1 /*- 2 * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 */ 25 26 #include <sys/cdefs.h> 27 #ifdef __FreeBSD__ 28 __FBSDID("$FreeBSD$"); 29 #endif 30 31 /* 32 * IEEE 802.11n protocol support. 33 */ 34 35 #include "opt_inet.h" 36 #include "opt_wlan.h" 37 38 #include <sys/param.h> 39 #include <sys/kernel.h> 40 #include <sys/malloc.h> 41 #include <sys/systm.h> 42 #include <sys/endian.h> 43 44 #include <sys/socket.h> 45 46 #include <net/if.h> 47 #include <net/if_var.h> 48 #include <net/if_media.h> 49 #include <net/ethernet.h> 50 51 #include <net80211/ieee80211_var.h> 52 #include <net80211/ieee80211_action.h> 53 #include <net80211/ieee80211_input.h> 54 55 /* define here, used throughout file */ 56 #define MS(_v, _f) (((_v) & _f) >> _f##_S) 57 #define SM(_v, _f) (((_v) << _f##_S) & _f) 58 59 const struct ieee80211_mcs_rates ieee80211_htrates[IEEE80211_HTRATE_MAXSIZE] = { 60 { 13, 14, 27, 30 }, /* MCS 0 */ 61 { 26, 29, 54, 60 }, /* MCS 1 */ 62 { 39, 43, 81, 90 }, /* MCS 2 */ 63 { 52, 58, 108, 120 }, /* MCS 3 */ 64 { 78, 87, 162, 180 }, /* MCS 4 */ 65 { 104, 116, 216, 240 }, /* MCS 5 */ 66 { 117, 130, 243, 270 }, /* MCS 6 */ 67 { 130, 144, 270, 300 }, /* MCS 7 */ 68 { 26, 29, 54, 60 }, /* MCS 8 */ 69 { 52, 58, 108, 120 }, /* MCS 9 */ 70 { 78, 87, 162, 180 }, /* MCS 10 */ 71 { 104, 116, 216, 240 }, /* MCS 11 */ 72 { 156, 173, 324, 360 }, /* MCS 12 */ 73 { 208, 231, 432, 480 }, /* MCS 13 */ 74 { 234, 260, 486, 540 }, /* MCS 14 */ 75 { 260, 289, 540, 600 }, /* MCS 15 */ 76 { 39, 43, 81, 90 }, /* MCS 16 */ 77 { 78, 87, 162, 180 }, /* MCS 17 */ 78 { 117, 130, 243, 270 }, /* MCS 18 */ 79 { 156, 173, 324, 360 }, /* MCS 19 */ 80 { 234, 260, 486, 540 }, /* MCS 20 */ 81 { 312, 347, 648, 720 }, /* MCS 21 */ 82 { 351, 390, 729, 810 }, /* MCS 22 */ 83 { 390, 433, 810, 900 }, /* MCS 23 */ 84 { 52, 58, 108, 120 }, /* MCS 24 */ 85 { 104, 116, 216, 240 }, /* MCS 25 */ 86 { 156, 173, 324, 360 }, /* MCS 26 */ 87 { 208, 231, 432, 480 }, /* MCS 27 */ 88 { 312, 347, 648, 720 }, /* MCS 28 */ 89 { 416, 462, 864, 960 }, /* MCS 29 */ 90 { 468, 520, 972, 1080 }, /* MCS 30 */ 91 { 520, 578, 1080, 1200 }, /* MCS 31 */ 92 { 0, 0, 12, 13 }, /* MCS 32 */ 93 { 78, 87, 162, 180 }, /* MCS 33 */ 94 { 104, 116, 216, 240 }, /* MCS 34 */ 95 { 130, 144, 270, 300 }, /* MCS 35 */ 96 { 117, 130, 243, 270 }, /* MCS 36 */ 97 { 156, 173, 324, 360 }, /* MCS 37 */ 98 { 195, 217, 405, 450 }, /* MCS 38 */ 99 { 104, 116, 216, 240 }, /* MCS 39 */ 100 { 130, 144, 270, 300 }, /* MCS 40 */ 101 { 130, 144, 270, 300 }, /* MCS 41 */ 102 { 156, 173, 324, 360 }, /* MCS 42 */ 103 { 182, 202, 378, 420 }, /* MCS 43 */ 104 { 182, 202, 378, 420 }, /* MCS 44 */ 105 { 208, 231, 432, 480 }, /* MCS 45 */ 106 { 156, 173, 324, 360 }, /* MCS 46 */ 107 { 195, 217, 405, 450 }, /* MCS 47 */ 108 { 195, 217, 405, 450 }, /* MCS 48 */ 109 { 234, 260, 486, 540 }, /* MCS 49 */ 110 { 273, 303, 567, 630 }, /* MCS 50 */ 111 { 273, 303, 567, 630 }, /* MCS 51 */ 112 { 312, 347, 648, 720 }, /* MCS 52 */ 113 { 130, 144, 270, 300 }, /* MCS 53 */ 114 { 156, 173, 324, 360 }, /* MCS 54 */ 115 { 182, 202, 378, 420 }, /* MCS 55 */ 116 { 156, 173, 324, 360 }, /* MCS 56 */ 117 { 182, 202, 378, 420 }, /* MCS 57 */ 118 { 208, 231, 432, 480 }, /* MCS 58 */ 119 { 234, 260, 486, 540 }, /* MCS 59 */ 120 { 208, 231, 432, 480 }, /* MCS 60 */ 121 { 234, 260, 486, 540 }, /* MCS 61 */ 122 { 260, 289, 540, 600 }, /* MCS 62 */ 123 { 260, 289, 540, 600 }, /* MCS 63 */ 124 { 286, 318, 594, 660 }, /* MCS 64 */ 125 { 195, 217, 405, 450 }, /* MCS 65 */ 126 { 234, 260, 486, 540 }, /* MCS 66 */ 127 { 273, 303, 567, 630 }, /* MCS 67 */ 128 { 234, 260, 486, 540 }, /* MCS 68 */ 129 { 273, 303, 567, 630 }, /* MCS 69 */ 130 { 312, 347, 648, 720 }, /* MCS 70 */ 131 { 351, 390, 729, 810 }, /* MCS 71 */ 132 { 312, 347, 648, 720 }, /* MCS 72 */ 133 { 351, 390, 729, 810 }, /* MCS 73 */ 134 { 390, 433, 810, 900 }, /* MCS 74 */ 135 { 390, 433, 810, 900 }, /* MCS 75 */ 136 { 429, 477, 891, 990 }, /* MCS 76 */ 137 }; 138 139 static int ieee80211_ampdu_age = -1; /* threshold for ampdu reorder q (ms) */ 140 SYSCTL_PROC(_net_wlan, OID_AUTO, ampdu_age, CTLTYPE_INT | CTLFLAG_RW, 141 &ieee80211_ampdu_age, 0, ieee80211_sysctl_msecs_ticks, "I", 142 "AMPDU max reorder age (ms)"); 143 144 static int ieee80211_recv_bar_ena = 1; 145 SYSCTL_INT(_net_wlan, OID_AUTO, recv_bar, CTLFLAG_RW, &ieee80211_recv_bar_ena, 146 0, "BAR frame processing (ena/dis)"); 147 148 static int ieee80211_addba_timeout = -1;/* timeout for ADDBA response */ 149 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_timeout, CTLTYPE_INT | CTLFLAG_RW, 150 &ieee80211_addba_timeout, 0, ieee80211_sysctl_msecs_ticks, "I", 151 "ADDBA request timeout (ms)"); 152 static int ieee80211_addba_backoff = -1;/* backoff after max ADDBA requests */ 153 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_backoff, CTLTYPE_INT | CTLFLAG_RW, 154 &ieee80211_addba_backoff, 0, ieee80211_sysctl_msecs_ticks, "I", 155 "ADDBA request backoff (ms)"); 156 static int ieee80211_addba_maxtries = 3;/* max ADDBA requests before backoff */ 157 SYSCTL_INT(_net_wlan, OID_AUTO, addba_maxtries, CTLFLAG_RW, 158 &ieee80211_addba_maxtries, 0, "max ADDBA requests sent before backoff"); 159 160 static int ieee80211_bar_timeout = -1; /* timeout waiting for BAR response */ 161 static int ieee80211_bar_maxtries = 50;/* max BAR requests before DELBA */ 162 163 static ieee80211_recv_action_func ht_recv_action_ba_addba_request; 164 static ieee80211_recv_action_func ht_recv_action_ba_addba_response; 165 static ieee80211_recv_action_func ht_recv_action_ba_delba; 166 static ieee80211_recv_action_func ht_recv_action_ht_mimopwrsave; 167 static ieee80211_recv_action_func ht_recv_action_ht_txchwidth; 168 169 static ieee80211_send_action_func ht_send_action_ba_addba; 170 static ieee80211_send_action_func ht_send_action_ba_delba; 171 static ieee80211_send_action_func ht_send_action_ht_txchwidth; 172 173 static void 174 ieee80211_ht_init(void) 175 { 176 /* 177 * Setup HT parameters that depends on the clock frequency. 178 */ 179 ieee80211_ampdu_age = msecs_to_ticks(500); 180 ieee80211_addba_timeout = msecs_to_ticks(250); 181 ieee80211_addba_backoff = msecs_to_ticks(10*1000); 182 ieee80211_bar_timeout = msecs_to_ticks(250); 183 /* 184 * Register action frame handlers. 185 */ 186 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 187 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_recv_action_ba_addba_request); 188 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 189 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_recv_action_ba_addba_response); 190 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 191 IEEE80211_ACTION_BA_DELBA, ht_recv_action_ba_delba); 192 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 193 IEEE80211_ACTION_HT_MIMOPWRSAVE, ht_recv_action_ht_mimopwrsave); 194 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 195 IEEE80211_ACTION_HT_TXCHWIDTH, ht_recv_action_ht_txchwidth); 196 197 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 198 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_send_action_ba_addba); 199 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 200 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_send_action_ba_addba); 201 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 202 IEEE80211_ACTION_BA_DELBA, ht_send_action_ba_delba); 203 ieee80211_send_action_register(IEEE80211_ACTION_CAT_HT, 204 IEEE80211_ACTION_HT_TXCHWIDTH, ht_send_action_ht_txchwidth); 205 } 206 SYSINIT(wlan_ht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_ht_init, NULL); 207 208 static int ieee80211_ampdu_enable(struct ieee80211_node *ni, 209 struct ieee80211_tx_ampdu *tap); 210 static int ieee80211_addba_request(struct ieee80211_node *ni, 211 struct ieee80211_tx_ampdu *tap, 212 int dialogtoken, int baparamset, int batimeout); 213 static int ieee80211_addba_response(struct ieee80211_node *ni, 214 struct ieee80211_tx_ampdu *tap, 215 int code, int baparamset, int batimeout); 216 static void ieee80211_addba_stop(struct ieee80211_node *ni, 217 struct ieee80211_tx_ampdu *tap); 218 static void null_addba_response_timeout(struct ieee80211_node *ni, 219 struct ieee80211_tx_ampdu *tap); 220 221 static void ieee80211_bar_response(struct ieee80211_node *ni, 222 struct ieee80211_tx_ampdu *tap, int status); 223 static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap); 224 static void bar_stop_timer(struct ieee80211_tx_ampdu *tap); 225 static int ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *, 226 int baparamset, int batimeout, int baseqctl); 227 static void ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *); 228 229 void 230 ieee80211_ht_attach(struct ieee80211com *ic) 231 { 232 /* setup default aggregation policy */ 233 ic->ic_recv_action = ieee80211_recv_action; 234 ic->ic_send_action = ieee80211_send_action; 235 ic->ic_ampdu_enable = ieee80211_ampdu_enable; 236 ic->ic_addba_request = ieee80211_addba_request; 237 ic->ic_addba_response = ieee80211_addba_response; 238 ic->ic_addba_response_timeout = null_addba_response_timeout; 239 ic->ic_addba_stop = ieee80211_addba_stop; 240 ic->ic_bar_response = ieee80211_bar_response; 241 ic->ic_ampdu_rx_start = ampdu_rx_start; 242 ic->ic_ampdu_rx_stop = ampdu_rx_stop; 243 244 ic->ic_htprotmode = IEEE80211_PROT_RTSCTS; 245 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; 246 } 247 248 void 249 ieee80211_ht_detach(struct ieee80211com *ic) 250 { 251 } 252 253 void 254 ieee80211_ht_vattach(struct ieee80211vap *vap) 255 { 256 257 /* driver can override defaults */ 258 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_8K; 259 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_NA; 260 vap->iv_ampdu_limit = vap->iv_ampdu_rxmax; 261 vap->iv_amsdu_limit = vap->iv_htcaps & IEEE80211_HTCAP_MAXAMSDU; 262 /* tx aggregation traffic thresholds */ 263 vap->iv_ampdu_mintraffic[WME_AC_BK] = 128; 264 vap->iv_ampdu_mintraffic[WME_AC_BE] = 64; 265 vap->iv_ampdu_mintraffic[WME_AC_VO] = 32; 266 vap->iv_ampdu_mintraffic[WME_AC_VI] = 32; 267 268 if (vap->iv_htcaps & IEEE80211_HTC_HT) { 269 /* 270 * Device is HT capable; enable all HT-related 271 * facilities by default. 272 * XXX these choices may be too aggressive. 273 */ 274 vap->iv_flags_ht |= IEEE80211_FHT_HT 275 | IEEE80211_FHT_HTCOMPAT 276 ; 277 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI20) 278 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20; 279 /* XXX infer from channel list? */ 280 if (vap->iv_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 281 vap->iv_flags_ht |= IEEE80211_FHT_USEHT40; 282 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI40) 283 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40; 284 } 285 /* enable RIFS if capable */ 286 if (vap->iv_htcaps & IEEE80211_HTC_RIFS) 287 vap->iv_flags_ht |= IEEE80211_FHT_RIFS; 288 289 /* NB: A-MPDU and A-MSDU rx are mandated, these are tx only */ 290 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX; 291 if (vap->iv_htcaps & IEEE80211_HTC_AMPDU) 292 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX; 293 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX; 294 if (vap->iv_htcaps & IEEE80211_HTC_AMSDU) 295 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX; 296 297 if (vap->iv_htcaps & IEEE80211_HTCAP_TXSTBC) 298 vap->iv_flags_ht |= IEEE80211_FHT_STBC_TX; 299 if (vap->iv_htcaps & IEEE80211_HTCAP_RXSTBC) 300 vap->iv_flags_ht |= IEEE80211_FHT_STBC_RX; 301 302 if (vap->iv_htcaps & IEEE80211_HTCAP_LDPC) 303 vap->iv_flags_ht |= IEEE80211_FHT_LDPC_RX; 304 if (vap->iv_htcaps & IEEE80211_HTC_TXLDPC) 305 vap->iv_flags_ht |= IEEE80211_FHT_LDPC_TX; 306 } 307 /* NB: disable default legacy WDS, too many issues right now */ 308 if (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) 309 vap->iv_flags_ht &= ~IEEE80211_FHT_HT; 310 } 311 312 void 313 ieee80211_ht_vdetach(struct ieee80211vap *vap) 314 { 315 } 316 317 static int 318 ht_getrate(struct ieee80211com *ic, int index, enum ieee80211_phymode mode, 319 int ratetype) 320 { 321 int mword, rate; 322 323 mword = ieee80211_rate2media(ic, index | IEEE80211_RATE_MCS, mode); 324 if (IFM_SUBTYPE(mword) != IFM_IEEE80211_MCS) 325 return (0); 326 switch (ratetype) { 327 case 0: 328 rate = ieee80211_htrates[index].ht20_rate_800ns; 329 break; 330 case 1: 331 rate = ieee80211_htrates[index].ht20_rate_400ns; 332 break; 333 case 2: 334 rate = ieee80211_htrates[index].ht40_rate_800ns; 335 break; 336 default: 337 rate = ieee80211_htrates[index].ht40_rate_400ns; 338 break; 339 } 340 return (rate); 341 } 342 343 static struct printranges { 344 int minmcs; 345 int maxmcs; 346 int txstream; 347 int ratetype; 348 int htcapflags; 349 } ranges[] = { 350 { 0, 7, 1, 0, 0 }, 351 { 8, 15, 2, 0, 0 }, 352 { 16, 23, 3, 0, 0 }, 353 { 24, 31, 4, 0, 0 }, 354 { 32, 0, 1, 2, IEEE80211_HTC_TXMCS32 }, 355 { 33, 38, 2, 0, IEEE80211_HTC_TXUNEQUAL }, 356 { 39, 52, 3, 0, IEEE80211_HTC_TXUNEQUAL }, 357 { 53, 76, 4, 0, IEEE80211_HTC_TXUNEQUAL }, 358 { 0, 0, 0, 0, 0 }, 359 }; 360 361 static void 362 ht_rateprint(struct ieee80211com *ic, enum ieee80211_phymode mode, int ratetype) 363 { 364 int minrate, maxrate; 365 struct printranges *range; 366 367 for (range = ranges; range->txstream != 0; range++) { 368 if (ic->ic_txstream < range->txstream) 369 continue; 370 if (range->htcapflags && 371 (ic->ic_htcaps & range->htcapflags) == 0) 372 continue; 373 if (ratetype < range->ratetype) 374 continue; 375 minrate = ht_getrate(ic, range->minmcs, mode, ratetype); 376 maxrate = ht_getrate(ic, range->maxmcs, mode, ratetype); 377 if (range->maxmcs) { 378 ic_printf(ic, "MCS %d-%d: %d%sMbps - %d%sMbps\n", 379 range->minmcs, range->maxmcs, 380 minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""), 381 maxrate/2, ((maxrate & 0x1) != 0 ? ".5" : "")); 382 } else { 383 ic_printf(ic, "MCS %d: %d%sMbps\n", range->minmcs, 384 minrate/2, ((minrate & 0x1) != 0 ? ".5" : "")); 385 } 386 } 387 } 388 389 static void 390 ht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode) 391 { 392 const char *modestr = ieee80211_phymode_name[mode]; 393 394 ic_printf(ic, "%s MCS 20MHz\n", modestr); 395 ht_rateprint(ic, mode, 0); 396 if (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) { 397 ic_printf(ic, "%s MCS 20MHz SGI\n", modestr); 398 ht_rateprint(ic, mode, 1); 399 } 400 if (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 401 ic_printf(ic, "%s MCS 40MHz:\n", modestr); 402 ht_rateprint(ic, mode, 2); 403 } 404 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 405 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) { 406 ic_printf(ic, "%s MCS 40MHz SGI:\n", modestr); 407 ht_rateprint(ic, mode, 3); 408 } 409 } 410 411 void 412 ieee80211_ht_announce(struct ieee80211com *ic) 413 { 414 415 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 416 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 417 ic_printf(ic, "%dT%dR\n", ic->ic_txstream, ic->ic_rxstream); 418 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA)) 419 ht_announce(ic, IEEE80211_MODE_11NA); 420 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 421 ht_announce(ic, IEEE80211_MODE_11NG); 422 } 423 424 static struct ieee80211_htrateset htrateset; 425 426 const struct ieee80211_htrateset * 427 ieee80211_get_suphtrates(struct ieee80211com *ic, 428 const struct ieee80211_channel *c) 429 { 430 #define ADDRATE(x) do { \ 431 htrateset.rs_rates[htrateset.rs_nrates] = x; \ 432 htrateset.rs_nrates++; \ 433 } while (0) 434 int i; 435 436 memset(&htrateset, 0, sizeof(struct ieee80211_htrateset)); 437 for (i = 0; i < ic->ic_txstream * 8; i++) 438 ADDRATE(i); 439 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 440 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32)) 441 ADDRATE(32); 442 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 443 if (ic->ic_txstream >= 2) { 444 for (i = 33; i <= 38; i++) 445 ADDRATE(i); 446 } 447 if (ic->ic_txstream >= 3) { 448 for (i = 39; i <= 52; i++) 449 ADDRATE(i); 450 } 451 if (ic->ic_txstream == 4) { 452 for (i = 53; i <= 76; i++) 453 ADDRATE(i); 454 } 455 } 456 return &htrateset; 457 #undef ADDRATE 458 } 459 460 /* 461 * Receive processing. 462 */ 463 464 /* 465 * Decap the encapsulated A-MSDU frames and dispatch all but 466 * the last for delivery. The last frame is returned for 467 * delivery via the normal path. 468 */ 469 struct mbuf * 470 ieee80211_decap_amsdu(struct ieee80211_node *ni, struct mbuf *m) 471 { 472 struct ieee80211vap *vap = ni->ni_vap; 473 int framelen; 474 struct mbuf *n; 475 476 /* discard 802.3 header inserted by ieee80211_decap */ 477 m_adj(m, sizeof(struct ether_header)); 478 479 vap->iv_stats.is_amsdu_decap++; 480 481 for (;;) { 482 /* 483 * Decap the first frame, bust it apart from the 484 * remainder and deliver. We leave the last frame 485 * delivery to the caller (for consistency with other 486 * code paths, could also do it here). 487 */ 488 m = ieee80211_decap1(m, &framelen); 489 if (m == NULL) { 490 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 491 ni->ni_macaddr, "a-msdu", "%s", "decap failed"); 492 vap->iv_stats.is_amsdu_tooshort++; 493 return NULL; 494 } 495 if (m->m_pkthdr.len == framelen) 496 break; 497 n = m_split(m, framelen, M_NOWAIT); 498 if (n == NULL) { 499 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 500 ni->ni_macaddr, "a-msdu", 501 "%s", "unable to split encapsulated frames"); 502 vap->iv_stats.is_amsdu_split++; 503 m_freem(m); /* NB: must reclaim */ 504 return NULL; 505 } 506 vap->iv_deliver_data(vap, ni, m); 507 508 /* 509 * Remove frame contents; each intermediate frame 510 * is required to be aligned to a 4-byte boundary. 511 */ 512 m = n; 513 m_adj(m, roundup2(framelen, 4) - framelen); /* padding */ 514 } 515 return m; /* last delivered by caller */ 516 } 517 518 /* 519 * Purge all frames in the A-MPDU re-order queue. 520 */ 521 static void 522 ampdu_rx_purge(struct ieee80211_rx_ampdu *rap) 523 { 524 struct mbuf *m; 525 int i; 526 527 for (i = 0; i < rap->rxa_wnd; i++) { 528 m = rap->rxa_m[i]; 529 if (m != NULL) { 530 rap->rxa_m[i] = NULL; 531 rap->rxa_qbytes -= m->m_pkthdr.len; 532 m_freem(m); 533 if (--rap->rxa_qframes == 0) 534 break; 535 } 536 } 537 KASSERT(rap->rxa_qbytes == 0 && rap->rxa_qframes == 0, 538 ("lost %u data, %u frames on ampdu rx q", 539 rap->rxa_qbytes, rap->rxa_qframes)); 540 } 541 542 /* 543 * Start A-MPDU rx/re-order processing for the specified TID. 544 */ 545 static int 546 ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap, 547 int baparamset, int batimeout, int baseqctl) 548 { 549 int bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 550 551 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 552 /* 553 * AMPDU previously setup and not terminated with a DELBA, 554 * flush the reorder q's in case anything remains. 555 */ 556 ampdu_rx_purge(rap); 557 } 558 memset(rap, 0, sizeof(*rap)); 559 rap->rxa_wnd = (bufsiz == 0) ? 560 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 561 rap->rxa_start = MS(baseqctl, IEEE80211_BASEQ_START); 562 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 563 564 return 0; 565 } 566 567 /* 568 * Public function; manually setup the RX ampdu state. 569 */ 570 int 571 ieee80211_ampdu_rx_start_ext(struct ieee80211_node *ni, int tid, int seq, int baw) 572 { 573 struct ieee80211_rx_ampdu *rap; 574 575 /* XXX TODO: sanity check tid, seq, baw */ 576 577 rap = &ni->ni_rx_ampdu[tid]; 578 579 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 580 /* 581 * AMPDU previously setup and not terminated with a DELBA, 582 * flush the reorder q's in case anything remains. 583 */ 584 ampdu_rx_purge(rap); 585 } 586 587 memset(rap, 0, sizeof(*rap)); 588 rap->rxa_wnd = (baw== 0) ? 589 IEEE80211_AGGR_BAWMAX : min(baw, IEEE80211_AGGR_BAWMAX); 590 if (seq == -1) { 591 /* Wait for the first RX frame, use that as BAW */ 592 rap->rxa_start = 0; 593 rap->rxa_flags |= IEEE80211_AGGR_WAITRX; 594 } else { 595 rap->rxa_start = seq; 596 } 597 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 598 599 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 600 "%s: tid=%d, start=%d, wnd=%d, flags=0x%08x", 601 __func__, 602 tid, 603 seq, 604 rap->rxa_wnd, 605 rap->rxa_flags); 606 607 return 0; 608 } 609 610 /* 611 * Public function; manually stop the RX AMPDU state. 612 */ 613 void 614 ieee80211_ampdu_rx_stop_ext(struct ieee80211_node *ni, int tid) 615 { 616 struct ieee80211_rx_ampdu *rap; 617 618 /* XXX TODO: sanity check tid, seq, baw */ 619 rap = &ni->ni_rx_ampdu[tid]; 620 ampdu_rx_stop(ni, rap); 621 } 622 623 /* 624 * Stop A-MPDU rx processing for the specified TID. 625 */ 626 static void 627 ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 628 { 629 630 ampdu_rx_purge(rap); 631 rap->rxa_flags &= ~(IEEE80211_AGGR_RUNNING 632 | IEEE80211_AGGR_XCHGPEND 633 | IEEE80211_AGGR_WAITRX); 634 } 635 636 /* 637 * Dispatch a frame from the A-MPDU reorder queue. The 638 * frame is fed back into ieee80211_input marked with an 639 * M_AMPDU_MPDU flag so it doesn't come back to us (it also 640 * permits ieee80211_input to optimize re-processing). 641 */ 642 static __inline void 643 ampdu_dispatch(struct ieee80211_node *ni, struct mbuf *m) 644 { 645 m->m_flags |= M_AMPDU_MPDU; /* bypass normal processing */ 646 /* NB: rssi and noise are ignored w/ M_AMPDU_MPDU set */ 647 (void) ieee80211_input(ni, m, 0, 0); 648 } 649 650 /* 651 * Dispatch as many frames as possible from the re-order queue. 652 * Frames will always be "at the front"; we process all frames 653 * up to the first empty slot in the window. On completion we 654 * cleanup state if there are still pending frames in the current 655 * BA window. We assume the frame at slot 0 is already handled 656 * by the caller; we always start at slot 1. 657 */ 658 static void 659 ampdu_rx_dispatch(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni) 660 { 661 struct ieee80211vap *vap = ni->ni_vap; 662 struct mbuf *m; 663 int i; 664 665 /* flush run of frames */ 666 for (i = 1; i < rap->rxa_wnd; i++) { 667 m = rap->rxa_m[i]; 668 if (m == NULL) 669 break; 670 rap->rxa_m[i] = NULL; 671 rap->rxa_qbytes -= m->m_pkthdr.len; 672 rap->rxa_qframes--; 673 674 ampdu_dispatch(ni, m); 675 } 676 /* 677 * If frames remain, copy the mbuf pointers down so 678 * they correspond to the offsets in the new window. 679 */ 680 if (rap->rxa_qframes != 0) { 681 int n = rap->rxa_qframes, j; 682 for (j = i+1; j < rap->rxa_wnd; j++) { 683 if (rap->rxa_m[j] != NULL) { 684 rap->rxa_m[j-i] = rap->rxa_m[j]; 685 rap->rxa_m[j] = NULL; 686 if (--n == 0) 687 break; 688 } 689 } 690 KASSERT(n == 0, ("lost %d frames", n)); 691 vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; 692 } 693 /* 694 * Adjust the start of the BA window to 695 * reflect the frames just dispatched. 696 */ 697 rap->rxa_start = IEEE80211_SEQ_ADD(rap->rxa_start, i); 698 vap->iv_stats.is_ampdu_rx_oor += i; 699 } 700 701 /* 702 * Dispatch all frames in the A-MPDU re-order queue. 703 */ 704 static void 705 ampdu_rx_flush(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 706 { 707 struct ieee80211vap *vap = ni->ni_vap; 708 struct mbuf *m; 709 int i; 710 711 for (i = 0; i < rap->rxa_wnd; i++) { 712 m = rap->rxa_m[i]; 713 if (m == NULL) 714 continue; 715 rap->rxa_m[i] = NULL; 716 rap->rxa_qbytes -= m->m_pkthdr.len; 717 rap->rxa_qframes--; 718 vap->iv_stats.is_ampdu_rx_oor++; 719 720 ampdu_dispatch(ni, m); 721 if (rap->rxa_qframes == 0) 722 break; 723 } 724 } 725 726 /* 727 * Dispatch all frames in the A-MPDU re-order queue 728 * preceding the specified sequence number. This logic 729 * handles window moves due to a received MSDU or BAR. 730 */ 731 static void 732 ampdu_rx_flush_upto(struct ieee80211_node *ni, 733 struct ieee80211_rx_ampdu *rap, ieee80211_seq winstart) 734 { 735 struct ieee80211vap *vap = ni->ni_vap; 736 struct mbuf *m; 737 ieee80211_seq seqno; 738 int i; 739 740 /* 741 * Flush any complete MSDU's with a sequence number lower 742 * than winstart. Gaps may exist. Note that we may actually 743 * dispatch frames past winstart if a run continues; this is 744 * an optimization that avoids having to do a separate pass 745 * to dispatch frames after moving the BA window start. 746 */ 747 seqno = rap->rxa_start; 748 for (i = 0; i < rap->rxa_wnd; i++) { 749 m = rap->rxa_m[i]; 750 if (m != NULL) { 751 rap->rxa_m[i] = NULL; 752 rap->rxa_qbytes -= m->m_pkthdr.len; 753 rap->rxa_qframes--; 754 vap->iv_stats.is_ampdu_rx_oor++; 755 756 ampdu_dispatch(ni, m); 757 } else { 758 if (!IEEE80211_SEQ_BA_BEFORE(seqno, winstart)) 759 break; 760 } 761 seqno = IEEE80211_SEQ_INC(seqno); 762 } 763 /* 764 * If frames remain, copy the mbuf pointers down so 765 * they correspond to the offsets in the new window. 766 */ 767 if (rap->rxa_qframes != 0) { 768 int n = rap->rxa_qframes, j; 769 770 /* NB: this loop assumes i > 0 and/or rxa_m[0] is NULL */ 771 KASSERT(rap->rxa_m[0] == NULL, 772 ("%s: BA window slot 0 occupied", __func__)); 773 for (j = i+1; j < rap->rxa_wnd; j++) { 774 if (rap->rxa_m[j] != NULL) { 775 rap->rxa_m[j-i] = rap->rxa_m[j]; 776 rap->rxa_m[j] = NULL; 777 if (--n == 0) 778 break; 779 } 780 } 781 KASSERT(n == 0, ("%s: lost %d frames, qframes %d off %d " 782 "BA win <%d:%d> winstart %d", 783 __func__, n, rap->rxa_qframes, i, rap->rxa_start, 784 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 785 winstart)); 786 vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; 787 } 788 /* 789 * Move the start of the BA window; we use the 790 * sequence number of the last MSDU that was 791 * passed up the stack+1 or winstart if stopped on 792 * a gap in the reorder buffer. 793 */ 794 rap->rxa_start = seqno; 795 } 796 797 /* 798 * Process a received QoS data frame for an HT station. Handle 799 * A-MPDU reordering: if this frame is received out of order 800 * and falls within the BA window hold onto it. Otherwise if 801 * this frame completes a run, flush any pending frames. We 802 * return 1 if the frame is consumed. A 0 is returned if 803 * the frame should be processed normally by the caller. 804 */ 805 int 806 ieee80211_ampdu_reorder(struct ieee80211_node *ni, struct mbuf *m) 807 { 808 #define PROCESS 0 /* caller should process frame */ 809 #define CONSUMED 1 /* frame consumed, caller does nothing */ 810 struct ieee80211vap *vap = ni->ni_vap; 811 struct ieee80211_qosframe *wh; 812 struct ieee80211_rx_ampdu *rap; 813 ieee80211_seq rxseq; 814 uint8_t tid; 815 int off; 816 817 KASSERT((m->m_flags & (M_AMPDU | M_AMPDU_MPDU)) == M_AMPDU, 818 ("!a-mpdu or already re-ordered, flags 0x%x", m->m_flags)); 819 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 820 821 /* NB: m_len known to be sufficient */ 822 wh = mtod(m, struct ieee80211_qosframe *); 823 if (wh->i_fc[0] != IEEE80211_FC0_QOSDATA) { 824 /* 825 * Not QoS data, shouldn't get here but just 826 * return it to the caller for processing. 827 */ 828 return PROCESS; 829 } 830 831 /* 832 * 802.11-2012 9.3.2.10 - Duplicate detection and recovery. 833 * 834 * Multicast QoS data frames are checked against a different 835 * counter, not the per-TID counter. 