1 /*- 2 * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 */ 25 26 #include <sys/cdefs.h> 27 #ifdef __FreeBSD__ 28 __FBSDID("$FreeBSD$"); 29 #endif 30 31 /* 32 * IEEE 802.11n protocol support. 33 */ 34 35 #include "opt_inet.h" 36 #include "opt_wlan.h" 37 38 #include <sys/param.h> 39 #include <sys/kernel.h> 40 #include <sys/malloc.h> 41 #include <sys/systm.h> 42 #include <sys/endian.h> 43 44 #include <sys/socket.h> 45 46 #include <net/if.h> 47 #include <net/if_var.h> 48 #include <net/if_media.h> 49 #include <net/ethernet.h> 50 51 #include <net80211/ieee80211_var.h> 52 #include <net80211/ieee80211_action.h> 53 #include <net80211/ieee80211_input.h> 54 55 /* define here, used throughout file */ 56 #define MS(_v, _f) (((_v) & _f) >> _f##_S) 57 #define SM(_v, _f) (((_v) << _f##_S) & _f) 58 59 const struct ieee80211_mcs_rates ieee80211_htrates[IEEE80211_HTRATE_MAXSIZE] = { 60 { 13, 14, 27, 30 }, /* MCS 0 */ 61 { 26, 29, 54, 60 }, /* MCS 1 */ 62 { 39, 43, 81, 90 }, /* MCS 2 */ 63 { 52, 58, 108, 120 }, /* MCS 3 */ 64 { 78, 87, 162, 180 }, /* MCS 4 */ 65 { 104, 116, 216, 240 }, /* MCS 5 */ 66 { 117, 130, 243, 270 }, /* MCS 6 */ 67 { 130, 144, 270, 300 }, /* MCS 7 */ 68 { 26, 29, 54, 60 }, /* MCS 8 */ 69 { 52, 58, 108, 120 }, /* MCS 9 */ 70 { 78, 87, 162, 180 }, /* MCS 10 */ 71 { 104, 116, 216, 240 }, /* MCS 11 */ 72 { 156, 173, 324, 360 }, /* MCS 12 */ 73 { 208, 231, 432, 480 }, /* MCS 13 */ 74 { 234, 260, 486, 540 }, /* MCS 14 */ 75 { 260, 289, 540, 600 }, /* MCS 15 */ 76 { 39, 43, 81, 90 }, /* MCS 16 */ 77 { 78, 87, 162, 180 }, /* MCS 17 */ 78 { 117, 130, 243, 270 }, /* MCS 18 */ 79 { 156, 173, 324, 360 }, /* MCS 19 */ 80 { 234, 260, 486, 540 }, /* MCS 20 */ 81 { 312, 347, 648, 720 }, /* MCS 21 */ 82 { 351, 390, 729, 810 }, /* MCS 22 */ 83 { 390, 433, 810, 900 }, /* MCS 23 */ 84 { 52, 58, 108, 120 }, /* MCS 24 */ 85 { 104, 116, 216, 240 }, /* MCS 25 */ 86 { 156, 173, 324, 360 }, /* MCS 26 */ 87 { 208, 231, 432, 480 }, /* MCS 27 */ 88 { 312, 347, 648, 720 }, /* MCS 28 */ 89 { 416, 462, 864, 960 }, /* MCS 29 */ 90 { 468, 520, 972, 1080 }, /* MCS 30 */ 91 { 520, 578, 1080, 1200 }, /* MCS 31 */ 92 { 0, 0, 12, 13 }, /* MCS 32 */ 93 { 78, 87, 162, 180 }, /* MCS 33 */ 94 { 104, 116, 216, 240 }, /* MCS 34 */ 95 { 130, 144, 270, 300 }, /* MCS 35 */ 96 { 117, 130, 243, 270 }, /* MCS 36 */ 97 { 156, 173, 324, 360 }, /* MCS 37 */ 98 { 195, 217, 405, 450 }, /* MCS 38 */ 99 { 104, 116, 216, 240 }, /* MCS 39 */ 100 { 130, 144, 270, 300 }, /* MCS 40 */ 101 { 130, 144, 270, 300 }, /* MCS 41 */ 102 { 156, 173, 324, 360 }, /* MCS 42 */ 103 { 182, 202, 378, 420 }, /* MCS 43 */ 104 { 182, 202, 378, 420 }, /* MCS 44 */ 105 { 208, 231, 432, 480 }, /* MCS 45 */ 106 { 156, 173, 324, 360 }, /* MCS 46 */ 107 { 195, 217, 405, 450 }, /* MCS 47 */ 108 { 195, 217, 405, 450 }, /* MCS 48 */ 109 { 234, 260, 486, 540 }, /* MCS 49 */ 110 { 273, 303, 567, 630 }, /* MCS 50 */ 111 { 273, 303, 567, 630 }, /* MCS 51 */ 112 { 312, 347, 648, 720 }, /* MCS 52 */ 113 { 130, 144, 270, 300 }, /* MCS 53 */ 114 { 156, 173, 324, 360 }, /* MCS 54 */ 115 { 182, 202, 378, 420 }, /* MCS 55 */ 116 { 156, 173, 324, 360 }, /* MCS 56 */ 117 { 182, 202, 378, 420 }, /* MCS 57 */ 118 { 208, 231, 432, 480 }, /* MCS 58 */ 119 { 234, 260, 486, 540 }, /* MCS 59 */ 120 { 208, 231, 432, 480 }, /* MCS 60 */ 121 { 234, 260, 486, 540 }, /* MCS 61 */ 122 { 260, 289, 540, 600 }, /* MCS 62 */ 123 { 260, 289, 540, 600 }, /* MCS 63 */ 124 { 286, 318, 594, 660 }, /* MCS 64 */ 125 { 195, 217, 405, 450 }, /* MCS 65 */ 126 { 234, 260, 486, 540 }, /* MCS 66 */ 127 { 273, 303, 567, 630 }, /* MCS 67 */ 128 { 234, 260, 486, 540 }, /* MCS 68 */ 129 { 273, 303, 567, 630 }, /* MCS 69 */ 130 { 312, 347, 648, 720 }, /* MCS 70 */ 131 { 351, 390, 729, 810 }, /* MCS 71 */ 132 { 312, 347, 648, 720 }, /* MCS 72 */ 133 { 351, 390, 729, 810 }, /* MCS 73 */ 134 { 390, 433, 810, 900 }, /* MCS 74 */ 135 { 390, 433, 810, 900 }, /* MCS 75 */ 136 { 429, 477, 891, 990 }, /* MCS 76 */ 137 }; 138 139 static int ieee80211_ampdu_age = -1; /* threshold for ampdu reorder q (ms) */ 140 SYSCTL_PROC(_net_wlan, OID_AUTO, ampdu_age, CTLTYPE_INT | CTLFLAG_RW, 141 &ieee80211_ampdu_age, 0, ieee80211_sysctl_msecs_ticks, "I", 142 "AMPDU max reorder age (ms)"); 143 144 static int ieee80211_recv_bar_ena = 1; 145 SYSCTL_INT(_net_wlan, OID_AUTO, recv_bar, CTLFLAG_RW, &ieee80211_recv_bar_ena, 146 0, "BAR frame processing (ena/dis)"); 147 148 static int ieee80211_addba_timeout = -1;/* timeout for ADDBA response */ 149 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_timeout, CTLTYPE_INT | CTLFLAG_RW, 150 &ieee80211_addba_timeout, 0, ieee80211_sysctl_msecs_ticks, "I", 151 "ADDBA request timeout (ms)"); 152 static int ieee80211_addba_backoff = -1;/* backoff after max ADDBA requests */ 153 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_backoff, CTLTYPE_INT | CTLFLAG_RW, 154 &ieee80211_addba_backoff, 0, ieee80211_sysctl_msecs_ticks, "I", 155 "ADDBA request backoff (ms)"); 156 static int ieee80211_addba_maxtries = 3;/* max ADDBA requests before backoff */ 157 SYSCTL_INT(_net_wlan, OID_AUTO, addba_maxtries, CTLFLAG_RW, 158 &ieee80211_addba_maxtries, 0, "max ADDBA requests sent before backoff"); 159 160 static int ieee80211_bar_timeout = -1; /* timeout waiting for BAR response */ 161 static int ieee80211_bar_maxtries = 50;/* max BAR requests before DELBA */ 162 163 static ieee80211_recv_action_func ht_recv_action_ba_addba_request; 164 static ieee80211_recv_action_func ht_recv_action_ba_addba_response; 165 static ieee80211_recv_action_func ht_recv_action_ba_delba; 166 static ieee80211_recv_action_func ht_recv_action_ht_mimopwrsave; 167 static ieee80211_recv_action_func ht_recv_action_ht_txchwidth; 168 169 static ieee80211_send_action_func ht_send_action_ba_addba; 170 static ieee80211_send_action_func ht_send_action_ba_delba; 171 static ieee80211_send_action_func ht_send_action_ht_txchwidth; 172 173 static void 174 ieee80211_ht_init(void) 175 { 176 /* 177 * Setup HT parameters that depends on the clock frequency. 178 */ 179 ieee80211_ampdu_age = msecs_to_ticks(500); 180 ieee80211_addba_timeout = msecs_to_ticks(250); 181 ieee80211_addba_backoff = msecs_to_ticks(10*1000); 182 ieee80211_bar_timeout = msecs_to_ticks(250); 183 /* 184 * Register action frame handlers. 185 */ 186 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 187 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_recv_action_ba_addba_request); 188 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 189 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_recv_action_ba_addba_response); 190 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 191 IEEE80211_ACTION_BA_DELBA, ht_recv_action_ba_delba); 192 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 193 IEEE80211_ACTION_HT_MIMOPWRSAVE, ht_recv_action_ht_mimopwrsave); 194 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 195 IEEE80211_ACTION_HT_TXCHWIDTH, ht_recv_action_ht_txchwidth); 196 197 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 198 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_send_action_ba_addba); 199 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 200 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_send_action_ba_addba); 201 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 202 IEEE80211_ACTION_BA_DELBA, ht_send_action_ba_delba); 203 ieee80211_send_action_register(IEEE80211_ACTION_CAT_HT, 204 IEEE80211_ACTION_HT_TXCHWIDTH, ht_send_action_ht_txchwidth); 205 } 206 SYSINIT(wlan_ht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_ht_init, NULL); 207 208 static int ieee80211_ampdu_enable(struct ieee80211_node *ni, 209 struct ieee80211_tx_ampdu *tap); 210 static int ieee80211_addba_request(struct ieee80211_node *ni, 211 struct ieee80211_tx_ampdu *tap, 212 int dialogtoken, int baparamset, int batimeout); 213 static int ieee80211_addba_response(struct ieee80211_node *ni, 214 struct ieee80211_tx_ampdu *tap, 215 int code, int baparamset, int batimeout); 216 static void ieee80211_addba_stop(struct ieee80211_node *ni, 217 struct ieee80211_tx_ampdu *tap); 218 static void null_addba_response_timeout(struct ieee80211_node *ni, 219 struct ieee80211_tx_ampdu *tap); 220 221 static void ieee80211_bar_response(struct ieee80211_node *ni, 222 struct ieee80211_tx_ampdu *tap, int status); 223 static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap); 224 static void bar_stop_timer(struct ieee80211_tx_ampdu *tap); 225 static int ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *, 226 int baparamset, int batimeout, int baseqctl); 227 static void ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *); 228 229 void 230 ieee80211_ht_attach(struct ieee80211com *ic) 231 { 232 /* setup default aggregation policy */ 233 ic->ic_recv_action = ieee80211_recv_action; 234 ic->ic_send_action = ieee80211_send_action; 235 ic->ic_ampdu_enable = ieee80211_ampdu_enable; 236 ic->ic_addba_request = ieee80211_addba_request; 237 ic->ic_addba_response = ieee80211_addba_response; 238 ic->ic_addba_response_timeout = null_addba_response_timeout; 239 ic->ic_addba_stop = ieee80211_addba_stop; 240 ic->ic_bar_response = ieee80211_bar_response; 241 ic->ic_ampdu_rx_start = ampdu_rx_start; 242 ic->ic_ampdu_rx_stop = ampdu_rx_stop; 243 244 ic->ic_htprotmode = IEEE80211_PROT_RTSCTS; 245 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; 246 } 247 248 void 249 ieee80211_ht_detach(struct ieee80211com *ic) 250 { 251 } 252 253 void 254 ieee80211_ht_vattach(struct ieee80211vap *vap) 255 { 256 257 /* driver can override defaults */ 258 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_8K; 259 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_NA; 260 vap->iv_ampdu_limit = vap->iv_ampdu_rxmax; 261 vap->iv_amsdu_limit = vap->iv_htcaps & IEEE80211_HTCAP_MAXAMSDU; 262 /* tx aggregation traffic thresholds */ 263 vap->iv_ampdu_mintraffic[WME_AC_BK] = 128; 264 vap->iv_ampdu_mintraffic[WME_AC_BE] = 64; 265 vap->iv_ampdu_mintraffic[WME_AC_VO] = 32; 266 vap->iv_ampdu_mintraffic[WME_AC_VI] = 32; 267 268 if (vap->iv_htcaps & IEEE80211_HTC_HT) { 269 /* 270 * Device is HT capable; enable all HT-related 271 * facilities by default. 272 * XXX these choices may be too aggressive. 273 */ 274 vap->iv_flags_ht |= IEEE80211_FHT_HT 275 | IEEE80211_FHT_HTCOMPAT 276 ; 277 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI20) 278 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20; 279 /* XXX infer from channel list? */ 280 if (vap->iv_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 281 vap->iv_flags_ht |= IEEE80211_FHT_USEHT40; 282 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI40) 283 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40; 284 } 285 /* enable RIFS if capable */ 286 if (vap->iv_htcaps & IEEE80211_HTC_RIFS) 287 vap->iv_flags_ht |= IEEE80211_FHT_RIFS; 288 289 /* NB: A-MPDU and A-MSDU rx are mandated, these are tx only */ 290 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX; 291 if (vap->iv_htcaps & IEEE80211_HTC_AMPDU) 292 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX; 293 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX; 294 if (vap->iv_htcaps & IEEE80211_HTC_AMSDU) 295 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX; 296 297 if (vap->iv_htcaps & IEEE80211_HTCAP_TXSTBC) 298 vap->iv_flags_ht |= IEEE80211_FHT_STBC_TX; 299 if (vap->iv_htcaps & IEEE80211_HTCAP_RXSTBC) 300 vap->iv_flags_ht |= IEEE80211_FHT_STBC_RX; 301 } 302 /* NB: disable default legacy WDS, too many issues right now */ 303 if (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) 304 vap->iv_flags_ht &= ~IEEE80211_FHT_HT; 305 } 306 307 void 308 ieee80211_ht_vdetach(struct ieee80211vap *vap) 309 { 310 } 311 312 static int 313 ht_getrate(struct ieee80211com *ic, int index, enum ieee80211_phymode mode, 314 int ratetype) 315 { 316 int mword, rate; 317 318 mword = ieee80211_rate2media(ic, index | IEEE80211_RATE_MCS, mode); 319 if (IFM_SUBTYPE(mword) != IFM_IEEE80211_MCS) 320 return (0); 321 switch (ratetype) { 322 case 0: 323 rate = ieee80211_htrates[index].ht20_rate_800ns; 324 break; 325 case 1: 326 rate = ieee80211_htrates[index].ht20_rate_400ns; 