1 /*- 2 * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 */ 25 26 #include <sys/cdefs.h> 27 #ifdef __FreeBSD__ 28 __FBSDID("$FreeBSD$"); 29 #endif 30 31 /* 32 * IEEE 802.11n protocol support. 33 */ 34 35 #include "opt_inet.h" 36 #include "opt_wlan.h" 37 38 #include <sys/param.h> 39 #include <sys/kernel.h> 40 #include <sys/malloc.h> 41 #include <sys/systm.h> 42 #include <sys/endian.h> 43 44 #include <sys/socket.h> 45 46 #include <net/if.h> 47 #include <net/if_var.h> 48 #include <net/if_media.h> 49 #include <net/ethernet.h> 50 51 #include <net80211/ieee80211_var.h> 52 #include <net80211/ieee80211_action.h> 53 #include <net80211/ieee80211_input.h> 54 55 /* define here, used throughout file */ 56 #define MS(_v, _f) (((_v) & _f) >> _f##_S) 57 #define SM(_v, _f) (((_v) << _f##_S) & _f) 58 59 const struct ieee80211_mcs_rates ieee80211_htrates[IEEE80211_HTRATE_MAXSIZE] = { 60 { 13, 14, 27, 30 }, /* MCS 0 */ 61 { 26, 29, 54, 60 }, /* MCS 1 */ 62 { 39, 43, 81, 90 }, /* MCS 2 */ 63 { 52, 58, 108, 120 }, /* MCS 3 */ 64 { 78, 87, 162, 180 }, /* MCS 4 */ 65 { 104, 116, 216, 240 }, /* MCS 5 */ 66 { 117, 130, 243, 270 }, /* MCS 6 */ 67 { 130, 144, 270, 300 }, /* MCS 7 */ 68 { 26, 29, 54, 60 }, /* MCS 8 */ 69 { 52, 58, 108, 120 }, /* MCS 9 */ 70 { 78, 87, 162, 180 }, /* MCS 10 */ 71 { 104, 116, 216, 240 }, /* MCS 11 */ 72 { 156, 173, 324, 360 }, /* MCS 12 */ 73 { 208, 231, 432, 480 }, /* MCS 13 */ 74 { 234, 260, 486, 540 }, /* MCS 14 */ 75 { 260, 289, 540, 600 }, /* MCS 15 */ 76 { 39, 43, 81, 90 }, /* MCS 16 */ 77 { 78, 87, 162, 180 }, /* MCS 17 */ 78 { 117, 130, 243, 270 }, /* MCS 18 */ 79 { 156, 173, 324, 360 }, /* MCS 19 */ 80 { 234, 260, 486, 540 }, /* MCS 20 */ 81 { 312, 347, 648, 720 }, /* MCS 21 */ 82 { 351, 390, 729, 810 }, /* MCS 22 */ 83 { 390, 433, 810, 900 }, /* MCS 23 */ 84 { 52, 58, 108, 120 }, /* MCS 24 */ 85 { 104, 116, 216, 240 }, /* MCS 25 */ 86 { 156, 173, 324, 360 }, /* MCS 26 */ 87 { 208, 231, 432, 480 }, /* MCS 27 */ 88 { 312, 347, 648, 720 }, /* MCS 28 */ 89 { 416, 462, 864, 960 }, /* MCS 29 */ 90 { 468, 520, 972, 1080 }, /* MCS 30 */ 91 { 520, 578, 1080, 1200 }, /* MCS 31 */ 92 { 0, 0, 12, 13 }, /* MCS 32 */ 93 { 78, 87, 162, 180 }, /* MCS 33 */ 94 { 104, 116, 216, 240 }, /* MCS 34 */ 95 { 130, 144, 270, 300 }, /* MCS 35 */ 96 { 117, 130, 243, 270 }, /* MCS 36 */ 97 { 156, 173, 324, 360 }, /* MCS 37 */ 98 { 195, 217, 405, 450 }, /* MCS 38 */ 99 { 104, 116, 216, 240 }, /* MCS 39 */ 100 { 130, 144, 270, 300 }, /* MCS 40 */ 101 { 130, 144, 270, 300 }, /* MCS 41 */ 102 { 156, 173, 324, 360 }, /* MCS 42 */ 103 { 182, 202, 378, 420 }, /* MCS 43 */ 104 { 182, 202, 378, 420 }, /* MCS 44 */ 105 { 208, 231, 432, 480 }, /* MCS 45 */ 106 { 156, 173, 324, 360 }, /* MCS 46 */ 107 { 195, 217, 405, 450 }, /* MCS 47 */ 108 { 195, 217, 405, 450 }, /* MCS 48 */ 109 { 234, 260, 486, 540 }, /* MCS 49 */ 110 { 273, 303, 567, 630 }, /* MCS 50 */ 111 { 273, 303, 567, 630 }, /* MCS 51 */ 112 { 312, 347, 648, 720 }, /* MCS 52 */ 113 { 130, 144, 270, 300 }, /* MCS 53 */ 114 { 156, 173, 324, 360 }, /* MCS 54 */ 115 { 182, 202, 378, 420 }, /* MCS 55 */ 116 { 156, 173, 324, 360 }, /* MCS 56 */ 117 { 182, 202, 378, 420 }, /* MCS 57 */ 118 { 208, 231, 432, 480 }, /* MCS 58 */ 119 { 234, 260, 486, 540 }, /* MCS 59 */ 120 { 208, 231, 432, 480 }, /* MCS 60 */ 121 { 234, 260, 486, 540 }, /* MCS 61 */ 122 { 260, 289, 540, 600 }, /* MCS 62 */ 123 { 260, 289, 540, 600 }, /* MCS 63 */ 124 { 286, 318, 594, 660 }, /* MCS 64 */ 125 { 195, 217, 405, 450 }, /* MCS 65 */ 126 { 234, 260, 486, 540 }, /* MCS 66 */ 127 { 273, 303, 567, 630 }, /* MCS 67 */ 128 { 234, 260, 486, 540 }, /* MCS 68 */ 129 { 273, 303, 567, 630 }, /* MCS 69 */ 130 { 312, 347, 648, 720 }, /* MCS 70 */ 131 { 351, 390, 729, 810 }, /* MCS 71 */ 132 { 312, 347, 648, 720 }, /* MCS 72 */ 133 { 351, 390, 729, 810 }, /* MCS 73 */ 134 { 390, 433, 810, 900 }, /* MCS 74 */ 135 { 390, 433, 810, 900 }, /* MCS 75 */ 136 { 429, 477, 891, 990 }, /* MCS 76 */ 137 }; 138 139 static int ieee80211_ampdu_age = -1; /* threshold for ampdu reorder q (ms) */ 140 SYSCTL_PROC(_net_wlan, OID_AUTO, ampdu_age, CTLTYPE_INT | CTLFLAG_RW, 141 &ieee80211_ampdu_age, 0, ieee80211_sysctl_msecs_ticks, "I", 142 "AMPDU max reorder age (ms)"); 143 144 static int ieee80211_recv_bar_ena = 1; 145 SYSCTL_INT(_net_wlan, OID_AUTO, recv_bar, CTLFLAG_RW, &ieee80211_recv_bar_ena, 146 0, "BAR frame processing (ena/dis)"); 147 148 static int ieee80211_addba_timeout = -1;/* timeout for ADDBA response */ 149 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_timeout, CTLTYPE_INT | CTLFLAG_RW, 150 &ieee80211_addba_timeout, 0, ieee80211_sysctl_msecs_ticks, "I", 151 "ADDBA request timeout (ms)"); 152 static int ieee80211_addba_backoff = -1;/* backoff after max ADDBA requests */ 153 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_backoff, CTLTYPE_INT | CTLFLAG_RW, 154 &ieee80211_addba_backoff, 0, ieee80211_sysctl_msecs_ticks, "I", 155 "ADDBA request backoff (ms)"); 156 static int ieee80211_addba_maxtries = 3;/* max ADDBA requests before backoff */ 157 SYSCTL_INT(_net_wlan, OID_AUTO, addba_maxtries, CTLFLAG_RW, 158 &ieee80211_addba_maxtries, 0, "max ADDBA requests sent before backoff"); 159 160 static int ieee80211_bar_timeout = -1; /* timeout waiting for BAR response */ 161 static int ieee80211_bar_maxtries = 50;/* max BAR requests before DELBA */ 162 163 static ieee80211_recv_action_func ht_recv_action_ba_addba_request; 164 static ieee80211_recv_action_func ht_recv_action_ba_addba_response; 165 static ieee80211_recv_action_func ht_recv_action_ba_delba; 166 static ieee80211_recv_action_func ht_recv_action_ht_mimopwrsave; 167 static ieee80211_recv_action_func ht_recv_action_ht_txchwidth; 168 169 static ieee80211_send_action_func ht_send_action_ba_addba; 170 static ieee80211_send_action_func ht_send_action_ba_delba; 171 static ieee80211_send_action_func ht_send_action_ht_txchwidth; 172 173 static void 174 ieee80211_ht_init(void) 175 { 176 /* 177 * Setup HT parameters that depends on the clock frequency. 178 */ 179 ieee80211_ampdu_age = msecs_to_ticks(500); 180 ieee80211_addba_timeout = msecs_to_ticks(250); 181 ieee80211_addba_backoff = msecs_to_ticks(10*1000); 182 ieee80211_bar_timeout = msecs_to_ticks(250); 183 /* 184 * Register action frame handlers. 185 */ 186 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 187 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_recv_action_ba_addba_request); 188 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 189 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_recv_action_ba_addba_response); 190 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 191 IEEE80211_ACTION_BA_DELBA, ht_recv_action_ba_delba); 192 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 193 IEEE80211_ACTION_HT_MIMOPWRSAVE, ht_recv_action_ht_mimopwrsave); 194 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 195 IEEE80211_ACTION_HT_TXCHWIDTH, ht_recv_action_ht_txchwidth); 196 197 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 198 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_send_action_ba_addba); 199 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 200 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_send_action_ba_addba); 201 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 202 IEEE80211_ACTION_BA_DELBA, ht_send_action_ba_delba); 203 ieee80211_send_action_register(IEEE80211_ACTION_CAT_HT, 204 IEEE80211_ACTION_HT_TXCHWIDTH, ht_send_action_ht_txchwidth); 205 } 206 SYSINIT(wlan_ht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_ht_init, NULL); 207 208 static int ieee80211_ampdu_enable(struct ieee80211_node *ni, 209 struct ieee80211_tx_ampdu *tap); 210 static int ieee80211_addba_request(struct ieee80211_node *ni, 211 struct ieee80211_tx_ampdu *tap, 212 int dialogtoken, int baparamset, int batimeout); 213 static int ieee80211_addba_response(struct ieee80211_node *ni, 214 struct ieee80211_tx_ampdu *tap, 215 int code, int baparamset, int batimeout); 216 static void ieee80211_addba_stop(struct ieee80211_node *ni, 217 struct ieee80211_tx_ampdu *tap); 218 static void null_addba_response_timeout(struct ieee80211_node *ni, 219 struct ieee80211_tx_ampdu *tap); 220 221 static void ieee80211_bar_response(struct ieee80211_node *ni, 222 struct ieee80211_tx_ampdu *tap, int status); 223 static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap); 224 static void bar_stop_timer(struct ieee80211_tx_ampdu *tap); 225 static int ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *, 226 int baparamset, int batimeout, int baseqctl); 227 static void ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *); 228 229 void 230 ieee80211_ht_attach(struct ieee80211com *ic) 231 { 232 /* setup default aggregation policy */ 233 ic->ic_recv_action = ieee80211_recv_action; 234 ic->ic_send_action = ieee80211_send_action; 235 ic->ic_ampdu_enable = ieee80211_ampdu_enable; 236 ic->ic_addba_request = ieee80211_addba_request; 237 ic->ic_addba_response = ieee80211_addba_response; 238 ic->ic_addba_response_timeout = null_addba_response_timeout; 239 ic->ic_addba_stop = ieee80211_addba_stop; 240 ic->ic_bar_response = ieee80211_bar_response; 241 ic->ic_ampdu_rx_start = ampdu_rx_start; 242 ic->ic_ampdu_rx_stop = ampdu_rx_stop; 243 244 ic->ic_htprotmode = IEEE80211_PROT_RTSCTS; 245 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; 246 } 247 248 void 249 ieee80211_ht_detach(struct ieee80211com *ic) 250 { 251 } 252 253 void 254 ieee80211_ht_vattach(struct ieee80211vap *vap) 255 { 256 257 /* driver can override defaults */ 258 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_8K; 259 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_NA; 260 vap->iv_ampdu_limit = vap->iv_ampdu_rxmax; 261 vap->iv_amsdu_limit = vap->iv_htcaps & IEEE80211_HTCAP_MAXAMSDU; 262 /* tx aggregation traffic thresholds */ 263 vap->iv_ampdu_mintraffic[WME_AC_BK] = 128; 264 vap->iv_ampdu_mintraffic[WME_AC_BE] = 64; 265 vap->iv_ampdu_mintraffic[WME_AC_VO] = 32; 266 vap->iv_ampdu_mintraffic[WME_AC_VI] = 32; 267 268 if (vap->iv_htcaps & IEEE80211_HTC_HT) { 269 /* 270 * Device is HT capable; enable all HT-related 271 * facilities by default. 272 * XXX these choices may be too aggressive. 273 */ 274 vap->iv_flags_ht |= IEEE80211_FHT_HT 275 | IEEE80211_FHT_HTCOMPAT 276 ; 277 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI20) 278 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20; 279 /* XXX infer from channel list? */ 280 if (vap->iv_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 281 vap->iv_flags_ht |= IEEE80211_FHT_USEHT40; 282 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI40) 283 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40; 284 } 285 /* enable RIFS if capable */ 286 if (vap->iv_htcaps & IEEE80211_HTC_RIFS) 287 vap->iv_flags_ht |= IEEE80211_FHT_RIFS; 288 289 /* NB: A-MPDU and A-MSDU rx are mandated, these are tx only */ 290 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX; 291 if (vap->iv_htcaps & IEEE80211_HTC_AMPDU) 292 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX; 293 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX; 294 if (vap->iv_htcaps & IEEE80211_HTC_AMSDU) 295 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX; 296 297 if (vap->iv_htcaps & IEEE80211_HTCAP_TXSTBC) 298 vap->iv_flags_ht |= IEEE80211_FHT_STBC_TX; 299 if (vap->iv_htcaps & IEEE80211_HTCAP_RXSTBC) 300 vap->iv_flags_ht |= IEEE80211_FHT_STBC_RX; 301 } 302 /* NB: disable default legacy WDS, too many issues right now */ 303 if (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) 304 vap->iv_flags_ht &= ~IEEE80211_FHT_HT; 305 } 306 307 void 308 ieee80211_ht_vdetach(struct ieee80211vap *vap) 309 { 310 } 311 312 static int 313 ht_getrate(struct ieee80211com *ic, int index, enum ieee80211_phymode mode, 314 int ratetype) 315 { 316 int mword, rate; 317 318 mword = ieee80211_rate2media(ic, index | IEEE80211_RATE_MCS, mode); 319 if (IFM_SUBTYPE(mword) != IFM_IEEE80211_MCS) 320 return (0); 321 switch (ratetype) { 322 case 0: 323 rate = ieee80211_htrates[index].ht20_rate_800ns; 324 break; 325 case 1: 326 rate = ieee80211_htrates[index].ht20_rate_400ns; 327 break; 328 case 2: 329 rate = ieee80211_htrates[index].ht40_rate_800ns; 330 break; 331 default: 332 rate = ieee80211_htrates[index].ht40_rate_400ns; 333 break; 334 } 335 return (rate); 336 } 337 338 static struct printranges { 339 int minmcs; 340 int maxmcs; 341 int txstream; 342 int ratetype; 343 int htcapflags; 344 } ranges[] = { 345 { 0, 7, 1, 0, 0 }, 346 { 8, 15, 2, 0, 0 }, 347 { 16, 23, 3, 0, 0 }, 348 { 24, 31, 4, 0, 0 }, 349 { 32, 0, 1, 2, IEEE80211_HTC_TXMCS32 }, 350 { 33, 38, 2, 0, IEEE80211_HTC_TXUNEQUAL }, 351 { 39, 52, 3, 0, IEEE80211_HTC_TXUNEQUAL }, 352 { 53, 76, 4, 0, IEEE80211_HTC_TXUNEQUAL }, 353 { 0, 0, 0, 0, 0 }, 354 }; 355 356 static void 357 ht_rateprint(struct ieee80211com *ic, enum ieee80211_phymode mode, int ratetype) 358 { 359 int minrate, maxrate; 360 struct printranges *range; 361 362 for (range = ranges; range->txstream != 0; range++) { 363 if (ic->ic_txstream < range->txstream) 364 continue; 365 if (range->htcapflags && 366 (ic->ic_htcaps & range->htcapflags) == 0) 367 continue; 368 if (ratetype < range->ratetype) 369 continue; 370 minrate = ht_getrate(ic, range->minmcs, mode, ratetype); 371 maxrate = ht_getrate(ic, range->maxmcs, mode, ratetype); 372 if (range->maxmcs) { 373 ic_printf(ic, "MCS %d-%d: %d%sMbps - %d%sMbps\n", 374 range->minmcs, range->maxmcs, 375 minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""), 376 maxrate/2, ((maxrate & 0x1) != 0 ? ".5" : "")); 377 } else { 378 ic_printf(ic, "MCS %d: %d%sMbps\n", range->minmcs, 379 minrate/2, ((minrate & 0x1) != 0 ? ".5" : "")); 380 } 381 } 382 } 383 384 static void 385 ht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode) 386 { 387 const char *modestr = ieee80211_phymode_name[mode]; 388 389 ic_printf(ic, "%s MCS 20MHz\n", modestr); 390 ht_rateprint(ic, mode, 0); 391 if (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) { 392 ic_printf(ic, "%s MCS 20MHz SGI\n", modestr); 393 ht_rateprint(ic, mode, 1); 394 } 395 if (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 396 ic_printf(ic, "%s MCS 40MHz:\n", modestr); 397 ht_rateprint(ic, mode, 2); 398 } 399 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 400 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) { 401 ic_printf(ic, "%s MCS 40MHz SGI:\n", modestr); 402 ht_rateprint(ic, mode, 3); 403 } 404 } 405 406 void 407 ieee80211_ht_announce(struct ieee80211com *ic) 408 { 409 410 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 411 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 412 ic_printf(ic, "%dT%dR\n", ic->ic_txstream, ic->ic_rxstream); 413 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA)) 414 ht_announce(ic, IEEE80211_MODE_11NA); 415 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 416 ht_announce(ic, IEEE80211_MODE_11NG); 417 } 418 419 static struct ieee80211_htrateset htrateset; 420 421 const struct ieee80211_htrateset * 422 ieee80211_get_suphtrates(struct ieee80211com *ic, 423 const struct ieee80211_channel *c) 424 { 425 #define ADDRATE(x) do { \ 426 htrateset.rs_rates[htrateset.rs_nrates] = x; \ 427 htrateset.rs_nrates++; \ 428 } while (0) 429 int i; 430 431 memset(&htrateset, 0, sizeof(struct ieee80211_htrateset)); 432 for (i = 0; i < ic->ic_txstream * 8; i++) 433 ADDRATE(i); 434 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 435 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32)) 436 ADDRATE(32); 437 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 438 if (ic->ic_txstream >= 2) { 439 for (i = 33; i <= 38; i++) 440 ADDRATE(i); 441 } 442 if (ic->ic_txstream >= 3) { 443 for (i = 39; i <= 52; i++) 444 ADDRATE(i); 445 } 446 if (ic->ic_txstream == 4) { 447 for (i = 53; i <= 76; i++) 448 ADDRATE(i); 449 } 450 } 451 return &htrateset; 452 #undef ADDRATE 453 } 454 455 /* 456 * Receive processing. 457 */ 458 459 /* 460 * Decap the encapsulated A-MSDU frames and dispatch all but 461 * the last for delivery. The last frame is returned for 462 * delivery via the normal path. 463 */ 464 struct mbuf * 465 ieee80211_decap_amsdu(struct ieee80211_node *ni, struct mbuf *m) 466 { 467 struct ieee80211vap *vap = ni->ni_vap; 468 int framelen; 469 struct mbuf *n; 470 471 /* discard 802.3 header inserted by ieee80211_decap */ 472 m_adj(m, sizeof(struct ether_header)); 473 474 vap->iv_stats.is_amsdu_decap++; 475 476 for (;;) { 477 /* 478 * Decap the first frame, bust it apart from the 479 * remainder and deliver. We leave the last frame 480 * delivery to the caller (for consistency with other 481 * code paths, could also do it here). 482 */ 483 m = ieee80211_decap1(m, &framelen); 484 if (m == NULL) { 485 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 486 ni->ni_macaddr, "a-msdu", "%s", "decap failed"); 487 vap->iv_stats.is_amsdu_tooshort++; 488 return NULL; 489 } 490 if (m->m_pkthdr.len == framelen) 491 break; 492 n = m_split(m, framelen, M_NOWAIT); 493 if (n == NULL) { 494 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 495 ni->ni_macaddr, "a-msdu", 496 "%s", "unable to split encapsulated frames"); 497 vap->iv_stats.is_amsdu_split++; 498 m_freem(m); /* NB: must reclaim */ 499 return NULL; 500 } 501 vap->iv_deliver_data(vap, ni, m); 502 503 /* 504 * Remove frame contents; each intermediate frame 505 * is required to be aligned to a 4-byte boundary. 506 */ 507 m = n; 508 m_adj(m, roundup2(framelen, 4) - framelen); /* padding */ 509 } 510 return m; /* last delivered by caller */ 511 } 512 513 /* 514 * Purge all frames in the A-MPDU re-order queue. 515 */ 516 static void 517 ampdu_rx_purge(struct ieee80211_rx_ampdu *rap) 518 { 519 struct mbuf *m; 520 int i; 521 522 for (i = 0; i < rap->rxa_wnd; i++) { 523 m = rap->rxa_m[i]; 524 if (m != NULL) { 525 rap->rxa_m[i] = NULL; 526 rap->rxa_qbytes -= m->m_pkthdr.len; 527 m_freem(m); 528 if (--rap->rxa_qframes == 0) 529 break; 530 } 531 } 532 KASSERT(rap->rxa_qbytes == 0 && rap->rxa_qframes == 0, 533 ("lost %u data, %u frames on ampdu rx q", 534 rap->rxa_qbytes, rap->rxa_qframes)); 535 } 536 537 /* 538 * Start A-MPDU rx/re-order processing for the specified TID. 539 */ 540 static int 541 ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap, 542 int baparamset, int batimeout, int baseqctl) 543 { 544 int bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 545 546 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 547 /* 548 * AMPDU previously setup and not terminated with a DELBA, 549 * flush the reorder q's in case anything remains. 550 */ 551 ampdu_rx_purge(rap); 552 } 553 memset(rap, 0, sizeof(*rap)); 554 rap->rxa_wnd = (bufsiz == 0) ? 555 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 556 rap->rxa_start = MS(baseqctl, IEEE80211_BASEQ_START); 557 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 558 559 return 0; 560 } 561 562 /* 563 * Public function; manually setup the RX ampdu state. 564 */ 565 int 566 ieee80211_ampdu_rx_start_ext(struct ieee80211_node *ni, int tid, int seq, int baw) 567 { 568 struct ieee80211_rx_ampdu *rap; 569 570 /* XXX TODO: sanity check tid, seq, baw */ 571 572 rap = &ni->ni_rx_ampdu[tid]; 573 574 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 575 /* 576 * AMPDU previously setup and not terminated with a DELBA, 577 * flush the reorder q's in case anything remains. 578 */ 579 ampdu_rx_purge(rap); 580 } 581 582 memset(rap, 0, sizeof(*rap)); 583 rap->rxa_wnd = (baw== 0) ? 584 IEEE80211_AGGR_BAWMAX : min(baw, IEEE80211_AGGR_BAWMAX); 585 if (seq == -1) { 586 /* Wait for the first RX frame, use that as BAW */ 587 rap->rxa_start = 0; 588 rap->rxa_flags |= IEEE80211_AGGR_WAITRX; 589 } else { 590 rap->rxa_start = seq; 591 } 592 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 593 594 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 595 "%s: tid=%d, start=%d, wnd=%d, flags=0x%08x", 596 __func__, 597 tid, 598 seq, 599 rap->rxa_wnd, 600 rap->rxa_flags); 601 602 return 0; 603 } 604 605 /* 606 * Public function; manually stop the RX AMPDU state. 607 */ 608 void 609 ieee80211_ampdu_rx_stop_ext(struct ieee80211_node *ni, int tid) 610 { 611 struct ieee80211_rx_ampdu *rap; 612 613 /* XXX TODO: sanity check tid, seq, baw */ 614 rap = &ni->ni_rx_ampdu[tid]; 615 ampdu_rx_stop(ni, rap); 616 } 617 618 /* 619 * Stop A-MPDU rx processing for the specified TID. 620 */ 621 static void 622 ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 623 { 624 625 ampdu_rx_purge(rap); 626 rap->rxa_flags &= ~(IEEE80211_AGGR_RUNNING 627 | IEEE80211_AGGR_XCHGPEND 628 | IEEE80211_AGGR_WAITRX); 629 } 630 631 /* 632 * Dispatch a frame from the A-MPDU reorder queue. The 633 * frame is fed back into ieee80211_input marked with an 634 * M_AMPDU_MPDU flag so it doesn't come back to us (it also 635 * permits ieee80211_input to optimize re-processing). 636 */ 637 static __inline void 638 ampdu_dispatch(struct ieee80211_node *ni, struct mbuf *m) 639 { 640 m->m_flags |= M_AMPDU_MPDU; /* bypass normal processing */ 641 /* NB: rssi and noise are ignored w/ M_AMPDU_MPDU set */ 642 (void) ieee80211_input(ni, m, 0, 0); 643 } 644 645 /* 646 * Dispatch as many frames as possible from the re-order queue. 647 * Frames will always be "at the front"; we process all frames 648 * up to the first empty slot in the window. On completion we 649 * cleanup state if there are still pending frames in the current 650 * BA window. We assume the frame at slot 0 is already handled 651 * by the caller; we always start at slot 1. 652 */ 653 static void 654 ampdu_rx_dispatch(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni) 655 { 656 struct ieee80211vap *vap = ni->ni_vap; 657 struct mbuf *m; 658 int i; 659 660 /* flush run of frames */ 661 for (i = 1; i < rap->rxa_wnd; i++) { 662 m = rap->rxa_m[i]; 663 if (m == NULL) 664 break; 665 rap->rxa_m[i] = NULL; 666 rap->rxa_qbytes -= m->m_pkthdr.len; 667 rap->rxa_qframes--; 668 669 ampdu_dispatch(ni, m); 670 } 671 /* 672 * If frames remain, copy the mbuf pointers down so 673 * they correspond to the offsets in the new window. 674 */ 675 if (rap->rxa_qframes != 0) { 676 int n = rap->rxa_qframes, j; 677 for (j = i+1; j < rap->rxa_wnd; j++) { 678 if (rap->rxa_m[j] != NULL) { 679 rap->rxa_m[j-i] = rap->rxa_m[j]; 680 rap->rxa_m[j] = NULL; 681 if (--n == 0) 682 break; 683 } 684 } 685 KASSERT(n == 0, ("lost %d frames", n)); 686 vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; 687 } 688 /* 689 * Adjust the start of the BA window to 690 * reflect the frames just dispatched. 691 */ 692 rap->rxa_start = IEEE80211_SEQ_ADD(rap->rxa_start, i); 693 vap->iv_stats.is_ampdu_rx_oor += i; 694 } 695 696 /* 697 * Dispatch all frames in the A-MPDU re-order queue. 698 */ 699 static void 700 ampdu_rx_flush(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 701 { 702 struct ieee80211vap *vap = ni->ni_vap; 703 struct mbuf *m; 704 int i; 705 706 for (i = 0; i < rap->rxa_wnd; i++) { 707 m = rap->rxa_m[i]; 708 if (m == NULL) 709 continue; 710 rap->rxa_m[i] = NULL; 711 rap->rxa_qbytes -= m->m_pkthdr.len; 712 rap->rxa_qframes--; 713 vap->iv_stats.is_ampdu_rx_oor++; 714 715 ampdu_dispatch(ni, m); 716 if (rap->rxa_qframes == 0) 717 break; 718 } 719 } 720 721 /* 722 * Dispatch all frames in the A-MPDU re-order queue 723 * preceding the specified sequence number. This logic 724 * handles window moves due to a received MSDU or BAR. 725 */ 726 static void 727 ampdu_rx_flush_upto(struct ieee80211_node *ni, 728 struct ieee80211_rx_ampdu *rap, ieee80211_seq winstart) 729 { 730 struct ieee80211vap *vap = ni->ni_vap; 731 struct mbuf *m; 732 ieee80211_seq seqno; 733 int i; 734 735 /* 736 * Flush any complete MSDU's with a sequence number lower 737 * than winstart. Gaps may exist. Note that we may actually 738 * dispatch frames past winstart if a run continues; this is 739 * an optimization that avoids having to do a separate pass 740 * to dispatch frames after moving the BA window start. 741 */ 742 seqno = rap->rxa_start; 743 for (i = 0; i < rap->rxa_wnd; i++) { 744 m = rap->rxa_m[i]; 745 if (m != NULL) { 746 rap->rxa_m[i] = NULL; 747 rap->rxa_qbytes -= m->m_pkthdr.len; 748 rap->rxa_qframes--; 749 vap->iv_stats.is_ampdu_rx_oor++; 750 751 ampdu_dispatch(ni, m); 752 } else { 753 if (!IEEE80211_SEQ_BA_BEFORE(seqno, winstart)) 754 break; 755 } 756 seqno = IEEE80211_SEQ_INC(seqno); 757 } 758 /* 759 * If frames remain, copy the mbuf pointers down so 760 * they correspond to the offsets in the new window. 761 */ 762 if (rap->rxa_qframes != 0) { 763 int n = rap->rxa_qframes, j; 764 765 /* NB: this loop assumes i > 0 and/or rxa_m[0] is NULL */ 766 KASSERT(rap->rxa_m[0] == NULL, 767 ("%s: BA window slot 0 occupied", __func__)); 768 for (j = i+1; j < rap->rxa_wnd; j++) { 769 if (rap->rxa_m[j] != NULL) { 770 rap->rxa_m[j-i] = rap->rxa_m[j]; 771 rap->rxa_m[j] = NULL; 772 if (--n == 0) 773 break; 774 } 775 } 776 KASSERT(n == 0, ("%s: lost %d frames, qframes %d off %d " 777 "BA win <%d:%d> winstart %d", 778 __func__, n, rap->rxa_qframes, i, rap->rxa_start, 779 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 780 winstart)); 781 vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; 782 } 783 /* 784 * Move the start of the BA window; we use the 785 * sequence number of the last MSDU that was 786 * passed up the stack+1 or winstart if stopped on 787 * a gap in the reorder buffer. 