836 */ 837 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 838 return PROCESS; 839 840 if (IEEE80211_IS_DSTODS(wh)) 841 tid = ((struct ieee80211_qosframe_addr4 *)wh)->i_qos[0]; 842 else 843 tid = wh->i_qos[0]; 844 tid &= IEEE80211_QOS_TID; 845 rap = &ni->ni_rx_ampdu[tid]; 846 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 847 /* 848 * No ADDBA request yet, don't touch. 849 */ 850 return PROCESS; 851 } 852 rxseq = le16toh(*(uint16_t *)wh->i_seq); 853 if ((rxseq & IEEE80211_SEQ_FRAG_MASK) != 0) { 854 /* 855 * Fragments are not allowed; toss. 856 */ 857 IEEE80211_DISCARD_MAC(vap, 858 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 859 "A-MPDU", "fragment, rxseq 0x%x tid %u%s", rxseq, tid, 860 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 861 vap->iv_stats.is_ampdu_rx_drop++; 862 IEEE80211_NODE_STAT(ni, rx_drop); 863 m_freem(m); 864 return CONSUMED; 865 } 866 rxseq >>= IEEE80211_SEQ_SEQ_SHIFT; 867 rap->rxa_nframes++; 868 869 /* 870 * Handle waiting for the first frame to define the BAW. 871 * Some firmware doesn't provide the RX of the starting point 872 * of the BAW and we have to cope. 873 */ 874 if (rap->rxa_flags & IEEE80211_AGGR_WAITRX) { 875 rap->rxa_flags &= ~IEEE80211_AGGR_WAITRX; 876 rap->rxa_start = rxseq; 877 } 878 again: 879 if (rxseq == rap->rxa_start) { 880 /* 881 * First frame in window. 882 */ 883 if (rap->rxa_qframes != 0) { 884 /* 885 * Dispatch as many packets as we can. 886 */ 887 KASSERT(rap->rxa_m[0] == NULL, ("unexpected dup")); 888 ampdu_dispatch(ni, m); 889 ampdu_rx_dispatch(rap, ni); 890 return CONSUMED; 891 } else { 892 /* 893 * In order; advance window and notify 894 * caller to dispatch directly. 895 */ 896 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 897 return PROCESS; 898 } 899 } 900 /* 901 * Frame is out of order; store if in the BA window. 902 */ 903 /* calculate offset in BA window */ 904 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 905 if (off < rap->rxa_wnd) { 906 /* 907 * Common case (hopefully): in the BA window. 908 * Sec 9.10.7.6.2 a) (p.137) 909 */ 910 911 /* 912 * Check for frames sitting too long in the reorder queue. 913 * This should only ever happen if frames are not delivered 914 * without the sender otherwise notifying us (e.g. with a 915 * BAR to move the window). Typically this happens because 916 * of vendor bugs that cause the sequence number to jump. 917 * When this happens we get a gap in the reorder queue that 918 * leaves frame sitting on the queue until they get pushed 919 * out due to window moves. When the vendor does not send 920 * BAR this move only happens due to explicit packet sends 921 * 922 * NB: we only track the time of the oldest frame in the 923 * reorder q; this means that if we flush we might push 924 * frames that still "new"; if this happens then subsequent 925 * frames will result in BA window moves which cost something 926 * but is still better than a big throughput dip. 927 */ 928 if (rap->rxa_qframes != 0) { 929 /* XXX honor batimeout? */ 930 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 931 /* 932 * Too long since we received the first 933 * frame; flush the reorder buffer. 934 */ 935 if (rap->rxa_qframes != 0) { 936 vap->iv_stats.is_ampdu_rx_age += 937 rap->rxa_qframes; 938 ampdu_rx_flush(ni, rap); 939 } 940 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 941 return PROCESS; 942 } 943 } else { 944 /* 945 * First frame, start aging timer. 946 */ 947 rap->rxa_age = ticks; 948 } 949 950 /* save packet */ 951 if (rap->rxa_m[off] == NULL) { 952 rap->rxa_m[off] = m; 953 rap->rxa_qframes++; 954 rap->rxa_qbytes += m->m_pkthdr.len; 955 vap->iv_stats.is_ampdu_rx_reorder++; 956 } else { 957 IEEE80211_DISCARD_MAC(vap, 958 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 959 ni->ni_macaddr, "a-mpdu duplicate", 960 "seqno %u tid %u BA win <%u:%u>", 961 rxseq, tid, rap->rxa_start, 962 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1)); 963 vap->iv_stats.is_rx_dup++; 964 IEEE80211_NODE_STAT(ni, rx_dup); 965 m_freem(m); 966 } 967 return CONSUMED; 968 } 969 if (off < IEEE80211_SEQ_BA_RANGE) { 970 /* 971 * Outside the BA window, but within range; 972 * flush the reorder q and move the window. 973 * Sec 9.10.7.6.2 b) (p.138) 974 */ 975 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 976 "move BA win <%u:%u> (%u frames) rxseq %u tid %u", 977 rap->rxa_start, 978 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 979 rap->rxa_qframes, rxseq, tid); 980 vap->iv_stats.is_ampdu_rx_move++; 981 982 /* 983 * The spec says to flush frames up to but not including: 984 * WinStart_B = rxseq - rap->rxa_wnd + 1 985 * Then insert the frame or notify the caller to process 986 * it immediately. We can safely do this by just starting 987 * over again because we know the frame will now be within 988 * the BA window. 989 */ 990 /* NB: rxa_wnd known to be >0 */ 991 ampdu_rx_flush_upto(ni, rap, 992 IEEE80211_SEQ_SUB(rxseq, rap->rxa_wnd-1)); 993 goto again; 994 } else { 995 /* 996 * Outside the BA window and out of range; toss. 997 * Sec 9.10.7.6.2 c) (p.138) 998 */ 999 IEEE80211_DISCARD_MAC(vap, 1000 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 1001 "MPDU", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 1002 rap->rxa_start, 1003 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1004 rap->rxa_qframes, rxseq, tid, 1005 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 1006 vap->iv_stats.is_ampdu_rx_drop++; 1007 IEEE80211_NODE_STAT(ni, rx_drop); 1008 m_freem(m); 1009 return CONSUMED; 1010 } 1011 #undef CONSUMED 1012 #undef PROCESS 1013 } 1014 1015 /* 1016 * Process a BAR ctl frame. Dispatch all frames up to 1017 * the sequence number of the frame. If this frame is 1018 * out of range it's discarded. 1019 */ 1020 void 1021 ieee80211_recv_bar(struct ieee80211_node *ni, struct mbuf *m0) 1022 { 1023 struct ieee80211vap *vap = ni->ni_vap; 1024 struct ieee80211_frame_bar *wh; 1025 struct ieee80211_rx_ampdu *rap; 1026 ieee80211_seq rxseq; 1027 int tid, off; 1028 1029 if (!ieee80211_recv_bar_ena) { 1030 #if 0 1031 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_11N, 1032 ni->ni_macaddr, "BAR", "%s", "processing disabled"); 1033 #endif 1034 vap->iv_stats.is_ampdu_bar_bad++; 1035 return; 1036 } 1037 wh = mtod(m0, struct ieee80211_frame_bar *); 1038 /* XXX check basic BAR */ 1039 tid = MS(le16toh(wh->i_ctl), IEEE80211_BAR_TID); 1040 rap = &ni->ni_rx_ampdu[tid]; 1041 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 1042 /* 1043 * No ADDBA request yet, don't touch. 1044 */ 1045 IEEE80211_DISCARD_MAC(vap, 1046 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 1047 ni->ni_macaddr, "BAR", "no BA stream, tid %u", tid); 1048 vap->iv_stats.is_ampdu_bar_bad++; 1049 return; 1050 } 1051 vap->iv_stats.is_ampdu_bar_rx++; 1052 rxseq = le16toh(wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT; 1053 if (rxseq == rap->rxa_start) 1054 return; 1055 /* calculate offset in BA window */ 1056 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 1057 if (off < IEEE80211_SEQ_BA_RANGE) { 1058 /* 1059 * Flush the reorder q up to rxseq and move the window. 1060 * Sec 9.10.7.6.3 a) (p.138) 1061 */ 1062 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1063 "BAR moves BA win <%u:%u> (%u frames) rxseq %u tid %u", 1064 rap->rxa_start, 1065 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1066 rap->rxa_qframes, rxseq, tid); 1067 vap->iv_stats.is_ampdu_bar_move++; 1068 1069 ampdu_rx_flush_upto(ni, rap, rxseq); 1070 if (off >= rap->rxa_wnd) { 1071 /* 1072 * BAR specifies a window start to the right of BA 1073 * window; we must move it explicitly since 1074 * ampdu_rx_flush_upto will not. 1075 */ 1076 rap->rxa_start = rxseq; 1077 } 1078 } else { 1079 /* 1080 * Out of range; toss. 1081 * Sec 9.10.7.6.3 b) (p.138) 1082 */ 1083 IEEE80211_DISCARD_MAC(vap, 1084 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 1085 "BAR", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 1086 rap->rxa_start, 1087 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1088 rap->rxa_qframes, rxseq, tid, 1089 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 1090 vap->iv_stats.is_ampdu_bar_oow++; 1091 IEEE80211_NODE_STAT(ni, rx_drop); 1092 } 1093 } 1094 1095 /* 1096 * Setup HT-specific state in a node. Called only 1097 * when HT use is negotiated so we don't do extra 1098 * work for temporary and/or legacy sta's. 1099 */ 1100 void 1101 ieee80211_ht_node_init(struct ieee80211_node *ni) 1102 { 1103 struct ieee80211_tx_ampdu *tap; 1104 int tid; 1105 1106 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1107 ni, 1108 "%s: called (%p)", 1109 __func__, 1110 ni); 1111 1112 if (ni->ni_flags & IEEE80211_NODE_HT) { 1113 /* 1114 * Clean AMPDU state on re-associate. This handles the case 1115 * where a station leaves w/o notifying us and then returns 1116 * before node is reaped for inactivity. 1117 */ 1118 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1119 ni, 1120 "%s: calling cleanup (%p)", 1121 __func__, ni); 1122 ieee80211_ht_node_cleanup(ni); 1123 } 1124 for (tid = 0; tid < WME_NUM_TID; tid++) { 1125 tap = &ni->ni_tx_ampdu[tid]; 1126 tap->txa_tid = tid; 1127 tap->txa_ni = ni; 1128 ieee80211_txampdu_init_pps(tap); 1129 /* NB: further initialization deferred */ 1130 } 1131 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU; 1132 } 1133 1134 /* 1135 * Cleanup HT-specific state in a node. Called only 1136 * when HT use has been marked. 1137 */ 1138 void 1139 ieee80211_ht_node_cleanup(struct ieee80211_node *ni) 1140 { 1141 struct ieee80211com *ic = ni->ni_ic; 1142 int i; 1143 1144 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1145 ni, 1146 "%s: called (%p)", 1147 __func__, ni); 1148 1149 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT node")); 1150 1151 /* XXX optimize this */ 1152 for (i = 0; i < WME_NUM_TID; i++) { 1153 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[i]; 1154 if (tap->txa_flags & IEEE80211_AGGR_SETUP) 1155 ampdu_tx_stop(tap); 1156 } 1157 for (i = 0; i < WME_NUM_TID; i++) 1158 ic->ic_ampdu_rx_stop(ni, &ni->ni_rx_ampdu[i]); 1159 1160 ni->ni_htcap = 0; 1161 ni->ni_flags &= ~IEEE80211_NODE_HT_ALL; 1162 } 1163 1164 /* 1165 * Age out HT resources for a station. 1166 */ 1167 void 1168 ieee80211_ht_node_age(struct ieee80211_node *ni) 1169 { 1170 struct ieee80211vap *vap = ni->ni_vap; 1171 uint8_t tid; 1172 1173 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 1174 1175 for (tid = 0; tid < WME_NUM_TID; tid++) { 1176 struct ieee80211_rx_ampdu *rap; 1177 1178 rap = &ni->ni_rx_ampdu[tid]; 1179 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) 1180 continue; 1181 if (rap->rxa_qframes == 0) 1182 continue; 1183 /* 1184 * Check for frames sitting too long in the reorder queue. 1185 * See above for more details on what's happening here. 1186 */ 1187 /* XXX honor batimeout? */ 1188 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 1189 /* 1190 * Too long since we received the first 1191 * frame; flush the reorder buffer. 1192 */ 1193 vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes; 1194 ampdu_rx_flush(ni, rap); 1195 } 1196 } 1197 } 1198 1199 static struct ieee80211_channel * 1200 findhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int htflags) 1201 { 1202 return ieee80211_find_channel(ic, c->ic_freq, 1203 (c->ic_flags &~ IEEE80211_CHAN_HT) | htflags); 1204 } 1205 1206 /* 1207 * Adjust a channel to be HT/non-HT according to the vap's configuration. 1208 */ 1209 struct ieee80211_channel * 1210 ieee80211_ht_adjust_channel(struct ieee80211com *ic, 1211 struct ieee80211_channel *chan, int flags) 1212 { 1213 struct ieee80211_channel *c; 1214 1215 if (flags & IEEE80211_FHT_HT) { 1216 /* promote to HT if possible */ 1217 if (flags & IEEE80211_FHT_USEHT40) { 1218 if (!IEEE80211_IS_CHAN_HT40(chan)) { 1219 /* NB: arbitrarily pick ht40+ over ht40- */ 1220 c = findhtchan(ic, chan, IEEE80211_CHAN_HT40U); 1221 if (c == NULL) 1222 c = findhtchan(ic, chan, 1223 IEEE80211_CHAN_HT40D); 1224 if (c == NULL) 1225 c = findhtchan(ic, chan, 1226 IEEE80211_CHAN_HT20); 1227 if (c != NULL) 1228 chan = c; 1229 } 1230 } else if (!IEEE80211_IS_CHAN_HT20(chan)) { 1231 c = findhtchan(ic, chan, IEEE80211_CHAN_HT20); 1232 if (c != NULL) 1233 chan = c; 1234 } 1235 } else if (IEEE80211_IS_CHAN_HT(chan)) { 1236 /* demote to legacy, HT use is disabled */ 1237 c = ieee80211_find_channel(ic, chan->ic_freq, 1238 chan->ic_flags &~ IEEE80211_CHAN_HT); 1239 if (c != NULL) 1240 chan = c; 1241 } 1242 return chan; 1243 } 1244 1245 /* 1246 * Setup HT-specific state for a legacy WDS peer. 1247 */ 1248 void 1249 ieee80211_ht_wds_init(struct ieee80211_node *ni) 1250 { 1251 struct ieee80211vap *vap = ni->ni_vap; 1252 struct ieee80211_tx_ampdu *tap; 1253 int tid; 1254 1255 KASSERT(vap->iv_flags_ht & IEEE80211_FHT_HT, ("no HT requested")); 1256 1257 /* XXX check scan cache in case peer has an ap and we have info */ 1258 /* 1259 * If setup with a legacy channel; locate an HT channel. 1260 * Otherwise if the inherited channel (from a companion 1261 * AP) is suitable use it so we use the same location 1262 * for the extension channel). 