Action frame. 2740 */ 2741 void 2742 ieee80211_ampdu_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 2743 int reason) 2744 { 2745 struct ieee80211com *ic = ni->ni_ic; 2746 struct ieee80211vap *vap = ni->ni_vap; 2747 uint16_t args[4]; 2748 2749 /* XXX locking */ 2750 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2751 if (IEEE80211_AMPDU_RUNNING(tap)) { 2752 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2753 ni, "%s: stop BA stream for TID %d (reason: %d (%s))", 2754 __func__, tap->txa_tid, reason, 2755 ieee80211_reason_to_string(reason)); 2756 vap->iv_stats.is_ampdu_stop++; 2757 2758 ic->ic_addba_stop(ni, tap); 2759 args[0] = tap->txa_tid; 2760 args[1] = IEEE80211_DELBAPS_INIT; 2761 args[2] = reason; /* XXX reason code */ 2762 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2763 IEEE80211_ACTION_BA_DELBA, args); 2764 } else { 2765 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2766 ni, "%s: BA stream for TID %d not running " 2767 "(reason: %d (%s))", __func__, tap->txa_tid, reason, 2768 ieee80211_reason_to_string(reason)); 2769 vap->iv_stats.is_ampdu_stop_failed++; 2770 } 2771 } 2772 2773 /* XXX */ 2774 static void bar_start_timer(struct ieee80211_tx_ampdu *tap); 2775 2776 static void 2777 bar_timeout(void *arg) 2778 { 2779 struct ieee80211_tx_ampdu *tap = arg; 2780 struct ieee80211_node *ni = tap->txa_ni; 2781 2782 KASSERT((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0, 2783 ("bar/addba collision, flags 0x%x", tap->txa_flags)); 2784 2785 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2786 ni, "%s: tid %u flags 0x%x attempts %d", __func__, 2787 tap->txa_tid, tap->txa_flags, tap->txa_attempts); 2788 2789 /* guard against race with bar_tx_complete */ 2790 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2791 return; 2792 /* XXX ? */ 2793 if (tap->txa_attempts >= ieee80211_bar_maxtries) { 2794 struct ieee80211com *ic = ni->ni_ic; 2795 2796 ni->ni_vap->iv_stats.is_ampdu_bar_tx_fail++; 2797 /* 2798 * If (at least) the last BAR TX timeout was due to 2799 * an ieee80211_send_bar() failures, then we need 2800 * to make sure we notify the driver that a BAR 2801 * TX did occur and fail. This gives the driver 2802 * a chance to undo any queue pause that may 2803 * have occurred. 2804 */ 2805 ic->ic_bar_response(ni, tap, 1); 2806 ieee80211_ampdu_stop(ni, tap, IEEE80211_REASON_TIMEOUT); 2807 } else { 2808 ni->ni_vap->iv_stats.is_ampdu_bar_tx_retry++; 2809 if (ieee80211_send_bar(ni, tap, tap->txa_seqpending) != 0) { 2810 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2811 ni, "%s: failed to TX, starting timer\n", 2812 __func__); 2813 /* 2814 * If ieee80211_send_bar() fails here, the 2815 * timer may have stopped and/or the pending 2816 * flag may be clear. Because of this, 2817 * fake the BARPEND and reset the timer. 2818 * A retransmission attempt will then occur 2819 * during the next timeout. 2820 */ 2821 /* XXX locking */ 2822 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2823 bar_start_timer(tap); 2824 } 2825 } 2826 } 2827 2828 static void 2829 bar_start_timer(struct ieee80211_tx_ampdu *tap) 2830 { 2831 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2832 tap->txa_ni, 2833 "%s: called", 2834 __func__); 2835 callout_reset(&tap->txa_timer, ieee80211_bar_timeout, bar_timeout, tap); 2836 } 2837 2838 static void 2839 bar_stop_timer(struct ieee80211_tx_ampdu *tap) 2840 { 2841 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2842 tap->txa_ni, 2843 "%s: called", 2844 __func__); 2845 callout_stop(&tap->txa_timer); 2846 } 2847 2848 static void 2849 bar_tx_complete(struct ieee80211_node *ni, void *arg, int status) 2850 { 2851 struct ieee80211_tx_ampdu *tap = arg; 2852 2853 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2854 ni, "%s: tid %u flags 0x%x pending %d status %d", 2855 __func__, tap->txa_tid, tap->txa_flags, 2856 callout_pending(&tap->txa_timer), status); 2857 2858 ni->ni_vap->iv_stats.is_ampdu_bar_tx++; 2859 /* XXX locking */ 2860 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) && 2861 callout_pending(&tap->txa_timer)) { 2862 struct ieee80211com *ic = ni->ni_ic; 2863 2864 if (status == 0) /* ACK'd */ 2865 bar_stop_timer(tap); 2866 ic->ic_bar_response(ni, tap, status); 2867 /* NB: just let timer expire so we pace requests */ 2868 } 2869 } 2870 2871 static void 2872 ieee80211_bar_response(struct ieee80211_node *ni, 2873 struct ieee80211_tx_ampdu *tap, int status) 2874 { 2875 2876 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2877 tap->txa_ni, 2878 "%s: called", 2879 __func__); 2880 if (status == 0) { /* got ACK */ 2881 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2882 ni, "BAR moves BA win <%u:%u> (%u frames) txseq %u tid %u", 2883 tap->txa_start, 2884 IEEE80211_SEQ_ADD(tap->txa_start, tap->txa_wnd-1), 2885 tap->txa_qframes, tap->txa_seqpending, 2886 tap->txa_tid); 2887 2888 /* NB: timer already stopped in bar_tx_complete */ 2889 tap->txa_start = tap->txa_seqpending; 2890 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2891 } 2892 } 2893 2894 /* 2895 * Transmit a BAR frame to the specified node. The 2896 * BAR contents are drawn from the supplied aggregation 2897 * state associated with the node. 2898 * 2899 * NB: we only handle immediate ACK w/ compressed bitmap. 2900 */ 2901 int 2902 ieee80211_send_bar(struct ieee80211_node *ni, 2903 struct ieee80211_tx_ampdu *tap, ieee80211_seq seq) 2904 { 2905 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2906 struct ieee80211vap *vap = ni->ni_vap; 2907 struct ieee80211com *ic = ni->ni_ic; 2908 struct ieee80211_frame_bar *bar; 2909 struct mbuf *m; 2910 uint16_t barctl, barseqctl; 2911 uint8_t *frm; 2912 int tid, ret; 2913 2914 2915 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2916 tap->txa_ni, 2917 "%s: called", 2918 __func__); 2919 2920 if ((tap->txa_flags & IEEE80211_AGGR_RUNNING) == 0) { 2921 /* no ADDBA response, should not happen */ 2922 /* XXX stat+msg */ 2923 return EINVAL; 2924 } 2925 /* XXX locking */ 2926 bar_stop_timer(tap); 2927 2928 ieee80211_ref_node(ni); 2929 2930 m = ieee80211_getmgtframe(&frm, ic->ic_headroom, sizeof(*bar)); 2931 if (m == NULL) 2932 senderr(ENOMEM, is_tx_nobuf); 2933 2934 if (!ieee80211_add_callback(m, bar_tx_complete, tap)) { 2935 m_freem(m); 2936 senderr(ENOMEM, is_tx_nobuf); /* XXX */ 2937 /* NOTREACHED */ 2938 } 2939 2940 bar = mtod(m, struct ieee80211_frame_bar *); 2941 bar->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2942 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR; 2943 bar->i_fc[1] = 0; 2944 IEEE80211_ADDR_COPY(bar->i_ra, ni->ni_macaddr); 2945 IEEE80211_ADDR_COPY(bar->i_ta, vap->iv_myaddr); 2946 2947 tid = tap->txa_tid; 2948 barctl = (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE ? 