xref: /freebsd/sys/net80211/ieee80211_ht.c (revision 8ef24a0d4b28fe230e20637f56869cc4148cd2ca)
1 /*-
2  * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  */
25 
26 #include <sys/cdefs.h>
27 #ifdef __FreeBSD__
28 __FBSDID("$FreeBSD$");
29 #endif
30 
31 /*
32  * IEEE 802.11n protocol support.
33  */
34 
35 #include "opt_inet.h"
36 #include "opt_wlan.h"
37 
38 #include <sys/param.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/systm.h>
42 #include <sys/endian.h>
43 
44 #include <sys/socket.h>
45 
46 #include <net/if.h>
47 #include <net/if_var.h>
48 #include <net/if_media.h>
49 #include <net/ethernet.h>
50 
51 #include <net80211/ieee80211_var.h>
52 #include <net80211/ieee80211_action.h>
53 #include <net80211/ieee80211_input.h>
54 
55 /* define here, used throughout file */
56 #define	MS(_v, _f)	(((_v) & _f) >> _f##_S)
57 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
58 
59 const struct ieee80211_mcs_rates ieee80211_htrates[IEEE80211_HTRATE_MAXSIZE] = {
60 	{  13,  14,   27,   30 },	/* MCS 0 */
61 	{  26,  29,   54,   60 },	/* MCS 1 */
62 	{  39,  43,   81,   90 },	/* MCS 2 */
63 	{  52,  58,  108,  120 },	/* MCS 3 */
64 	{  78,  87,  162,  180 },	/* MCS 4 */
65 	{ 104, 116,  216,  240 },	/* MCS 5 */
66 	{ 117, 130,  243,  270 },	/* MCS 6 */
67 	{ 130, 144,  270,  300 },	/* MCS 7 */
68 	{  26,  29,   54,   60 },	/* MCS 8 */
69 	{  52,  58,  108,  120 },	/* MCS 9 */
70 	{  78,  87,  162,  180 },	/* MCS 10 */
71 	{ 104, 116,  216,  240 },	/* MCS 11 */
72 	{ 156, 173,  324,  360 },	/* MCS 12 */
73 	{ 208, 231,  432,  480 },	/* MCS 13 */
74 	{ 234, 260,  486,  540 },	/* MCS 14 */
75 	{ 260, 289,  540,  600 },	/* MCS 15 */
76 	{  39,  43,   81,   90 },	/* MCS 16 */
77 	{  78,  87,  162,  180 },	/* MCS 17 */
78 	{ 117, 130,  243,  270 },	/* MCS 18 */
79 	{ 156, 173,  324,  360 },	/* MCS 19 */
80 	{ 234, 260,  486,  540 },	/* MCS 20 */
81 	{ 312, 347,  648,  720 },	/* MCS 21 */
82 	{ 351, 390,  729,  810 },	/* MCS 22 */
83 	{ 390, 433,  810,  900 },	/* MCS 23 */
84 	{  52,  58,  108,  120 },	/* MCS 24 */
85 	{ 104, 116,  216,  240 },	/* MCS 25 */
86 	{ 156, 173,  324,  360 },	/* MCS 26 */
87 	{ 208, 231,  432,  480 },	/* MCS 27 */
88 	{ 312, 347,  648,  720 },	/* MCS 28 */
89 	{ 416, 462,  864,  960 },	/* MCS 29 */
90 	{ 468, 520,  972, 1080 },	/* MCS 30 */
91 	{ 520, 578, 1080, 1200 },	/* MCS 31 */
92 	{   0,   0,   12,   13 },	/* MCS 32 */
93 	{  78,  87,  162,  180 },	/* MCS 33 */
94 	{ 104, 116,  216,  240 },	/* MCS 34 */
95 	{ 130, 144,  270,  300 },	/* MCS 35 */
96 	{ 117, 130,  243,  270 },	/* MCS 36 */
97 	{ 156, 173,  324,  360 },	/* MCS 37 */
98 	{ 195, 217,  405,  450 },	/* MCS 38 */
99 	{ 104, 116,  216,  240 },	/* MCS 39 */
100 	{ 130, 144,  270,  300 },	/* MCS 40 */
101 	{ 130, 144,  270,  300 },	/* MCS 41 */
102 	{ 156, 173,  324,  360 },	/* MCS 42 */
103 	{ 182, 202,  378,  420 },	/* MCS 43 */
104 	{ 182, 202,  378,  420 },	/* MCS 44 */
105 	{ 208, 231,  432,  480 },	/* MCS 45 */
106 	{ 156, 173,  324,  360 },	/* MCS 46 */
107 	{ 195, 217,  405,  450 },	/* MCS 47 */
108 	{ 195, 217,  405,  450 },	/* MCS 48 */
109 	{ 234, 260,  486,  540 },	/* MCS 49 */
110 	{ 273, 303,  567,  630 },	/* MCS 50 */
111 	{ 273, 303,  567,  630 },	/* MCS 51 */
112 	{ 312, 347,  648,  720 },	/* MCS 52 */
113 	{ 130, 144,  270,  300 },	/* MCS 53 */
114 	{ 156, 173,  324,  360 },	/* MCS 54 */
115 	{ 182, 202,  378,  420 },	/* MCS 55 */
116 	{ 156, 173,  324,  360 },	/* MCS 56 */
117 	{ 182, 202,  378,  420 },	/* MCS 57 */
118 	{ 208, 231,  432,  480 },	/* MCS 58 */
119 	{ 234, 260,  486,  540 },	/* MCS 59 */
120 	{ 208, 231,  432,  480 },	/* MCS 60 */
121 	{ 234, 260,  486,  540 },	/* MCS 61 */
122 	{ 260, 289,  540,  600 },	/* MCS 62 */
123 	{ 260, 289,  540,  600 },	/* MCS 63 */
124 	{ 286, 318,  594,  660 },	/* MCS 64 */
125 	{ 195, 217,  405,  450 },	/* MCS 65 */
126 	{ 234, 260,  486,  540 },	/* MCS 66 */
127 	{ 273, 303,  567,  630 },	/* MCS 67 */
128 	{ 234, 260,  486,  540 },	/* MCS 68 */
129 	{ 273, 303,  567,  630 },	/* MCS 69 */
130 	{ 312, 347,  648,  720 },	/* MCS 70 */
131 	{ 351, 390,  729,  810 },	/* MCS 71 */
132 	{ 312, 347,  648,  720 },	/* MCS 72 */
133 	{ 351, 390,  729,  810 },	/* MCS 73 */
134 	{ 390, 433,  810,  900 },	/* MCS 74 */
135 	{ 390, 433,  810,  900 },	/* MCS 75 */
136 	{ 429, 477,  891,  990 },	/* MCS 76 */
137 };
138 
139 static	int ieee80211_ampdu_age = -1;	/* threshold for ampdu reorder q (ms) */
140 SYSCTL_PROC(_net_wlan, OID_AUTO, ampdu_age, CTLTYPE_INT | CTLFLAG_RW,
141 	&ieee80211_ampdu_age, 0, ieee80211_sysctl_msecs_ticks, "I",
142 	"AMPDU max reorder age (ms)");
143 
144 static	int ieee80211_recv_bar_ena = 1;
145 SYSCTL_INT(_net_wlan, OID_AUTO, recv_bar, CTLFLAG_RW, &ieee80211_recv_bar_ena,
146 	    0, "BAR frame processing (ena/dis)");
147 
148 static	int ieee80211_addba_timeout = -1;/* timeout for ADDBA response */
149 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_timeout, CTLTYPE_INT | CTLFLAG_RW,
150 	&ieee80211_addba_timeout, 0, ieee80211_sysctl_msecs_ticks, "I",
151 	"ADDBA request timeout (ms)");
152 static	int ieee80211_addba_backoff = -1;/* backoff after max ADDBA requests */
153 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_backoff, CTLTYPE_INT | CTLFLAG_RW,
154 	&ieee80211_addba_backoff, 0, ieee80211_sysctl_msecs_ticks, "I",
155 	"ADDBA request backoff (ms)");
156 static	int ieee80211_addba_maxtries = 3;/* max ADDBA requests before backoff */
157 SYSCTL_INT(_net_wlan, OID_AUTO, addba_maxtries, CTLFLAG_RW,
158 	&ieee80211_addba_maxtries, 0, "max ADDBA requests sent before backoff");
159 
160 static	int ieee80211_bar_timeout = -1;	/* timeout waiting for BAR response */
161 static	int ieee80211_bar_maxtries = 50;/* max BAR requests before DELBA */
162 
163 static	ieee80211_recv_action_func ht_recv_action_ba_addba_request;
164 static	ieee80211_recv_action_func ht_recv_action_ba_addba_response;
165 static	ieee80211_recv_action_func ht_recv_action_ba_delba;
166 static	ieee80211_recv_action_func ht_recv_action_ht_mimopwrsave;
167 static	ieee80211_recv_action_func ht_recv_action_ht_txchwidth;
168 
169 static	ieee80211_send_action_func ht_send_action_ba_addba;
170 static	ieee80211_send_action_func ht_send_action_ba_delba;
171 static	ieee80211_send_action_func ht_send_action_ht_txchwidth;
172 
173 static void
174 ieee80211_ht_init(void)
175 {
176 	/*
177 	 * Setup HT parameters that depends on the clock frequency.
178 	 */
179 	ieee80211_ampdu_age = msecs_to_ticks(500);
180 	ieee80211_addba_timeout = msecs_to_ticks(250);
181 	ieee80211_addba_backoff = msecs_to_ticks(10*1000);
182 	ieee80211_bar_timeout = msecs_to_ticks(250);
183 	/*
184 	 * Register action frame handlers.
185 	 */
186 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
187 	    IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_recv_action_ba_addba_request);
188 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
189 	    IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_recv_action_ba_addba_response);
190 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
191 	    IEEE80211_ACTION_BA_DELBA, ht_recv_action_ba_delba);
192 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT,
193 	    IEEE80211_ACTION_HT_MIMOPWRSAVE, ht_recv_action_ht_mimopwrsave);
194 	ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT,
195 	    IEEE80211_ACTION_HT_TXCHWIDTH, ht_recv_action_ht_txchwidth);
196 
197 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
198 	    IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_send_action_ba_addba);
199 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
200 	    IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_send_action_ba_addba);
201 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
202 	    IEEE80211_ACTION_BA_DELBA, ht_send_action_ba_delba);
203 	ieee80211_send_action_register(IEEE80211_ACTION_CAT_HT,
204 	    IEEE80211_ACTION_HT_TXCHWIDTH, ht_send_action_ht_txchwidth);
205 }
206 SYSINIT(wlan_ht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_ht_init, NULL);
207 
208 static int ieee80211_ampdu_enable(struct ieee80211_node *ni,
209 	struct ieee80211_tx_ampdu *tap);
210 static int ieee80211_addba_request(struct ieee80211_node *ni,
211 	struct ieee80211_tx_ampdu *tap,
212 	int dialogtoken, int baparamset, int batimeout);
213 static int ieee80211_addba_response(struct ieee80211_node *ni,
214 	struct ieee80211_tx_ampdu *tap,
215 	int code, int baparamset, int batimeout);
216 static void ieee80211_addba_stop(struct ieee80211_node *ni,
217 	struct ieee80211_tx_ampdu *tap);
218 static void null_addba_response_timeout(struct ieee80211_node *ni,
219 	struct ieee80211_tx_ampdu *tap);
220 
221 static void ieee80211_bar_response(struct ieee80211_node *ni,
222 	struct ieee80211_tx_ampdu *tap, int status);
223 static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap);
224 static void bar_stop_timer(struct ieee80211_tx_ampdu *tap);
225 static int ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *,
226 	int baparamset, int batimeout, int baseqctl);
227 static void ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *);
228 
229 void
230 ieee80211_ht_attach(struct ieee80211com *ic)
231 {
232 	/* setup default aggregation policy */
233 	ic->ic_recv_action = ieee80211_recv_action;
234 	ic->ic_send_action = ieee80211_send_action;
235 	ic->ic_ampdu_enable = ieee80211_ampdu_enable;
236 	ic->ic_addba_request = ieee80211_addba_request;
237 	ic->ic_addba_response = ieee80211_addba_response;
238 	ic->ic_addba_response_timeout = null_addba_response_timeout;
239 	ic->ic_addba_stop = ieee80211_addba_stop;
240 	ic->ic_bar_response = ieee80211_bar_response;
241 	ic->ic_ampdu_rx_start = ampdu_rx_start;
242 	ic->ic_ampdu_rx_stop = ampdu_rx_stop;
243 
244 	ic->ic_htprotmode = IEEE80211_PROT_RTSCTS;
245 	ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE;
246 }
247 
248 void
249 ieee80211_ht_detach(struct ieee80211com *ic)
250 {
251 }
252 
253 void
254 ieee80211_ht_vattach(struct ieee80211vap *vap)
255 {
256 
257 	/* driver can override defaults */
258 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_8K;
259 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_NA;
260 	vap->iv_ampdu_limit = vap->iv_ampdu_rxmax;
261 	vap->iv_amsdu_limit = vap->iv_htcaps & IEEE80211_HTCAP_MAXAMSDU;
262 	/* tx aggregation traffic thresholds */
263 	vap->iv_ampdu_mintraffic[WME_AC_BK] = 128;
264 	vap->iv_ampdu_mintraffic[WME_AC_BE] = 64;
265 	vap->iv_ampdu_mintraffic[WME_AC_VO] = 32;
266 	vap->iv_ampdu_mintraffic[WME_AC_VI] = 32;
267 
268 	if (vap->iv_htcaps & IEEE80211_HTC_HT) {
269 		/*
270 		 * Device is HT capable; enable all HT-related
271 		 * facilities by default.
272 		 * XXX these choices may be too aggressive.