1263 */ 1264 ni->ni_chan = ieee80211_ht_adjust_channel(ni->ni_ic, 1265 ni->ni_chan, ieee80211_htchanflags(ni->ni_chan)); 1266 1267 ni->ni_htcap = 0; 1268 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) 1269 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI20; 1270 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { 1271 ni->ni_htcap |= IEEE80211_HTCAP_CHWIDTH40; 1272 ni->ni_chw = 40; 1273 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 1274 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_ABOVE; 1275 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 1276 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_BELOW; 1277 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) 1278 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI40; 1279 } else { 1280 ni->ni_chw = 20; 1281 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_NONE; 1282 } 1283 ni->ni_htctlchan = ni->ni_chan->ic_ieee; 1284 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 1285 ni->ni_flags |= IEEE80211_NODE_RIFS; 1286 /* XXX does it make sense to enable SMPS? */ 1287 1288 ni->ni_htopmode = 0; /* XXX need protection state */ 1289 ni->ni_htstbc = 0; /* XXX need info */ 1290 1291 for (tid = 0; tid < WME_NUM_TID; tid++) { 1292 tap = &ni->ni_tx_ampdu[tid]; 1293 tap->txa_tid = tid; 1294 ieee80211_txampdu_init_pps(tap); 1295 } 1296 /* NB: AMPDU tx/rx governed by IEEE80211_FHT_AMPDU_{TX,RX} */ 1297 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU; 1298 } 1299 1300 /* 1301 * Notify hostap vaps of a change in the HTINFO ie. 1302 */ 1303 static void 1304 htinfo_notify(struct ieee80211com *ic) 1305 { 1306 struct ieee80211vap *vap; 1307 int first = 1; 1308 1309 IEEE80211_LOCK_ASSERT(ic); 1310 1311 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1312 if (vap->iv_opmode != IEEE80211_M_HOSTAP) 1313 continue; 1314 if (vap->iv_state != IEEE80211_S_RUN || 1315 !IEEE80211_IS_CHAN_HT(vap->iv_bss->ni_chan)) 1316 continue; 1317 if (first) { 1318 IEEE80211_NOTE(vap, 1319 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1320 vap->iv_bss, 1321 "HT bss occupancy change: %d sta, %d ht, " 1322 "%d ht40%s, HT protmode now 0x%x" 1323 , ic->ic_sta_assoc 1324 , ic->ic_ht_sta_assoc 1325 , ic->ic_ht40_sta_assoc 1326 , (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) ? 1327 ", non-HT sta present" : "" 1328 , ic->ic_curhtprotmode); 1329 first = 0; 1330 } 1331 ieee80211_beacon_notify(vap, IEEE80211_BEACON_HTINFO); 1332 } 1333 } 1334 1335 /* 1336 * Calculate HT protection mode from current 1337 * state and handle updates. 1338 */ 1339 static void 1340 htinfo_update(struct ieee80211com *ic) 1341 { 1342 uint8_t protmode; 1343 1344 if (ic->ic_sta_assoc != ic->ic_ht_sta_assoc) { 1345 protmode = IEEE80211_HTINFO_OPMODE_MIXED 1346 | IEEE80211_HTINFO_NONHT_PRESENT; 1347 } else if (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) { 1348 protmode = IEEE80211_HTINFO_OPMODE_PROTOPT 1349 | IEEE80211_HTINFO_NONHT_PRESENT; 1350 } else if (ic->ic_bsschan != IEEE80211_CHAN_ANYC && 1351 IEEE80211_IS_CHAN_HT40(ic->ic_bsschan) && 1352 ic->ic_sta_assoc != ic->ic_ht40_sta_assoc) { 1353 protmode = IEEE80211_HTINFO_OPMODE_HT20PR; 1354 } else { 1355 protmode = IEEE80211_HTINFO_OPMODE_PURE; 1356 } 1357 if (protmode != ic->ic_curhtprotmode) { 1358 ic->ic_curhtprotmode = protmode; 1359 htinfo_notify(ic); 1360 } 1361 } 1362 1363 /* 1364 * Handle an HT station joining a BSS. 1365 */ 1366 void 1367 ieee80211_ht_node_join(struct ieee80211_node *ni) 1368 { 1369 struct ieee80211com *ic = ni->ni_ic; 1370 1371 IEEE80211_LOCK_ASSERT(ic); 1372 1373 if (ni->ni_flags & IEEE80211_NODE_HT) { 1374 ic->ic_ht_sta_assoc++; 1375 if (ni->ni_chw == 40) 1376 ic->ic_ht40_sta_assoc++; 1377 } 1378 htinfo_update(ic); 1379 } 1380 1381 /* 1382 * Handle an HT station leaving a BSS. 1383 */ 1384 void 1385 ieee80211_ht_node_leave(struct ieee80211_node *ni) 1386 { 1387 struct ieee80211com *ic = ni->ni_ic; 1388 1389 IEEE80211_LOCK_ASSERT(ic); 1390 1391 if (ni->ni_flags & IEEE80211_NODE_HT) { 1392 ic->ic_ht_sta_assoc--; 1393 if (ni->ni_chw == 40) 1394 ic->ic_ht40_sta_assoc--; 1395 } 1396 htinfo_update(ic); 1397 } 1398 1399 /* 1400 * Public version of htinfo_update; used for processing 1401 * beacon frames from overlapping bss. 1402 * 1403 * Caller can specify either IEEE80211_HTINFO_OPMODE_MIXED 1404 * (on receipt of a beacon that advertises MIXED) or 1405 * IEEE80211_HTINFO_OPMODE_PROTOPT (on receipt of a beacon 1406 * from an overlapping legacy bss). We treat MIXED with 1407 * a higher precedence than PROTOPT (i.e. we will not change 1408 * change PROTOPT -> MIXED; only MIXED -> PROTOPT). This 1409 * corresponds to how we handle things in htinfo_update. 1410 */ 1411 void 1412 ieee80211_htprot_update(struct ieee80211com *ic, int protmode) 1413 { 1414 #define OPMODE(x) SM(x, IEEE80211_HTINFO_OPMODE) 1415 IEEE80211_LOCK(ic); 1416 1417 /* track non-HT station presence */ 1418 KASSERT(protmode & IEEE80211_HTINFO_NONHT_PRESENT, 1419 ("protmode 0x%x", protmode)); 1420 ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR; 1421 ic->ic_lastnonht = ticks; 1422 1423 if (protmode != ic->ic_curhtprotmode && 1424 (OPMODE(ic->ic_curhtprotmode) != IEEE80211_HTINFO_OPMODE_MIXED || 1425 OPMODE(protmode) == IEEE80211_HTINFO_OPMODE_PROTOPT)) { 1426 /* push beacon update */ 1427 ic->ic_curhtprotmode = protmode; 1428 htinfo_notify(ic); 1429 } 1430 IEEE80211_UNLOCK(ic); 1431 #undef OPMODE 1432 } 1433 1434 /* 1435 * Time out presence of an overlapping bss with non-HT 1436 * stations. When operating in hostap mode we listen for 1437 * beacons from other stations and if we identify a non-HT 1438 * station is present we update the opmode field of the 1439 * HTINFO ie. To identify when all non-HT stations are 1440 * gone we time out this condition. 1441 */ 1442 void 1443 ieee80211_ht_timeout(struct ieee80211com *ic) 1444 { 1445 IEEE80211_LOCK_ASSERT(ic); 1446 1447 if ((ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) && 1448 ieee80211_time_after(ticks, ic->ic_lastnonht + IEEE80211_NONHT_PRESENT_AGE)) { 1449 #if 0 1450 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1451 "%s", "time out non-HT STA present on channel"); 1452 #endif 1453 ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR; 1454 htinfo_update(ic); 1455 } 1456 } 1457 1458 /* 1459 * Process an 802.11n HT capabilities ie. 1460 */ 1461 void 1462 ieee80211_parse_htcap(struct ieee80211_node *ni, const uint8_t *ie) 1463 { 1464 if (ie[0] == IEEE80211_ELEMID_VENDOR) { 1465 /* 1466 * Station used Vendor OUI ie to associate; 1467 * mark the node so when we respond we'll use 1468 * the Vendor OUI's and not the standard ie's. 1469 */ 1470 ni->ni_flags |= IEEE80211_NODE_HTCOMPAT; 1471 ie += 4; 1472 } else 1473 ni->ni_flags &= ~IEEE80211_NODE_HTCOMPAT; 1474 1475 ni->ni_htcap = le16dec(ie + 1476 __offsetof(struct ieee80211_ie_htcap, hc_cap)); 1477 ni->ni_htparam = ie[__offsetof(struct ieee80211_ie_htcap, hc_param)]; 1478 } 1479 1480 static void 1481 htinfo_parse(struct ieee80211_node *ni, 1482 const struct ieee80211_ie_htinfo *htinfo) 1483 { 1484 uint16_t w; 1485 1486 ni->ni_htctlchan = htinfo->hi_ctrlchannel; 1487 ni->ni_ht2ndchan = SM(htinfo->hi_byte1, IEEE80211_HTINFO_2NDCHAN); 1488 w = le16dec(&htinfo->hi_byte2); 1489 ni->ni_htopmode = SM(w, IEEE80211_HTINFO_OPMODE); 1490 w = le16dec(&htinfo->hi_byte45); 1491 ni->ni_htstbc = SM(w, IEEE80211_HTINFO_BASIC_STBCMCS); 1492 } 1493 1494 /* 1495 * Parse an 802.11n HT info ie and save useful information 1496 * to the node state. Note this does not effect any state 1497 * changes such as for channel width change. 1498 */ 1499 void 1500 ieee80211_parse_htinfo(struct ieee80211_node *ni, const uint8_t *ie) 1501 { 1502 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1503 ie += 4; 1504 htinfo_parse(ni, (const struct ieee80211_ie_htinfo *) ie); 1505 } 1506 1507 /* 1508 * Handle 11n/11ac channel switch. 1509 * 1510 * Use the received HT/VHT ie's to identify the right channel to use. 1511 * If we cannot locate it in the channel table then fallback to 1512 * legacy operation. 1513 * 1514 * Note that we use this information to identify the node's 1515 * channel only; the caller is responsible for insuring any 1516 * required channel change is done (e.g. in sta mode when 1517 * parsing the contents of a beacon frame). 1518 */ 1519 static int 1520 htinfo_update_chw(struct ieee80211_node *ni, int htflags, int vhtflags) 1521 { 1522 struct ieee80211com *ic = ni->ni_ic; 1523 struct ieee80211_channel *c; 1524 int chanflags; 1525 int ret = 0; 1526 1527 /* 1528 * First step - do HT/VHT only channel lookup based on operating mode 1529 * flags. This involves masking out the VHT flags as well. 1530 * Otherwise we end up doing the full channel walk each time 1531 * we trigger this, which is expensive. 1532 */ 1533 chanflags = (ni->ni_chan->ic_flags &~ 1534 (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags | vhtflags; 1535 1536 if (chanflags == ni->ni_chan->ic_flags) 1537 goto done; 1538 1539 /* 1540 * If HT /or/ VHT flags have changed then check both. 1541 * We need to start by picking a HT channel anyway. 1542 */ 1543 1544 c = NULL; 1545 chanflags = (ni->ni_chan->ic_flags &~ 1546 (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags; 1547 /* XXX not right for ht40- */ 1548 c = ieee80211_find_channel(ic, ni->ni_chan->ic_freq, chanflags); 1549 if (c == NULL && (htflags & IEEE80211_CHAN_HT40)) { 1550 /* 1551 * No HT40 channel entry in our table; fall back 1552 * to HT20 operation. This should not happen. 1553 */ 1554 c = findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT20); 1555 #if 0 1556 IEEE80211_NOTE(ni->ni_vap, 1557 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1558 "no HT40 channel (freq %u), falling back to HT20", 1559 ni->ni_chan->ic_freq); 1560 #endif 1561 /* XXX stat */ 1562 } 1563 1564 /* Nothing found - leave it alone; move onto VHT */ 1565 if (c == NULL) 1566 c = ni->ni_chan; 1567 1568 /* 1569 * If it's non-HT, then bail out now. 1570 */ 1571 if (! IEEE80211_IS_CHAN_HT(c)) { 1572 IEEE80211_NOTE(ni->ni_vap, 1573 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1574 "not HT; skipping VHT check (%u/0x%x)", 1575 c->ic_freq, c->ic_flags); 1576 goto done; 1577 } 1578 1579 /* 1580 * Next step - look at the current VHT flags and determine 1581 * if we need to upgrade. Mask out the VHT and HT flags since 1582 * the vhtflags field will already have the correct HT 1583 * flags to use. 1584 */ 1585 if (IEEE80211_CONF_VHT(ic) && ni->ni_vhtcap != 0 && vhtflags != 0) { 1586 chanflags = (c->ic_flags 1587 &~ (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) 1588 | vhtflags; 1589 IEEE80211_NOTE(ni->ni_vap, 1590 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1591 ni, 1592 "%s: VHT; chanwidth=0x%02x; vhtflags=0x%08x", 1593 __func__, ni->ni_vht_chanwidth, vhtflags); 1594 1595 IEEE80211_NOTE(ni->ni_vap, 1596 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1597 ni, 1598 "%s: VHT; trying lookup for %d/0x%08x", 1599 __func__, c->ic_freq, chanflags); 1600 c = ieee80211_find_channel(ic, c->ic_freq, chanflags); 1601 } 1602 1603 /* Finally, if it's changed */ 1604 if (c != NULL && c != ni->ni_chan) { 1605 IEEE80211_NOTE(ni->ni_vap, 1606 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1607 "switch station to %s%d channel %u/0x%x", 1608 IEEE80211_IS_CHAN_VHT(c) ? "VHT" : "HT", 1609 IEEE80211_IS_CHAN_VHT80(c) ? 80 : 1610 (IEEE80211_IS_CHAN_HT40(c) ? 40 : 20), 1611 c->ic_freq, c->ic_flags); 1612 ni->ni_chan = c; 1613 ret = 1; 1614 } 1615 /* NB: caller responsible for forcing any channel change */ 1616 1617 done: 1618 /* update node's (11n) tx channel width */ 1619 ni->ni_chw = IEEE80211_IS_CHAN_HT40(ni->ni_chan)? 40 : 20; 1620 return (ret); 1621 } 1622 1623 /* 1624 * Update 11n MIMO PS state according to received htcap. 1625 */ 1626 static __inline int 1627 htcap_update_mimo_ps(struct ieee80211_node *ni) 1628 { 1629 uint16_t oflags = ni->ni_flags; 1630 1631 switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) { 1632 case IEEE80211_HTCAP_SMPS_DYNAMIC: 1633 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1634 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 1635 break; 1636 case IEEE80211_HTCAP_SMPS_ENA: 1637 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1638 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1639 break; 1640 case IEEE80211_HTCAP_SMPS_OFF: 1641 default: /* disable on rx of reserved value */ 1642 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 1643 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1644 break; 1645 } 1646 return (oflags ^ ni->ni_flags); 1647 } 1648 1649 /* 1650 * Update short GI state according to received htcap 1651 * and local settings. 1652 */ 1653 static __inline void 1654 htcap_update_shortgi(struct ieee80211_node *ni) 1655 { 1656 struct ieee80211vap *vap = ni->ni_vap; 1657 1658 ni->ni_flags &= ~(IEEE80211_NODE_SGI20|IEEE80211_NODE_SGI40); 1659 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) && 1660 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)) 1661 ni->ni_flags |= IEEE80211_NODE_SGI20; 1662 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) && 1663 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)) 1664 ni->ni_flags |= IEEE80211_NODE_SGI40; 1665 } 1666 1667 /* 1668 * Update LDPC state according to received htcap 1669 * and local settings. 1670 */ 1671 static __inline void 1672 htcap_update_ldpc(struct ieee80211_node *ni) 1673 { 1674 struct ieee80211vap *vap = ni->ni_vap; 1675 1676 if ((ni->ni_htcap & IEEE80211_HTCAP_LDPC) && 1677 (vap->iv_flags_ht & IEEE80211_FHT_LDPC_TX)) 1678 ni->ni_flags |= IEEE80211_NODE_LDPC; 1679 } 1680 1681 /* 1682 * Parse and update HT-related state extracted from 1683 * the HT cap and info ie's. 1684 * 1685 * This is called from the STA management path and 1686 * the ieee80211_node_join() path. It will take into 1687 * account the IEs discovered during scanning and 1688 * adjust things accordingly. 