2949 0 : IEEE80211_BAR_NOACK) 2950 | IEEE80211_BAR_COMP 2951 | SM(tid, IEEE80211_BAR_TID) 2952 ; 2953 barseqctl = SM(seq, IEEE80211_BAR_SEQ_START); 2954 /* NB: known to have proper alignment */ 2955 bar->i_ctl = htole16(barctl); 2956 bar->i_seq = htole16(barseqctl); 2957 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_bar); 2958 2959 M_WME_SETAC(m, WME_AC_VO); 2960 2961 IEEE80211_NODE_STAT(ni, tx_mgmt); /* XXX tx_ctl? */ 2962 2963 /* XXX locking */ 2964 /* init/bump attempts counter */ 2965 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2966 tap->txa_attempts = 1; 2967 else 2968 tap->txa_attempts++; 2969 tap->txa_seqpending = seq; 2970 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2971 2972 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2973 ni, "send BAR: tid %u ctl 0x%x start %u (attempt %d)", 2974 tid, barctl, seq, tap->txa_attempts); 2975 2976 /* 2977 * ic_raw_xmit will free the node reference 2978 * regardless of queue/TX success or failure. 2979 */ 2980 IEEE80211_TX_LOCK(ic); 2981 ret = ieee80211_raw_output(vap, ni, m, NULL); 2982 IEEE80211_TX_UNLOCK(ic); 2983 if (ret != 0) { 2984 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2985 ni, "send BAR: failed: (ret = %d)\n", 2986 ret); 2987 /* xmit failed, clear state flag */ 2988 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2989 vap->iv_stats.is_ampdu_bar_tx_fail++; 2990 return ret; 2991 } 2992 /* XXX hack against tx complete happening before timer is started */ 2993 if (tap->txa_flags & IEEE80211_AGGR_BARPEND) 2994 bar_start_timer(tap); 2995 return 0; 2996 bad: 2997 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2998 tap->txa_ni, 2999 "%s: bad! ret=%d", 3000 __func__, ret); 3001 vap->iv_stats.is_ampdu_bar_tx_fail++; 3002 ieee80211_free_node(ni); 3003 return ret; 3004 #undef senderr 3005 } 3006 3007 static int 3008 ht_action_output(struct ieee80211_node *ni, struct mbuf *m) 3009 { 3010 struct ieee80211_bpf_params params; 3011 3012 memset(¶ms, 0, sizeof(params)); 3013 params.ibp_pri = WME_AC_VO; 3014 params.ibp_rate0 = ni->ni_txparms->mgmtrate; 3015 /* NB: we know all frames are unicast */ 3016 params.ibp_try0 = ni->ni_txparms->maxretry; 3017 params.ibp_power = ni->ni_txpower; 3018 return ieee80211_mgmt_output(ni, m, IEEE80211_FC0_SUBTYPE_ACTION, 3019 ¶ms); 3020 } 3021 3022 #define ADDSHORT(frm, v) do { \ 3023 frm[0] = (v) & 0xff; \ 3024 frm[1] = (v) >> 8; \ 3025 frm += 2; \ 3026 } while (0) 3027 3028 /* 3029 * Send an action management frame. The arguments are stuff 3030 * into a frame without inspection; the caller is assumed to 3031 * prepare them carefully (e.g. based on the aggregation state). 3032 */ 3033 static int 3034 ht_send_action_ba_addba(struct ieee80211_node *ni, 3035 int category, int action, void *arg0) 3036 { 3037 struct ieee80211vap *vap = ni->ni_vap; 3038 struct ieee80211com *ic = ni->ni_ic; 3039 uint16_t *args = arg0; 3040 struct mbuf *m; 3041 uint8_t *frm; 3042 3043 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 3044 "send ADDBA %s: dialogtoken %d status %d " 3045 "baparamset 0x%x (tid %d amsdu %d) batimeout 0x%x baseqctl 0x%x", 3046 (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ? 