788 */ 789 rap->rxa_start = seqno; 790 } 791 792 /* 793 * Process a received QoS data frame for an HT station. Handle 794 * A-MPDU reordering: if this frame is received out of order 795 * and falls within the BA window hold onto it. Otherwise if 796 * this frame completes a run, flush any pending frames. We 797 * return 1 if the frame is consumed. A 0 is returned if 798 * the frame should be processed normally by the caller. 799 */ 800 int 801 ieee80211_ampdu_reorder(struct ieee80211_node *ni, struct mbuf *m) 802 { 803 #define PROCESS 0 /* caller should process frame */ 804 #define CONSUMED 1 /* frame consumed, caller does nothing */ 805 struct ieee80211vap *vap = ni->ni_vap; 806 struct ieee80211_qosframe *wh; 807 struct ieee80211_rx_ampdu *rap; 808 ieee80211_seq rxseq; 809 uint8_t tid; 810 int off; 811 812 KASSERT((m->m_flags & (M_AMPDU | M_AMPDU_MPDU)) == M_AMPDU, 813 ("!a-mpdu or already re-ordered, flags 0x%x", m->m_flags)); 814 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 815 816 /* NB: m_len known to be sufficient */ 817 wh = mtod(m, struct ieee80211_qosframe *); 818 if (wh->i_fc[0] != IEEE80211_FC0_QOSDATA) { 819 /* 820 * Not QoS data, shouldn't get here but just 821 * return it to the caller for processing. 822 */ 823 return PROCESS; 824 } 825 if (IEEE80211_IS_DSTODS(wh)) 826 tid = ((struct ieee80211_qosframe_addr4 *)wh)->i_qos[0]; 827 else 828 tid = wh->i_qos[0]; 829 tid &= IEEE80211_QOS_TID; 830 rap = &ni->ni_rx_ampdu[tid]; 831 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 832 /* 833 * No ADDBA request yet, don't touch. 834 */ 835 return PROCESS; 836 } 837 rxseq = le16toh(*(uint16_t *)wh->i_seq); 838 if ((rxseq & IEEE80211_SEQ_FRAG_MASK) != 0) { 839 /* 840 * Fragments are not allowed; toss. 841 */ 842 IEEE80211_DISCARD_MAC(vap, 843 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 844 "A-MPDU", "fragment, rxseq 0x%x tid %u%s", rxseq, tid, 845 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 846 vap->iv_stats.is_ampdu_rx_drop++; 847 IEEE80211_NODE_STAT(ni, rx_drop); 848 m_freem(m); 849 return CONSUMED; 850 } 851 rxseq >>= IEEE80211_SEQ_SEQ_SHIFT; 852 rap->rxa_nframes++; 853 854 /* 855 * Handle waiting for the first frame to define the BAW. 856 * Some firmware doesn't provide the RX of the starting point 857 * of the BAW and we have to cope. 858 */ 859 if (rap->rxa_flags & IEEE80211_AGGR_WAITRX) { 860 rap->rxa_flags &= ~IEEE80211_AGGR_WAITRX; 861 rap->rxa_start = rxseq; 862 } 863 again: 864 if (rxseq == rap->rxa_start) { 865 /* 866 * First frame in window. 867 */ 868 if (rap->rxa_qframes != 0) { 869 /* 870 * Dispatch as many packets as we can. 871 */ 872 KASSERT(rap->rxa_m[0] == NULL, ("unexpected dup")); 873 ampdu_dispatch(ni, m); 874 ampdu_rx_dispatch(rap, ni); 875 return CONSUMED; 876 } else { 877 /* 878 * In order; advance window and notify 879 * caller to dispatch directly. 880 */ 881 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 882 return PROCESS; 883 } 884 } 885 /* 886 * Frame is out of order; store if in the BA window. 887 */ 888 /* calculate offset in BA window */ 889 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 890 if (off < rap->rxa_wnd) { 891 /* 892 * Common case (hopefully): in the BA window. 893 * Sec 9.10.7.6.2 a) (p.137) 894 */ 895 896 /* 897 * Check for frames sitting too long in the reorder queue. 898 * This should only ever happen if frames are not delivered 899 * without the sender otherwise notifying us (e.g. with a 900 * BAR to move the window). Typically this happens because 901 * of vendor bugs that cause the sequence number to jump. 902 * When this happens we get a gap in the reorder queue that 903 * leaves frame sitting on the queue until they get pushed 904 * out due to window moves. When the vendor does not send 905 * BAR this move only happens due to explicit packet sends 906 * 907 * NB: we only track the time of the oldest frame in the 908 * reorder q; this means that if we flush we might push 909 * frames that still "new"; if this happens then subsequent 910 * frames will result in BA window moves which cost something 911 * but is still better than a big throughput dip. 912 */ 913 if (rap->rxa_qframes != 0) { 914 /* XXX honor batimeout? */ 915 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 916 /* 917 * Too long since we received the first 918 * frame; flush the reorder buffer. 919 */ 920 if (rap->rxa_qframes != 0) { 921 vap->iv_stats.is_ampdu_rx_age += 922 rap->rxa_qframes; 923 ampdu_rx_flush(ni, rap); 924 } 925 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 926 return PROCESS; 927 } 928 } else { 929 /* 930 * First frame, start aging timer. 931 */ 932 rap->rxa_age = ticks; 933 } 934 935 /* save packet */ 936 if (rap->rxa_m[off] == NULL) { 937 rap->rxa_m[off] = m; 938 rap->rxa_qframes++; 939 rap->rxa_qbytes += m->m_pkthdr.len; 940 vap->iv_stats.is_ampdu_rx_reorder++; 941 } else { 942 IEEE80211_DISCARD_MAC(vap, 943 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 944 ni->ni_macaddr, "a-mpdu duplicate", 945 "seqno %u tid %u BA win <%u:%u>", 946 rxseq, tid, rap->rxa_start, 947 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1)); 948 vap->iv_stats.is_rx_dup++; 949 IEEE80211_NODE_STAT(ni, rx_dup); 950 m_freem(m); 951 } 952 return CONSUMED; 953 } 954 if (off < IEEE80211_SEQ_BA_RANGE) { 955 /* 956 * Outside the BA window, but within range; 957 * flush the reorder q and move the window. 958 * Sec 9.10.7.6.2 b) (p.138) 959 */ 960 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 961 "move BA win <%u:%u> (%u frames) rxseq %u tid %u", 962 rap->rxa_start, 963 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 964 rap->rxa_qframes, rxseq, tid); 965 vap->iv_stats.is_ampdu_rx_move++; 966 967 /* 968 * The spec says to flush frames up to but not including: 969 * WinStart_B = rxseq - rap->rxa_wnd + 1 970 * Then insert the frame or notify the caller to process 971 * it immediately. We can safely do this by just starting 972 * over again because we know the frame will now be within 973 * the BA window. 974 */ 975 /* NB: rxa_wnd known to be >0 */ 976 ampdu_rx_flush_upto(ni, rap, 977 IEEE80211_SEQ_SUB(rxseq, rap->rxa_wnd-1)); 978 goto again; 979 } else { 980 /* 981 * Outside the BA window and out of range; toss. 982 * Sec 9.10.7.6.2 c) (p.138) 983 */ 984 IEEE80211_DISCARD_MAC(vap, 985 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 986 "MPDU", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 987 rap->rxa_start, 988 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 989 rap->rxa_qframes, rxseq, tid, 990 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 991 vap->iv_stats.is_ampdu_rx_drop++; 992 IEEE80211_NODE_STAT(ni, rx_drop); 993 m_freem(m); 994 return CONSUMED; 995 } 996 #undef CONSUMED 997 #undef PROCESS 998 } 999 1000 /* 1001 * Process a BAR ctl frame. Dispatch all frames up to 1002 * the sequence number of the frame. If this frame is 1003 * out of range it's discarded. 1004 */ 1005 void 1006 ieee80211_recv_bar(struct ieee80211_node *ni, struct mbuf *m0) 1007 { 1008 struct ieee80211vap *vap = ni->ni_vap; 1009 struct ieee80211_frame_bar *wh; 1010 struct ieee80211_rx_ampdu *rap; 1011 ieee80211_seq rxseq; 1012 int tid, off; 1013 1014 if (!ieee80211_recv_bar_ena) { 1015 #if 0 1016 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_11N, 1017 ni->ni_macaddr, "BAR", "%s", "processing disabled"); 1018 #endif 1019 vap->iv_stats.is_ampdu_bar_bad++; 1020 return; 1021 } 1022 wh = mtod(m0, struct ieee80211_frame_bar *); 1023 /* XXX check basic BAR */ 1024 tid = MS(le16toh(wh->i_ctl), IEEE80211_BAR_TID); 1025 rap = &ni->ni_rx_ampdu[tid]; 1026 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 1027 /* 1028 * No ADDBA request yet, don't touch. 1029 */ 1030 IEEE80211_DISCARD_MAC(vap, 1031 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 1032 ni->ni_macaddr, "BAR", "no BA stream, tid %u", tid); 1033 vap->iv_stats.is_ampdu_bar_bad++; 1034 return; 1035 } 1036 vap->iv_stats.is_ampdu_bar_rx++; 1037 rxseq = le16toh(wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT; 1038 if (rxseq == rap->rxa_start) 1039 return; 1040 /* calculate offset in BA window */ 1041 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 1042 if (off < IEEE80211_SEQ_BA_RANGE) { 1043 /* 1044 * Flush the reorder q up to rxseq and move the window. 1045 * Sec 9.10.7.6.3 a) (p.138) 1046 */ 1047 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1048 "BAR moves BA win <%u:%u> (%u frames) rxseq %u tid %u", 1049 rap->rxa_start, 1050 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1051 rap->rxa_qframes, rxseq, tid); 1052 vap->iv_stats.is_ampdu_bar_move++; 1053 1054 ampdu_rx_flush_upto(ni, rap, rxseq); 1055 if (off >= rap->rxa_wnd) { 1056 /* 1057 * BAR specifies a window start to the right of BA 1058 * window; we must move it explicitly since 1059 * ampdu_rx_flush_upto will not. 1060 */ 1061 rap->rxa_start = rxseq; 1062 } 1063 } else { 1064 /* 1065 * Out of range; toss. 1066 * Sec 9.10.7.6.3 b) (p.138) 1067 */ 1068 IEEE80211_DISCARD_MAC(vap, 1069 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 1070 "BAR", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 1071 rap->rxa_start, 1072 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1073 rap->rxa_qframes, rxseq, tid, 1074 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 1075 vap->iv_stats.is_ampdu_bar_oow++; 1076 IEEE80211_NODE_STAT(ni, rx_drop); 1077 } 1078 } 1079 1080 /* 1081 * Setup HT-specific state in a node. Called only 1082 * when HT use is negotiated so we don't do extra 1083 * work for temporary and/or legacy sta's. 1084 */ 1085 void 1086 ieee80211_ht_node_init(struct ieee80211_node *ni) 1087 { 1088 struct ieee80211_tx_ampdu *tap; 1089 int tid; 1090 1091 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1092 ni, 1093 "%s: called (%p)", 1094 __func__, 1095 ni); 1096 1097 if (ni->ni_flags & IEEE80211_NODE_HT) { 1098 /* 1099 * Clean AMPDU state on re-associate. This handles the case 1100 * where a station leaves w/o notifying us and then returns 1101 * before node is reaped for inactivity. 1102 */ 1103 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1104 ni, 1105 "%s: calling cleanup (%p)", 1106 __func__, ni); 1107 ieee80211_ht_node_cleanup(ni); 1108 } 1109 for (tid = 0; tid < WME_NUM_TID; tid++) { 1110 tap = &ni->ni_tx_ampdu[tid]; 1111 tap->txa_tid = tid; 1112 tap->txa_ni = ni; 1113 ieee80211_txampdu_init_pps(tap); 1114 /* NB: further initialization deferred */ 1115 } 1116 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU; 1117 } 1118 1119 /* 1120 * Cleanup HT-specific state in a node. Called only 1121 * when HT use has been marked. 1122 */ 1123 void 1124 ieee80211_ht_node_cleanup(struct ieee80211_node *ni) 1125 { 1126 struct ieee80211com *ic = ni->ni_ic; 1127 int i; 1128 1129 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1130 ni, 1131 "%s: called (%p)", 1132 __func__, ni); 1133 1134 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT node")); 1135 1136 /* XXX optimize this */ 1137 for (i = 0; i < WME_NUM_TID; i++) { 1138 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[i]; 1139 if (tap->txa_flags & IEEE80211_AGGR_SETUP) 1140 ampdu_tx_stop(tap); 1141 } 1142 for (i = 0; i < WME_NUM_TID; i++) 1143 ic->ic_ampdu_rx_stop(ni, &ni->ni_rx_ampdu[i]); 1144 1145 ni->ni_htcap = 0; 1146 ni->ni_flags &= ~IEEE80211_NODE_HT_ALL; 1147 } 1148 1149 /* 1150 * Age out HT resources for a station. 1151 */ 1152 void 1153 ieee80211_ht_node_age(struct ieee80211_node *ni) 1154 { 1155 struct ieee80211vap *vap = ni->ni_vap; 1156 uint8_t tid; 1157 1158 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 1159 1160 for (tid = 0; tid < WME_NUM_TID; tid++) { 1161 struct ieee80211_rx_ampdu *rap; 1162 1163 rap = &ni->ni_rx_ampdu[tid]; 1164 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) 1165 continue; 1166 if (rap->rxa_qframes == 0) 1167 continue; 1168 /* 1169 * Check for frames sitting too long in the reorder queue. 1170 * See above for more details on what's happening here. 1171 */ 1172 /* XXX honor batimeout? */ 1173 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 1174 /* 1175 * Too long since we received the first 1176 * frame; flush the reorder buffer. 