327 break; 328 case 2: 329 rate = ieee80211_htrates[index].ht40_rate_800ns; 330 break; 331 default: 332 rate = ieee80211_htrates[index].ht40_rate_400ns; 333 break; 334 } 335 return (rate); 336 } 337 338 static struct printranges { 339 int minmcs; 340 int maxmcs; 341 int txstream; 342 int ratetype; 343 int htcapflags; 344 } ranges[] = { 345 { 0, 7, 1, 0, 0 }, 346 { 8, 15, 2, 0, 0 }, 347 { 16, 23, 3, 0, 0 }, 348 { 24, 31, 4, 0, 0 }, 349 { 32, 0, 1, 2, IEEE80211_HTC_TXMCS32 }, 350 { 33, 38, 2, 0, IEEE80211_HTC_TXUNEQUAL }, 351 { 39, 52, 3, 0, IEEE80211_HTC_TXUNEQUAL }, 352 { 53, 76, 4, 0, IEEE80211_HTC_TXUNEQUAL }, 353 { 0, 0, 0, 0, 0 }, 354 }; 355 356 static void 357 ht_rateprint(struct ieee80211com *ic, enum ieee80211_phymode mode, int ratetype) 358 { 359 int minrate, maxrate; 360 struct printranges *range; 361 362 for (range = ranges; range->txstream != 0; range++) { 363 if (ic->ic_txstream < range->txstream) 364 continue; 365 if (range->htcapflags && 366 (ic->ic_htcaps & range->htcapflags) == 0) 367 continue; 368 if (ratetype < range->ratetype) 369 continue; 370 minrate = ht_getrate(ic, range->minmcs, mode, ratetype); 371 maxrate = ht_getrate(ic, range->maxmcs, mode, ratetype); 372 if (range->maxmcs) { 373 ic_printf(ic, "MCS %d-%d: %d%sMbps - %d%sMbps\n", 374 range->minmcs, range->maxmcs, 375 minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""), 376 maxrate/2, ((maxrate & 0x1) != 0 ? ".5" : "")); 377 } else { 378 ic_printf(ic, "MCS %d: %d%sMbps\n", range->minmcs, 379 minrate/2, ((minrate & 0x1) != 0 ? ".5" : "")); 380 } 381 } 382 } 383 384 static void 385 ht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode) 386 { 387 const char *modestr = ieee80211_phymode_name[mode]; 388 389 ic_printf(ic, "%s MCS 20MHz\n", modestr); 390 ht_rateprint(ic, mode, 0); 391 if (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) { 392 ic_printf(ic, "%s MCS 20MHz SGI\n", modestr); 393 ht_rateprint(ic, mode, 1); 394 } 395 if (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 396 ic_printf(ic, "%s MCS 40MHz:\n", modestr); 397 ht_rateprint(ic, mode, 2); 398 } 399 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 400 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) { 401 ic_printf(ic, "%s MCS 40MHz SGI:\n", modestr); 402 ht_rateprint(ic, mode, 3); 403 } 404 } 405 406 void 407 ieee80211_ht_announce(struct ieee80211com *ic) 408 { 409 410 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 411 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 412 ic_printf(ic, "%dT%dR\n", ic->ic_txstream, ic->ic_rxstream); 413 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA)) 414 ht_announce(ic, IEEE80211_MODE_11NA); 415 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 416 ht_announce(ic, IEEE80211_MODE_11NG); 417 } 418 419 static struct ieee80211_htrateset htrateset; 420 421 const struct ieee80211_htrateset * 422 ieee80211_get_suphtrates(struct ieee80211com *ic, 423 const struct ieee80211_channel *c) 424 { 425 #define ADDRATE(x) do { \ 426 htrateset.rs_rates[htrateset.rs_nrates] = x; \ 427 htrateset.rs_nrates++; \ 428 } while (0) 429 int i; 430 431 memset(&htrateset, 0, sizeof(struct ieee80211_htrateset)); 432 for (i = 0; i < ic->ic_txstream * 8; i++) 433 ADDRATE(i); 434 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 435 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32)) 436 ADDRATE(32); 437 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 438 if (ic->ic_txstream >= 2) { 439 for (i = 33; i <= 38; i++) 440 ADDRATE(i); 441 } 442 if (ic->ic_txstream >= 3) { 443 for (i = 39; i <= 52; i++) 444 ADDRATE(i); 445 } 446 if (ic->ic_txstream == 4) { 447 for (i = 53; i <= 76; i++) 448 ADDRATE(i); 449 } 450 } 451 return &htrateset; 452 #undef ADDRATE 453 } 454 455 /* 456 * Receive processing. 457 */ 458 459 /* 460 * Decap the encapsulated A-MSDU frames and dispatch all but 461 * the last for delivery. The last frame is returned for 462 * delivery via the normal path. 463 */ 464 struct mbuf * 465 ieee80211_decap_amsdu(struct ieee80211_node *ni, struct mbuf *m) 466 { 467 struct ieee80211vap *vap = ni->ni_vap; 468 int framelen; 469 struct mbuf *n; 470 471 /* discard 802.3 header inserted by ieee80211_decap */ 472 m_adj(m, sizeof(struct ether_header)); 473 474 vap->iv_stats.is_amsdu_decap++; 475 476 for (;;) { 477 /* 478 * Decap the first frame, bust it apart from the 479 * remainder and deliver. We leave the last frame 480 * delivery to the caller (for consistency with other 481 * code paths, could also do it here). 482 */ 483 m = ieee80211_decap1(m, &framelen); 484 if (m == NULL) { 485 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 486 ni->ni_macaddr, "a-msdu", "%s", "decap failed"); 487 vap->iv_stats.is_amsdu_tooshort++; 488 return NULL; 489 } 490 if (m->m_pkthdr.len == framelen) 491 break; 492 n = m_split(m, framelen, M_NOWAIT); 493 if (n == NULL) { 494 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 495 ni->ni_macaddr, "a-msdu", 496 "%s", "unable to split encapsulated frames"); 497 vap->iv_stats.is_amsdu_split++; 498 m_freem(m); /* NB: must reclaim */ 499 return NULL; 500 } 501 vap->iv_deliver_data(vap, ni, m); 502 503 /* 504 * Remove frame contents; each intermediate frame 505 * is required to be aligned to a 4-byte boundary. 506 */ 507 m = n; 508 m_adj(m, roundup2(framelen, 4) - framelen); /* padding */ 509 } 510 return m; /* last delivered by caller */ 511 } 512 513 /* 514 * Purge all frames in the A-MPDU re-order queue. 515 */ 516 static void 517 ampdu_rx_purge(struct ieee80211_rx_ampdu *rap) 518 { 519 struct mbuf *m; 520 int i; 521 522 for (i = 0; i < rap->rxa_wnd; i++) { 523 m = rap->rxa_m[i]; 524 if (m != NULL) { 525 rap->rxa_m[i] = NULL; 526 rap->rxa_qbytes -= m->m_pkthdr.len; 527 m_freem(m); 528 if (--rap->rxa_qframes == 0) 529 break; 530 } 531 } 532 KASSERT(rap->rxa_qbytes == 0 && rap->rxa_qframes == 0, 533 ("lost %u data, %u frames on ampdu rx q", 534 rap->rxa_qbytes, rap->rxa_qframes)); 535 } 536 537 /* 538 * Start A-MPDU rx/re-order processing for the specified TID. 539 */ 540 static int 541 ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap, 542 int baparamset, int batimeout, int baseqctl) 543 { 544 int bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 545 546 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 547 /* 548 * AMPDU previously setup and not terminated with a DELBA, 549 * flush the reorder q's in case anything remains. 550 */ 551 ampdu_rx_purge(rap); 552 } 553 memset(rap, 0, sizeof(*rap)); 554 rap->rxa_wnd = (bufsiz == 0) ? 555 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 556 rap->rxa_start = MS(baseqctl, IEEE80211_BASEQ_START); 557 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 558 559 return 0; 560 } 561 562 /* 563 * Public function; manually setup the RX ampdu state. 564 */ 565 int 566 ieee80211_ampdu_rx_start_ext(struct ieee80211_node *ni, int tid, int seq, int baw) 567 { 568 struct ieee80211_rx_ampdu *rap; 569 570 /* XXX TODO: sanity check tid, seq, baw */ 571 572 rap = &ni->ni_rx_ampdu[tid]; 573 574 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 575 /* 576 * AMPDU previously setup and not terminated with a DELBA, 577 * flush the reorder q's in case anything remains. 578 */ 579 ampdu_rx_purge(rap); 580 } 581 582 memset(rap, 0, sizeof(*rap)); 583 rap->rxa_wnd = (baw== 0) ? 584 IEEE80211_AGGR_BAWMAX : min(baw, IEEE80211_AGGR_BAWMAX); 585 rap->rxa_start = seq; 586 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 587 588 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 589 "%s: tid=%d, start=%d, wnd=%d, flags=0x%08x\n", 590 __func__, 591 tid, 592 seq, 593 rap->rxa_wnd, 594 rap->rxa_flags); 595 596 return 0; 597 } 598 599 /* 600 * Stop A-MPDU rx processing for the specified TID. 601 */ 602 static void 603 ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 604 { 605 606 ampdu_rx_purge(rap); 607 rap->rxa_flags &= ~(IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND); 608 } 609 610 /* 611 * Dispatch a frame from the A-MPDU reorder queue. The 612 * frame is fed back into ieee80211_input marked with an 613 * M_AMPDU_MPDU flag so it doesn't come back to us (it also 614 * permits ieee80211_input to optimize re-processing). 615 */ 616 static __inline void 617 ampdu_dispatch(struct ieee80211_node *ni, struct mbuf *m) 618 { 619 m->m_flags |= M_AMPDU_MPDU; /* bypass normal processing */ 620 /* NB: rssi and noise are ignored w/ M_AMPDU_MPDU set */ 621 (void) ieee80211_input(ni, m, 0, 0); 622 } 623 624 /* 625 * Dispatch as many frames as possible from the re-order queue. 626 * Frames will always be "at the front"; we process all frames 627 * up to the first empty slot in the window. On completion we 628 * cleanup state if there are still pending frames in the current 629 * BA window. We assume the frame at slot 0 is already handled 630 * by the caller; we always start at slot 1. 631 */ 632 static void 633 ampdu_rx_dispatch(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni) 634 { 635 struct ieee80211vap *vap = ni->ni_vap; 636 struct mbuf *m; 637 int i; 638 639 /* flush run of frames */ 640 for (i = 1; i < rap->rxa_wnd; i++) { 641 m = rap->rxa_m[i]; 642 if (m == NULL) 643 break; 644 rap->rxa_m[i] = NULL; 645 rap->rxa_qbytes -= m->m_pkthdr.len; 646 rap->rxa_qframes--; 647 648 ampdu_dispatch(ni, m); 649 } 650 /* 651 * If frames remain, copy the mbuf pointers down so 652 * they correspond to the offsets in the new window. 653 */ 654 if (rap->rxa_qframes != 0) { 655 int n = rap->rxa_qframes, j; 656 for (j = i+1; j < rap->rxa_wnd; j++) { 657 if (rap->rxa_m[j] != NULL) { 658 rap->rxa_m[j-i] = rap->rxa_m[j]; 659 rap->rxa_m[j] = NULL; 660 if (--n == 0) 661 break; 662 } 663 } 664 KASSERT(n == 0, ("lost %d frames", n)); 665 vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; 666 } 667 /* 668 * Adjust the start of the BA window to 669 * reflect the frames just dispatched. 670 */ 671 rap->rxa_start = IEEE80211_SEQ_ADD(rap->rxa_start, i); 672 vap->iv_stats.is_ampdu_rx_oor += i; 673 } 674 675 /* 676 * Dispatch all frames in the A-MPDU re-order queue. 677 */ 678 static void 679 ampdu_rx_flush(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 680 { 681 struct ieee80211vap *vap = ni->ni_vap; 682 struct mbuf *m; 683 int i; 684 685 for (i = 0; i < rap->rxa_wnd; i++) { 686 m = rap->rxa_m[i]; 687 if (m == NULL) 688 continue; 689 rap->rxa_m[i] = NULL; 690 rap->rxa_qbytes -= m->m_pkthdr.len; 691 rap->rxa_qframes--; 692 vap->iv_stats.is_ampdu_rx_oor++; 693 694 ampdu_dispatch(ni, m); 695 if (rap->rxa_qframes == 0) 696 break; 697 } 698 } 699 700 /* 701 * Dispatch all frames in the A-MPDU re-order queue 702 * preceding the specified sequence number. This logic 703 * handles window moves due to a received MSDU or BAR. 704 */ 705 static void 706 ampdu_rx_flush_upto(struct ieee80211_node *ni, 707 struct ieee80211_rx_ampdu *rap, ieee80211_seq winstart) 708 { 709 struct ieee80211vap *vap = ni->ni_vap; 710 struct mbuf *m; 711 ieee80211_seq seqno; 712 int i; 713 714 /* 715 * Flush any complete MSDU's with a sequence number lower 716 * than winstart. Gaps may exist. Note that we may actually 717 * dispatch frames past winstart if a run continues; this is 718 * an optimization that avoids having to do a separate pass 719 * to dispatch frames after moving the BA window start. 720 */ 721 seqno = rap->rxa_start; 722 for (i = 0; i < rap->rxa_wnd; i++) { 723 m = rap->rxa_m[i]; 724 if (m != NULL) { 725 rap->rxa_m[i] = NULL; 726 rap->rxa_qbytes -= m->m_pkthdr.len; 727 rap->rxa_qframes--; 728 vap->iv_stats.is_ampdu_rx_oor++; 729 730 ampdu_dispatch(ni, m); 731 } else { 732 if (!IEEE80211_SEQ_BA_BEFORE(seqno, winstart)) 733 break; 734 } 735 seqno = IEEE80211_SEQ_INC(seqno); 736 } 737 /* 738 * If frames remain, copy the mbuf pointers down so 739 * they correspond to the offsets in the new window. 