3047 "request" : "response", 3048 args[0], args[1], args[2], MS(args[2], IEEE80211_BAPS_TID), 3049 MS(args[2], IEEE80211_BAPS_AMSDU), args[3], args[4]); 3050 3051 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 3052 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 3053 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 3054 ieee80211_ref_node(ni); 3055 3056 m = ieee80211_getmgtframe(&frm, 3057 ic->ic_headroom + sizeof(struct ieee80211_frame), 3058 sizeof(uint16_t) /* action+category */ 3059 /* XXX may action payload */ 3060 + sizeof(struct ieee80211_action_ba_addbaresponse) 3061 ); 3062 if (m != NULL) { 3063 *frm++ = category; 3064 *frm++ = action; 3065 *frm++ = args[0]; /* dialog token */ 3066 if (action == IEEE80211_ACTION_BA_ADDBA_RESPONSE) 3067 ADDSHORT(frm, args[1]); /* status code */ 3068 ADDSHORT(frm, args[2]); /* baparamset */ 3069 ADDSHORT(frm, args[3]); /* batimeout */ 3070 if (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) 3071 ADDSHORT(frm, args[4]); /* baseqctl */ 3072 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3073 return ht_action_output(ni, m); 3074 } else { 3075 vap->iv_stats.is_tx_nobuf++; 3076 ieee80211_free_node(ni); 3077 return ENOMEM; 3078 } 3079 } 3080 3081 static int 3082 ht_send_action_ba_delba(struct ieee80211_node *ni, 3083 int category, int action, void *arg0) 3084 { 3085 struct ieee80211vap *vap = ni->ni_vap; 3086 struct ieee80211com *ic = ni->ni_ic; 3087 uint16_t *args = arg0; 3088 struct mbuf *m; 3089 uint16_t baparamset; 3090 uint8_t *frm; 3091 3092 baparamset = SM(args[0], IEEE80211_DELBAPS_TID) 3093 | args[1] 3094 ; 3095 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 3096 "send DELBA action: tid %d, initiator %d reason %d (%s)", 3097 args[0], args[1], args[2], ieee80211_reason_to_string(args[2])); 3098 3099 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 3100 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 3101 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 3102 ieee80211_ref_node(ni); 3103 3104 m = ieee80211_getmgtframe(&frm, 3105 ic->ic_headroom + sizeof(struct ieee80211_frame), 3106 sizeof(uint16_t) /* action+category */ 3107 /* XXX may action payload */ 3108 + sizeof(struct ieee80211_action_ba_addbaresponse) 3109 ); 3110 if (m != NULL) { 3111 *frm++ = category; 3112 *frm++ = action; 3113 ADDSHORT(frm, baparamset); 3114 ADDSHORT(frm, args[2]); /* reason code */ 3115 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3116 return ht_action_output(ni, m); 3117 } else { 3118 vap->iv_stats.is_tx_nobuf++; 3119 ieee80211_free_node(ni); 3120 return ENOMEM; 3121 } 3122 } 3123 3124 static int 3125 ht_send_action_ht_txchwidth(struct ieee80211_node *ni, 3126 int category, int action, void *arg0) 3127 { 3128 struct ieee80211vap *vap = ni->ni_vap; 3129 struct ieee80211com *ic = ni->ni_ic; 3130 struct mbuf *m; 3131 uint8_t *frm; 3132 3133 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 3134 "send HT txchwidth: width %d", 3135 IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 40 : 20); 3136 3137 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 3138 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 3139 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 3140 ieee80211_ref_node(ni); 3141 3142 m = ieee80211_getmgtframe(&frm, 3143 ic->ic_headroom + sizeof(struct ieee80211_frame), 3144 sizeof(uint16_t) /* action+category */ 3145 /* XXX may action payload */ 3146 + sizeof(struct ieee80211_action_ba_addbaresponse) 3147 ); 3148 if (m != NULL) { 3149 *frm++ = category; 3150 *frm++ = action; 3151 *frm++ = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 3152 IEEE80211_A_HT_TXCHWIDTH_2040 : 3153 IEEE80211_A_HT_TXCHWIDTH_20; 3154 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3155 return ht_action_output(ni, m); 3156 } else { 3157 vap->iv_stats.is_tx_nobuf++; 3158 ieee80211_free_node(ni); 3159 return ENOMEM; 3160 } 3161 } 3162 #undef ADDSHORT 3163 3164 /* 3165 * Construct the MCS bit mask for inclusion in an HT capabilities 3166 * information element. 