273 		 */
274 		vap->iv_flags_ht |= IEEE80211_FHT_HT
275 				 |  IEEE80211_FHT_HTCOMPAT
276 				 ;
277 		if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI20)
278 			vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20;
279 		/* XXX infer from channel list? */
280 		if (vap->iv_htcaps & IEEE80211_HTCAP_CHWIDTH40) {
281 			vap->iv_flags_ht |= IEEE80211_FHT_USEHT40;
282 			if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI40)
283 				vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40;
284 		}
285 		/* enable RIFS if capable */
286 		if (vap->iv_htcaps & IEEE80211_HTC_RIFS)
287 			vap->iv_flags_ht |= IEEE80211_FHT_RIFS;
288 
289 		/* NB: A-MPDU and A-MSDU rx are mandated, these are tx only */
290 		vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX;
291 		if (vap->iv_htcaps & IEEE80211_HTC_AMPDU)
292 			vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX;
293 		vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX;
294 		if (vap->iv_htcaps & IEEE80211_HTC_AMSDU)
295 			vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX;
296 
297 		if (vap->iv_htcaps & IEEE80211_HTCAP_TXSTBC)
298 			vap->iv_flags_ht |= IEEE80211_FHT_STBC_TX;
299 		if (vap->iv_htcaps & IEEE80211_HTCAP_RXSTBC)
300 			vap->iv_flags_ht |= IEEE80211_FHT_STBC_RX;
301 	}
302 	/* NB: disable default legacy WDS, too many issues right now */
303 	if (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)
304 		vap->iv_flags_ht &= ~IEEE80211_FHT_HT;
305 }
306 
307 void
308 ieee80211_ht_vdetach(struct ieee80211vap *vap)
309 {
310 }
311 
312 static int
313 ht_getrate(struct ieee80211com *ic, int index, enum ieee80211_phymode mode,
314     int ratetype)
315 {
316 	int mword, rate;
317 
318 	mword = ieee80211_rate2media(ic, index | IEEE80211_RATE_MCS, mode);
319 	if (IFM_SUBTYPE(mword) != IFM_IEEE80211_MCS)
320 		return (0);
321 	switch (ratetype) {
322 	case 0:
323 		rate = ieee80211_htrates[index].ht20_rate_800ns;
324 		break;
325 	case 1:
326 		rate = ieee80211_htrates[index].ht20_rate_400ns;
327 		break;
328 	case 2:
329 		rate = ieee80211_htrates[index].ht40_rate_800ns;
330 		break;
331 	default:
332 		rate = ieee80211_htrates[index].ht40_rate_400ns;
333 		break;
334 	}
335 	return (rate);
336 }
337 
338 static struct printranges {
339 	int	minmcs;
340 	int	maxmcs;
341 	int	txstream;
342 	int	ratetype;
343 	int	htcapflags;
344 } ranges[] = {
345 	{  0,  7, 1, 0, 0 },
346 	{  8, 15, 2, 0, 0 },
347 	{ 16, 23, 3, 0, 0 },
348 	{ 24, 31, 4, 0, 0 },
349 	{ 32,  0, 1, 2, IEEE80211_HTC_TXMCS32 },
350 	{ 33, 38, 2, 0, IEEE80211_HTC_TXUNEQUAL },
351 	{ 39, 52, 3, 0, IEEE80211_HTC_TXUNEQUAL },
352 	{ 53, 76, 4, 0, IEEE80211_HTC_TXUNEQUAL },
353 	{  0,  0, 0, 0, 0 },
354 };
355 
356 static void
357 ht_rateprint(struct ieee80211com *ic, enum ieee80211_phymode mode, int ratetype)
358 {
359 	int minrate, maxrate;
360 	struct printranges *range;
361 
362 	for (range = ranges; range->txstream != 0; range++) {
363 		if (ic->ic_txstream < range->txstream)
364 			continue;
365 		if (range->htcapflags &&
366 		    (ic->ic_htcaps & range->htcapflags) == 0)
367 			continue;
368 		if (ratetype < range->ratetype)
369 			continue;
370 		minrate = ht_getrate(ic, range->minmcs, mode, ratetype);
371 		maxrate = ht_getrate(ic, range->maxmcs, mode, ratetype);
372 		if (range->maxmcs) {
373 			ic_printf(ic, "MCS %d-%d: %d%sMbps - %d%sMbps\n",
374 			    range->minmcs, range->maxmcs,
375 			    minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""),
376 			    maxrate/2, ((maxrate & 0x1) != 0 ? ".5" : ""));
377 		} else {
378 			ic_printf(ic, "MCS %d: %d%sMbps\n", range->minmcs,
379 			    minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""));
380 		}
381 	}
382 }
383 
384 static void
385 ht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode)
386 {
387 	const char *modestr = ieee80211_phymode_name[mode];
388 
389 	ic_printf(ic, "%s MCS 20MHz\n", modestr);
390 	ht_rateprint(ic, mode, 0);
391 	if (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) {
392 		ic_printf(ic, "%s MCS 20MHz SGI\n", modestr);
393 		ht_rateprint(ic, mode, 1);
394 	}
395 	if (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) {
396 		ic_printf(ic, "%s MCS 40MHz:\n", modestr);
397 		ht_rateprint(ic, mode, 2);
398 	}
399 	if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
400 	    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) {
401 		ic_printf(ic, "%s MCS 40MHz SGI:\n", modestr);
402 		ht_rateprint(ic, mode, 3);
403 	}
404 }
405 
406 void
407 ieee80211_ht_announce(struct ieee80211com *ic)
408 {
409 
410 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
411 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG))
412 		ic_printf(ic, "%dT%dR\n", ic->ic_txstream, ic->ic_rxstream);
413 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA))
414 		ht_announce(ic, IEEE80211_MODE_11NA);
415 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NG))
416 		ht_announce(ic, IEEE80211_MODE_11NG);
417 }
418 
419 static struct ieee80211_htrateset htrateset;
420 
421 const struct ieee80211_htrateset *
422 ieee80211_get_suphtrates(struct ieee80211com *ic,
423     const struct ieee80211_channel *c)
424 {
425 #define	ADDRATE(x)	do {						\
426 	htrateset.rs_rates[htrateset.rs_nrates] = x;			\
427 	htrateset.rs_nrates++;						\
428 } while (0)
429 	int i;
430 
431 	memset(&htrateset, 0, sizeof(struct ieee80211_htrateset));
432 	for (i = 0; i < ic->ic_txstream * 8; i++)
433 		ADDRATE(i);
434 	if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
435 	    (ic->ic_htcaps & IEEE80211_HTC_TXMCS32))
436 		ADDRATE(32);
437 	if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) {
438 		if (ic->ic_txstream >= 2) {
439 			 for (i = 33; i <= 38; i++)
440 				ADDRATE(i);
441 		}
442 		if (ic->ic_txstream >= 3) {
443 			for (i = 39; i <= 52; i++)
444 				ADDRATE(i);
445 		}
446 		if (ic->ic_txstream == 4) {
447 			for (i = 53; i <= 76; i++)
448 				ADDRATE(i);
449 		}
450 	}
451 	return &htrateset;
452 #undef	ADDRATE
453 }
454 
455 /*
456  * Receive processing.
457  */
458 
459 /*
460  * Decap the encapsulated A-MSDU frames and dispatch all but
461  * the last for delivery.  The last frame is returned for
462  * delivery via the normal path.
463  */
464 struct mbuf *
465 ieee80211_decap_amsdu(struct ieee80211_node *ni, struct mbuf *m)
466 {
467 	struct ieee80211vap *vap = ni->ni_vap;
468 	int framelen;
469 	struct mbuf *n;
470 
471 	/* discard 802.3 header inserted by ieee80211_decap */
472 	m_adj(m, sizeof(struct ether_header));
473 
474 	vap->iv_stats.is_amsdu_decap++;
475 
476 	for (;;) {
477 		/*
478 		 * Decap the first frame, bust it apart from the
479 		 * remainder and deliver.  We leave the last frame
480 		 * delivery to the caller (for consistency with other
481 		 * code paths, could also do it here).
482 		 */
483 		m = ieee80211_decap1(m, &framelen);
484 		if (m == NULL) {
485 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
486 			    ni->ni_macaddr, "a-msdu", "%s", "decap failed");
487 			vap->iv_stats.is_amsdu_tooshort++;
488 			return NULL;
489 		}
490 		if (m->m_pkthdr.len == framelen)
491 			break;
492 		n = m_split(m, framelen, M_NOWAIT);
493 		if (n == NULL) {
494 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
495 			    ni->ni_macaddr, "a-msdu",
496 			    "%s", "unable to split encapsulated frames");
497 			vap->iv_stats.is_amsdu_split++;
498 			m_freem(m);			/* NB: must reclaim */
499 			return NULL;
500 		}
501 		vap->iv_deliver_data(vap, ni, m);
502 
503 		/*
504 		 * Remove frame contents; each intermediate frame
505 		 * is required to be aligned to a 4-byte boundary.
506 		 */
507 		m = n;
508 		m_adj(m, roundup2(framelen, 4) - framelen);	/* padding */
509 	}
510 	return m;				/* last delivered by caller */
511 }
512 
513 /*
514  * Purge all frames in the A-MPDU re-order queue.
515  */
516 static void
517 ampdu_rx_purge(struct ieee80211_rx_ampdu *rap)
518 {
519 	struct mbuf *m;
520 	int i;
521 
522 	for (i = 0; i < rap->rxa_wnd; i++) {
523 		m = rap->rxa_m[i];
524 		if (m != NULL) {
525 			rap->rxa_m[i] = NULL;
526 			rap->rxa_qbytes -= m->m_pkthdr.len;
527 			m_freem(m);
528 			if (--rap->rxa_qframes == 0)
529 				break;
530 		}
531 	}
532 	KASSERT(rap->rxa_qbytes == 0 && rap->rxa_qframes == 0,
533 	    ("lost %u data, %u frames on ampdu rx q",
534 	    rap->rxa_qbytes, rap->rxa_qframes));
535 }
536 
537 /*
538  * Start A-MPDU rx/re-order processing for the specified TID.
539  */
540 static int
541 ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
542 	int baparamset, int batimeout, int baseqctl)
543 {
544 	int bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
545 
546 	if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) {
547 		/*
548 		 * AMPDU previously setup and not terminated with a DELBA,
549 		 * flush the reorder q's in case anything remains.
550 		 */
551 		ampdu_rx_purge(rap);
552 	}
553 	memset(rap, 0, sizeof(*rap));
554 	rap->rxa_wnd = (bufsiz == 0) ?
555 	    IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
556 	rap->rxa_start = MS(baseqctl, IEEE80211_BASEQ_START);
557 	rap->rxa_flags |=  IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND;
558 
559 	return 0;
560 }
561 
562 /*
563  * Public function; manually setup the RX ampdu state.
564  */
565 int
566 ieee80211_ampdu_rx_start_ext(struct ieee80211_node *ni, int tid, int seq, int baw)
567 {
568 	struct ieee80211_rx_ampdu *rap;
569 
570 	/* XXX TODO: sanity check tid, seq, baw */
571 
572 	rap = &ni->ni_rx_ampdu[tid];
573 
574 	if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) {
575 		/*
576 		 * AMPDU previously setup and not terminated with a DELBA,
577 		 * flush the reorder q's in case anything remains.
578 		 */
579 		ampdu_rx_purge(rap);
580 	}
581 
582 	memset(rap, 0, sizeof(*rap));
583 	rap->rxa_wnd = (baw== 0) ?
584 	    IEEE80211_AGGR_BAWMAX : min(baw, IEEE80211_AGGR_BAWMAX);
585 	rap->rxa_start = seq;
586 	rap->rxa_flags |=  IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND;
587 
588 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni,
589 	    "%s: tid=%d, start=%d, wnd=%d, flags=0x%08x\n",
590 	    __func__,
591 	    tid,
592 	    seq,
593 	    rap->rxa_wnd,
594 	    rap->rxa_flags);
595 
596 	return 0;
597 }
598 
599 /*
600  * Stop A-MPDU rx processing for the specified TID.
601  */
602 static void
603 ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
604 {
605 
606 	ampdu_rx_purge(rap);
607 	rap->rxa_flags &= ~(IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND);
608 }
609 
610 /*
611  * Dispatch a frame from the A-MPDU reorder queue.  The
612  * frame is fed back into ieee80211_input marked with an
613  * M_AMPDU_MPDU flag so it doesn't come back to us (it also
614  * permits ieee80211_input to optimize re-processing).
615  */
616 static __inline void
617 ampdu_dispatch(struct ieee80211_node *ni, struct mbuf *m)
618 {
619 	m->m_flags |= M_AMPDU_MPDU;	/* bypass normal processing */
620 	/* NB: rssi and noise are ignored w/ M_AMPDU_MPDU set */
621 	(void) ieee80211_input(ni, m, 0, 0);
622 }
623 
624 /*
625  * Dispatch as many frames as possible from the re-order queue.
626  * Frames will always be "at the front"; we process all frames
627  * up to the first empty slot in the window.  On completion we
628  * cleanup state if there are still pending frames in the current
629  * BA window.  We assume the frame at slot 0 is already handled
630  * by the caller; we always start at slot 1.
631  */
632 static void
633 ampdu_rx_dispatch(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni)
634 {
635 	struct ieee80211vap *vap = ni->ni_vap;
636 	struct mbuf *m;
637 	int i;
638 
639 	/* flush run of frames */
640 	for (i = 1; i < rap->rxa_wnd; i++) {
641 		m = rap->rxa_m[i];
642 		if (m == NULL)
643 			break;
644 		rap->rxa_m[i] = NULL;
645 		rap->rxa_qbytes -= m->m_pkthdr.len;
646 		rap->rxa_qframes--;
647 
648 		ampdu_dispatch(ni, m);
649 	}
650 	/*
651 	 * If frames remain, copy the mbuf pointers down so
652 	 * they correspond to the offsets in the new window.
653 	 */
654 	if (rap->rxa_qframes != 0) {
655 		int n = rap->rxa_qframes, j;
656 		for (j = i+1; j < rap->rxa_wnd; j++) {
657 			if (rap->rxa_m[j] != NULL) {
658 				rap->rxa_m[j-i] = rap->rxa_m[j];
659 				rap->rxa_m[j] = NULL;
660 				if (--n == 0)
661 					break;
662 			}
663 		}
664 		KASSERT(n == 0, ("lost %d frames", n));
665 		vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes;
666 	}
667 	/*
668 	 * Adjust the start of the BA window to
669 	 * reflect the frames just dispatched.
670 	 */
671 	rap->rxa_start = IEEE80211_SEQ_ADD(rap->rxa_start, i);
672 	vap->iv_stats.is_ampdu_rx_oor += i;
673 }
674 
675 /*
676  * Dispatch all frames in the A-MPDU re-order queue.
677  */
678 static void
679 ampdu_rx_flush(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
680 {
681 	struct ieee80211vap *vap = ni->ni_vap;
682 	struct mbuf *m;
683 	int i;
684 
685 	for (i = 0; i < rap->rxa_wnd; i++) {
686 		m = rap->rxa_m[i];
687 		if (m == NULL)
688 			continue;
689 		rap->rxa_m[i] = NULL;
690 		rap->rxa_qbytes -= m->m_pkthdr.len;
691 		rap->rxa_qframes--;
692 		vap->iv_stats.is_ampdu_rx_oor++;
693 
694 		ampdu_dispatch(ni, m);
695 		if (rap->rxa_qframes == 0)
696 			break;
697 	}
698 }
699 
700 /*
701  * Dispatch all frames in the A-MPDU re-order queue
702  * preceding the specified sequence number.  This logic
703  * handles window moves due to a received MSDU or BAR.
704  */
705 static void
706 ampdu_rx_flush_upto(struct ieee80211_node *ni,
707 	struct ieee80211_rx_ampdu *rap, ieee80211_seq winstart)
708 {
709 	struct ieee80211vap *vap = ni->ni_vap;
710 	struct mbuf *m;
711 	ieee80211_seq seqno;
712 	int i;
713 
714 	/*
715 	 * Flush any complete MSDU's with a sequence number lower
716 	 * than winstart.  Gaps may exist.  Note that we may actually
717 	 * dispatch frames past winstart if a run continues; this is
718 	 * an optimization that avoids having to do a separate pass
719 	 * to dispatch frames after moving the BA window start.
720 	 */
721 	seqno = rap->rxa_start;
722 	for (i = 0; i < rap->rxa_wnd; i++) {
723 		m = rap->rxa_m[i];
724 		if (m != NULL) {
725 			rap->rxa_m[i] = NULL;
726 			rap->rxa_qbytes -= m->m_pkthdr.len;
727 			rap->rxa_qframes--;
728 			vap->iv_stats.is_ampdu_rx_oor++;
729 
730 			ampdu_dispatch(ni, m);
731 		} else {
732 			if (!IEEE80211_SEQ_BA_BEFORE(seqno, winstart))
733 				break;
734 		}
735 		seqno = IEEE80211_SEQ_INC(seqno);
736 	}
737 	/*
738 	 * If frames remain, copy the mbuf pointers down so
739 	 * they correspond to the offsets in the new window.