740 */ 741 if (rap->rxa_qframes != 0) { 742 int n = rap->rxa_qframes, j; 743 744 /* NB: this loop assumes i > 0 and/or rxa_m[0] is NULL */ 745 KASSERT(rap->rxa_m[0] == NULL, 746 ("%s: BA window slot 0 occupied", __func__)); 747 for (j = i+1; j < rap->rxa_wnd; j++) { 748 if (rap->rxa_m[j] != NULL) { 749 rap->rxa_m[j-i] = rap->rxa_m[j]; 750 rap->rxa_m[j] = NULL; 751 if (--n == 0) 752 break; 753 } 754 } 755 KASSERT(n == 0, ("%s: lost %d frames, qframes %d off %d " 756 "BA win <%d:%d> winstart %d", 757 __func__, n, rap->rxa_qframes, i, rap->rxa_start, 758 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 759 winstart)); 760 vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; 761 } 762 /* 763 * Move the start of the BA window; we use the 764 * sequence number of the last MSDU that was 765 * passed up the stack+1 or winstart if stopped on 766 * a gap in the reorder buffer. 767 */ 768 rap->rxa_start = seqno; 769 } 770 771 /* 772 * Process a received QoS data frame for an HT station. Handle 773 * A-MPDU reordering: if this frame is received out of order 774 * and falls within the BA window hold onto it. Otherwise if 775 * this frame completes a run, flush any pending frames. We 776 * return 1 if the frame is consumed. A 0 is returned if 777 * the frame should be processed normally by the caller. 778 */ 779 int 780 ieee80211_ampdu_reorder(struct ieee80211_node *ni, struct mbuf *m) 781 { 782 #define IEEE80211_FC0_QOSDATA \ 783 (IEEE80211_FC0_TYPE_DATA|IEEE80211_FC0_SUBTYPE_QOS|IEEE80211_FC0_VERSION_0) 784 #define PROCESS 0 /* caller should process frame */ 785 #define CONSUMED 1 /* frame consumed, caller does nothing */ 786 struct ieee80211vap *vap = ni->ni_vap; 787 struct ieee80211_qosframe *wh; 788 struct ieee80211_rx_ampdu *rap; 789 ieee80211_seq rxseq; 790 uint8_t tid; 791 int off; 792 793 KASSERT((m->m_flags & (M_AMPDU | M_AMPDU_MPDU)) == M_AMPDU, 794 ("!a-mpdu or already re-ordered, flags 0x%x", m->m_flags)); 795 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 796 797 /* NB: m_len known to be sufficient */ 798 wh = mtod(m, struct ieee80211_qosframe *); 799 if (wh->i_fc[0] != IEEE80211_FC0_QOSDATA) { 800 /* 801 * Not QoS data, shouldn't get here but just 802 * return it to the caller for processing. 803 */ 804 return PROCESS; 805 } 806 if (IEEE80211_IS_DSTODS(wh)) 807 tid = ((struct ieee80211_qosframe_addr4 *)wh)->i_qos[0]; 808 else 809 tid = wh->i_qos[0]; 810 tid &= IEEE80211_QOS_TID; 811 rap = &ni->ni_rx_ampdu[tid]; 812 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 813 /* 814 * No ADDBA request yet, don't touch. 815 */ 816 return PROCESS; 817 } 818 rxseq = le16toh(*(uint16_t *)wh->i_seq); 819 if ((rxseq & IEEE80211_SEQ_FRAG_MASK) != 0) { 820 /* 821 * Fragments are not allowed; toss. 822 */ 823 IEEE80211_DISCARD_MAC(vap, 824 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 825 "A-MPDU", "fragment, rxseq 0x%x tid %u%s", rxseq, tid, 826 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 827 vap->iv_stats.is_ampdu_rx_drop++; 828 IEEE80211_NODE_STAT(ni, rx_drop); 829 m_freem(m); 830 return CONSUMED; 831 } 832 rxseq >>= IEEE80211_SEQ_SEQ_SHIFT; 833 rap->rxa_nframes++; 834 again: 835 if (rxseq == rap->rxa_start) { 836 /* 837 * First frame in window. 838 */ 839 if (rap->rxa_qframes != 0) { 840 /* 841 * Dispatch as many packets as we can. 842 */ 843 KASSERT(rap->rxa_m[0] == NULL, ("unexpected dup")); 844 ampdu_dispatch(ni, m); 845 ampdu_rx_dispatch(rap, ni); 846 return CONSUMED; 847 } else { 848 /* 849 * In order; advance window and notify 850 * caller to dispatch directly. 851 */ 852 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 853 return PROCESS; 854 } 855 } 856 /* 857 * Frame is out of order; store if in the BA window. 858 */ 859 /* calculate offset in BA window */ 860 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 861 if (off < rap->rxa_wnd) { 862 /* 863 * Common case (hopefully): in the BA window. 864 * Sec 9.10.7.6.2 a) (p.137) 865 */ 866 867 /* 868 * Check for frames sitting too long in the reorder queue. 869 * This should only ever happen if frames are not delivered 870 * without the sender otherwise notifying us (e.g. with a 871 * BAR to move the window). Typically this happens because 872 * of vendor bugs that cause the sequence number to jump. 873 * When this happens we get a gap in the reorder queue that 874 * leaves frame sitting on the queue until they get pushed 875 * out due to window moves. When the vendor does not send 876 * BAR this move only happens due to explicit packet sends 877 * 878 * NB: we only track the time of the oldest frame in the 879 * reorder q; this means that if we flush we might push 880 * frames that still "new"; if this happens then subsequent 881 * frames will result in BA window moves which cost something 882 * but is still better than a big throughput dip. 883 */ 884 if (rap->rxa_qframes != 0) { 885 /* XXX honor batimeout? */ 886 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 887 /* 888 * Too long since we received the first 889 * frame; flush the reorder buffer. 890 */ 891 if (rap->rxa_qframes != 0) { 892 vap->iv_stats.is_ampdu_rx_age += 893 rap->rxa_qframes; 894 ampdu_rx_flush(ni, rap); 895 } 896 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 897 return PROCESS; 898 } 899 } else { 900 /* 901 * First frame, start aging timer. 902 */ 903 rap->rxa_age = ticks; 904 } 905 906 /* save packet */ 907 if (rap->rxa_m[off] == NULL) { 908 rap->rxa_m[off] = m; 909 rap->rxa_qframes++; 910 rap->rxa_qbytes += m->m_pkthdr.len; 911 vap->iv_stats.is_ampdu_rx_reorder++; 912 } else { 913 IEEE80211_DISCARD_MAC(vap, 914 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 915 ni->ni_macaddr, "a-mpdu duplicate", 916 "seqno %u tid %u BA win <%u:%u>", 917 rxseq, tid, rap->rxa_start, 918 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1)); 919 vap->iv_stats.is_rx_dup++; 920 IEEE80211_NODE_STAT(ni, rx_dup); 921 m_freem(m); 922 } 923 return CONSUMED; 924 } 925 if (off < IEEE80211_SEQ_BA_RANGE) { 926 /* 927 * Outside the BA window, but within range; 928 * flush the reorder q and move the window. 929 * Sec 9.10.7.6.2 b) (p.138) 930 */ 931 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 932 "move BA win <%u:%u> (%u frames) rxseq %u tid %u", 933 rap->rxa_start, 934 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 935 rap->rxa_qframes, rxseq, tid); 936 vap->iv_stats.is_ampdu_rx_move++; 937 938 /* 939 * The spec says to flush frames up to but not including: 940 * WinStart_B = rxseq - rap->rxa_wnd + 1 941 * Then insert the frame or notify the caller to process 942 * it immediately. We can safely do this by just starting 943 * over again because we know the frame will now be within 944 * the BA window. 945 */ 946 /* NB: rxa_wnd known to be >0 */ 947 ampdu_rx_flush_upto(ni, rap, 948 IEEE80211_SEQ_SUB(rxseq, rap->rxa_wnd-1)); 949 goto again; 950 } else { 951 /* 952 * Outside the BA window and out of range; toss. 953 * Sec 9.10.7.6.2 c) (p.138) 954 */ 955 IEEE80211_DISCARD_MAC(vap, 956 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 957 "MPDU", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 958 rap->rxa_start, 959 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 960 rap->rxa_qframes, rxseq, tid, 961 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 962 vap->iv_stats.is_ampdu_rx_drop++; 963 IEEE80211_NODE_STAT(ni, rx_drop); 964 m_freem(m); 965 return CONSUMED; 966 } 967 #undef CONSUMED 968 #undef PROCESS 969 #undef IEEE80211_FC0_QOSDATA 970 } 971 972 /* 973 * Process a BAR ctl frame. Dispatch all frames up to 974 * the sequence number of the frame. If this frame is 975 * out of range it's discarded. 976 */ 977 void 978 ieee80211_recv_bar(struct ieee80211_node *ni, struct mbuf *m0) 979 { 980 struct ieee80211vap *vap = ni->ni_vap; 981 struct ieee80211_frame_bar *wh; 982 struct ieee80211_rx_ampdu *rap; 983 ieee80211_seq rxseq; 984 int tid, off; 985 986 if (!ieee80211_recv_bar_ena) { 987 #if 0 988 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_11N, 989 ni->ni_macaddr, "BAR", "%s", "processing disabled"); 990 #endif 991 vap->iv_stats.is_ampdu_bar_bad++; 992 return; 993 } 994 wh = mtod(m0, struct ieee80211_frame_bar *); 995 /* XXX check basic BAR */ 996 tid = MS(le16toh(wh->i_ctl), IEEE80211_BAR_TID); 997 rap = &ni->ni_rx_ampdu[tid]; 998 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 999 /* 1000 * No ADDBA request yet, don't touch. 1001 */ 1002 IEEE80211_DISCARD_MAC(vap, 1003 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 1004 ni->ni_macaddr, "BAR", "no BA stream, tid %u", tid); 1005 vap->iv_stats.is_ampdu_bar_bad++; 1006 return; 1007 } 1008 vap->iv_stats.is_ampdu_bar_rx++; 1009 rxseq = le16toh(wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT; 1010 if (rxseq == rap->rxa_start) 1011 return; 1012 /* calculate offset in BA window */ 1013 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 1014 if (off < IEEE80211_SEQ_BA_RANGE) { 1015 /* 1016 * Flush the reorder q up to rxseq and move the window. 1017 * Sec 9.10.7.6.3 a) (p.138) 1018 */ 1019 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1020 "BAR moves BA win <%u:%u> (%u frames) rxseq %u tid %u", 1021 rap->rxa_start, 1022 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1023 rap->rxa_qframes, rxseq, tid); 1024 vap->iv_stats.is_ampdu_bar_move++; 1025 1026 ampdu_rx_flush_upto(ni, rap, rxseq); 1027 if (off >= rap->rxa_wnd) { 1028 /* 1029 * BAR specifies a window start to the right of BA 1030 * window; we must move it explicitly since 1031 * ampdu_rx_flush_upto will not. 1032 */ 1033 rap->rxa_start = rxseq; 1034 } 1035 } else { 1036 /* 1037 * Out of range; toss. 1038 * Sec 9.10.7.6.3 b) (p.138) 1039 */ 1040 IEEE80211_DISCARD_MAC(vap, 1041 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 1042 "BAR", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 1043 rap->rxa_start, 1044 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1045 rap->rxa_qframes, rxseq, tid, 1046 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 1047 vap->iv_stats.is_ampdu_bar_oow++; 1048 IEEE80211_NODE_STAT(ni, rx_drop); 1049 } 1050 } 1051 1052 /* 1053 * Setup HT-specific state in a node. Called only 1054 * when HT use is negotiated so we don't do extra 1055 * work for temporary and/or legacy sta's. 1056 */ 1057 void 1058 ieee80211_ht_node_init(struct ieee80211_node *ni) 1059 { 1060 struct ieee80211_tx_ampdu *tap; 1061 int tid; 1062 1063 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1064 ni, 1065 "%s: called (%p)", 1066 __func__, 1067 ni); 1068 1069 if (ni->ni_flags & IEEE80211_NODE_HT) { 1070 /* 1071 * Clean AMPDU state on re-associate. This handles the case 1072 * where a station leaves w/o notifying us and then returns 1073 * before node is reaped for inactivity. 1074 */ 1075 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1076 ni, 1077 "%s: calling cleanup (%p)", 1078 __func__, ni); 1079 ieee80211_ht_node_cleanup(ni); 1080 } 1081 for (tid = 0; tid < WME_NUM_TID; tid++) { 1082 tap = &ni->ni_tx_ampdu[tid]; 1083 tap->txa_tid = tid; 1084 tap->txa_ni = ni; 1085 ieee80211_txampdu_init_pps(tap); 1086 /* NB: further initialization deferred */ 1087 } 1088 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU; 1089 } 1090 1091 /* 1092 * Cleanup HT-specific state in a node. Called only 1093 * when HT use has been marked. 1094 */ 1095 void 1096 ieee80211_ht_node_cleanup(struct ieee80211_node *ni) 1097 { 1098 struct ieee80211com *ic = ni->ni_ic; 1099 int i; 1100 1101 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1102 ni, 1103 "%s: called (%p)", 1104 __func__, ni); 1105 1106 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT node")); 1107 1108 /* XXX optimize this */ 1109 for (i = 0; i < WME_NUM_TID; i++) { 1110 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[i]; 1111 if (tap->txa_flags & IEEE80211_AGGR_SETUP) 1112 ampdu_tx_stop(tap); 1113 } 1114 for (i = 0; i < WME_NUM_TID; i++) 1115 ic->ic_ampdu_rx_stop(ni, &ni->ni_rx_ampdu[i]); 1116 1117 ni->ni_htcap = 0; 1118 ni->ni_flags &= ~IEEE80211_NODE_HT_ALL; 1119 } 1120 1121 /* 1122 * Age out HT resources for a station. 1123 */ 1124 void 1125 ieee80211_ht_node_age(struct ieee80211_node *ni) 1126 { 1127 struct ieee80211vap *vap = ni->ni_vap; 1128 uint8_t tid; 1129 1130 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 1131 1132 for (tid = 0; tid < WME_NUM_TID; tid++) { 1133 struct ieee80211_rx_ampdu *rap; 1134 1135 rap = &ni->ni_rx_ampdu[tid]; 1136 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) 1137 continue; 1138 if (rap->rxa_qframes == 0) 1139 continue; 1140 /* 1141 * Check for frames sitting too long in the reorder queue. 