3167 */ 3168 static void 3169 ieee80211_set_mcsset(struct ieee80211com *ic, uint8_t *frm) 3170 { 3171 int i; 3172 uint8_t txparams; 3173 3174 KASSERT((ic->ic_rxstream > 0 && ic->ic_rxstream <= 4), 3175 ("ic_rxstream %d out of range", ic->ic_rxstream)); 3176 KASSERT((ic->ic_txstream > 0 && ic->ic_txstream <= 4), 3177 ("ic_txstream %d out of range", ic->ic_txstream)); 3178 3179 for (i = 0; i < ic->ic_rxstream * 8; i++) 3180 setbit(frm, i); 3181 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 3182 (ic->ic_htcaps & IEEE80211_HTC_RXMCS32)) 3183 setbit(frm, 32); 3184 if (ic->ic_htcaps & IEEE80211_HTC_RXUNEQUAL) { 3185 if (ic->ic_rxstream >= 2) { 3186 for (i = 33; i <= 38; i++) 3187 setbit(frm, i); 3188 } 3189 if (ic->ic_rxstream >= 3) { 3190 for (i = 39; i <= 52; i++) 3191 setbit(frm, i); 3192 } 3193 if (ic->ic_txstream >= 4) { 3194 for (i = 53; i <= 76; i++) 3195 setbit(frm, i); 3196 } 3197 } 3198 3199 if (ic->ic_rxstream != ic->ic_txstream) { 3200 txparams = 0x1; /* TX MCS set defined */ 3201 txparams |= 0x2; /* TX RX MCS not equal */ 3202 txparams |= (ic->ic_txstream - 1) << 2; /* num TX streams */ 3203 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) 3204 txparams |= 0x16; /* TX unequal modulation sup */ 3205 } else 3206 txparams = 0; 3207 frm[12] = txparams; 3208 } 3209 3210 /* 3211 * Add body of an HTCAP information element. 3212 */ 3213 static uint8_t * 3214 ieee80211_add_htcap_body(uint8_t *frm, struct ieee80211_node *ni) 3215 { 3216 #define ADDSHORT(frm, v) do { \ 3217 frm[0] = (v) & 0xff; \ 3218 frm[1] = (v) >> 8; \ 3219 frm += 2; \ 3220 } while (0) 3221 struct ieee80211com *ic = ni->ni_ic; 3222 struct ieee80211vap *vap = ni->ni_vap; 3223 uint16_t caps, extcaps; 3224 int rxmax, density; 3225 3226 /* HT capabilities */ 3227 caps = vap->iv_htcaps & 0xffff; 3228 /* 3229 * Note channel width depends on whether we are operating as 3230 * a sta or not. When operating as a sta we are generating 3231 * a request based on our desired configuration. Otherwise 3232 * we are operational and the channel attributes identify 3233 * how we've been setup (which might be different if a fixed 3234 * channel is specified). 3235 */ 3236 if (vap->iv_opmode == IEEE80211_M_STA) { 3237 /* override 20/40 use based on config */ 3238 if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40) 3239 caps |= IEEE80211_HTCAP_CHWIDTH40; 3240 else 3241 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3242 3243 /* Start by using the advertised settings */ 3244 rxmax = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU); 3245 density = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY); 3246 3247 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, 3248 "%s: advertised rxmax=%d, density=%d, vap rxmax=%d, density=%d\n", 3249 __func__, 3250 rxmax, 3251 density, 3252 vap->iv_ampdu_rxmax, 3253 vap->iv_ampdu_density); 3254 3255 /* Cap at VAP rxmax */ 3256 if (rxmax > vap->iv_ampdu_rxmax) 3257 rxmax = vap->iv_ampdu_rxmax; 3258 3259 /* 3260 * If the VAP ampdu density value greater, use that. 3261 * 3262 * (Larger density value == larger minimum gap between A-MPDU 3263 * subframes.) 3264 */ 3265 if (vap->iv_ampdu_density > density) 3266 density = vap->iv_ampdu_density; 3267 3268 /* 3269 * NB: Hardware might support HT40 on some but not all 3270 * channels. We can't determine this earlier because only 3271 * after association the channel is upgraded to HT based 3272 * on the negotiated capabilities. 