1 /*- 2 * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 */ 25 26 #include <sys/cdefs.h> 27 #ifdef __FreeBSD__ 28 __FBSDID("$FreeBSD$"); 29 #endif 30 31 /* 32 * IEEE 802.11n protocol support. 33 */ 34 35 #include "opt_inet.h" 36 #include "opt_wlan.h" 37 38 #include <sys/param.h> 39 #include <sys/kernel.h> 40 #include <sys/malloc.h> 41 #include <sys/systm.h> 42 #include <sys/endian.h> 43 44 #include <sys/socket.h> 45 46 #include <net/if.h> 47 #include <net/if_var.h> 48 #include <net/if_media.h> 49 #include <net/ethernet.h> 50 51 #include <net80211/ieee80211_var.h> 52 #include <net80211/ieee80211_action.h> 53 #include <net80211/ieee80211_input.h> 54 55 /* define here, used throughout file */ 56 #define MS(_v, _f) (((_v) & _f) >> _f##_S) 57 #define SM(_v, _f) (((_v) << _f##_S) & _f) 58 59 const struct ieee80211_mcs_rates ieee80211_htrates[IEEE80211_HTRATE_MAXSIZE] = { 60 { 13, 14, 27, 30 }, /* MCS 0 */ 61 { 26, 29, 54, 60 }, /* MCS 1 */ 62 { 39, 43, 81, 90 }, /* MCS 2 */ 63 { 52, 58, 108, 120 }, /* MCS 3 */ 64 { 78, 87, 162, 180 }, /* MCS 4 */ 65 { 104, 116, 216, 240 }, /* MCS 5 */ 66 { 117, 130, 243, 270 }, /* MCS 6 */ 67 { 130, 144, 270, 300 }, /* MCS 7 */ 68 { 26, 29, 54, 60 }, /* MCS 8 */ 69 { 52, 58, 108, 120 }, /* MCS 9 */ 70 { 78, 87, 162, 180 }, /* MCS 10 */ 71 { 104, 116, 216, 240 }, /* MCS 11 */ 72 { 156, 173, 324, 360 }, /* MCS 12 */ 73 { 208, 231, 432, 480 }, /* MCS 13 */ 74 { 234, 260, 486, 540 }, /* MCS 14 */ 75 { 260, 289, 540, 600 }, /* MCS 15 */ 76 { 39, 43, 81, 90 }, /* MCS 16 */ 77 { 78, 87, 162, 180 }, /* MCS 17 */ 78 { 117, 130, 243, 270 }, /* MCS 18 */ 79 { 156, 173, 324, 360 }, /* MCS 19 */ 80 { 234, 260, 486, 540 }, /* MCS 20 */ 81 { 312, 347, 648, 720 }, /* MCS 21 */ 82 { 351, 390, 729, 810 }, /* MCS 22 */ 83 { 390, 433, 810, 900 }, /* MCS 23 */ 84 { 52, 58, 108, 120 }, /* MCS 24 */ 85 { 104, 116, 216, 240 }, /* MCS 25 */ 86 { 156, 173, 324, 360 }, /* MCS 26 */ 87 { 208, 231, 432, 480 }, /* MCS 27 */ 88 { 312, 347, 648, 720 }, /* MCS 28 */ 89 { 416, 462, 864, 960 }, /* MCS 29 */ 90 { 468, 520, 972, 1080 }, /* MCS 30 */ 91 { 520, 578, 1080, 1200 }, /* MCS 31 */ 92 { 0, 0, 12, 13 }, /* MCS 32 */ 93 { 78, 87, 162, 180 }, /* MCS 33 */ 94 { 104, 116, 216, 240 }, /* MCS 34 */ 95 { 130, 144, 270, 300 }, /* MCS 35 */ 96 { 117, 130, 243, 270 }, /* MCS 36 */ 97 { 156, 173, 324, 360 }, /* MCS 37 */ 98 { 195, 217, 405, 450 }, /* MCS 38 */ 99 { 104, 116, 216, 240 }, /* MCS 39 */ 100 { 130, 144, 270, 300 }, /* MCS 40 */ 101 { 130, 144, 270, 300 }, /* MCS 41 */ 102 { 156, 173, 324, 360 }, /* MCS 42 */ 103 { 182, 202, 378, 420 }, /* MCS 43 */ 104 { 182, 202, 378, 420 }, /* MCS 44 */ 105 { 208, 231, 432, 480 }, /* MCS 45 */ 106 { 156, 173, 324, 360 }, /* MCS 46 */ 107 { 195, 217, 405, 450 }, /* MCS 47 */ 108 { 195, 217, 405, 450 }, /* MCS 48 */ 109 { 234, 260, 486, 540 }, /* MCS 49 */ 110 { 273, 303, 567, 630 }, /* MCS 50 */ 111 { 273, 303, 567, 630 }, /* MCS 51 */ 112 { 312, 347, 648, 720 }, /* MCS 52 */ 113 { 130, 144, 270, 300 }, /* MCS 53 */ 114 { 156, 173, 324, 360 }, /* MCS 54 */ 115 { 182, 202, 378, 420 }, /* MCS 55 */ 116 { 156, 173, 324, 360 }, /* MCS 56 */ 117 { 182, 202, 378, 420 }, /* MCS 57 */ 118 { 208, 231, 432, 480 }, /* MCS 58 */ 119 { 234, 260, 486, 540 }, /* MCS 59 */ 120 { 208, 231, 432, 480 }, /* MCS 60 */ 121 { 234, 260, 486, 540 }, /* MCS 61 */ 122 { 260, 289, 540, 600 }, /* MCS 62 */ 123 { 260, 289, 540, 600 }, /* MCS 63 */ 124 { 286, 318, 594, 660 }, /* MCS 64 */ 125 { 195, 217, 405, 450 }, /* MCS 65 */ 126 { 234, 260, 486, 540 }, /* MCS 66 */ 127 { 273, 303, 567, 630 }, /* MCS 67 */ 128 { 234, 260, 486, 540 }, /* MCS 68 */ 129 { 273, 303, 567, 630 }, /* MCS 69 */ 130 { 312, 347, 648, 720 }, /* MCS 70 */ 131 { 351, 390, 729, 810 }, /* MCS 71 */ 132 { 312, 347, 648, 720 }, /* MCS 72 */ 133 { 351, 390, 729, 810 }, /* MCS 73 */ 134 { 390, 433, 810, 900 }, /* MCS 74 */ 135 { 390, 433, 810, 900 }, /* MCS 75 */ 136 { 429, 477, 891, 990 }, /* MCS 76 */ 137 }; 138 139 #ifdef IEEE80211_AMPDU_AGE 140 static int ieee80211_ampdu_age = -1; /* threshold for ampdu reorder q (ms) */ 141 SYSCTL_PROC(_net_wlan, OID_AUTO, ampdu_age, CTLTYPE_INT | CTLFLAG_RW, 142 &ieee80211_ampdu_age, 0, ieee80211_sysctl_msecs_ticks, "I", 143 "AMPDU max reorder age (ms)"); 144 #endif 145 146 static int ieee80211_recv_bar_ena = 1; 147 SYSCTL_INT(_net_wlan, OID_AUTO, recv_bar, CTLFLAG_RW, &ieee80211_recv_bar_ena, 148 0, "BAR frame processing (ena/dis)"); 149 150 static int ieee80211_addba_timeout = -1;/* timeout for ADDBA response */ 151 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_timeout, CTLTYPE_INT | CTLFLAG_RW, 152 &ieee80211_addba_timeout, 0, ieee80211_sysctl_msecs_ticks, "I", 153 "ADDBA request timeout (ms)"); 154 static int ieee80211_addba_backoff = -1;/* backoff after max ADDBA requests */ 155 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_backoff, CTLTYPE_INT | CTLFLAG_RW, 156 &ieee80211_addba_backoff, 0, ieee80211_sysctl_msecs_ticks, "I", 157 "ADDBA request backoff (ms)"); 158 static int ieee80211_addba_maxtries = 3;/* max ADDBA requests before backoff */ 159 SYSCTL_INT(_net_wlan, OID_AUTO, addba_maxtries, CTLFLAG_RW, 160 &ieee80211_addba_maxtries, 0, "max ADDBA requests sent before backoff"); 161 162 static int ieee80211_bar_timeout = -1; /* timeout waiting for BAR response */ 163 static int ieee80211_bar_maxtries = 50;/* max BAR requests before DELBA */ 164 165 static ieee80211_recv_action_func ht_recv_action_ba_addba_request; 166 static ieee80211_recv_action_func ht_recv_action_ba_addba_response; 167 static ieee80211_recv_action_func ht_recv_action_ba_delba; 168 static ieee80211_recv_action_func ht_recv_action_ht_mimopwrsave; 169 static ieee80211_recv_action_func ht_recv_action_ht_txchwidth; 170 171 static ieee80211_send_action_func ht_send_action_ba_addba; 172 static ieee80211_send_action_func ht_send_action_ba_delba; 173 static ieee80211_send_action_func ht_send_action_ht_txchwidth; 174 175 static void 176 ieee80211_ht_init(void) 177 { 178 /* 179 * Setup HT parameters that depends on the clock frequency. 180 */ 181 #ifdef IEEE80211_AMPDU_AGE 182 ieee80211_ampdu_age = msecs_to_ticks(500); 183 #endif 184 ieee80211_addba_timeout = msecs_to_ticks(250); 185 ieee80211_addba_backoff = msecs_to_ticks(10*1000); 186 ieee80211_bar_timeout = msecs_to_ticks(250); 187 /* 188 * Register action frame handlers. 189 */ 190 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 191 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_recv_action_ba_addba_request); 192 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 193 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_recv_action_ba_addba_response); 194 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, 195 IEEE80211_ACTION_BA_DELBA, ht_recv_action_ba_delba); 196 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 197 IEEE80211_ACTION_HT_MIMOPWRSAVE, ht_recv_action_ht_mimopwrsave); 198 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, 199 IEEE80211_ACTION_HT_TXCHWIDTH, ht_recv_action_ht_txchwidth); 200 201 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 202 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_send_action_ba_addba); 203 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 204 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_send_action_ba_addba); 205 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, 206 IEEE80211_ACTION_BA_DELBA, ht_send_action_ba_delba); 207 ieee80211_send_action_register(IEEE80211_ACTION_CAT_HT, 208 IEEE80211_ACTION_HT_TXCHWIDTH, ht_send_action_ht_txchwidth); 209 } 210 SYSINIT(wlan_ht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_ht_init, NULL); 211 212 static int ieee80211_ampdu_enable(struct ieee80211_node *ni, 213 struct ieee80211_tx_ampdu *tap); 214 static int ieee80211_addba_request(struct ieee80211_node *ni, 215 struct ieee80211_tx_ampdu *tap, 216 int dialogtoken, int baparamset, int batimeout); 217 static int ieee80211_addba_response(struct ieee80211_node *ni, 218 struct ieee80211_tx_ampdu *tap, 219 int code, int baparamset, int batimeout); 220 static void ieee80211_addba_stop(struct ieee80211_node *ni, 221 struct ieee80211_tx_ampdu *tap); 222 static void null_addba_response_timeout(struct ieee80211_node *ni, 223 struct ieee80211_tx_ampdu *tap); 224 225 static void ieee80211_bar_response(struct ieee80211_node *ni, 226 struct ieee80211_tx_ampdu *tap, int status); 227 static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap); 228 static void bar_stop_timer(struct ieee80211_tx_ampdu *tap); 229 static int ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *, 230 int baparamset, int batimeout, int baseqctl); 231 static void ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *); 232 233 void 234 ieee80211_ht_attach(struct ieee80211com *ic) 235 { 236 /* setup default aggregation policy */ 237 ic->ic_recv_action = ieee80211_recv_action; 238 ic->ic_send_action = ieee80211_send_action; 239 ic->ic_ampdu_enable = ieee80211_ampdu_enable; 240 ic->ic_addba_request = ieee80211_addba_request; 241 ic->ic_addba_response = ieee80211_addba_response; 242 ic->ic_addba_response_timeout = null_addba_response_timeout; 243 ic->ic_addba_stop = ieee80211_addba_stop; 244 ic->ic_bar_response = ieee80211_bar_response; 245 ic->ic_ampdu_rx_start = ampdu_rx_start; 246 ic->ic_ampdu_rx_stop = ampdu_rx_stop; 247 248 ic->ic_htprotmode = IEEE80211_PROT_RTSCTS; 249 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; 250 } 251 252 void 253 ieee80211_ht_detach(struct ieee80211com *ic) 254 { 255 } 256 257 void 258 ieee80211_ht_vattach(struct ieee80211vap *vap) 259 { 260 261 /* driver can override defaults */ 262 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_8K; 263 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_NA; 264 vap->iv_ampdu_limit = vap->iv_ampdu_rxmax; 265 vap->iv_amsdu_limit = vap->iv_htcaps & IEEE80211_HTCAP_MAXAMSDU; 266 /* tx aggregation traffic thresholds */ 267 vap->iv_ampdu_mintraffic[WME_AC_BK] = 128; 268 vap->iv_ampdu_mintraffic[WME_AC_BE] = 64; 269 vap->iv_ampdu_mintraffic[WME_AC_VO] = 32; 270 vap->iv_ampdu_mintraffic[WME_AC_VI] = 32; 271 272 if (vap->iv_htcaps & IEEE80211_HTC_HT) { 273 /* 274 * Device is HT capable; enable all HT-related 275 * facilities by default. 276 * XXX these choices may be too aggressive. 