1177 */ 1178 vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes; 1179 ampdu_rx_flush(ni, rap); 1180 } 1181 } 1182 } 1183 1184 static struct ieee80211_channel * 1185 findhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int htflags) 1186 { 1187 return ieee80211_find_channel(ic, c->ic_freq, 1188 (c->ic_flags &~ IEEE80211_CHAN_HT) | htflags); 1189 } 1190 1191 /* 1192 * Adjust a channel to be HT/non-HT according to the vap's configuration. 1193 */ 1194 struct ieee80211_channel * 1195 ieee80211_ht_adjust_channel(struct ieee80211com *ic, 1196 struct ieee80211_channel *chan, int flags) 1197 { 1198 struct ieee80211_channel *c; 1199 1200 if (flags & IEEE80211_FHT_HT) { 1201 /* promote to HT if possible */ 1202 if (flags & IEEE80211_FHT_USEHT40) { 1203 if (!IEEE80211_IS_CHAN_HT40(chan)) { 1204 /* NB: arbitrarily pick ht40+ over ht40- */ 1205 c = findhtchan(ic, chan, IEEE80211_CHAN_HT40U); 1206 if (c == NULL) 1207 c = findhtchan(ic, chan, 1208 IEEE80211_CHAN_HT40D); 1209 if (c == NULL) 1210 c = findhtchan(ic, chan, 1211 IEEE80211_CHAN_HT20); 1212 if (c != NULL) 1213 chan = c; 1214 } 1215 } else if (!IEEE80211_IS_CHAN_HT20(chan)) { 1216 c = findhtchan(ic, chan, IEEE80211_CHAN_HT20); 1217 if (c != NULL) 1218 chan = c; 1219 } 1220 } else if (IEEE80211_IS_CHAN_HT(chan)) { 1221 /* demote to legacy, HT use is disabled */ 1222 c = ieee80211_find_channel(ic, chan->ic_freq, 1223 chan->ic_flags &~ IEEE80211_CHAN_HT); 1224 if (c != NULL) 1225 chan = c; 1226 } 1227 return chan; 1228 } 1229 1230 /* 1231 * Setup HT-specific state for a legacy WDS peer. 1232 */ 1233 void 1234 ieee80211_ht_wds_init(struct ieee80211_node *ni) 1235 { 1236 struct ieee80211vap *vap = ni->ni_vap; 1237 struct ieee80211_tx_ampdu *tap; 1238 int tid; 1239 1240 KASSERT(vap->iv_flags_ht & IEEE80211_FHT_HT, ("no HT requested")); 1241 1242 /* XXX check scan cache in case peer has an ap and we have info */ 1243 /* 1244 * If setup with a legacy channel; locate an HT channel. 1245 * Otherwise if the inherited channel (from a companion 1246 * AP) is suitable use it so we use the same location 1247 * for the extension channel). 1248 */ 1249 ni->ni_chan = ieee80211_ht_adjust_channel(ni->ni_ic, 1250 ni->ni_chan, ieee80211_htchanflags(ni->ni_chan)); 1251 1252 ni->ni_htcap = 0; 1253 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) 1254 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI20; 1255 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { 1256 ni->ni_htcap |= IEEE80211_HTCAP_CHWIDTH40; 1257 ni->ni_chw = 40; 1258 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 1259 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_ABOVE; 1260 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 1261 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_BELOW; 1262 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) 1263 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI40; 1264 } else { 1265 ni->ni_chw = 20; 1266 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_NONE; 1267 } 1268 ni->ni_htctlchan = ni->ni_chan->ic_ieee; 1269 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 1270 ni->ni_flags |= IEEE80211_NODE_RIFS; 1271 /* XXX does it make sense to enable SMPS? */ 1272 1273 ni->ni_htopmode = 0; /* XXX need protection state */ 1274 ni->ni_htstbc = 0; /* XXX need info */ 1275 1276 for (tid = 0; tid < WME_NUM_TID; tid++) { 1277 tap = &ni->ni_tx_ampdu[tid]; 1278 tap->txa_tid = tid; 1279 ieee80211_txampdu_init_pps(tap); 1280 } 1281 /* NB: AMPDU tx/rx governed by IEEE80211_FHT_AMPDU_{TX,RX} */ 1282 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU; 1283 } 1284 1285 /* 1286 * Notify hostap vaps of a change in the HTINFO ie. 1287 */ 1288 static void 1289 htinfo_notify(struct ieee80211com *ic) 1290 { 1291 struct ieee80211vap *vap; 1292 int first = 1; 1293 1294 IEEE80211_LOCK_ASSERT(ic); 1295 1296 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1297 if (vap->iv_opmode != IEEE80211_M_HOSTAP) 1298 continue; 1299 if (vap->iv_state != IEEE80211_S_RUN || 1300 !IEEE80211_IS_CHAN_HT(vap->iv_bss->ni_chan)) 1301 continue; 1302 if (first) { 1303 IEEE80211_NOTE(vap, 1304 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1305 vap->iv_bss, 1306 "HT bss occupancy change: %d sta, %d ht, " 1307 "%d ht40%s, HT protmode now 0x%x" 1308 , ic->ic_sta_assoc 1309 , ic->ic_ht_sta_assoc 1310 , ic->ic_ht40_sta_assoc 1311 , (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) ? 1312 ", non-HT sta present" : "" 1313 , ic->ic_curhtprotmode); 1314 first = 0; 1315 } 1316 ieee80211_beacon_notify(vap, IEEE80211_BEACON_HTINFO); 1317 } 1318 } 1319 1320 /* 1321 * Calculate HT protection mode from current 1322 * state and handle updates. 1323 */ 1324 static void 1325 htinfo_update(struct ieee80211com *ic) 1326 { 1327 uint8_t protmode; 1328 1329 if (ic->ic_sta_assoc != ic->ic_ht_sta_assoc) { 1330 protmode = IEEE80211_HTINFO_OPMODE_MIXED 1331 | IEEE80211_HTINFO_NONHT_PRESENT; 1332 } else if (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) { 1333 protmode = IEEE80211_HTINFO_OPMODE_PROTOPT 1334 | IEEE80211_HTINFO_NONHT_PRESENT; 1335 } else if (ic->ic_bsschan != IEEE80211_CHAN_ANYC && 1336 IEEE80211_IS_CHAN_HT40(ic->ic_bsschan) && 1337 ic->ic_sta_assoc != ic->ic_ht40_sta_assoc) { 1338 protmode = IEEE80211_HTINFO_OPMODE_HT20PR; 1339 } else { 1340 protmode = IEEE80211_HTINFO_OPMODE_PURE; 1341 } 1342 if (protmode != ic->ic_curhtprotmode) { 1343 ic->ic_curhtprotmode = protmode; 1344 htinfo_notify(ic); 1345 } 1346 } 1347 1348 /* 1349 * Handle an HT station joining a BSS. 1350 */ 1351 void 1352 ieee80211_ht_node_join(struct ieee80211_node *ni) 1353 { 1354 struct ieee80211com *ic = ni->ni_ic; 1355 1356 IEEE80211_LOCK_ASSERT(ic); 1357 1358 if (ni->ni_flags & IEEE80211_NODE_HT) { 1359 ic->ic_ht_sta_assoc++; 1360 if (ni->ni_chw == 40) 1361 ic->ic_ht40_sta_assoc++; 1362 } 1363 htinfo_update(ic); 1364 } 1365 1366 /* 1367 * Handle an HT station leaving a BSS. 1368 */ 1369 void 1370 ieee80211_ht_node_leave(struct ieee80211_node *ni) 1371 { 1372 struct ieee80211com *ic = ni->ni_ic; 1373 1374 IEEE80211_LOCK_ASSERT(ic); 1375 1376 if (ni->ni_flags & IEEE80211_NODE_HT) { 1377 ic->ic_ht_sta_assoc--; 1378 if (ni->ni_chw == 40) 1379 ic->ic_ht40_sta_assoc--; 1380 } 1381 htinfo_update(ic); 1382 } 1383 1384 /* 1385 * Public version of htinfo_update; used for processing 1386 * beacon frames from overlapping bss. 1387 * 1388 * Caller can specify either IEEE80211_HTINFO_OPMODE_MIXED 1389 * (on receipt of a beacon that advertises MIXED) or 1390 * IEEE80211_HTINFO_OPMODE_PROTOPT (on receipt of a beacon 1391 * from an overlapping legacy bss). We treat MIXED with 1392 * a higher precedence than PROTOPT (i.e. we will not change 1393 * change PROTOPT -> MIXED; only MIXED -> PROTOPT). This 1394 * corresponds to how we handle things in htinfo_update. 1395 */ 1396 void 1397 ieee80211_htprot_update(struct ieee80211com *ic, int protmode) 1398 { 1399 #define OPMODE(x) SM(x, IEEE80211_HTINFO_OPMODE) 1400 IEEE80211_LOCK(ic); 1401 1402 /* track non-HT station presence */ 1403 KASSERT(protmode & IEEE80211_HTINFO_NONHT_PRESENT, 1404 ("protmode 0x%x", protmode)); 1405 ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR; 1406 ic->ic_lastnonht = ticks; 1407 1408 if (protmode != ic->ic_curhtprotmode && 1409 (OPMODE(ic->ic_curhtprotmode) != IEEE80211_HTINFO_OPMODE_MIXED || 1410 OPMODE(protmode) == IEEE80211_HTINFO_OPMODE_PROTOPT)) { 1411 /* push beacon update */ 1412 ic->ic_curhtprotmode = protmode; 1413 htinfo_notify(ic); 1414 } 1415 IEEE80211_UNLOCK(ic); 1416 #undef OPMODE 1417 } 1418 1419 /* 1420 * Time out presence of an overlapping bss with non-HT 1421 * stations. When operating in hostap mode we listen for 1422 * beacons from other stations and if we identify a non-HT 1423 * station is present we update the opmode field of the 1424 * HTINFO ie. To identify when all non-HT stations are 1425 * gone we time out this condition. 1426 */ 1427 void 1428 ieee80211_ht_timeout(struct ieee80211com *ic) 1429 { 1430 IEEE80211_LOCK_ASSERT(ic); 1431 1432 if ((ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) && 1433 ieee80211_time_after(ticks, ic->ic_lastnonht + IEEE80211_NONHT_PRESENT_AGE)) { 1434 #if 0 1435 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1436 "%s", "time out non-HT STA present on channel"); 1437 #endif 1438 ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR; 1439 htinfo_update(ic); 1440 } 1441 } 1442 1443 /* 1444 * Process an 802.11n HT capabilities ie. 1445 */ 1446 void 1447 ieee80211_parse_htcap(struct ieee80211_node *ni, const uint8_t *ie) 1448 { 1449 if (ie[0] == IEEE80211_ELEMID_VENDOR) { 1450 /* 1451 * Station used Vendor OUI ie to associate; 1452 * mark the node so when we respond we'll use 1453 * the Vendor OUI's and not the standard ie's. 1454 */ 1455 ni->ni_flags |= IEEE80211_NODE_HTCOMPAT; 1456 ie += 4; 1457 } else 1458 ni->ni_flags &= ~IEEE80211_NODE_HTCOMPAT; 1459 1460 ni->ni_htcap = le16dec(ie + 1461 __offsetof(struct ieee80211_ie_htcap, hc_cap)); 1462 ni->ni_htparam = ie[__offsetof(struct ieee80211_ie_htcap, hc_param)]; 1463 } 1464 1465 static void 1466 htinfo_parse(struct ieee80211_node *ni, 1467 const struct ieee80211_ie_htinfo *htinfo) 1468 { 1469 uint16_t w; 1470 1471 ni->ni_htctlchan = htinfo->hi_ctrlchannel; 1472 ni->ni_ht2ndchan = SM(htinfo->hi_byte1, IEEE80211_HTINFO_2NDCHAN); 1473 w = le16dec(&htinfo->hi_byte2); 1474 ni->ni_htopmode = SM(w, IEEE80211_HTINFO_OPMODE); 1475 w = le16dec(&htinfo->hi_byte45); 1476 ni->ni_htstbc = SM(w, IEEE80211_HTINFO_BASIC_STBCMCS); 1477 } 1478 1479 /* 1480 * Parse an 802.11n HT info ie and save useful information 1481 * to the node state. Note this does not effect any state 1482 * changes such as for channel width change. 1483 */ 1484 void 1485 ieee80211_parse_htinfo(struct ieee80211_node *ni, const uint8_t *ie) 1486 { 1487 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1488 ie += 4; 1489 htinfo_parse(ni, (const struct ieee80211_ie_htinfo *) ie); 1490 } 1491 1492 /* 1493 * Handle 11n channel switch. Use the received HT ie's to 1494 * identify the right channel to use. If we cannot locate it 1495 * in the channel table then fallback to legacy operation. 1496 * Note that we use this information to identify the node's 1497 * channel only; the caller is responsible for insuring any 1498 * required channel change is done (e.g. in sta mode when 1499 * parsing the contents of a beacon frame). 1500 */ 1501 static int 1502 htinfo_update_chw(struct ieee80211_node *ni, int htflags) 1503 { 1504 struct ieee80211com *ic = ni->ni_ic; 1505 struct ieee80211_channel *c; 1506 int chanflags; 1507 int ret = 0; 1508 1509 chanflags = (ni->ni_chan->ic_flags &~ IEEE80211_CHAN_HT) | htflags; 1510 if (chanflags != ni->ni_chan->ic_flags) { 1511 /* XXX not right for ht40- */ 1512 c = ieee80211_find_channel(ic, ni->ni_chan->ic_freq, chanflags); 1513 if (c == NULL && (htflags & IEEE80211_CHAN_HT40)) { 1514 /* 1515 * No HT40 channel entry in our table; fall back 1516 * to HT20 operation. This should not happen. 1517 */ 1518 c = findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT20); 1519 #if 0 1520 IEEE80211_NOTE(ni->ni_vap, 1521 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1522 "no HT40 channel (freq %u), falling back to HT20", 1523 ni->ni_chan->ic_freq); 1524 #endif 1525 /* XXX stat */ 1526 } 1527 if (c != NULL && c != ni->ni_chan) { 1528 IEEE80211_NOTE(ni->ni_vap, 1529 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1530 "switch station to HT%d channel %u/0x%x", 1531 IEEE80211_IS_CHAN_HT40(c) ? 40 : 20, 1532 c->ic_freq, c->ic_flags); 1533 ni->ni_chan = c; 1534 ret = 1; 1535 } 1536 /* NB: caller responsible for forcing any channel change */ 1537 } 1538 /* update node's tx channel width */ 1539 ni->ni_chw = IEEE80211_IS_CHAN_HT40(ni->ni_chan)? 40 : 20; 1540 return (ret); 1541 } 1542 1543 /* 1544 * Update 11n MIMO PS state according to received htcap. 1545 */ 1546 static __inline int 1547 htcap_update_mimo_ps(struct ieee80211_node *ni) 1548 { 1549 uint16_t oflags = ni->ni_flags; 1550 1551 switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) { 1552 case IEEE80211_HTCAP_SMPS_DYNAMIC: 1553 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1554 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 1555 break; 1556 case IEEE80211_HTCAP_SMPS_ENA: 1557 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1558 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1559 break; 1560 case IEEE80211_HTCAP_SMPS_OFF: 1561 default: /* disable on rx of reserved value */ 1562 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 1563 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1564 break; 1565 } 1566 return (oflags ^ ni->ni_flags); 1567 } 1568 1569 /* 1570 * Update short GI state according to received htcap 1571 * and local settings. 