3273 */ 3274 if (ni->ni_chan != IEEE80211_CHAN_ANYC && 3275 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40U) == NULL && 3276 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40D) == NULL) 3277 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3278 } else { 3279 /* override 20/40 use based on current channel */ 3280 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 3281 caps |= IEEE80211_HTCAP_CHWIDTH40; 3282 else 3283 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3284 3285 /* XXX TODO should it start by using advertised settings? */ 3286 rxmax = vap->iv_ampdu_rxmax; 3287 density = vap->iv_ampdu_density; 3288 } 3289 3290 /* adjust short GI based on channel and config */ 3291 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) 3292 caps &= ~IEEE80211_HTCAP_SHORTGI20; 3293 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || 3294 (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) 3295 caps &= ~IEEE80211_HTCAP_SHORTGI40; 3296 3297 /* adjust STBC based on receive capabilities */ 3298 if ((vap->iv_flags_ht & IEEE80211_FHT_STBC_RX) == 0) 3299 caps &= ~IEEE80211_HTCAP_RXSTBC; 3300 3301 /* adjust LDPC based on receive capabilites */ 3302 if ((vap->iv_flags_ht & IEEE80211_FHT_LDPC_RX) == 0) 3303 caps &= ~IEEE80211_HTCAP_LDPC; 3304 3305 ADDSHORT(frm, caps); 3306 3307 /* HT parameters */ 3308 *frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) 3309 | SM(density, IEEE80211_HTCAP_MPDUDENSITY) 3310 ; 3311 frm++; 3312 3313 /* pre-zero remainder of ie */ 3314 memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - 3315 __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); 3316 3317 /* supported MCS set */ 3318 /* 3319 * XXX: For sta mode the rate set should be restricted based 3320 * on the AP's capabilities, but ni_htrates isn't setup when 3321 * we're called to form an AssocReq frame so for now we're 3322 * restricted to the device capabilities. 3323 */ 3324 ieee80211_set_mcsset(ni->ni_ic, frm); 3325 3326 frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - 3327 __offsetof(struct ieee80211_ie_htcap, hc_mcsset); 3328 3329 /* HT extended capabilities */ 3330 extcaps = vap->iv_htextcaps & 0xffff; 3331 3332 ADDSHORT(frm, extcaps); 3333 3334 frm += sizeof(struct ieee80211_ie_htcap) - 3335 __offsetof(struct ieee80211_ie_htcap, hc_txbf); 3336 3337 return frm; 3338 #undef ADDSHORT 3339 } 3340 3341 /* 3342 * Add 802.11n HT capabilities information element 3343 */ 3344 uint8_t * 3345 ieee80211_add_htcap(uint8_t *frm, struct ieee80211_node *ni) 3346 { 3347 frm[0] = IEEE80211_ELEMID_HTCAP; 3348 frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; 3349 return ieee80211_add_htcap_body(frm + 2, ni); 3350 } 3351 3352 /* 3353 * Non-associated probe request - add HT capabilities based on 3354 * the current channel configuration. 3355 */ 3356 static uint8_t * 3357 ieee80211_add_htcap_body_ch(uint8_t *frm, struct ieee80211vap *vap, 3358 struct ieee80211_channel *c) 3359 { 3360 #define ADDSHORT(frm, v) do { \ 3361 frm[0] = (v) & 0xff; \ 3362 frm[1] = (v) >> 8; \ 3363 frm += 2; \ 3364 } while (0) 3365 struct ieee80211com *ic = vap->iv_ic; 3366 uint16_t caps, extcaps; 3367 int rxmax, density; 3368 3369 /* HT capabilities */ 3370 caps = vap->iv_htcaps & 0xffff; 3371 3372 /* 3373 * We don't use this in STA mode; only in IBSS mode. 3374 * So in IBSS mode we base our HTCAP flags on the 3375 * given channel. 