740 	 */
741 	if (rap->rxa_qframes != 0) {
742 		int n = rap->rxa_qframes, j;
743 
744 		/* NB: this loop assumes i > 0 and/or rxa_m[0] is NULL */
745 		KASSERT(rap->rxa_m[0] == NULL,
746 		    ("%s: BA window slot 0 occupied", __func__));
747 		for (j = i+1; j < rap->rxa_wnd; j++) {
748 			if (rap->rxa_m[j] != NULL) {
749 				rap->rxa_m[j-i] = rap->rxa_m[j];
750 				rap->rxa_m[j] = NULL;
751 				if (--n == 0)
752 					break;
753 			}
754 		}
755 		KASSERT(n == 0, ("%s: lost %d frames, qframes %d off %d "
756 		    "BA win <%d:%d> winstart %d",
757 		    __func__, n, rap->rxa_qframes, i, rap->rxa_start,
758 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
759 		    winstart));
760 		vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes;
761 	}
762 	/*
763 	 * Move the start of the BA window; we use the
764 	 * sequence number of the last MSDU that was
765 	 * passed up the stack+1 or winstart if stopped on
766 	 * a gap in the reorder buffer.
767 	 */
768 	rap->rxa_start = seqno;
769 }
770 
771 /*
772  * Process a received QoS data frame for an HT station.  Handle
773  * A-MPDU reordering: if this frame is received out of order
774  * and falls within the BA window hold onto it.  Otherwise if
775  * this frame completes a run, flush any pending frames.  We
776  * return 1 if the frame is consumed.  A 0 is returned if
777  * the frame should be processed normally by the caller.
778  */
779 int
780 ieee80211_ampdu_reorder(struct ieee80211_node *ni, struct mbuf *m)
781 {
782 #define	IEEE80211_FC0_QOSDATA \
783 	(IEEE80211_FC0_TYPE_DATA|IEEE80211_FC0_SUBTYPE_QOS|IEEE80211_FC0_VERSION_0)
784 #define	PROCESS		0	/* caller should process frame */
785 #define	CONSUMED	1	/* frame consumed, caller does nothing */
786 	struct ieee80211vap *vap = ni->ni_vap;
787 	struct ieee80211_qosframe *wh;
788 	struct ieee80211_rx_ampdu *rap;
789 	ieee80211_seq rxseq;
790 	uint8_t tid;
791 	int off;
792 
793 	KASSERT((m->m_flags & (M_AMPDU | M_AMPDU_MPDU)) == M_AMPDU,
794 	    ("!a-mpdu or already re-ordered, flags 0x%x", m->m_flags));
795 	KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta"));
796 
797 	/* NB: m_len known to be sufficient */
798 	wh = mtod(m, struct ieee80211_qosframe *);
799 	if (wh->i_fc[0] != IEEE80211_FC0_QOSDATA) {
800 		/*
801 		 * Not QoS data, shouldn't get here but just
802 		 * return it to the caller for processing.
803 		 */
804 		return PROCESS;
805 	}
806 	if (IEEE80211_IS_DSTODS(wh))
807 		tid = ((struct ieee80211_qosframe_addr4 *)wh)->i_qos[0];
808 	else
809 		tid = wh->i_qos[0];
810 	tid &= IEEE80211_QOS_TID;
811 	rap = &ni->ni_rx_ampdu[tid];
812 	if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
813 		/*
814 		 * No ADDBA request yet, don't touch.
815 		 */
816 		return PROCESS;
817 	}
818 	rxseq = le16toh(*(uint16_t *)wh->i_seq);
819 	if ((rxseq & IEEE80211_SEQ_FRAG_MASK) != 0) {
820 		/*
821 		 * Fragments are not allowed; toss.
822 		 */
823 		IEEE80211_DISCARD_MAC(vap,
824 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
825 		    "A-MPDU", "fragment, rxseq 0x%x tid %u%s", rxseq, tid,
826 		    wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
827 		vap->iv_stats.is_ampdu_rx_drop++;
828 		IEEE80211_NODE_STAT(ni, rx_drop);
829 		m_freem(m);
830 		return CONSUMED;
831 	}
832 	rxseq >>= IEEE80211_SEQ_SEQ_SHIFT;
833 	rap->rxa_nframes++;
834 again:
835 	if (rxseq == rap->rxa_start) {
836 		/*
837 		 * First frame in window.
838 		 */
839 		if (rap->rxa_qframes != 0) {
840 			/*
841 			 * Dispatch as many packets as we can.
842 			 */
843 			KASSERT(rap->rxa_m[0] == NULL, ("unexpected dup"));
844 			ampdu_dispatch(ni, m);
845 			ampdu_rx_dispatch(rap, ni);
846 			return CONSUMED;
847 		} else {
848 			/*
849 			 * In order; advance window and notify
850 			 * caller to dispatch directly.
851 			 */
852 			rap->rxa_start = IEEE80211_SEQ_INC(rxseq);
853 			return PROCESS;
854 		}
855 	}
856 	/*
857 	 * Frame is out of order; store if in the BA window.
858 	 */
859 	/* calculate offset in BA window */
860 	off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start);
861 	if (off < rap->rxa_wnd) {
862 		/*
863 		 * Common case (hopefully): in the BA window.
864 		 * Sec 9.10.7.6.2 a) (p.137)
865 		 */
866 
867 		/*
868 		 * Check for frames sitting too long in the reorder queue.
869 		 * This should only ever happen if frames are not delivered
870 		 * without the sender otherwise notifying us (e.g. with a
871 		 * BAR to move the window).  Typically this happens because
872 		 * of vendor bugs that cause the sequence number to jump.
873 		 * When this happens we get a gap in the reorder queue that
874 		 * leaves frame sitting on the queue until they get pushed
875 		 * out due to window moves.  When the vendor does not send
876 		 * BAR this move only happens due to explicit packet sends
877 		 *
878 		 * NB: we only track the time of the oldest frame in the
879 		 * reorder q; this means that if we flush we might push
880 		 * frames that still "new"; if this happens then subsequent
881 		 * frames will result in BA window moves which cost something
882 		 * but is still better than a big throughput dip.
883 		 */
884 		if (rap->rxa_qframes != 0) {
885 			/* XXX honor batimeout? */
886 			if (ticks - rap->rxa_age > ieee80211_ampdu_age) {
887 				/*
888 				 * Too long since we received the first
889 				 * frame; flush the reorder buffer.
890 				 */
891 				if (rap->rxa_qframes != 0) {
892 					vap->iv_stats.is_ampdu_rx_age +=
893 					    rap->rxa_qframes;
894 					ampdu_rx_flush(ni, rap);
895 				}
896 				rap->rxa_start = IEEE80211_SEQ_INC(rxseq);
897 				return PROCESS;
898 			}
899 		} else {
900 			/*
901 			 * First frame, start aging timer.
902 			 */
903 			rap->rxa_age = ticks;
904 		}
905 
906 		/* save packet */
907 		if (rap->rxa_m[off] == NULL) {
908 			rap->rxa_m[off] = m;
909 			rap->rxa_qframes++;
910 			rap->rxa_qbytes += m->m_pkthdr.len;
911 			vap->iv_stats.is_ampdu_rx_reorder++;
912 		} else {
913 			IEEE80211_DISCARD_MAC(vap,
914 			    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
915 			    ni->ni_macaddr, "a-mpdu duplicate",
916 			    "seqno %u tid %u BA win <%u:%u>",
917 			    rxseq, tid, rap->rxa_start,
918 			    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1));
919 			vap->iv_stats.is_rx_dup++;
920 			IEEE80211_NODE_STAT(ni, rx_dup);
921 			m_freem(m);
922 		}
923 		return CONSUMED;
924 	}
925 	if (off < IEEE80211_SEQ_BA_RANGE) {
926 		/*
927 		 * Outside the BA window, but within range;
928 		 * flush the reorder q and move the window.
929 		 * Sec 9.10.7.6.2 b) (p.138)
930 		 */
931 		IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
932 		    "move BA win <%u:%u> (%u frames) rxseq %u tid %u",
933 		    rap->rxa_start,
934 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
935 		    rap->rxa_qframes, rxseq, tid);
936 		vap->iv_stats.is_ampdu_rx_move++;
937 
938 		/*
939 		 * The spec says to flush frames up to but not including:
940 		 * 	WinStart_B = rxseq - rap->rxa_wnd + 1
941 		 * Then insert the frame or notify the caller to process
942 		 * it immediately.  We can safely do this by just starting
943 		 * over again because we know the frame will now be within
944 		 * the BA window.
945 		 */
946 		/* NB: rxa_wnd known to be >0 */
947 		ampdu_rx_flush_upto(ni, rap,
948 		    IEEE80211_SEQ_SUB(rxseq, rap->rxa_wnd-1));
949 		goto again;
950 	} else {
951 		/*
952 		 * Outside the BA window and out of range; toss.
953 		 * Sec 9.10.7.6.2 c) (p.138)
954 		 */
955 		IEEE80211_DISCARD_MAC(vap,
956 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
957 		    "MPDU", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s",
958 		    rap->rxa_start,
959 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
960 		    rap->rxa_qframes, rxseq, tid,
961 		    wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
962 		vap->iv_stats.is_ampdu_rx_drop++;
963 		IEEE80211_NODE_STAT(ni, rx_drop);
964 		m_freem(m);
965 		return CONSUMED;
966 	}
967 #undef CONSUMED
968 #undef PROCESS
969 #undef IEEE80211_FC0_QOSDATA
970 }
971 
972 /*
973  * Process a BAR ctl frame.  Dispatch all frames up to
974  * the sequence number of the frame.  If this frame is
975  * out of range it's discarded.
976  */
977 void
978 ieee80211_recv_bar(struct ieee80211_node *ni, struct mbuf *m0)
979 {
980 	struct ieee80211vap *vap = ni->ni_vap;
981 	struct ieee80211_frame_bar *wh;
982 	struct ieee80211_rx_ampdu *rap;
983 	ieee80211_seq rxseq;
984 	int tid, off;
985 
986 	if (!ieee80211_recv_bar_ena) {
987 #if 0
988 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_11N,
989 		    ni->ni_macaddr, "BAR", "%s", "processing disabled");
990 #endif
991 		vap->iv_stats.is_ampdu_bar_bad++;
992 		return;
993 	}
994 	wh = mtod(m0, struct ieee80211_frame_bar *);
995 	/* XXX check basic BAR */
996 	tid = MS(le16toh(wh->i_ctl), IEEE80211_BAR_TID);
997 	rap = &ni->ni_rx_ampdu[tid];
998 	if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
999 		/*
1000 		 * No ADDBA request yet, don't touch.
1001 		 */
1002 		IEEE80211_DISCARD_MAC(vap,
1003 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
1004 		    ni->ni_macaddr, "BAR", "no BA stream, tid %u", tid);
1005 		vap->iv_stats.is_ampdu_bar_bad++;
1006 		return;
1007 	}
1008 	vap->iv_stats.is_ampdu_bar_rx++;
1009 	rxseq = le16toh(wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT;
1010 	if (rxseq == rap->rxa_start)
1011 		return;
1012 	/* calculate offset in BA window */
1013 	off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start);
1014 	if (off < IEEE80211_SEQ_BA_RANGE) {
1015 		/*
1016 		 * Flush the reorder q up to rxseq and move the window.
1017 		 * Sec 9.10.7.6.3 a) (p.138)
1018 		 */
1019 		IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
1020 		    "BAR moves BA win <%u:%u> (%u frames) rxseq %u tid %u",
1021 		    rap->rxa_start,
1022 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
1023 		    rap->rxa_qframes, rxseq, tid);
1024 		vap->iv_stats.is_ampdu_bar_move++;
1025 
1026 		ampdu_rx_flush_upto(ni, rap, rxseq);
1027 		if (off >= rap->rxa_wnd) {
1028 			/*
1029 			 * BAR specifies a window start to the right of BA
1030 			 * window; we must move it explicitly since
1031 			 * ampdu_rx_flush_upto will not.
1032 			 */
1033 			rap->rxa_start = rxseq;
1034 		}
1035 	} else {
1036 		/*
1037 		 * Out of range; toss.
1038 		 * Sec 9.10.7.6.3 b) (p.138)
1039 		 */
1040 		IEEE80211_DISCARD_MAC(vap,
1041 		    IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
1042 		    "BAR", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s",
1043 		    rap->rxa_start,
1044 		    IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
1045 		    rap->rxa_qframes, rxseq, tid,
1046 		    wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
1047 		vap->iv_stats.is_ampdu_bar_oow++;
1048 		IEEE80211_NODE_STAT(ni, rx_drop);
1049 	}
1050 }
1051 
1052 /*
1053  * Setup HT-specific state in a node.  Called only
1054  * when HT use is negotiated so we don't do extra
1055  * work for temporary and/or legacy sta's.
1056  */
1057 void
1058 ieee80211_ht_node_init(struct ieee80211_node *ni)
1059 {
1060 	struct ieee80211_tx_ampdu *tap;
1061 	int tid;
1062 
1063 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
1064 	    ni,
1065 	    "%s: called (%p)",
1066 	    __func__,
1067 	    ni);
1068 
1069 	if (ni->ni_flags & IEEE80211_NODE_HT) {
1070 		/*
1071 		 * Clean AMPDU state on re-associate.  This handles the case
1072 		 * where a station leaves w/o notifying us and then returns
1073 		 * before node is reaped for inactivity.
1074 		 */
1075 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
1076 		    ni,
1077 		    "%s: calling cleanup (%p)",
1078 		    __func__, ni);
1079 		ieee80211_ht_node_cleanup(ni);
1080 	}
1081 	for (tid = 0; tid < WME_NUM_TID; tid++) {
1082 		tap = &ni->ni_tx_ampdu[tid];
1083 		tap->txa_tid = tid;
1084 		tap->txa_ni = ni;
1085 		ieee80211_txampdu_init_pps(tap);
1086 		/* NB: further initialization deferred */
1087 	}
1088 	ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU;
1089 }
1090 
1091 /*
1092  * Cleanup HT-specific state in a node.  Called only
1093  * when HT use has been marked.
1094  */
1095 void
1096 ieee80211_ht_node_cleanup(struct ieee80211_node *ni)
1097 {
1098 	struct ieee80211com *ic = ni->ni_ic;
1099 	int i;
1100 
1101 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
1102 	    ni,
1103 	    "%s: called (%p)",
1104 	    __func__, ni);
1105 
1106 	KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT node"));
1107 
1108 	/* XXX optimize this */
1109 	for (i = 0; i < WME_NUM_TID; i++) {
1110 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[i];
1111 		if (tap->txa_flags & IEEE80211_AGGR_SETUP)
1112 			ampdu_tx_stop(tap);
1113 	}
1114 	for (i = 0; i < WME_NUM_TID; i++)
1115 		ic->ic_ampdu_rx_stop(ni, &ni->ni_rx_ampdu[i]);
1116 
1117 	ni->ni_htcap = 0;
1118 	ni->ni_flags &= ~IEEE80211_NODE_HT_ALL;
1119 }
1120 
1121 /*
1122  * Age out HT resources for a station.