277 */ 278 vap->iv_flags_ht |= IEEE80211_FHT_HT 279 | IEEE80211_FHT_HTCOMPAT 280 ; 281 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI20) 282 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20; 283 /* XXX infer from channel list? */ 284 if (vap->iv_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 285 vap->iv_flags_ht |= IEEE80211_FHT_USEHT40; 286 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI40) 287 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40; 288 } 289 /* enable RIFS if capable */ 290 if (vap->iv_htcaps & IEEE80211_HTC_RIFS) 291 vap->iv_flags_ht |= IEEE80211_FHT_RIFS; 292 293 /* NB: A-MPDU and A-MSDU rx are mandated, these are tx only */ 294 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX; 295 if (vap->iv_htcaps & IEEE80211_HTC_AMPDU) 296 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX; 297 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX; 298 if (vap->iv_htcaps & IEEE80211_HTC_AMSDU) 299 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX; 300 } 301 /* NB: disable default legacy WDS, too many issues right now */ 302 if (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) 303 vap->iv_flags_ht &= ~IEEE80211_FHT_HT; 304 } 305 306 void 307 ieee80211_ht_vdetach(struct ieee80211vap *vap) 308 { 309 } 310 311 static int 312 ht_getrate(struct ieee80211com *ic, int index, enum ieee80211_phymode mode, 313 int ratetype) 314 { 315 int mword, rate; 316 317 mword = ieee80211_rate2media(ic, index | IEEE80211_RATE_MCS, mode); 318 if (IFM_SUBTYPE(mword) != IFM_IEEE80211_MCS) 319 return (0); 320 switch (ratetype) { 321 case 0: 322 rate = ieee80211_htrates[index].ht20_rate_800ns; 323 break; 324 case 1: 325 rate = ieee80211_htrates[index].ht20_rate_400ns; 326 break; 327 case 2: 328 rate = ieee80211_htrates[index].ht40_rate_800ns; 329 break; 330 default: 331 rate = ieee80211_htrates[index].ht40_rate_400ns; 332 break; 333 } 334 return (rate); 335 } 336 337 static struct printranges { 338 int minmcs; 339 int maxmcs; 340 int txstream; 341 int ratetype; 342 int htcapflags; 343 } ranges[] = { 344 { 0, 7, 1, 0, 0 }, 345 { 8, 15, 2, 0, 0 }, 346 { 16, 23, 3, 0, 0 }, 347 { 24, 31, 4, 0, 0 }, 348 { 32, 0, 1, 2, IEEE80211_HTC_TXMCS32 }, 349 { 33, 38, 2, 0, IEEE80211_HTC_TXUNEQUAL }, 350 { 39, 52, 3, 0, IEEE80211_HTC_TXUNEQUAL }, 351 { 53, 76, 4, 0, IEEE80211_HTC_TXUNEQUAL }, 352 { 0, 0, 0, 0, 0 }, 353 }; 354 355 static void 356 ht_rateprint(struct ieee80211com *ic, enum ieee80211_phymode mode, int ratetype) 357 { 358 int minrate, maxrate; 359 struct printranges *range; 360 361 for (range = ranges; range->txstream != 0; range++) { 362 if (ic->ic_txstream < range->txstream) 363 continue; 364 if (range->htcapflags && 365 (ic->ic_htcaps & range->htcapflags) == 0) 366 continue; 367 if (ratetype < range->ratetype) 368 continue; 369 minrate = ht_getrate(ic, range->minmcs, mode, ratetype); 370 maxrate = ht_getrate(ic, range->maxmcs, mode, ratetype); 371 if (range->maxmcs) { 372 ic_printf(ic, "MCS %d-%d: %d%sMbps - %d%sMbps\n", 373 range->minmcs, range->maxmcs, 374 minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""), 375 maxrate/2, ((maxrate & 0x1) != 0 ? ".5" : "")); 376 } else { 377 ic_printf(ic, "MCS %d: %d%sMbps\n", range->minmcs, 378 minrate/2, ((minrate & 0x1) != 0 ? ".5" : "")); 379 } 380 } 381 } 382 383 static void 384 ht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode) 385 { 386 const char *modestr = ieee80211_phymode_name[mode]; 387 388 ic_printf(ic, "%s MCS 20MHz\n", modestr); 389 ht_rateprint(ic, mode, 0); 390 if (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) { 391 ic_printf(ic, "%s MCS 20MHz SGI\n", modestr); 392 ht_rateprint(ic, mode, 1); 393 } 394 if (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 395 ic_printf(ic, "%s MCS 40MHz:\n", modestr); 396 ht_rateprint(ic, mode, 2); 397 } 398 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 399 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) { 400 ic_printf(ic, "%s MCS 40MHz SGI:\n", modestr); 401 ht_rateprint(ic, mode, 3); 402 } 403 } 404 405 void 406 ieee80211_ht_announce(struct ieee80211com *ic) 407 { 408 409 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 410 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 411 ic_printf(ic, "%dT%dR\n", ic->ic_txstream, ic->ic_rxstream); 412 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA)) 413 ht_announce(ic, IEEE80211_MODE_11NA); 414 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) 415 ht_announce(ic, IEEE80211_MODE_11NG); 416 } 417 418 static struct ieee80211_htrateset htrateset; 419 420 const struct ieee80211_htrateset * 421 ieee80211_get_suphtrates(struct ieee80211com *ic, 422 const struct ieee80211_channel *c) 423 { 424 #define ADDRATE(x) do { \ 425 htrateset.rs_rates[htrateset.rs_nrates] = x; \ 426 htrateset.rs_nrates++; \ 427 } while (0) 428 int i; 429 430 memset(&htrateset, 0, sizeof(struct ieee80211_htrateset)); 431 for (i = 0; i < ic->ic_txstream * 8; i++) 432 ADDRATE(i); 433 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 434 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32)) 435 ADDRATE(32); 436 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 437 if (ic->ic_txstream >= 2) { 438 for (i = 33; i <= 38; i++) 439 ADDRATE(i); 440 } 441 if (ic->ic_txstream >= 3) { 442 for (i = 39; i <= 52; i++) 443 ADDRATE(i); 444 } 445 if (ic->ic_txstream == 4) { 446 for (i = 53; i <= 76; i++) 447 ADDRATE(i); 448 } 449 } 450 return &htrateset; 451 #undef ADDRATE 452 } 453 454 /* 455 * Receive processing. 456 */ 457 458 /* 459 * Decap the encapsulated A-MSDU frames and dispatch all but 460 * the last for delivery. The last frame is returned for 461 * delivery via the normal path. 462 */ 463 struct mbuf * 464 ieee80211_decap_amsdu(struct ieee80211_node *ni, struct mbuf *m) 465 { 466 struct ieee80211vap *vap = ni->ni_vap; 467 int framelen; 468 struct mbuf *n; 469 470 /* discard 802.3 header inserted by ieee80211_decap */ 471 m_adj(m, sizeof(struct ether_header)); 472 473 vap->iv_stats.is_amsdu_decap++; 474 475 for (;;) { 476 /* 477 * Decap the first frame, bust it apart from the 478 * remainder and deliver. We leave the last frame 479 * delivery to the caller (for consistency with other 480 * code paths, could also do it here). 481 */ 482 m = ieee80211_decap1(m, &framelen); 483 if (m == NULL) { 484 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 485 ni->ni_macaddr, "a-msdu", "%s", "decap failed"); 486 vap->iv_stats.is_amsdu_tooshort++; 487 return NULL; 488 } 489 if (m->m_pkthdr.len == framelen) 490 break; 491 n = m_split(m, framelen, M_NOWAIT); 492 if (n == NULL) { 493 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 494 ni->ni_macaddr, "a-msdu", 495 "%s", "unable to split encapsulated frames"); 496 vap->iv_stats.is_amsdu_split++; 497 m_freem(m); /* NB: must reclaim */ 498 return NULL; 499 } 500 vap->iv_deliver_data(vap, ni, m); 501 502 /* 503 * Remove frame contents; each intermediate frame 504 * is required to be aligned to a 4-byte boundary. 505 */ 506 m = n; 507 m_adj(m, roundup2(framelen, 4) - framelen); /* padding */ 508 } 509 return m; /* last delivered by caller */ 510 } 511 512 /* 513 * Purge all frames in the A-MPDU re-order queue. 514 */ 515 static void 516 ampdu_rx_purge(struct ieee80211_rx_ampdu *rap) 517 { 518 struct mbuf *m; 519 int i; 520 521 for (i = 0; i < rap->rxa_wnd; i++) { 522 m = rap->rxa_m[i]; 523 if (m != NULL) { 524 rap->rxa_m[i] = NULL; 525 rap->rxa_qbytes -= m->m_pkthdr.len; 526 m_freem(m); 527 if (--rap->rxa_qframes == 0) 528 break; 529 } 530 } 531 KASSERT(rap->rxa_qbytes == 0 && rap->rxa_qframes == 0, 532 ("lost %u data, %u frames on ampdu rx q", 533 rap->rxa_qbytes, rap->rxa_qframes)); 534 } 535 536 /* 537 * Start A-MPDU rx/re-order processing for the specified TID. 538 */ 539 static int 540 ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap, 541 int baparamset, int batimeout, int baseqctl) 542 { 543 int bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 544 545 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 546 /* 547 * AMPDU previously setup and not terminated with a DELBA, 548 * flush the reorder q's in case anything remains. 549 */ 550 ampdu_rx_purge(rap); 551 } 552 memset(rap, 0, sizeof(*rap)); 553 rap->rxa_wnd = (bufsiz == 0) ? 554 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 555 rap->rxa_start = MS(baseqctl, IEEE80211_BASEQ_START); 556 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 557 558 return 0; 559 } 560 561 /* 562 * Public function; manually setup the RX ampdu state. 563 */ 564 int 565 ieee80211_ampdu_rx_start_ext(struct ieee80211_node *ni, int tid, int seq, int baw) 566 { 567 struct ieee80211_rx_ampdu *rap; 568 569 /* XXX TODO: sanity check tid, seq, baw */ 570 571 rap = &ni->ni_rx_ampdu[tid]; 572 573 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { 574 /* 575 * AMPDU previously setup and not terminated with a DELBA, 576 * flush the reorder q's in case anything remains. 577 */ 578 ampdu_rx_purge(rap); 579 } 580 581 memset(rap, 0, sizeof(*rap)); 582 rap->rxa_wnd = (baw== 0) ? 583 IEEE80211_AGGR_BAWMAX : min(baw, IEEE80211_AGGR_BAWMAX); 584 rap->rxa_start = seq; 585 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; 586 587 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 588 "%s: tid=%d, start=%d, wnd=%d, flags=0x%08x\n", 589 __func__, 590 tid, 591 seq, 592 rap->rxa_wnd, 593 rap->rxa_flags); 594 595 return 0; 596 } 597 598 /* 599 * Stop A-MPDU rx processing for the specified TID. 600 */ 601 static void 602 ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 603 { 604 605 ampdu_rx_purge(rap); 606 rap->rxa_flags &= ~(IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND); 607 } 608 609 /* 610 * Dispatch a frame from the A-MPDU reorder queue. The 611 * frame is fed back into ieee80211_input marked with an 612 * M_AMPDU_MPDU flag so it doesn't come back to us (it also 613 * permits ieee80211_input to optimize re-processing). 614 */ 615 static __inline void 616 ampdu_dispatch(struct ieee80211_node *ni, struct mbuf *m) 617 { 618 m->m_flags |= M_AMPDU_MPDU; /* bypass normal processing */ 619 /* NB: rssi and noise are ignored w/ M_AMPDU_MPDU set */ 620 (void) ieee80211_input(ni, m, 0, 0); 621 } 622 623 /* 624 * Dispatch as many frames as possible from the re-order queue. 625 * Frames will always be "at the front"; we process all frames 626 * up to the first empty slot in the window. On completion we 627 * cleanup state if there are still pending frames in the current 628 * BA window. We assume the frame at slot 0 is already handled 629 * by the caller; we always start at slot 1. 630 */ 631 static void 632 ampdu_rx_dispatch(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni) 633 { 634 struct ieee80211vap *vap = ni->ni_vap; 635 struct mbuf *m; 636 int i; 637 638 /* flush run of frames */ 639 for (i = 1; i < rap->rxa_wnd; i++) { 640 m = rap->rxa_m[i]; 641 if (m == NULL) 642 break; 643 rap->rxa_m[i] = NULL; 644 rap->rxa_qbytes -= m->m_pkthdr.len; 645 rap->rxa_qframes--; 646 647 ampdu_dispatch(ni, m); 648 } 649 /* 650 * If frames remain, copy the mbuf pointers down so 651 * they correspond to the offsets in the new window. 652 */ 653 if (rap->rxa_qframes != 0) { 654 int n = rap->rxa_qframes, j; 655 for (j = i+1; j < rap->rxa_wnd; j++) { 656 if (rap->rxa_m[j] != NULL) { 657 rap->rxa_m[j-i] = rap->rxa_m[j]; 658 rap->rxa_m[j] = NULL; 659 if (--n == 0) 660 break; 661 } 662 } 663 KASSERT(n == 0, ("lost %d frames", n)); 664 vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; 665 } 666 /* 667 * Adjust the start of the BA window to 668 * reflect the frames just dispatched. 669 */ 670 rap->rxa_start = IEEE80211_SEQ_ADD(rap->rxa_start, i); 671 vap->iv_stats.is_ampdu_rx_oor += i; 672 } 673 674 #ifdef IEEE80211_AMPDU_AGE 675 /* 676 * Dispatch all frames in the A-MPDU re-order queue. 677 */ 678 static void 679 ampdu_rx_flush(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 680 { 681 struct ieee80211vap *vap = ni->ni_vap; 682 struct mbuf *m; 683 int i; 684 685 for (i = 0; i < rap->rxa_wnd; i++) { 686 m = rap->rxa_m[i]; 687 if (m == NULL) 688 continue; 689 rap->rxa_m[i] = NULL; 690 rap->rxa_qbytes -= m->m_pkthdr.len; 691 rap->rxa_qframes--; 692 vap->iv_stats.is_ampdu_rx_oor++; 693 694 ampdu_dispatch(ni, m); 695 if (rap->rxa_qframes == 0) 696 break; 697 } 698 } 699 #endif /* IEEE80211_AMPDU_AGE */ 700 701 /* 702 * Dispatch all frames in the A-MPDU re-order queue 703 * preceding the specified sequence number. This logic 704 * handles window moves due to a received MSDU or BAR. 705 */ 706 static void 707 ampdu_rx_flush_upto(struct ieee80211_node *ni, 708 struct ieee80211_rx_ampdu *rap, ieee80211_seq winstart) 709 { 710 struct ieee80211vap *vap = ni->ni_vap; 711 struct mbuf *m; 712 ieee80211_seq seqno; 713 int i; 714 715 /* 716 * Flush any complete MSDU's with a sequence number lower 717 * than winstart. Gaps may exist. Note that we may actually 718 * dispatch frames past winstart if a run continues; this is 719 * an optimization that avoids having to do a separate pass 720 * to dispatch frames after moving the BA window start. 721 */ 722 seqno = rap->rxa_start; 723 for (i = 0; i < rap->rxa_wnd; i++) { 724 m = rap->rxa_m[i]; 725 if (m != NULL) { 726 rap->rxa_m[i] = NULL; 727 rap->rxa_qbytes -= m->m_pkthdr.len; 728 rap->rxa_qframes--; 729 vap->iv_stats.is_ampdu_rx_oor++; 730 731 ampdu_dispatch(ni, m); 732 } else { 733 if (!IEEE80211_SEQ_BA_BEFORE(seqno, winstart)) 734 break; 735 } 736 seqno = IEEE80211_SEQ_INC(seqno); 737 } 738 /* 739 * If frames remain, copy the mbuf pointers down so 740 * they correspond to the offsets in the new window. 