1142 * See above for more details on what's happening here. 1143 */ 1144 /* XXX honor batimeout? */ 1145 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 1146 /* 1147 * Too long since we received the first 1148 * frame; flush the reorder buffer. 1149 */ 1150 vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes; 1151 ampdu_rx_flush(ni, rap); 1152 } 1153 } 1154 } 1155 1156 static struct ieee80211_channel * 1157 findhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int htflags) 1158 { 1159 return ieee80211_find_channel(ic, c->ic_freq, 1160 (c->ic_flags &~ IEEE80211_CHAN_HT) | htflags); 1161 } 1162 1163 /* 1164 * Adjust a channel to be HT/non-HT according to the vap's configuration. 1165 */ 1166 struct ieee80211_channel * 1167 ieee80211_ht_adjust_channel(struct ieee80211com *ic, 1168 struct ieee80211_channel *chan, int flags) 1169 { 1170 struct ieee80211_channel *c; 1171 1172 if (flags & IEEE80211_FHT_HT) { 1173 /* promote to HT if possible */ 1174 if (flags & IEEE80211_FHT_USEHT40) { 1175 if (!IEEE80211_IS_CHAN_HT40(chan)) { 1176 /* NB: arbitrarily pick ht40+ over ht40- */ 1177 c = findhtchan(ic, chan, IEEE80211_CHAN_HT40U); 1178 if (c == NULL) 1179 c = findhtchan(ic, chan, 1180 IEEE80211_CHAN_HT40D); 1181 if (c == NULL) 1182 c = findhtchan(ic, chan, 1183 IEEE80211_CHAN_HT20); 1184 if (c != NULL) 1185 chan = c; 1186 } 1187 } else if (!IEEE80211_IS_CHAN_HT20(chan)) { 1188 c = findhtchan(ic, chan, IEEE80211_CHAN_HT20); 1189 if (c != NULL) 1190 chan = c; 1191 } 1192 } else if (IEEE80211_IS_CHAN_HT(chan)) { 1193 /* demote to legacy, HT use is disabled */ 1194 c = ieee80211_find_channel(ic, chan->ic_freq, 1195 chan->ic_flags &~ IEEE80211_CHAN_HT); 1196 if (c != NULL) 1197 chan = c; 1198 } 1199 return chan; 1200 } 1201 1202 /* 1203 * Setup HT-specific state for a legacy WDS peer. 1204 */ 1205 void 1206 ieee80211_ht_wds_init(struct ieee80211_node *ni) 1207 { 1208 struct ieee80211vap *vap = ni->ni_vap; 1209 struct ieee80211_tx_ampdu *tap; 1210 int tid; 1211 1212 KASSERT(vap->iv_flags_ht & IEEE80211_FHT_HT, ("no HT requested")); 1213 1214 /* XXX check scan cache in case peer has an ap and we have info */ 1215 /* 1216 * If setup with a legacy channel; locate an HT channel. 1217 * Otherwise if the inherited channel (from a companion 1218 * AP) is suitable use it so we use the same location 1219 * for the extension channel). 1220 */ 1221 ni->ni_chan = ieee80211_ht_adjust_channel(ni->ni_ic, 1222 ni->ni_chan, ieee80211_htchanflags(ni->ni_chan)); 1223 1224 ni->ni_htcap = 0; 1225 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) 1226 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI20; 1227 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { 1228 ni->ni_htcap |= IEEE80211_HTCAP_CHWIDTH40; 1229 ni->ni_chw = 40; 1230 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 1231 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_ABOVE; 1232 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 1233 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_BELOW; 1234 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) 1235 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI40; 1236 } else { 1237 ni->ni_chw = 20; 1238 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_NONE; 1239 } 1240 ni->ni_htctlchan = ni->ni_chan->ic_ieee; 1241 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 1242 ni->ni_flags |= IEEE80211_NODE_RIFS; 1243 /* XXX does it make sense to enable SMPS? */ 1244 1245 ni->ni_htopmode = 0; /* XXX need protection state */ 1246 ni->ni_htstbc = 0; /* XXX need info */ 1247 1248 for (tid = 0; tid < WME_NUM_TID; tid++) { 1249 tap = &ni->ni_tx_ampdu[tid]; 1250 tap->txa_tid = tid; 1251 ieee80211_txampdu_init_pps(tap); 1252 } 1253 /* NB: AMPDU tx/rx governed by IEEE80211_FHT_AMPDU_{TX,RX} */ 1254 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU; 1255 } 1256 1257 /* 1258 * Notify hostap vaps of a change in the HTINFO ie. 1259 */ 1260 static void 1261 htinfo_notify(struct ieee80211com *ic) 1262 { 1263 struct ieee80211vap *vap; 1264 int first = 1; 1265 1266 IEEE80211_LOCK_ASSERT(ic); 1267 1268 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1269 if (vap->iv_opmode != IEEE80211_M_HOSTAP) 1270 continue; 1271 if (vap->iv_state != IEEE80211_S_RUN || 1272 !IEEE80211_IS_CHAN_HT(vap->iv_bss->ni_chan)) 1273 continue; 1274 if (first) { 1275 IEEE80211_NOTE(vap, 1276 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1277 vap->iv_bss, 1278 "HT bss occupancy change: %d sta, %d ht, " 1279 "%d ht40%s, HT protmode now 0x%x" 1280 , ic->ic_sta_assoc 1281 , ic->ic_ht_sta_assoc 1282 , ic->ic_ht40_sta_assoc 1283 , (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) ? 1284 ", non-HT sta present" : "" 1285 , ic->ic_curhtprotmode); 1286 first = 0; 1287 } 1288 ieee80211_beacon_notify(vap, IEEE80211_BEACON_HTINFO); 1289 } 1290 } 1291 1292 /* 1293 * Calculate HT protection mode from current 1294 * state and handle updates. 1295 */ 1296 static void 1297 htinfo_update(struct ieee80211com *ic) 1298 { 1299 uint8_t protmode; 1300 1301 if (ic->ic_sta_assoc != ic->ic_ht_sta_assoc) { 1302 protmode = IEEE80211_HTINFO_OPMODE_MIXED 1303 | IEEE80211_HTINFO_NONHT_PRESENT; 1304 } else if (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) { 1305 protmode = IEEE80211_HTINFO_OPMODE_PROTOPT 1306 | IEEE80211_HTINFO_NONHT_PRESENT; 1307 } else if (ic->ic_bsschan != IEEE80211_CHAN_ANYC && 1308 IEEE80211_IS_CHAN_HT40(ic->ic_bsschan) && 1309 ic->ic_sta_assoc != ic->ic_ht40_sta_assoc) { 1310 protmode = IEEE80211_HTINFO_OPMODE_HT20PR; 1311 } else { 1312 protmode = IEEE80211_HTINFO_OPMODE_PURE; 1313 } 1314 if (protmode != ic->ic_curhtprotmode) { 1315 ic->ic_curhtprotmode = protmode; 1316 htinfo_notify(ic); 1317 } 1318 } 1319 1320 /* 1321 * Handle an HT station joining a BSS. 1322 */ 1323 void 1324 ieee80211_ht_node_join(struct ieee80211_node *ni) 1325 { 1326 struct ieee80211com *ic = ni->ni_ic; 1327 1328 IEEE80211_LOCK_ASSERT(ic); 1329 1330 if (ni->ni_flags & IEEE80211_NODE_HT) { 1331 ic->ic_ht_sta_assoc++; 1332 if (ni->ni_chw == 40) 1333 ic->ic_ht40_sta_assoc++; 1334 } 1335 htinfo_update(ic); 1336 } 1337 1338 /* 1339 * Handle an HT station leaving a BSS. 1340 */ 1341 void 1342 ieee80211_ht_node_leave(struct ieee80211_node *ni) 1343 { 1344 struct ieee80211com *ic = ni->ni_ic; 1345 1346 IEEE80211_LOCK_ASSERT(ic); 1347 1348 if (ni->ni_flags & IEEE80211_NODE_HT) { 1349 ic->ic_ht_sta_assoc--; 1350 if (ni->ni_chw == 40) 1351 ic->ic_ht40_sta_assoc--; 1352 } 1353 htinfo_update(ic); 1354 } 1355 1356 /* 1357 * Public version of htinfo_update; used for processing 1358 * beacon frames from overlapping bss. 1359 * 1360 * Caller can specify either IEEE80211_HTINFO_OPMODE_MIXED 1361 * (on receipt of a beacon that advertises MIXED) or 1362 * IEEE80211_HTINFO_OPMODE_PROTOPT (on receipt of a beacon 1363 * from an overlapping legacy bss). We treat MIXED with 1364 * a higher precedence than PROTOPT (i.e. we will not change 1365 * change PROTOPT -> MIXED; only MIXED -> PROTOPT). This 1366 * corresponds to how we handle things in htinfo_update. 1367 */ 1368 void 1369 ieee80211_htprot_update(struct ieee80211com *ic, int protmode) 1370 { 1371 #define OPMODE(x) SM(x, IEEE80211_HTINFO_OPMODE) 1372 IEEE80211_LOCK(ic); 1373 1374 /* track non-HT station presence */ 1375 KASSERT(protmode & IEEE80211_HTINFO_NONHT_PRESENT, 1376 ("protmode 0x%x", protmode)); 1377 ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR; 1378 ic->ic_lastnonht = ticks; 1379 1380 if (protmode != ic->ic_curhtprotmode && 1381 (OPMODE(ic->ic_curhtprotmode) != IEEE80211_HTINFO_OPMODE_MIXED || 1382 OPMODE(protmode) == IEEE80211_HTINFO_OPMODE_PROTOPT)) { 1383 /* push beacon update */ 1384 ic->ic_curhtprotmode = protmode; 1385 htinfo_notify(ic); 1386 } 1387 IEEE80211_UNLOCK(ic); 1388 #undef OPMODE 1389 } 1390 1391 /* 1392 * Time out presence of an overlapping bss with non-HT 1393 * stations. When operating in hostap mode we listen for 1394 * beacons from other stations and if we identify a non-HT 1395 * station is present we update the opmode field of the 1396 * HTINFO ie. To identify when all non-HT stations are 1397 * gone we time out this condition. 1398 */ 1399 void 1400 ieee80211_ht_timeout(struct ieee80211com *ic) 1401 { 1402 IEEE80211_LOCK_ASSERT(ic); 1403 1404 if ((ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) && 1405 ieee80211_time_after(ticks, ic->ic_lastnonht + IEEE80211_NONHT_PRESENT_AGE)) { 1406 #if 0 1407 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1408 "%s", "time out non-HT STA present on channel"); 1409 #endif 1410 ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR; 1411 htinfo_update(ic); 1412 } 1413 } 1414 1415 /* 1416 * Process an 802.11n HT capabilities ie. 1417 */ 1418 void 1419 ieee80211_parse_htcap(struct ieee80211_node *ni, const uint8_t *ie) 1420 { 1421 if (ie[0] == IEEE80211_ELEMID_VENDOR) { 1422 /* 1423 * Station used Vendor OUI ie to associate; 1424 * mark the node so when we respond we'll use 1425 * the Vendor OUI's and not the standard ie's. 1426 */ 1427 ni->ni_flags |= IEEE80211_NODE_HTCOMPAT; 1428 ie += 4; 1429 } else 1430 ni->ni_flags &= ~IEEE80211_NODE_HTCOMPAT; 1431 1432 ni->ni_htcap = le16dec(ie + 1433 __offsetof(struct ieee80211_ie_htcap, hc_cap)); 1434 ni->ni_htparam = ie[__offsetof(struct ieee80211_ie_htcap, hc_param)]; 1435 } 1436 1437 static void 1438 htinfo_parse(struct ieee80211_node *ni, 1439 const struct ieee80211_ie_htinfo *htinfo) 1440 { 1441 uint16_t w; 1442 1443 ni->ni_htctlchan = htinfo->hi_ctrlchannel; 1444 ni->ni_ht2ndchan = SM(htinfo->hi_byte1, IEEE80211_HTINFO_2NDCHAN); 1445 w = le16dec(&htinfo->hi_byte2); 1446 ni->ni_htopmode = SM(w, IEEE80211_HTINFO_OPMODE); 1447 w = le16dec(&htinfo->hi_byte45); 1448 ni->ni_htstbc = SM(w, IEEE80211_HTINFO_BASIC_STBCMCS); 1449 } 1450 1451 /* 1452 * Parse an 802.11n HT info ie and save useful information 1453 * to the node state. Note this does not effect any state 1454 * changes such as for channel width change. 1455 */ 1456 void 1457 ieee80211_parse_htinfo(struct ieee80211_node *ni, const uint8_t *ie) 1458 { 1459 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1460 ie += 4; 1461 htinfo_parse(ni, (const struct ieee80211_ie_htinfo *) ie); 1462 } 1463 1464 /* 1465 * Handle 11n channel switch. Use the received HT ie's to 1466 * identify the right channel to use. If we cannot locate it 1467 * in the channel table then fallback to legacy operation. 1468 * Note that we use this information to identify the node's 1469 * channel only; the caller is responsible for insuring any 1470 * required channel change is done (e.g. in sta mode when 1471 * parsing the contents of a beacon frame). 1472 */ 1473 static int 1474 htinfo_update_chw(struct ieee80211_node *ni, int htflags) 1475 { 1476 struct ieee80211com *ic = ni->ni_ic; 1477 struct ieee80211_channel *c; 1478 int chanflags; 1479 int ret = 0; 1480 1481 chanflags = (ni->ni_chan->ic_flags &~ IEEE80211_CHAN_HT) | htflags; 1482 if (chanflags != ni->ni_chan->ic_flags) { 1483 /* XXX not right for ht40- */ 1484 c = ieee80211_find_channel(ic, ni->ni_chan->ic_freq, chanflags); 1485 if (c == NULL && (htflags & IEEE80211_CHAN_HT40)) { 1486 /* 1487 * No HT40 channel entry in our table; fall back 1488 * to HT20 operation. This should not happen. 1489 */ 1490 c = findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT20); 1491 #if 0 1492 IEEE80211_NOTE(ni->ni_vap, 1493 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1494 "no HT40 channel (freq %u), falling back to HT20", 1495 ni->ni_chan->ic_freq); 1496 #endif 1497 /* XXX stat */ 1498 } 1499 if (c != NULL && c != ni->ni_chan) { 1500 IEEE80211_NOTE(ni->ni_vap, 1501 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1502 "switch station to HT%d channel %u/0x%x", 1503 IEEE80211_IS_CHAN_HT40(c) ? 40 : 20, 1504 c->ic_freq, c->ic_flags); 1505 ni->ni_chan = c; 1506 ret = 1; 1507 } 1508 /* NB: caller responsible for forcing any channel change */ 1509 } 1510 /* update node's tx channel width */ 1511 ni->ni_chw = IEEE80211_IS_CHAN_HT40(ni->ni_chan)? 