1123  */
1124 void
1125 ieee80211_ht_node_age(struct ieee80211_node *ni)
1126 {
1127 	struct ieee80211vap *vap = ni->ni_vap;
1128 	uint8_t tid;
1129 
1130 	KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta"));
1131 
1132 	for (tid = 0; tid < WME_NUM_TID; tid++) {
1133 		struct ieee80211_rx_ampdu *rap;
1134 
1135 		rap = &ni->ni_rx_ampdu[tid];
1136 		if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0)
1137 			continue;
1138 		if (rap->rxa_qframes == 0)
1139 			continue;
1140 		/*
1141 		 * Check for frames sitting too long in the reorder queue.
1142 		 * See above for more details on what's happening here.
1143 		 */
1144 		/* XXX honor batimeout? */
1145 		if (ticks - rap->rxa_age > ieee80211_ampdu_age) {
1146 			/*
1147 			 * Too long since we received the first
1148 			 * frame; flush the reorder buffer.
1149 			 */
1150 			vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes;
1151 			ampdu_rx_flush(ni, rap);
1152 		}
1153 	}
1154 }
1155 
1156 static struct ieee80211_channel *
1157 findhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int htflags)
1158 {
1159 	return ieee80211_find_channel(ic, c->ic_freq,
1160 	    (c->ic_flags &~ IEEE80211_CHAN_HT) | htflags);
1161 }
1162 
1163 /*
1164  * Adjust a channel to be HT/non-HT according to the vap's configuration.
1165  */
1166 struct ieee80211_channel *
1167 ieee80211_ht_adjust_channel(struct ieee80211com *ic,
1168 	struct ieee80211_channel *chan, int flags)
1169 {
1170 	struct ieee80211_channel *c;
1171 
1172 	if (flags & IEEE80211_FHT_HT) {
1173 		/* promote to HT if possible */
1174 		if (flags & IEEE80211_FHT_USEHT40) {
1175 			if (!IEEE80211_IS_CHAN_HT40(chan)) {
1176 				/* NB: arbitrarily pick ht40+ over ht40- */
1177 				c = findhtchan(ic, chan, IEEE80211_CHAN_HT40U);
1178 				if (c == NULL)
1179 					c = findhtchan(ic, chan,
1180 						IEEE80211_CHAN_HT40D);
1181 				if (c == NULL)
1182 					c = findhtchan(ic, chan,
1183 						IEEE80211_CHAN_HT20);
1184 				if (c != NULL)
1185 					chan = c;
1186 			}
1187 		} else if (!IEEE80211_IS_CHAN_HT20(chan)) {
1188 			c = findhtchan(ic, chan, IEEE80211_CHAN_HT20);
1189 			if (c != NULL)
1190 				chan = c;
1191 		}
1192 	} else if (IEEE80211_IS_CHAN_HT(chan)) {
1193 		/* demote to legacy, HT use is disabled */
1194 		c = ieee80211_find_channel(ic, chan->ic_freq,
1195 		    chan->ic_flags &~ IEEE80211_CHAN_HT);
1196 		if (c != NULL)
1197 			chan = c;
1198 	}
1199 	return chan;
1200 }
1201 
1202 /*
1203  * Setup HT-specific state for a legacy WDS peer.
1204  */
1205 void
1206 ieee80211_ht_wds_init(struct ieee80211_node *ni)
1207 {
1208 	struct ieee80211vap *vap = ni->ni_vap;
1209 	struct ieee80211_tx_ampdu *tap;
1210 	int tid;
1211 
1212 	KASSERT(vap->iv_flags_ht & IEEE80211_FHT_HT, ("no HT requested"));
1213 
1214 	/* XXX check scan cache in case peer has an ap and we have info */
1215 	/*
1216 	 * If setup with a legacy channel; locate an HT channel.
1217 	 * Otherwise if the inherited channel (from a companion
1218 	 * AP) is suitable use it so we use the same location
1219 	 * for the extension channel).
1220 	 */
1221 	ni->ni_chan = ieee80211_ht_adjust_channel(ni->ni_ic,
1222 	    ni->ni_chan, ieee80211_htchanflags(ni->ni_chan));
1223 
1224 	ni->ni_htcap = 0;
1225 	if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)
1226 		ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI20;
1227 	if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
1228 		ni->ni_htcap |= IEEE80211_HTCAP_CHWIDTH40;
1229 		ni->ni_chw = 40;
1230 		if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
1231 			ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_ABOVE;
1232 		else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
1233 			ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_BELOW;
1234 		if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)
1235 			ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI40;
1236 	} else {
1237 		ni->ni_chw = 20;
1238 		ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_NONE;
1239 	}
1240 	ni->ni_htctlchan = ni->ni_chan->ic_ieee;
1241 	if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
1242 		ni->ni_flags |= IEEE80211_NODE_RIFS;
1243 	/* XXX does it make sense to enable SMPS? */
1244 
1245 	ni->ni_htopmode = 0;		/* XXX need protection state */
1246 	ni->ni_htstbc = 0;		/* XXX need info */
1247 
1248 	for (tid = 0; tid < WME_NUM_TID; tid++) {
1249 		tap = &ni->ni_tx_ampdu[tid];
1250 		tap->txa_tid = tid;
1251 		ieee80211_txampdu_init_pps(tap);
1252 	}
1253 	/* NB: AMPDU tx/rx governed by IEEE80211_FHT_AMPDU_{TX,RX} */
1254 	ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU;
1255 }
1256 
1257 /*
1258  * Notify hostap vaps of a change in the HTINFO ie.
1259  */
1260 static void
1261 htinfo_notify(struct ieee80211com *ic)
1262 {
1263 	struct ieee80211vap *vap;
1264 	int first = 1;
1265 
1266 	IEEE80211_LOCK_ASSERT(ic);
1267 
1268 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1269 		if (vap->iv_opmode != IEEE80211_M_HOSTAP)
1270 			continue;
1271 		if (vap->iv_state != IEEE80211_S_RUN ||
1272 		    !IEEE80211_IS_CHAN_HT(vap->iv_bss->ni_chan))
1273 			continue;
1274 		if (first) {
1275 			IEEE80211_NOTE(vap,
1276 			    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N,
1277 			    vap->iv_bss,
1278 			    "HT bss occupancy change: %d sta, %d ht, "
1279 			    "%d ht40%s, HT protmode now 0x%x"
1280 			    , ic->ic_sta_assoc
1281 			    , ic->ic_ht_sta_assoc
1282 			    , ic->ic_ht40_sta_assoc
1283 			    , (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) ?
1284 				 ", non-HT sta present" : ""
1285 			    , ic->ic_curhtprotmode);
1286 			first = 0;
1287 		}
1288 		ieee80211_beacon_notify(vap, IEEE80211_BEACON_HTINFO);
1289 	}
1290 }
1291 
1292 /*
1293  * Calculate HT protection mode from current
1294  * state and handle updates.
1295  */
1296 static void
1297 htinfo_update(struct ieee80211com *ic)
1298 {
1299 	uint8_t protmode;
1300 
1301 	if (ic->ic_sta_assoc != ic->ic_ht_sta_assoc) {
1302 		protmode = IEEE80211_HTINFO_OPMODE_MIXED
1303 			 | IEEE80211_HTINFO_NONHT_PRESENT;
1304 	} else if (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) {
1305 		protmode = IEEE80211_HTINFO_OPMODE_PROTOPT
1306 			 | IEEE80211_HTINFO_NONHT_PRESENT;
1307 	} else if (ic->ic_bsschan != IEEE80211_CHAN_ANYC &&
1308 	    IEEE80211_IS_CHAN_HT40(ic->ic_bsschan) &&
1309 	    ic->ic_sta_assoc != ic->ic_ht40_sta_assoc) {
1310 		protmode = IEEE80211_HTINFO_OPMODE_HT20PR;
1311 	} else {
1312 		protmode = IEEE80211_HTINFO_OPMODE_PURE;
1313 	}
1314 	if (protmode != ic->ic_curhtprotmode) {
1315 		ic->ic_curhtprotmode = protmode;
1316 		htinfo_notify(ic);
1317 	}
1318 }
1319 
1320 /*
1321  * Handle an HT station joining a BSS.
1322  */
1323 void
1324 ieee80211_ht_node_join(struct ieee80211_node *ni)
1325 {
1326 	struct ieee80211com *ic = ni->ni_ic;
1327 
1328 	IEEE80211_LOCK_ASSERT(ic);
1329 
1330 	if (ni->ni_flags & IEEE80211_NODE_HT) {
1331 		ic->ic_ht_sta_assoc++;
1332 		if (ni->ni_chw == 40)
1333 			ic->ic_ht40_sta_assoc++;
1334 	}
1335 	htinfo_update(ic);
1336 }
1337 
1338 /*
1339  * Handle an HT station leaving a BSS.
1340  */
1341 void
1342 ieee80211_ht_node_leave(struct ieee80211_node *ni)
1343 {
1344 	struct ieee80211com *ic = ni->ni_ic;
1345 
1346 	IEEE80211_LOCK_ASSERT(ic);
1347 
1348 	if (ni->ni_flags & IEEE80211_NODE_HT) {
1349 		ic->ic_ht_sta_assoc--;
1350 		if (ni->ni_chw == 40)
1351 			ic->ic_ht40_sta_assoc--;
1352 	}
1353 	htinfo_update(ic);
1354 }
1355 
1356 /*
1357  * Public version of htinfo_update; used for processing
1358  * beacon frames from overlapping bss.
1359  *
1360  * Caller can specify either IEEE80211_HTINFO_OPMODE_MIXED
1361  * (on receipt of a beacon that advertises MIXED) or
1362  * IEEE80211_HTINFO_OPMODE_PROTOPT (on receipt of a beacon
1363  * from an overlapping legacy bss).  We treat MIXED with
1364  * a higher precedence than PROTOPT (i.e. we will not change
1365  * change PROTOPT -> MIXED; only MIXED -> PROTOPT).  This
1366  * corresponds to how we handle things in htinfo_update.
1367  */
1368 void
1369 ieee80211_htprot_update(struct ieee80211com *ic, int protmode)
1370 {
1371 #define	OPMODE(x)	SM(x, IEEE80211_HTINFO_OPMODE)
1372 	IEEE80211_LOCK(ic);
1373 
1374 	/* track non-HT station presence */
1375 	KASSERT(protmode & IEEE80211_HTINFO_NONHT_PRESENT,
1376 	    ("protmode 0x%x", protmode));
1377 	ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR;
1378 	ic->ic_lastnonht = ticks;
1379 
1380 	if (protmode != ic->ic_curhtprotmode &&
1381 	    (OPMODE(ic->ic_curhtprotmode) != IEEE80211_HTINFO_OPMODE_MIXED ||
1382 	     OPMODE(protmode) == IEEE80211_HTINFO_OPMODE_PROTOPT)) {
1383 		/* push beacon update */
1384 		ic->ic_curhtprotmode = protmode;
1385 		htinfo_notify(ic);
1386 	}
1387 	IEEE80211_UNLOCK(ic);
1388 #undef OPMODE
1389 }
1390 
1391 /*
1392  * Time out presence of an overlapping bss with non-HT
1393  * stations.  When operating in hostap mode we listen for
1394  * beacons from other stations and if we identify a non-HT
1395  * station is present we update the opmode field of the
1396  * HTINFO ie.  To identify when all non-HT stations are
1397  * gone we time out this condition.
1398  */
1399 void
1400 ieee80211_ht_timeout(struct ieee80211com *ic)
1401 {
1402 	IEEE80211_LOCK_ASSERT(ic);
1403 
1404 	if ((ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) &&
1405 	    ieee80211_time_after(ticks, ic->ic_lastnonht + IEEE80211_NONHT_PRESENT_AGE)) {
1406 #if 0
1407 		IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
1408 		    "%s", "time out non-HT STA present on channel");
1409 #endif
1410 		ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR;
1411 		htinfo_update(ic);
1412 	}
1413 }
1414 
1415 /*
1416  * Process an 802.11n HT capabilities ie.
1417  */
1418 void
1419 ieee80211_parse_htcap(struct ieee80211_node *ni, const uint8_t *ie)
1420 {
1421 	if (ie[0] == IEEE80211_ELEMID_VENDOR) {
1422 		/*
1423 		 * Station used Vendor OUI ie to associate;
1424 		 * mark the node so when we respond we'll use
1425 		 * the Vendor OUI's and not the standard ie's.
1426 		 */
1427 		ni->ni_flags |= IEEE80211_NODE_HTCOMPAT;
1428 		ie += 4;
1429 	} else
1430 		ni->ni_flags &= ~IEEE80211_NODE_HTCOMPAT;
1431 
1432 	ni->ni_htcap = le16dec(ie +
1433 		__offsetof(struct ieee80211_ie_htcap, hc_cap));
1434 	ni->ni_htparam = ie[__offsetof(struct ieee80211_ie_htcap, hc_param)];
1435 }
1436 
1437 static void
1438 htinfo_parse(struct ieee80211_node *ni,
1439 	const struct ieee80211_ie_htinfo *htinfo)
1440 {
1441 	uint16_t w;
1442 
1443 	ni->ni_htctlchan = htinfo->hi_ctrlchannel;
1444 	ni->ni_ht2ndchan = SM(htinfo->hi_byte1, IEEE80211_HTINFO_2NDCHAN);
1445 	w = le16dec(&htinfo->hi_byte2);
1446 	ni->ni_htopmode = SM(w, IEEE80211_HTINFO_OPMODE);
1447 	w = le16dec(&htinfo->hi_byte45);
1448 	ni->ni_htstbc = SM(w, IEEE80211_HTINFO_BASIC_STBCMCS);
1449 }
1450 
1451 /*
1452  * Parse an 802.11n HT info ie and save useful information
1453  * to the node state.  Note this does not effect any state
1454  * changes such as for channel width change.
1455  */
1456 void
1457 ieee80211_parse_htinfo(struct ieee80211_node *ni, const uint8_t *ie)
1458 {
1459 	if (ie[0] == IEEE80211_ELEMID_VENDOR)
1460 		ie += 4;
1461 	htinfo_parse(ni, (const struct ieee80211_ie_htinfo *) ie);
1462 }
1463 
1464 /*
1465  * Handle 11n channel switch.  Use the received HT ie's to
1466  * identify the right channel to use.  If we cannot locate it
1467  * in the channel table then fallback to legacy operation.
1468  * Note that we use this information to identify the node's
1469  * channel only; the caller is responsible for insuring any
1470  * required channel change is done (e.g. in sta mode when
1471  * parsing the contents of a beacon frame).
1472  */
1473 static int
1474 htinfo_update_chw(struct ieee80211_node *ni, int htflags)
1475 {
1476 	struct ieee80211com *ic = ni->ni_ic;
1477 	struct ieee80211_channel *c;
1478 	int chanflags;
1479 	int ret = 0;
1480 
1481 	chanflags = (ni->ni_chan->ic_flags &~ IEEE80211_CHAN_HT) | htflags;
1482 	if (chanflags != ni->ni_chan->ic_flags) {
1483 		/* XXX not right for ht40- */
1484 		c = ieee80211_find_channel(ic, ni->ni_chan->ic_freq, chanflags);
1485 		if (c == NULL && (htflags & IEEE80211_CHAN_HT40)) {
1486 			/*
1487 			 * No HT40 channel entry in our table; fall back
1488 			 * to HT20 operation.  This should not happen.