741 */ 742 if (rap->rxa_qframes != 0) { 743 int n = rap->rxa_qframes, j; 744 745 /* NB: this loop assumes i > 0 and/or rxa_m[0] is NULL */ 746 KASSERT(rap->rxa_m[0] == NULL, 747 ("%s: BA window slot 0 occupied", __func__)); 748 for (j = i+1; j < rap->rxa_wnd; j++) { 749 if (rap->rxa_m[j] != NULL) { 750 rap->rxa_m[j-i] = rap->rxa_m[j]; 751 rap->rxa_m[j] = NULL; 752 if (--n == 0) 753 break; 754 } 755 } 756 KASSERT(n == 0, ("%s: lost %d frames, qframes %d off %d " 757 "BA win <%d:%d> winstart %d", 758 __func__, n, rap->rxa_qframes, i, rap->rxa_start, 759 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 760 winstart)); 761 vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; 762 } 763 /* 764 * Move the start of the BA window; we use the 765 * sequence number of the last MSDU that was 766 * passed up the stack+1 or winstart if stopped on 767 * a gap in the reorder buffer. 768 */ 769 rap->rxa_start = seqno; 770 } 771 772 /* 773 * Process a received QoS data frame for an HT station. Handle 774 * A-MPDU reordering: if this frame is received out of order 775 * and falls within the BA window hold onto it. Otherwise if 776 * this frame completes a run, flush any pending frames. We 777 * return 1 if the frame is consumed. A 0 is returned if 778 * the frame should be processed normally by the caller. 779 */ 780 int 781 ieee80211_ampdu_reorder(struct ieee80211_node *ni, struct mbuf *m) 782 { 783 #define IEEE80211_FC0_QOSDATA \ 784 (IEEE80211_FC0_TYPE_DATA|IEEE80211_FC0_SUBTYPE_QOS|IEEE80211_FC0_VERSION_0) 785 #define PROCESS 0 /* caller should process frame */ 786 #define CONSUMED 1 /* frame consumed, caller does nothing */ 787 struct ieee80211vap *vap = ni->ni_vap; 788 struct ieee80211_qosframe *wh; 789 struct ieee80211_rx_ampdu *rap; 790 ieee80211_seq rxseq; 791 uint8_t tid; 792 int off; 793 794 KASSERT((m->m_flags & (M_AMPDU | M_AMPDU_MPDU)) == M_AMPDU, 795 ("!a-mpdu or already re-ordered, flags 0x%x", m->m_flags)); 796 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 797 798 /* NB: m_len known to be sufficient */ 799 wh = mtod(m, struct ieee80211_qosframe *); 800 if (wh->i_fc[0] != IEEE80211_FC0_QOSDATA) { 801 /* 802 * Not QoS data, shouldn't get here but just 803 * return it to the caller for processing. 804 */ 805 return PROCESS; 806 } 807 if (IEEE80211_IS_DSTODS(wh)) 808 tid = ((struct ieee80211_qosframe_addr4 *)wh)->i_qos[0]; 809 else 810 tid = wh->i_qos[0]; 811 tid &= IEEE80211_QOS_TID; 812 rap = &ni->ni_rx_ampdu[tid]; 813 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 814 /* 815 * No ADDBA request yet, don't touch. 816 */ 817 return PROCESS; 818 } 819 rxseq = le16toh(*(uint16_t *)wh->i_seq); 820 if ((rxseq & IEEE80211_SEQ_FRAG_MASK) != 0) { 821 /* 822 * Fragments are not allowed; toss. 823 */ 824 IEEE80211_DISCARD_MAC(vap, 825 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 826 "A-MPDU", "fragment, rxseq 0x%x tid %u%s", rxseq, tid, 827 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 828 vap->iv_stats.is_ampdu_rx_drop++; 829 IEEE80211_NODE_STAT(ni, rx_drop); 830 m_freem(m); 831 return CONSUMED; 832 } 833 rxseq >>= IEEE80211_SEQ_SEQ_SHIFT; 834 rap->rxa_nframes++; 835 again: 836 if (rxseq == rap->rxa_start) { 837 /* 838 * First frame in window. 839 */ 840 if (rap->rxa_qframes != 0) { 841 /* 842 * Dispatch as many packets as we can. 843 */ 844 KASSERT(rap->rxa_m[0] == NULL, ("unexpected dup")); 845 ampdu_dispatch(ni, m); 846 ampdu_rx_dispatch(rap, ni); 847 return CONSUMED; 848 } else { 849 /* 850 * In order; advance window and notify 851 * caller to dispatch directly. 852 */ 853 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 854 return PROCESS; 855 } 856 } 857 /* 858 * Frame is out of order; store if in the BA window. 859 */ 860 /* calculate offset in BA window */ 861 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 862 if (off < rap->rxa_wnd) { 863 /* 864 * Common case (hopefully): in the BA window. 865 * Sec 9.10.7.6.2 a) (p.137) 866 */ 867 #ifdef IEEE80211_AMPDU_AGE 868 /* 869 * Check for frames sitting too long in the reorder queue. 870 * This should only ever happen if frames are not delivered 871 * without the sender otherwise notifying us (e.g. with a 872 * BAR to move the window). Typically this happens because 873 * of vendor bugs that cause the sequence number to jump. 874 * When this happens we get a gap in the reorder queue that 875 * leaves frame sitting on the queue until they get pushed 876 * out due to window moves. When the vendor does not send 877 * BAR this move only happens due to explicit packet sends 878 * 879 * NB: we only track the time of the oldest frame in the 880 * reorder q; this means that if we flush we might push 881 * frames that still "new"; if this happens then subsequent 882 * frames will result in BA window moves which cost something 883 * but is still better than a big throughput dip. 884 */ 885 if (rap->rxa_qframes != 0) { 886 /* XXX honor batimeout? */ 887 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 888 /* 889 * Too long since we received the first 890 * frame; flush the reorder buffer. 891 */ 892 if (rap->rxa_qframes != 0) { 893 vap->iv_stats.is_ampdu_rx_age += 894 rap->rxa_qframes; 895 ampdu_rx_flush(ni, rap); 896 } 897 rap->rxa_start = IEEE80211_SEQ_INC(rxseq); 898 return PROCESS; 899 } 900 } else { 901 /* 902 * First frame, start aging timer. 903 */ 904 rap->rxa_age = ticks; 905 } 906 #endif /* IEEE80211_AMPDU_AGE */ 907 /* save packet */ 908 if (rap->rxa_m[off] == NULL) { 909 rap->rxa_m[off] = m; 910 rap->rxa_qframes++; 911 rap->rxa_qbytes += m->m_pkthdr.len; 912 vap->iv_stats.is_ampdu_rx_reorder++; 913 } else { 914 IEEE80211_DISCARD_MAC(vap, 915 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 916 ni->ni_macaddr, "a-mpdu duplicate", 917 "seqno %u tid %u BA win <%u:%u>", 918 rxseq, tid, rap->rxa_start, 919 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1)); 920 vap->iv_stats.is_rx_dup++; 921 IEEE80211_NODE_STAT(ni, rx_dup); 922 m_freem(m); 923 } 924 return CONSUMED; 925 } 926 if (off < IEEE80211_SEQ_BA_RANGE) { 927 /* 928 * Outside the BA window, but within range; 929 * flush the reorder q and move the window. 930 * Sec 9.10.7.6.2 b) (p.138) 931 */ 932 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 933 "move BA win <%u:%u> (%u frames) rxseq %u tid %u", 934 rap->rxa_start, 935 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 936 rap->rxa_qframes, rxseq, tid); 937 vap->iv_stats.is_ampdu_rx_move++; 938 939 /* 940 * The spec says to flush frames up to but not including: 941 * WinStart_B = rxseq - rap->rxa_wnd + 1 942 * Then insert the frame or notify the caller to process 943 * it immediately. We can safely do this by just starting 944 * over again because we know the frame will now be within 945 * the BA window. 946 */ 947 /* NB: rxa_wnd known to be >0 */ 948 ampdu_rx_flush_upto(ni, rap, 949 IEEE80211_SEQ_SUB(rxseq, rap->rxa_wnd-1)); 950 goto again; 951 } else { 952 /* 953 * Outside the BA window and out of range; toss. 954 * Sec 9.10.7.6.2 c) (p.138) 955 */ 956 IEEE80211_DISCARD_MAC(vap, 957 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 958 "MPDU", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 959 rap->rxa_start, 960 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 961 rap->rxa_qframes, rxseq, tid, 962 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 963 vap->iv_stats.is_ampdu_rx_drop++; 964 IEEE80211_NODE_STAT(ni, rx_drop); 965 m_freem(m); 966 return CONSUMED; 967 } 968 #undef CONSUMED 969 #undef PROCESS 970 #undef IEEE80211_FC0_QOSDATA 971 } 972 973 /* 974 * Process a BAR ctl frame. Dispatch all frames up to 975 * the sequence number of the frame. If this frame is 976 * out of range it's discarded. 977 */ 978 void 979 ieee80211_recv_bar(struct ieee80211_node *ni, struct mbuf *m0) 980 { 981 struct ieee80211vap *vap = ni->ni_vap; 982 struct ieee80211_frame_bar *wh; 983 struct ieee80211_rx_ampdu *rap; 984 ieee80211_seq rxseq; 985 int tid, off; 986 987 if (!ieee80211_recv_bar_ena) { 988 #if 0 989 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_11N, 990 ni->ni_macaddr, "BAR", "%s", "processing disabled"); 991 #endif 992 vap->iv_stats.is_ampdu_bar_bad++; 993 return; 994 } 995 wh = mtod(m0, struct ieee80211_frame_bar *); 996 /* XXX check basic BAR */ 997 tid = MS(le16toh(wh->i_ctl), IEEE80211_BAR_TID); 998 rap = &ni->ni_rx_ampdu[tid]; 999 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 1000 /* 1001 * No ADDBA request yet, don't touch. 1002 */ 1003 IEEE80211_DISCARD_MAC(vap, 1004 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, 1005 ni->ni_macaddr, "BAR", "no BA stream, tid %u", tid); 1006 vap->iv_stats.is_ampdu_bar_bad++; 1007 return; 1008 } 1009 vap->iv_stats.is_ampdu_bar_rx++; 1010 rxseq = le16toh(wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT; 1011 if (rxseq == rap->rxa_start) 1012 return; 1013 /* calculate offset in BA window */ 1014 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); 1015 if (off < IEEE80211_SEQ_BA_RANGE) { 1016 /* 1017 * Flush the reorder q up to rxseq and move the window. 1018 * Sec 9.10.7.6.3 a) (p.138) 1019 */ 1020 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1021 "BAR moves BA win <%u:%u> (%u frames) rxseq %u tid %u", 1022 rap->rxa_start, 1023 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1024 rap->rxa_qframes, rxseq, tid); 1025 vap->iv_stats.is_ampdu_bar_move++; 1026 1027 ampdu_rx_flush_upto(ni, rap, rxseq); 1028 if (off >= rap->rxa_wnd) { 1029 /* 1030 * BAR specifies a window start to the right of BA 1031 * window; we must move it explicitly since 1032 * ampdu_rx_flush_upto will not. 1033 */ 1034 rap->rxa_start = rxseq; 1035 } 1036 } else { 1037 /* 1038 * Out of range; toss. 1039 * Sec 9.10.7.6.3 b) (p.138) 1040 */ 1041 IEEE80211_DISCARD_MAC(vap, 1042 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, 1043 "BAR", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", 1044 rap->rxa_start, 1045 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), 1046 rap->rxa_qframes, rxseq, tid, 1047 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); 1048 vap->iv_stats.is_ampdu_bar_oow++; 1049 IEEE80211_NODE_STAT(ni, rx_drop); 1050 } 1051 } 1052 1053 /* 1054 * Setup HT-specific state in a node. Called only 1055 * when HT use is negotiated so we don't do extra 1056 * work for temporary and/or legacy sta's. 1057 */ 1058 void 1059 ieee80211_ht_node_init(struct ieee80211_node *ni) 1060 { 1061 struct ieee80211_tx_ampdu *tap; 1062 int tid; 1063 1064 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1065 ni, 1066 "%s: called", 1067 __func__); 1068 1069 if (ni->ni_flags & IEEE80211_NODE_HT) { 1070 /* 1071 * Clean AMPDU state on re-associate. This handles the case 1072 * where a station leaves w/o notifying us and then returns 1073 * before node is reaped for inactivity. 1074 */ 1075 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1076 ni, 1077 "%s: calling cleanup", 1078 __func__); 1079 ieee80211_ht_node_cleanup(ni); 1080 } 1081 for (tid = 0; tid < WME_NUM_TID; tid++) { 1082 tap = &ni->ni_tx_ampdu[tid]; 1083 tap->txa_tid = tid; 1084 tap->txa_ni = ni; 1085 ieee80211_txampdu_init_pps(tap); 1086 /* NB: further initialization deferred */ 1087 } 1088 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU; 1089 } 1090 1091 /* 1092 * Cleanup HT-specific state in a node. Called only 1093 * when HT use has been marked. 1094 */ 1095 void 1096 ieee80211_ht_node_cleanup(struct ieee80211_node *ni) 1097 { 1098 struct ieee80211com *ic = ni->ni_ic; 1099 int i; 1100 1101 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 1102 ni, 1103 "%s: called", 1104 __func__); 1105 1106 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT node")); 1107 1108 /* XXX optimize this */ 1109 for (i = 0; i < WME_NUM_TID; i++) { 1110 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[i]; 1111 if (tap->txa_flags & IEEE80211_AGGR_SETUP) 1112 ampdu_tx_stop(tap); 1113 } 1114 for (i = 0; i < WME_NUM_TID; i++) 1115 ic->ic_ampdu_rx_stop(ni, &ni->ni_rx_ampdu[i]); 1116 1117 ni->ni_htcap = 0; 1118 ni->ni_flags &= ~IEEE80211_NODE_HT_ALL; 1119 } 1120 1121 /* 1122 * Age out HT resources for a station. 