1572 */ 1573 static __inline void 1574 htcap_update_shortgi(struct ieee80211_node *ni) 1575 { 1576 struct ieee80211vap *vap = ni->ni_vap; 1577 1578 ni->ni_flags &= ~(IEEE80211_NODE_SGI20|IEEE80211_NODE_SGI40); 1579 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) && 1580 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)) 1581 ni->ni_flags |= IEEE80211_NODE_SGI20; 1582 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) && 1583 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)) 1584 ni->ni_flags |= IEEE80211_NODE_SGI40; 1585 } 1586 1587 /* 1588 * Parse and update HT-related state extracted from 1589 * the HT cap and info ie's. 1590 */ 1591 int 1592 ieee80211_ht_updateparams(struct ieee80211_node *ni, 1593 const uint8_t *htcapie, const uint8_t *htinfoie) 1594 { 1595 struct ieee80211vap *vap = ni->ni_vap; 1596 const struct ieee80211_ie_htinfo *htinfo; 1597 int htflags; 1598 int ret = 0; 1599 1600 ieee80211_parse_htcap(ni, htcapie); 1601 if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS) 1602 htcap_update_mimo_ps(ni); 1603 htcap_update_shortgi(ni); 1604 1605 if (htinfoie[0] == IEEE80211_ELEMID_VENDOR) 1606 htinfoie += 4; 1607 htinfo = (const struct ieee80211_ie_htinfo *) htinfoie; 1608 htinfo_parse(ni, htinfo); 1609 1610 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 1611 IEEE80211_CHAN_HT20 : 0; 1612 /* NB: honor operating mode constraint */ 1613 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH_2040) && 1614 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 1615 if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_ABOVE) 1616 htflags = IEEE80211_CHAN_HT40U; 1617 else if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_BELOW) 1618 htflags = IEEE80211_CHAN_HT40D; 1619 } 1620 if (htinfo_update_chw(ni, htflags)) 1621 ret = 1; 1622 1623 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_RIFSMODE_PERM) && 1624 (vap->iv_flags_ht & IEEE80211_FHT_RIFS)) 1625 ni->ni_flags |= IEEE80211_NODE_RIFS; 1626 else 1627 ni->ni_flags &= ~IEEE80211_NODE_RIFS; 1628 1629 return (ret); 1630 } 1631 1632 /* 1633 * Parse and update HT-related state extracted from the HT cap ie 1634 * for a station joining an HT BSS. 1635 */ 1636 void 1637 ieee80211_ht_updatehtcap(struct ieee80211_node *ni, const uint8_t *htcapie) 1638 { 1639 struct ieee80211vap *vap = ni->ni_vap; 1640 int htflags; 1641 1642 ieee80211_parse_htcap(ni, htcapie); 1643 if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS) 1644 htcap_update_mimo_ps(ni); 1645 htcap_update_shortgi(ni); 1646 1647 /* NB: honor operating mode constraint */ 1648 /* XXX 40 MHz intolerant */ 1649 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 1650 IEEE80211_CHAN_HT20 : 0; 1651 if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) && 1652 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 1653 if (IEEE80211_IS_CHAN_HT40U(vap->iv_bss->ni_chan)) 1654 htflags = IEEE80211_CHAN_HT40U; 1655 else if (IEEE80211_IS_CHAN_HT40D(vap->iv_bss->ni_chan)) 1656 htflags = IEEE80211_CHAN_HT40D; 1657 } 1658 (void) htinfo_update_chw(ni, htflags); 1659 } 1660 1661 /* 1662 * Install received HT rate set by parsing the HT cap ie. 1663 */ 1664 int 1665 ieee80211_setup_htrates(struct ieee80211_node *ni, const uint8_t *ie, int flags) 1666 { 1667 struct ieee80211com *ic = ni->ni_ic; 1668 struct ieee80211vap *vap = ni->ni_vap; 1669 const struct ieee80211_ie_htcap *htcap; 1670 struct ieee80211_htrateset *rs; 1671 int i, maxequalmcs, maxunequalmcs; 1672 1673 maxequalmcs = ic->ic_txstream * 8 - 1; 1674 maxunequalmcs = 0; 1675 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 1676 if (ic->ic_txstream >= 2) 1677 maxunequalmcs = 38; 1678 if (ic->ic_txstream >= 3) 1679 maxunequalmcs = 52; 1680 if (ic->ic_txstream >= 4) 1681 maxunequalmcs = 76; 1682 } 1683 1684 rs = &ni->ni_htrates; 1685 memset(rs, 0, sizeof(*rs)); 1686 if (ie != NULL) { 1687 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1688 ie += 4; 1689 htcap = (const struct ieee80211_ie_htcap *) ie; 1690 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 1691 if (isclr(htcap->hc_mcsset, i)) 1692 continue; 1693 if (rs->rs_nrates == IEEE80211_HTRATE_MAXSIZE) { 1694 IEEE80211_NOTE(vap, 1695 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 1696 "WARNING, HT rate set too large; only " 1697 "using %u rates", IEEE80211_HTRATE_MAXSIZE); 1698 vap->iv_stats.is_rx_rstoobig++; 1699 break; 1700 } 1701 if (i <= 31 && i > maxequalmcs) 1702 continue; 1703 if (i == 32 && 1704 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0) 1705 continue; 1706 if (i > 32 && i > maxunequalmcs) 1707 continue; 1708 rs->rs_rates[rs->rs_nrates++] = i; 1709 } 1710 } 1711 return ieee80211_fix_rate(ni, (struct ieee80211_rateset *) rs, flags); 1712 } 1713 1714 /* 1715 * Mark rates in a node's HT rate set as basic according 1716 * to the information in the supplied HT info ie. 1717 */ 1718 void 1719 ieee80211_setup_basic_htrates(struct ieee80211_node *ni, const uint8_t *ie) 1720 { 1721 const struct ieee80211_ie_htinfo *htinfo; 1722 struct ieee80211_htrateset *rs; 1723 int i, j; 1724 1725 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1726 ie += 4; 1727 htinfo = (const struct ieee80211_ie_htinfo *) ie; 1728 rs = &ni->ni_htrates; 1729 if (rs->rs_nrates == 0) { 1730 IEEE80211_NOTE(ni->ni_vap, 1731 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 1732 "%s", "WARNING, empty HT rate set"); 1733 return; 1734 } 1735 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 1736 if (isclr(htinfo->hi_basicmcsset, i)) 1737 continue; 1738 for (j = 0; j < rs->rs_nrates; j++) 1739 if ((rs->rs_rates[j] & IEEE80211_RATE_VAL) == i) 1740 rs->rs_rates[j] |= IEEE80211_RATE_BASIC; 1741 } 1742 } 1743 1744 static void 1745 ampdu_tx_setup(struct ieee80211_tx_ampdu *tap) 1746 { 1747 callout_init(&tap->txa_timer, 1); 1748 tap->txa_flags |= IEEE80211_AGGR_SETUP; 1749 tap->txa_lastsample = ticks; 1750 } 1751 1752 static void 1753 ampdu_tx_stop(struct ieee80211_tx_ampdu *tap) 1754 { 1755 struct ieee80211_node *ni = tap->txa_ni; 1756 struct ieee80211com *ic = ni->ni_ic; 1757 1758 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 1759 tap->txa_ni, 1760 "%s: called", 1761 __func__); 1762 1763 KASSERT(tap->txa_flags & IEEE80211_AGGR_SETUP, 1764 ("txa_flags 0x%x tid %d ac %d", tap->txa_flags, tap->txa_tid, 1765 TID_TO_WME_AC(tap->txa_tid))); 1766 1767 /* 1768 * Stop BA stream if setup so driver has a chance 1769 * to reclaim any resources it might have allocated. 1770 */ 1771 ic->ic_addba_stop(ni, tap); 1772 /* 1773 * Stop any pending BAR transmit. 1774 */ 1775 bar_stop_timer(tap); 1776 1777 /* 1778 * Reset packet estimate. 1779 */ 1780 ieee80211_txampdu_init_pps(tap); 1781 1782 /* NB: clearing NAK means we may re-send ADDBA */ 1783 tap->txa_flags &= ~(IEEE80211_AGGR_SETUP | IEEE80211_AGGR_NAK); 1784 } 1785 1786 /* 1787 * ADDBA response timeout. 1788 * 1789 * If software aggregation and per-TID queue management was done here, 1790 * that queue would be unpaused after the ADDBA timeout occurs. 1791 */ 1792 static void 1793 addba_timeout(void *arg) 1794 { 1795 struct ieee80211_tx_ampdu *tap = arg; 1796 struct ieee80211_node *ni = tap->txa_ni; 1797 struct ieee80211com *ic = ni->ni_ic; 1798 1799 /* XXX ? */ 1800 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 1801 tap->txa_attempts++; 1802 ic->ic_addba_response_timeout(ni, tap); 1803 } 1804 1805 static void 1806 addba_start_timeout(struct ieee80211_tx_ampdu *tap) 1807 { 1808 /* XXX use CALLOUT_PENDING instead? */ 1809 callout_reset(&tap->txa_timer, ieee80211_addba_timeout, 1810 addba_timeout, tap); 1811 tap->txa_flags |= IEEE80211_AGGR_XCHGPEND; 1812 tap->txa_nextrequest = ticks + ieee80211_addba_timeout; 1813 } 1814 1815 static void 1816 addba_stop_timeout(struct ieee80211_tx_ampdu *tap) 1817 { 1818 /* XXX use CALLOUT_PENDING instead? */ 1819 if (tap->txa_flags & IEEE80211_AGGR_XCHGPEND) { 1820 callout_stop(&tap->txa_timer); 1821 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 1822 } 1823 } 1824 1825 static void 1826 null_addba_response_timeout(struct ieee80211_node *ni, 1827 struct ieee80211_tx_ampdu *tap) 1828 { 1829 } 1830 1831 /* 1832 * Default method for requesting A-MPDU tx aggregation. 1833 * We setup the specified state block and start a timer 1834 * to wait for an ADDBA response frame. 1835 */ 1836 static int 1837 ieee80211_addba_request(struct ieee80211_node *ni, 1838 struct ieee80211_tx_ampdu *tap, 1839 int dialogtoken, int baparamset, int batimeout) 1840 { 1841 int bufsiz; 1842 1843 /* XXX locking */ 1844 tap->txa_token = dialogtoken; 1845 tap->txa_flags |= IEEE80211_AGGR_IMMEDIATE; 1846 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 1847 tap->txa_wnd = (bufsiz == 0) ? 1848 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 1849 addba_start_timeout(tap); 1850 return 1; 1851 } 1852 1853 /* 1854 * Called by drivers that wish to request an ADDBA session be 1855 * setup. This brings it up and starts the request timer. 1856 */ 1857 int 1858 ieee80211_ampdu_tx_request_ext(struct ieee80211_node *ni, int tid) 1859 { 1860 struct ieee80211_tx_ampdu *tap; 1861 1862 if (tid < 0 || tid > 15) 1863 return (0); 1864 tap = &ni->ni_tx_ampdu[tid]; 1865 1866 /* XXX locking */ 1867 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 1868 /* do deferred setup of state */ 1869 ampdu_tx_setup(tap); 1870 } 1871 /* XXX hack for not doing proper locking */ 1872 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 1873 addba_start_timeout(tap); 1874 return (1); 1875 } 1876 1877 /* 1878 * Called by drivers that have marked a session as active. 1879 */ 1880 int 1881 ieee80211_ampdu_tx_request_active_ext(struct ieee80211_node *ni, int tid, 1882 int status) 1883 { 1884 struct ieee80211_tx_ampdu *tap; 1885 1886 if (tid < 0 || tid > 15) 1887 return (0); 1888 tap = &ni->ni_tx_ampdu[tid]; 1889 1890 /* XXX locking */ 1891 addba_stop_timeout(tap); 1892 if (status == 1) { 1893 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 1894 tap->txa_attempts = 0; 1895 } else { 1896 /* mark tid so we don't try again */ 1897 tap->txa_flags |= IEEE80211_AGGR_NAK; 1898 } 1899 return (1); 1900 } 1901 1902 /* 1903 * Default method for processing an A-MPDU tx aggregation 1904 * response. We shutdown any pending timer and update the 1905 * state block according to the reply. 1906 */ 1907 static int 1908 ieee80211_addba_response(struct ieee80211_node *ni, 1909 struct ieee80211_tx_ampdu *tap, 1910 int status, int baparamset, int batimeout) 1911 { 1912 int bufsiz, tid; 1913 1914 /* XXX locking */ 1915 addba_stop_timeout(tap); 1916 if (status == IEEE80211_STATUS_SUCCESS) { 1917 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 1918 /* XXX override our request? */ 1919 tap->txa_wnd = (bufsiz == 0) ? 1920 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 1921 /* XXX AC/TID */ 1922 tid = MS(baparamset, IEEE80211_BAPS_TID); 1923 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 1924 tap->txa_attempts = 0; 1925 } else { 1926 /* mark tid so we don't try again */ 1927 tap->txa_flags |= IEEE80211_AGGR_NAK; 1928 } 1929 return 1; 1930 } 1931 1932 /* 1933 * Default method for stopping A-MPDU tx aggregation. 1934 * Any timer is cleared and we drain any pending frames. 1935 */ 1936 static void 1937 ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 1938 { 1939 /* XXX locking */ 1940 addba_stop_timeout(tap); 1941 if (tap->txa_flags & IEEE80211_AGGR_RUNNING) { 1942 /* XXX clear aggregation queue */ 1943 tap->txa_flags &= ~IEEE80211_AGGR_RUNNING; 1944 } 1945 tap->txa_attempts = 0; 1946 } 1947 1948 /* 1949 * Process a received action frame using the default aggregation 1950 * policy. We intercept ADDBA-related frames and use them to 1951 * update our aggregation state. All other frames are passed up 1952 * for processing by ieee80211_recv_action. 1953 */ 1954 static int 1955 ht_recv_action_ba_addba_request(struct ieee80211_node *ni, 1956 const struct ieee80211_frame *wh, 1957 const uint8_t *frm, const uint8_t *efrm) 1958 { 1959 struct ieee80211com *ic = ni->ni_ic; 1960 struct ieee80211vap *vap = ni->ni_vap; 1961 struct ieee80211_rx_ampdu *rap; 1962 uint8_t dialogtoken; 1963 uint16_t baparamset, batimeout, baseqctl; 1964 uint16_t args[5]; 1965 int tid; 1966 1967 dialogtoken = frm[2]; 1968 baparamset = le16dec(frm+3); 1969 batimeout = le16dec(frm+5); 1970 baseqctl = le16dec(frm+7); 1971 1972 tid = MS(baparamset, IEEE80211_BAPS_TID); 1973 1974 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 1975 "recv ADDBA request: dialogtoken %u baparamset 0x%x " 1976 "(tid %d bufsiz %d) batimeout %d baseqctl %d:%d", 1977 dialogtoken, baparamset, 1978 tid, MS(baparamset, IEEE80211_BAPS_BUFSIZ), 1979 batimeout, 1980 MS(baseqctl, IEEE80211_BASEQ_START), 1981 MS(baseqctl, IEEE80211_BASEQ_FRAG)); 1982 1983 rap = &ni->ni_rx_ampdu[tid]; 1984 1985 /* Send ADDBA response */ 1986 args[0] = dialogtoken; 1987 /* 1988 * NB: We ack only if the sta associated with HT and 1989 * the ap is configured to do AMPDU rx (the latter 1990 * violates the 11n spec and is mostly for testing). 