1489 			 */
1490 			c = findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT20);
1491 #if 0
1492 			IEEE80211_NOTE(ni->ni_vap,
1493 			    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni,
1494 			    "no HT40 channel (freq %u), falling back to HT20",
1495 			    ni->ni_chan->ic_freq);
1496 #endif
1497 			/* XXX stat */
1498 		}
1499 		if (c != NULL && c != ni->ni_chan) {
1500 			IEEE80211_NOTE(ni->ni_vap,
1501 			    IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni,
1502 			    "switch station to HT%d channel %u/0x%x",
1503 			    IEEE80211_IS_CHAN_HT40(c) ? 40 : 20,
1504 			    c->ic_freq, c->ic_flags);
1505 			ni->ni_chan = c;
1506 			ret = 1;
1507 		}
1508 		/* NB: caller responsible for forcing any channel change */
1509 	}
1510 	/* update node's tx channel width */
1511 	ni->ni_chw = IEEE80211_IS_CHAN_HT40(ni->ni_chan)? 40 : 20;
1512 	return (ret);
1513 }
1514 
1515 /*
1516  * Update 11n MIMO PS state according to received htcap.
1517  */
1518 static __inline int
1519 htcap_update_mimo_ps(struct ieee80211_node *ni)
1520 {
1521 	uint16_t oflags = ni->ni_flags;
1522 
1523 	switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
1524 	case IEEE80211_HTCAP_SMPS_DYNAMIC:
1525 		ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
1526 		ni->ni_flags |= IEEE80211_NODE_MIMO_RTS;
1527 		break;
1528 	case IEEE80211_HTCAP_SMPS_ENA:
1529 		ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
1530 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
1531 		break;
1532 	case IEEE80211_HTCAP_SMPS_OFF:
1533 	default:		/* disable on rx of reserved value */
1534 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS;
1535 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
1536 		break;
1537 	}
1538 	return (oflags ^ ni->ni_flags);
1539 }
1540 
1541 /*
1542  * Update short GI state according to received htcap
1543  * and local settings.
1544  */
1545 static __inline void
1546 htcap_update_shortgi(struct ieee80211_node *ni)
1547 {
1548 	struct ieee80211vap *vap = ni->ni_vap;
1549 
1550 	ni->ni_flags &= ~(IEEE80211_NODE_SGI20|IEEE80211_NODE_SGI40);
1551 	if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) &&
1552 	    (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20))
1553 		ni->ni_flags |= IEEE80211_NODE_SGI20;
1554 	if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) &&
1555 	    (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40))
1556 		ni->ni_flags |= IEEE80211_NODE_SGI40;
1557 }
1558 
1559 /*
1560  * Parse and update HT-related state extracted from
1561  * the HT cap and info ie's.
1562  */
1563 int
1564 ieee80211_ht_updateparams(struct ieee80211_node *ni,
1565 	const uint8_t *htcapie, const uint8_t *htinfoie)
1566 {
1567 	struct ieee80211vap *vap = ni->ni_vap;
1568 	const struct ieee80211_ie_htinfo *htinfo;
1569 	int htflags;
1570 	int ret = 0;
1571 
1572 	ieee80211_parse_htcap(ni, htcapie);
1573 	if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS)
1574 		htcap_update_mimo_ps(ni);
1575 	htcap_update_shortgi(ni);
1576 
1577 	if (htinfoie[0] == IEEE80211_ELEMID_VENDOR)
1578 		htinfoie += 4;
1579 	htinfo = (const struct ieee80211_ie_htinfo *) htinfoie;
1580 	htinfo_parse(ni, htinfo);
1581 
1582 	htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ?
1583 	    IEEE80211_CHAN_HT20 : 0;
1584 	/* NB: honor operating mode constraint */
1585 	if ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH_2040) &&
1586 	    (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) {
1587 		if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_ABOVE)
1588 			htflags = IEEE80211_CHAN_HT40U;
1589 		else if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_BELOW)
1590 			htflags = IEEE80211_CHAN_HT40D;
1591 	}
1592 	if (htinfo_update_chw(ni, htflags))
1593 		ret = 1;
1594 
1595 	if ((htinfo->hi_byte1 & IEEE80211_HTINFO_RIFSMODE_PERM) &&
1596 	    (vap->iv_flags_ht & IEEE80211_FHT_RIFS))
1597 		ni->ni_flags |= IEEE80211_NODE_RIFS;
1598 	else
1599 		ni->ni_flags &= ~IEEE80211_NODE_RIFS;
1600 
1601 	return (ret);
1602 }
1603 
1604 /*
1605  * Parse and update HT-related state extracted from the HT cap ie
1606  * for a station joining an HT BSS.
1607  */
1608 void
1609 ieee80211_ht_updatehtcap(struct ieee80211_node *ni, const uint8_t *htcapie)
1610 {
1611 	struct ieee80211vap *vap = ni->ni_vap;
1612 	int htflags;
1613 
1614 	ieee80211_parse_htcap(ni, htcapie);
1615 	if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS)
1616 		htcap_update_mimo_ps(ni);
1617 	htcap_update_shortgi(ni);
1618 
1619 	/* NB: honor operating mode constraint */
1620 	/* XXX 40 MHz intolerant */
1621 	htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ?
1622 	    IEEE80211_CHAN_HT20 : 0;
1623 	if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) &&
1624 	    (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) {
1625 		if (IEEE80211_IS_CHAN_HT40U(vap->iv_bss->ni_chan))
1626 			htflags = IEEE80211_CHAN_HT40U;
1627 		else if (IEEE80211_IS_CHAN_HT40D(vap->iv_bss->ni_chan))
1628 			htflags = IEEE80211_CHAN_HT40D;
1629 	}
1630 	(void) htinfo_update_chw(ni, htflags);
1631 }
1632 
1633 /*
1634  * Install received HT rate set by parsing the HT cap ie.
1635  */
1636 int
1637 ieee80211_setup_htrates(struct ieee80211_node *ni, const uint8_t *ie, int flags)
1638 {
1639 	struct ieee80211com *ic = ni->ni_ic;
1640 	struct ieee80211vap *vap = ni->ni_vap;
1641 	const struct ieee80211_ie_htcap *htcap;
1642 	struct ieee80211_htrateset *rs;
1643 	int i, maxequalmcs, maxunequalmcs;
1644 
1645 	maxequalmcs = ic->ic_txstream * 8 - 1;
1646 	if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) {
1647 		if (ic->ic_txstream >= 2)
1648 			maxunequalmcs = 38;
1649 		if (ic->ic_txstream >= 3)
1650 			maxunequalmcs = 52;
1651 		if (ic->ic_txstream >= 4)
1652 			maxunequalmcs = 76;
1653 	} else
1654 		maxunequalmcs = 0;
1655 
1656 	rs = &ni->ni_htrates;
1657 	memset(rs, 0, sizeof(*rs));
1658 	if (ie != NULL) {
1659 		if (ie[0] == IEEE80211_ELEMID_VENDOR)
1660 			ie += 4;
1661 		htcap = (const struct ieee80211_ie_htcap *) ie;
1662 		for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) {
1663 			if (isclr(htcap->hc_mcsset, i))
1664 				continue;
1665 			if (rs->rs_nrates == IEEE80211_HTRATE_MAXSIZE) {
1666 				IEEE80211_NOTE(vap,
1667 				    IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
1668 				    "WARNING, HT rate set too large; only "
1669 				    "using %u rates", IEEE80211_HTRATE_MAXSIZE);
1670 				vap->iv_stats.is_rx_rstoobig++;
1671 				break;
1672 			}
1673 			if (i <= 31 && i > maxequalmcs)
1674 				continue;
1675 			if (i == 32 &&
1676 			    (ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0)
1677 				continue;
1678 			if (i > 32 && i > maxunequalmcs)
1679 				continue;
1680 			rs->rs_rates[rs->rs_nrates++] = i;
1681 		}
1682 	}
1683 	return ieee80211_fix_rate(ni, (struct ieee80211_rateset *) rs, flags);
1684 }
1685 
1686 /*
1687  * Mark rates in a node's HT rate set as basic according
1688  * to the information in the supplied HT info ie.
1689  */
1690 void
1691 ieee80211_setup_basic_htrates(struct ieee80211_node *ni, const uint8_t *ie)
1692 {
1693 	const struct ieee80211_ie_htinfo *htinfo;
1694 	struct ieee80211_htrateset *rs;
1695 	int i, j;
1696 
1697 	if (ie[0] == IEEE80211_ELEMID_VENDOR)
1698 		ie += 4;
1699 	htinfo = (const struct ieee80211_ie_htinfo *) ie;
1700 	rs = &ni->ni_htrates;
1701 	if (rs->rs_nrates == 0) {
1702 		IEEE80211_NOTE(ni->ni_vap,
1703 		    IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
1704 		    "%s", "WARNING, empty HT rate set");
1705 		return;
1706 	}
1707 	for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) {
1708 		if (isclr(htinfo->hi_basicmcsset, i))
1709 			continue;
1710 		for (j = 0; j < rs->rs_nrates; j++)
1711 			if ((rs->rs_rates[j] & IEEE80211_RATE_VAL) == i)
1712 				rs->rs_rates[j] |= IEEE80211_RATE_BASIC;
1713 	}
1714 }
1715 
1716 static void
1717 ampdu_tx_setup(struct ieee80211_tx_ampdu *tap)
1718 {
1719 	callout_init(&tap->txa_timer, 1);
1720 	tap->txa_flags |= IEEE80211_AGGR_SETUP;
1721 	tap->txa_lastsample = ticks;
1722 }
1723 
1724 static void
1725 ampdu_tx_stop(struct ieee80211_tx_ampdu *tap)
1726 {
1727 	struct ieee80211_node *ni = tap->txa_ni;
1728 	struct ieee80211com *ic = ni->ni_ic;
1729 
1730 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
1731 	    tap->txa_ni,
1732 	    "%s: called",
1733 	    __func__);
1734 
1735 	KASSERT(tap->txa_flags & IEEE80211_AGGR_SETUP,
1736 	    ("txa_flags 0x%x tid %d ac %d", tap->txa_flags, tap->txa_tid,
1737 	    TID_TO_WME_AC(tap->txa_tid)));
1738 
1739 	/*
1740 	 * Stop BA stream if setup so driver has a chance
1741 	 * to reclaim any resources it might have allocated.
1742 	 */
1743 	ic->ic_addba_stop(ni, tap);
1744 	/*
1745 	 * Stop any pending BAR transmit.
1746 	 */
1747 	bar_stop_timer(tap);
1748 
1749 	/*
1750 	 * Reset packet estimate.
1751 	 */
1752 	ieee80211_txampdu_init_pps(tap);
1753 
1754 	/* NB: clearing NAK means we may re-send ADDBA */
1755 	tap->txa_flags &= ~(IEEE80211_AGGR_SETUP | IEEE80211_AGGR_NAK);
1756 }
1757 
1758 /*
1759  * ADDBA response timeout.
1760  *
1761  * If software aggregation and per-TID queue management was done here,
1762  * that queue would be unpaused after the ADDBA timeout occurs.
1763  */
1764 static void
1765 addba_timeout(void *arg)
1766 {
1767 	struct ieee80211_tx_ampdu *tap = arg;
1768 	struct ieee80211_node *ni = tap->txa_ni;
1769 	struct ieee80211com *ic = ni->ni_ic;
1770 
1771 	/* XXX ? */
1772 	tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND;
1773 	tap->txa_attempts++;
1774 	ic->ic_addba_response_timeout(ni, tap);
1775 }
1776 
1777 static void
1778 addba_start_timeout(struct ieee80211_tx_ampdu *tap)
1779 {
1780 	/* XXX use CALLOUT_PENDING instead? */
1781 	callout_reset(&tap->txa_timer, ieee80211_addba_timeout,
1782 	    addba_timeout, tap);
1783 	tap->txa_flags |= IEEE80211_AGGR_XCHGPEND;
1784 	tap->txa_nextrequest = ticks + ieee80211_addba_timeout;
1785 }
1786 
1787 static void
1788 addba_stop_timeout(struct ieee80211_tx_ampdu *tap)
1789 {
1790 	/* XXX use CALLOUT_PENDING instead? */
1791 	if (tap->txa_flags & IEEE80211_AGGR_XCHGPEND) {
1792 		callout_stop(&tap->txa_timer);
1793 		tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND;
1794 	}
1795 }
1796 
1797 static void
1798 null_addba_response_timeout(struct ieee80211_node *ni,
1799     struct ieee80211_tx_ampdu *tap)
1800 {
1801 }
1802 
1803 /*
1804  * Default method for requesting A-MPDU tx aggregation.
1805  * We setup the specified state block and start a timer
1806  * to wait for an ADDBA response frame.
1807  */
1808 static int
1809 ieee80211_addba_request(struct ieee80211_node *ni,
1810 	struct ieee80211_tx_ampdu *tap,
1811 	int dialogtoken, int baparamset, int batimeout)
1812 {
1813 	int bufsiz;
1814 
1815 	/* XXX locking */
1816 	tap->txa_token = dialogtoken;
1817 	tap->txa_flags |= IEEE80211_AGGR_IMMEDIATE;
1818 	bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
1819 	tap->txa_wnd = (bufsiz == 0) ?
1820 	    IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
1821 	addba_start_timeout(tap);
1822 	return 1;
1823 }
1824 
1825 /*
1826  * Called by drivers that wish to request an ADDBA session be
1827  * setup.  This brings it up and starts the request timer.
1828  */
1829 int
1830 ieee80211_ampdu_tx_request_ext(struct ieee80211_node *ni, int tid)
1831 {
1832 	struct ieee80211_tx_ampdu *tap;
1833 
1834 	if (tid < 0 || tid > 15)
1835 		return (0);
1836 	tap = &ni->ni_tx_ampdu[tid];
1837 
1838 	/* XXX locking */
1839 	if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) {
1840 		/* do deferred setup of state */
1841 		ampdu_tx_setup(tap);
1842 	}
1843 	/* XXX hack for not doing proper locking */
1844 	tap->txa_flags &= ~IEEE80211_AGGR_NAK;
1845 	addba_start_timeout(tap);
1846 	return (1);
1847 }
1848 
1849 /*
1850  * Called by drivers that have marked a session as active.
1851  */
1852 int
1853 ieee80211_ampdu_tx_request_active_ext(struct ieee80211_node *ni, int tid,
1854     int status)
1855 {
1856 	struct ieee80211_tx_ampdu *tap;
1857 
1858 	if (tid < 0 || tid > 15)
1859 		return (0);
1860 	tap = &ni->ni_tx_ampdu[tid];
1861 
1862 	/* XXX locking */
1863 	addba_stop_timeout(tap);
1864 	if (status == 1) {
1865 		tap->txa_flags |= IEEE80211_AGGR_RUNNING;
1866 		tap->txa_attempts = 0;
1867 	} else {
1868 		/* mark tid so we don't try again */
1869 		tap->txa_flags |= IEEE80211_AGGR_NAK;
1870 	}
1871 	return (1);
1872 }
1873 
1874 /*
1875  * Default method for processing an A-MPDU tx aggregation
1876  * response.  We shutdown any pending timer and update the
1877  * state block according to the reply.
1878  */
1879 static int
1880 ieee80211_addba_response(struct ieee80211_node *ni,
1881 	struct ieee80211_tx_ampdu *tap,
1882 	int status, int baparamset, int batimeout)
1883 {
1884 	int bufsiz, tid;
1885 
1886 	/* XXX locking */
1887 	addba_stop_timeout(tap);
1888 	if (status == IEEE80211_STATUS_SUCCESS) {
1889 		bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
1890 		/* XXX override our request? */
1891 		tap->txa_wnd = (bufsiz == 0) ?