1123 */ 1124 void 1125 ieee80211_ht_node_age(struct ieee80211_node *ni) 1126 { 1127 #ifdef IEEE80211_AMPDU_AGE 1128 struct ieee80211vap *vap = ni->ni_vap; 1129 uint8_t tid; 1130 #endif 1131 1132 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); 1133 1134 #ifdef IEEE80211_AMPDU_AGE 1135 for (tid = 0; tid < WME_NUM_TID; tid++) { 1136 struct ieee80211_rx_ampdu *rap; 1137 1138 rap = &ni->ni_rx_ampdu[tid]; 1139 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) 1140 continue; 1141 if (rap->rxa_qframes == 0) 1142 continue; 1143 /* 1144 * Check for frames sitting too long in the reorder queue. 1145 * See above for more details on what's happening here. 1146 */ 1147 /* XXX honor batimeout? */ 1148 if (ticks - rap->rxa_age > ieee80211_ampdu_age) { 1149 /* 1150 * Too long since we received the first 1151 * frame; flush the reorder buffer. 1152 */ 1153 vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes; 1154 ampdu_rx_flush(ni, rap); 1155 } 1156 } 1157 #endif /* IEEE80211_AMPDU_AGE */ 1158 } 1159 1160 static struct ieee80211_channel * 1161 findhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int htflags) 1162 { 1163 return ieee80211_find_channel(ic, c->ic_freq, 1164 (c->ic_flags &~ IEEE80211_CHAN_HT) | htflags); 1165 } 1166 1167 /* 1168 * Adjust a channel to be HT/non-HT according to the vap's configuration. 1169 */ 1170 struct ieee80211_channel * 1171 ieee80211_ht_adjust_channel(struct ieee80211com *ic, 1172 struct ieee80211_channel *chan, int flags) 1173 { 1174 struct ieee80211_channel *c; 1175 1176 if (flags & IEEE80211_FHT_HT) { 1177 /* promote to HT if possible */ 1178 if (flags & IEEE80211_FHT_USEHT40) { 1179 if (!IEEE80211_IS_CHAN_HT40(chan)) { 1180 /* NB: arbitrarily pick ht40+ over ht40- */ 1181 c = findhtchan(ic, chan, IEEE80211_CHAN_HT40U); 1182 if (c == NULL) 1183 c = findhtchan(ic, chan, 1184 IEEE80211_CHAN_HT40D); 1185 if (c == NULL) 1186 c = findhtchan(ic, chan, 1187 IEEE80211_CHAN_HT20); 1188 if (c != NULL) 1189 chan = c; 1190 } 1191 } else if (!IEEE80211_IS_CHAN_HT20(chan)) { 1192 c = findhtchan(ic, chan, IEEE80211_CHAN_HT20); 1193 if (c != NULL) 1194 chan = c; 1195 } 1196 } else if (IEEE80211_IS_CHAN_HT(chan)) { 1197 /* demote to legacy, HT use is disabled */ 1198 c = ieee80211_find_channel(ic, chan->ic_freq, 1199 chan->ic_flags &~ IEEE80211_CHAN_HT); 1200 if (c != NULL) 1201 chan = c; 1202 } 1203 return chan; 1204 } 1205 1206 /* 1207 * Setup HT-specific state for a legacy WDS peer. 1208 */ 1209 void 1210 ieee80211_ht_wds_init(struct ieee80211_node *ni) 1211 { 1212 struct ieee80211vap *vap = ni->ni_vap; 1213 struct ieee80211_tx_ampdu *tap; 1214 int tid; 1215 1216 KASSERT(vap->iv_flags_ht & IEEE80211_FHT_HT, ("no HT requested")); 1217 1218 /* XXX check scan cache in case peer has an ap and we have info */ 1219 /* 1220 * If setup with a legacy channel; locate an HT channel. 1221 * Otherwise if the inherited channel (from a companion 1222 * AP) is suitable use it so we use the same location 1223 * for the extension channel). 1224 */ 1225 ni->ni_chan = ieee80211_ht_adjust_channel(ni->ni_ic, 1226 ni->ni_chan, ieee80211_htchanflags(ni->ni_chan)); 1227 1228 ni->ni_htcap = 0; 1229 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) 1230 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI20; 1231 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { 1232 ni->ni_htcap |= IEEE80211_HTCAP_CHWIDTH40; 1233 ni->ni_chw = 40; 1234 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 1235 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_ABOVE; 1236 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 1237 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_BELOW; 1238 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) 1239 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI40; 1240 } else { 1241 ni->ni_chw = 20; 1242 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_NONE; 1243 } 1244 ni->ni_htctlchan = ni->ni_chan->ic_ieee; 1245 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 1246 ni->ni_flags |= IEEE80211_NODE_RIFS; 1247 /* XXX does it make sense to enable SMPS? */ 1248 1249 ni->ni_htopmode = 0; /* XXX need protection state */ 1250 ni->ni_htstbc = 0; /* XXX need info */ 1251 1252 for (tid = 0; tid < WME_NUM_TID; tid++) { 1253 tap = &ni->ni_tx_ampdu[tid]; 1254 tap->txa_tid = tid; 1255 ieee80211_txampdu_init_pps(tap); 1256 } 1257 /* NB: AMPDU tx/rx governed by IEEE80211_FHT_AMPDU_{TX,RX} */ 1258 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU; 1259 } 1260 1261 /* 1262 * Notify hostap vaps of a change in the HTINFO ie. 1263 */ 1264 static void 1265 htinfo_notify(struct ieee80211com *ic) 1266 { 1267 struct ieee80211vap *vap; 1268 int first = 1; 1269 1270 IEEE80211_LOCK_ASSERT(ic); 1271 1272 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1273 if (vap->iv_opmode != IEEE80211_M_HOSTAP) 1274 continue; 1275 if (vap->iv_state != IEEE80211_S_RUN || 1276 !IEEE80211_IS_CHAN_HT(vap->iv_bss->ni_chan)) 1277 continue; 1278 if (first) { 1279 IEEE80211_NOTE(vap, 1280 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, 1281 vap->iv_bss, 1282 "HT bss occupancy change: %d sta, %d ht, " 1283 "%d ht40%s, HT protmode now 0x%x" 1284 , ic->ic_sta_assoc 1285 , ic->ic_ht_sta_assoc 1286 , ic->ic_ht40_sta_assoc 1287 , (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) ? 1288 ", non-HT sta present" : "" 1289 , ic->ic_curhtprotmode); 1290 first = 0; 1291 } 1292 ieee80211_beacon_notify(vap, IEEE80211_BEACON_HTINFO); 1293 } 1294 } 1295 1296 /* 1297 * Calculate HT protection mode from current 1298 * state and handle updates. 1299 */ 1300 static void 1301 htinfo_update(struct ieee80211com *ic) 1302 { 1303 uint8_t protmode; 1304 1305 if (ic->ic_sta_assoc != ic->ic_ht_sta_assoc) { 1306 protmode = IEEE80211_HTINFO_OPMODE_MIXED 1307 | IEEE80211_HTINFO_NONHT_PRESENT; 1308 } else if (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) { 1309 protmode = IEEE80211_HTINFO_OPMODE_PROTOPT 1310 | IEEE80211_HTINFO_NONHT_PRESENT; 1311 } else if (ic->ic_bsschan != IEEE80211_CHAN_ANYC && 1312 IEEE80211_IS_CHAN_HT40(ic->ic_bsschan) && 1313 ic->ic_sta_assoc != ic->ic_ht40_sta_assoc) { 1314 protmode = IEEE80211_HTINFO_OPMODE_HT20PR; 1315 } else { 1316 protmode = IEEE80211_HTINFO_OPMODE_PURE; 1317 } 1318 if (protmode != ic->ic_curhtprotmode) { 1319 ic->ic_curhtprotmode = protmode; 1320 htinfo_notify(ic); 1321 } 1322 } 1323 1324 /* 1325 * Handle an HT station joining a BSS. 1326 */ 1327 void 1328 ieee80211_ht_node_join(struct ieee80211_node *ni) 1329 { 1330 struct ieee80211com *ic = ni->ni_ic; 1331 1332 IEEE80211_LOCK_ASSERT(ic); 1333 1334 if (ni->ni_flags & IEEE80211_NODE_HT) { 1335 ic->ic_ht_sta_assoc++; 1336 if (ni->ni_chw == 40) 1337 ic->ic_ht40_sta_assoc++; 1338 } 1339 htinfo_update(ic); 1340 } 1341 1342 /* 1343 * Handle an HT station leaving a BSS. 1344 */ 1345 void 1346 ieee80211_ht_node_leave(struct ieee80211_node *ni) 1347 { 1348 struct ieee80211com *ic = ni->ni_ic; 1349 1350 IEEE80211_LOCK_ASSERT(ic); 1351 1352 if (ni->ni_flags & IEEE80211_NODE_HT) { 1353 ic->ic_ht_sta_assoc--; 1354 if (ni->ni_chw == 40) 1355 ic->ic_ht40_sta_assoc--; 1356 } 1357 htinfo_update(ic); 1358 } 1359 1360 /* 1361 * Public version of htinfo_update; used for processing 1362 * beacon frames from overlapping bss. 1363 * 1364 * Caller can specify either IEEE80211_HTINFO_OPMODE_MIXED 1365 * (on receipt of a beacon that advertises MIXED) or 1366 * IEEE80211_HTINFO_OPMODE_PROTOPT (on receipt of a beacon 1367 * from an overlapping legacy bss). We treat MIXED with 1368 * a higher precedence than PROTOPT (i.e. we will not change 1369 * change PROTOPT -> MIXED; only MIXED -> PROTOPT). This 1370 * corresponds to how we handle things in htinfo_update. 1371 */ 1372 void 1373 ieee80211_htprot_update(struct ieee80211com *ic, int protmode) 1374 { 1375 #define OPMODE(x) SM(x, IEEE80211_HTINFO_OPMODE) 1376 IEEE80211_LOCK(ic); 1377 1378 /* track non-HT station presence */ 1379 KASSERT(protmode & IEEE80211_HTINFO_NONHT_PRESENT, 1380 ("protmode 0x%x", protmode)); 1381 ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR; 1382 ic->ic_lastnonht = ticks; 1383 1384 if (protmode != ic->ic_curhtprotmode && 1385 (OPMODE(ic->ic_curhtprotmode) != IEEE80211_HTINFO_OPMODE_MIXED || 1386 OPMODE(protmode) == IEEE80211_HTINFO_OPMODE_PROTOPT)) { 1387 /* push beacon update */ 1388 ic->ic_curhtprotmode = protmode; 1389 htinfo_notify(ic); 1390 } 1391 IEEE80211_UNLOCK(ic); 1392 #undef OPMODE 1393 } 1394 1395 /* 1396 * Time out presence of an overlapping bss with non-HT 1397 * stations. When operating in hostap mode we listen for 1398 * beacons from other stations and if we identify a non-HT 1399 * station is present we update the opmode field of the 1400 * HTINFO ie. To identify when all non-HT stations are 1401 * gone we time out this condition. 1402 */ 1403 void 1404 ieee80211_ht_timeout(struct ieee80211com *ic) 1405 { 1406 IEEE80211_LOCK_ASSERT(ic); 1407 1408 if ((ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR) && 1409 time_after(ticks, ic->ic_lastnonht + IEEE80211_NONHT_PRESENT_AGE)) { 1410 #if 0 1411 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 1412 "%s", "time out non-HT STA present on channel"); 1413 #endif 1414 ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR; 1415 htinfo_update(ic); 1416 } 1417 } 1418 1419 /* 1420 * Process an 802.11n HT capabilities ie. 1421 */ 1422 void 1423 ieee80211_parse_htcap(struct ieee80211_node *ni, const uint8_t *ie) 1424 { 1425 if (ie[0] == IEEE80211_ELEMID_VENDOR) { 1426 /* 1427 * Station used Vendor OUI ie to associate; 1428 * mark the node so when we respond we'll use 1429 * the Vendor OUI's and not the standard ie's. 1430 */ 1431 ni->ni_flags |= IEEE80211_NODE_HTCOMPAT; 1432 ie += 4; 1433 } else 1434 ni->ni_flags &= ~IEEE80211_NODE_HTCOMPAT; 1435 1436 ni->ni_htcap = LE_READ_2(ie + 1437 __offsetof(struct ieee80211_ie_htcap, hc_cap)); 1438 ni->ni_htparam = ie[__offsetof(struct ieee80211_ie_htcap, hc_param)]; 1439 } 1440 1441 static void 1442 htinfo_parse(struct ieee80211_node *ni, 1443 const struct ieee80211_ie_htinfo *htinfo) 1444 { 1445 uint16_t w; 1446 1447 ni->ni_htctlchan = htinfo->hi_ctrlchannel; 1448 ni->ni_ht2ndchan = SM(htinfo->hi_byte1, IEEE80211_HTINFO_2NDCHAN); 1449 w = LE_READ_2(&htinfo->hi_byte2); 1450 ni->ni_htopmode = SM(w, IEEE80211_HTINFO_OPMODE); 1451 w = LE_READ_2(&htinfo->hi_byte45); 1452 ni->ni_htstbc = SM(w, IEEE80211_HTINFO_BASIC_STBCMCS); 1453 } 1454 1455 /* 1456 * Parse an 802.11n HT info ie and save useful information 1457 * to the node state. Note this does not effect any state 1458 * changes such as for channel width change. 1459 */ 1460 void 1461 ieee80211_parse_htinfo(struct ieee80211_node *ni, const uint8_t *ie) 1462 { 1463 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1464 ie += 4; 1465 htinfo_parse(ni, (const struct ieee80211_ie_htinfo *) ie); 1466 } 1467 1468 /* 1469 * Handle 11n channel switch. Use the received HT ie's to 1470 * identify the right channel to use. If we cannot locate it 1471 * in the channel table then fallback to legacy operation. 1472 * Note that we use this information to identify the node's 1473 * channel only; the caller is responsible for insuring any 1474 * required channel change is done (e.g. in sta mode when 1475 * parsing the contents of a beacon frame). 1476 */ 1477 static int 1478 htinfo_update_chw(struct ieee80211_node *ni, int htflags) 1479 { 1480 struct ieee80211com *ic = ni->ni_ic; 1481 struct ieee80211_channel *c; 1482 int chanflags; 1483 int ret = 0; 1484 1485 chanflags = (ni->ni_chan->ic_flags &~ IEEE80211_CHAN_HT) | htflags; 1486 if (chanflags != ni->ni_chan->ic_flags) { 1487 /* XXX not right for ht40- */ 1488 c = ieee80211_find_channel(ic, ni->ni_chan->ic_freq, chanflags); 1489 if (c == NULL && (htflags & IEEE80211_CHAN_HT40)) { 1490 /* 1491 * No HT40 channel entry in our table; fall back 1492 * to HT20 operation. This should not happen. 1493 */ 1494 c = findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT20); 1495 #if 0 1496 IEEE80211_NOTE(ni->ni_vap, 1497 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1498 "no HT40 channel (freq %u), falling back to HT20", 1499 ni->ni_chan->ic_freq); 1500 #endif 1501 /* XXX stat */ 1502 } 1503 if (c != NULL && c != ni->ni_chan) { 1504 IEEE80211_NOTE(ni->ni_vap, 1505 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, 1506 "switch station to HT%d channel %u/0x%x", 1507 IEEE80211_IS_CHAN_HT40(c) ? 