1991 */ 1992 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_RX) && 1993 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX)) { 1994 /* XXX handle ampdu_rx_start failure */ 1995 ic->ic_ampdu_rx_start(ni, rap, 1996 baparamset, batimeout, baseqctl); 1997 1998 args[1] = IEEE80211_STATUS_SUCCESS; 1999 } else { 2000 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2001 ni, "reject ADDBA request: %s", 2002 ni->ni_flags & IEEE80211_NODE_AMPDU_RX ? 2003 "administratively disabled" : 2004 "not negotiated for station"); 2005 vap->iv_stats.is_addba_reject++; 2006 args[1] = IEEE80211_STATUS_UNSPECIFIED; 2007 } 2008 /* XXX honor rap flags? */ 2009 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 2010 | SM(tid, IEEE80211_BAPS_TID) 2011 | SM(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ) 2012 ; 2013 args[3] = 0; 2014 args[4] = 0; 2015 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2016 IEEE80211_ACTION_BA_ADDBA_RESPONSE, args); 2017 return 0; 2018 } 2019 2020 static int 2021 ht_recv_action_ba_addba_response(struct ieee80211_node *ni, 2022 const struct ieee80211_frame *wh, 2023 const uint8_t *frm, const uint8_t *efrm) 2024 { 2025 struct ieee80211com *ic = ni->ni_ic; 2026 struct ieee80211vap *vap = ni->ni_vap; 2027 struct ieee80211_tx_ampdu *tap; 2028 uint8_t dialogtoken, policy; 2029 uint16_t baparamset, batimeout, code; 2030 int tid, bufsiz; 2031 2032 dialogtoken = frm[2]; 2033 code = le16dec(frm+3); 2034 baparamset = le16dec(frm+5); 2035 tid = MS(baparamset, IEEE80211_BAPS_TID); 2036 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 2037 policy = MS(baparamset, IEEE80211_BAPS_POLICY); 2038 batimeout = le16dec(frm+7); 2039 2040 tap = &ni->ni_tx_ampdu[tid]; 2041 if ((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 2042 IEEE80211_DISCARD_MAC(vap, 2043 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2044 ni->ni_macaddr, "ADDBA response", 2045 "no pending ADDBA, tid %d dialogtoken %u " 2046 "code %d", tid, dialogtoken, code); 2047 vap->iv_stats.is_addba_norequest++; 2048 return 0; 2049 } 2050 if (dialogtoken != tap->txa_token) { 2051 IEEE80211_DISCARD_MAC(vap, 2052 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2053 ni->ni_macaddr, "ADDBA response", 2054 "dialogtoken mismatch: waiting for %d, " 2055 "received %d, tid %d code %d", 2056 tap->txa_token, dialogtoken, tid, code); 2057 vap->iv_stats.is_addba_badtoken++; 2058 return 0; 2059 } 2060 /* NB: assumes IEEE80211_AGGR_IMMEDIATE is 1 */ 2061 if (policy != (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE)) { 2062 IEEE80211_DISCARD_MAC(vap, 2063 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2064 ni->ni_macaddr, "ADDBA response", 2065 "policy mismatch: expecting %s, " 2066 "received %s, tid %d code %d", 2067 tap->txa_flags & IEEE80211_AGGR_IMMEDIATE, 2068 policy, tid, code); 2069 vap->iv_stats.is_addba_badpolicy++; 2070 return 0; 2071 } 2072 #if 0 2073 /* XXX we take MIN in ieee80211_addba_response */ 2074 if (bufsiz > IEEE80211_AGGR_BAWMAX) { 2075 IEEE80211_DISCARD_MAC(vap, 2076 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2077 ni->ni_macaddr, "ADDBA response", 2078 "BA window too large: max %d, " 2079 "received %d, tid %d code %d", 2080 bufsiz, IEEE80211_AGGR_BAWMAX, tid, code); 2081 vap->iv_stats.is_addba_badbawinsize++; 2082 return 0; 2083 } 2084 #endif 2085 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2086 "recv ADDBA response: dialogtoken %u code %d " 2087 "baparamset 0x%x (tid %d bufsiz %d) batimeout %d", 2088 dialogtoken, code, baparamset, tid, bufsiz, 2089 batimeout); 2090 ic->ic_addba_response(ni, tap, code, baparamset, batimeout); 2091 return 0; 2092 } 2093 2094 static int 2095 ht_recv_action_ba_delba(struct ieee80211_node *ni, 2096 const struct ieee80211_frame *wh, 2097 const uint8_t *frm, const uint8_t *efrm) 2098 { 2099 struct ieee80211com *ic = ni->ni_ic; 2100 struct ieee80211_rx_ampdu *rap; 2101 struct ieee80211_tx_ampdu *tap; 2102 uint16_t baparamset, code; 2103 int tid; 2104 2105 baparamset = le16dec(frm+2); 2106 code = le16dec(frm+4); 2107 2108 tid = MS(baparamset, IEEE80211_DELBAPS_TID); 2109 2110 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2111 "recv DELBA: baparamset 0x%x (tid %d initiator %d) " 2112 "code %d", baparamset, tid, 2113 MS(baparamset, IEEE80211_DELBAPS_INIT), code); 2114 2115 if ((baparamset & IEEE80211_DELBAPS_INIT) == 0) { 2116 tap = &ni->ni_tx_ampdu[tid]; 2117 ic->ic_addba_stop(ni, tap); 2118 } else { 2119 rap = &ni->ni_rx_ampdu[tid]; 2120 ic->ic_ampdu_rx_stop(ni, rap); 2121 } 2122 return 0; 2123 } 2124 2125 static int 2126 ht_recv_action_ht_txchwidth(struct ieee80211_node *ni, 2127 const struct ieee80211_frame *wh, 2128 const uint8_t *frm, const uint8_t *efrm) 2129 { 2130 int chw; 2131 2132 chw = (frm[2] == IEEE80211_A_HT_TXCHWIDTH_2040) ? 40 : 20; 2133 2134 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2135 "%s: HT txchwidth, width %d%s", 2136 __func__, chw, ni->ni_chw != chw ? "*" : ""); 2137 if (chw != ni->ni_chw) { 2138 ni->ni_chw = chw; 2139 /* XXX notify on change */ 2140 } 2141 return 0; 2142 } 2143 2144 static int 2145 ht_recv_action_ht_mimopwrsave(struct ieee80211_node *ni, 2146 const struct ieee80211_frame *wh, 2147 const uint8_t *frm, const uint8_t *efrm) 2148 { 2149 const struct ieee80211_action_ht_mimopowersave *mps = 2150 (const struct ieee80211_action_ht_mimopowersave *) frm; 2151 2152 /* XXX check iv_htcaps */ 2153 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA) 2154 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 2155 else 2156 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 2157 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_MODE) 2158 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 2159 else 2160 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 2161 /* XXX notify on change */ 2162 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2163 "%s: HT MIMO PS (%s%s)", __func__, 2164 (ni->ni_flags & IEEE80211_NODE_MIMO_PS) ? "on" : "off", 2165 (ni->ni_flags & IEEE80211_NODE_MIMO_RTS) ? "+rts" : "" 2166 ); 2167 return 0; 2168 } 2169 2170 /* 2171 * Transmit processing. 2172 */ 2173 2174 /* 2175 * Check if A-MPDU should be requested/enabled for a stream. 2176 * We require a traffic rate above a per-AC threshold and we 2177 * also handle backoff from previous failed attempts. 2178 * 2179 * Drivers may override this method to bring in information 2180 * such as link state conditions in making the decision. 2181 */ 2182 static int 2183 ieee80211_ampdu_enable(struct ieee80211_node *ni, 2184 struct ieee80211_tx_ampdu *tap) 2185 { 2186 struct ieee80211vap *vap = ni->ni_vap; 2187 2188 if (tap->txa_avgpps < 2189 vap->iv_ampdu_mintraffic[TID_TO_WME_AC(tap->txa_tid)]) 2190 return 0; 2191 /* XXX check rssi? */ 2192 if (tap->txa_attempts >= ieee80211_addba_maxtries && 2193 ieee80211_time_after(ticks, tap->txa_nextrequest)) { 2194 /* 2195 * Don't retry too often; txa_nextrequest is set 2196 * to the minimum interval we'll retry after 2197 * ieee80211_addba_maxtries failed attempts are made. 2198 */ 2199 return 0; 2200 } 2201 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 2202 "enable AMPDU on tid %d (%s), avgpps %d pkts %d attempt %d", 2203 tap->txa_tid, ieee80211_wme_acnames[TID_TO_WME_AC(tap->txa_tid)], 2204 tap->txa_avgpps, tap->txa_pkts, tap->txa_attempts); 2205 return 1; 2206 } 2207 2208 /* 2209 * Request A-MPDU tx aggregation. Setup local state and 2210 * issue an ADDBA request. BA use will only happen after 2211 * the other end replies with ADDBA response. 2212 */ 2213 int 2214 ieee80211_ampdu_request(struct ieee80211_node *ni, 2215 struct ieee80211_tx_ampdu *tap) 2216 { 2217 struct ieee80211com *ic = ni->ni_ic; 2218 uint16_t args[5]; 2219 int tid, dialogtoken; 2220 static int tokens = 0; /* XXX */ 2221 2222 /* XXX locking */ 2223 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 2224 /* do deferred setup of state */ 2225 ampdu_tx_setup(tap); 2226 } 2227 /* XXX hack for not doing proper locking */ 2228 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 2229 2230 dialogtoken = (tokens+1) % 63; /* XXX */ 2231 tid = tap->txa_tid; 2232 tap->txa_start = ni->ni_txseqs[tid]; 2233 2234 args[0] = dialogtoken; 2235 args[1] = 0; /* NB: status code not used */ 2236 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 2237 | SM(tid, IEEE80211_BAPS_TID) 2238 | SM(IEEE80211_AGGR_BAWMAX, IEEE80211_BAPS_BUFSIZ) 2239 ; 2240 args[3] = 0; /* batimeout */ 2241 /* NB: do first so there's no race against reply */ 2242 if (!ic->ic_addba_request(ni, tap, dialogtoken, args[2], args[3])) { 2243 /* unable to setup state, don't make request */ 2244 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2245 ni, "%s: could not setup BA stream for TID %d AC %d", 2246 __func__, tap->txa_tid, TID_TO_WME_AC(tap->txa_tid)); 2247 /* defer next try so we don't slam the driver with requests */ 2248 tap->txa_attempts = ieee80211_addba_maxtries; 2249 /* NB: check in case driver wants to override */ 2250 if (tap->txa_nextrequest <= ticks) 2251 tap->txa_nextrequest = ticks + ieee80211_addba_backoff; 2252 return 0; 2253 } 2254 tokens = dialogtoken; /* allocate token */ 2255 /* NB: after calling ic_addba_request so driver can set txa_start */ 2256 args[4] = SM(tap->txa_start, IEEE80211_BASEQ_START) 2257 | SM(0, IEEE80211_BASEQ_FRAG) 2258 ; 2259 return ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2260 IEEE80211_ACTION_BA_ADDBA_REQUEST, args); 2261 } 2262 2263 /* 2264 * Terminate an AMPDU tx stream. State is reclaimed 2265 * and the peer notified with a DelBA Action frame. 2266 */ 2267 void 2268 ieee80211_ampdu_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 2269 int reason) 2270 { 2271 struct ieee80211com *ic = ni->ni_ic; 2272 struct ieee80211vap *vap = ni->ni_vap; 2273 uint16_t args[4]; 2274 2275 /* XXX locking */ 2276 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2277 if (IEEE80211_AMPDU_RUNNING(tap)) { 2278 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2279 ni, "%s: stop BA stream for TID %d (reason: %d (%s))", 2280 __func__, tap->txa_tid, reason, 2281 ieee80211_reason_to_string(reason)); 2282 vap->iv_stats.is_ampdu_stop++; 2283 2284 ic->ic_addba_stop(ni, tap); 2285 args[0] = tap->txa_tid; 2286 args[1] = IEEE80211_DELBAPS_INIT; 2287 args[2] = reason; /* XXX reason code */ 2288 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2289 IEEE80211_ACTION_BA_DELBA, args); 2290 } else { 2291 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2292 ni, "%s: BA stream for TID %d not running " 2293 "(reason: %d (%s))", __func__, tap->txa_tid, reason, 2294 ieee80211_reason_to_string(reason)); 2295 vap->iv_stats.is_ampdu_stop_failed++; 2296 } 2297 } 2298 2299 /* XXX */ 2300 static void bar_start_timer(struct ieee80211_tx_ampdu *tap); 2301 2302 static void 2303 bar_timeout(void *arg) 2304 { 2305 struct ieee80211_tx_ampdu *tap = arg; 2306 struct ieee80211_node *ni = tap->txa_ni; 2307 2308 KASSERT((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0, 2309 ("bar/addba collision, flags 0x%x", tap->txa_flags)); 2310 2311 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2312 ni, "%s: tid %u flags 0x%x attempts %d", __func__, 2313 tap->txa_tid, tap->txa_flags, tap->txa_attempts); 2314 2315 /* guard against race with bar_tx_complete */ 2316 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2317 return; 2318 /* XXX ? */ 2319 if (tap->txa_attempts >= ieee80211_bar_maxtries) { 2320 struct ieee80211com *ic = ni->ni_ic; 2321 2322 ni->ni_vap->iv_stats.is_ampdu_bar_tx_fail++; 2323 /* 2324 * If (at least) the last BAR TX timeout was due to 2325 * an ieee80211_send_bar() failures, then we need 2326 * to make sure we notify the driver that a BAR 2327 * TX did occur and fail. This gives the driver 2328 * a chance to undo any queue pause that may 2329 * have occurred. 