1892 		    IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
1893 		/* XXX AC/TID */
1894 		tid = MS(baparamset, IEEE80211_BAPS_TID);
1895 		tap->txa_flags |= IEEE80211_AGGR_RUNNING;
1896 		tap->txa_attempts = 0;
1897 	} else {
1898 		/* mark tid so we don't try again */
1899 		tap->txa_flags |= IEEE80211_AGGR_NAK;
1900 	}
1901 	return 1;
1902 }
1903 
1904 /*
1905  * Default method for stopping A-MPDU tx aggregation.
1906  * Any timer is cleared and we drain any pending frames.
1907  */
1908 static void
1909 ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
1910 {
1911 	/* XXX locking */
1912 	addba_stop_timeout(tap);
1913 	if (tap->txa_flags & IEEE80211_AGGR_RUNNING) {
1914 		/* XXX clear aggregation queue */
1915 		tap->txa_flags &= ~IEEE80211_AGGR_RUNNING;
1916 	}
1917 	tap->txa_attempts = 0;
1918 }
1919 
1920 /*
1921  * Process a received action frame using the default aggregation
1922  * policy.  We intercept ADDBA-related frames and use them to
1923  * update our aggregation state.  All other frames are passed up
1924  * for processing by ieee80211_recv_action.
1925  */
1926 static int
1927 ht_recv_action_ba_addba_request(struct ieee80211_node *ni,
1928 	const struct ieee80211_frame *wh,
1929 	const uint8_t *frm, const uint8_t *efrm)
1930 {
1931 	struct ieee80211com *ic = ni->ni_ic;
1932 	struct ieee80211vap *vap = ni->ni_vap;
1933 	struct ieee80211_rx_ampdu *rap;
1934 	uint8_t dialogtoken;
1935 	uint16_t baparamset, batimeout, baseqctl;
1936 	uint16_t args[5];
1937 	int tid;
1938 
1939 	dialogtoken = frm[2];
1940 	baparamset = le16dec(frm+3);
1941 	batimeout = le16dec(frm+5);
1942 	baseqctl = le16dec(frm+7);
1943 
1944 	tid = MS(baparamset, IEEE80211_BAPS_TID);
1945 
1946 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
1947 	    "recv ADDBA request: dialogtoken %u baparamset 0x%x "
1948 	    "(tid %d bufsiz %d) batimeout %d baseqctl %d:%d",
1949 	    dialogtoken, baparamset,
1950 	    tid, MS(baparamset, IEEE80211_BAPS_BUFSIZ),
1951 	    batimeout,
1952 	    MS(baseqctl, IEEE80211_BASEQ_START),
1953 	    MS(baseqctl, IEEE80211_BASEQ_FRAG));
1954 
1955 	rap = &ni->ni_rx_ampdu[tid];
1956 
1957 	/* Send ADDBA response */
1958 	args[0] = dialogtoken;
1959 	/*
1960 	 * NB: We ack only if the sta associated with HT and
1961 	 * the ap is configured to do AMPDU rx (the latter
1962 	 * violates the 11n spec and is mostly for testing).
1963 	 */
1964 	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_RX) &&
1965 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX)) {
1966 		/* XXX handle ampdu_rx_start failure */
1967 		ic->ic_ampdu_rx_start(ni, rap,
1968 		    baparamset, batimeout, baseqctl);
1969 
1970 		args[1] = IEEE80211_STATUS_SUCCESS;
1971 	} else {
1972 		IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
1973 		    ni, "reject ADDBA request: %s",
1974 		    ni->ni_flags & IEEE80211_NODE_AMPDU_RX ?
1975 		       "administratively disabled" :
1976 		       "not negotiated for station");
1977 		vap->iv_stats.is_addba_reject++;
1978 		args[1] = IEEE80211_STATUS_UNSPECIFIED;
1979 	}
1980 	/* XXX honor rap flags? */
1981 	args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE
1982 		| SM(tid, IEEE80211_BAPS_TID)
1983 		| SM(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ)
1984 		;
1985 	args[3] = 0;
1986 	args[4] = 0;
1987 	ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
1988 		IEEE80211_ACTION_BA_ADDBA_RESPONSE, args);
1989 	return 0;
1990 }
1991 
1992 static int
1993 ht_recv_action_ba_addba_response(struct ieee80211_node *ni,
1994 	const struct ieee80211_frame *wh,
1995 	const uint8_t *frm, const uint8_t *efrm)
1996 {
1997 	struct ieee80211com *ic = ni->ni_ic;
1998 	struct ieee80211vap *vap = ni->ni_vap;
1999 	struct ieee80211_tx_ampdu *tap;
2000 	uint8_t dialogtoken, policy;
2001 	uint16_t baparamset, batimeout, code;
2002 	int tid, bufsiz;
2003 
2004 	dialogtoken = frm[2];
2005 	code = le16dec(frm+3);
2006 	baparamset = le16dec(frm+5);
2007 	tid = MS(baparamset, IEEE80211_BAPS_TID);
2008 	bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
2009 	policy = MS(baparamset, IEEE80211_BAPS_POLICY);
2010 	batimeout = le16dec(frm+7);
2011 
2012 	tap = &ni->ni_tx_ampdu[tid];
2013 	if ((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
2014 		IEEE80211_DISCARD_MAC(vap,
2015 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2016 		    ni->ni_macaddr, "ADDBA response",
2017 		    "no pending ADDBA, tid %d dialogtoken %u "
2018 		    "code %d", tid, dialogtoken, code);
2019 		vap->iv_stats.is_addba_norequest++;
2020 		return 0;
2021 	}
2022 	if (dialogtoken != tap->txa_token) {
2023 		IEEE80211_DISCARD_MAC(vap,
2024 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2025 		    ni->ni_macaddr, "ADDBA response",
2026 		    "dialogtoken mismatch: waiting for %d, "
2027 		    "received %d, tid %d code %d",
2028 		    tap->txa_token, dialogtoken, tid, code);
2029 		vap->iv_stats.is_addba_badtoken++;
2030 		return 0;
2031 	}
2032 	/* NB: assumes IEEE80211_AGGR_IMMEDIATE is 1 */
2033 	if (policy != (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE)) {
2034 		IEEE80211_DISCARD_MAC(vap,
2035 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2036 		    ni->ni_macaddr, "ADDBA response",
2037 		    "policy mismatch: expecting %s, "
2038 		    "received %s, tid %d code %d",
2039 		    tap->txa_flags & IEEE80211_AGGR_IMMEDIATE,
2040 		    policy, tid, code);
2041 		vap->iv_stats.is_addba_badpolicy++;
2042 		return 0;
2043 	}
2044 #if 0
2045 	/* XXX we take MIN in ieee80211_addba_response */
2046 	if (bufsiz > IEEE80211_AGGR_BAWMAX) {
2047 		IEEE80211_DISCARD_MAC(vap,
2048 		    IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2049 		    ni->ni_macaddr, "ADDBA response",
2050 		    "BA window too large: max %d, "
2051 		    "received %d, tid %d code %d",
2052 		    bufsiz, IEEE80211_AGGR_BAWMAX, tid, code);
2053 		vap->iv_stats.is_addba_badbawinsize++;
2054 		return 0;
2055 	}
2056 #endif
2057 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2058 	    "recv ADDBA response: dialogtoken %u code %d "
2059 	    "baparamset 0x%x (tid %d bufsiz %d) batimeout %d",
2060 	    dialogtoken, code, baparamset, tid, bufsiz,
2061 	    batimeout);
2062 	ic->ic_addba_response(ni, tap, code, baparamset, batimeout);
2063 	return 0;
2064 }
2065 
2066 static int
2067 ht_recv_action_ba_delba(struct ieee80211_node *ni,
2068 	const struct ieee80211_frame *wh,
2069 	const uint8_t *frm, const uint8_t *efrm)
2070 {
2071 	struct ieee80211com *ic = ni->ni_ic;
2072 	struct ieee80211_rx_ampdu *rap;
2073 	struct ieee80211_tx_ampdu *tap;
2074 	uint16_t baparamset, code;
2075 	int tid;
2076 
2077 	baparamset = le16dec(frm+2);
2078 	code = le16dec(frm+4);
2079 
2080 	tid = MS(baparamset, IEEE80211_DELBAPS_TID);
2081 
2082 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2083 	    "recv DELBA: baparamset 0x%x (tid %d initiator %d) "
2084 	    "code %d", baparamset, tid,
2085 	    MS(baparamset, IEEE80211_DELBAPS_INIT), code);
2086 
2087 	if ((baparamset & IEEE80211_DELBAPS_INIT) == 0) {
2088 		tap = &ni->ni_tx_ampdu[tid];
2089 		ic->ic_addba_stop(ni, tap);
2090 	} else {
2091 		rap = &ni->ni_rx_ampdu[tid];
2092 		ic->ic_ampdu_rx_stop(ni, rap);
2093 	}
2094 	return 0;
2095 }
2096 
2097 static int
2098 ht_recv_action_ht_txchwidth(struct ieee80211_node *ni,
2099 	const struct ieee80211_frame *wh,
2100 	const uint8_t *frm, const uint8_t *efrm)
2101 {
2102 	int chw;
2103 
2104 	chw = (frm[2] == IEEE80211_A_HT_TXCHWIDTH_2040) ? 40 : 20;
2105 
2106 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2107 	    "%s: HT txchwidth, width %d%s",
2108 	    __func__, chw, ni->ni_chw != chw ? "*" : "");
2109 	if (chw != ni->ni_chw) {
2110 		ni->ni_chw = chw;
2111 		/* XXX notify on change */
2112 	}
2113 	return 0;
2114 }
2115 
2116 static int
2117 ht_recv_action_ht_mimopwrsave(struct ieee80211_node *ni,
2118 	const struct ieee80211_frame *wh,
2119 	const uint8_t *frm, const uint8_t *efrm)
2120 {
2121 	const struct ieee80211_action_ht_mimopowersave *mps =
2122 	    (const struct ieee80211_action_ht_mimopowersave *) frm;
2123 
2124 	/* XXX check iv_htcaps */
2125 	if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA)
2126 		ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
2127 	else
2128 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS;
2129 	if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_MODE)
2130 		ni->ni_flags |= IEEE80211_NODE_MIMO_RTS;
2131 	else
2132 		ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
2133 	/* XXX notify on change */
2134 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2135 	    "%s: HT MIMO PS (%s%s)", __func__,
2136 	    (ni->ni_flags & IEEE80211_NODE_MIMO_PS) ?  "on" : "off",
2137 	    (ni->ni_flags & IEEE80211_NODE_MIMO_RTS) ?  "+rts" : ""
2138 	);
2139 	return 0;
2140 }
2141 
2142 /*
2143  * Transmit processing.
2144  */
2145 
2146 /*
2147  * Check if A-MPDU should be requested/enabled for a stream.
2148  * We require a traffic rate above a per-AC threshold and we
2149  * also handle backoff from previous failed attempts.
2150  *
2151  * Drivers may override this method to bring in information
2152  * such as link state conditions in making the decision.
2153  */
2154 static int
2155 ieee80211_ampdu_enable(struct ieee80211_node *ni,
2156 	struct ieee80211_tx_ampdu *tap)
2157 {
2158 	struct ieee80211vap *vap = ni->ni_vap;
2159 
2160 	if (tap->txa_avgpps <
2161 	    vap->iv_ampdu_mintraffic[TID_TO_WME_AC(tap->txa_tid)])
2162 		return 0;
2163 	/* XXX check rssi? */
2164 	if (tap->txa_attempts >= ieee80211_addba_maxtries &&
2165 	    ieee80211_time_after(ticks, tap->txa_nextrequest)) {
2166 		/*
2167 		 * Don't retry too often; txa_nextrequest is set
2168 		 * to the minimum interval we'll retry after
2169 		 * ieee80211_addba_maxtries failed attempts are made.
2170 		 */
2171 		return 0;
2172 	}
2173 	IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
2174 	    "enable AMPDU on tid %d (%s), avgpps %d pkts %d attempt %d",
2175 	    tap->txa_tid, ieee80211_wme_acnames[TID_TO_WME_AC(tap->txa_tid)],
2176 	    tap->txa_avgpps, tap->txa_pkts, tap->txa_attempts);
2177 	return 1;
2178 }
2179 
2180 /*
2181  * Request A-MPDU tx aggregation.  Setup local state and
2182  * issue an ADDBA request.  BA use will only happen after
2183  * the other end replies with ADDBA response.
2184  */
2185 int
2186 ieee80211_ampdu_request(struct ieee80211_node *ni,
2187 	struct ieee80211_tx_ampdu *tap)
2188 {
2189 	struct ieee80211com *ic = ni->ni_ic;
2190 	uint16_t args[5];
2191 	int tid, dialogtoken;
2192 	static int tokens = 0;	/* XXX */
2193 
2194 	/* XXX locking */
2195 	if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) {
2196 		/* do deferred setup of state */
2197 		ampdu_tx_setup(tap);
2198 	}
2199 	/* XXX hack for not doing proper locking */
2200 	tap->txa_flags &= ~IEEE80211_AGGR_NAK;
2201 
2202 	dialogtoken = (tokens+1) % 63;		/* XXX */
2203 	tid = tap->txa_tid;
2204 	tap->txa_start = ni->ni_txseqs[tid];
2205 
2206 	args[0] = dialogtoken;
2207 	args[1] = 0;	/* NB: status code not used */
2208 	args[2]	= IEEE80211_BAPS_POLICY_IMMEDIATE
2209 		| SM(tid, IEEE80211_BAPS_TID)
2210 		| SM(IEEE80211_AGGR_BAWMAX, IEEE80211_BAPS_BUFSIZ)
2211 		;
2212 	args[3] = 0;	/* batimeout */
2213 	/* NB: do first so there's no race against reply */
2214 	if (!ic->ic_addba_request(ni, tap, dialogtoken, args[2], args[3])) {
2215 		/* unable to setup state, don't make request */
2216 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2217 		    ni, "%s: could not setup BA stream for TID %d AC %d",
2218 		    __func__, tap->txa_tid, TID_TO_WME_AC(tap->txa_tid));
2219 		/* defer next try so we don't slam the driver with requests */
2220 		tap->txa_attempts = ieee80211_addba_maxtries;
2221 		/* NB: check in case driver wants to override */
2222 		if (tap->txa_nextrequest <= ticks)
2223 			tap->txa_nextrequest = ticks + ieee80211_addba_backoff;
2224 		return 0;
2225 	}
2226 	tokens = dialogtoken;			/* allocate token */
2227 	/* NB: after calling ic_addba_request so driver can set txa_start */
2228 	args[4] = SM(tap->txa_start, IEEE80211_BASEQ_START)
2229 		| SM(0, IEEE80211_BASEQ_FRAG)
2230 		;
2231 	return ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
2232 		IEEE80211_ACTION_BA_ADDBA_REQUEST, args);
2233 }
2234 
2235 /*
2236  * Terminate an AMPDU tx stream.  State is reclaimed
2237  * and the peer notified with a DelBA Action frame.