40 : 20; 1512 return (ret); 1513 } 1514 1515 /* 1516 * Update 11n MIMO PS state according to received htcap. 1517 */ 1518 static __inline int 1519 htcap_update_mimo_ps(struct ieee80211_node *ni) 1520 { 1521 uint16_t oflags = ni->ni_flags; 1522 1523 switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) { 1524 case IEEE80211_HTCAP_SMPS_DYNAMIC: 1525 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1526 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 1527 break; 1528 case IEEE80211_HTCAP_SMPS_ENA: 1529 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1530 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1531 break; 1532 case IEEE80211_HTCAP_SMPS_OFF: 1533 default: /* disable on rx of reserved value */ 1534 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 1535 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1536 break; 1537 } 1538 return (oflags ^ ni->ni_flags); 1539 } 1540 1541 /* 1542 * Update short GI state according to received htcap 1543 * and local settings. 1544 */ 1545 static __inline void 1546 htcap_update_shortgi(struct ieee80211_node *ni) 1547 { 1548 struct ieee80211vap *vap = ni->ni_vap; 1549 1550 ni->ni_flags &= ~(IEEE80211_NODE_SGI20|IEEE80211_NODE_SGI40); 1551 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) && 1552 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)) 1553 ni->ni_flags |= IEEE80211_NODE_SGI20; 1554 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) && 1555 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)) 1556 ni->ni_flags |= IEEE80211_NODE_SGI40; 1557 } 1558 1559 /* 1560 * Parse and update HT-related state extracted from 1561 * the HT cap and info ie's. 1562 */ 1563 int 1564 ieee80211_ht_updateparams(struct ieee80211_node *ni, 1565 const uint8_t *htcapie, const uint8_t *htinfoie) 1566 { 1567 struct ieee80211vap *vap = ni->ni_vap; 1568 const struct ieee80211_ie_htinfo *htinfo; 1569 int htflags; 1570 int ret = 0; 1571 1572 ieee80211_parse_htcap(ni, htcapie); 1573 if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS) 1574 htcap_update_mimo_ps(ni); 1575 htcap_update_shortgi(ni); 1576 1577 if (htinfoie[0] == IEEE80211_ELEMID_VENDOR) 1578 htinfoie += 4; 1579 htinfo = (const struct ieee80211_ie_htinfo *) htinfoie; 1580 htinfo_parse(ni, htinfo); 1581 1582 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 1583 IEEE80211_CHAN_HT20 : 0; 1584 /* NB: honor operating mode constraint */ 1585 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH_2040) && 1586 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 1587 if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_ABOVE) 1588 htflags = IEEE80211_CHAN_HT40U; 1589 else if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_BELOW) 1590 htflags = IEEE80211_CHAN_HT40D; 1591 } 1592 if (htinfo_update_chw(ni, htflags)) 1593 ret = 1; 1594 1595 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_RIFSMODE_PERM) && 1596 (vap->iv_flags_ht & IEEE80211_FHT_RIFS)) 1597 ni->ni_flags |= IEEE80211_NODE_RIFS; 1598 else 1599 ni->ni_flags &= ~IEEE80211_NODE_RIFS; 1600 1601 return (ret); 1602 } 1603 1604 /* 1605 * Parse and update HT-related state extracted from the HT cap ie 1606 * for a station joining an HT BSS. 1607 */ 1608 void 1609 ieee80211_ht_updatehtcap(struct ieee80211_node *ni, const uint8_t *htcapie) 1610 { 1611 struct ieee80211vap *vap = ni->ni_vap; 1612 int htflags; 1613 1614 ieee80211_parse_htcap(ni, htcapie); 1615 if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS) 1616 htcap_update_mimo_ps(ni); 1617 htcap_update_shortgi(ni); 1618 1619 /* NB: honor operating mode constraint */ 1620 /* XXX 40 MHz intolerant */ 1621 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 1622 IEEE80211_CHAN_HT20 : 0; 1623 if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) && 1624 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 1625 if (IEEE80211_IS_CHAN_HT40U(vap->iv_bss->ni_chan)) 1626 htflags = IEEE80211_CHAN_HT40U; 1627 else if (IEEE80211_IS_CHAN_HT40D(vap->iv_bss->ni_chan)) 1628 htflags = IEEE80211_CHAN_HT40D; 1629 } 1630 (void) htinfo_update_chw(ni, htflags); 1631 } 1632 1633 /* 1634 * Install received HT rate set by parsing the HT cap ie. 1635 */ 1636 int 1637 ieee80211_setup_htrates(struct ieee80211_node *ni, const uint8_t *ie, int flags) 1638 { 1639 struct ieee80211com *ic = ni->ni_ic; 1640 struct ieee80211vap *vap = ni->ni_vap; 1641 const struct ieee80211_ie_htcap *htcap; 1642 struct ieee80211_htrateset *rs; 1643 int i, maxequalmcs, maxunequalmcs; 1644 1645 maxequalmcs = ic->ic_txstream * 8 - 1; 1646 maxunequalmcs = 0; 1647 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 1648 if (ic->ic_txstream >= 2) 1649 maxunequalmcs = 38; 1650 if (ic->ic_txstream >= 3) 1651 maxunequalmcs = 52; 1652 if (ic->ic_txstream >= 4) 1653 maxunequalmcs = 76; 1654 } 1655 1656 rs = &ni->ni_htrates; 1657 memset(rs, 0, sizeof(*rs)); 1658 if (ie != NULL) { 1659 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1660 ie += 4; 1661 htcap = (const struct ieee80211_ie_htcap *) ie; 1662 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 1663 if (isclr(htcap->hc_mcsset, i)) 1664 continue; 1665 if (rs->rs_nrates == IEEE80211_HTRATE_MAXSIZE) { 1666 IEEE80211_NOTE(vap, 1667 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 1668 "WARNING, HT rate set too large; only " 1669 "using %u rates", IEEE80211_HTRATE_MAXSIZE); 1670 vap->iv_stats.is_rx_rstoobig++; 1671 break; 1672 } 1673 if (i <= 31 && i > maxequalmcs) 1674 continue; 1675 if (i == 32 && 1676 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0) 1677 continue; 1678 if (i > 32 && i > maxunequalmcs) 1679 continue; 1680 rs->rs_rates[rs->rs_nrates++] = i; 1681 } 1682 } 1683 return ieee80211_fix_rate(ni, (struct ieee80211_rateset *) rs, flags); 1684 } 1685 1686 /* 1687 * Mark rates in a node's HT rate set as basic according 1688 * to the information in the supplied HT info ie. 1689 */ 1690 void 1691 ieee80211_setup_basic_htrates(struct ieee80211_node *ni, const uint8_t *ie) 1692 { 1693 const struct ieee80211_ie_htinfo *htinfo; 1694 struct ieee80211_htrateset *rs; 1695 int i, j; 1696 1697 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1698 ie += 4; 1699 htinfo = (const struct ieee80211_ie_htinfo *) ie; 1700 rs = &ni->ni_htrates; 1701 if (rs->rs_nrates == 0) { 1702 IEEE80211_NOTE(ni->ni_vap, 1703 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 1704 "%s", "WARNING, empty HT rate set"); 1705 return; 1706 } 1707 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 1708 if (isclr(htinfo->hi_basicmcsset, i)) 1709 continue; 1710 for (j = 0; j < rs->rs_nrates; j++) 1711 if ((rs->rs_rates[j] & IEEE80211_RATE_VAL) == i) 1712 rs->rs_rates[j] |= IEEE80211_RATE_BASIC; 1713 } 1714 } 1715 1716 static void 1717 ampdu_tx_setup(struct ieee80211_tx_ampdu *tap) 1718 { 1719 callout_init(&tap->txa_timer, 1); 1720 tap->txa_flags |= IEEE80211_AGGR_SETUP; 1721 tap->txa_lastsample = ticks; 1722 } 1723 1724 static void 1725 ampdu_tx_stop(struct ieee80211_tx_ampdu *tap) 1726 { 1727 struct ieee80211_node *ni = tap->txa_ni; 1728 struct ieee80211com *ic = ni->ni_ic; 1729 1730 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 1731 tap->txa_ni, 1732 "%s: called", 1733 __func__); 1734 1735 KASSERT(tap->txa_flags & IEEE80211_AGGR_SETUP, 1736 ("txa_flags 0x%x tid %d ac %d", tap->txa_flags, tap->txa_tid, 1737 TID_TO_WME_AC(tap->txa_tid))); 1738 1739 /* 1740 * Stop BA stream if setup so driver has a chance 1741 * to reclaim any resources it might have allocated. 1742 */ 1743 ic->ic_addba_stop(ni, tap); 1744 /* 1745 * Stop any pending BAR transmit. 1746 */ 1747 bar_stop_timer(tap); 1748 1749 /* 1750 * Reset packet estimate. 1751 */ 1752 ieee80211_txampdu_init_pps(tap); 1753 1754 /* NB: clearing NAK means we may re-send ADDBA */ 1755 tap->txa_flags &= ~(IEEE80211_AGGR_SETUP | IEEE80211_AGGR_NAK); 1756 } 1757 1758 /* 1759 * ADDBA response timeout. 1760 * 1761 * If software aggregation and per-TID queue management was done here, 1762 * that queue would be unpaused after the ADDBA timeout occurs. 1763 */ 1764 static void 1765 addba_timeout(void *arg) 1766 { 1767 struct ieee80211_tx_ampdu *tap = arg; 1768 struct ieee80211_node *ni = tap->txa_ni; 1769 struct ieee80211com *ic = ni->ni_ic; 1770 1771 /* XXX ? */ 1772 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 1773 tap->txa_attempts++; 1774 ic->ic_addba_response_timeout(ni, tap); 1775 } 1776 1777 static void 1778 addba_start_timeout(struct ieee80211_tx_ampdu *tap) 1779 { 1780 /* XXX use CALLOUT_PENDING instead? */ 1781 callout_reset(&tap->txa_timer, ieee80211_addba_timeout, 1782 addba_timeout, tap); 1783 tap->txa_flags |= IEEE80211_AGGR_XCHGPEND; 1784 tap->txa_nextrequest = ticks + ieee80211_addba_timeout; 1785 } 1786 1787 static void 1788 addba_stop_timeout(struct ieee80211_tx_ampdu *tap) 1789 { 1790 /* XXX use CALLOUT_PENDING instead? */ 1791 if (tap->txa_flags & IEEE80211_AGGR_XCHGPEND) { 1792 callout_stop(&tap->txa_timer); 1793 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 1794 } 1795 } 1796 1797 static void 1798 null_addba_response_timeout(struct ieee80211_node *ni, 1799 struct ieee80211_tx_ampdu *tap) 1800 { 1801 } 1802 1803 /* 1804 * Default method for requesting A-MPDU tx aggregation. 1805 * We setup the specified state block and start a timer 1806 * to wait for an ADDBA response frame. 1807 */ 1808 static int 1809 ieee80211_addba_request(struct ieee80211_node *ni, 1810 struct ieee80211_tx_ampdu *tap, 1811 int dialogtoken, int baparamset, int batimeout) 1812 { 1813 int bufsiz; 1814 1815 /* XXX locking */ 1816 tap->txa_token = dialogtoken; 1817 tap->txa_flags |= IEEE80211_AGGR_IMMEDIATE; 1818 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 1819 tap->txa_wnd = (bufsiz == 0) ? 1820 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 1821 addba_start_timeout(tap); 1822 return 1; 1823 } 1824 1825 /* 1826 * Called by drivers that wish to request an ADDBA session be 1827 * setup. This brings it up and starts the request timer. 1828 */ 1829 int 1830 ieee80211_ampdu_tx_request_ext(struct ieee80211_node *ni, int tid) 1831 { 1832 struct ieee80211_tx_ampdu *tap; 1833 1834 if (tid < 0 || tid > 15) 1835 return (0); 1836 tap = &ni->ni_tx_ampdu[tid]; 1837 1838 /* XXX locking */ 1839 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 1840 /* do deferred setup of state */ 1841 ampdu_tx_setup(tap); 1842 } 1843 /* XXX hack for not doing proper locking */ 1844 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 1845 addba_start_timeout(tap); 1846 return (1); 1847 } 1848 1849 /* 1850 * Called by drivers that have marked a session as active. 1851 */ 1852 int 1853 ieee80211_ampdu_tx_request_active_ext(struct ieee80211_node *ni, int tid, 1854 int status) 1855 { 1856 struct ieee80211_tx_ampdu *tap; 1857 1858 if (tid < 0 || tid > 15) 1859 return (0); 1860 tap = &ni->ni_tx_ampdu[tid]; 1861 1862 /* XXX locking */ 1863 addba_stop_timeout(tap); 1864 if (status == 1) { 1865 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 1866 tap->txa_attempts = 0; 1867 } else { 1868 /* mark tid so we don't try again */ 1869 tap->txa_flags |= IEEE80211_AGGR_NAK; 1870 } 1871 return (1); 1872 } 1873 1874 /* 1875 * Default method for processing an A-MPDU tx aggregation 1876 * response. We shutdown any pending timer and update the 1877 * state block according to the reply. 1878 */ 1879 static int 1880 ieee80211_addba_response(struct ieee80211_node *ni, 1881 struct ieee80211_tx_ampdu *tap, 1882 int status, int baparamset, int batimeout) 1883 { 1884 int bufsiz, tid; 1885 1886 /* XXX locking */ 1887 addba_stop_timeout(tap); 1888 if (status == IEEE80211_STATUS_SUCCESS) { 1889 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 1890 /* XXX override our request? */ 1891 tap->txa_wnd = (bufsiz == 0) ? 1892 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 1893 /* XXX AC/TID */ 1894 tid = MS(baparamset, IEEE80211_BAPS_TID); 1895 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 1896 tap->txa_attempts = 0; 1897 } else { 1898 /* mark tid so we don't try again */ 1899 tap->txa_flags |= IEEE80211_AGGR_NAK; 1900 } 1901 return 1; 1902 } 1903 1904 /* 1905 * Default method for stopping A-MPDU tx aggregation. 