40 : 20, 1508 c->ic_freq, c->ic_flags); 1509 ni->ni_chan = c; 1510 ret = 1; 1511 } 1512 /* NB: caller responsible for forcing any channel change */ 1513 } 1514 /* update node's tx channel width */ 1515 ni->ni_chw = IEEE80211_IS_CHAN_HT40(ni->ni_chan)? 40 : 20; 1516 return (ret); 1517 } 1518 1519 /* 1520 * Update 11n MIMO PS state according to received htcap. 1521 */ 1522 static __inline int 1523 htcap_update_mimo_ps(struct ieee80211_node *ni) 1524 { 1525 uint16_t oflags = ni->ni_flags; 1526 1527 switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) { 1528 case IEEE80211_HTCAP_SMPS_DYNAMIC: 1529 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1530 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 1531 break; 1532 case IEEE80211_HTCAP_SMPS_ENA: 1533 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 1534 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1535 break; 1536 case IEEE80211_HTCAP_SMPS_OFF: 1537 default: /* disable on rx of reserved value */ 1538 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 1539 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 1540 break; 1541 } 1542 return (oflags ^ ni->ni_flags); 1543 } 1544 1545 /* 1546 * Update short GI state according to received htcap 1547 * and local settings. 1548 */ 1549 static __inline void 1550 htcap_update_shortgi(struct ieee80211_node *ni) 1551 { 1552 struct ieee80211vap *vap = ni->ni_vap; 1553 1554 ni->ni_flags &= ~(IEEE80211_NODE_SGI20|IEEE80211_NODE_SGI40); 1555 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) && 1556 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)) 1557 ni->ni_flags |= IEEE80211_NODE_SGI20; 1558 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) && 1559 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)) 1560 ni->ni_flags |= IEEE80211_NODE_SGI40; 1561 } 1562 1563 /* 1564 * Parse and update HT-related state extracted from 1565 * the HT cap and info ie's. 1566 */ 1567 int 1568 ieee80211_ht_updateparams(struct ieee80211_node *ni, 1569 const uint8_t *htcapie, const uint8_t *htinfoie) 1570 { 1571 struct ieee80211vap *vap = ni->ni_vap; 1572 const struct ieee80211_ie_htinfo *htinfo; 1573 int htflags; 1574 int ret = 0; 1575 1576 ieee80211_parse_htcap(ni, htcapie); 1577 if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS) 1578 htcap_update_mimo_ps(ni); 1579 htcap_update_shortgi(ni); 1580 1581 if (htinfoie[0] == IEEE80211_ELEMID_VENDOR) 1582 htinfoie += 4; 1583 htinfo = (const struct ieee80211_ie_htinfo *) htinfoie; 1584 htinfo_parse(ni, htinfo); 1585 1586 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 1587 IEEE80211_CHAN_HT20 : 0; 1588 /* NB: honor operating mode constraint */ 1589 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH_2040) && 1590 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 1591 if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_ABOVE) 1592 htflags = IEEE80211_CHAN_HT40U; 1593 else if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_BELOW) 1594 htflags = IEEE80211_CHAN_HT40D; 1595 } 1596 if (htinfo_update_chw(ni, htflags)) 1597 ret = 1; 1598 1599 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_RIFSMODE_PERM) && 1600 (vap->iv_flags_ht & IEEE80211_FHT_RIFS)) 1601 ni->ni_flags |= IEEE80211_NODE_RIFS; 1602 else 1603 ni->ni_flags &= ~IEEE80211_NODE_RIFS; 1604 1605 return (ret); 1606 } 1607 1608 /* 1609 * Parse and update HT-related state extracted from the HT cap ie 1610 * for a station joining an HT BSS. 1611 */ 1612 void 1613 ieee80211_ht_updatehtcap(struct ieee80211_node *ni, const uint8_t *htcapie) 1614 { 1615 struct ieee80211vap *vap = ni->ni_vap; 1616 int htflags; 1617 1618 ieee80211_parse_htcap(ni, htcapie); 1619 if (vap->iv_htcaps & IEEE80211_HTCAP_SMPS) 1620 htcap_update_mimo_ps(ni); 1621 htcap_update_shortgi(ni); 1622 1623 /* NB: honor operating mode constraint */ 1624 /* XXX 40 MHz intolerant */ 1625 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? 1626 IEEE80211_CHAN_HT20 : 0; 1627 if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) && 1628 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { 1629 if (IEEE80211_IS_CHAN_HT40U(vap->iv_bss->ni_chan)) 1630 htflags = IEEE80211_CHAN_HT40U; 1631 else if (IEEE80211_IS_CHAN_HT40D(vap->iv_bss->ni_chan)) 1632 htflags = IEEE80211_CHAN_HT40D; 1633 } 1634 (void) htinfo_update_chw(ni, htflags); 1635 } 1636 1637 /* 1638 * Install received HT rate set by parsing the HT cap ie. 1639 */ 1640 int 1641 ieee80211_setup_htrates(struct ieee80211_node *ni, const uint8_t *ie, int flags) 1642 { 1643 struct ieee80211com *ic = ni->ni_ic; 1644 struct ieee80211vap *vap = ni->ni_vap; 1645 const struct ieee80211_ie_htcap *htcap; 1646 struct ieee80211_htrateset *rs; 1647 int i, maxequalmcs, maxunequalmcs; 1648 1649 maxequalmcs = ic->ic_txstream * 8 - 1; 1650 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { 1651 if (ic->ic_txstream >= 2) 1652 maxunequalmcs = 38; 1653 if (ic->ic_txstream >= 3) 1654 maxunequalmcs = 52; 1655 if (ic->ic_txstream >= 4) 1656 maxunequalmcs = 76; 1657 } else 1658 maxunequalmcs = 0; 1659 1660 rs = &ni->ni_htrates; 1661 memset(rs, 0, sizeof(*rs)); 1662 if (ie != NULL) { 1663 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1664 ie += 4; 1665 htcap = (const struct ieee80211_ie_htcap *) ie; 1666 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 1667 if (isclr(htcap->hc_mcsset, i)) 1668 continue; 1669 if (rs->rs_nrates == IEEE80211_HTRATE_MAXSIZE) { 1670 IEEE80211_NOTE(vap, 1671 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 1672 "WARNING, HT rate set too large; only " 1673 "using %u rates", IEEE80211_HTRATE_MAXSIZE); 1674 vap->iv_stats.is_rx_rstoobig++; 1675 break; 1676 } 1677 if (i <= 31 && i > maxequalmcs) 1678 continue; 1679 if (i == 32 && 1680 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0) 1681 continue; 1682 if (i > 32 && i > maxunequalmcs) 1683 continue; 1684 rs->rs_rates[rs->rs_nrates++] = i; 1685 } 1686 } 1687 return ieee80211_fix_rate(ni, (struct ieee80211_rateset *) rs, flags); 1688 } 1689 1690 /* 1691 * Mark rates in a node's HT rate set as basic according 1692 * to the information in the supplied HT info ie. 1693 */ 1694 void 1695 ieee80211_setup_basic_htrates(struct ieee80211_node *ni, const uint8_t *ie) 1696 { 1697 const struct ieee80211_ie_htinfo *htinfo; 1698 struct ieee80211_htrateset *rs; 1699 int i, j; 1700 1701 if (ie[0] == IEEE80211_ELEMID_VENDOR) 1702 ie += 4; 1703 htinfo = (const struct ieee80211_ie_htinfo *) ie; 1704 rs = &ni->ni_htrates; 1705 if (rs->rs_nrates == 0) { 1706 IEEE80211_NOTE(ni->ni_vap, 1707 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 1708 "%s", "WARNING, empty HT rate set"); 1709 return; 1710 } 1711 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { 1712 if (isclr(htinfo->hi_basicmcsset, i)) 1713 continue; 1714 for (j = 0; j < rs->rs_nrates; j++) 1715 if ((rs->rs_rates[j] & IEEE80211_RATE_VAL) == i) 1716 rs->rs_rates[j] |= IEEE80211_RATE_BASIC; 1717 } 1718 } 1719 1720 static void 1721 ampdu_tx_setup(struct ieee80211_tx_ampdu *tap) 1722 { 1723 callout_init(&tap->txa_timer, 1); 1724 tap->txa_flags |= IEEE80211_AGGR_SETUP; 1725 tap->txa_lastsample = ticks; 1726 } 1727 1728 static void 1729 ampdu_tx_stop(struct ieee80211_tx_ampdu *tap) 1730 { 1731 struct ieee80211_node *ni = tap->txa_ni; 1732 struct ieee80211com *ic = ni->ni_ic; 1733 1734 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 1735 tap->txa_ni, 1736 "%s: called", 1737 __func__); 1738 1739 KASSERT(tap->txa_flags & IEEE80211_AGGR_SETUP, 1740 ("txa_flags 0x%x tid %d ac %d", tap->txa_flags, tap->txa_tid, 1741 TID_TO_WME_AC(tap->txa_tid))); 1742 1743 /* 1744 * Stop BA stream if setup so driver has a chance 1745 * to reclaim any resources it might have allocated. 1746 */ 1747 ic->ic_addba_stop(ni, tap); 1748 /* 1749 * Stop any pending BAR transmit. 1750 */ 1751 bar_stop_timer(tap); 1752 1753 /* 1754 * Reset packet estimate. 1755 */ 1756 ieee80211_txampdu_init_pps(tap); 1757 1758 /* NB: clearing NAK means we may re-send ADDBA */ 1759 tap->txa_flags &= ~(IEEE80211_AGGR_SETUP | IEEE80211_AGGR_NAK); 1760 } 1761 1762 /* 1763 * ADDBA response timeout. 1764 * 1765 * If software aggregation and per-TID queue management was done here, 1766 * that queue would be unpaused after the ADDBA timeout occurs. 1767 */ 1768 static void 1769 addba_timeout(void *arg) 1770 { 1771 struct ieee80211_tx_ampdu *tap = arg; 1772 struct ieee80211_node *ni = tap->txa_ni; 1773 struct ieee80211com *ic = ni->ni_ic; 1774 1775 /* XXX ? */ 1776 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 1777 tap->txa_attempts++; 1778 ic->ic_addba_response_timeout(ni, tap); 1779 } 1780 1781 static void 1782 addba_start_timeout(struct ieee80211_tx_ampdu *tap) 1783 { 1784 /* XXX use CALLOUT_PENDING instead? */ 1785 callout_reset(&tap->txa_timer, ieee80211_addba_timeout, 1786 addba_timeout, tap); 1787 tap->txa_flags |= IEEE80211_AGGR_XCHGPEND; 1788 tap->txa_nextrequest = ticks + ieee80211_addba_timeout; 1789 } 1790 1791 static void 1792 addba_stop_timeout(struct ieee80211_tx_ampdu *tap) 1793 { 1794 /* XXX use CALLOUT_PENDING instead? */ 1795 if (tap->txa_flags & IEEE80211_AGGR_XCHGPEND) { 1796 callout_stop(&tap->txa_timer); 1797 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; 1798 } 1799 } 1800 1801 static void 1802 null_addba_response_timeout(struct ieee80211_node *ni, 1803 struct ieee80211_tx_ampdu *tap) 1804 { 1805 } 1806 1807 /* 1808 * Default method for requesting A-MPDU tx aggregation. 1809 * We setup the specified state block and start a timer 1810 * to wait for an ADDBA response frame. 1811 */ 1812 static int 1813 ieee80211_addba_request(struct ieee80211_node *ni, 1814 struct ieee80211_tx_ampdu *tap, 1815 int dialogtoken, int baparamset, int batimeout) 1816 { 1817 int bufsiz; 1818 1819 /* XXX locking */ 1820 tap->txa_token = dialogtoken; 1821 tap->txa_flags |= IEEE80211_AGGR_IMMEDIATE; 1822 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 1823 tap->txa_wnd = (bufsiz == 0) ? 1824 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 1825 addba_start_timeout(tap); 1826 return 1; 1827 } 1828 1829 /* 1830 * Called by drivers that wish to request an ADDBA session be 1831 * setup. This brings it up and starts the request timer. 1832 */ 1833 int 1834 ieee80211_ampdu_tx_request_ext(struct ieee80211_node *ni, int tid) 1835 { 1836 struct ieee80211_tx_ampdu *tap; 1837 1838 if (tid < 0 || tid > 15) 1839 return (0); 1840 tap = &ni->ni_tx_ampdu[tid]; 1841 1842 /* XXX locking */ 1843 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 1844 /* do deferred setup of state */ 1845 ampdu_tx_setup(tap); 1846 } 1847 /* XXX hack for not doing proper locking */ 1848 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 1849 addba_start_timeout(tap); 1850 return (1); 1851 } 1852 1853 /* 1854 * Called by drivers that have marked a session as active. 1855 */ 1856 int 1857 ieee80211_ampdu_tx_request_active_ext(struct ieee80211_node *ni, int tid, 1858 int status) 1859 { 1860 struct ieee80211_tx_ampdu *tap; 1861 1862 if (tid < 0 || tid > 15) 1863 return (0); 1864 tap = &ni->ni_tx_ampdu[tid]; 1865 1866 /* XXX locking */ 1867 addba_stop_timeout(tap); 1868 if (status == 1) { 1869 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 1870 tap->txa_attempts = 0; 1871 } else { 1872 /* mark tid so we don't try again */ 1873 tap->txa_flags |= IEEE80211_AGGR_NAK; 1874 } 1875 return (1); 1876 } 1877 1878 /* 1879 * Default method for processing an A-MPDU tx aggregation 1880 * response. We shutdown any pending timer and update the 1881 * state block according to the reply. 1882 */ 1883 static int 1884 ieee80211_addba_response(struct ieee80211_node *ni, 1885 struct ieee80211_tx_ampdu *tap, 1886 int status, int baparamset, int batimeout) 1887 { 1888 int bufsiz, tid; 1889 1890 /* XXX locking */ 1891 addba_stop_timeout(tap); 1892 if (status == IEEE80211_STATUS_SUCCESS) { 1893 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 1894 /* XXX override our request? */ 1895 tap->txa_wnd = (bufsiz == 0) ? 