2238  */
2239 void
2240 ieee80211_ampdu_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
2241 	int reason)
2242 {
2243 	struct ieee80211com *ic = ni->ni_ic;
2244 	struct ieee80211vap *vap = ni->ni_vap;
2245 	uint16_t args[4];
2246 
2247 	/* XXX locking */
2248 	tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
2249 	if (IEEE80211_AMPDU_RUNNING(tap)) {
2250 		IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2251 		    ni, "%s: stop BA stream for TID %d (reason: %d (%s))",
2252 		    __func__, tap->txa_tid, reason,
2253 		    ieee80211_reason_to_string(reason));
2254 		vap->iv_stats.is_ampdu_stop++;
2255 
2256 		ic->ic_addba_stop(ni, tap);
2257 		args[0] = tap->txa_tid;
2258 		args[1] = IEEE80211_DELBAPS_INIT;
2259 		args[2] = reason;			/* XXX reason code */
2260 		ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
2261 			IEEE80211_ACTION_BA_DELBA, args);
2262 	} else {
2263 		IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2264 		    ni, "%s: BA stream for TID %d not running "
2265 		    "(reason: %d (%s))", __func__, tap->txa_tid, reason,
2266 		    ieee80211_reason_to_string(reason));
2267 		vap->iv_stats.is_ampdu_stop_failed++;
2268 	}
2269 }
2270 
2271 /* XXX */
2272 static void bar_start_timer(struct ieee80211_tx_ampdu *tap);
2273 
2274 static void
2275 bar_timeout(void *arg)
2276 {
2277 	struct ieee80211_tx_ampdu *tap = arg;
2278 	struct ieee80211_node *ni = tap->txa_ni;
2279 
2280 	KASSERT((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0,
2281 	    ("bar/addba collision, flags 0x%x", tap->txa_flags));
2282 
2283 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2284 	    ni, "%s: tid %u flags 0x%x attempts %d", __func__,
2285 	    tap->txa_tid, tap->txa_flags, tap->txa_attempts);
2286 
2287 	/* guard against race with bar_tx_complete */
2288 	if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0)
2289 		return;
2290 	/* XXX ? */
2291 	if (tap->txa_attempts >= ieee80211_bar_maxtries) {
2292 		struct ieee80211com *ic = ni->ni_ic;
2293 
2294 		ni->ni_vap->iv_stats.is_ampdu_bar_tx_fail++;
2295 		/*
2296 		 * If (at least) the last BAR TX timeout was due to
2297 		 * an ieee80211_send_bar() failures, then we need
2298 		 * to make sure we notify the driver that a BAR
2299 		 * TX did occur and fail.  This gives the driver
2300 		 * a chance to undo any queue pause that may
2301 		 * have occurred.
2302 		 */
2303 		ic->ic_bar_response(ni, tap, 1);
2304 		ieee80211_ampdu_stop(ni, tap, IEEE80211_REASON_TIMEOUT);
2305 	} else {
2306 		ni->ni_vap->iv_stats.is_ampdu_bar_tx_retry++;
2307 		if (ieee80211_send_bar(ni, tap, tap->txa_seqpending) != 0) {
2308 			IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2309 			    ni, "%s: failed to TX, starting timer\n",
2310 			    __func__);
2311 			/*
2312 			 * If ieee80211_send_bar() fails here, the
2313 			 * timer may have stopped and/or the pending
2314 			 * flag may be clear.  Because of this,
2315 			 * fake the BARPEND and reset the timer.
2316 			 * A retransmission attempt will then occur
2317 			 * during the next timeout.
2318 			 */
2319 			/* XXX locking */
2320 			tap->txa_flags |= IEEE80211_AGGR_BARPEND;
2321 			bar_start_timer(tap);
2322 		}
2323 	}
2324 }
2325 
2326 static void
2327 bar_start_timer(struct ieee80211_tx_ampdu *tap)
2328 {
2329 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2330 	    tap->txa_ni,
2331 	    "%s: called",
2332 	    __func__);
2333 	callout_reset(&tap->txa_timer, ieee80211_bar_timeout, bar_timeout, tap);
2334 }
2335 
2336 static void
2337 bar_stop_timer(struct ieee80211_tx_ampdu *tap)
2338 {
2339 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2340 	    tap->txa_ni,
2341 	    "%s: called",
2342 	    __func__);
2343 	callout_stop(&tap->txa_timer);
2344 }
2345 
2346 static void
2347 bar_tx_complete(struct ieee80211_node *ni, void *arg, int status)
2348 {
2349 	struct ieee80211_tx_ampdu *tap = arg;
2350 
2351 	IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2352 	    ni, "%s: tid %u flags 0x%x pending %d status %d",
2353 	    __func__, tap->txa_tid, tap->txa_flags,
2354 	    callout_pending(&tap->txa_timer), status);
2355 
2356 	ni->ni_vap->iv_stats.is_ampdu_bar_tx++;
2357 	/* XXX locking */
2358 	if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) &&
2359 	    callout_pending(&tap->txa_timer)) {
2360 		struct ieee80211com *ic = ni->ni_ic;
2361 
2362 		if (status == 0)		/* ACK'd */
2363 			bar_stop_timer(tap);
2364 		ic->ic_bar_response(ni, tap, status);
2365 		/* NB: just let timer expire so we pace requests */
2366 	}
2367 }
2368 
2369 static void
2370 ieee80211_bar_response(struct ieee80211_node *ni,
2371 	struct ieee80211_tx_ampdu *tap, int status)
2372 {
2373 
2374 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2375 	    tap->txa_ni,
2376 	    "%s: called",
2377 	    __func__);
2378 	if (status == 0) {		/* got ACK */
2379 		IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2380 		    ni, "BAR moves BA win <%u:%u> (%u frames) txseq %u tid %u",
2381 		    tap->txa_start,
2382 		    IEEE80211_SEQ_ADD(tap->txa_start, tap->txa_wnd-1),
2383 		    tap->txa_qframes, tap->txa_seqpending,
2384 		    tap->txa_tid);
2385 
2386 		/* NB: timer already stopped in bar_tx_complete */
2387 		tap->txa_start = tap->txa_seqpending;
2388 		tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
2389 	}
2390 }
2391 
2392 /*
2393  * Transmit a BAR frame to the specified node.  The
2394  * BAR contents are drawn from the supplied aggregation
2395  * state associated with the node.
2396  *
2397  * NB: we only handle immediate ACK w/ compressed bitmap.
2398  */
2399 int
2400 ieee80211_send_bar(struct ieee80211_node *ni,
2401 	struct ieee80211_tx_ampdu *tap, ieee80211_seq seq)
2402 {
2403 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2404 	struct ieee80211vap *vap = ni->ni_vap;
2405 	struct ieee80211com *ic = ni->ni_ic;
2406 	struct ieee80211_frame_bar *bar;
2407 	struct mbuf *m;
2408 	uint16_t barctl, barseqctl;
2409 	uint8_t *frm;
2410 	int tid, ret;
2411 
2412 
2413 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2414 	    tap->txa_ni,
2415 	    "%s: called",
2416 	    __func__);
2417 
2418 	if ((tap->txa_flags & IEEE80211_AGGR_RUNNING) == 0) {
2419 		/* no ADDBA response, should not happen */
2420 		/* XXX stat+msg */
2421 		return EINVAL;
2422 	}
2423 	/* XXX locking */
2424 	bar_stop_timer(tap);
2425 
2426 	ieee80211_ref_node(ni);
2427 
2428 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom, sizeof(*bar));
2429 	if (m == NULL)
2430 		senderr(ENOMEM, is_tx_nobuf);
2431 
2432 	if (!ieee80211_add_callback(m, bar_tx_complete, tap)) {
2433 		m_freem(m);
2434 		senderr(ENOMEM, is_tx_nobuf);	/* XXX */
2435 		/* NOTREACHED */
2436 	}
2437 
2438 	bar = mtod(m, struct ieee80211_frame_bar *);
2439 	bar->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2440 		IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR;
2441 	bar->i_fc[1] = 0;
2442 	IEEE80211_ADDR_COPY(bar->i_ra, ni->ni_macaddr);
2443 	IEEE80211_ADDR_COPY(bar->i_ta, vap->iv_myaddr);
2444 
2445 	tid = tap->txa_tid;
2446 	barctl 	= (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE ?
2447 			0 : IEEE80211_BAR_NOACK)
2448 		| IEEE80211_BAR_COMP
2449 		| SM(tid, IEEE80211_BAR_TID)
2450 		;
2451 	barseqctl = SM(seq, IEEE80211_BAR_SEQ_START);
2452 	/* NB: known to have proper alignment */
2453 	bar->i_ctl = htole16(barctl);
2454 	bar->i_seq = htole16(barseqctl);
2455 	m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_bar);
2456 
2457 	M_WME_SETAC(m, WME_AC_VO);
2458 
2459 	IEEE80211_NODE_STAT(ni, tx_mgmt);	/* XXX tx_ctl? */
2460 
2461 	/* XXX locking */
2462 	/* init/bump attempts counter */
2463 	if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0)
2464 		tap->txa_attempts = 1;
2465 	else
2466 		tap->txa_attempts++;
2467 	tap->txa_seqpending = seq;
2468 	tap->txa_flags |= IEEE80211_AGGR_BARPEND;
2469 
2470 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N,
2471 	    ni, "send BAR: tid %u ctl 0x%x start %u (attempt %d)",
2472 	    tid, barctl, seq, tap->txa_attempts);
2473 
2474 	/*
2475 	 * ic_raw_xmit will free the node reference
2476 	 * regardless of queue/TX success or failure.
2477 	 */
2478 	IEEE80211_TX_LOCK(ic);
2479 	ret = ieee80211_raw_output(vap, ni, m, NULL);
2480 	IEEE80211_TX_UNLOCK(ic);
2481 	if (ret != 0) {
2482 		IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N,
2483 		    ni, "send BAR: failed: (ret = %d)\n",
2484 		    ret);
2485 		/* xmit failed, clear state flag */
2486 		tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
2487 		vap->iv_stats.is_ampdu_bar_tx_fail++;
2488 		return ret;
2489 	}
2490 	/* XXX hack against tx complete happening before timer is started */
2491 	if (tap->txa_flags & IEEE80211_AGGR_BARPEND)
2492 		bar_start_timer(tap);
2493 	return 0;
2494 bad:
2495 	IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2496 	    tap->txa_ni,
2497 	    "%s: bad! ret=%d",
2498 	    __func__, ret);
2499 	vap->iv_stats.is_ampdu_bar_tx_fail++;
2500 	ieee80211_free_node(ni);
2501 	return ret;
2502 #undef senderr
2503 }
2504 
2505 static int
2506 ht_action_output(struct ieee80211_node *ni, struct mbuf *m)
2507 {
2508 	struct ieee80211_bpf_params params;
2509 
2510 	memset(&params, 0, sizeof(params));
2511 	params.ibp_pri = WME_AC_VO;
2512 	params.ibp_rate0 = ni->ni_txparms->mgmtrate;
2513 	/* NB: we know all frames are unicast */
2514 	params.ibp_try0 = ni->ni_txparms->maxretry;
2515 	params.ibp_power = ni->ni_txpower;
2516 	return ieee80211_mgmt_output(ni, m, IEEE80211_FC0_SUBTYPE_ACTION,
2517 	     &params);
2518 }
2519 
2520 #define	ADDSHORT(frm, v) do {			\
2521 	frm[0] = (v) & 0xff;			\
2522 	frm[1] = (v) >> 8;			\
2523 	frm += 2;				\
2524 } while (0)
2525 
2526 /*
2527  * Send an action management frame.  The arguments are stuff
2528  * into a frame without inspection; the caller is assumed to
2529  * prepare them carefully (e.g. based on the aggregation state).
2530  */
2531 static int
2532 ht_send_action_ba_addba(struct ieee80211_node *ni,
2533 	int category, int action, void *arg0)
2534 {
2535 	struct ieee80211vap *vap = ni->ni_vap;
2536 	struct ieee80211com *ic = ni->ni_ic;
2537 	uint16_t *args = arg0;
2538 	struct mbuf *m;
2539 	uint8_t *frm;
2540 
2541 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2542 	    "send ADDBA %s: dialogtoken %d status %d "
2543 	    "baparamset 0x%x (tid %d) batimeout 0x%x baseqctl 0x%x",
2544 	    (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ?
2545 		"request" : "response",
2546 	    args[0], args[1], args[2], MS(args[2], IEEE80211_BAPS_TID),
2547 	    args[3], args[4]);
2548 
2549 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2550 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
2551 	    ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
2552 	ieee80211_ref_node(ni);
2553 
2554 	m = ieee80211_getmgtframe(&frm,
2555 	    ic->ic_headroom + sizeof(struct ieee80211_frame),
2556 	    sizeof(uint16_t)	/* action+category */
2557 	    /* XXX may action payload */
2558 	    + sizeof(struct ieee80211_action_ba_addbaresponse)
2559 	);
2560 	if (m != NULL) {
2561 		*frm++ = category;
2562 		*frm++ = action;
2563 		*frm++ = args[0];		/* dialog token */
2564 		if (action == IEEE80211_ACTION_BA_ADDBA_RESPONSE)
2565 			ADDSHORT(frm, args[1]);	/* status code */
2566 		ADDSHORT(frm, args[2]);		/* baparamset */
2567 		ADDSHORT(frm, args[3]);		/* batimeout */
2568 		if (action == IEEE80211_ACTION_BA_ADDBA_REQUEST)
2569 			ADDSHORT(frm, args[4]);	/* baseqctl */
2570 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2571 		return ht_action_output(ni, m);
2572 	} else {
2573 		vap->iv_stats.is_tx_nobuf++;
2574 		ieee80211_free_node(ni);
2575 		return ENOMEM;
2576 	}
2577 }
2578 
2579 static int
2580 ht_send_action_ba_delba(struct ieee80211_node *ni,
2581 	int category, int action, void *arg0)
2582 {
2583 	struct ieee80211vap *vap = ni->ni_vap;
2584 	struct ieee80211com *ic = ni->ni_ic;
2585 	uint16_t *args = arg0;
2586 	struct mbuf *m;
2587 	uint16_t baparamset;
2588 	uint8_t *frm;
2589 
2590 	baparamset = SM(args[0], IEEE80211_DELBAPS_TID)
2591 		   | args[1]
2592 		   ;
2593 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2594 	    "send DELBA action: tid %d, initiator %d reason %d (%s)",
2595 	    args[0], args[1], args[2], ieee80211_reason_to_string(args[2]));
2596 
2597 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2598 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
2599 	    ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
2600 	ieee80211_ref_node(ni);
2601 
2602 	m = ieee80211_getmgtframe(&frm,
2603 	    ic->ic_headroom + sizeof(struct ieee80211_frame),
2604 	    sizeof(uint16_t)	/* action+category */
2605 	    /* XXX may action payload */
2606 	    + sizeof(struct ieee80211_action_ba_addbaresponse)
2607 	);
2608 	if (m != NULL) {
2609 		*frm++ = category;
2610 		*frm++ = action;
2611 		ADDSHORT(frm, baparamset);
2612 		ADDSHORT(frm, args[2]);		/* reason code */
2613 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2614 		return ht_action_output(ni, m);
2615 	} else {
2616 		vap->iv_stats.is_tx_nobuf++;
2617 		ieee80211_free_node(ni);
2618 		return ENOMEM;
2619 	}
2620 }
2621 
2622 static int
2623 ht_send_action_ht_txchwidth(struct ieee80211_node *ni,
2624 	int category, int action, void *arg0)
2625 {
2626 	struct ieee80211vap *vap = ni->ni_vap;
2627 	struct ieee80211com *ic = ni->ni_ic;
2628 	struct mbuf *m;
2629 	uint8_t *frm;
2630 
2631 	IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2632 	    "send HT txchwidth: width %d",
2633 	    IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 40 : 20);
2634 
2635 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2636 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
2637 	    ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
2638 	ieee80211_ref_node(ni);
2639 
2640 	m = ieee80211_getmgtframe(&frm,
2641 	    ic->ic_headroom + sizeof(struct ieee80211_frame),
2642 	    sizeof(uint16_t)	/* action+category */
2643 	    /* XXX may action payload */
2644 	    + sizeof(struct ieee80211_action_ba_addbaresponse)
2645 	);
2646 	if (m != NULL) {
2647 		*frm++ = category;
2648 		*frm++ = action;
2649 		*frm++ = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ?