1689 */ 1690 void 1691 ieee80211_ht_updateparams(struct ieee80211_node *ni, 1692 const uint8_t *htcapie, const uint8_t *htinfoie) 1693 { 1694 struct ieee80211vap *vap = ni->ni_vap; 1695 const struct ieee80211_ie_htinfo *htinfo; 1696 1697 ieee80211_parse_htcap(ni, htcapie); 1698 if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS) 1699 htcap_update_mimo_ps(ni); 1700 htcap_update_shortgi(ni); 1701 htcap_update_ldpc(ni); 1702 1703 if (htinfoie[0] == IEEE80211_ELEMID_VENDOR) 1704 htinfoie += 4; 1705 htinfo = (const struct ieee80211_ie_htinfo *) htinfoie; 1706 htinfo_parse(ni, htinfo); 1707 1708 /* 1709 * Defer the node channel change; we need to now 1710 * update VHT parameters before we do it. 1711 */ 1712 1713 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_RIFSMODE_PERM) && 1714 (vap->iv_flags_ht & IEEE80211_FHT_RIFS)) 1715 ni->ni_flags |= IEEE80211_NODE_RIFS; 1716 else 1717 ni->ni_flags &= ~IEEE80211_NODE_RIFS; 1718 } 1719 1720 static uint32_t 1721 ieee80211_vht_get_vhtflags(struct ieee80211_node *ni, uint32_t htflags) 1722 { 1723 struct ieee80211vap *vap = ni->ni_vap; 1724 uint32_t vhtflags = 0; 1725 1726 vhtflags = 0; 1727 if (ni->ni_flags & IEEE80211_NODE_VHT && vap->iv_flags_vht & IEEE80211_FVHT_VHT) { 1728 if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_160MHZ) && 1729 /* XXX 2 means "160MHz and 80+80MHz", 1 means "160MHz" */ 1730 (MS(vap->iv_vhtcaps, 1731 IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) >= 1) && 1732 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT160)) { 1733 vhtflags = IEEE80211_CHAN_VHT160; 1734 /* Mirror the HT40 flags */ 1735 if (htflags == IEEE80211_CHAN_HT40U) { 1736 vhtflags |= IEEE80211_CHAN_HT40U; 1737 } else if (htflags == IEEE80211_CHAN_HT40D) { 1738 vhtflags |= IEEE80211_CHAN_HT40D; 1739 } 1740 } else if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_80P80MHZ) && 1741 /* XXX 2 means "160MHz and 80+80MHz" */ 1742 (MS(vap->iv_vhtcaps, 1743 IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) == 2) && 1744 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT80P80)) { 1745 vhtflags = IEEE80211_CHAN_VHT80_80; 1746 /* Mirror the HT40 flags */ 1747 if (htflags == IEEE80211_CHAN_HT40U) { 1748 vhtflags |= IEEE80211_CHAN_HT40U; 1749 } else if (htflags == IEEE80211_CHAN_HT40D) { 1750 vhtflags |= IEEE80211_CHAN_HT40D; 1751 } 1752 } else if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_80MHZ) && 1753 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT80)) { 1754 vhtflags = IEEE80211_CHAN_VHT80; 1755 /* Mirror the HT40 flags */ 1756 if (htflags == IEEE80211_CHAN_HT40U) { 1757 vhtflags |= IEEE80211_CHAN_HT40U; 1758 } else if (htflags == IEEE80211_CHAN_HT40D) { 1759 vhtflags |= IEEE80211_CHAN_HT40D; 1760 } 1761 } else if (ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_USE_HT) { 1762 /* Mirror the HT40 flags */ 1763 /* 1764 * XXX TODO: if ht40 is disabled, but vht40 isn't 1765 * disabled then this logic will get very, very sad. 1766 * It's quite possible the only sane thing to do is 1767 * to not have vht40 as an option, and just obey 1768 * 'ht40' as that flag. 1769 */ 1770 if ((htflags == IEEE80211_CHAN_HT40U) && 1771 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT40)) { 1772 vhtflags = IEEE80211_CHAN_VHT40U 1773 | IEEE80211_CHAN_HT40U; 1774 } else if (htflags == IEEE80211_CHAN_HT40D && 1775 (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT40)) { 1776 vhtflags = IEEE80211_CHAN_VHT40D 1777 | IEEE80211_CHAN_HT40D; 1778 } else if (htflags == IEEE80211_CHAN_HT20) { 1779 vhtflags = IEEE80211_CHAN_VHT20 1780 | IEEE80211_CHAN_HT20; 1781 } 1782 } else { 1783 vhtflags = IEEE80211_CHAN_VHT20; 1784 } 1785 } 1786 return (vhtflags); 1787 } 1788 1789 /* 1790 * Final part of updating the HT parameters. 1791 * 1792 * This is called from the STA management path and 1793 * the ieee80211_node_join() path. It will take into 1794 * account the IEs discovered during scanning and 1795 * adjust things accordingly. 1796 * 1797 * This is done after a call to ieee80211_ht_updateparams() 1798 * because it (and the upcoming VHT version of updateparams) 1799 * needs to ensure everything is parsed before htinfo_update_chw() 1800 * is called - which will change the channel config for the 1801 * node for us. 1802 */ 1803 int 1804 ieee80211_ht_updateparams_final(struct ieee80211_node *ni, 1805 const uint8_t *htcapie, const uint8_t *htinfoie) 1806 { 1807 struct ieee80211vap *vap = ni->ni_vap; 1808 const struct ieee80211_ie_htinfo *htinfo; 1809 int htflags, vhtflags; 1810 int ret = 0; 1811 1812 htinfo = (const struct ieee80211_ie_htinfo *) htinfoie; 1813 1814 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 1815 IEEE80211_CHAN_HT20 : 0; 1816 1817 /* NB: honor operating mode constraint */ 1818 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH_2040) && 1819 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 1820 if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_ABOVE) 1821 htflags = IEEE80211_CHAN_HT40U; 1822 else if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_BELOW) 1823 htflags = IEEE80211_CHAN_HT40D; 1824 } 1825 1826 /* 1827 * VHT flags - do much the same; check whether VHT is available 1828 * and if so, what our ideal channel use would be based on our 1829 * capabilities and the (pre-parsed) VHT info IE. 1830 */ 1831 vhtflags = ieee80211_vht_get_vhtflags(ni, htflags); 1832 1833 if (htinfo_update_chw(ni, htflags, vhtflags)) 1834 ret = 1; 1835 1836 return (ret); 1837 } 1838 1839 /* 1840 * Parse and update HT-related state extracted from the HT cap ie 1841 * for a station joining an HT BSS. 1842 * 1843 * This is called from the hostap path for each station. 1844 */ 1845 void 1846 ieee80211_ht_updatehtcap(struct ieee80211_node *ni, const uint8_t *htcapie) 1847 { 1848 struct ieee80211vap *vap = ni->ni_vap; 1849 1850 ieee80211_parse_htcap(ni, htcapie); 1851 if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS) 1852 htcap_update_mimo_ps(ni); 1853 htcap_update_shortgi(ni); 1854 htcap_update_ldpc(ni); 1855 } 1856 1857 /* 1858 * Called once HT and VHT capabilities are parsed in hostap mode - 1859 * this will adjust the channel configuration of the given node 1860 * based on the configuration and capabilities. 1861 */ 1862 void 1863 ieee80211_ht_updatehtcap_final(struct ieee80211_node *ni) 1864 { 1865 struct ieee80211vap *vap = ni->ni_vap; 1866 int htflags; 1867 int vhtflags; 1868 1869 /* NB: honor operating mode constraint */ 1870 /* XXX 40 MHz intolerant */ 1871 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 1872 IEEE80211_CHAN_HT20 : 0; 1873 if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) && 1874 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 1875 if (IEEE80211_IS_CHAN_HT40U(vap->iv_bss->ni_chan)) 1876 htflags = IEEE80211_CHAN_HT40U; 1877 else if (IEEE80211_IS_CHAN_HT40D(vap->iv_bss->ni_chan)) 1878 htflags = IEEE80211_CHAN_HT40D; 1879 } 1880 /* 1881 * VHT flags - do much the same; check whether VHT is available 1882 * and if so, what our ideal channel use would be based on our 1883 * capabilities and the (pre-parsed) VHT info IE. 1884 */ 1885 vhtflags = ieee80211_vht_get_vhtflags(ni, htflags); 1886 1887 (void) htinfo_update_chw(ni, htflags, vhtflags); 1888 } 1889 1890 /* 1891 * Install received HT rate set by parsing the HT cap ie. 1892 */ 1893 int 1894 ieee80211_setup_htrates(struct ieee80211_node *ni, const uint8_t *ie, int flags) 1895 { 1896 struct ieee80211com *ic = ni->ni_ic; 1897 struct ieee80211vap *vap = ni->ni_vap; 1898 const struct ieee80211_ie_htcap *htcap; 1899 struct ieee80211_htrateset *rs; 1900 int i, maxequalmcs, maxunequalmcs; 1901 1902 maxequalmcs = ic->ic_txstream * 8 - 1; 1903 maxunequalmcs = 0; 1904 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 1905 if (ic->ic_txstream >= 2) 1906 maxunequalmcs = 38; 1907 if (ic->ic_txstream >= 3) 1908 maxunequalmcs = 52; 1909 if (ic->ic_txstream >= 4) 1910 maxunequalmcs = 76; 1911 } 1912 1913 rs = &ni->ni_htrates; 1914 memset(rs, 0, sizeof(*rs)); 1915 if (ie != NULL) { 1916 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1917 ie += 4; 1918 htcap = (const struct ieee80211_ie_htcap *) ie; 1919 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 1920 if (isclr(htcap->hc_mcsset, i)) 1921 continue; 1922 if (rs->rs_nrates == IEEE80211_HTRATE_MAXSIZE) { 1923 IEEE80211_NOTE(vap, 1924 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 1925 "WARNING, HT rate set too large; only " 1926 "using %u rates", IEEE80211_HTRATE_MAXSIZE); 1927 vap->iv_stats.is_rx_rstoobig++; 1928 break; 1929 } 1930 if (i <= 31 && i > maxequalmcs) 1931 continue; 1932 if (i == 32 && 1933 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0) 1934 continue; 1935 if (i > 32 && i > maxunequalmcs) 1936 continue; 1937 rs->rs_rates[rs->rs_nrates++] = i; 1938 } 1939 } 1940 return ieee80211_fix_rate(ni, (struct ieee80211_rateset *) rs, flags); 1941 } 1942 1943 /* 1944 * Mark rates in a node's HT rate set as basic according 1945 * to the information in the supplied HT info ie. 1946 */ 1947 void 1948 ieee80211_setup_basic_htrates(struct ieee80211_node *ni, const uint8_t *ie) 1949 { 1950 const struct ieee80211_ie_htinfo *htinfo; 1951 struct ieee80211_htrateset *rs; 1952 int i, j; 1953 1954 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1955 ie += 4; 1956 htinfo = (const struct ieee80211_ie_htinfo *) ie; 1957 rs = &ni->ni_htrates; 1958 if (rs->rs_nrates == 0) { 1959 IEEE80211_NOTE(ni->ni_vap, 1960 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 1961 "%s", "WARNING, empty HT rate set"); 1962 return; 1963 } 1964 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 1965 if (isclr(htinfo->hi_basicmcsset, i)) 1966 continue; 1967 for (j = 0; j < rs->rs_nrates; j++) 1968 if ((rs->rs_rates[j] & IEEE80211_RATE_VAL) == i) 1969 rs->rs_rates[j] |= IEEE80211_RATE_BASIC; 1970 } 1971 } 1972 1973 static void 1974 ampdu_tx_setup(struct ieee80211_tx_ampdu *tap) 1975 { 1976 callout_init(&tap->txa_timer, 1); 1977 tap->txa_flags |= IEEE80211_AGGR_SETUP; 1978 tap->txa_lastsample = ticks; 1979 } 1980 1981 static void 1982 ampdu_tx_stop(struct ieee80211_tx_ampdu *tap) 1983 { 1984 struct ieee80211_node *ni = tap->txa_ni; 1985 struct ieee80211com *ic = ni->ni_ic; 1986 1987 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 1988 tap->txa_ni, 1989 "%s: called", 1990 __func__); 1991 1992 KASSERT(tap->txa_flags & IEEE80211_AGGR_SETUP, 1993 ("txa_flags 0x%x tid %d ac %d", tap->txa_flags, tap->txa_tid, 1994 TID_TO_WME_AC(tap->txa_tid))); 1995 1996 /* 1997 * Stop BA stream if setup so driver has a chance 1998 * to reclaim any resources it might have allocated. 1999 */ 2000 ic->ic_addba_stop(ni, tap); 2001 /* 2002 * Stop any pending BAR transmit. 2003 */ 2004 bar_stop_timer(tap); 2005 2006 /* 2007 * Reset packet estimate. 2008 */ 2009 ieee80211_txampdu_init_pps(tap); 2010 2011 /* NB: clearing NAK means we may re-send ADDBA */ 2012 tap->txa_flags &= ~(IEEE80211_AGGR_SETUP | IEEE80211_AGGR_NAK); 2013 } 2014 2015 /* 2016 * ADDBA response timeout. 2017 * 2018 * If software aggregation and per-TID queue management was done here, 2019 * that queue would be unpaused after the ADDBA timeout occurs. 2020 */ 2021 static void 2022 addba_timeout(void *arg) 2023 { 2024 struct ieee80211_tx_ampdu *tap = arg; 2025 struct ieee80211_node *ni = tap->txa_ni; 2026 struct ieee80211com *ic = ni->ni_ic; 2027 2028 /* XXX ? */ 2029 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 2030 tap->txa_attempts++; 2031 ic->ic_addba_response_timeout(ni, tap); 2032 } 2033 2034 static void 2035 addba_start_timeout(struct ieee80211_tx_ampdu *tap) 2036 { 2037 /* XXX use CALLOUT_PENDING instead? */ 2038 callout_reset(&tap->txa_timer, ieee80211_addba_timeout, 2039 addba_timeout, tap); 2040 tap->txa_flags |= IEEE80211_AGGR_XCHGPEND; 2041 tap->txa_nextrequest = ticks + ieee80211_addba_timeout; 2042 } 2043 2044 static void 2045 addba_stop_timeout(struct ieee80211_tx_ampdu *tap) 2046 { 2047 /* XXX use CALLOUT_PENDING instead? */ 2048 if (tap->txa_flags & IEEE80211_AGGR_XCHGPEND) { 2049 callout_stop(&tap->txa_timer); 2050 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 2051 } 2052 } 2053 2054 static void 2055 null_addba_response_timeout(struct ieee80211_node *ni, 2056 struct ieee80211_tx_ampdu *tap) 2057 { 2058 } 2059 2060 /* 2061 * Default method for requesting A-MPDU tx aggregation. 2062 * We setup the specified state block and start a timer 2063 * to wait for an ADDBA response frame. 2064 */ 2065 static int 2066 ieee80211_addba_request(struct ieee80211_node *ni, 2067 struct ieee80211_tx_ampdu *tap, 2068 int dialogtoken, int baparamset, int batimeout) 2069 { 2070 int bufsiz; 2071 2072 /* XXX locking */ 2073 tap->txa_token = dialogtoken; 2074 tap->txa_flags |= IEEE80211_AGGR_IMMEDIATE; 2075 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 2076 tap->txa_wnd = (bufsiz == 0) ? 2077 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 2078 addba_start_timeout(tap); 2079 return 1; 2080 } 2081 2082 /* 2083 * Called by drivers that wish to request an ADDBA session be 2084 * setup. This brings it up and starts the request timer. 2085 */ 2086 int 2087 ieee80211_ampdu_tx_request_ext(struct ieee80211_node *ni, int tid) 2088 { 2089 struct ieee80211_tx_ampdu *tap; 2090 2091 if (tid < 0 || tid > 15) 2092 return (0); 2093 tap = &ni->ni_tx_ampdu[tid]; 2094 2095 /* XXX locking */ 2096 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 2097 /* do deferred setup of state */ 2098 ampdu_tx_setup(tap); 2099 } 2100 /* XXX hack for not doing proper locking */ 2101 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 2102 addba_start_timeout(tap); 2103 return (1); 2104 } 2105 2106 /* 2107 * Called by drivers that have marked a session as active. 