1906 * Any timer is cleared and we drain any pending frames. 1907 */ 1908 static void 1909 ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 1910 { 1911 /* XXX locking */ 1912 addba_stop_timeout(tap); 1913 if (tap->txa_flags & IEEE80211_AGGR_RUNNING) { 1914 /* XXX clear aggregation queue */ 1915 tap->txa_flags &= ~IEEE80211_AGGR_RUNNING; 1916 } 1917 tap->txa_attempts = 0; 1918 } 1919 1920 /* 1921 * Process a received action frame using the default aggregation 1922 * policy. We intercept ADDBA-related frames and use them to 1923 * update our aggregation state. All other frames are passed up 1924 * for processing by ieee80211_recv_action. 1925 */ 1926 static int 1927 ht_recv_action_ba_addba_request(struct ieee80211_node *ni, 1928 const struct ieee80211_frame *wh, 1929 const uint8_t *frm, const uint8_t *efrm) 1930 { 1931 struct ieee80211com *ic = ni->ni_ic; 1932 struct ieee80211vap *vap = ni->ni_vap; 1933 struct ieee80211_rx_ampdu *rap; 1934 uint8_t dialogtoken; 1935 uint16_t baparamset, batimeout, baseqctl; 1936 uint16_t args[5]; 1937 int tid; 1938 1939 dialogtoken = frm[2]; 1940 baparamset = le16dec(frm+3); 1941 batimeout = le16dec(frm+5); 1942 baseqctl = le16dec(frm+7); 1943 1944 tid = MS(baparamset, IEEE80211_BAPS_TID); 1945 1946 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 1947 "recv ADDBA request: dialogtoken %u baparamset 0x%x " 1948 "(tid %d bufsiz %d) batimeout %d baseqctl %d:%d", 1949 dialogtoken, baparamset, 1950 tid, MS(baparamset, IEEE80211_BAPS_BUFSIZ), 1951 batimeout, 1952 MS(baseqctl, IEEE80211_BASEQ_START), 1953 MS(baseqctl, IEEE80211_BASEQ_FRAG)); 1954 1955 rap = &ni->ni_rx_ampdu[tid]; 1956 1957 /* Send ADDBA response */ 1958 args[0] = dialogtoken; 1959 /* 1960 * NB: We ack only if the sta associated with HT and 1961 * the ap is configured to do AMPDU rx (the latter 1962 * violates the 11n spec and is mostly for testing). 1963 */ 1964 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_RX) && 1965 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX)) { 1966 /* XXX handle ampdu_rx_start failure */ 1967 ic->ic_ampdu_rx_start(ni, rap, 1968 baparamset, batimeout, baseqctl); 1969 1970 args[1] = IEEE80211_STATUS_SUCCESS; 1971 } else { 1972 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 1973 ni, "reject ADDBA request: %s", 1974 ni->ni_flags & IEEE80211_NODE_AMPDU_RX ? 1975 "administratively disabled" : 1976 "not negotiated for station"); 1977 vap->iv_stats.is_addba_reject++; 1978 args[1] = IEEE80211_STATUS_UNSPECIFIED; 1979 } 1980 /* XXX honor rap flags? */ 1981 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 1982 | SM(tid, IEEE80211_BAPS_TID) 1983 | SM(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ) 1984 ; 1985 args[3] = 0; 1986 args[4] = 0; 1987 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 1988 IEEE80211_ACTION_BA_ADDBA_RESPONSE, args); 1989 return 0; 1990 } 1991 1992 static int 1993 ht_recv_action_ba_addba_response(struct ieee80211_node *ni, 1994 const struct ieee80211_frame *wh, 1995 const uint8_t *frm, const uint8_t *efrm) 1996 { 1997 struct ieee80211com *ic = ni->ni_ic; 1998 struct ieee80211vap *vap = ni->ni_vap; 1999 struct ieee80211_tx_ampdu *tap; 2000 uint8_t dialogtoken, policy; 2001 uint16_t baparamset, batimeout, code; 2002 int tid, bufsiz; 2003 2004 dialogtoken = frm[2]; 2005 code = le16dec(frm+3); 2006 baparamset = le16dec(frm+5); 2007 tid = MS(baparamset, IEEE80211_BAPS_TID); 2008 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 2009 policy = MS(baparamset, IEEE80211_BAPS_POLICY); 2010 batimeout = le16dec(frm+7); 2011 2012 tap = &ni->ni_tx_ampdu[tid]; 2013 if ((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 2014 IEEE80211_DISCARD_MAC(vap, 2015 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2016 ni->ni_macaddr, "ADDBA response", 2017 "no pending ADDBA, tid %d dialogtoken %u " 2018 "code %d", tid, dialogtoken, code); 2019 vap->iv_stats.is_addba_norequest++; 2020 return 0; 2021 } 2022 if (dialogtoken != tap->txa_token) { 2023 IEEE80211_DISCARD_MAC(vap, 2024 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2025 ni->ni_macaddr, "ADDBA response", 2026 "dialogtoken mismatch: waiting for %d, " 2027 "received %d, tid %d code %d", 2028 tap->txa_token, dialogtoken, tid, code); 2029 vap->iv_stats.is_addba_badtoken++; 2030 return 0; 2031 } 2032 /* NB: assumes IEEE80211_AGGR_IMMEDIATE is 1 */ 2033 if (policy != (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE)) { 2034 IEEE80211_DISCARD_MAC(vap, 2035 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2036 ni->ni_macaddr, "ADDBA response", 2037 "policy mismatch: expecting %s, " 2038 "received %s, tid %d code %d", 2039 tap->txa_flags & IEEE80211_AGGR_IMMEDIATE, 2040 policy, tid, code); 2041 vap->iv_stats.is_addba_badpolicy++; 2042 return 0; 2043 } 2044 #if 0 2045 /* XXX we take MIN in ieee80211_addba_response */ 2046 if (bufsiz > IEEE80211_AGGR_BAWMAX) { 2047 IEEE80211_DISCARD_MAC(vap, 2048 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2049 ni->ni_macaddr, "ADDBA response", 2050 "BA window too large: max %d, " 2051 "received %d, tid %d code %d", 2052 bufsiz, IEEE80211_AGGR_BAWMAX, tid, code); 2053 vap->iv_stats.is_addba_badbawinsize++; 2054 return 0; 2055 } 2056 #endif 2057 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2058 "recv ADDBA response: dialogtoken %u code %d " 2059 "baparamset 0x%x (tid %d bufsiz %d) batimeout %d", 2060 dialogtoken, code, baparamset, tid, bufsiz, 2061 batimeout); 2062 ic->ic_addba_response(ni, tap, code, baparamset, batimeout); 2063 return 0; 2064 } 2065 2066 static int 2067 ht_recv_action_ba_delba(struct ieee80211_node *ni, 2068 const struct ieee80211_frame *wh, 2069 const uint8_t *frm, const uint8_t *efrm) 2070 { 2071 struct ieee80211com *ic = ni->ni_ic; 2072 struct ieee80211_rx_ampdu *rap; 2073 struct ieee80211_tx_ampdu *tap; 2074 uint16_t baparamset, code; 2075 int tid; 2076 2077 baparamset = le16dec(frm+2); 2078 code = le16dec(frm+4); 2079 2080 tid = MS(baparamset, IEEE80211_DELBAPS_TID); 2081 2082 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2083 "recv DELBA: baparamset 0x%x (tid %d initiator %d) " 2084 "code %d", baparamset, tid, 2085 MS(baparamset, IEEE80211_DELBAPS_INIT), code); 2086 2087 if ((baparamset & IEEE80211_DELBAPS_INIT) == 0) { 2088 tap = &ni->ni_tx_ampdu[tid]; 2089 ic->ic_addba_stop(ni, tap); 2090 } else { 2091 rap = &ni->ni_rx_ampdu[tid]; 2092 ic->ic_ampdu_rx_stop(ni, rap); 2093 } 2094 return 0; 2095 } 2096 2097 static int 2098 ht_recv_action_ht_txchwidth(struct ieee80211_node *ni, 2099 const struct ieee80211_frame *wh, 2100 const uint8_t *frm, const uint8_t *efrm) 2101 { 2102 int chw; 2103 2104 chw = (frm[2] == IEEE80211_A_HT_TXCHWIDTH_2040) ? 40 : 20; 2105 2106 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2107 "%s: HT txchwidth, width %d%s", 2108 __func__, chw, ni->ni_chw != chw ? "*" : ""); 2109 if (chw != ni->ni_chw) { 2110 ni->ni_chw = chw; 2111 /* XXX notify on change */ 2112 } 2113 return 0; 2114 } 2115 2116 static int 2117 ht_recv_action_ht_mimopwrsave(struct ieee80211_node *ni, 2118 const struct ieee80211_frame *wh, 2119 const uint8_t *frm, const uint8_t *efrm) 2120 { 2121 const struct ieee80211_action_ht_mimopowersave *mps = 2122 (const struct ieee80211_action_ht_mimopowersave *) frm; 2123 2124 /* XXX check iv_htcaps */ 2125 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA) 2126 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 2127 else 2128 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 2129 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_MODE) 2130 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 2131 else 2132 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 2133 /* XXX notify on change */ 2134 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2135 "%s: HT MIMO PS (%s%s)", __func__, 2136 (ni->ni_flags & IEEE80211_NODE_MIMO_PS) ? "on" : "off", 2137 (ni->ni_flags & IEEE80211_NODE_MIMO_RTS) ? "+rts" : "" 2138 ); 2139 return 0; 2140 } 2141 2142 /* 2143 * Transmit processing. 2144 */ 2145 2146 /* 2147 * Check if A-MPDU should be requested/enabled for a stream. 2148 * We require a traffic rate above a per-AC threshold and we 2149 * also handle backoff from previous failed attempts. 2150 * 2151 * Drivers may override this method to bring in information 2152 * such as link state conditions in making the decision. 2153 */ 2154 static int 2155 ieee80211_ampdu_enable(struct ieee80211_node *ni, 2156 struct ieee80211_tx_ampdu *tap) 2157 { 2158 struct ieee80211vap *vap = ni->ni_vap; 2159 2160 if (tap->txa_avgpps < 2161 vap->iv_ampdu_mintraffic[TID_TO_WME_AC(tap->txa_tid)]) 2162 return 0; 2163 /* XXX check rssi? */ 2164 if (tap->txa_attempts >= ieee80211_addba_maxtries && 2165 ieee80211_time_after(ticks, tap->txa_nextrequest)) { 2166 /* 2167 * Don't retry too often; txa_nextrequest is set 2168 * to the minimum interval we'll retry after 2169 * ieee80211_addba_maxtries failed attempts are made. 2170 */ 2171 return 0; 2172 } 2173 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 2174 "enable AMPDU on tid %d (%s), avgpps %d pkts %d attempt %d", 2175 tap->txa_tid, ieee80211_wme_acnames[TID_TO_WME_AC(tap->txa_tid)], 2176 tap->txa_avgpps, tap->txa_pkts, tap->txa_attempts); 2177 return 1; 2178 } 2179 2180 /* 2181 * Request A-MPDU tx aggregation. Setup local state and 2182 * issue an ADDBA request. BA use will only happen after 2183 * the other end replies with ADDBA response. 2184 */ 2185 int 2186 ieee80211_ampdu_request(struct ieee80211_node *ni, 2187 struct ieee80211_tx_ampdu *tap) 2188 { 2189 struct ieee80211com *ic = ni->ni_ic; 2190 uint16_t args[5]; 2191 int tid, dialogtoken; 2192 static int tokens = 0; /* XXX */ 2193 2194 /* XXX locking */ 2195 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 2196 /* do deferred setup of state */ 2197 ampdu_tx_setup(tap); 2198 } 2199 /* XXX hack for not doing proper locking */ 2200 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 2201 2202 dialogtoken = (tokens+1) % 63; /* XXX */ 2203 tid = tap->txa_tid; 2204 tap->txa_start = ni->ni_txseqs[tid]; 2205 2206 args[0] = dialogtoken; 2207 args[1] = 0; /* NB: status code not used */ 2208 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 2209 | SM(tid, IEEE80211_BAPS_TID) 2210 | SM(IEEE80211_AGGR_BAWMAX, IEEE80211_BAPS_BUFSIZ) 2211 ; 2212 args[3] = 0; /* batimeout */ 2213 /* NB: do first so there's no race against reply */ 2214 if (!ic->ic_addba_request(ni, tap, dialogtoken, args[2], args[3])) { 2215 /* unable to setup state, don't make request */ 2216 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2217 ni, "%s: could not setup BA stream for TID %d AC %d", 2218 __func__, tap->txa_tid, TID_TO_WME_AC(tap->txa_tid)); 2219 /* defer next try so we don't slam the driver with requests */ 2220 tap->txa_attempts = ieee80211_addba_maxtries; 2221 /* NB: check in case driver wants to override */ 2222 if (tap->txa_nextrequest <= ticks) 2223 tap->txa_nextrequest = ticks + ieee80211_addba_backoff; 2224 return 0; 2225 } 2226 tokens = dialogtoken; /* allocate token */ 2227 /* NB: after calling ic_addba_request so driver can set txa_start */ 2228 args[4] = SM(tap->txa_start, IEEE80211_BASEQ_START) 2229 | SM(0, IEEE80211_BASEQ_FRAG) 2230 ; 2231 return ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2232 IEEE80211_ACTION_BA_ADDBA_REQUEST, args); 2233 } 2234 2235 /* 2236 * Terminate an AMPDU tx stream. State is reclaimed 2237 * and the peer notified with a DelBA Action frame. 