2650 			IEEE80211_A_HT_TXCHWIDTH_2040 :
2651 			IEEE80211_A_HT_TXCHWIDTH_20;
2652 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2653 		return ht_action_output(ni, m);
2654 	} else {
2655 		vap->iv_stats.is_tx_nobuf++;
2656 		ieee80211_free_node(ni);
2657 		return ENOMEM;
2658 	}
2659 }
2660 #undef ADDSHORT
2661 
2662 /*
2663  * Construct the MCS bit mask for inclusion in an HT capabilities
2664  * information element.
2665  */
2666 static void
2667 ieee80211_set_mcsset(struct ieee80211com *ic, uint8_t *frm)
2668 {
2669 	int i;
2670 	uint8_t txparams;
2671 
2672 	KASSERT((ic->ic_rxstream > 0 && ic->ic_rxstream <= 4),
2673 	    ("ic_rxstream %d out of range", ic->ic_rxstream));
2674 	KASSERT((ic->ic_txstream > 0 && ic->ic_txstream <= 4),
2675 	    ("ic_txstream %d out of range", ic->ic_txstream));
2676 
2677 	for (i = 0; i < ic->ic_rxstream * 8; i++)
2678 		setbit(frm, i);
2679 	if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
2680 	    (ic->ic_htcaps & IEEE80211_HTC_RXMCS32))
2681 		setbit(frm, 32);
2682 	if (ic->ic_htcaps & IEEE80211_HTC_RXUNEQUAL) {
2683 		if (ic->ic_rxstream >= 2) {
2684 			for (i = 33; i <= 38; i++)
2685 				setbit(frm, i);
2686 		}
2687 		if (ic->ic_rxstream >= 3) {
2688 			for (i = 39; i <= 52; i++)
2689 				setbit(frm, i);
2690 		}
2691 		if (ic->ic_txstream >= 4) {
2692 			for (i = 53; i <= 76; i++)
2693 				setbit(frm, i);
2694 		}
2695 	}
2696 
2697 	if (ic->ic_rxstream != ic->ic_txstream) {
2698 		txparams = 0x1;			/* TX MCS set defined */
2699 		txparams |= 0x2;		/* TX RX MCS not equal */
2700 		txparams |= (ic->ic_txstream - 1) << 2;	/* num TX streams */
2701 		if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL)
2702 			txparams |= 0x16;	/* TX unequal modulation sup */
2703 	} else
2704 		txparams = 0;
2705 	frm[12] = txparams;
2706 }
2707 
2708 /*
2709  * Add body of an HTCAP information element.
2710  */
2711 static uint8_t *
2712 ieee80211_add_htcap_body(uint8_t *frm, struct ieee80211_node *ni)
2713 {
2714 #define	ADDSHORT(frm, v) do {			\
2715 	frm[0] = (v) & 0xff;			\
2716 	frm[1] = (v) >> 8;			\
2717 	frm += 2;				\
2718 } while (0)
2719 	struct ieee80211com *ic = ni->ni_ic;
2720 	struct ieee80211vap *vap = ni->ni_vap;
2721 	uint16_t caps, extcaps;
2722 	int rxmax, density;
2723 
2724 	/* HT capabilities */
2725 	caps = vap->iv_htcaps & 0xffff;
2726 	/*
2727 	 * Note channel width depends on whether we are operating as
2728 	 * a sta or not.  When operating as a sta we are generating
2729 	 * a request based on our desired configuration.  Otherwise
2730 	 * we are operational and the channel attributes identify
2731 	 * how we've been setup (which might be different if a fixed
2732 	 * channel is specified).
2733 	 */
2734 	if (vap->iv_opmode == IEEE80211_M_STA) {
2735 		/* override 20/40 use based on config */
2736 		if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)
2737 			caps |= IEEE80211_HTCAP_CHWIDTH40;
2738 		else
2739 			caps &= ~IEEE80211_HTCAP_CHWIDTH40;
2740 
2741 		/* Start by using the advertised settings */
2742 		rxmax = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU);
2743 		density = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY);
2744 
2745 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N,
2746 		    "%s: advertised rxmax=%d, density=%d, vap rxmax=%d, density=%d\n",
2747 		    __func__,
2748 		    rxmax,
2749 		    density,
2750 		    vap->iv_ampdu_rxmax,
2751 		    vap->iv_ampdu_density);
2752 
2753 		/* Cap at VAP rxmax */
2754 		if (rxmax > vap->iv_ampdu_rxmax)
2755 			rxmax = vap->iv_ampdu_rxmax;
2756 
2757 		/*
2758 		 * If the VAP ampdu density value greater, use that.
2759 		 *
2760 		 * (Larger density value == larger minimum gap between A-MPDU
2761 		 * subframes.)
2762 		 */
2763 		if (vap->iv_ampdu_density > density)
2764 			density = vap->iv_ampdu_density;
2765 
2766 		/*
2767 		 * NB: Hardware might support HT40 on some but not all
2768 		 * channels. We can't determine this earlier because only
2769 		 * after association the channel is upgraded to HT based
2770 		 * on the negotiated capabilities.
2771 		 */
2772 		if (ni->ni_chan != IEEE80211_CHAN_ANYC &&
2773 		    findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40U) == NULL &&
2774 		    findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40D) == NULL)
2775 			caps &= ~IEEE80211_HTCAP_CHWIDTH40;
2776 	} else {
2777 		/* override 20/40 use based on current channel */
2778 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
2779 			caps |= IEEE80211_HTCAP_CHWIDTH40;
2780 		else
2781 			caps &= ~IEEE80211_HTCAP_CHWIDTH40;
2782 
2783 		/* XXX TODO should it start by using advertised settings? */
2784 		rxmax = vap->iv_ampdu_rxmax;
2785 		density = vap->iv_ampdu_density;
2786 	}
2787 
2788 	/* adjust short GI based on channel and config */
2789 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0)
2790 		caps &= ~IEEE80211_HTCAP_SHORTGI20;
2791 	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 ||
2792 	    (caps & IEEE80211_HTCAP_CHWIDTH40) == 0)
2793 		caps &= ~IEEE80211_HTCAP_SHORTGI40;
2794 
2795 	/* adjust STBC based on receive capabilities */
2796 	if ((vap->iv_flags_ht & IEEE80211_FHT_STBC_RX) == 0)
2797 		caps &= ~IEEE80211_HTCAP_RXSTBC;
2798 
2799 	/* XXX TODO: adjust LDPC based on receive capabilities */
2800 
2801 	ADDSHORT(frm, caps);
2802 
2803 	/* HT parameters */
2804 	*frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU)
2805 	     | SM(density, IEEE80211_HTCAP_MPDUDENSITY)
2806 	     ;
2807 	frm++;
2808 
2809 	/* pre-zero remainder of ie */
2810 	memset(frm, 0, sizeof(struct ieee80211_ie_htcap) -
2811 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset));
2812 
2813 	/* supported MCS set */
2814 	/*
2815 	 * XXX: For sta mode the rate set should be restricted based
2816 	 * on the AP's capabilities, but ni_htrates isn't setup when
2817 	 * we're called to form an AssocReq frame so for now we're
2818 	 * restricted to the device capabilities.
2819 	 */
2820 	ieee80211_set_mcsset(ni->ni_ic, frm);
2821 
2822 	frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) -
2823 		__offsetof(struct ieee80211_ie_htcap, hc_mcsset);
2824 
2825 	/* HT extended capabilities */
2826 	extcaps = vap->iv_htextcaps & 0xffff;
2827 
2828 	ADDSHORT(frm, extcaps);
2829 
2830 	frm += sizeof(struct ieee80211_ie_htcap) -
2831 		__offsetof(struct ieee80211_ie_htcap, hc_txbf);
2832 
2833 	return frm;
2834 #undef ADDSHORT
2835 }
2836 
2837 /*
2838  * Add 802.11n HT capabilities information element
2839  */
2840 uint8_t *
2841 ieee80211_add_htcap(uint8_t *frm, struct ieee80211_node *ni)
2842 {
2843 	frm[0] = IEEE80211_ELEMID_HTCAP;
2844 	frm[1] = sizeof(struct ieee80211_ie_htcap) - 2;
2845 	return ieee80211_add_htcap_body(frm + 2, ni);
2846 }
2847 
2848 /*
2849  * Add Broadcom OUI wrapped standard HTCAP ie; this is
2850  * used for compatibility w/ pre-draft implementations.
2851  */
2852 uint8_t *
2853 ieee80211_add_htcap_vendor(uint8_t *frm, struct ieee80211_node *ni)
2854 {
2855 	frm[0] = IEEE80211_ELEMID_VENDOR;
2856 	frm[1] = 4 + sizeof(struct ieee80211_ie_htcap) - 2;
2857 	frm[2] = (BCM_OUI >> 0) & 0xff;
2858 	frm[3] = (BCM_OUI >> 8) & 0xff;
2859 	frm[4] = (BCM_OUI >> 16) & 0xff;
2860 	frm[5] = BCM_OUI_HTCAP;
2861 	return ieee80211_add_htcap_body(frm + 6, ni);
2862 }
2863 
2864 /*
2865  * Construct the MCS bit mask of basic rates
2866  * for inclusion in an HT information element.
2867  */
2868 static void
2869 ieee80211_set_basic_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs)
2870 {
2871 	int i;
2872 
2873 	for (i = 0; i < rs->rs_nrates; i++) {
2874 		int r = rs->rs_rates[i] & IEEE80211_RATE_VAL;
2875 		if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) &&
2876 		    r < IEEE80211_HTRATE_MAXSIZE) {
2877 			/* NB: this assumes a particular implementation */
2878 			setbit(frm, r);
2879 		}
2880 	}
2881 }
2882 
2883 /*
2884  * Update the HTINFO ie for a beacon frame.
2885  */
2886 void
2887 ieee80211_ht_update_beacon(struct ieee80211vap *vap,
2888 	struct ieee80211_beacon_offsets *bo)
2889 {
2890 #define	PROTMODE	(IEEE80211_HTINFO_OPMODE|IEEE80211_HTINFO_NONHT_PRESENT)
2891 	struct ieee80211_node *ni;
2892 	const struct ieee80211_channel *bsschan;
2893 	struct ieee80211com *ic = vap->iv_ic;
2894 	struct ieee80211_ie_htinfo *ht =
2895 	   (struct ieee80211_ie_htinfo *) bo->bo_htinfo;
2896 
2897 	ni = ieee80211_ref_node(vap->iv_bss);
2898 	bsschan = ni->ni_chan;
2899 
2900 	/* XXX only update on channel change */
2901 	ht->hi_ctrlchannel = ieee80211_chan2ieee(ic, bsschan);
2902 	if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
2903 		ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PERM;
2904 	else
2905 		ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PROH;
2906 	if (IEEE80211_IS_CHAN_HT40U(bsschan))
2907 		ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_ABOVE;
2908 	else if (IEEE80211_IS_CHAN_HT40D(bsschan))
2909 		ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_BELOW;
2910 	else
2911 		ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_NONE;
2912 	if (IEEE80211_IS_CHAN_HT40(bsschan))
2913 		ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040;
2914 
2915 	/* protection mode */
2916 	ht->hi_byte2 = (ht->hi_byte2 &~ PROTMODE) | ic->ic_curhtprotmode;
2917 
2918 	ieee80211_free_node(ni);
2919 
2920 	/* XXX propagate to vendor ie's */
2921 #undef PROTMODE
2922 }
2923 
2924 /*
2925  * Add body of an HTINFO information element.
2926  *
2927  * NB: We don't use struct ieee80211_ie_htinfo because we can
2928  * be called to fillin both a standard ie and a compat ie that
2929  * has a vendor OUI at the front.
2930  */
2931 static uint8_t *
2932 ieee80211_add_htinfo_body(uint8_t *frm, struct ieee80211_node *ni)
2933 {
2934 	struct ieee80211vap *vap = ni->ni_vap;
2935 	struct ieee80211com *ic = ni->ni_ic;
2936 
2937 	/* pre-zero remainder of ie */
2938 	memset(frm, 0, sizeof(struct ieee80211_ie_htinfo) - 2);
2939 
2940 	/* primary/control channel center */
2941 	*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2942 
2943 	if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
2944 		frm[0] = IEEE80211_HTINFO_RIFSMODE_PERM;
2945 	else
2946 		frm[0] = IEEE80211_HTINFO_RIFSMODE_PROH;
2947 	if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
2948 		frm[0] |= IEEE80211_HTINFO_2NDCHAN_ABOVE;
2949 	else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
2950 		frm[0] |= IEEE80211_HTINFO_2NDCHAN_BELOW;
2951 	else
2952 		frm[0] |= IEEE80211_HTINFO_2NDCHAN_NONE;
2953 	if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
2954 		frm[0] |= IEEE80211_HTINFO_TXWIDTH_2040;
2955 
2956 	frm[1] = ic->ic_curhtprotmode;
2957 
2958 	frm += 5;
2959 
2960 	/* basic MCS set */
2961 	ieee80211_set_basic_htrates(frm, &ni->ni_htrates);
2962 	frm += sizeof(struct ieee80211_ie_htinfo) -
2963 		__offsetof(struct ieee80211_ie_htinfo, hi_basicmcsset);
2964 	return frm;
2965 }
2966 
2967 /*
2968  * Add 802.11n HT information information element.
2969  */
2970 uint8_t *
2971 ieee80211_add_htinfo(uint8_t *frm, struct ieee80211_node *ni)
2972 {
2973 	frm[0] = IEEE80211_ELEMID_HTINFO;
2974 	frm[1] = sizeof(struct ieee80211_ie_htinfo) - 2;
2975 	return ieee80211_add_htinfo_body(frm + 2, ni);
2976 }
2977 
2978 /*
2979  * Add Broadcom OUI wrapped standard HTINFO ie; this is
2980  * used for compatibility w/ pre-draft implementations.
2981  */
2982 uint8_t *
2983 ieee80211_add_htinfo_vendor(uint8_t *frm, struct ieee80211_node *ni)
2984 {
2985 	frm[0] = IEEE80211_ELEMID_VENDOR;
2986 	frm[1] = 4 + sizeof(struct ieee80211_ie_htinfo) - 2;
2987 	frm[2] = (BCM_OUI >> 0) & 0xff;
2988 	frm[3] = (BCM_OUI >> 8) & 0xff;
2989 	frm[4] = (BCM_OUI >> 16) & 0xff;
2990 	frm[5] = BCM_OUI_HTINFO;
2991 	return ieee80211_add_htinfo_body(frm + 6, ni);
2992 }
2993