2108 */ 2109 int 2110 ieee80211_ampdu_tx_request_active_ext(struct ieee80211_node *ni, int tid, 2111 int status) 2112 { 2113 struct ieee80211_tx_ampdu *tap; 2114 2115 if (tid < 0 || tid > 15) 2116 return (0); 2117 tap = &ni->ni_tx_ampdu[tid]; 2118 2119 /* XXX locking */ 2120 addba_stop_timeout(tap); 2121 if (status == 1) { 2122 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 2123 tap->txa_attempts = 0; 2124 } else { 2125 /* mark tid so we don't try again */ 2126 tap->txa_flags |= IEEE80211_AGGR_NAK; 2127 } 2128 return (1); 2129 } 2130 2131 /* 2132 * Default method for processing an A-MPDU tx aggregation 2133 * response. We shutdown any pending timer and update the 2134 * state block according to the reply. 2135 */ 2136 static int 2137 ieee80211_addba_response(struct ieee80211_node *ni, 2138 struct ieee80211_tx_ampdu *tap, 2139 int status, int baparamset, int batimeout) 2140 { 2141 int bufsiz, tid; 2142 2143 /* XXX locking */ 2144 addba_stop_timeout(tap); 2145 if (status == IEEE80211_STATUS_SUCCESS) { 2146 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 2147 /* XXX override our request? */ 2148 tap->txa_wnd = (bufsiz == 0) ? 2149 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 2150 /* XXX AC/TID */ 2151 tid = MS(baparamset, IEEE80211_BAPS_TID); 2152 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 2153 tap->txa_attempts = 0; 2154 } else { 2155 /* mark tid so we don't try again */ 2156 tap->txa_flags |= IEEE80211_AGGR_NAK; 2157 } 2158 return 1; 2159 } 2160 2161 /* 2162 * Default method for stopping A-MPDU tx aggregation. 2163 * Any timer is cleared and we drain any pending frames. 2164 */ 2165 static void 2166 ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 2167 { 2168 /* XXX locking */ 2169 addba_stop_timeout(tap); 2170 if (tap->txa_flags & IEEE80211_AGGR_RUNNING) { 2171 /* XXX clear aggregation queue */ 2172 tap->txa_flags &= ~IEEE80211_AGGR_RUNNING; 2173 } 2174 tap->txa_attempts = 0; 2175 } 2176 2177 /* 2178 * Process a received action frame using the default aggregation 2179 * policy. We intercept ADDBA-related frames and use them to 2180 * update our aggregation state. All other frames are passed up 2181 * for processing by ieee80211_recv_action. 2182 */ 2183 static int 2184 ht_recv_action_ba_addba_request(struct ieee80211_node *ni, 2185 const struct ieee80211_frame *wh, 2186 const uint8_t *frm, const uint8_t *efrm) 2187 { 2188 struct ieee80211com *ic = ni->ni_ic; 2189 struct ieee80211vap *vap = ni->ni_vap; 2190 struct ieee80211_rx_ampdu *rap; 2191 uint8_t dialogtoken; 2192 uint16_t baparamset, batimeout, baseqctl; 2193 uint16_t args[5]; 2194 int tid; 2195 2196 dialogtoken = frm[2]; 2197 baparamset = le16dec(frm+3); 2198 batimeout = le16dec(frm+5); 2199 baseqctl = le16dec(frm+7); 2200 2201 tid = MS(baparamset, IEEE80211_BAPS_TID); 2202 2203 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2204 "recv ADDBA request: dialogtoken %u baparamset 0x%x " 2205 "(tid %d bufsiz %d) batimeout %d baseqctl %d:%d", 2206 dialogtoken, baparamset, 2207 tid, MS(baparamset, IEEE80211_BAPS_BUFSIZ), 2208 batimeout, 2209 MS(baseqctl, IEEE80211_BASEQ_START), 2210 MS(baseqctl, IEEE80211_BASEQ_FRAG)); 2211 2212 rap = &ni->ni_rx_ampdu[tid]; 2213 2214 /* Send ADDBA response */ 2215 args[0] = dialogtoken; 2216 /* 2217 * NB: We ack only if the sta associated with HT and 2218 * the ap is configured to do AMPDU rx (the latter 2219 * violates the 11n spec and is mostly for testing). 2220 */ 2221 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_RX) && 2222 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX)) { 2223 /* XXX handle ampdu_rx_start failure */ 2224 ic->ic_ampdu_rx_start(ni, rap, 2225 baparamset, batimeout, baseqctl); 2226 2227 args[1] = IEEE80211_STATUS_SUCCESS; 2228 } else { 2229 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2230 ni, "reject ADDBA request: %s", 2231 ni->ni_flags & IEEE80211_NODE_AMPDU_RX ? 2232 "administratively disabled" : 2233 "not negotiated for station"); 2234 vap->iv_stats.is_addba_reject++; 2235 args[1] = IEEE80211_STATUS_UNSPECIFIED; 2236 } 2237 /* XXX honor rap flags? */ 2238 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 2239 | SM(tid, IEEE80211_BAPS_TID) 2240 | SM(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ) 2241 ; 2242 args[3] = 0; 2243 args[4] = 0; 2244 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2245 IEEE80211_ACTION_BA_ADDBA_RESPONSE, args); 2246 return 0; 2247 } 2248 2249 static int 2250 ht_recv_action_ba_addba_response(struct ieee80211_node *ni, 2251 const struct ieee80211_frame *wh, 2252 const uint8_t *frm, const uint8_t *efrm) 2253 { 2254 struct ieee80211com *ic = ni->ni_ic; 2255 struct ieee80211vap *vap = ni->ni_vap; 2256 struct ieee80211_tx_ampdu *tap; 2257 uint8_t dialogtoken, policy; 2258 uint16_t baparamset, batimeout, code; 2259 int tid, bufsiz; 2260 2261 dialogtoken = frm[2]; 2262 code = le16dec(frm+3); 2263 baparamset = le16dec(frm+5); 2264 tid = MS(baparamset, IEEE80211_BAPS_TID); 2265 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 2266 policy = MS(baparamset, IEEE80211_BAPS_POLICY); 2267 batimeout = le16dec(frm+7); 2268 2269 tap = &ni->ni_tx_ampdu[tid]; 2270 if ((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 2271 IEEE80211_DISCARD_MAC(vap, 2272 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2273 ni->ni_macaddr, "ADDBA response", 2274 "no pending ADDBA, tid %d dialogtoken %u " 2275 "code %d", tid, dialogtoken, code); 2276 vap->iv_stats.is_addba_norequest++; 2277 return 0; 2278 } 2279 if (dialogtoken != tap->txa_token) { 2280 IEEE80211_DISCARD_MAC(vap, 2281 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2282 ni->ni_macaddr, "ADDBA response", 2283 "dialogtoken mismatch: waiting for %d, " 2284 "received %d, tid %d code %d", 2285 tap->txa_token, dialogtoken, tid, code); 2286 vap->iv_stats.is_addba_badtoken++; 2287 return 0; 2288 } 2289 /* NB: assumes IEEE80211_AGGR_IMMEDIATE is 1 */ 2290 if (policy != (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE)) { 2291 IEEE80211_DISCARD_MAC(vap, 2292 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2293 ni->ni_macaddr, "ADDBA response", 2294 "policy mismatch: expecting %s, " 2295 "received %s, tid %d code %d", 2296 tap->txa_flags & IEEE80211_AGGR_IMMEDIATE, 2297 policy, tid, code); 2298 vap->iv_stats.is_addba_badpolicy++; 2299 return 0; 2300 } 2301 #if 0 2302 /* XXX we take MIN in ieee80211_addba_response */ 2303 if (bufsiz > IEEE80211_AGGR_BAWMAX) { 2304 IEEE80211_DISCARD_MAC(vap, 2305 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2306 ni->ni_macaddr, "ADDBA response", 2307 "BA window too large: max %d, " 2308 "received %d, tid %d code %d", 2309 bufsiz, IEEE80211_AGGR_BAWMAX, tid, code); 2310 vap->iv_stats.is_addba_badbawinsize++; 2311 return 0; 2312 } 2313 #endif 2314 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2315 "recv ADDBA response: dialogtoken %u code %d " 2316 "baparamset 0x%x (tid %d bufsiz %d) batimeout %d", 2317 dialogtoken, code, baparamset, tid, bufsiz, 2318 batimeout); 2319 ic->ic_addba_response(ni, tap, code, baparamset, batimeout); 2320 return 0; 2321 } 2322 2323 static int 2324 ht_recv_action_ba_delba(struct ieee80211_node *ni, 2325 const struct ieee80211_frame *wh, 2326 const uint8_t *frm, const uint8_t *efrm) 2327 { 2328 struct ieee80211com *ic = ni->ni_ic; 2329 struct ieee80211_rx_ampdu *rap; 2330 struct ieee80211_tx_ampdu *tap; 2331 uint16_t baparamset, code; 2332 int tid; 2333 2334 baparamset = le16dec(frm+2); 2335 code = le16dec(frm+4); 2336 2337 tid = MS(baparamset, IEEE80211_DELBAPS_TID); 2338 2339 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2340 "recv DELBA: baparamset 0x%x (tid %d initiator %d) " 2341 "code %d", baparamset, tid, 2342 MS(baparamset, IEEE80211_DELBAPS_INIT), code); 2343 2344 if ((baparamset & IEEE80211_DELBAPS_INIT) == 0) { 2345 tap = &ni->ni_tx_ampdu[tid]; 2346 ic->ic_addba_stop(ni, tap); 2347 } else { 2348 rap = &ni->ni_rx_ampdu[tid]; 2349 ic->ic_ampdu_rx_stop(ni, rap); 2350 } 2351 return 0; 2352 } 2353 2354 static int 2355 ht_recv_action_ht_txchwidth(struct ieee80211_node *ni, 2356 const struct ieee80211_frame *wh, 2357 const uint8_t *frm, const uint8_t *efrm) 2358 { 2359 int chw; 2360 2361 chw = (frm[2] == IEEE80211_A_HT_TXCHWIDTH_2040) ? 40 : 20; 2362 2363 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2364 "%s: HT txchwidth, width %d%s", 2365 __func__, chw, ni->ni_chw != chw ? "*" : ""); 2366 if (chw != ni->ni_chw) { 2367 /* XXX does this need to change the ht40 station count? */ 2368 ni->ni_chw = chw; 2369 /* XXX notify on change */ 2370 } 2371 return 0; 2372 } 2373 2374 static int 2375 ht_recv_action_ht_mimopwrsave(struct ieee80211_node *ni, 2376 const struct ieee80211_frame *wh, 2377 const uint8_t *frm, const uint8_t *efrm) 2378 { 2379 const struct ieee80211_action_ht_mimopowersave *mps = 2380 (const struct ieee80211_action_ht_mimopowersave *) frm; 2381 2382 /* XXX check iv_htcaps */ 2383 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA) 2384 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 2385 else 2386 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 2387 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_MODE) 2388 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 2389 else 2390 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 2391 /* XXX notify on change */ 2392 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2393 "%s: HT MIMO PS (%s%s)", __func__, 2394 (ni->ni_flags & IEEE80211_NODE_MIMO_PS) ? "on" : "off", 2395 (ni->ni_flags & IEEE80211_NODE_MIMO_RTS) ? "+rts" : "" 2396 ); 2397 return 0; 2398 } 2399 2400 /* 2401 * Transmit processing. 2402 */ 2403 2404 /* 2405 * Check if A-MPDU should be requested/enabled for a stream. 2406 * We require a traffic rate above a per-AC threshold and we 2407 * also handle backoff from previous failed attempts. 2408 * 2409 * Drivers may override this method to bring in information 2410 * such as link state conditions in making the decision. 2411 */ 2412 static int 2413 ieee80211_ampdu_enable(struct ieee80211_node *ni, 2414 struct ieee80211_tx_ampdu *tap) 2415 { 2416 struct ieee80211vap *vap = ni->ni_vap; 2417 2418 if (tap->txa_avgpps < 2419 vap->iv_ampdu_mintraffic[TID_TO_WME_AC(tap->txa_tid)]) 2420 return 0; 2421 /* XXX check rssi? */ 2422 if (tap->txa_attempts >= ieee80211_addba_maxtries && 2423 ieee80211_time_after(ticks, tap->txa_nextrequest)) { 2424 /* 2425 * Don't retry too often; txa_nextrequest is set 2426 * to the minimum interval we'll retry after 2427 * ieee80211_addba_maxtries failed attempts are made. 2428 */ 2429 return 0; 2430 } 2431 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 2432 "enable AMPDU on tid %d (%s), avgpps %d pkts %d attempt %d", 2433 tap->txa_tid, ieee80211_wme_acnames[TID_TO_WME_AC(tap->txa_tid)], 2434 tap->txa_avgpps, tap->txa_pkts, tap->txa_attempts); 2435 return 1; 2436 } 2437 2438 /* 2439 * Request A-MPDU tx aggregation. Setup local state and 2440 * issue an ADDBA request. BA use will only happen after 2441 * the other end replies with ADDBA response. 2442 */ 2443 int 2444 ieee80211_ampdu_request(struct ieee80211_node *ni, 2445 struct ieee80211_tx_ampdu *tap) 2446 { 2447 struct ieee80211com *ic = ni->ni_ic; 2448 uint16_t args[5]; 2449 int tid, dialogtoken; 2450 static int tokens = 0; /* XXX */ 2451 2452 /* XXX locking */ 2453 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 2454 /* do deferred setup of state */ 2455 ampdu_tx_setup(tap); 2456 } 2457 /* XXX hack for not doing proper locking */ 2458 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 2459 2460 dialogtoken = (tokens+1) % 63; /* XXX */ 2461 tid = tap->txa_tid; 2462 2463 /* 2464 * XXX TODO: This is racy with any other parallel TX going on. :( 2465 */ 2466 tap->txa_start = ni->ni_txseqs[tid]; 2467 2468 args[0] = dialogtoken; 2469 args[1] = 0; /* NB: status code not used */ 2470 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 2471 | SM(tid, IEEE80211_BAPS_TID) 2472 | SM(IEEE80211_AGGR_BAWMAX, IEEE80211_BAPS_BUFSIZ) 2473 ; 2474 args[3] = 0; /* batimeout */ 2475 /* NB: do first so there's no race against reply */ 2476 if (!ic->ic_addba_request(ni, tap, dialogtoken, args[2], args[3])) { 2477 /* unable to setup state, don't make request */ 2478 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2479 ni, "%s: could not setup BA stream for TID %d AC %d", 2480 __func__, tap->txa_tid, TID_TO_WME_AC(tap->txa_tid)); 2481 /* defer next try so we don't slam the driver with requests */ 2482 tap->txa_attempts = ieee80211_addba_maxtries; 2483 /* NB: check in case driver wants to override */ 2484 if (tap->txa_nextrequest <= ticks) 2485 tap->txa_nextrequest = ticks + ieee80211_addba_backoff; 2486 return 0; 2487 } 2488 tokens = dialogtoken; /* allocate token */ 2489 /* NB: after calling ic_addba_request so driver can set txa_start */ 2490 args[4] = SM(tap->txa_start, IEEE80211_BASEQ_START) 2491 | SM(0, IEEE80211_BASEQ_FRAG) 2492 ; 2493 return ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2494 IEEE80211_ACTION_BA_ADDBA_REQUEST, args); 2495 } 2496 2497 /* 2498 * Terminate an AMPDU tx stream. State is reclaimed 2499 * and the peer notified with a DelBA Action frame. 