2238 */ 2239 void 2240 ieee80211_ampdu_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 2241 int reason) 2242 { 2243 struct ieee80211com *ic = ni->ni_ic; 2244 struct ieee80211vap *vap = ni->ni_vap; 2245 uint16_t args[4]; 2246 2247 /* XXX locking */ 2248 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2249 if (IEEE80211_AMPDU_RUNNING(tap)) { 2250 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2251 ni, "%s: stop BA stream for TID %d (reason: %d (%s))", 2252 __func__, tap->txa_tid, reason, 2253 ieee80211_reason_to_string(reason)); 2254 vap->iv_stats.is_ampdu_stop++; 2255 2256 ic->ic_addba_stop(ni, tap); 2257 args[0] = tap->txa_tid; 2258 args[1] = IEEE80211_DELBAPS_INIT; 2259 args[2] = reason; /* XXX reason code */ 2260 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2261 IEEE80211_ACTION_BA_DELBA, args); 2262 } else { 2263 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2264 ni, "%s: BA stream for TID %d not running " 2265 "(reason: %d (%s))", __func__, tap->txa_tid, reason, 2266 ieee80211_reason_to_string(reason)); 2267 vap->iv_stats.is_ampdu_stop_failed++; 2268 } 2269 } 2270 2271 /* XXX */ 2272 static void bar_start_timer(struct ieee80211_tx_ampdu *tap); 2273 2274 static void 2275 bar_timeout(void *arg) 2276 { 2277 struct ieee80211_tx_ampdu *tap = arg; 2278 struct ieee80211_node *ni = tap->txa_ni; 2279 2280 KASSERT((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0, 2281 ("bar/addba collision, flags 0x%x", tap->txa_flags)); 2282 2283 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2284 ni, "%s: tid %u flags 0x%x attempts %d", __func__, 2285 tap->txa_tid, tap->txa_flags, tap->txa_attempts); 2286 2287 /* guard against race with bar_tx_complete */ 2288 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2289 return; 2290 /* XXX ? */ 2291 if (tap->txa_attempts >= ieee80211_bar_maxtries) { 2292 struct ieee80211com *ic = ni->ni_ic; 2293 2294 ni->ni_vap->iv_stats.is_ampdu_bar_tx_fail++; 2295 /* 2296 * If (at least) the last BAR TX timeout was due to 2297 * an ieee80211_send_bar() failures, then we need 2298 * to make sure we notify the driver that a BAR 2299 * TX did occur and fail. This gives the driver 2300 * a chance to undo any queue pause that may 2301 * have occurred. 2302 */ 2303 ic->ic_bar_response(ni, tap, 1); 2304 ieee80211_ampdu_stop(ni, tap, IEEE80211_REASON_TIMEOUT); 2305 } else { 2306 ni->ni_vap->iv_stats.is_ampdu_bar_tx_retry++; 2307 if (ieee80211_send_bar(ni, tap, tap->txa_seqpending) != 0) { 2308 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2309 ni, "%s: failed to TX, starting timer\n", 2310 __func__); 2311 /* 2312 * If ieee80211_send_bar() fails here, the 2313 * timer may have stopped and/or the pending 2314 * flag may be clear. Because of this, 2315 * fake the BARPEND and reset the timer. 2316 * A retransmission attempt will then occur 2317 * during the next timeout. 2318 */ 2319 /* XXX locking */ 2320 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2321 bar_start_timer(tap); 2322 } 2323 } 2324 } 2325 2326 static void 2327 bar_start_timer(struct ieee80211_tx_ampdu *tap) 2328 { 2329 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2330 tap->txa_ni, 2331 "%s: called", 2332 __func__); 2333 callout_reset(&tap->txa_timer, ieee80211_bar_timeout, bar_timeout, tap); 2334 } 2335 2336 static void 2337 bar_stop_timer(struct ieee80211_tx_ampdu *tap) 2338 { 2339 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2340 tap->txa_ni, 2341 "%s: called", 2342 __func__); 2343 callout_stop(&tap->txa_timer); 2344 } 2345 2346 static void 2347 bar_tx_complete(struct ieee80211_node *ni, void *arg, int status) 2348 { 2349 struct ieee80211_tx_ampdu *tap = arg; 2350 2351 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2352 ni, "%s: tid %u flags 0x%x pending %d status %d", 2353 __func__, tap->txa_tid, tap->txa_flags, 2354 callout_pending(&tap->txa_timer), status); 2355 2356 ni->ni_vap->iv_stats.is_ampdu_bar_tx++; 2357 /* XXX locking */ 2358 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) && 2359 callout_pending(&tap->txa_timer)) { 2360 struct ieee80211com *ic = ni->ni_ic; 2361 2362 if (status == 0) /* ACK'd */ 2363 bar_stop_timer(tap); 2364 ic->ic_bar_response(ni, tap, status); 2365 /* NB: just let timer expire so we pace requests */ 2366 } 2367 } 2368 2369 static void 2370 ieee80211_bar_response(struct ieee80211_node *ni, 2371 struct ieee80211_tx_ampdu *tap, int status) 2372 { 2373 2374 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2375 tap->txa_ni, 2376 "%s: called", 2377 __func__); 2378 if (status == 0) { /* got ACK */ 2379 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2380 ni, "BAR moves BA win <%u:%u> (%u frames) txseq %u tid %u", 2381 tap->txa_start, 2382 IEEE80211_SEQ_ADD(tap->txa_start, tap->txa_wnd-1), 2383 tap->txa_qframes, tap->txa_seqpending, 2384 tap->txa_tid); 2385 2386 /* NB: timer already stopped in bar_tx_complete */ 2387 tap->txa_start = tap->txa_seqpending; 2388 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2389 } 2390 } 2391 2392 /* 2393 * Transmit a BAR frame to the specified node. The 2394 * BAR contents are drawn from the supplied aggregation 2395 * state associated with the node. 2396 * 2397 * NB: we only handle immediate ACK w/ compressed bitmap. 2398 */ 2399 int 2400 ieee80211_send_bar(struct ieee80211_node *ni, 2401 struct ieee80211_tx_ampdu *tap, ieee80211_seq seq) 2402 { 2403 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2404 struct ieee80211vap *vap = ni->ni_vap; 2405 struct ieee80211com *ic = ni->ni_ic; 2406 struct ieee80211_frame_bar *bar; 2407 struct mbuf *m; 2408 uint16_t barctl, barseqctl; 2409 uint8_t *frm; 2410 int tid, ret; 2411 2412 2413 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2414 tap->txa_ni, 2415 "%s: called", 2416 __func__); 2417 2418 if ((tap->txa_flags & IEEE80211_AGGR_RUNNING) == 0) { 2419 /* no ADDBA response, should not happen */ 2420 /* XXX stat+msg */ 2421 return EINVAL; 2422 } 2423 /* XXX locking */ 2424 bar_stop_timer(tap); 2425 2426 ieee80211_ref_node(ni); 2427 2428 m = ieee80211_getmgtframe(&frm, ic->ic_headroom, sizeof(*bar)); 2429 if (m == NULL) 2430 senderr(ENOMEM, is_tx_nobuf); 2431 2432 if (!ieee80211_add_callback(m, bar_tx_complete, tap)) { 2433 m_freem(m); 2434 senderr(ENOMEM, is_tx_nobuf); /* XXX */ 2435 /* NOTREACHED */ 2436 } 2437 2438 bar = mtod(m, struct ieee80211_frame_bar *); 2439 bar->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2440 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR; 2441 bar->i_fc[1] = 0; 2442 IEEE80211_ADDR_COPY(bar->i_ra, ni->ni_macaddr); 2443 IEEE80211_ADDR_COPY(bar->i_ta, vap->iv_myaddr); 2444 2445 tid = tap->txa_tid; 2446 barctl = (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE ? 2447 0 : IEEE80211_BAR_NOACK) 2448 | IEEE80211_BAR_COMP 2449 | SM(tid, IEEE80211_BAR_TID) 2450 ; 2451 barseqctl = SM(seq, IEEE80211_BAR_SEQ_START); 2452 /* NB: known to have proper alignment */ 2453 bar->i_ctl = htole16(barctl); 2454 bar->i_seq = htole16(barseqctl); 2455 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_bar); 2456 2457 M_WME_SETAC(m, WME_AC_VO); 2458 2459 IEEE80211_NODE_STAT(ni, tx_mgmt); /* XXX tx_ctl? */ 2460 2461 /* XXX locking */ 2462 /* init/bump attempts counter */ 2463 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2464 tap->txa_attempts = 1; 2465 else 2466 tap->txa_attempts++; 2467 tap->txa_seqpending = seq; 2468 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2469 2470 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2471 ni, "send BAR: tid %u ctl 0x%x start %u (attempt %d)", 2472 tid, barctl, seq, tap->txa_attempts); 2473 2474 /* 2475 * ic_raw_xmit will free the node reference 2476 * regardless of queue/TX success or failure. 2477 */ 2478 IEEE80211_TX_LOCK(ic); 2479 ret = ieee80211_raw_output(vap, ni, m, NULL); 2480 IEEE80211_TX_UNLOCK(ic); 2481 if (ret != 0) { 2482 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2483 ni, "send BAR: failed: (ret = %d)\n", 2484 ret); 2485 /* xmit failed, clear state flag */ 2486 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2487 vap->iv_stats.is_ampdu_bar_tx_fail++; 2488 return ret; 2489 } 2490 /* XXX hack against tx complete happening before timer is started */ 2491 if (tap->txa_flags & IEEE80211_AGGR_BARPEND) 2492 bar_start_timer(tap); 2493 return 0; 2494 bad: 2495 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2496 tap->txa_ni, 2497 "%s: bad! ret=%d", 2498 __func__, ret); 2499 vap->iv_stats.is_ampdu_bar_tx_fail++; 2500 ieee80211_free_node(ni); 2501 return ret; 2502 #undef senderr 2503 } 2504 2505 static int 2506 ht_action_output(struct ieee80211_node *ni, struct mbuf *m) 2507 { 2508 struct ieee80211_bpf_params params; 2509 2510 memset(¶ms, 0, sizeof(params)); 2511 params.ibp_pri = WME_AC_VO; 2512 params.ibp_rate0 = ni->ni_txparms->mgmtrate; 2513 /* NB: we know all frames are unicast */ 2514 params.ibp_try0 = ni->ni_txparms->maxretry; 2515 params.ibp_power = ni->ni_txpower; 2516 return ieee80211_mgmt_output(ni, m, IEEE80211_FC0_SUBTYPE_ACTION, 2517 ¶ms); 2518 } 2519 2520 #define ADDSHORT(frm, v) do { \ 2521 frm[0] = (v) & 0xff; \ 2522 frm[1] = (v) >> 8; \ 2523 frm += 2; \ 2524 } while (0) 2525 2526 /* 2527 * Send an action management frame. The arguments are stuff 2528 * into a frame without inspection; the caller is assumed to 2529 * prepare them carefully (e.g. based on the aggregation state). 2530 */ 2531 static int 2532 ht_send_action_ba_addba(struct ieee80211_node *ni, 2533 int category, int action, void *arg0) 2534 { 2535 struct ieee80211vap *vap = ni->ni_vap; 2536 struct ieee80211com *ic = ni->ni_ic; 2537 uint16_t *args = arg0; 2538 struct mbuf *m; 2539 uint8_t *frm; 2540 2541 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2542 "send ADDBA %s: dialogtoken %d status %d " 2543 "baparamset 0x%x (tid %d) batimeout 0x%x baseqctl 0x%x", 2544 (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ? 2545 "request" : "response", 2546 args[0], args[1], args[2], MS(args[2], IEEE80211_BAPS_TID), 2547 args[3], args[4]); 2548 2549 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2550 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2551 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2552 ieee80211_ref_node(ni); 2553 2554 m = ieee80211_getmgtframe(&frm, 2555 ic->ic_headroom + sizeof(struct ieee80211_frame), 2556 sizeof(uint16_t) /* action+category */ 2557 /* XXX may action payload */ 2558 + sizeof(struct ieee80211_action_ba_addbaresponse) 2559 ); 2560 if (m != NULL) { 2561 *frm++ = category; 2562 *frm++ = action; 2563 *frm++ = args[0]; /* dialog token */ 2564 if (action == IEEE80211_ACTION_BA_ADDBA_RESPONSE) 2565 ADDSHORT(frm, args[1]); /* status code */ 2566 ADDSHORT(frm, args[2]); /* baparamset */ 2567 ADDSHORT(frm, args[3]); /* batimeout */ 2568 if (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) 2569 ADDSHORT(frm, args[4]); /* baseqctl */ 2570 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2571 return ht_action_output(ni, m); 2572 } else { 2573 vap->iv_stats.is_tx_nobuf++; 2574 ieee80211_free_node(ni); 2575 return ENOMEM; 2576 } 2577 } 2578 2579 static int 2580 ht_send_action_ba_delba(struct ieee80211_node *ni, 2581 int category, int action, void *arg0) 2582 { 2583 struct ieee80211vap *vap = ni->ni_vap; 2584 struct ieee80211com *ic = ni->ni_ic; 2585 uint16_t *args = arg0; 2586 struct mbuf *m; 2587 uint16_t baparamset; 2588 uint8_t *frm; 2589 2590 baparamset = SM(args[0], IEEE80211_DELBAPS_TID) 2591 | args[1] 2592 ; 2593 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2594 "send DELBA action: tid %d, initiator %d reason %d (%s)", 2595 args[0], args[1], args[2], ieee80211_reason_to_string(args[2])); 2596 2597 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2598 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2599 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2600 ieee80211_ref_node(ni); 2601 2602 m = ieee80211_getmgtframe(&frm, 2603 ic->ic_headroom + sizeof(struct ieee80211_frame), 2604 sizeof(uint16_t) /* action+category */ 2605 /* XXX may action payload */ 2606 + sizeof(struct ieee80211_action_ba_addbaresponse) 2607 ); 2608 if (m != NULL) { 2609 *frm++ = category; 2610 *frm++ = action; 2611 ADDSHORT(frm, baparamset); 2612 ADDSHORT(frm, args[2]); /* reason code */ 2613 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2614 return ht_action_output(ni, m); 2615 } else { 2616 vap->iv_stats.is_tx_nobuf++; 2617 ieee80211_free_node(ni); 2618 return ENOMEM; 2619 } 2620 } 2621 2622 static int 2623 ht_send_action_ht_txchwidth(struct ieee80211_node *ni, 2624 int category, int action, void *arg0) 2625 { 2626 struct ieee80211vap *vap = ni->ni_vap; 2627 struct ieee80211com *ic = ni->ni_ic; 2628 struct mbuf *m; 2629 uint8_t *frm; 2630 2631 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2632 "send HT txchwidth: width %d", 2633 IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 40 : 20); 2634 2635 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2636 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2637 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2638 ieee80211_ref_node(ni); 2639 2640 m = ieee80211_getmgtframe(&frm, 2641 ic->ic_headroom + sizeof(struct ieee80211_frame), 2642 sizeof(uint16_t) /* action+category */ 2643 /* XXX may action payload */ 2644 + sizeof(struct ieee80211_action_ba_addbaresponse) 2645 ); 2646 if (m != NULL) { 2647 *frm++ = category; 2648 *frm++ = action; 2649 *frm++ = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 2650 IEEE80211_A_HT_TXCHWIDTH_2040 : 2651 IEEE80211_A_HT_TXCHWIDTH_20; 2652 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2653 return ht_action_output(ni, m); 2654 } else { 2655 vap->iv_stats.is_tx_nobuf++; 2656 ieee80211_free_node(ni); 2657 return ENOMEM; 2658 } 2659 } 2660 #undef ADDSHORT 2661 2662 /* 2663 * Construct the MCS bit mask for inclusion in an HT capabilities 2664 * information element. 