1896 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); 1897 /* XXX AC/TID */ 1898 tid = MS(baparamset, IEEE80211_BAPS_TID); 1899 tap->txa_flags |= IEEE80211_AGGR_RUNNING; 1900 tap->txa_attempts = 0; 1901 } else { 1902 /* mark tid so we don't try again */ 1903 tap->txa_flags |= IEEE80211_AGGR_NAK; 1904 } 1905 return 1; 1906 } 1907 1908 /* 1909 * Default method for stopping A-MPDU tx aggregation. 1910 * Any timer is cleared and we drain any pending frames. 1911 */ 1912 static void 1913 ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 1914 { 1915 /* XXX locking */ 1916 addba_stop_timeout(tap); 1917 if (tap->txa_flags & IEEE80211_AGGR_RUNNING) { 1918 /* XXX clear aggregation queue */ 1919 tap->txa_flags &= ~IEEE80211_AGGR_RUNNING; 1920 } 1921 tap->txa_attempts = 0; 1922 } 1923 1924 /* 1925 * Process a received action frame using the default aggregation 1926 * policy. We intercept ADDBA-related frames and use them to 1927 * update our aggregation state. All other frames are passed up 1928 * for processing by ieee80211_recv_action. 1929 */ 1930 static int 1931 ht_recv_action_ba_addba_request(struct ieee80211_node *ni, 1932 const struct ieee80211_frame *wh, 1933 const uint8_t *frm, const uint8_t *efrm) 1934 { 1935 struct ieee80211com *ic = ni->ni_ic; 1936 struct ieee80211vap *vap = ni->ni_vap; 1937 struct ieee80211_rx_ampdu *rap; 1938 uint8_t dialogtoken; 1939 uint16_t baparamset, batimeout, baseqctl; 1940 uint16_t args[5]; 1941 int tid; 1942 1943 dialogtoken = frm[2]; 1944 baparamset = LE_READ_2(frm+3); 1945 batimeout = LE_READ_2(frm+5); 1946 baseqctl = LE_READ_2(frm+7); 1947 1948 tid = MS(baparamset, IEEE80211_BAPS_TID); 1949 1950 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 1951 "recv ADDBA request: dialogtoken %u baparamset 0x%x " 1952 "(tid %d bufsiz %d) batimeout %d baseqctl %d:%d", 1953 dialogtoken, baparamset, 1954 tid, MS(baparamset, IEEE80211_BAPS_BUFSIZ), 1955 batimeout, 1956 MS(baseqctl, IEEE80211_BASEQ_START), 1957 MS(baseqctl, IEEE80211_BASEQ_FRAG)); 1958 1959 rap = &ni->ni_rx_ampdu[tid]; 1960 1961 /* Send ADDBA response */ 1962 args[0] = dialogtoken; 1963 /* 1964 * NB: We ack only if the sta associated with HT and 1965 * the ap is configured to do AMPDU rx (the latter 1966 * violates the 11n spec and is mostly for testing). 1967 */ 1968 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_RX) && 1969 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX)) { 1970 /* XXX handle ampdu_rx_start failure */ 1971 ic->ic_ampdu_rx_start(ni, rap, 1972 baparamset, batimeout, baseqctl); 1973 1974 args[1] = IEEE80211_STATUS_SUCCESS; 1975 } else { 1976 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 1977 ni, "reject ADDBA request: %s", 1978 ni->ni_flags & IEEE80211_NODE_AMPDU_RX ? 1979 "administratively disabled" : 1980 "not negotiated for station"); 1981 vap->iv_stats.is_addba_reject++; 1982 args[1] = IEEE80211_STATUS_UNSPECIFIED; 1983 } 1984 /* XXX honor rap flags? */ 1985 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 1986 | SM(tid, IEEE80211_BAPS_TID) 1987 | SM(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ) 1988 ; 1989 args[3] = 0; 1990 args[4] = 0; 1991 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 1992 IEEE80211_ACTION_BA_ADDBA_RESPONSE, args); 1993 return 0; 1994 } 1995 1996 static int 1997 ht_recv_action_ba_addba_response(struct ieee80211_node *ni, 1998 const struct ieee80211_frame *wh, 1999 const uint8_t *frm, const uint8_t *efrm) 2000 { 2001 struct ieee80211com *ic = ni->ni_ic; 2002 struct ieee80211vap *vap = ni->ni_vap; 2003 struct ieee80211_tx_ampdu *tap; 2004 uint8_t dialogtoken, policy; 2005 uint16_t baparamset, batimeout, code; 2006 int tid, bufsiz; 2007 2008 dialogtoken = frm[2]; 2009 code = LE_READ_2(frm+3); 2010 baparamset = LE_READ_2(frm+5); 2011 tid = MS(baparamset, IEEE80211_BAPS_TID); 2012 bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); 2013 policy = MS(baparamset, IEEE80211_BAPS_POLICY); 2014 batimeout = LE_READ_2(frm+7); 2015 2016 tap = &ni->ni_tx_ampdu[tid]; 2017 if ((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { 2018 IEEE80211_DISCARD_MAC(vap, 2019 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2020 ni->ni_macaddr, "ADDBA response", 2021 "no pending ADDBA, tid %d dialogtoken %u " 2022 "code %d", tid, dialogtoken, code); 2023 vap->iv_stats.is_addba_norequest++; 2024 return 0; 2025 } 2026 if (dialogtoken != tap->txa_token) { 2027 IEEE80211_DISCARD_MAC(vap, 2028 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2029 ni->ni_macaddr, "ADDBA response", 2030 "dialogtoken mismatch: waiting for %d, " 2031 "received %d, tid %d code %d", 2032 tap->txa_token, dialogtoken, tid, code); 2033 vap->iv_stats.is_addba_badtoken++; 2034 return 0; 2035 } 2036 /* NB: assumes IEEE80211_AGGR_IMMEDIATE is 1 */ 2037 if (policy != (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE)) { 2038 IEEE80211_DISCARD_MAC(vap, 2039 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2040 ni->ni_macaddr, "ADDBA response", 2041 "policy mismatch: expecting %s, " 2042 "received %s, tid %d code %d", 2043 tap->txa_flags & IEEE80211_AGGR_IMMEDIATE, 2044 policy, tid, code); 2045 vap->iv_stats.is_addba_badpolicy++; 2046 return 0; 2047 } 2048 #if 0 2049 /* XXX we take MIN in ieee80211_addba_response */ 2050 if (bufsiz > IEEE80211_AGGR_BAWMAX) { 2051 IEEE80211_DISCARD_MAC(vap, 2052 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2053 ni->ni_macaddr, "ADDBA response", 2054 "BA window too large: max %d, " 2055 "received %d, tid %d code %d", 2056 bufsiz, IEEE80211_AGGR_BAWMAX, tid, code); 2057 vap->iv_stats.is_addba_badbawinsize++; 2058 return 0; 2059 } 2060 #endif 2061 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2062 "recv ADDBA response: dialogtoken %u code %d " 2063 "baparamset 0x%x (tid %d bufsiz %d) batimeout %d", 2064 dialogtoken, code, baparamset, tid, bufsiz, 2065 batimeout); 2066 ic->ic_addba_response(ni, tap, code, baparamset, batimeout); 2067 return 0; 2068 } 2069 2070 static int 2071 ht_recv_action_ba_delba(struct ieee80211_node *ni, 2072 const struct ieee80211_frame *wh, 2073 const uint8_t *frm, const uint8_t *efrm) 2074 { 2075 struct ieee80211com *ic = ni->ni_ic; 2076 struct ieee80211_rx_ampdu *rap; 2077 struct ieee80211_tx_ampdu *tap; 2078 uint16_t baparamset, code; 2079 int tid; 2080 2081 baparamset = LE_READ_2(frm+2); 2082 code = LE_READ_2(frm+4); 2083 2084 tid = MS(baparamset, IEEE80211_DELBAPS_TID); 2085 2086 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2087 "recv DELBA: baparamset 0x%x (tid %d initiator %d) " 2088 "code %d", baparamset, tid, 2089 MS(baparamset, IEEE80211_DELBAPS_INIT), code); 2090 2091 if ((baparamset & IEEE80211_DELBAPS_INIT) == 0) { 2092 tap = &ni->ni_tx_ampdu[tid]; 2093 ic->ic_addba_stop(ni, tap); 2094 } else { 2095 rap = &ni->ni_rx_ampdu[tid]; 2096 ic->ic_ampdu_rx_stop(ni, rap); 2097 } 2098 return 0; 2099 } 2100 2101 static int 2102 ht_recv_action_ht_txchwidth(struct ieee80211_node *ni, 2103 const struct ieee80211_frame *wh, 2104 const uint8_t *frm, const uint8_t *efrm) 2105 { 2106 int chw; 2107 2108 chw = (frm[2] == IEEE80211_A_HT_TXCHWIDTH_2040) ? 40 : 20; 2109 2110 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2111 "%s: HT txchwidth, width %d%s", 2112 __func__, chw, ni->ni_chw != chw ? "*" : ""); 2113 if (chw != ni->ni_chw) { 2114 ni->ni_chw = chw; 2115 /* XXX notify on change */ 2116 } 2117 return 0; 2118 } 2119 2120 static int 2121 ht_recv_action_ht_mimopwrsave(struct ieee80211_node *ni, 2122 const struct ieee80211_frame *wh, 2123 const uint8_t *frm, const uint8_t *efrm) 2124 { 2125 const struct ieee80211_action_ht_mimopowersave *mps = 2126 (const struct ieee80211_action_ht_mimopowersave *) frm; 2127 2128 /* XXX check iv_htcaps */ 2129 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA) 2130 ni->ni_flags |= IEEE80211_NODE_MIMO_PS; 2131 else 2132 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; 2133 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_MODE) 2134 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; 2135 else 2136 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; 2137 /* XXX notify on change */ 2138 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2139 "%s: HT MIMO PS (%s%s)", __func__, 2140 (ni->ni_flags & IEEE80211_NODE_MIMO_PS) ? "on" : "off", 2141 (ni->ni_flags & IEEE80211_NODE_MIMO_RTS) ? "+rts" : "" 2142 ); 2143 return 0; 2144 } 2145 2146 /* 2147 * Transmit processing. 2148 */ 2149 2150 /* 2151 * Check if A-MPDU should be requested/enabled for a stream. 2152 * We require a traffic rate above a per-AC threshold and we 2153 * also handle backoff from previous failed attempts. 2154 * 2155 * Drivers may override this method to bring in information 2156 * such as link state conditions in making the decision. 2157 */ 2158 static int 2159 ieee80211_ampdu_enable(struct ieee80211_node *ni, 2160 struct ieee80211_tx_ampdu *tap) 2161 { 2162 struct ieee80211vap *vap = ni->ni_vap; 2163 2164 if (tap->txa_avgpps < 2165 vap->iv_ampdu_mintraffic[TID_TO_WME_AC(tap->txa_tid)]) 2166 return 0; 2167 /* XXX check rssi? */ 2168 if (tap->txa_attempts >= ieee80211_addba_maxtries && 2169 ticks < tap->txa_nextrequest) { 2170 /* 2171 * Don't retry too often; txa_nextrequest is set 2172 * to the minimum interval we'll retry after 2173 * ieee80211_addba_maxtries failed attempts are made. 2174 */ 2175 return 0; 2176 } 2177 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, 2178 "enable AMPDU on tid %d (%s), avgpps %d pkts %d attempt %d", 2179 tap->txa_tid, ieee80211_wme_acnames[TID_TO_WME_AC(tap->txa_tid)], 2180 tap->txa_avgpps, tap->txa_pkts, tap->txa_attempts); 2181 return 1; 2182 } 2183 2184 /* 2185 * Request A-MPDU tx aggregation. Setup local state and 2186 * issue an ADDBA request. BA use will only happen after 2187 * the other end replies with ADDBA response. 2188 */ 2189 int 2190 ieee80211_ampdu_request(struct ieee80211_node *ni, 2191 struct ieee80211_tx_ampdu *tap) 2192 { 2193 struct ieee80211com *ic = ni->ni_ic; 2194 uint16_t args[5]; 2195 int tid, dialogtoken; 2196 static int tokens = 0; /* XXX */ 2197 2198 /* XXX locking */ 2199 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { 2200 /* do deferred setup of state */ 2201 ampdu_tx_setup(tap); 2202 } 2203 /* XXX hack for not doing proper locking */ 2204 tap->txa_flags &= ~IEEE80211_AGGR_NAK; 2205 2206 dialogtoken = (tokens+1) % 63; /* XXX */ 2207 tid = tap->txa_tid; 2208 tap->txa_start = ni->ni_txseqs[tid]; 2209 2210 args[0] = dialogtoken; 2211 args[1] = 0; /* NB: status code not used */ 2212 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE 2213 | SM(tid, IEEE80211_BAPS_TID) 2214 | SM(IEEE80211_AGGR_BAWMAX, IEEE80211_BAPS_BUFSIZ) 2215 ; 2216 args[3] = 0; /* batimeout */ 2217 /* NB: do first so there's no race against reply */ 2218 if (!ic->ic_addba_request(ni, tap, dialogtoken, args[2], args[3])) { 2219 /* unable to setup state, don't make request */ 2220 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2221 ni, "%s: could not setup BA stream for TID %d AC %d", 2222 __func__, tap->txa_tid, TID_TO_WME_AC(tap->txa_tid)); 2223 /* defer next try so we don't slam the driver with requests */ 2224 tap->txa_attempts = ieee80211_addba_maxtries; 2225 /* NB: check in case driver wants to override */ 2226 if (tap->txa_nextrequest <= ticks) 2227 tap->txa_nextrequest = ticks + ieee80211_addba_backoff; 2228 return 0; 2229 } 2230 tokens = dialogtoken; /* allocate token */ 2231 /* NB: after calling ic_addba_request so driver can set txa_start */ 2232 args[4] = SM(tap->txa_start, IEEE80211_BASEQ_START) 2233 | SM(0, IEEE80211_BASEQ_FRAG) 2234 ; 2235 return ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2236 IEEE80211_ACTION_BA_ADDBA_REQUEST, args); 2237 } 2238 2239 /* 2240 * Terminate an AMPDU tx stream. State is reclaimed 2241 * and the peer notified with a DelBA Action frame. 