2500 */ 2501 void 2502 ieee80211_ampdu_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 2503 int reason) 2504 { 2505 struct ieee80211com *ic = ni->ni_ic; 2506 struct ieee80211vap *vap = ni->ni_vap; 2507 uint16_t args[4]; 2508 2509 /* XXX locking */ 2510 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2511 if (IEEE80211_AMPDU_RUNNING(tap)) { 2512 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2513 ni, "%s: stop BA stream for TID %d (reason: %d (%s))", 2514 __func__, tap->txa_tid, reason, 2515 ieee80211_reason_to_string(reason)); 2516 vap->iv_stats.is_ampdu_stop++; 2517 2518 ic->ic_addba_stop(ni, tap); 2519 args[0] = tap->txa_tid; 2520 args[1] = IEEE80211_DELBAPS_INIT; 2521 args[2] = reason; /* XXX reason code */ 2522 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2523 IEEE80211_ACTION_BA_DELBA, args); 2524 } else { 2525 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2526 ni, "%s: BA stream for TID %d not running " 2527 "(reason: %d (%s))", __func__, tap->txa_tid, reason, 2528 ieee80211_reason_to_string(reason)); 2529 vap->iv_stats.is_ampdu_stop_failed++; 2530 } 2531 } 2532 2533 /* XXX */ 2534 static void bar_start_timer(struct ieee80211_tx_ampdu *tap); 2535 2536 static void 2537 bar_timeout(void *arg) 2538 { 2539 struct ieee80211_tx_ampdu *tap = arg; 2540 struct ieee80211_node *ni = tap->txa_ni; 2541 2542 KASSERT((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0, 2543 ("bar/addba collision, flags 0x%x", tap->txa_flags)); 2544 2545 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2546 ni, "%s: tid %u flags 0x%x attempts %d", __func__, 2547 tap->txa_tid, tap->txa_flags, tap->txa_attempts); 2548 2549 /* guard against race with bar_tx_complete */ 2550 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2551 return; 2552 /* XXX ? */ 2553 if (tap->txa_attempts >= ieee80211_bar_maxtries) { 2554 struct ieee80211com *ic = ni->ni_ic; 2555 2556 ni->ni_vap->iv_stats.is_ampdu_bar_tx_fail++; 2557 /* 2558 * If (at least) the last BAR TX timeout was due to 2559 * an ieee80211_send_bar() failures, then we need 2560 * to make sure we notify the driver that a BAR 2561 * TX did occur and fail. This gives the driver 2562 * a chance to undo any queue pause that may 2563 * have occurred. 2564 */ 2565 ic->ic_bar_response(ni, tap, 1); 2566 ieee80211_ampdu_stop(ni, tap, IEEE80211_REASON_TIMEOUT); 2567 } else { 2568 ni->ni_vap->iv_stats.is_ampdu_bar_tx_retry++; 2569 if (ieee80211_send_bar(ni, tap, tap->txa_seqpending) != 0) { 2570 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2571 ni, "%s: failed to TX, starting timer\n", 2572 __func__); 2573 /* 2574 * If ieee80211_send_bar() fails here, the 2575 * timer may have stopped and/or the pending 2576 * flag may be clear. Because of this, 2577 * fake the BARPEND and reset the timer. 2578 * A retransmission attempt will then occur 2579 * during the next timeout. 2580 */ 2581 /* XXX locking */ 2582 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2583 bar_start_timer(tap); 2584 } 2585 } 2586 } 2587 2588 static void 2589 bar_start_timer(struct ieee80211_tx_ampdu *tap) 2590 { 2591 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2592 tap->txa_ni, 2593 "%s: called", 2594 __func__); 2595 callout_reset(&tap->txa_timer, ieee80211_bar_timeout, bar_timeout, tap); 2596 } 2597 2598 static void 2599 bar_stop_timer(struct ieee80211_tx_ampdu *tap) 2600 { 2601 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2602 tap->txa_ni, 2603 "%s: called", 2604 __func__); 2605 callout_stop(&tap->txa_timer); 2606 } 2607 2608 static void 2609 bar_tx_complete(struct ieee80211_node *ni, void *arg, int status) 2610 { 2611 struct ieee80211_tx_ampdu *tap = arg; 2612 2613 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2614 ni, "%s: tid %u flags 0x%x pending %d status %d", 2615 __func__, tap->txa_tid, tap->txa_flags, 2616 callout_pending(&tap->txa_timer), status); 2617 2618 ni->ni_vap->iv_stats.is_ampdu_bar_tx++; 2619 /* XXX locking */ 2620 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) && 2621 callout_pending(&tap->txa_timer)) { 2622 struct ieee80211com *ic = ni->ni_ic; 2623 2624 if (status == 0) /* ACK'd */ 2625 bar_stop_timer(tap); 2626 ic->ic_bar_response(ni, tap, status); 2627 /* NB: just let timer expire so we pace requests */ 2628 } 2629 } 2630 2631 static void 2632 ieee80211_bar_response(struct ieee80211_node *ni, 2633 struct ieee80211_tx_ampdu *tap, int status) 2634 { 2635 2636 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2637 tap->txa_ni, 2638 "%s: called", 2639 __func__); 2640 if (status == 0) { /* got ACK */ 2641 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2642 ni, "BAR moves BA win <%u:%u> (%u frames) txseq %u tid %u", 2643 tap->txa_start, 2644 IEEE80211_SEQ_ADD(tap->txa_start, tap->txa_wnd-1), 2645 tap->txa_qframes, tap->txa_seqpending, 2646 tap->txa_tid); 2647 2648 /* NB: timer already stopped in bar_tx_complete */ 2649 tap->txa_start = tap->txa_seqpending; 2650 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2651 } 2652 } 2653 2654 /* 2655 * Transmit a BAR frame to the specified node. The 2656 * BAR contents are drawn from the supplied aggregation 2657 * state associated with the node. 2658 * 2659 * NB: we only handle immediate ACK w/ compressed bitmap. 2660 */ 2661 int 2662 ieee80211_send_bar(struct ieee80211_node *ni, 2663 struct ieee80211_tx_ampdu *tap, ieee80211_seq seq) 2664 { 2665 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2666 struct ieee80211vap *vap = ni->ni_vap; 2667 struct ieee80211com *ic = ni->ni_ic; 2668 struct ieee80211_frame_bar *bar; 2669 struct mbuf *m; 2670 uint16_t barctl, barseqctl; 2671 uint8_t *frm; 2672 int tid, ret; 2673 2674 2675 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2676 tap->txa_ni, 2677 "%s: called", 2678 __func__); 2679 2680 if ((tap->txa_flags & IEEE80211_AGGR_RUNNING) == 0) { 2681 /* no ADDBA response, should not happen */ 2682 /* XXX stat+msg */ 2683 return EINVAL; 2684 } 2685 /* XXX locking */ 2686 bar_stop_timer(tap); 2687 2688 ieee80211_ref_node(ni); 2689 2690 m = ieee80211_getmgtframe(&frm, ic->ic_headroom, sizeof(*bar)); 2691 if (m == NULL) 2692 senderr(ENOMEM, is_tx_nobuf); 2693 2694 if (!ieee80211_add_callback(m, bar_tx_complete, tap)) { 2695 m_freem(m); 2696 senderr(ENOMEM, is_tx_nobuf); /* XXX */ 2697 /* NOTREACHED */ 2698 } 2699 2700 bar = mtod(m, struct ieee80211_frame_bar *); 2701 bar->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2702 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR; 2703 bar->i_fc[1] = 0; 2704 IEEE80211_ADDR_COPY(bar->i_ra, ni->ni_macaddr); 2705 IEEE80211_ADDR_COPY(bar->i_ta, vap->iv_myaddr); 2706 2707 tid = tap->txa_tid; 2708 barctl = (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE ? 2709 0 : IEEE80211_BAR_NOACK) 2710 | IEEE80211_BAR_COMP 2711 | SM(tid, IEEE80211_BAR_TID) 2712 ; 2713 barseqctl = SM(seq, IEEE80211_BAR_SEQ_START); 2714 /* NB: known to have proper alignment */ 2715 bar->i_ctl = htole16(barctl); 2716 bar->i_seq = htole16(barseqctl); 2717 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_bar); 2718 2719 M_WME_SETAC(m, WME_AC_VO); 2720 2721 IEEE80211_NODE_STAT(ni, tx_mgmt); /* XXX tx_ctl? */ 2722 2723 /* XXX locking */ 2724 /* init/bump attempts counter */ 2725 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2726 tap->txa_attempts = 1; 2727 else 2728 tap->txa_attempts++; 2729 tap->txa_seqpending = seq; 2730 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2731 2732 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2733 ni, "send BAR: tid %u ctl 0x%x start %u (attempt %d)", 2734 tid, barctl, seq, tap->txa_attempts); 2735 2736 /* 2737 * ic_raw_xmit will free the node reference 2738 * regardless of queue/TX success or failure. 2739 */ 2740 IEEE80211_TX_LOCK(ic); 2741 ret = ieee80211_raw_output(vap, ni, m, NULL); 2742 IEEE80211_TX_UNLOCK(ic); 2743 if (ret != 0) { 2744 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2745 ni, "send BAR: failed: (ret = %d)\n", 2746 ret); 2747 /* xmit failed, clear state flag */ 2748 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2749 vap->iv_stats.is_ampdu_bar_tx_fail++; 2750 return ret; 2751 } 2752 /* XXX hack against tx complete happening before timer is started */ 2753 if (tap->txa_flags & IEEE80211_AGGR_BARPEND) 2754 bar_start_timer(tap); 2755 return 0; 2756 bad: 2757 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2758 tap->txa_ni, 2759 "%s: bad! ret=%d", 2760 __func__, ret); 2761 vap->iv_stats.is_ampdu_bar_tx_fail++; 2762 ieee80211_free_node(ni); 2763 return ret; 2764 #undef senderr 2765 } 2766 2767 static int 2768 ht_action_output(struct ieee80211_node *ni, struct mbuf *m) 2769 { 2770 struct ieee80211_bpf_params params; 2771 2772 memset(¶ms, 0, sizeof(params)); 2773 params.ibp_pri = WME_AC_VO; 2774 params.ibp_rate0 = ni->ni_txparms->mgmtrate; 2775 /* NB: we know all frames are unicast */ 2776 params.ibp_try0 = ni->ni_txparms->maxretry; 2777 params.ibp_power = ni->ni_txpower; 2778 return ieee80211_mgmt_output(ni, m, IEEE80211_FC0_SUBTYPE_ACTION, 2779 ¶ms); 2780 } 2781 2782 #define ADDSHORT(frm, v) do { \ 2783 frm[0] = (v) & 0xff; \ 2784 frm[1] = (v) >> 8; \ 2785 frm += 2; \ 2786 } while (0) 2787 2788 /* 2789 * Send an action management frame. The arguments are stuff 2790 * into a frame without inspection; the caller is assumed to 2791 * prepare them carefully (e.g. based on the aggregation state). 2792 */ 2793 static int 2794 ht_send_action_ba_addba(struct ieee80211_node *ni, 2795 int category, int action, void *arg0) 2796 { 2797 struct ieee80211vap *vap = ni->ni_vap; 2798 struct ieee80211com *ic = ni->ni_ic; 2799 uint16_t *args = arg0; 2800 struct mbuf *m; 2801 uint8_t *frm; 2802 2803 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2804 "send ADDBA %s: dialogtoken %d status %d " 2805 "baparamset 0x%x (tid %d) batimeout 0x%x baseqctl 0x%x", 2806 (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ? 2807 "request" : "response", 2808 args[0], args[1], args[2], MS(args[2], IEEE80211_BAPS_TID), 2809 args[3], args[4]); 2810 2811 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2812 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2813 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2814 ieee80211_ref_node(ni); 2815 2816 m = ieee80211_getmgtframe(&frm, 2817 ic->ic_headroom + sizeof(struct ieee80211_frame), 2818 sizeof(uint16_t) /* action+category */ 2819 /* XXX may action payload */ 2820 + sizeof(struct ieee80211_action_ba_addbaresponse) 2821 ); 2822 if (m != NULL) { 2823 *frm++ = category; 2824 *frm++ = action; 2825 *frm++ = args[0]; /* dialog token */ 2826 if (action == IEEE80211_ACTION_BA_ADDBA_RESPONSE) 2827 ADDSHORT(frm, args[1]); /* status code */ 2828 ADDSHORT(frm, args[2]); /* baparamset */ 2829 ADDSHORT(frm, args[3]); /* batimeout */ 2830 if (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) 2831 ADDSHORT(frm, args[4]); /* baseqctl */ 2832 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2833 return ht_action_output(ni, m); 2834 } else { 2835 vap->iv_stats.is_tx_nobuf++; 2836 ieee80211_free_node(ni); 2837 return ENOMEM; 2838 } 2839 } 2840 2841 static int 2842 ht_send_action_ba_delba(struct ieee80211_node *ni, 2843 int category, int action, void *arg0) 2844 { 2845 struct ieee80211vap *vap = ni->ni_vap; 2846 struct ieee80211com *ic = ni->ni_ic; 2847 uint16_t *args = arg0; 2848 struct mbuf *m; 2849 uint16_t baparamset; 2850 uint8_t *frm; 2851 2852 baparamset = SM(args[0], IEEE80211_DELBAPS_TID) 2853 | args[1] 2854 ; 2855 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2856 "send DELBA action: tid %d, initiator %d reason %d (%s)", 2857 args[0], args[1], args[2], ieee80211_reason_to_string(args[2])); 2858 2859 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2860 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2861 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2862 ieee80211_ref_node(ni); 2863 2864 m = ieee80211_getmgtframe(&frm, 2865 ic->ic_headroom + sizeof(struct ieee80211_frame), 2866 sizeof(uint16_t) /* action+category */ 2867 /* XXX may action payload */ 2868 + sizeof(struct ieee80211_action_ba_addbaresponse) 2869 ); 2870 if (m != NULL) { 2871 *frm++ = category; 2872 *frm++ = action; 2873 ADDSHORT(frm, baparamset); 2874 ADDSHORT(frm, args[2]); /* reason code */ 2875 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2876 return ht_action_output(ni, m); 2877 } else { 2878 vap->iv_stats.is_tx_nobuf++; 2879 ieee80211_free_node(ni); 2880 return ENOMEM; 2881 } 2882 } 2883 2884 static int 2885 ht_send_action_ht_txchwidth(struct ieee80211_node *ni, 2886 int category, int action, void *arg0) 2887 { 2888 struct ieee80211vap *vap = ni->ni_vap; 2889 struct ieee80211com *ic = ni->ni_ic; 2890 struct mbuf *m; 2891 uint8_t *frm; 2892 2893 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2894 "send HT txchwidth: width %d", 2895 IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 40 : 20); 2896 2897 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2898 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2899 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2900 ieee80211_ref_node(ni); 2901 2902 m = ieee80211_getmgtframe(&frm, 2903 ic->ic_headroom + sizeof(struct ieee80211_frame), 2904 sizeof(uint16_t) /* action+category */ 2905 /* XXX may action payload */ 2906 + sizeof(struct ieee80211_action_ba_addbaresponse) 2907 ); 2908 if (m != NULL) { 2909 *frm++ = category; 2910 *frm++ = action; 2911 *frm++ = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 2912 IEEE80211_A_HT_TXCHWIDTH_2040 : 2913 IEEE80211_A_HT_TXCHWIDTH_20; 2914 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2915 return ht_action_output(ni, m); 2916 } else { 2917 vap->iv_stats.is_tx_nobuf++; 2918 ieee80211_free_node(ni); 2919 return ENOMEM; 2920 } 2921 } 2922 #undef ADDSHORT 2923 2924 /* 2925 * Construct the MCS bit mask for inclusion in an HT capabilities 2926 * information element. 