2665 */ 2666 static void 2667 ieee80211_set_mcsset(struct ieee80211com *ic, uint8_t *frm) 2668 { 2669 int i; 2670 uint8_t txparams; 2671 2672 KASSERT((ic->ic_rxstream > 0 && ic->ic_rxstream <= 4), 2673 ("ic_rxstream %d out of range", ic->ic_rxstream)); 2674 KASSERT((ic->ic_txstream > 0 && ic->ic_txstream <= 4), 2675 ("ic_txstream %d out of range", ic->ic_txstream)); 2676 2677 for (i = 0; i < ic->ic_rxstream * 8; i++) 2678 setbit(frm, i); 2679 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 2680 (ic->ic_htcaps & IEEE80211_HTC_RXMCS32)) 2681 setbit(frm, 32); 2682 if (ic->ic_htcaps & IEEE80211_HTC_RXUNEQUAL) { 2683 if (ic->ic_rxstream >= 2) { 2684 for (i = 33; i <= 38; i++) 2685 setbit(frm, i); 2686 } 2687 if (ic->ic_rxstream >= 3) { 2688 for (i = 39; i <= 52; i++) 2689 setbit(frm, i); 2690 } 2691 if (ic->ic_txstream >= 4) { 2692 for (i = 53; i <= 76; i++) 2693 setbit(frm, i); 2694 } 2695 } 2696 2697 if (ic->ic_rxstream != ic->ic_txstream) { 2698 txparams = 0x1; /* TX MCS set defined */ 2699 txparams |= 0x2; /* TX RX MCS not equal */ 2700 txparams |= (ic->ic_txstream - 1) << 2; /* num TX streams */ 2701 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) 2702 txparams |= 0x16; /* TX unequal modulation sup */ 2703 } else 2704 txparams = 0; 2705 frm[12] = txparams; 2706 } 2707 2708 /* 2709 * Add body of an HTCAP information element. 2710 */ 2711 static uint8_t * 2712 ieee80211_add_htcap_body(uint8_t *frm, struct ieee80211_node *ni) 2713 { 2714 #define ADDSHORT(frm, v) do { \ 2715 frm[0] = (v) & 0xff; \ 2716 frm[1] = (v) >> 8; \ 2717 frm += 2; \ 2718 } while (0) 2719 struct ieee80211com *ic = ni->ni_ic; 2720 struct ieee80211vap *vap = ni->ni_vap; 2721 uint16_t caps, extcaps; 2722 int rxmax, density; 2723 2724 /* HT capabilities */ 2725 caps = vap->iv_htcaps & 0xffff; 2726 /* 2727 * Note channel width depends on whether we are operating as 2728 * a sta or not. When operating as a sta we are generating 2729 * a request based on our desired configuration. Otherwise 2730 * we are operational and the channel attributes identify 2731 * how we've been setup (which might be different if a fixed 2732 * channel is specified). 2733 */ 2734 if (vap->iv_opmode == IEEE80211_M_STA) { 2735 /* override 20/40 use based on config */ 2736 if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40) 2737 caps |= IEEE80211_HTCAP_CHWIDTH40; 2738 else 2739 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2740 2741 /* Start by using the advertised settings */ 2742 rxmax = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU); 2743 density = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY); 2744 2745 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, 2746 "%s: advertised rxmax=%d, density=%d, vap rxmax=%d, density=%d\n", 2747 __func__, 2748 rxmax, 2749 density, 2750 vap->iv_ampdu_rxmax, 2751 vap->iv_ampdu_density); 2752 2753 /* Cap at VAP rxmax */ 2754 if (rxmax > vap->iv_ampdu_rxmax) 2755 rxmax = vap->iv_ampdu_rxmax; 2756 2757 /* 2758 * If the VAP ampdu density value greater, use that. 2759 * 2760 * (Larger density value == larger minimum gap between A-MPDU 2761 * subframes.) 2762 */ 2763 if (vap->iv_ampdu_density > density) 2764 density = vap->iv_ampdu_density; 2765 2766 /* 2767 * NB: Hardware might support HT40 on some but not all 2768 * channels. We can't determine this earlier because only 2769 * after association the channel is upgraded to HT based 2770 * on the negotiated capabilities. 2771 */ 2772 if (ni->ni_chan != IEEE80211_CHAN_ANYC && 2773 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40U) == NULL && 2774 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40D) == NULL) 2775 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2776 } else { 2777 /* override 20/40 use based on current channel */ 2778 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 2779 caps |= IEEE80211_HTCAP_CHWIDTH40; 2780 else 2781 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2782 2783 /* XXX TODO should it start by using advertised settings? */ 2784 rxmax = vap->iv_ampdu_rxmax; 2785 density = vap->iv_ampdu_density; 2786 } 2787 2788 /* adjust short GI based on channel and config */ 2789 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) 2790 caps &= ~IEEE80211_HTCAP_SHORTGI20; 2791 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || 2792 (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) 2793 caps &= ~IEEE80211_HTCAP_SHORTGI40; 2794 2795 /* adjust STBC based on receive capabilities */ 2796 if ((vap->iv_flags_ht & IEEE80211_FHT_STBC_RX) == 0) 2797 caps &= ~IEEE80211_HTCAP_RXSTBC; 2798 2799 /* XXX TODO: adjust LDPC based on receive capabilities */ 2800 2801 ADDSHORT(frm, caps); 2802 2803 /* HT parameters */ 2804 *frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) 2805 | SM(density, IEEE80211_HTCAP_MPDUDENSITY) 2806 ; 2807 frm++; 2808 2809 /* pre-zero remainder of ie */ 2810 memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - 2811 __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); 2812 2813 /* supported MCS set */ 2814 /* 2815 * XXX: For sta mode the rate set should be restricted based 2816 * on the AP's capabilities, but ni_htrates isn't setup when 2817 * we're called to form an AssocReq frame so for now we're 2818 * restricted to the device capabilities. 2819 */ 2820 ieee80211_set_mcsset(ni->ni_ic, frm); 2821 2822 frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - 2823 __offsetof(struct ieee80211_ie_htcap, hc_mcsset); 2824 2825 /* HT extended capabilities */ 2826 extcaps = vap->iv_htextcaps & 0xffff; 2827 2828 ADDSHORT(frm, extcaps); 2829 2830 frm += sizeof(struct ieee80211_ie_htcap) - 2831 __offsetof(struct ieee80211_ie_htcap, hc_txbf); 2832 2833 return frm; 2834 #undef ADDSHORT 2835 } 2836 2837 /* 2838 * Add 802.11n HT capabilities information element 2839 */ 2840 uint8_t * 2841 ieee80211_add_htcap(uint8_t *frm, struct ieee80211_node *ni) 2842 { 2843 frm[0] = IEEE80211_ELEMID_HTCAP; 2844 frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; 2845 return ieee80211_add_htcap_body(frm + 2, ni); 2846 } 2847 2848 /* 2849 * Add Broadcom OUI wrapped standard HTCAP ie; this is 2850 * used for compatibility w/ pre-draft implementations. 2851 */ 2852 uint8_t * 2853 ieee80211_add_htcap_vendor(uint8_t *frm, struct ieee80211_node *ni) 2854 { 2855 frm[0] = IEEE80211_ELEMID_VENDOR; 2856 frm[1] = 4 + sizeof(struct ieee80211_ie_htcap) - 2; 2857 frm[2] = (BCM_OUI >> 0) & 0xff; 2858 frm[3] = (BCM_OUI >> 8) & 0xff; 2859 frm[4] = (BCM_OUI >> 16) & 0xff; 2860 frm[5] = BCM_OUI_HTCAP; 2861 return ieee80211_add_htcap_body(frm + 6, ni); 2862 } 2863 2864 /* 2865 * Construct the MCS bit mask of basic rates 2866 * for inclusion in an HT information element. 2867 */ 2868 static void 2869 ieee80211_set_basic_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs) 2870 { 2871 int i; 2872 2873 for (i = 0; i < rs->rs_nrates; i++) { 2874 int r = rs->rs_rates[i] & IEEE80211_RATE_VAL; 2875 if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) && 2876 r < IEEE80211_HTRATE_MAXSIZE) { 2877 /* NB: this assumes a particular implementation */ 2878 setbit(frm, r); 2879 } 2880 } 2881 } 2882 2883 /* 2884 * Update the HTINFO ie for a beacon frame. 2885 */ 2886 void 2887 ieee80211_ht_update_beacon(struct ieee80211vap *vap, 2888 struct ieee80211_beacon_offsets *bo) 2889 { 2890 #define PROTMODE (IEEE80211_HTINFO_OPMODE|IEEE80211_HTINFO_NONHT_PRESENT) 2891 struct ieee80211_node *ni; 2892 const struct ieee80211_channel *bsschan; 2893 struct ieee80211com *ic = vap->iv_ic; 2894 struct ieee80211_ie_htinfo *ht = 2895 (struct ieee80211_ie_htinfo *) bo->bo_htinfo; 2896 2897 ni = ieee80211_ref_node(vap->iv_bss); 2898 bsschan = ni->ni_chan; 2899 2900 /* XXX only update on channel change */ 2901 ht->hi_ctrlchannel = ieee80211_chan2ieee(ic, bsschan); 2902 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 2903 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PERM; 2904 else 2905 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PROH; 2906 if (IEEE80211_IS_CHAN_HT40U(bsschan)) 2907 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 2908 else if (IEEE80211_IS_CHAN_HT40D(bsschan)) 2909 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_BELOW; 2910 else 2911 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_NONE; 2912 if (IEEE80211_IS_CHAN_HT40(bsschan)) 2913 ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040; 2914 2915 /* protection mode */ 2916 ht->hi_byte2 = (ht->hi_byte2 &~ PROTMODE) | ic->ic_curhtprotmode; 2917 2918 ieee80211_free_node(ni); 2919 2920 /* XXX propagate to vendor ie's */ 2921 #undef PROTMODE 2922 } 2923 2924 /* 2925 * Add body of an HTINFO information element. 2926 * 2927 * NB: We don't use struct ieee80211_ie_htinfo because we can 2928 * be called to fillin both a standard ie and a compat ie that 2929 * has a vendor OUI at the front. 2930 */ 2931 static uint8_t * 2932 ieee80211_add_htinfo_body(uint8_t *frm, struct ieee80211_node *ni) 2933 { 2934 struct ieee80211vap *vap = ni->ni_vap; 2935 struct ieee80211com *ic = ni->ni_ic; 2936 2937 /* pre-zero remainder of ie */ 2938 memset(frm, 0, sizeof(struct ieee80211_ie_htinfo) - 2); 2939 2940 /* primary/control channel center */ 2941 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 2942 2943 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 2944 frm[0] = IEEE80211_HTINFO_RIFSMODE_PERM; 2945 else 2946 frm[0] = IEEE80211_HTINFO_RIFSMODE_PROH; 2947 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 2948 frm[0] |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 2949 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 2950 frm[0] |= IEEE80211_HTINFO_2NDCHAN_BELOW; 2951 else 2952 frm[0] |= IEEE80211_HTINFO_2NDCHAN_NONE; 2953 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 2954 frm[0] |= IEEE80211_HTINFO_TXWIDTH_2040; 2955 2956 frm[1] = ic->ic_curhtprotmode; 2957 2958 frm += 5; 2959 2960 /* basic MCS set */ 2961 ieee80211_set_basic_htrates(frm, &ni->ni_htrates); 2962 frm += sizeof(struct ieee80211_ie_htinfo) - 2963 __offsetof(struct ieee80211_ie_htinfo, hi_basicmcsset); 2964 return frm; 2965 } 2966 2967 /* 2968 * Add 802.11n HT information information element. 2969 */ 2970 uint8_t * 2971 ieee80211_add_htinfo(uint8_t *frm, struct ieee80211_node *ni) 2972 { 2973 frm[0] = IEEE80211_ELEMID_HTINFO; 2974 frm[1] = sizeof(struct ieee80211_ie_htinfo) - 2; 2975 return ieee80211_add_htinfo_body(frm + 2, ni); 2976 } 2977 2978 /* 2979 * Add Broadcom OUI wrapped standard HTINFO ie; this is 2980 * used for compatibility w/ pre-draft implementations. 2981 */ 2982 uint8_t * 2983 ieee80211_add_htinfo_vendor(uint8_t *frm, struct ieee80211_node *ni) 2984 { 2985 frm[0] = IEEE80211_ELEMID_VENDOR; 2986 frm[1] = 4 + sizeof(struct ieee80211_ie_htinfo) - 2; 2987 frm[2] = (BCM_OUI >> 0) & 0xff; 2988 frm[3] = (BCM_OUI >> 8) & 0xff; 2989 frm[4] = (BCM_OUI >> 16) & 0xff; 2990 frm[5] = BCM_OUI_HTINFO; 2991 return ieee80211_add_htinfo_body(frm + 6, ni); 2992 } 2993