2242 */ 2243 void 2244 ieee80211_ampdu_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 2245 int reason) 2246 { 2247 struct ieee80211com *ic = ni->ni_ic; 2248 struct ieee80211vap *vap = ni->ni_vap; 2249 uint16_t args[4]; 2250 2251 /* XXX locking */ 2252 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2253 if (IEEE80211_AMPDU_RUNNING(tap)) { 2254 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2255 ni, "%s: stop BA stream for TID %d (reason %d)", 2256 __func__, tap->txa_tid, reason); 2257 vap->iv_stats.is_ampdu_stop++; 2258 2259 ic->ic_addba_stop(ni, tap); 2260 args[0] = tap->txa_tid; 2261 args[1] = IEEE80211_DELBAPS_INIT; 2262 args[2] = reason; /* XXX reason code */ 2263 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, 2264 IEEE80211_ACTION_BA_DELBA, args); 2265 } else { 2266 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, 2267 ni, "%s: BA stream for TID %d not running (reason %d)", 2268 __func__, tap->txa_tid, reason); 2269 vap->iv_stats.is_ampdu_stop_failed++; 2270 } 2271 } 2272 2273 /* XXX */ 2274 static void bar_start_timer(struct ieee80211_tx_ampdu *tap); 2275 2276 static void 2277 bar_timeout(void *arg) 2278 { 2279 struct ieee80211_tx_ampdu *tap = arg; 2280 struct ieee80211_node *ni = tap->txa_ni; 2281 2282 KASSERT((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0, 2283 ("bar/addba collision, flags 0x%x", tap->txa_flags)); 2284 2285 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2286 ni, "%s: tid %u flags 0x%x attempts %d", __func__, 2287 tap->txa_tid, tap->txa_flags, tap->txa_attempts); 2288 2289 /* guard against race with bar_tx_complete */ 2290 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2291 return; 2292 /* XXX ? */ 2293 if (tap->txa_attempts >= ieee80211_bar_maxtries) { 2294 struct ieee80211com *ic = ni->ni_ic; 2295 2296 ni->ni_vap->iv_stats.is_ampdu_bar_tx_fail++; 2297 /* 2298 * If (at least) the last BAR TX timeout was due to 2299 * an ieee80211_send_bar() failures, then we need 2300 * to make sure we notify the driver that a BAR 2301 * TX did occur and fail. This gives the driver 2302 * a chance to undo any queue pause that may 2303 * have occured. 2304 */ 2305 ic->ic_bar_response(ni, tap, 1); 2306 ieee80211_ampdu_stop(ni, tap, IEEE80211_REASON_TIMEOUT); 2307 } else { 2308 ni->ni_vap->iv_stats.is_ampdu_bar_tx_retry++; 2309 if (ieee80211_send_bar(ni, tap, tap->txa_seqpending) != 0) { 2310 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2311 ni, "%s: failed to TX, starting timer\n", 2312 __func__); 2313 /* 2314 * If ieee80211_send_bar() fails here, the 2315 * timer may have stopped and/or the pending 2316 * flag may be clear. Because of this, 2317 * fake the BARPEND and reset the timer. 2318 * A retransmission attempt will then occur 2319 * during the next timeout. 2320 */ 2321 /* XXX locking */ 2322 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2323 bar_start_timer(tap); 2324 } 2325 } 2326 } 2327 2328 static void 2329 bar_start_timer(struct ieee80211_tx_ampdu *tap) 2330 { 2331 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2332 tap->txa_ni, 2333 "%s: called", 2334 __func__); 2335 callout_reset(&tap->txa_timer, ieee80211_bar_timeout, bar_timeout, tap); 2336 } 2337 2338 static void 2339 bar_stop_timer(struct ieee80211_tx_ampdu *tap) 2340 { 2341 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2342 tap->txa_ni, 2343 "%s: called", 2344 __func__); 2345 callout_stop(&tap->txa_timer); 2346 } 2347 2348 static void 2349 bar_tx_complete(struct ieee80211_node *ni, void *arg, int status) 2350 { 2351 struct ieee80211_tx_ampdu *tap = arg; 2352 2353 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2354 ni, "%s: tid %u flags 0x%x pending %d status %d", 2355 __func__, tap->txa_tid, tap->txa_flags, 2356 callout_pending(&tap->txa_timer), status); 2357 2358 ni->ni_vap->iv_stats.is_ampdu_bar_tx++; 2359 /* XXX locking */ 2360 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) && 2361 callout_pending(&tap->txa_timer)) { 2362 struct ieee80211com *ic = ni->ni_ic; 2363 2364 if (status == 0) /* ACK'd */ 2365 bar_stop_timer(tap); 2366 ic->ic_bar_response(ni, tap, status); 2367 /* NB: just let timer expire so we pace requests */ 2368 } 2369 } 2370 2371 static void 2372 ieee80211_bar_response(struct ieee80211_node *ni, 2373 struct ieee80211_tx_ampdu *tap, int status) 2374 { 2375 2376 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2377 tap->txa_ni, 2378 "%s: called", 2379 __func__); 2380 if (status == 0) { /* got ACK */ 2381 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, 2382 ni, "BAR moves BA win <%u:%u> (%u frames) txseq %u tid %u", 2383 tap->txa_start, 2384 IEEE80211_SEQ_ADD(tap->txa_start, tap->txa_wnd-1), 2385 tap->txa_qframes, tap->txa_seqpending, 2386 tap->txa_tid); 2387 2388 /* NB: timer already stopped in bar_tx_complete */ 2389 tap->txa_start = tap->txa_seqpending; 2390 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2391 } 2392 } 2393 2394 /* 2395 * Transmit a BAR frame to the specified node. The 2396 * BAR contents are drawn from the supplied aggregation 2397 * state associated with the node. 2398 * 2399 * NB: we only handle immediate ACK w/ compressed bitmap. 2400 */ 2401 int 2402 ieee80211_send_bar(struct ieee80211_node *ni, 2403 struct ieee80211_tx_ampdu *tap, ieee80211_seq seq) 2404 { 2405 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2406 struct ieee80211vap *vap = ni->ni_vap; 2407 struct ieee80211com *ic = ni->ni_ic; 2408 struct ieee80211_frame_bar *bar; 2409 struct mbuf *m; 2410 uint16_t barctl, barseqctl; 2411 uint8_t *frm; 2412 int tid, ret; 2413 2414 2415 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2416 tap->txa_ni, 2417 "%s: called", 2418 __func__); 2419 2420 if ((tap->txa_flags & IEEE80211_AGGR_RUNNING) == 0) { 2421 /* no ADDBA response, should not happen */ 2422 /* XXX stat+msg */ 2423 return EINVAL; 2424 } 2425 /* XXX locking */ 2426 bar_stop_timer(tap); 2427 2428 ieee80211_ref_node(ni); 2429 2430 m = ieee80211_getmgtframe(&frm, ic->ic_headroom, sizeof(*bar)); 2431 if (m == NULL) 2432 senderr(ENOMEM, is_tx_nobuf); 2433 2434 if (!ieee80211_add_callback(m, bar_tx_complete, tap)) { 2435 m_freem(m); 2436 senderr(ENOMEM, is_tx_nobuf); /* XXX */ 2437 /* NOTREACHED */ 2438 } 2439 2440 bar = mtod(m, struct ieee80211_frame_bar *); 2441 bar->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2442 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR; 2443 bar->i_fc[1] = 0; 2444 IEEE80211_ADDR_COPY(bar->i_ra, ni->ni_macaddr); 2445 IEEE80211_ADDR_COPY(bar->i_ta, vap->iv_myaddr); 2446 2447 tid = tap->txa_tid; 2448 barctl = (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE ? 2449 0 : IEEE80211_BAR_NOACK) 2450 | IEEE80211_BAR_COMP 2451 | SM(tid, IEEE80211_BAR_TID) 2452 ; 2453 barseqctl = SM(seq, IEEE80211_BAR_SEQ_START); 2454 /* NB: known to have proper alignment */ 2455 bar->i_ctl = htole16(barctl); 2456 bar->i_seq = htole16(barseqctl); 2457 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_bar); 2458 2459 M_WME_SETAC(m, WME_AC_VO); 2460 2461 IEEE80211_NODE_STAT(ni, tx_mgmt); /* XXX tx_ctl? */ 2462 2463 /* XXX locking */ 2464 /* init/bump attempts counter */ 2465 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) 2466 tap->txa_attempts = 1; 2467 else 2468 tap->txa_attempts++; 2469 tap->txa_seqpending = seq; 2470 tap->txa_flags |= IEEE80211_AGGR_BARPEND; 2471 2472 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2473 ni, "send BAR: tid %u ctl 0x%x start %u (attempt %d)", 2474 tid, barctl, seq, tap->txa_attempts); 2475 2476 /* 2477 * ic_raw_xmit will free the node reference 2478 * regardless of queue/TX success or failure. 2479 */ 2480 IEEE80211_TX_LOCK(ic); 2481 ret = ieee80211_raw_output(vap, ni, m, NULL); 2482 IEEE80211_TX_UNLOCK(ic); 2483 if (ret != 0) { 2484 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, 2485 ni, "send BAR: failed: (ret = %d)\n", 2486 ret); 2487 /* xmit failed, clear state flag */ 2488 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; 2489 vap->iv_stats.is_ampdu_bar_tx_fail++; 2490 return ret; 2491 } 2492 /* XXX hack against tx complete happening before timer is started */ 2493 if (tap->txa_flags & IEEE80211_AGGR_BARPEND) 2494 bar_start_timer(tap); 2495 return 0; 2496 bad: 2497 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, 2498 tap->txa_ni, 2499 "%s: bad! ret=%d", 2500 __func__, ret); 2501 vap->iv_stats.is_ampdu_bar_tx_fail++; 2502 ieee80211_free_node(ni); 2503 return ret; 2504 #undef senderr 2505 } 2506 2507 static int 2508 ht_action_output(struct ieee80211_node *ni, struct mbuf *m) 2509 { 2510 struct ieee80211_bpf_params params; 2511 2512 memset(¶ms, 0, sizeof(params)); 2513 params.ibp_pri = WME_AC_VO; 2514 params.ibp_rate0 = ni->ni_txparms->mgmtrate; 2515 /* NB: we know all frames are unicast */ 2516 params.ibp_try0 = ni->ni_txparms->maxretry; 2517 params.ibp_power = ni->ni_txpower; 2518 return ieee80211_mgmt_output(ni, m, IEEE80211_FC0_SUBTYPE_ACTION, 2519 ¶ms); 2520 } 2521 2522 #define ADDSHORT(frm, v) do { \ 2523 frm[0] = (v) & 0xff; \ 2524 frm[1] = (v) >> 8; \ 2525 frm += 2; \ 2526 } while (0) 2527 2528 /* 2529 * Send an action management frame. The arguments are stuff 2530 * into a frame without inspection; the caller is assumed to 2531 * prepare them carefully (e.g. based on the aggregation state). 2532 */ 2533 static int 2534 ht_send_action_ba_addba(struct ieee80211_node *ni, 2535 int category, int action, void *arg0) 2536 { 2537 struct ieee80211vap *vap = ni->ni_vap; 2538 struct ieee80211com *ic = ni->ni_ic; 2539 uint16_t *args = arg0; 2540 struct mbuf *m; 2541 uint8_t *frm; 2542 2543 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2544 "send ADDBA %s: dialogtoken %d status %d " 2545 "baparamset 0x%x (tid %d) batimeout 0x%x baseqctl 0x%x", 2546 (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ? 2547 "request" : "response", 2548 args[0], args[1], args[2], MS(args[2], IEEE80211_BAPS_TID), 2549 args[3], args[4]); 2550 2551 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2552 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2553 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2554 ieee80211_ref_node(ni); 2555 2556 m = ieee80211_getmgtframe(&frm, 2557 ic->ic_headroom + sizeof(struct ieee80211_frame), 2558 sizeof(uint16_t) /* action+category */ 2559 /* XXX may action payload */ 2560 + sizeof(struct ieee80211_action_ba_addbaresponse) 2561 ); 2562 if (m != NULL) { 2563 *frm++ = category; 2564 *frm++ = action; 2565 *frm++ = args[0]; /* dialog token */ 2566 if (action == IEEE80211_ACTION_BA_ADDBA_RESPONSE) 2567 ADDSHORT(frm, args[1]); /* status code */ 2568 ADDSHORT(frm, args[2]); /* baparamset */ 2569 ADDSHORT(frm, args[3]); /* batimeout */ 2570 if (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) 2571 ADDSHORT(frm, args[4]); /* baseqctl */ 2572 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2573 return ht_action_output(ni, m); 2574 } else { 2575 vap->iv_stats.is_tx_nobuf++; 2576 ieee80211_free_node(ni); 2577 return ENOMEM; 2578 } 2579 } 2580 2581 static int 2582 ht_send_action_ba_delba(struct ieee80211_node *ni, 2583 int category, int action, void *arg0) 2584 { 2585 struct ieee80211vap *vap = ni->ni_vap; 2586 struct ieee80211com *ic = ni->ni_ic; 2587 uint16_t *args = arg0; 2588 struct mbuf *m; 2589 uint16_t baparamset; 2590 uint8_t *frm; 2591 2592 baparamset = SM(args[0], IEEE80211_DELBAPS_TID) 2593 | args[1] 2594 ; 2595 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2596 "send DELBA action: tid %d, initiator %d reason %d", 2597 args[0], args[1], args[2]); 2598 2599 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2600 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2601 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2602 ieee80211_ref_node(ni); 2603 2604 m = ieee80211_getmgtframe(&frm, 2605 ic->ic_headroom + sizeof(struct ieee80211_frame), 2606 sizeof(uint16_t) /* action+category */ 2607 /* XXX may action payload */ 2608 + sizeof(struct ieee80211_action_ba_addbaresponse) 2609 ); 2610 if (m != NULL) { 2611 *frm++ = category; 2612 *frm++ = action; 2613 ADDSHORT(frm, baparamset); 2614 ADDSHORT(frm, args[2]); /* reason code */ 2615 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2616 return ht_action_output(ni, m); 2617 } else { 2618 vap->iv_stats.is_tx_nobuf++; 2619 ieee80211_free_node(ni); 2620 return ENOMEM; 2621 } 2622 } 2623 2624 static int 2625 ht_send_action_ht_txchwidth(struct ieee80211_node *ni, 2626 int category, int action, void *arg0) 2627 { 2628 struct ieee80211vap *vap = ni->ni_vap; 2629 struct ieee80211com *ic = ni->ni_ic; 2630 struct mbuf *m; 2631 uint8_t *frm; 2632 2633 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, 2634 "send HT txchwidth: width %d", 2635 IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 40 : 20); 2636 2637 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2638 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, 2639 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); 2640 ieee80211_ref_node(ni); 2641 2642 m = ieee80211_getmgtframe(&frm, 2643 ic->ic_headroom + sizeof(struct ieee80211_frame), 2644 sizeof(uint16_t) /* action+category */ 2645 /* XXX may action payload */ 2646 + sizeof(struct ieee80211_action_ba_addbaresponse) 2647 ); 2648 if (m != NULL) { 2649 *frm++ = category; 2650 *frm++ = action; 2651 *frm++ = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 2652 IEEE80211_A_HT_TXCHWIDTH_2040 : 2653 IEEE80211_A_HT_TXCHWIDTH_20; 2654 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2655 return ht_action_output(ni, m); 2656 } else { 2657 vap->iv_stats.is_tx_nobuf++; 2658 ieee80211_free_node(ni); 2659 return ENOMEM; 2660 } 2661 } 2662 #undef ADDSHORT 2663 2664 /* 2665 * Construct the MCS bit mask for inclusion in an HT capabilities 2666 * information element. 