2330 */ 2331 ic->ic_bar_response(ni, tap, 1); 2332 ieee80211_ampdu_stop(ni, tap, IEEE80211_REASON_TIMEOUT); 2333 } else { 2334 ni->ni_vap->iv_stats.is_ampdu_bar_tx_retry++; 2335 if (ieee80211_send_bar(ni, tap, tap->txa_seqpending) != 0) { 2336 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2337 ni, "%s: failed to TX, starting timer\n", 2338 __func__); 2339 /* 2340 * If ieee80211_send_bar() fails here, the 2341 * timer may have stopped and/or the pending 2342 * flag may be clear. Because of this, 2343 * fake the BARPEND and reset the timer. 2344 * A retransmission attempt will then occur 2345 * during the next timeout. 2346 */ 2347 /* XXX locking */ 2348 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2349 bar_start_timer(tap); 2350 } 2351 } 2352 } 2353 2354 static void 2355 bar_start_timer(struct ieee80211_tx_ampdu *tap) 2356 { 2357 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2358 tap->txa_ni, 2359 "%s: called", 2360 __func__); 2361 callout_reset(&tap->txa_timer, ieee80211_bar_timeout, bar_timeout, tap); 2362 } 2363 2364 static void 2365 bar_stop_timer(struct ieee80211_tx_ampdu *tap) 2366 { 2367 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2368 tap->txa_ni, 2369 "%s: called", 2370 __func__); 2371 callout_stop(&tap->txa_timer); 2372 } 2373 2374 static void 2375 bar_tx_complete(struct ieee80211_node *ni, void *arg, int status) 2376 { 2377 struct ieee80211_tx_ampdu *tap = arg; 2378 2379 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2380 ni, "%s: tid %u flags 0x%x pending %d status %d", 2381 __func__, tap->txa_tid, tap->txa_flags, 2382 callout_pending(&tap->txa_timer), status); 2383 2384 ni->ni_vap->iv_stats.is_ampdu_bar_tx++; 2385 /* XXX locking */ 2386 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) && 2387 callout_pending(&tap->txa_timer)) { 2388 struct ieee80211com *ic = ni->ni_ic; 2389 2390 if (status == 0) /* ACK'd */ 2391 bar_stop_timer(tap); 2392 ic->ic_bar_response(ni, tap, status); 2393 /* NB: just let timer expire so we pace requests */ 2394 } 2395 } 2396 2397 static void 2398 ieee80211_bar_response(struct ieee80211_node *ni, 2399 struct ieee80211_tx_ampdu *tap, int status) 2400 { 2401 2402 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2403 tap->txa_ni, 2404 "%s: called", 2405 __func__); 2406 if (status == 0) { /* got ACK */ 2407 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2408 ni, "BAR moves BA win <%u:%u> (%u frames) txseq %u tid %u", 2409 tap->txa_start, 2410 IEEE80211_SEQ_ADD(tap->txa_start, tap->txa_wnd-1), 2411 tap->txa_qframes, tap->txa_seqpending, 2412 tap->txa_tid); 2413 2414 /* NB: timer already stopped in bar_tx_complete */ 2415 tap->txa_start = tap->txa_seqpending; 2416 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2417 } 2418 } 2419 2420 /* 2421 * Transmit a BAR frame to the specified node. The 2422 * BAR contents are drawn from the supplied aggregation 2423 * state associated with the node. 2424 * 2425 * NB: we only handle immediate ACK w/ compressed bitmap. 2426 */ 2427 int 2428 ieee80211_send_bar(struct ieee80211_node *ni, 2429 struct ieee80211_tx_ampdu *tap, ieee80211_seq seq) 2430 { 2431 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2432 struct ieee80211vap *vap = ni->ni_vap; 2433 struct ieee80211com *ic = ni->ni_ic; 2434 struct ieee80211_frame_bar *bar; 2435 struct mbuf *m; 2436 uint16_t barctl, barseqctl; 2437 uint8_t *frm; 2438 int tid, ret; 2439 2440 2441 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2442 tap->txa_ni, 2443 "%s: called", 2444 __func__); 2445 2446 if ((tap->txa_flags & IEEE80211_AGGR_RUNNING) == 0) { 2447 /* no ADDBA response, should not happen */ 2448 /* XXX stat+msg */ 2449 return EINVAL; 2450 } 2451 /* XXX locking */ 2452 bar_stop_timer(tap); 2453 2454 ieee80211_ref_node(ni); 2455 2456 m = ieee80211_getmgtframe(&frm, ic->ic_headroom, sizeof(*bar)); 2457 if (m == NULL) 2458 senderr(ENOMEM, is_tx_nobuf); 2459 2460 if (!ieee80211_add_callback(m, bar_tx_complete, tap)) { 2461 m_freem(m); 2462 senderr(ENOMEM, is_tx_nobuf); /* XXX */ 2463 /* NOTREACHED */ 2464 } 2465 2466 bar = mtod(m, struct ieee80211_frame_bar *); 2467 bar->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2468 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR; 2469 bar->i_fc[1] = 0; 2470 IEEE80211_ADDR_COPY(bar->i_ra, ni->ni_macaddr); 2471 IEEE80211_ADDR_COPY(bar->i_ta, vap->iv_myaddr); 2472 2473 tid = tap->txa_tid; 2474 barctl = (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE ? 2475 0 : IEEE80211_BAR_NOACK) 2476 | IEEE80211_BAR_COMP 2477 | SM(tid, IEEE80211_BAR_TID) 2478 ; 2479 barseqctl = SM(seq, IEEE80211_BAR_SEQ_START); 2480 /* NB: known to have proper alignment */ 2481 bar->i_ctl = htole16(barctl); 2482 bar->i_seq = htole16(barseqctl); 2483 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_bar); 2484 2485 M_WME_SETAC(m, WME_AC_VO); 2486 2487 IEEE80211_NODE_STAT(ni, tx_mgmt); /* XXX tx_ctl? */ 2488 2489 /* XXX locking */ 2490 /* init/bump attempts counter */ 2491 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2492 tap->txa_attempts = 1; 2493 else 2494 tap->txa_attempts++; 2495 tap->txa_seqpending = seq; 2496 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2497 2498 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2499 ni, "send BAR: tid %u ctl 0x%x start %u (attempt %d)", 2500 tid, barctl, seq, tap->txa_attempts); 2501 2502 /* 2503 * ic_raw_xmit will free the node reference 2504 * regardless of queue/TX success or failure. 2505 */ 2506 IEEE80211_TX_LOCK(ic); 2507 ret = ieee80211_raw_output(vap, ni, m, NULL); 2508 IEEE80211_TX_UNLOCK(ic); 2509 if (ret != 0) { 2510 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2511 ni, "send BAR: failed: (ret = %d)\n", 2512 ret); 2513 /* xmit failed, clear state flag */ 2514 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2515 vap->iv_stats.is_ampdu_bar_tx_fail++; 2516 return ret; 2517 } 2518 /* XXX hack against tx complete happening before timer is started */ 2519 if (tap->txa_flags & IEEE80211_AGGR_BARPEND) 2520 bar_start_timer(tap); 2521 return 0; 2522 bad: 2523 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2524 tap->txa_ni, 2525 "%s: bad! ret=%d", 2526 __func__, ret); 2527 vap->iv_stats.is_ampdu_bar_tx_fail++; 2528 ieee80211_free_node(ni); 2529 return ret; 2530 #undef senderr 2531 } 2532 2533 static int 2534 ht_action_output(struct ieee80211_node *ni, struct mbuf *m) 2535 { 2536 struct ieee80211_bpf_params params; 2537 2538 memset(¶ms, 0, sizeof(params)); 2539 params.ibp_pri = WME_AC_VO; 2540 params.ibp_rate0 = ni->ni_txparms->mgmtrate; 2541 /* NB: we know all frames are unicast */ 2542 params.ibp_try0 = ni->ni_txparms->maxretry; 2543 params.ibp_power = ni->ni_txpower; 2544 return ieee80211_mgmt_output(ni, m, IEEE80211_FC0_SUBTYPE_ACTION, 2545 ¶ms); 2546 } 2547 2548 #define ADDSHORT(frm, v) do { \ 2549 frm[0] = (v) & 0xff; \ 2550 frm[1] = (v) >> 8; \ 2551 frm += 2; \ 2552 } while (0) 2553 2554 /* 2555 * Send an action management frame. The arguments are stuff 2556 * into a frame without inspection; the caller is assumed to 2557 * prepare them carefully (e.g. based on the aggregation state). 2558 */ 2559 static int 2560 ht_send_action_ba_addba(struct ieee80211_node *ni, 2561 int category, int action, void *arg0) 2562 { 2563 struct ieee80211vap *vap = ni->ni_vap; 2564 struct ieee80211com *ic = ni->ni_ic; 2565 uint16_t *args = arg0; 2566 struct mbuf *m; 2567 uint8_t *frm; 2568 2569 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2570 "send ADDBA %s: dialogtoken %d status %d " 2571 "baparamset 0x%x (tid %d) batimeout 0x%x baseqctl 0x%x", 2572 (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ? 2573 "request" : "response", 2574 args[0], args[1], args[2], MS(args[2], IEEE80211_BAPS_TID), 2575 args[3], args[4]); 2576 2577 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2578 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2579 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2580 ieee80211_ref_node(ni); 2581 2582 m = ieee80211_getmgtframe(&frm, 2583 ic->ic_headroom + sizeof(struct ieee80211_frame), 2584 sizeof(uint16_t) /* action+category */ 2585 /* XXX may action payload */ 2586 + sizeof(struct ieee80211_action_ba_addbaresponse) 2587 ); 2588 if (m != NULL) { 2589 *frm++ = category; 2590 *frm++ = action; 2591 *frm++ = args[0]; /* dialog token */ 2592 if (action == IEEE80211_ACTION_BA_ADDBA_RESPONSE) 2593 ADDSHORT(frm, args[1]); /* status code */ 2594 ADDSHORT(frm, args[2]); /* baparamset */ 2595 ADDSHORT(frm, args[3]); /* batimeout */ 2596 if (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) 2597 ADDSHORT(frm, args[4]); /* baseqctl */ 2598 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2599 return ht_action_output(ni, m); 2600 } else { 2601 vap->iv_stats.is_tx_nobuf++; 2602 ieee80211_free_node(ni); 2603 return ENOMEM; 2604 } 2605 } 2606 2607 static int 2608 ht_send_action_ba_delba(struct ieee80211_node *ni, 2609 int category, int action, void *arg0) 2610 { 2611 struct ieee80211vap *vap = ni->ni_vap; 2612 struct ieee80211com *ic = ni->ni_ic; 2613 uint16_t *args = arg0; 2614 struct mbuf *m; 2615 uint16_t baparamset; 2616 uint8_t *frm; 2617 2618 baparamset = SM(args[0], IEEE80211_DELBAPS_TID) 2619 | args[1] 2620 ; 2621 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2622 "send DELBA action: tid %d, initiator %d reason %d (%s)", 2623 args[0], args[1], args[2], ieee80211_reason_to_string(args[2])); 2624 2625 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2626 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2627 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2628 ieee80211_ref_node(ni); 2629 2630 m = ieee80211_getmgtframe(&frm, 2631 ic->ic_headroom + sizeof(struct ieee80211_frame), 2632 sizeof(uint16_t) /* action+category */ 2633 /* XXX may action payload */ 2634 + sizeof(struct ieee80211_action_ba_addbaresponse) 2635 ); 2636 if (m != NULL) { 2637 *frm++ = category; 2638 *frm++ = action; 2639 ADDSHORT(frm, baparamset); 2640 ADDSHORT(frm, args[2]); /* reason code */ 2641 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2642 return ht_action_output(ni, m); 2643 } else { 2644 vap->iv_stats.is_tx_nobuf++; 2645 ieee80211_free_node(ni); 2646 return ENOMEM; 2647 } 2648 } 2649 2650 static int 2651 ht_send_action_ht_txchwidth(struct ieee80211_node *ni, 2652 int category, int action, void *arg0) 2653 { 2654 struct ieee80211vap *vap = ni->ni_vap; 2655 struct ieee80211com *ic = ni->ni_ic; 2656 struct mbuf *m; 2657 uint8_t *frm; 2658 2659 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2660 "send HT txchwidth: width %d", 2661 IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 40 : 20); 2662 2663 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2664 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2665 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2666 ieee80211_ref_node(ni); 2667 2668 m = ieee80211_getmgtframe(&frm, 2669 ic->ic_headroom + sizeof(struct ieee80211_frame), 2670 sizeof(uint16_t) /* action+category */ 2671 /* XXX may action payload */ 2672 + sizeof(struct ieee80211_action_ba_addbaresponse) 2673 ); 2674 if (m != NULL) { 2675 *frm++ = category; 2676 *frm++ = action; 2677 *frm++ = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 2678 IEEE80211_A_HT_TXCHWIDTH_2040 : 2679 IEEE80211_A_HT_TXCHWIDTH_20; 2680 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2681 return ht_action_output(ni, m); 2682 } else { 2683 vap->iv_stats.is_tx_nobuf++; 2684 ieee80211_free_node(ni); 2685 return ENOMEM; 2686 } 2687 } 2688 #undef ADDSHORT 2689 2690 /* 2691 * Construct the MCS bit mask for inclusion in an HT capabilities 2692 * information element. 2693 */ 2694 static void 2695 ieee80211_set_mcsset(struct ieee80211com *ic, uint8_t *frm) 2696 { 2697 int i; 2698 uint8_t txparams; 2699 2700 KASSERT((ic->ic_rxstream > 0 && ic->ic_rxstream <= 4), 2701 ("ic_rxstream %d out of range", ic->ic_rxstream)); 2702 KASSERT((ic->ic_txstream > 0 && ic->ic_txstream <= 4), 2703 ("ic_txstream %d out of range", ic->ic_txstream)); 2704 2705 for (i = 0; i < ic->ic_rxstream * 8; i++) 2706 setbit(frm, i); 2707 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 2708 (ic->ic_htcaps & IEEE80211_HTC_RXMCS32)) 2709 setbit(frm, 32); 2710 if (ic->ic_htcaps & IEEE80211_HTC_RXUNEQUAL) { 2711 if (ic->ic_rxstream >= 2) { 2712 for (i = 33; i <= 38; i++) 2713 setbit(frm, i); 2714 } 2715 if (ic->ic_rxstream >= 3) { 2716 for (i = 39; i <= 52; i++) 2717 setbit(frm, i); 2718 } 2719 if (ic->ic_txstream >= 4) { 2720 for (i = 53; i <= 76; i++) 2721 setbit(frm, i); 2722 } 2723 } 2724 2725 if (ic->ic_rxstream != ic->ic_txstream) { 2726 txparams = 0x1; /* TX MCS set defined */ 2727 txparams |= 0x2; /* TX RX MCS not equal */ 2728 txparams |= (ic->ic_txstream - 1) << 2; /* num TX streams */ 2729 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) 2730 txparams |= 0x16; /* TX unequal modulation sup */ 2731 } else 2732 txparams = 0; 2733 frm[12] = txparams; 2734 } 2735 2736 /* 2737 * Add body of an HTCAP information element. 