3376 */ 3377 3378 /* override 20/40 use based on current channel */ 3379 if (IEEE80211_IS_CHAN_HT40(c)) 3380 caps |= IEEE80211_HTCAP_CHWIDTH40; 3381 else 3382 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3383 3384 /* Use the currently configured values */ 3385 rxmax = vap->iv_ampdu_rxmax; 3386 density = vap->iv_ampdu_density; 3387 3388 /* adjust short GI based on channel and config */ 3389 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) 3390 caps &= ~IEEE80211_HTCAP_SHORTGI20; 3391 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || 3392 (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) 3393 caps &= ~IEEE80211_HTCAP_SHORTGI40; 3394 ADDSHORT(frm, caps); 3395 3396 /* HT parameters */ 3397 *frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) 3398 | SM(density, IEEE80211_HTCAP_MPDUDENSITY) 3399 ; 3400 frm++; 3401 3402 /* pre-zero remainder of ie */ 3403 memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - 3404 __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); 3405 3406 /* supported MCS set */ 3407 /* 3408 * XXX: For sta mode the rate set should be restricted based 3409 * on the AP's capabilities, but ni_htrates isn't setup when 3410 * we're called to form an AssocReq frame so for now we're 3411 * restricted to the device capabilities. 3412 */ 3413 ieee80211_set_mcsset(ic, frm); 3414 3415 frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - 3416 __offsetof(struct ieee80211_ie_htcap, hc_mcsset); 3417 3418 /* HT extended capabilities */ 3419 extcaps = vap->iv_htextcaps & 0xffff; 3420 3421 ADDSHORT(frm, extcaps); 3422 3423 frm += sizeof(struct ieee80211_ie_htcap) - 3424 __offsetof(struct ieee80211_ie_htcap, hc_txbf); 3425 3426 return frm; 3427 #undef ADDSHORT 3428 } 3429 3430 /* 3431 * Add 802.11n HT capabilities information element 3432 */ 3433 uint8_t * 3434 ieee80211_add_htcap_ch(uint8_t *frm, struct ieee80211vap *vap, 3435 struct ieee80211_channel *c) 3436 { 3437 frm[0] = IEEE80211_ELEMID_HTCAP; 3438 frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; 3439 return ieee80211_add_htcap_body_ch(frm + 2, vap, c); 3440 } 3441 3442 /* 3443 * Add Broadcom OUI wrapped standard HTCAP ie; this is 3444 * used for compatibility w/ pre-draft implementations. 3445 */ 3446 uint8_t * 3447 ieee80211_add_htcap_vendor(uint8_t *frm, struct ieee80211_node *ni) 3448 { 3449 frm[0] = IEEE80211_ELEMID_VENDOR; 3450 frm[1] = 4 + sizeof(struct ieee80211_ie_htcap) - 2; 3451 frm[2] = (BCM_OUI >> 0) & 0xff; 3452 frm[3] = (BCM_OUI >> 8) & 0xff; 3453 frm[4] = (BCM_OUI >> 16) & 0xff; 3454 frm[5] = BCM_OUI_HTCAP; 3455 return ieee80211_add_htcap_body(frm + 6, ni); 3456 } 3457 3458 /* 3459 * Construct the MCS bit mask of basic rates 3460 * for inclusion in an HT information element. 3461 */ 3462 static void 3463 ieee80211_set_basic_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs) 3464 { 3465 int i; 3466 3467 for (i = 0; i < rs->rs_nrates; i++) { 3468 int r = rs->rs_rates[i] & IEEE80211_RATE_VAL; 3469 if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) && 3470 r < IEEE80211_HTRATE_MAXSIZE) { 3471 /* NB: this assumes a particular implementation */ 3472 setbit(frm, r); 3473 } 3474 } 3475 } 3476 3477 /* 3478 * Update the HTINFO ie for a beacon frame. 