2667 */ 2668 static void 2669 ieee80211_set_mcsset(struct ieee80211com *ic, uint8_t *frm) 2670 { 2671 int i; 2672 uint8_t txparams; 2673 2674 KASSERT((ic->ic_rxstream > 0 && ic->ic_rxstream <= 4), 2675 ("ic_rxstream %d out of range", ic->ic_rxstream)); 2676 KASSERT((ic->ic_txstream > 0 && ic->ic_txstream <= 4), 2677 ("ic_txstream %d out of range", ic->ic_txstream)); 2678 2679 for (i = 0; i < ic->ic_rxstream * 8; i++) 2680 setbit(frm, i); 2681 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 2682 (ic->ic_htcaps & IEEE80211_HTC_RXMCS32)) 2683 setbit(frm, 32); 2684 if (ic->ic_htcaps & IEEE80211_HTC_RXUNEQUAL) { 2685 if (ic->ic_rxstream >= 2) { 2686 for (i = 33; i <= 38; i++) 2687 setbit(frm, i); 2688 } 2689 if (ic->ic_rxstream >= 3) { 2690 for (i = 39; i <= 52; i++) 2691 setbit(frm, i); 2692 } 2693 if (ic->ic_txstream >= 4) { 2694 for (i = 53; i <= 76; i++) 2695 setbit(frm, i); 2696 } 2697 } 2698 2699 if (ic->ic_rxstream != ic->ic_txstream) { 2700 txparams = 0x1; /* TX MCS set defined */ 2701 txparams |= 0x2; /* TX RX MCS not equal */ 2702 txparams |= (ic->ic_txstream - 1) << 2; /* num TX streams */ 2703 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) 2704 txparams |= 0x16; /* TX unequal modulation sup */ 2705 } else 2706 txparams = 0; 2707 frm[12] = txparams; 2708 } 2709 2710 /* 2711 * Add body of an HTCAP information element. 2712 */ 2713 static uint8_t * 2714 ieee80211_add_htcap_body(uint8_t *frm, struct ieee80211_node *ni) 2715 { 2716 #define ADDSHORT(frm, v) do { \ 2717 frm[0] = (v) & 0xff; \ 2718 frm[1] = (v) >> 8; \ 2719 frm += 2; \ 2720 } while (0) 2721 struct ieee80211com *ic = ni->ni_ic; 2722 struct ieee80211vap *vap = ni->ni_vap; 2723 uint16_t caps, extcaps; 2724 int rxmax, density; 2725 2726 /* HT capabilities */ 2727 caps = vap->iv_htcaps & 0xffff; 2728 /* 2729 * Note channel width depends on whether we are operating as 2730 * a sta or not. When operating as a sta we are generating 2731 * a request based on our desired configuration. Otherwise 2732 * we are operational and the channel attributes identify 2733 * how we've been setup (which might be different if a fixed 2734 * channel is specified). 2735 */ 2736 if (vap->iv_opmode == IEEE80211_M_STA) { 2737 /* override 20/40 use based on config */ 2738 if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40) 2739 caps |= IEEE80211_HTCAP_CHWIDTH40; 2740 else 2741 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2742 2743 /* Start by using the advertised settings */ 2744 rxmax = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU); 2745 density = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY); 2746 2747 /* Cap at VAP rxmax */ 2748 if (rxmax > vap->iv_ampdu_rxmax) 2749 rxmax = vap->iv_ampdu_rxmax; 2750 2751 /* 2752 * If the VAP ampdu density value greater, use that. 2753 * 2754 * (Larger density value == larger minimum gap between A-MPDU 2755 * subframes.) 2756 */ 2757 if (vap->iv_ampdu_density > density) 2758 density = vap->iv_ampdu_density; 2759 2760 /* 2761 * NB: Hardware might support HT40 on some but not all 2762 * channels. We can't determine this earlier because only 2763 * after association the channel is upgraded to HT based 2764 * on the negotiated capabilities. 2765 */ 2766 if (ni->ni_chan != IEEE80211_CHAN_ANYC && 2767 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40U) == NULL && 2768 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40D) == NULL) 2769 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2770 } else { 2771 /* override 20/40 use based on current channel */ 2772 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 2773 caps |= IEEE80211_HTCAP_CHWIDTH40; 2774 else 2775 caps &= ~IEEE80211_HTCAP_CHWIDTH40; 2776 2777 /* XXX TODO should it start by using advertised settings? */ 2778 rxmax = vap->iv_ampdu_rxmax; 2779 density = vap->iv_ampdu_density; 2780 } 2781 2782 /* adjust short GI based on channel and config */ 2783 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) 2784 caps &= ~IEEE80211_HTCAP_SHORTGI20; 2785 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || 2786 (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) 2787 caps &= ~IEEE80211_HTCAP_SHORTGI40; 2788 ADDSHORT(frm, caps); 2789 2790 /* HT parameters */ 2791 *frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) 2792 | SM(density, IEEE80211_HTCAP_MPDUDENSITY) 2793 ; 2794 frm++; 2795 2796 /* pre-zero remainder of ie */ 2797 memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - 2798 __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); 2799 2800 /* supported MCS set */ 2801 /* 2802 * XXX: For sta mode the rate set should be restricted based 2803 * on the AP's capabilities, but ni_htrates isn't setup when 2804 * we're called to form an AssocReq frame so for now we're 2805 * restricted to the device capabilities. 2806 */ 2807 ieee80211_set_mcsset(ni->ni_ic, frm); 2808 2809 frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - 2810 __offsetof(struct ieee80211_ie_htcap, hc_mcsset); 2811 2812 /* HT extended capabilities */ 2813 extcaps = vap->iv_htextcaps & 0xffff; 2814 2815 ADDSHORT(frm, extcaps); 2816 2817 frm += sizeof(struct ieee80211_ie_htcap) - 2818 __offsetof(struct ieee80211_ie_htcap, hc_txbf); 2819 2820 return frm; 2821 #undef ADDSHORT 2822 } 2823 2824 /* 2825 * Add 802.11n HT capabilities information element 2826 */ 2827 uint8_t * 2828 ieee80211_add_htcap(uint8_t *frm, struct ieee80211_node *ni) 2829 { 2830 frm[0] = IEEE80211_ELEMID_HTCAP; 2831 frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; 2832 return ieee80211_add_htcap_body(frm + 2, ni); 2833 } 2834 2835 /* 2836 * Add Broadcom OUI wrapped standard HTCAP ie; this is 2837 * used for compatibility w/ pre-draft implementations. 2838 */ 2839 uint8_t * 2840 ieee80211_add_htcap_vendor(uint8_t *frm, struct ieee80211_node *ni) 2841 { 2842 frm[0] = IEEE80211_ELEMID_VENDOR; 2843 frm[1] = 4 + sizeof(struct ieee80211_ie_htcap) - 2; 2844 frm[2] = (BCM_OUI >> 0) & 0xff; 2845 frm[3] = (BCM_OUI >> 8) & 0xff; 2846 frm[4] = (BCM_OUI >> 16) & 0xff; 2847 frm[5] = BCM_OUI_HTCAP; 2848 return ieee80211_add_htcap_body(frm + 6, ni); 2849 } 2850 2851 /* 2852 * Construct the MCS bit mask of basic rates 2853 * for inclusion in an HT information element. 2854 */ 2855 static void 2856 ieee80211_set_basic_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs) 2857 { 2858 int i; 2859 2860 for (i = 0; i < rs->rs_nrates; i++) { 2861 int r = rs->rs_rates[i] & IEEE80211_RATE_VAL; 2862 if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) && 2863 r < IEEE80211_HTRATE_MAXSIZE) { 2864 /* NB: this assumes a particular implementation */ 2865 setbit(frm, r); 2866 } 2867 } 2868 } 2869 2870 /* 2871 * Update the HTINFO ie for a beacon frame. 2872 */ 2873 void 2874 ieee80211_ht_update_beacon(struct ieee80211vap *vap, 2875 struct ieee80211_beacon_offsets *bo) 2876 { 2877 #define PROTMODE (IEEE80211_HTINFO_OPMODE|IEEE80211_HTINFO_NONHT_PRESENT) 2878 struct ieee80211_node *ni; 2879 const struct ieee80211_channel *bsschan; 2880 struct ieee80211com *ic = vap->iv_ic; 2881 struct ieee80211_ie_htinfo *ht = 2882 (struct ieee80211_ie_htinfo *) bo->bo_htinfo; 2883 2884 ni = ieee80211_ref_node(vap->iv_bss); 2885 bsschan = ni->ni_chan; 2886 2887 /* XXX only update on channel change */ 2888 ht->hi_ctrlchannel = ieee80211_chan2ieee(ic, bsschan); 2889 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 2890 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PERM; 2891 else 2892 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PROH; 2893 if (IEEE80211_IS_CHAN_HT40U(bsschan)) 2894 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 2895 else if (IEEE80211_IS_CHAN_HT40D(bsschan)) 2896 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_BELOW; 2897 else 2898 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_NONE; 2899 if (IEEE80211_IS_CHAN_HT40(bsschan)) 2900 ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040; 2901 2902 /* protection mode */ 2903 ht->hi_byte2 = (ht->hi_byte2 &~ PROTMODE) | ic->ic_curhtprotmode; 2904 2905 ieee80211_free_node(ni); 2906 2907 /* XXX propagate to vendor ie's */ 2908 #undef PROTMODE 2909 } 2910 2911 /* 2912 * Add body of an HTINFO information element. 2913 * 2914 * NB: We don't use struct ieee80211_ie_htinfo because we can 2915 * be called to fillin both a standard ie and a compat ie that 2916 * has a vendor OUI at the front. 2917 */ 2918 static uint8_t * 2919 ieee80211_add_htinfo_body(uint8_t *frm, struct ieee80211_node *ni) 2920 { 2921 struct ieee80211vap *vap = ni->ni_vap; 2922 struct ieee80211com *ic = ni->ni_ic; 2923 2924 /* pre-zero remainder of ie */ 2925 memset(frm, 0, sizeof(struct ieee80211_ie_htinfo) - 2); 2926 2927 /* primary/control channel center */ 2928 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 2929 2930 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) 2931 frm[0] = IEEE80211_HTINFO_RIFSMODE_PERM; 2932 else 2933 frm[0] = IEEE80211_HTINFO_RIFSMODE_PROH; 2934 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 2935 frm[0] |= IEEE80211_HTINFO_2NDCHAN_ABOVE; 2936 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 2937 frm[0] |= IEEE80211_HTINFO_2NDCHAN_BELOW; 2938 else 2939 frm[0] |= IEEE80211_HTINFO_2NDCHAN_NONE; 2940 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 2941 frm[0] |= IEEE80211_HTINFO_TXWIDTH_2040; 2942 2943 frm[1] = ic->ic_curhtprotmode; 2944 2945 frm += 5; 2946 2947 /* basic MCS set */ 2948 ieee80211_set_basic_htrates(frm, &ni->ni_htrates); 2949 frm += sizeof(struct ieee80211_ie_htinfo) - 2950 __offsetof(struct ieee80211_ie_htinfo, hi_basicmcsset); 2951 return frm; 2952 } 2953 2954 /* 2955 * Add 802.11n HT information information element. 2956 */ 2957 uint8_t * 2958 ieee80211_add_htinfo(uint8_t *frm, struct ieee80211_node *ni) 2959 { 2960 frm[0] = IEEE80211_ELEMID_HTINFO; 2961 frm[1] = sizeof(struct ieee80211_ie_htinfo) - 2; 2962 return ieee80211_add_htinfo_body(frm + 2, ni); 2963 } 2964 2965 /* 2966 * Add Broadcom OUI wrapped standard HTINFO ie; this is 2967 * used for compatibility w/ pre-draft implementations. 2968 */ 2969 uint8_t * 2970 ieee80211_add_htinfo_vendor(uint8_t *frm, struct ieee80211_node *ni) 2971 { 2972 frm[0] = IEEE80211_ELEMID_VENDOR; 2973 frm[1] = 4 + sizeof(struct ieee80211_ie_htinfo) - 2; 2974 frm[2] = (BCM_OUI >> 0) & 0xff; 2975 frm[3] = (BCM_OUI >> 8) & 0xff; 2976 frm[4] = (BCM_OUI >> 16) & 0xff; 2977 frm[5] = BCM_OUI_HTINFO; 2978 return ieee80211_add_htinfo_body(frm + 6, ni); 2979 } 2980