2738 */ 2739 static uint8_t * 2740 ieee80211_add_htcap_body(uint8_t *frm, struct ieee80211_node *ni) 2741 { 2742 #define ADDSHORT(frm, v) do { \ 2743 frm[0] = (v) & 0xff; \ 2744 frm[1] = (v) >> 8; \ 2745 frm += 2; \ 2746 } while (0) 2747 struct ieee80211com *ic = ni->ni_ic; 2748 struct ieee80211vap *vap = ni->ni_vap; 2749 uint16_t caps, extcaps; 2750 int rxmax, density; 2751 2752 /* HT capabilities */ 2753 caps = vap->iv_htcaps & 0xffff; 2754 /* 2755 * Note channel width depends on whether we are operating as 2756 * a sta or not. When operating as a sta we are generating 2757 * a request based on our desired configuration. Otherwise 2758 * we are operational and the channel attributes identify 2759 * how we've been setup (which might be different if a fixed 2760 * channel is specified). 2761 */ 2762 if (vap->iv_opmode == IEEE80211_M_STA) { 2763 /* override 20/40 use based on config */ 2764 if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40) 2765 caps |= IEEE80211_HTCAP_CHWIDTH40; 2766 else 2767 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2768 2769 /* Start by using the advertised settings */ 2770 rxmax = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU); 2771 density = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY); 2772 2773 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, 2774 "%s: advertised rxmax=%d, density=%d, vap rxmax=%d, density=%d\n", 2775 __func__, 2776 rxmax, 2777 density, 2778 vap->iv_ampdu_rxmax, 2779 vap->iv_ampdu_density); 2780 2781 /* Cap at VAP rxmax */ 2782 if (rxmax > vap->iv_ampdu_rxmax) 2783 rxmax = vap->iv_ampdu_rxmax; 2784 2785 /* 2786 * If the VAP ampdu density value greater, use that. 2787 * 2788 * (Larger density value == larger minimum gap between A-MPDU 2789 * subframes.) 2790 */ 2791 if (vap->iv_ampdu_density > density) 2792 density = vap->iv_ampdu_density; 2793 2794 /* 2795 * NB: Hardware might support HT40 on some but not all 2796 * channels. We can't determine this earlier because only 2797 * after association the channel is upgraded to HT based 2798 * on the negotiated capabilities. 2799 */ 2800 if (ni->ni_chan != IEEE80211_CHAN_ANYC && 2801 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40U) == NULL && 2802 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40D) == NULL) 2803 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2804 } else { 2805 /* override 20/40 use based on current channel */ 2806 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 2807 caps |= IEEE80211_HTCAP_CHWIDTH40; 2808 else 2809 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2810 2811 /* XXX TODO should it start by using advertised settings? */ 2812 rxmax = vap->iv_ampdu_rxmax; 2813 density = vap->iv_ampdu_density; 2814 } 2815 2816 /* adjust short GI based on channel and config */ 2817 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) 2818 caps &= ~IEEE80211_HTCAP_SHORTGI20; 2819 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || 2820 (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) 2821 caps &= ~IEEE80211_HTCAP_SHORTGI40; 2822 2823 /* adjust STBC based on receive capabilities */ 2824 if ((vap->iv_flags_ht & IEEE80211_FHT_STBC_RX) == 0) 2825 caps &= ~IEEE80211_HTCAP_RXSTBC; 2826 2827 /* XXX TODO: adjust LDPC based on receive capabilities */ 2828 2829 ADDSHORT(frm, caps); 2830 2831 /* HT parameters */ 2832 *frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) 2833 | SM(density, IEEE80211_HTCAP_MPDUDENSITY) 2834 ; 2835 frm++; 2836 2837 /* pre-zero remainder of ie */ 2838 memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - 2839 __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); 2840 2841 /* supported MCS set */ 2842 /* 2843 * XXX: For sta mode the rate set should be restricted based 2844 * on the AP's capabilities, but ni_htrates isn't setup when 2845 * we're called to form an AssocReq frame so for now we're 2846 * restricted to the device capabilities. 2847 */ 2848 ieee80211_set_mcsset(ni->ni_ic, frm); 2849 2850 frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - 2851 __offsetof(struct ieee80211_ie_htcap, hc_mcsset); 2852 2853 /* HT extended capabilities */ 2854 extcaps = vap->iv_htextcaps & 0xffff; 2855 2856 ADDSHORT(frm, extcaps); 2857 2858 frm += sizeof(struct ieee80211_ie_htcap) - 2859 __offsetof(struct ieee80211_ie_htcap, hc_txbf); 2860 2861 return frm; 2862 #undef ADDSHORT 2863 } 2864 2865 /* 2866 * Add 802.11n HT capabilities information element 2867 */ 2868 uint8_t * 2869 ieee80211_add_htcap(uint8_t *frm, struct ieee80211_node *ni) 2870 { 2871 frm[0] = IEEE80211_ELEMID_HTCAP; 2872 frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; 2873 return ieee80211_add_htcap_body(frm + 2, ni); 2874 } 2875 2876 /* 2877 * Non-associated probe request - add HT capabilities based on 2878 * the current channel configuration. 2879 */ 2880 static uint8_t * 2881 ieee80211_add_htcap_body_ch(uint8_t *frm, struct ieee80211vap *vap, 2882 struct ieee80211_channel *c) 2883 { 2884 #define ADDSHORT(frm, v) do { \ 2885 frm[0] = (v) & 0xff; \ 2886 frm[1] = (v) >> 8; \ 2887 frm += 2; \ 2888 } while (0) 2889 struct ieee80211com *ic = vap->iv_ic; 2890 uint16_t caps, extcaps; 2891 int rxmax, density; 2892 2893 /* HT capabilities */ 2894 caps = vap->iv_htcaps & 0xffff; 2895 2896 /* 2897 * We don't use this in STA mode; only in IBSS mode. 2898 * So in IBSS mode we base our HTCAP flags on the 2899 * given channel. 2900 */ 2901 2902 /* override 20/40 use based on current channel */ 2903 if (IEEE80211_IS_CHAN_HT40(c)) 2904 caps |= IEEE80211_HTCAP_CHWIDTH40; 2905 else 2906 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2907 2908 /* Use the currently configured values */ 2909 rxmax = vap->iv_ampdu_rxmax; 2910 density = vap->iv_ampdu_density; 2911 2912 /* adjust short GI based on channel and config */ 2913 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) 2914 caps &= ~IEEE80211_HTCAP_SHORTGI20; 2915 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || 2916 (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) 2917 caps &= ~IEEE80211_HTCAP_SHORTGI40; 2918 ADDSHORT(frm, caps); 2919 2920 /* HT parameters */ 2921 *frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) 2922 | SM(density, IEEE80211_HTCAP_MPDUDENSITY) 2923 ; 2924 frm++; 2925 2926 /* pre-zero remainder of ie */ 2927 memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - 2928 __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); 2929 2930 /* supported MCS set */ 2931 /* 2932 * XXX: For sta mode the rate set should be restricted based 2933 * on the AP's capabilities, but ni_htrates isn't setup when 2934 * we're called to form an AssocReq frame so for now we're 2935 * restricted to the device capabilities. 2936 */ 2937 ieee80211_set_mcsset(ic, frm); 2938 2939 frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - 2940 __offsetof(struct ieee80211_ie_htcap, hc_mcsset); 2941 2942 /* HT extended capabilities */ 2943 extcaps = vap->iv_htextcaps & 0xffff; 2944 2945 ADDSHORT(frm, extcaps); 2946 2947 frm += sizeof(struct ieee80211_ie_htcap) - 2948 __offsetof(struct ieee80211_ie_htcap, hc_txbf); 2949 2950 return frm; 2951 #undef ADDSHORT 2952 } 2953 2954 /* 2955 * Add 802.11n HT capabilities information element 2956 */ 2957 uint8_t * 2958 ieee80211_add_htcap_ch(uint8_t *frm, struct ieee80211vap *vap, 2959 struct ieee80211_channel *c) 2960 { 2961 frm[0] = IEEE80211_ELEMID_HTCAP; 2962 frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; 2963 return ieee80211_add_htcap_body_ch(frm + 2, vap, c); 2964 } 2965 2966 /* 2967 * Add Broadcom OUI wrapped standard HTCAP ie; this is 2968 * used for compatibility w/ pre-draft implementations. 2969 */ 2970 uint8_t * 2971 ieee80211_add_htcap_vendor(uint8_t *frm, struct ieee80211_node *ni) 2972 { 2973 frm[0] = IEEE80211_ELEMID_VENDOR; 2974 frm[1] = 4 + sizeof(struct ieee80211_ie_htcap) - 2; 2975 frm[2] = (BCM_OUI >> 0) & 0xff; 2976 frm[3] = (BCM_OUI >> 8) & 0xff; 2977 frm[4] = (BCM_OUI >> 16) & 0xff; 2978 frm[5] = BCM_OUI_HTCAP; 2979 return ieee80211_add_htcap_body(frm + 6, ni); 2980 } 2981 2982 /* 2983 * Construct the MCS bit mask of basic rates 2984 * for inclusion in an HT information element. 2985 */ 2986 static void 2987 ieee80211_set_basic_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs) 2988 { 2989 int i; 2990 2991 for (i = 0; i < rs->rs_nrates; i++) { 2992 int r = rs->rs_rates[i] & IEEE80211_RATE_VAL; 2993 if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) && 2994 r < IEEE80211_HTRATE_MAXSIZE) { 2995 /* NB: this assumes a particular implementation */ 2996 setbit(frm, r); 2997 } 2998 } 2999 } 3000 3001 /* 3002 * Update the HTINFO ie for a beacon frame. 3003 */ 3004 void 3005 ieee80211_ht_update_beacon(struct ieee80211vap *vap, 3006 struct ieee80211_beacon_offsets *bo) 3007 { 3008 #define PROTMODE (IEEE80211_HTINFO_OPMODE|IEEE80211_HTINFO_NONHT_PRESENT) 3009 struct ieee80211_node *ni; 3010 const struct ieee80211_channel *bsschan; 3011 struct ieee80211com *ic = vap->iv_ic; 3012 struct ieee80211_ie_htinfo *ht = 3013 (struct ieee80211_ie_htinfo *) bo->bo_htinfo; 3014 3015 ni = ieee80211_ref_node(vap->iv_bss); 3016 bsschan = ni->ni_chan; 3017 3018 /* XXX only update on channel change */ 3019 ht->hi_ctrlchannel = ieee80211_chan2ieee(ic, bsschan); 3020 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 3021 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PERM; 3022 else 3023 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PROH; 3024 if (IEEE80211_IS_CHAN_HT40U(bsschan)) 3025 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 3026 else if (IEEE80211_IS_CHAN_HT40D(bsschan)) 3027 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_BELOW; 3028 else 3029 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_NONE; 3030 if (IEEE80211_IS_CHAN_HT40(bsschan)) 3031 ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040; 3032 3033 /* protection mode */ 3034 ht->hi_byte2 = (ht->hi_byte2 &~ PROTMODE) | ic->ic_curhtprotmode; 3035 3036 ieee80211_free_node(ni); 3037 3038 /* XXX propagate to vendor ie's */ 3039 #undef PROTMODE 3040 } 3041 3042 /* 3043 * Add body of an HTINFO information element. 3044 * 3045 * NB: We don't use struct ieee80211_ie_htinfo because we can 3046 * be called to fillin both a standard ie and a compat ie that 3047 * has a vendor OUI at the front. 3048 */ 3049 static uint8_t * 3050 ieee80211_add_htinfo_body(uint8_t *frm, struct ieee80211_node *ni) 3051 { 3052 struct ieee80211vap *vap = ni->ni_vap; 3053 struct ieee80211com *ic = ni->ni_ic; 3054 3055 /* pre-zero remainder of ie */ 3056 memset(frm, 0, sizeof(struct ieee80211_ie_htinfo) - 2); 3057 3058 /* primary/control channel center */ 3059 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 3060 3061 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 3062 frm[0] = IEEE80211_HTINFO_RIFSMODE_PERM; 3063 else 3064 frm[0] = IEEE80211_HTINFO_RIFSMODE_PROH; 3065 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 3066 frm[0] |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 3067 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 3068 frm[0] |= IEEE80211_HTINFO_2NDCHAN_BELOW; 3069 else 3070 frm[0] |= IEEE80211_HTINFO_2NDCHAN_NONE; 3071 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 3072 frm[0] |= IEEE80211_HTINFO_TXWIDTH_2040; 3073 3074 frm[1] = ic->ic_curhtprotmode; 3075 3076 frm += 5; 3077 3078 /* basic MCS set */ 3079 ieee80211_set_basic_htrates(frm, &ni->ni_htrates); 3080 frm += sizeof(struct ieee80211_ie_htinfo) - 3081 __offsetof(struct ieee80211_ie_htinfo, hi_basicmcsset); 3082 return frm; 3083 } 3084 3085 /* 3086 * Add 802.11n HT information information element. 3087 */ 3088 uint8_t * 3089 ieee80211_add_htinfo(uint8_t *frm, struct ieee80211_node *ni) 3090 { 3091 frm[0] = IEEE80211_ELEMID_HTINFO; 3092 frm[1] = sizeof(struct ieee80211_ie_htinfo) - 2; 3093 return ieee80211_add_htinfo_body(frm + 2, ni); 3094 } 3095 3096 /* 3097 * Add Broadcom OUI wrapped standard HTINFO ie; this is 3098 * used for compatibility w/ pre-draft implementations. 3099 */ 3100 uint8_t * 3101 ieee80211_add_htinfo_vendor(uint8_t *frm, struct ieee80211_node *ni) 3102 { 3103 frm[0] = IEEE80211_ELEMID_VENDOR; 3104 frm[1] = 4 + sizeof(struct ieee80211_ie_htinfo) - 2; 3105 frm[2] = (BCM_OUI >> 0) & 0xff; 3106 frm[3] = (BCM_OUI >> 8) & 0xff; 3107 frm[4] = (BCM_OUI >> 16) & 0xff; 3108 frm[5] = BCM_OUI_HTINFO; 3109 return ieee80211_add_htinfo_body(frm + 6, ni); 3110 } 3111