2927 */ 2928 static void 2929 ieee80211_set_mcsset(struct ieee80211com *ic, uint8_t *frm) 2930 { 2931 int i; 2932 uint8_t txparams; 2933 2934 KASSERT((ic->ic_rxstream > 0 && ic->ic_rxstream <= 4), 2935 ("ic_rxstream %d out of range", ic->ic_rxstream)); 2936 KASSERT((ic->ic_txstream > 0 && ic->ic_txstream <= 4), 2937 ("ic_txstream %d out of range", ic->ic_txstream)); 2938 2939 for (i = 0; i < ic->ic_rxstream * 8; i++) 2940 setbit(frm, i); 2941 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 2942 (ic->ic_htcaps & IEEE80211_HTC_RXMCS32)) 2943 setbit(frm, 32); 2944 if (ic->ic_htcaps & IEEE80211_HTC_RXUNEQUAL) { 2945 if (ic->ic_rxstream >= 2) { 2946 for (i = 33; i <= 38; i++) 2947 setbit(frm, i); 2948 } 2949 if (ic->ic_rxstream >= 3) { 2950 for (i = 39; i <= 52; i++) 2951 setbit(frm, i); 2952 } 2953 if (ic->ic_txstream >= 4) { 2954 for (i = 53; i <= 76; i++) 2955 setbit(frm, i); 2956 } 2957 } 2958 2959 if (ic->ic_rxstream != ic->ic_txstream) { 2960 txparams = 0x1; /* TX MCS set defined */ 2961 txparams |= 0x2; /* TX RX MCS not equal */ 2962 txparams |= (ic->ic_txstream - 1) << 2; /* num TX streams */ 2963 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) 2964 txparams |= 0x16; /* TX unequal modulation sup */ 2965 } else 2966 txparams = 0; 2967 frm[12] = txparams; 2968 } 2969 2970 /* 2971 * Add body of an HTCAP information element. 2972 */ 2973 static uint8_t * 2974 ieee80211_add_htcap_body(uint8_t *frm, struct ieee80211_node *ni) 2975 { 2976 #define ADDSHORT(frm, v) do { \ 2977 frm[0] = (v) & 0xff; \ 2978 frm[1] = (v) >> 8; \ 2979 frm += 2; \ 2980 } while (0) 2981 struct ieee80211com *ic = ni->ni_ic; 2982 struct ieee80211vap *vap = ni->ni_vap; 2983 uint16_t caps, extcaps; 2984 int rxmax, density; 2985 2986 /* HT capabilities */ 2987 caps = vap->iv_htcaps & 0xffff; 2988 /* 2989 * Note channel width depends on whether we are operating as 2990 * a sta or not. When operating as a sta we are generating 2991 * a request based on our desired configuration. Otherwise 2992 * we are operational and the channel attributes identify 2993 * how we've been setup (which might be different if a fixed 2994 * channel is specified). 2995 */ 2996 if (vap->iv_opmode == IEEE80211_M_STA) { 2997 /* override 20/40 use based on config */ 2998 if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40) 2999 caps |= IEEE80211_HTCAP_CHWIDTH40; 3000 else 3001 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3002 3003 /* Start by using the advertised settings */ 3004 rxmax = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU); 3005 density = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY); 3006 3007 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, 3008 "%s: advertised rxmax=%d, density=%d, vap rxmax=%d, density=%d\n", 3009 __func__, 3010 rxmax, 3011 density, 3012 vap->iv_ampdu_rxmax, 3013 vap->iv_ampdu_density); 3014 3015 /* Cap at VAP rxmax */ 3016 if (rxmax > vap->iv_ampdu_rxmax) 3017 rxmax = vap->iv_ampdu_rxmax; 3018 3019 /* 3020 * If the VAP ampdu density value greater, use that. 3021 * 3022 * (Larger density value == larger minimum gap between A-MPDU 3023 * subframes.) 3024 */ 3025 if (vap->iv_ampdu_density > density) 3026 density = vap->iv_ampdu_density; 3027 3028 /* 3029 * NB: Hardware might support HT40 on some but not all 3030 * channels. We can't determine this earlier because only 3031 * after association the channel is upgraded to HT based 3032 * on the negotiated capabilities. 3033 */ 3034 if (ni->ni_chan != IEEE80211_CHAN_ANYC && 3035 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40U) == NULL && 3036 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40D) == NULL) 3037 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3038 } else { 3039 /* override 20/40 use based on current channel */ 3040 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 3041 caps |= IEEE80211_HTCAP_CHWIDTH40; 3042 else 3043 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3044 3045 /* XXX TODO should it start by using advertised settings? */ 3046 rxmax = vap->iv_ampdu_rxmax; 3047 density = vap->iv_ampdu_density; 3048 } 3049 3050 /* adjust short GI based on channel and config */ 3051 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) 3052 caps &= ~IEEE80211_HTCAP_SHORTGI20; 3053 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || 3054 (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) 3055 caps &= ~IEEE80211_HTCAP_SHORTGI40; 3056 3057 /* adjust STBC based on receive capabilities */ 3058 if ((vap->iv_flags_ht & IEEE80211_FHT_STBC_RX) == 0) 3059 caps &= ~IEEE80211_HTCAP_RXSTBC; 3060 3061 /* adjust LDPC based on receive capabilites */ 3062 if ((vap->iv_flags_ht & IEEE80211_FHT_LDPC_RX) == 0) 3063 caps &= ~IEEE80211_HTCAP_LDPC; 3064 3065 ADDSHORT(frm, caps); 3066 3067 /* HT parameters */ 3068 *frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) 3069 | SM(density, IEEE80211_HTCAP_MPDUDENSITY) 3070 ; 3071 frm++; 3072 3073 /* pre-zero remainder of ie */ 3074 memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - 3075 __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); 3076 3077 /* supported MCS set */ 3078 /* 3079 * XXX: For sta mode the rate set should be restricted based 3080 * on the AP's capabilities, but ni_htrates isn't setup when 3081 * we're called to form an AssocReq frame so for now we're 3082 * restricted to the device capabilities. 3083 */ 3084 ieee80211_set_mcsset(ni->ni_ic, frm); 3085 3086 frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - 3087 __offsetof(struct ieee80211_ie_htcap, hc_mcsset); 3088 3089 /* HT extended capabilities */ 3090 extcaps = vap->iv_htextcaps & 0xffff; 3091 3092 ADDSHORT(frm, extcaps); 3093 3094 frm += sizeof(struct ieee80211_ie_htcap) - 3095 __offsetof(struct ieee80211_ie_htcap, hc_txbf); 3096 3097 return frm; 3098 #undef ADDSHORT 3099 } 3100 3101 /* 3102 * Add 802.11n HT capabilities information element 3103 */ 3104 uint8_t * 3105 ieee80211_add_htcap(uint8_t *frm, struct ieee80211_node *ni) 3106 { 3107 frm[0] = IEEE80211_ELEMID_HTCAP; 3108 frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; 3109 return ieee80211_add_htcap_body(frm + 2, ni); 3110 } 3111 3112 /* 3113 * Non-associated probe request - add HT capabilities based on 3114 * the current channel configuration. 3115 */ 3116 static uint8_t * 3117 ieee80211_add_htcap_body_ch(uint8_t *frm, struct ieee80211vap *vap, 3118 struct ieee80211_channel *c) 3119 { 3120 #define ADDSHORT(frm, v) do { \ 3121 frm[0] = (v) & 0xff; \ 3122 frm[1] = (v) >> 8; \ 3123 frm += 2; \ 3124 } while (0) 3125 struct ieee80211com *ic = vap->iv_ic; 3126 uint16_t caps, extcaps; 3127 int rxmax, density; 3128 3129 /* HT capabilities */ 3130 caps = vap->iv_htcaps & 0xffff; 3131 3132 /* 3133 * We don't use this in STA mode; only in IBSS mode. 3134 * So in IBSS mode we base our HTCAP flags on the 3135 * given channel. 3136 */ 3137 3138 /* override 20/40 use based on current channel */ 3139 if (IEEE80211_IS_CHAN_HT40(c)) 3140 caps |= IEEE80211_HTCAP_CHWIDTH40; 3141 else 3142 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 3143 3144 /* Use the currently configured values */ 3145 rxmax = vap->iv_ampdu_rxmax; 3146 density = vap->iv_ampdu_density; 3147 3148 /* adjust short GI based on channel and config */ 3149 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) 3150 caps &= ~IEEE80211_HTCAP_SHORTGI20; 3151 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || 3152 (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) 3153 caps &= ~IEEE80211_HTCAP_SHORTGI40; 3154 ADDSHORT(frm, caps); 3155 3156 /* HT parameters */ 3157 *frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) 3158 | SM(density, IEEE80211_HTCAP_MPDUDENSITY) 3159 ; 3160 frm++; 3161 3162 /* pre-zero remainder of ie */ 3163 memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - 3164 __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); 3165 3166 /* supported MCS set */ 3167 /* 3168 * XXX: For sta mode the rate set should be restricted based 3169 * on the AP's capabilities, but ni_htrates isn't setup when 3170 * we're called to form an AssocReq frame so for now we're 3171 * restricted to the device capabilities. 3172 */ 3173 ieee80211_set_mcsset(ic, frm); 3174 3175 frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - 3176 __offsetof(struct ieee80211_ie_htcap, hc_mcsset); 3177 3178 /* HT extended capabilities */ 3179 extcaps = vap->iv_htextcaps & 0xffff; 3180 3181 ADDSHORT(frm, extcaps); 3182 3183 frm += sizeof(struct ieee80211_ie_htcap) - 3184 __offsetof(struct ieee80211_ie_htcap, hc_txbf); 3185 3186 return frm; 3187 #undef ADDSHORT 3188 } 3189 3190 /* 3191 * Add 802.11n HT capabilities information element 3192 */ 3193 uint8_t * 3194 ieee80211_add_htcap_ch(uint8_t *frm, struct ieee80211vap *vap, 3195 struct ieee80211_channel *c) 3196 { 3197 frm[0] = IEEE80211_ELEMID_HTCAP; 3198 frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; 3199 return ieee80211_add_htcap_body_ch(frm + 2, vap, c); 3200 } 3201 3202 /* 3203 * Add Broadcom OUI wrapped standard HTCAP ie; this is 3204 * used for compatibility w/ pre-draft implementations. 3205 */ 3206 uint8_t * 3207 ieee80211_add_htcap_vendor(uint8_t *frm, struct ieee80211_node *ni) 3208 { 3209 frm[0] = IEEE80211_ELEMID_VENDOR; 3210 frm[1] = 4 + sizeof(struct ieee80211_ie_htcap) - 2; 3211 frm[2] = (BCM_OUI >> 0) & 0xff; 3212 frm[3] = (BCM_OUI >> 8) & 0xff; 3213 frm[4] = (BCM_OUI >> 16) & 0xff; 3214 frm[5] = BCM_OUI_HTCAP; 3215 return ieee80211_add_htcap_body(frm + 6, ni); 3216 } 3217 3218 /* 3219 * Construct the MCS bit mask of basic rates 3220 * for inclusion in an HT information element. 3221 */ 3222 static void 3223 ieee80211_set_basic_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs) 3224 { 3225 int i; 3226 3227 for (i = 0; i < rs->rs_nrates; i++) { 3228 int r = rs->rs_rates[i] & IEEE80211_RATE_VAL; 3229 if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) && 3230 r < IEEE80211_HTRATE_MAXSIZE) { 3231 /* NB: this assumes a particular implementation */ 3232 setbit(frm, r); 3233 } 3234 } 3235 } 3236 3237 /* 3238 * Update the HTINFO ie for a beacon frame. 3239 */ 3240 void 3241 ieee80211_ht_update_beacon(struct ieee80211vap *vap, 3242 struct ieee80211_beacon_offsets *bo) 3243 { 3244 #define PROTMODE (IEEE80211_HTINFO_OPMODE|IEEE80211_HTINFO_NONHT_PRESENT) 3245 struct ieee80211_node *ni; 3246 const struct ieee80211_channel *bsschan; 3247 struct ieee80211com *ic = vap->iv_ic; 3248 struct ieee80211_ie_htinfo *ht = 3249 (struct ieee80211_ie_htinfo *) bo->bo_htinfo; 3250 3251 ni = ieee80211_ref_node(vap->iv_bss); 3252 bsschan = ni->ni_chan; 3253 3254 /* XXX only update on channel change */ 3255 ht->hi_ctrlchannel = ieee80211_chan2ieee(ic, bsschan); 3256 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 3257 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PERM; 3258 else 3259 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PROH; 3260 if (IEEE80211_IS_CHAN_HT40U(bsschan)) 3261 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 3262 else if (IEEE80211_IS_CHAN_HT40D(bsschan)) 3263 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_BELOW; 3264 else 3265 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_NONE; 3266 if (IEEE80211_IS_CHAN_HT40(bsschan)) 3267 ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040; 3268 3269 /* protection mode */ 3270 ht->hi_byte2 = (ht->hi_byte2 &~ PROTMODE) | ic->ic_curhtprotmode; 3271 3272 ieee80211_free_node(ni); 3273 3274 /* XXX propagate to vendor ie's */ 3275 #undef PROTMODE 3276 } 3277 3278 /* 3279 * Add body of an HTINFO information element. 3280 * 3281 * NB: We don't use struct ieee80211_ie_htinfo because we can 3282 * be called to fillin both a standard ie and a compat ie that 3283 * has a vendor OUI at the front. 3284 */ 3285 static uint8_t * 3286 ieee80211_add_htinfo_body(uint8_t *frm, struct ieee80211_node *ni) 3287 { 3288 struct ieee80211vap *vap = ni->ni_vap; 3289 struct ieee80211com *ic = ni->ni_ic; 3290 3291 /* pre-zero remainder of ie */ 3292 memset(frm, 0, sizeof(struct ieee80211_ie_htinfo) - 2); 3293 3294 /* primary/control channel center */ 3295 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 3296 3297 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 3298 frm[0] = IEEE80211_HTINFO_RIFSMODE_PERM; 3299 else 3300 frm[0] = IEEE80211_HTINFO_RIFSMODE_PROH; 3301 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 3302 frm[0] |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 3303 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 3304 frm[0] |= IEEE80211_HTINFO_2NDCHAN_BELOW; 3305 else 3306 frm[0] |= IEEE80211_HTINFO_2NDCHAN_NONE; 3307 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 3308 frm[0] |= IEEE80211_HTINFO_TXWIDTH_2040; 3309 3310 frm[1] = ic->ic_curhtprotmode; 3311 3312 frm += 5; 3313 3314 /* basic MCS set */ 3315 ieee80211_set_basic_htrates(frm, &ni->ni_htrates); 3316 frm += sizeof(struct ieee80211_ie_htinfo) - 3317 __offsetof(struct ieee80211_ie_htinfo, hi_basicmcsset); 3318 return frm; 3319 } 3320 3321 /* 3322 * Add 802.11n HT information information element. 3323 */ 3324 uint8_t * 3325 ieee80211_add_htinfo(uint8_t *frm, struct ieee80211_node *ni) 3326 { 3327 frm[0] = IEEE80211_ELEMID_HTINFO; 3328 frm[1] = sizeof(struct ieee80211_ie_htinfo) - 2; 3329 return ieee80211_add_htinfo_body(frm + 2, ni); 3330 } 3331 3332 /* 3333 * Add Broadcom OUI wrapped standard HTINFO ie; this is 3334 * used for compatibility w/ pre-draft implementations. 3335 */ 3336 uint8_t * 3337 ieee80211_add_htinfo_vendor(uint8_t *frm, struct ieee80211_node *ni) 3338 { 3339 frm[0] = IEEE80211_ELEMID_VENDOR; 3340 frm[1] = 4 + sizeof(struct ieee80211_ie_htinfo) - 2; 3341 frm[2] = (BCM_OUI >> 0) & 0xff; 3342 frm[3] = (BCM_OUI >> 8) & 0xff; 3343 frm[4] = (BCM_OUI >> 16) & 0xff; 3344 frm[5] = BCM_OUI_HTINFO; 3345 return ieee80211_add_htinfo_body(frm + 6, ni); 3346 } 3347