3479 */ 3480 void 3481 ieee80211_ht_update_beacon(struct ieee80211vap *vap, 3482 struct ieee80211_beacon_offsets *bo) 3483 { 3484 #define PROTMODE (IEEE80211_HTINFO_OPMODE|IEEE80211_HTINFO_NONHT_PRESENT) 3485 struct ieee80211_node *ni; 3486 const struct ieee80211_channel *bsschan; 3487 struct ieee80211com *ic = vap->iv_ic; 3488 struct ieee80211_ie_htinfo *ht = 3489 (struct ieee80211_ie_htinfo *) bo->bo_htinfo; 3490 3491 ni = ieee80211_ref_node(vap->iv_bss); 3492 bsschan = ni->ni_chan; 3493 3494 /* XXX only update on channel change */ 3495 ht->hi_ctrlchannel = ieee80211_chan2ieee(ic, bsschan); 3496 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 3497 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PERM; 3498 else 3499 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PROH; 3500 if (IEEE80211_IS_CHAN_HT40U(bsschan)) 3501 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 3502 else if (IEEE80211_IS_CHAN_HT40D(bsschan)) 3503 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_BELOW; 3504 else 3505 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_NONE; 3506 if (IEEE80211_IS_CHAN_HT40(bsschan)) 3507 ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040; 3508 3509 /* protection mode */ 3510 ht->hi_byte2 = (ht->hi_byte2 &~ PROTMODE) | ic->ic_curhtprotmode; 3511 3512 ieee80211_free_node(ni); 3513 3514 /* XXX propagate to vendor ie's */ 3515 #undef PROTMODE 3516 } 3517 3518 /* 3519 * Add body of an HTINFO information element. 3520 * 3521 * NB: We don't use struct ieee80211_ie_htinfo because we can 3522 * be called to fillin both a standard ie and a compat ie that 3523 * has a vendor OUI at the front. 3524 */ 3525 static uint8_t * 3526 ieee80211_add_htinfo_body(uint8_t *frm, struct ieee80211_node *ni) 3527 { 3528 struct ieee80211vap *vap = ni->ni_vap; 3529 struct ieee80211com *ic = ni->ni_ic; 3530 3531 /* pre-zero remainder of ie */ 3532 memset(frm, 0, sizeof(struct ieee80211_ie_htinfo) - 2); 3533 3534 /* primary/control channel center */ 3535 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 3536 3537 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 3538 frm[0] = IEEE80211_HTINFO_RIFSMODE_PERM; 3539 else 3540 frm[0] = IEEE80211_HTINFO_RIFSMODE_PROH; 3541 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 3542 frm[0] |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 3543 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 3544 frm[0] |= IEEE80211_HTINFO_2NDCHAN_BELOW; 3545 else 3546 frm[0] |= IEEE80211_HTINFO_2NDCHAN_NONE; 3547 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 3548 frm[0] |= IEEE80211_HTINFO_TXWIDTH_2040; 3549 3550 frm[1] = ic->ic_curhtprotmode; 3551 3552 frm += 5; 3553 3554 /* basic MCS set */ 3555 ieee80211_set_basic_htrates(frm, &ni->ni_htrates); 3556 frm += sizeof(struct ieee80211_ie_htinfo) - 3557 __offsetof(struct ieee80211_ie_htinfo, hi_basicmcsset); 3558 return frm; 3559 } 3560 3561 /* 3562 * Add 802.11n HT information element. 3563 */ 3564 uint8_t * 3565 ieee80211_add_htinfo(uint8_t *frm, struct ieee80211_node *ni) 3566 { 3567 frm[0] = IEEE80211_ELEMID_HTINFO; 3568 frm[1] = sizeof(struct ieee80211_ie_htinfo) - 2; 3569 return ieee80211_add_htinfo_body(frm + 2, ni); 3570 } 3571 3572 /* 3573 * Add Broadcom OUI wrapped standard HTINFO ie; this is 3574 * used for compatibility w/ pre-draft implementations. 3575 */ 3576 uint8_t * 3577 ieee80211_add_htinfo_vendor(uint8_t *frm, struct ieee80211_node *ni) 3578 { 3579 frm[0] = IEEE80211_ELEMID_VENDOR; 3580 frm[1] = 4 + sizeof(struct ieee80211_ie_htinfo) - 2; 3581 frm[2] = (BCM_OUI >> 0) & 0xff; 3582 frm[3] = (BCM_OUI >> 8) & 0xff; 3583 frm[4] = (BCM_OUI >> 16) & 0xff; 3584 frm[5] = BCM_OUI_HTINFO; 3585 return ieee80211_add_htinfo_body(frm + 6, ni); 3586 } 3587